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Abstract
We consider scalar semilinear elliptic PDEs, where the nonlinearity is strongly mono-
tone, but only locally Lipschitz continuous. To linearize the arising discrete nonlinear
problem, we employ a damped Zarantonello iteration, which leads to a linear Poisson-
type equation that is symmetric and positive definite. The resulting system is solved
by a contractive algebraic solver such as a multigrid method with local smoothing. We
formulate a fully adaptive algorithm that equibalances the various error components
coming from mesh refinement, iterative linearization, and algebraic solver. We prove
that the proposed adaptive iteratively linearized finite element method (AILFEM)
guarantees convergence with optimal complexity, where the rates are understood with
respect to the overall computational cost (i.e., the computational time). Numerical
experiments investigate the involved adaptivity parameters.

Mathematics Subject Classification 65N30 · 65N50 · 65N15 · 65Y20 · 41A25

1 Introduction

1.1 Problem setting andmain results

Undoubtedly, adaptive finite element methods (AFEMs) are in the canon of reliable
numerical methods for the solution of partial differential equations (PDEs). Some of
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the seminal contributions in this still very active area are [1–9] for linear problems, [10–
14] for nonlinear problems, and [15] for an abstract framework.

By means of conforming finite elements, this paper is concerned with the cost-
optimal computation of the solution u� ∈ H1

0 (�) to the semilinear elliptic model
problem

− div(A∇u�) + b(u�) = F in � subject to u� = 0 on ∂�, (1)

with a Lipschitz domain � ⊂ R
d for d ∈ {1, 2, 3}, an elliptic diffusion coefficient

A : � → R
d×d
sym , a monotone nonlinearity b : � → R, and sufficiently regular data

F . The assumptions are such that the Browder–Minty theorem ensures existence and
uniqueness.

Moreover, the model problem (1) can be recast into the framework of strongly
monotone and locally Lipschitz continuous operators such that the abstract model
problem reads: For X = H1

0 (�) with topological dual space X ′ = H−1(�) and
duality bracket 〈 · , · 〉, a nonlinear operator A : X → X ′, and given data F ∈ X ′, we
aim to approximate the solution u� ∈ X to

〈Au� , v 〉 = 〈 F , v 〉 for all v ∈ X . (2)

To this end, we employ conforming piecewise polynomial finite element spacesXH ⊂
X with the corresponding discrete solution u�

H ∈ XH to

〈Au�
H , vH 〉 = 〈 F , vH 〉 for all vH ∈ XH , (3)

which, however, can hardly be computed exactly, since (3) is still a discrete nonlinear
system of equations.

The major difficulty of such problems is that the Lipschitz constant of A depends
on the considered functions v and w in the sense that for ϑ > 0, it holds that

‖Av − Aw‖X ′ ≤ L[ϑ] |||v − w||| for all v,w ∈ X with max
{|||v|||, |||w|||} ≤ ϑ.

(LIP′)

Moreover, this dependence also appears in the stability constant of the residual-based
a posteriori error estimator [16, 17].

Hence, for such a problem class, any approximate numerical scheme must ensure
uniform boundedness of all computed approximations u�

H ≈ uH ∈ XH throughout
the algorithm. This constitutes the first main result: The developed adaptive iteratively
linearized FEM (AILFEM) algorithm (more detailed in Algorithm 1 below) guaran-
tees a uniform upper bound on all iterates (see Theorem 4 below). In particular, the
algorithm steers the decision whether it is more preferable to refine the mesh adap-
tively or to do an additional step of linearization or a further algebraic solver step
instead.

Once uniform boundedness is established, we prove full R-linear convergence
(Theorem 5 below) as the second main result. Full R-linear convergence establishes
contraction in each step of the algorithm regardless of the algorithmic decision. At the
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Fig. 1 Depiction of the nested loops of the AILFEM algorithm 1 below

expense of a more challenging analysis that links energy arguments with the energy
norm of the algebraic solver, full R-linear convergence is guaranteed for all mesh
levels � ≥ �0 = 0 while prior works [17, 18] used compactness arguments which
only guaranteed the existence of the index �0 ∈ N0 (and not necessarily �0 = 0). As
a consequence of uniform boundedness and full R-linear convergence, the third main
result proves optimal rates both understood with respect to the degrees of freedom
and with respect to the overall computational cost (Corollary 1 and Theorem 6) of the
proposed algorithm.

Compared to existing results in the literature [14, 19–21], all three main results
require a suitable adaptation of the stopping criteria of the linearization loop as well
as sufficiently many iterations in the algebra loop, together with subtle technical chal-
lenges, in particular, for the proof of full R-linear convergence.

1.2 From AFEM to AILFEM

On eachmesh level (withmesh index �), the arising discrete nonlinear problems cannot
be solved exactly in practice as supposed in classical AFEM [10–13]. To deal with this
issue, we follow [22–24] and consider the so-called Zarantonello iteration from [25]
as a linearization method (with index k). The Zarantonello iteration is a Richardson-
type iteration where only a Laplace-type problem has to be solved in each iteration.
Since the arising large SPD systems are still expensive to solve exactly, we employ a
contractive algebraic solver as a nested loop to solve the Zarantonello system inexactly
(with iteration index i). The loops thus come with a natural nestedness (see Fig. 1),
where the overall schematic loop of the algorithm reads

SOLVE & ESTIMATE MARK REFINE

Since the proposed adaptive loop depends on all previous computations, optimal
convergence rates should be understood with respect to the overall computational
cost. This idea of optimal complexity originates from the wavelet community [26, 27]
was used in the context of AFEM in [5] for the Poisson model problem and [28] for
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the Poisson eigenvalue problem, both under realistic assumptions on generic iterative
solvers.

AILFEMs with iterative and/or inexact solver with a posteriori error estimators are
found in, e.g., [22, 29–33] and references therein. Besides the Zarantonello iteration,
for globally Lipschitz continuous nonlinearities, the works [20, 24, 34] analyze also
other linearizations such as theKačanov iteration or dampedNewton schemes.Optimal
complexity of the Zarantonello loop that is coupled with an algebraic loop is analyzed
in [18] for nonsymmetric second-order linear elliptic PDEs and for strongly monotone
(and globally Lipschitz continuous) model problems in [14, 19–21, 23].

The literature on AILFEMs for locally Lipschitz continuous problems is scarce
and closing this gap is the aim of this work. The semilinear model problem is treated
in, e.g., [33] by a damped Newton iteration and in [35] by an energy-based approach
with experimentally observed optimal rates. We also refer to the own work [36] for an
AILFEM with optimal rates with respect to the overall computational cost, however,
under the assumption that the arising linear systems can be solved at linear cost. More
precisely, compared to the previous work [36], in this paper we also take an opti-
mal algebraic solver for the linearized problem into account and propose an adaptive
algorithm ensuring optimal convergence rates with respect to the computation time.
Moreover, compared to [36] that elaborates the proof of full R-linear convergence
along the lines of [14], we provide a much simpler proof inspired by [21]. However,
the work [21] employs a general quasi-orthogonality from [37] that is not available
for nonlinear problems in general since the proof relies on a stable LU-decomposition
of the linear problem. Therefore, to avoid compactness arguments like in [18], we
employ orthogonality in the underlying energy.

1.3 Outline

This paper is structured as follows: Sect. 2 introduces the abstract framework on
locally Lipschitz continuous operators. In Sect. 3, we formulate the (idealized) AIL-
FEM algorithm (Algorithm 1). We prove uniform boundedness for the final iterates
of the algebraic solver (Theorem 4). Section4 presents the second main result: Full
R-linear convergence (Theorem 5). In particular, rates with respect to the degrees of
freedom coincide with rates with respect to the computational cost (Corollary 1). In
Sect. 5, we prove the main result on optimal complexity of the proposed AILFEM
algorithm (Theorem 6). In Sect. 6, we present numerical experiments of the proposed
AILFEM strategy and investigate its optimal complexity for various choices of the
adaptivity parameters.

2 Strongly monotone operators

This section introduces an abstract framework of strongly monotone and locally Lip-
schitz continuous operators. This class of operators covers the model problem (1) of
semilinear elliptic PDEs with monotone semilinearity.
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2.1 Abstract model problem

LetX be a Hilbert space overRwith scalar product 〈〈· , ·〉〉 and induced norm ||| · |||. Let
XH ⊆ X be a closed subspace. Let X ′ be the dual space with norm ‖ · ‖X ′ and denote
by 〈·, ·〉 the duality bracket on X ′ ×X . LetA : X → X ′ be a nonlinear operator. We
suppose thatA is strongly monotone, i.e., there exists a monotonicity constant α > 0
such that

α |||v − w|||2 ≤ 〈Av − Aw , v − w〉 for all v,w ∈ X . (SM)

Moreover, we suppose that A is locally Lipschitz continuous, i.e., for all ϑ > 0,
there exists L[ϑ] > 0 such that

〈Av − Aw , ϕ〉 ≤ L[ϑ] |||v − w||| |||ϕ||| for all v, w, ϕ ∈ X with max
{|||v|||, |||v − w|||} ≤ ϑ.

(LIP)

Remark 1 We remark that local Lipschitz continuity is often defined differently in the
existing literature, cf. [38, p. 565]: For all 	 > 0, there exists L ′[	] > 0 such that

〈Av − Aw , ϕ〉 ≤ L ′[	] |||v − w||| |||ϕ||| for all v, w, ϕ ∈ X with max
{|||v|||, |||w|||}≤	.

(LIP′)

We note that the conditions (LIP) and (LIP′) are indeed equivalent in the sense
that (LIP) yields (LIP′) with 	 = 2ϑ , and, conversely, (LIP′) yields (LIP) with ϑ =
2	. However, condition (LIP) is better suited for the inductive proof of Proposition 2
which is the main ingredient to guarantee uniform boundedness in Theorem 4.

Without loss of generality, we may suppose that A0 �= F ∈ X ′. We consider the
operator equation: Seek u� ∈ X that solves (2). For any closed subspace XH ⊆ X ,
we consider the corresponding Galerkin discretization (3). We note existence and
uniqueness of the solutions to (2)–(3) and a Céa-type estimate.

Proposition 1 ([36, Proposition 2]) Suppose that A satisfies (SM) and (LIP). Then,
(2)–(3) admit unique solutions u� ∈ X and u�

H ∈ XH , respectively, and

max
{|||u�|||, |||u�

H |||} ≤ M := 1

α
‖F − A0‖X ′ > 0 (4)

as well as

|||u� − u�
H ||| ≤ CC éa min

vH∈XH

|||u� − vH ||| with CC éa = L[2M]/α. �� (5)
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Finally, we suppose thatA has a potential P: There exists a Gâteaux differentiable
function P : X → R such that its derivative dP : X → X ′ coincides with A, i.e.,

〈Aw , v〉 = 〈dP(w) , v〉 = lim
t→0
t∈R

P(w + tv) − P(w)

t
for all v,w ∈ X . (POT)

With the energy E(v) := (P − F)v, there holds the following classical equivalence.

Lemma 1 (see, e.g., [23, Lemma 5.1]) Let XH ⊆ X be a closed subspace (where also
XH replaced by X is admissible). Suppose that A satisfies (SM), (LIP), and (POT).
Let ϑ ≥ M. Let vH ∈ XH with |||vH − u�

H ||| ≤ ϑ . Then, it holds that

α

2
|||vH − u�

H |||2 ≤ E(vH ) − E(u�
H ) ≤ L[ϑ]

2
|||vH − u�

H |||2. (6)

In particular, the solution u�
H of the variational formulation (3) is indeed the unique

minimizer of E in XH , i.e.,

E(u�
H ) ≤ E(vH ) for all vH ∈ XH . (7)

In particular, it holds that

E(vH ) − E(u�) = [
E(vH ) − E(u�

H )
] + [

E(u�
H ) − E(u�)

]
for all vH ∈ XH (8)

and all these energy differences are nonnegative. ��

2.2 Iterative linearization and algebraic solver

Let XH ⊂ X be a finite-dimensional (and hence closed) subspace of X . In order to
solve the arising nonlinear discrete problems (3), we will incorporate a linearization
method as well as an algebraic solver into the proposed algorithm.

Linearization by Zarantonello iteration. For a detailed discussion of the Zaran-
tonello iteration, we refer to [36, Sect. 2.2–2.4]. For a damping parameter δ > 0 and
wH ∈ XH , let �H (δ;wH ) ∈ XH solve

〈〈�H (δ;wH ) , vH 〉〉 = 〈〈wH , vH 〉〉 + δ
[
F(vH ) − 〈AwH , vH 〉] for all vH ∈ XH .

(9)

The Lax–Milgram lemma proves existence and uniqueness of �H (δ;wH ), i.e., the
Zarantonello operator �H (δ; ·) : XH → XH is well-defined. In particular, u�

H =
�(δ; u�

H ) is the unique fixed point of �H (δ; ·) for any damping parameter δ > 0.
Moreover, for sufficiently small δ > 0, the Zarantonello operator is norm-contractive.

Proposition 2 (see, e.g., [36, Proposition 4]) Suppose thatA satisfies (SM) and (LIP).
Let ϑ > 0 and vH , wH ∈ XH with max

{|||vH |||, |||vH − wH |||} ≤ ϑ . Then, for all
0 < δ < 2α/L[ϑ]2 and 0 < q�

Zar[δ, ϑ]2 := 1 − δ (2α − δL[ϑ]2) < 1, it holds that
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|||�H (δ; vH ) − �H (δ;wH )||| ≤ q�
Zar[δ, ϑ] |||vH − wH |||. (10)

We note that q�
Zar[δ, ϑ] → 1 as δ → 0. For known α and L[ϑ], the contraction

constant q�
Zar[δ, ϑ]2 = 1 − α2/L[ϑ]2 = 1 − α δ is minimal and only attained for

δ = α/L[ϑ]2. ��
Algebraic solver. The Zarantonello system (9) leads to an SPD system of equations to
compute �H (δ; uH ). Since large SPD problems are still computationally expensive,
we employ an iterative algebraic solver with process function �H : X ′ × XH → XH

to solve the arising system (9). More precisely, given a linear functional ϕ ∈ X ′ and
an approximation wH ∈ XH of the exact solutions w�

H ∈ XH to

〈〈w�
H , vH 〉〉 = ϕ(vH ) for all vH ∈ XH ,

the algebraic solver returns an improved approximation �H (ϕ;wH ) ∈ XH in the
sense that there exists a uniform constant 0 < qalg < 1 independent of ϕ andXH such
that

|||w�
H − �H (ϕ;wH )||| ≤ qalg |||w�

H − wH ||| for all wH ∈ XH . (11)

To simplify notation when the right-hand side ϕ is complicated or lengthy (as for
the Zarantonello iteration (9)), we shall write �H (w�

H ; ·) instead of �H (ϕ; ·), even
though w�

H is unknown and will never be computed.

2.3 Mesh refinement

Henceforth, let T0 be an initial triangulation of � into compact triangles. For mesh
refinement, we use newest vertex bisection (NVB); cf. [39] for d ≥ 2 with admissible
T0 as well as [40] for d = 2 and [41] for d ≥ 2 with nonadmissible T0. For d = 1,
we refer to [42]. For each triangulation TH and marked elements MH ⊆ TH , let
Th := refine(TH ,MH ) be the coarsest refinement of TH such that at least all
elements T ∈ MH have been refined, i.e., MH ⊆ TH\Th . We write Th ∈ T(TH )

if Th can be obtained from TH by finitely many steps of NVB, and, for N ∈ N0, we
write Th ∈ TN (TH ) if Th ∈ T(TH ) and #Th − #TH ≤ N . To abbreviate notation,
let T := T(T0). Throughout, any TH ∈ T is associated with a finite-dimensional
space XH ⊂ X such that nestedness of meshes Th ∈ T(TH ) implies nestedness of the
associated spaces XH ⊆ Xh .

2.4 Axioms of adaptivity and a posteriori error estimator

For TH ∈ T, T ∈ TH , and vH ∈ XH , let ηH (T , vH ) ∈ R≥0 be the local contributions
of an a posteriori error estimator and abbreviate

ηH (vH ) := ηH (TH , vH ), where ηH (UH , vH ) :=
( ∑

T∈UH

ηH (T , vH )2
)1/2

for all UH ⊆ TH .

(12)
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We suppose that the error estimator ηH satisfies the following axioms of adaptivity
from [15] with a slightly relaxed variant of stability (A1) in the spirit of [17].

(A1) stability: For all ϑ > 0 and all UH ⊆ Th ∩ TH , there exists Cstab[ϑ] > 0 such
that for all vh ∈ Xh and vH ∈ XH with max

{|||vh |||, |||vh − vH |||} ≤ ϑ , it holds
that

∣∣ηh(UH , vh) − ηH (UH , vH )
∣∣ ≤ Cstab[ϑ] |||vh − vH |||.

(A2) reduction: With 0 < qred < 1, it holds that

ηh(Th\TH , vH ) ≤ qred ηH (TH\Th, vH ) for all vH ∈ XH .

(A3) reliability: There exists Crel > 0 such that

|||u� − u�
H ||| ≤ Crel ηH (u�

H ).

(A4) discrete reliability: There exists Cdrel > 0 such that

|||u�
h − u�

H ||| ≤ Cdrel ηH (TH\Th, u�
H ).

2.5 Application of abstract framework (2) to semilinear PDEs (1)

In the following, we comment on how the semilinear PDE (1) fits into the abstract
framework in Sect. 2.1–2.4. Let� ⊂ R

d , d ∈ {1, 2, 3}, be a bounded Lipschitz domain
with polygonal boundary. The weak formulation of the semilinear model problem (1)
reads: Given F ∈ H−1(�), find u� ∈ X := H1

0 (�) such that

〈A∇u� , ∇v〉� + 〈b(u�) , v〉� = 〈F , v〉 for all v ∈ H1
0 (�), (13)

where 〈·, ·〉� denotes the L2(�)-scalar product. Note that (13) coincides with (2),
where Au := 〈A∇u , ∇ ·〉� + 〈b(u) , ·〉� with u ∈ X . As a means of discretization,
we consider Lagrange finite element spaces of piecewise polynomial functions of a
fixed polynomial degree p ∈ N on a conforming triangulation TH of�, namelyXH :=
S
p
0 (TH ) := {vH ∈ H1

0 (�) : vH |T is polynomial of degree ≤ p for all T ∈ TH }. This
discretization leads to nested spaces XH ⊆ Xh whenever TH ∈ T and Th ∈ T(TH ).
The precise assumptions on the model problem are given as follows.

Assumptions on the right-hand side.We suppose the following.

(RHS) Let 〈F , v〉 := 〈 f , v〉� + 〈 f , ∇v〉� with given f ∈ L2(�) and f ∈
[L2(�)]d .

Assumptions on the diffusion coefficient. The diffusion coefficient A satisfies the
following standard assumptions:
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(ELL) A ∈ L∞(�; R
d×d
sym ), where A(x) is a symmetric and uniformly positive definite

matrix, i.e., the minimal and maximal eigenvalues satisfy

0 < μ0 := ess inf
x∈�

λmin(A(x)) ≤ ess sup
x∈�

λmax(A(x)) =: μ1 < ∞.

In particular, the A-induced energy scalar product 〈〈v , w〉〉 := 〈A∇v , ∇w〉� induces
an equivalent norm |||v||| := 〈〈v , v〉〉1/2 on H1

0 (�).
Assumptions on the nonlinear reaction coefficient.The nonlinearity b(·) satisfies

the following assumptions from [43, (A1)–(A3)]:

(CAR) b : � × R → R is a Carathéodory function, i.e., for all n ∈ N0, the n-th
derivative b(n) := ∂nξ b of b with respect to the second argument ξ satisfies that

� for any ξ ∈ R, the function x �→ b(n)(x, ξ) is measurable on �,
� for any x ∈ �, the function ξ �→ b(n)(x, ξ) exists and is continuous in ξ .

(MON) Weassumemonotonicity in the secondargument, i.e.,b′(x, ξ) := b(1)(x, ξ) ≥
0 for all x ∈ � and ξ ∈ R. By considering b̃(v) := b(v) − b(0) and
f̃ := f − b(0), we assume without loss of generality that b(x, 0) = 0.

To establish continuity of v �→ 〈b(v), w〉�, we impose the following growth condi-
tion on b(v); see, e.g., [44, Chapter III, (12)] or [43, (A4)]:

(GC) There exist R > 0 and N ∈ N with N ≤ 5 for d = 3 such that

|b(N )(x, ξ)| ≤ R for a.e. x ∈ � and all ξ ∈ R.

These assumptions suffice to prove that the operatorA := X → X ′ = H−1(�) asso-
ciated with the model problem (13) is strongly monotone (SM) and locally Lipschitz
continuous (LIP) in the sense of Sect. 2.1; see [36, Lemma 20].

Energy minimization. Associated with the semilinear model problem (13), we
consider the energy

E(v)= 1

2

∫

�
|A1/2∇v|2 dx +

∫

�

∫ v(x)

0
b(s) ds dx −

∫

�
f v dx −

∫

�
f · ∇v dx for v ∈ H1

0 (�).

To ensure the well-posedness of integrals, we require the following stronger growth
condition (guaranteeing compactness of the nonlinear reaction term). Indeed, the
same assumption is also required for stability (A1) of the residual error estimator (14)
below.

(CGC) There holds (GC), if d ∈ {1, 2}. If d = 3, there holds (GC) with the stronger
assumption N ∈ {2, 3}.

Residual error estimator. To guarantee well-posedness, we additionally require
that A|T ∈ [W 1,∞(T )]d×d and f |T ∈ [W 1,∞(T )]d for all T ∈ T0, where T0 is
the initial triangulation of the adaptive algorithm. Then, for TH ∈ T and vH ∈ XH ,
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the local contributions of the standard residual error estimator (12) for the semilinear
model problem (13) read

ηH (T , vH )2 := h2T ‖ f + div(A∇vH − f ) − b(vH )‖2L2(T )

+ hT ‖[[(A∇vH − f ) · n]]‖2L2(∂T∩�)
,

(14)

where hT = |T |1/d and where [[ · ]] denotes the jump across edges (for d = 2) resp.
faces (for d = 3) and n denotes the outer unit normal vector. For d = 1, these jumps
vanish, i.e., [[ · ]] = 0. The axioms of adaptivity are established for the present setting
in [17].

Proposition 3 ([17, Proposition 15]) Suppose (RHS), (ELL), (CAR), (MON), and
(CGC). Suppose that NVB is employed as a refinement strategy. Then, the residual
error estimator from (14) satisfies (A1)–(A4) from Sect.2.4. The constant Crel depends
only on d, μ0, and uniform shape regularity of the initial mesh T0. The constant Cdrel
depends, in addition, on the polynomial degree p, and Cstab[ϑ] depends furthermore
on |�|, ϑ , N , R, and A. ��

Algebraic solver. As an algebraic solver, we employ a norm-contractive solver
to solve the Zarantonello system (9). Possible choices are, e.g., an optimally pre-
conditioned conjugate gradient method [45] or an optimal geometric multigrid [46,
47]. More precisely, the numerical experiments below employ the hp-robust multigrid
method from [47], which is well-defined owing to ellipticity (ELL).

3 Fully adaptive algorithm

In this section, we present the adaptive iterative linearized finite element method (AIL-
FEM). As a first main result, we prove that the iterates from the proposed algorithm
are uniformly bounded.

3.1 Fully adaptive algorithm

In this section, we introduce a fully adaptive algorithm that steers mesh refinement (�),
linearization (k) and the algebraic solver (i). The algorithm utilizes specific stopping
indices denoted by an underline, namely �, k[�], i[�, k]. However, we may omit the

dependence when it is apparent from the context, such as in the abbreviation u
k,i
� :=

u
k,i[�,k]
� .
For the analysis of Algorithm 1, we define the countably infinite index set

Q := {(�, k, i) ∈ N
3
0 : uk,i� is used in Algorithm 1},
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Algorithm 1 adaptive iterative linearized FEM (AILFEM)
Input: Initial mesh T0, marking parameters 0 < θ ≤ 1, Cmark ≥ 1, solver parameters λlin, λalg > 0,

minimal number of algebraic solver steps imin ∈ N, initial guess u0,00 := u0,�0 := u
0,i
0 ∈ X0 with

|||u0,00 ||| ≤ 2M , and Zarantonello damping parameter δ > 0.
Adaptive loop: For all � = 0, 1, 2, . . . , repeat the following steps (I)–(III):

(I) SOLVE & ESTIMATE. For all k = 1, 2, 3, . . . , repeat steps (a)–(c):

(a) Define uk,0
�

:= u
k−1,i
�

and, for only theoretical reasons, uk,�
�

:= ��(δ; uk−1,i
�

).
(b) For all i = 1, 2, 3, . . . repeat steps (i)–(ii):

(i) Compute uk,i
�

:= ��(u
k,�
�

; uk,i−1
�

) and error estimator η�(u
k,i
�

).
(ii) Terminate the i-loop and define i[�, k] := i if

|||uk,i−1
�

− uk,i
�

||| ≤ λalg
[
λlin η�(u

k,i
�

) + |||uk,i
�

− uk,0
�

|||] AND imin ≤ i . (15)

(c) Terminate the k-loop and define k[�] := k if

E(uk,0
�

) − E(u
k,i
�

) ≤ λ2lin η�(u
k,i
�

)2 AND |||uk,i
�

||| ≤ 2M . (16)

(II) MARK. Find a set M� ∈ M�[θ, u
k,i
�

] := {U� ⊆T� : θ η�(u
k,i
�

)2 ≤ η�(U�, u
k,i
�

)2} such that

#M� ≤ Cmark min
U�∈M�[θ,u

k,i
�

]
#U�. (17)

(III) REFINE.Generate the newmeshT�+1 := refine(M�,T�)by employingNVBanddefineu0,0
�+1 :=

u
0,i
�+1 := u0,�

�+1 := u
k,i
�

(nested iteration).

Output: Sequences of successively refined triangulations T�, discrete approximations uk,i
�

and correspond-

ing error estimators η�(u
k,i
�

).

where, for any (�, 0, 0) ∈ Q, the final indices are defined as

� := sup{� ∈ N0 : (�, 0, 0) ∈ Q} ∈ N0 ∪ {∞},
k[�] := sup{k ∈ N : (�, k, 0) ∈ Q} ∈ N ∪ {∞},

i[�, k] := sup{i ∈ N : (�, k, i) ∈ Q} ∈ N ∪ {∞}.

We note, first, that these definitions are consistent with those of Algorithm 1, second,
that Lemma 2 below proves that i[�, k] < ∞, and, third, that hence either � = ∞
or � < ∞ with k[�] = ∞. For all (�, k, i) ∈ Q, we introduce the total step counter
|·, ·, ·| defined by

|�, k, i | := #{(�′, k′, i ′) ∈ Q : (�′, k′, i ′) < (�, k, i)}

=
�−1∑

�′=0

k[�′]∑

k′=1

i[�′,k′]∑

i ′=1

1 +
k−1∑

k′=1

i[�,k′]∑

i ′=1

1 +
i−1∑

i ′=1

1.

We note that this definition provides a lexicographic ordering on Q.
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In the later application to AILFEM for semilinear elliptic PDEs, every step of
Algorithm 1 can be performed in linear complexity as the following arguments show.

� SOLVE. The employed algebraic solver is an hp-robust multigrid [47] and hence
each algebraic solver step requires only O(#T�) operations.

� ESTIMATE. The simultaneous computation of the standard error indicators
η�(T , uk,i� ) for all T ∈ T� can be done at the cost of O(#T�).

� MARK. The employed Dörfler marking (and the involved determination ofM�) is
indeed a linear complexity problem; see [5] for Cmark = 2 and [48] for Cmark = 1.

� REFINE. The refinement of T� is based on NVB and, owing to the mesh-closure
estimate [4, 39], requires only linear cost O(#T�).

Thus, the total work until and including the computation of uk,i� is proportional to

cost(�, k, i) :=
∑

(�′,k′,i ′)∈Q
|�′,k′,i ′|≤|�,k,i |

#T�′ =
�−1∑

�′=0

k[�′]∑

k′=1

i[�′,k′]∑

i ′=1

#T�′ +
k−1∑

k′=1

i[�,k′]∑

i ′=1

#T� +
i∑

i ′=1

#T�.

(18)
An important observation is that the algebraic solver loop always terminates.

Lemma 2 Independently of the adaptivity parameters θ , λlin, and λalg, the i-loop of
Algorithm 1 always terminates, i.e., i[�, k] < ∞ for all (�, k, 0) ∈ Q.

Proof We argue as in [18, Lemma 3.2]. Let (�, k, 0) ∈ Q. We argue by contradiction
and assume that the i-loop stopping criterion (15) in Algorithm 1(I.b.ii) always fails
and hence i[�, k] = ∞. By assumption (11), the algebraic solver ��(u

k,�
� ; · ) is con-

tractive and hence convergent with limit uk,�� := ��(δ; uk−1,i
� ) from Algorithm 1(I.a).

Moreover, by failure of the stopping criterion (15) in Algorithm 1(I.b.ii), we thus
obtain that

η�(u
k,i
� ) + |||uk,i� − uk,0� |||

(15)
� |||uk,i� − uk,i−1

� ||| i→∞−−−→ 0.

This yields |||uk,�� − uk,0� ||| = 0 and hence uk,�� = uk,i� for all i ∈ N0, since the
algebraic solver is contractive. Consequently, the i-loop stopping criterion (15) in
Algorithm 1(I.b.ii) will be satisfied for i = imin. This contradicts our assumption, and
hence we conclude that i[�, k] < ∞. ��

3.2 Energy contraction for the inexact Zarantonello iteration

In this section, we prove uniform boundedness of the iterates uk,i� from Algo-

rithm 1: Note that the algorithm does not compute the Zarantonello iterate uk,�� :=
��(δ; uk−1,i

� ) exactly, but relies on an approximation u
k,i
� ≈ uk,�� . We prove that this

inexact Zarantonello iteration is contractive with respect to the energy, which is the
case if at least imin ∈ N steps of the contractive algebraic solver are performed, i.e.,
i[�, k] ≥ imin. In particular, a suitable choice of the damping parameter δ > 0 and the
index imin are derived in the following.
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Theorem 4 Suppose thatA satisfies (SM), (LIP), and (POT). With M from (4), define
τ := M + 3M

( L[3M]
α

)1/2 ≥ 4M. Let λlin, λalg > 0 and 0 < θ ≤ 1 be arbitrary.

Suppose that |||u0,0� ||| = |||u0,i� ||| ≤ 2M with M > 0 from (4). Choose imin ∈ N such
that

qimin
alg ≤ 1/3. (19)

Then, for any choice of δ > 0 satisfying 0 < δ < min{ 1
L[5τ ] ,

2α
L[2τ ]2 }, there exists a

uniform energy contraction constant 0 < qE = qE [δ, τ ] < 1 (see (32b) below) such
that the following holds.

� nested iteration: |||uk,i� ||| ≤ 2M if (�, k, i) ∈ Q; (20)

� i-uniform bound: |||uk,i� ||| ≤ τ if (�, k, i) ∈ Q; (21)

� E-contraction: E(u
k+1,i
� ) − E(u�

�) ≤ q2E
(
E(u

k,i
� )−E(u�

�)
)

if (�, k+1, i)∈Q.

(22)

With (20)–(22), we obtain for all iterates the

� uniform bound: |||uk,i� ||| ≤ 5τ if (�, k, i) ∈ Q. (23)

Moreover, there exists an index k0 = k0[δ, τ, α, L[3M], M] ∈ N independently of
the mesh refinement index � such that, for all k′ ≥ k0, the nested iteration condition

|||uk′,i
� ||| ≤ 2M in the k-loop stopping criterion (16) is always met.

The main observation of the following lemma is that the uniform boundedness is
passed on by the inexact Zarantonello iteration along the k-loop indices.

Lemma 3 Suppose that A satisfies (SM), (LIP), and (POT). Let λlin, λalg > 0 be

arbitrary and define τ := M + 3M
( L[3M]

α

)1/2 ≥ 4M. Let k ∈ N0 with 0 ≤ k < k[�]
and

|||uk,i� ||| ≤ τ. (24)

Then, for imin ∈ N satisfying (19) and for any 0 < δ < min{ 1
L[5τ ] ,

2α
L[2τ ]2 }, it holds

that

0 ≤
( 1

2δ
− L[5τ ]

2

)
|||uk+1,i

�
− u

k,i
�

|||2 ≤ E(u
k,i
�

) − E(u
k+1,i
�

)

≤
( 1

δ (1 − qimin
alg )

− α

2

)
|||uk+1,i

�
− u

k,i
�

|||2 for all (�, k + 1, i) ∈ Q.

(25)
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Proof The proof is subdivided into five steps.
Step 1 (choice of imin). We note that for any imin ∈ N, the property (19) is indeed

equivalent to

1

2

!≤ 1 − 2 qialg
1 − qialg

for all i ≥ imin. (26)

Step 2 (boundedness). Define ek+1
� := u

k+1,i
� − u

k,i
� . Recall that for 0 < δ <

2α/L[2τ ]2, the Zarantonello iteration satisfies contraction (10).Hence, the contraction
of the algebraic solver (11), the triangle inequality, nested iteration uk+1,0

� = u
k,i
� ,

assumption (24), and 4M ≤ τ show that

|||ek+1
� ||| ≤ |||uk+1,�

� −u
k+1,i
� ||| + |||uk+1,�

� −u
k,i
� |||

(11)≤ q
i[�,k+1]
alg |||uk+1,�

� −uk+1,0
� ||| + |||uk+1,�

� −u
k,i
� |||

≤ 2 |||uk+1,�
� − u

k,i
� ||| ≤ 2

[|||u�
� − u

k,i
� ||| + |||u�

� − uk+1,�
� |||]

(10)≤ 2 (1 + q�
Zar[δ, 2τ ]) |||u�

� − u
k,i
� ||| (24)≤ 4(M + τ) ≤ 5τ.

With the convexity of the norm and |||uk,i� ||| ≤ τ ≤ 5τ , we also obtain that

|||uk+1,i
� ||| ≤ max

0≤t≤1
|||uk,i� − t ek+1

� ||| ≤ 5τ. (27)

Step 3. Since the energy E = P − F from (POT) is Gâteaux differentiable, it
follows that ϕ(t) := E(u

k,i
� + t ek+1

� ) is differentiable with

ϕ′(t) = 〈dE(u
k,i
� + t ek+1

� ) , ek+1
� 〉 = 〈A(u

k,i
� + t ek+1

� ) − F , ek+1
� 〉. (28)

The fundamental theorem of calculus and the exact Zarantonello iteration (9) show
that

E(u
k,i
� ) − E(u

k+1,i
� ) = ϕ(0) − ϕ(1)

= −
∫ 1

0
ϕ′(t) dt (28)= −

∫ 1

0
〈A(u

k,i
� + t ek+1

� ) − F , ek+1
� 〉 dt

= −
∫ 1

0
〈A(u

k,i
� + t ek+1

� ) − A(u
k,i
� ) , ek+1

� 〉 dt − 〈A(u
k,i
� ) − F , ek+1

� 〉
(9)= −

∫ 1

0
〈A(u

k,i
� + t ek+1

� ) − A(u
k,i
� ) , ek+1

� 〉 dt + 1

δ
〈〈uk+1,�

� − u
k,i
� , ek+1

� 〉〉. (29)
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Step 4 (proof of lower bound in (25)). For any i ∈ N with i ≤ i[�, k], the
contraction (11) of the algebraic solver and nested iteration u

k,i
� = uk+1,0

� prove that

|||uk+1,�
� − u

k+1,i
� ||| (11)≤ q

i[�,k+1]
alg |||uk+1,�

� − u
k,i
� |||

≤ qialg |||uk+1,�
� − u

k+1,i
� ||| + qialg |||uk+1,i

� − u
k,i
� |||.

This gives rise to the a posteriori estimate

|||uk+1,�
� − u

k+1,i
� ||| ≤ qialg

1 − qialg
|||uk+1,i

� − u
k,i
� ||| = qialg

1 − qialg
|||ek+1

� |||. (30)

With (30), imin ≤ i ≤ i[�, k + 1], and (26), we derive

〈〈uk+1,�
� − u

k,i
� , ek+1

� 〉〉 = 〈〈uk+1,i
� − u

k,i
� , ek+1

� 〉〉 + 〈〈uk+1,�
� − u

k+1,i
� , ek+1

� 〉〉
= |||ek+1

� |||2 + 〈〈uk+1,�
� − u

k+1,i
� , ek+1

� 〉〉 ≥ |||ek+1
� |||2 − |||uk+1,�

� − u
k+1,i
� ||| |||ek+1

� |||
(30)≥ |||ek+1

� |||
[
|||ek+1

� ||| − qialg

1 − qialg
|||ek+1

� |||
]

=
(1 − 2 qialg

1 − qialg

)
|||ek+1

� |||2

(26)≥ 1

2
|||ek+1

� |||2 ≥ 0. (31)

With the local Lipschitz continuity (LIP) and (27), it follows from (29) that

E(u
k,i
� ) − E(u

k+1,i
� )

(LIP)≥ −
( ∫ 1

0
t L[5τ ] dt

)
|||ek+1

� |||2 + 1

δ
〈〈uk+1,�

� − u
k,i
� , ek+1

� 〉〉
(31)≥

[ 1

2 δ
− L[5τ ]

2

]
|||ek+1

� |||2.

Since 0 < δ < 1/L[5τ ], the last expression is positive.
Step 5 (proof of upper bound in (25)). To derive the upper equivalence constant,

we infer from Step 4 that

〈〈uk+1,�
� − u

k,i
� , ek+1

� 〉〉 ≤ |||ek+1
� |||2 + |||uk+1,�

� − u
k+1,i
� ||| |||ek+1

� |||
(30)≤ |||ek+1

� |||
[
|||ek+1

� ||| + qialg

1 − qialg
|||ek+1

� |||
]

=
( 1

1 − qialg

)
|||ek+1

� |||2.
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Combined with Step 3, we obtain that

E(u
k,i
� ) − E(u

k+1,i
� )

(29)= −
∫ 1

0
〈A(u

k,i
� + t ek+1

� )−A(u
k,i
� ) , ek+1

� 〉 dt

+ 1

δ
〈〈uk+1,�

� −u
k,i
� , ek+1

� 〉〉
(SM)≤ −

( ∫ 1

0
tα dt

)
|||ek+1

� |||2 + 1

δ
〈〈uk+1,�

� − u
k,i
� , ek+1

� 〉〉

≤
( 1

δ (1 − qimin
alg )

− α

2

)
|||ek+1

� |||2.

This concludes the proof. ��

Lemma 4 (Energy contraction) Suppose the assumptions of Lemma 3. Recall imin ∈ N

from (19). Then, for 0 < δ < min{ 1
L[5τ ] ,

2α
L[2τ ]2 }, it holds that

0 ≤ E(u
k+1,i
� ) − E(u�

�) ≤ qE [δ, τ ]2 [E(u
k,i
� ) − E(u�

�)] (32a)

with the contraction constant

0 ≤ qE [δ, τ ]2 := 1 −
(1

δ
− L[5τ ]

) (1 − qimin
alg )2 δ2α2

L[2τ ] < 1. (32b)

We note that qE [δ, τ ] → 1 as δ → 0. In particular, it holds that

(1 − qE [δ, τ ]2) [
E(u

k,i
� ) − E(u�

�)
] ≤ E(u

k,i
� ) − E(u

k+1,i
� ) ≤ E(u

k,i
� ) − E(u�

�). (33)

Proof First, we observe that

α |||u�
� − u

k,i
� |||2 (SM)≤ 〈Au�

� − Au
k,i
� , u�

� − u
k,i
� 〉 (3)= 〈F − Au

k,i
� , u�

� − u
k,i
� 〉

(9)= 1

δ
〈〈uk+1,�

� − u
k,i
� , u�

� − u
k,i
� 〉〉

≤ 1

δ
|||uk+1,�

� − u
k,i
� ||| |||u�

� − u
k,i
� |||.

(34)

The inverse triangle inequality and contraction (11) of the algebraic solver prove that

|||uk+1,i
� − u

k,i
� ||| ≥ |||uk+1,�

� − u
k,i
� ||| − |||uk+1,�

� − u
k+1,i
� |||

(11)≥ (1 − qimin
alg ) |||uk+1,�

� − u
k,i
� ||| (34)≥ (1 − qimin

alg ) δ α |||u�
� − u

k,i
� |||.
(35)
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Since 0 < δ < min{ 1
L[5τ ] ,

2α
L[2τ ]2 }, it follows that

0
(6)≤ E(u

k+1,i
� ) − E(u�

�) = E(u
k,i
� ) − E(u�

�) − [
E(u

k,i
� ) − E(u

k+1,i
� )

]

(25)≤ E(u
k,i
� ) − E(u�

�) −
( 1

2δ
− L[5τ ]

2

)
|||uk+1,i

� − u
k,i
� |||2

(35)≤ E(u
k,i
� ) − E(u�

�) −
( 1

2δ
− L[5τ ]

2

)
(1 − qimin

alg )2 δ2 α2 |||u�
� − u

k,i
� |||2

(6)≤
(
1 − [

1 − δ L[5τ ]] (1 − qimin
alg )2 α2 δ

L[2τ ]
) [

E(u
k,i
� ) − E(u�

�)
]

=: qE [δ, τ ]2 [
E(u

k,i
� ) − E(u�

�)
]
.

We may rewrite qE [δ, τ ]2 = 1 − Cδ + C L[5τ ] δ2 with C = (1−q
imin
alg )2 α2

L[2τ ] . Since 0 <

δ < min{ 1
L[5τ ] ,

2α
L[2τ ]2 } ≤ 1

L[5τ ] , we obtain that 0 < qE [δ, τ ] < 1. This proves (32).
The lower inequality in (33) follows from the triangle inequality. The upper inequality
in (33) holds due to 0 ≤ E(u

k+1,i
� )−E(u�

�) and hence E(u
k,i
� )−E(u

k+1,i
� ) = E(u

k,i
� )−

E(u�
�) + E(u�

�) − E(u
k+1,i
� ) ≤ E(u

k,i
� ) − E(u�

�). This concludes the proof. ��

Proof of Theorem 4 The proof consists of four steps.
Step 1 (proof of (21)–(22) for k = 0 and all � ∈ N0). Let � ∈ N0 with � ≤ � be

arbitrary, but fixed. From the initial guess u0,00 or Algorithm 1(I.c) and u
0,i
� = u0,0� =

u
k,i
�−1 for any � ∈ N, we have that |||u0,0� ||| ≤ 2M and a fortiori |||u0,0� ||| ≤ τ . This

proves (21) for k = 0 and all � ∈ N0 with � ≤ � (even with the stronger bound
2M ≤ τ ).

In particular, we may apply Lemma 4 to obtain that E(u
1,i
� ) − E(u�

�) ≤
qE [δ, τ ]2 [

E(u
0,i
� ) − E(u�

�)
]
, which proves (22) for k = 0 and � ∈ N0.

Step 2 (proof of (21)–(22) for k ≥ 0 and all � ∈ N0). Let � ∈ N0 with � ≤ �. We
argue by induction on k, where Step 1 proves the base case k = 0. Hence, we may
assume that boundedness (21) holds for all 0 ≤ k′ ≤ k. Lemma 4 applied separately
for all 0 ≤ k′ ≤ k yields energy contraction (32) for the indices 0 ≤ k′ ≤ k. Overall,
we obtain that

E(u
k+1,i
� ) − E(u�

�)
(32)≤ qE [δ, τ ]2 [

E(u
k,i
� ) − E(u�

�)
]

(32)≤ qE [δ, τ ]2(k+1) [
E(u

0,i
� ) − E(u�

�)
]
, (36)

where we only used energy contraction (32) for 0 ≤ k′ ≤ k, i.e., for indices that are
covered by the induction hypothesis. From (36), |||u�

�||| ≤ M from (4), and |||u0,i� ||| ≤
2M and u

0,i
� = u0,0� from Step 1, we obtain that
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|||uk+1,i
� ||| ≤ |||u�

�||| + |||u�
� − u

k+1,i
� |||

(6)≤ M +
( 2

α

)1/2 [
E(u

k+1,i
� ) − E(u�

�)
]1/2

(36)≤ M + qk+1
E

( 2

α

)1/2 [
E(u

0,i
� ) − E(u�

�)
]1/2

(6)≤ M + qk+1
E

( L[3M]
α

)1/2 |||u�
� − u

0,i
� ||| ≤ M

+ qk+1
E

( L[3M]
α

)1/2
3M ≤ τ. (37)

Thus, boundedness (21) is satisfied for 0 ≤ k′ ≤ k+1. Again, Lemma 8 yields energy
contraction for 0 ≤ k′ ≤ k + 1. This completes the induction argument and concludes
that (21)–(22) hold for all � ∈ N0 and all k ∈ N0.

Step 3 (uniform boundedness). Contraction of the algebraic solver (11), the
straightforward estimate from the exact Zarantonello iteration (9), |||u�||| ≤ M ≤ τ

from (4), |||uk,0� ||| ≤ τ from (21), and the constraint δ < min{1/L[5τ ], 2α/L[2τ ]2}
which ensures that δL[2τ ] ≤ δL[5τ ] < 1, yield that

|||uk,�� − uk,0� ||| = |||��(δ; uk,0� ) − uk,0� ||| ≤ δ ‖F − A(uk,0� )‖X ′
(LIP)≤ δ L[2τ ] |||u�

−uk,0� ||| < 2τ.

With |||uk,�� ||| ≤ |||uk,0� ||| + |||uk,�� − uk,0� ||| ≤ 3τ owing to (20), it follows that

|||uk,i� ||| (11)≤ |||uk,�� ||| + qialg |||uk,�� − uk,0� ||| ≤ 5τ for all (�, k, i) ∈ Q.

Step 4 (existence of k0). Let � ∈ N0 with � ≤ �. As in (37) from Step 2, we obtain

|||uk,i� ||| ≤ M + qkE
( L[3M]

α

)1/2
3M .

Clearly, there exists a minimal integer k0 = k0[qE , α, L[3M]] = k0[δ, τ, α, L[3M],
M] ∈ N such that, for all k ≥ k0, it holds that

M + qkE
( L[3M]

α

)1/2
3M ≤ 2M .

In particular, k0 is independent of the mesh level � and |||uk,i� ||| ≤ 2M for all k0 ≤
k ≤ k[�]. This concludes the proof. ��
Remark 2 (i) According to uniform boundedness (23), all involved Lipschitz constants
or stability constants are uniformly bounded by L[10τ ] and Cstab[10τ ], respectively.

(ii) Under the assumption that 0 < δ < min{ 1
L[5τ ] ,

2α
L[2τ ]2 }, energy contraction (22)

and the lower bound in the norm-energy equivalence (25) are even equivalent, i.e.,

(22) ⇐⇒ (25).
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To see this, recall that the proof of energy contraction (22) in Lemma 4 exploits (25).
The converse implication is obtained as follows: First, energy contraction yields

E(uk+1,�
� ) − E(u�

�) ≤ q2E
[
E(u

k,i
� ) − E(u�

�)
]

= q2E
{[
E(u

k,i
� ) − E(uk+1,�

� )
]+[

E(uk+1,�
� ) − E(u�

�)
]} (38)

which gives rise to the a posteriori estimate

0 ≤ E(uk+1,�
� ) − E(u�

�) ≤ q2E
1 − q2E

[
E(u

k,i
� ) − E(uk+1,�

� )
]
. (39)

In particular, we note that the energy difference on the right-hand side is nonnegative.
Exploiting uniform boundedness (21), the last inequality yields that

|||uk+1,�
� − u

k,i
� |||2 � |||u�

� − uk+1,�
� |||2 + |||u�

� − u
k,i
� |||2

(9)≤ (
1 + (q�

Zar[δ, 2τ ])2) |||u�
� − u

k,i
� |||2

(6)
�

[
E(u

k,i
� ) − E(uk+1,�

� )
] + [

E(uk+1,�
� ) − E(u�

�)
]

(39)≤ 1

1 − q2E

[
E(u

k,i
� ) − E(uk+1,�

� )
]
.

This concludes the argument.

Remark 3 (i) The stopping criteria (15) and (16) read schematically

[accuracycriterion] AND [iterationcriterion].

(ii) The accuracy criterion in (16) is heuristically motivated by the fact that the
discretization error (estimated by η�(·)) shall dominate the linearization error

α

2
|||u�

� − u
k+1,i
� |||2 (6)≤ E(u

k+1,i
� ) − E(u�

�)

(22)≤ q2E
1 − q2E

[
E(u

k,i
� ) − E(u

k+1,i
� )

] (16)
� λ2lin η�(u

k+1,i
� )2.

(40)

This allows a posteriori error control over the linearization error by means of com-
putable energy differences.

(iii) The accuracy criterion (15) is satisfied given that the discretization and lin-
earization error dominate the algebraic error in the sense of

|||uk,�� − uk,i� ||| (11)≤ qalg
1 − qalg

|||uk,i� − uk,i−1
� |||

(15)≤ qalg
1 − qalg

λalg
[
λlin η�(u

k,i
� ) + |||uk,i� − uk,0� |||].

(41)
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Once the i-loop is stopped, the equivalence (25) and nested iteration uk,0� = u
k−1,i
�

yield |||uk,i� − uk,0� |||2 = |||uk,i� − u
k−1,i
� |||2 � E(u

k−1,i
� ) − E(u

k,i
� ).

4 Full R-linear convergence

Weprove full R-linear convergence ofAlgorithm1 by adapting the analysis of [19, 21].
The new result extends [36, Theorem 13], where an exact solve for the Zarantonello
iteration (9) is supposed. The new proof is built on a summability argument, but the
stopping criteria (15)–(16)with iteration count criteria require further analysis to prove
full R-linear convergence even (and unlike [19, 21]) for arbitrary adaptivity parameters
0 < θ ≤ 1, λlin > 0 and λalg > 0.

Theorem 5 (Full R-linear convergence of Algorithm 1) Suppose the assumptions of
Theorem 4. Suppose the axioms of adaptivity (A1)–(A3). Let λlin, λalg > 0, 0 < θ ≤ 1,
Cmark ≥ 1, and u0,00 ∈ X0 with |||u0,00 ||| ≤ 2M. Then, Algorithm 1 guarantees full
R-linear convergence of the quasi-error

Hk,i
� := |||u�

� − uk,i� ||| + |||uk,�� − uk,i� ||| + η�(u
k,i
� ), (42)

i.e., there exist constants 0 < qlin < 1 and Clin > 0 such that

Hk,i
� ≤Clinq

|�,k,i |−|�′,k′,i ′|
lin Hk′,i ′

�′ for all(�′, k′, i ′), (�, k, i)∈Q with |�′, k′, i ′|< |�, k, i |.
(43)

The constant qlin depends only on θ , qred from (A2), q�
Zar[δ, 2τ ] from Proposition 2,

qE from Theorem 4, and qalg from (11). The constant Clin depends only on M, α,
CC éa[2M], q�

Zar[δ; 2τ ], λlin, qalg, λalg, Crel, Cstab[10τ ], and imin.

Proof of Theorem 5 The proof is split into seven steps.

Step 1 (equivalences of quasi-error quantities). Throughout the proof, we approach
Hk,i

� from (42) after introducing auxiliary quantities such as

Hk
� := [E(u

k,i
� ) − E(u�

�)]1/2 + η�(u
k,i
� ) for all (�, k, i) ∈ Q (44)

and

H� := [E(u
k,i
� ) − E(u�

�)]1/2 + γ η�(u
k,i
� )

(44)� Hk
� for all (�, k, i) ∈ Q, (45)

where 0 < γ < 1 is a free parameter to be fixed later in (51) below. In the following,

we show that Hk,i
� � Hk

�

(45)� H�. First, note that the equivalence of energy and norm
from (6) (with L[2τ ] from boundedness (21) and (4)) yields that

Hk
� ≤ Hk

� + |||uk,�� − u
k,i
� ||| (6)� Hk,i

� for all (�, k, i) ∈ Q. (46)
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The a posteriori estimate (41) for the algebraic solver fromRemark 3(iii), norm-energy
equivalence (25), and the stopping criterion (16) show that

|||uk,�� − u
k,i
� ||| (41)≤ qalg

1 − qalg
λalg

[
λlin η�(u

k,i
� ) + |||uk,i� − u

k,0
� |||]

(25)
� η�(u

k,i
� ) + [

E(uk,0� ) − E(u
k,i
� )

]1/2 (16)
� η�(u

k,i
� ) ≤ Hk

�.

With (46), we conclude that H� � Hk
� � Hk,i

� .

Step 2 (estimator reduction). The axioms (A1)–(A2) and Dörfler marking (17) prove
the estimator reduction estimate (cf., e.g., [14, Equation (52)])

η�+1(u
k,i
�+1) ≤ qθ η�(u

k,i
� ) + Cstab[4M] |||uk,i�+1 − u

k,i
� ||| for all � ∈ N0, (47)

where 4M stems from nested iteration (20) from Theorem 4. Moreover, the triangle
inequality, the equivalence (6), and energy contraction (22) give that

|||uk,i
�+1 − u

k,i
�

||| ≤ |||u�
�+1 − u

k,i
�+1||| + |||u�

�+1 − u
k,i
�

|||
(6)≤

( 2

α

)1/2 [
E(u

k,i
�+1) − E(u�

�+1)
]1/2 +

( 2

α

)1/2 [
E(u

k,i
�

) − E(u�
�+1)

]1/2

(22)≤ (1 + q
k[�+1]
E )

( 2

α

)1/2 [
E(u

k,i
�

) − E(u�
�+1)

]1/2
.

Combined with the estimator reduction estimate (47) and with 1+ qE < 2, we obtain
with C1 := 2 (2/α)1/2 Cstab[4M] that

η�+1(u
k,i
�+1) ≤ qθ η�(u

k,i
� ) + C1

[
E(u

k,i
� ) − E(u�

�+1)
]1/2 for all 0 ≤ � < �. (48)

Step 3 (tail summability with respect to �). Since 1 ≤ k[� + 1], nested iteration

u
0,i
�+1 = u

k,i
� proves that

H�+1
(45)= [

E(u
k,i
�+1) − E(u�

�+1)
]1/2 + γ η�+1(u

k,i
�+1) (49)

(22)≤ qE
[
E(u

k,i
�

) − E(u�
�+1)

]1/2 + γ η�+1(u
k,i
�+1)

(48)≤ (
qE + C1 γ

) [
E(u

k,i
�

) − E(u�
�+1)

]1/2 + qθ γ η�(u
k,i
�

)

≤ max
{
qE+C1 γ, qθ

} ([
E(u

k,i
�

)−E(u�
�+1)

]1/2+γ η�(u
k,i
�

)
)
for all (� + 1, k, i) ∈ Q.

(50)

With 0 < qθ < 1, we choose 0 < γ < (1 − qE )/C1 < 1 to guarantee that

0 < q̃ := max
{
qE + C1 γ, qθ

}
< 1. (51)
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With the triangle inequality, (49) leads us to

a�+1 := [
E(u

k,i
�+1) − E(u�

�+1)
]1/2 + γ η�+1(u

k,i
�+1)

(49)≤ q̃
([
E(u

k,i
� ) − E(u�

�)
]1/2 + γ η�(u

k,i
� )

) + q̃
[
E(u�

�) − E(u�
�+1)

]1/2

=: q̃ a� + b� for all (�, k, i) ∈ Q.

(52)

By exploiting the equivalence (6) and stability (A1) (since all uk,i� are uniformly
bounded by nested iteration (20)), the Céa lemma (5), and reliability (A3) prove that

[
E(u�

�′) − E(u�
�′′)

]1/2 (6)� |||u�
�′′ − u�

�′ |||
(5)
� |||u� − u�

�|||
(A3)
� η�(u

�
�)

(A1)
� |||u�

� − u
k,i
� ||| + η�(u

k,i
� )

(6)� [
E(u

k,i
� ) − E(u�

�)
]1/2 + η�(u

k,i
� ) � a� for all � ≤ �′ ≤ �′′ ≤ � with(�, k, i) ∈ Q.

(53)

Hence, we infer that b�+N � a� for all 0 ≤ � ≤ � + N ≤ � with (�, k, i) ∈ Q,
where the hidden stability constant Cstab[3M] depends on 3M due to (4) and nested
iteration (20).

The energy E from (POT) (and its Pythagorean identity that leads to a telescoping
sum) as well as the minimization property (7) for XH = X allow for the estimate

�+N−1∑

�′=�

b2�′ �
�−1∑

�′=�

[
E(u�

�′) − E(u�
�′+1)

] ≤ E(u�
�) − E(u�

�)
(7)≤ E(u�

�) − E(u�)

(6)≤ L[2M]
2

|||u� − u�
�|||2

(A3)≤ C2
rel

L[2M]
2

η�(u
�
�)
2
(53)
� a2� for all 0 ≤ � < � + N ≤ �,

(54)

where the hidden stability constant Cstab depends on 3M due to (4) and nested itera-
tion (20).

With (52)–(54), the assumptions for the tail summability criterion from [21,
Lemma 6] are met. We thus conclude tail summability of H�+1 � Hk

� � a�, i.e.,

�−1∑

�′=�+1

Hk
�′ � Hk

� for all 0 ≤ � < �. (55)

Step 4 (quasi-contraction in k).We distinguish three cases.
Case 4.1: Evaluation of (16) yields TRUE ∧ FALSE. This gives rise to

2M
(16)
< |||uk,i� ||| ≤ |||u�

�||| + |||u�
� − u

k,i
� ||| (4)≤ M + |||u�

� − u
k,i
� |||
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and hence, we conclude that M < |||u�
� − u

k,i
� |||. Thus,

1 = M

M
<

|||u�
� − u

k,i
� |||

M

(6)≤ 1

M

( 2

α

)1/2 [
E(u

k,i
� ) − E(u�

�)
]1/2

(22)≤ qE
M

( 2

α

)1/2 [
E(u

k−1,i
� ) − E(u�

�)
]1/2

.

(56)

We recall from (4) that |||u�
�||| ≤ M and |||u�

� − u�
0||| ≤ 2M independently of �.

Moreover, there holds quasi-monotonicity of the estimators in the sense that

η�(u
�
�) ≤ Cmon η0(u

�
0) with Cmon = [

2 + 8Cstab[2M]2(1 + CC éa[2M]2)C2
rel

]1/2;
(57)

cf. [15, Lemma 3.6] or [36, Equation (42)] for the locally Lipschitz continuous
setting. In particular, estimate (57) holds also for the discrete limit space X� :=
closure

(⋃�

�=0 X�

)
. Additionally, we note that the estimate (57) admits

η�(u
�
�)

(57)≤ Cmon η0(u
�
0)

(A1)≤ Cmon η0(0) + Cmon Cstab[M] |||u�
0|||

(56)
�

[
E(u

k−1,i
� ) − E(u�

�)
]1/2

. (58)

The estimate (58), stability ((A1) )with stability constantCstab[2τ ] due to (21) and (4),
and energy contraction (22) yield that

η�(u
k,i
�

)
(A1)≤ η�(u

�
�) + Cstab[2τ ] |||u�

� − u
k,i
�

|||
(6)

� η�(u
�
�) + [

E(u
k,i
�

) − E(u�
�)

]1/2

(58)

�
[
E(u

k−1,i
�

) − E(u�
�)

]1/2 + [
E(u

k,i
�

) − E(u�
�)

]1/2 (22)

�
[
E(u

k−1,i
�

) − E(u�
�)

]1/2
.

(59)

For 0 ≤ k′ < k < k[�], the definition (44), energy contraction (22), and (59) prove

Hk
�

(22)
� qE

[
E(u

k−1,i
� ) − E(u�

�)
]1/2 + η�(u

k,i
� )

(59)
�

[
E(u

k−1,i
� ) − E(u�

�)
]1/2

(22)
� q(k−1)−k′

E
[
E(u

k′,i
� ) − E(u�

�)
]1/2 (44)

� qk−k′
E Hk′

� .

(60)

This concludes Case 4.1. �
Case 4.2: Evaluation of (16) yields FALSE ∧ FALSE or FALSE ∧ TRUE. For 0 ≤
k′ < k < k[�], the definition (44), the failure of the accuracy condition in the stopping
criterion for the inexact Zarantonello linearization (16), energy minimization (7), and
energy contraction (22) prove that

Hk
�

(16)
<

[
E(u

k,i
�

) − E(u�
�)

]1/2 + λ−1
lin

[
E(u

k−1,i
�

) − E(u
k,i
�

)
]1/2

(7), (22)

�
[
E(u

k−1,i
�

) − E(u�
�)

]1/2 (22)

� q(k−1)−k′
E

[
E(u

k′,i
�

) − E(u�
�)

]1/2 (44)

� qk−k′
E Hk′

� .

(61)
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This concludes Case 4.2. �
Case 4.3: Evaluation of (16) yields TRUE ∧ TRUE. The equivalence (25), bound-
edness (21), and energy minimization (7) prove that

Hk
�

(A1)
�

[
E(u

k,i
� ) − E(u�

�)
]1/2 + |||uk,i� − u

k−1,i
� ||| + η�(u

k−1,i
� )

(25)
� Hk−1

� + [
E(u

k−1,i
� ) − E(u

k,i
� )

]1/2 (7)≤ 2Hk−1
� for all (�, k, i) ∈ Q.

(62)

Since k = k[�] − 1 is covered by Case 4.1 or Case 4.2, estimate (62) leads to

Hk
�

(62)
� qE

qE
Hk−1

� � qE Hk−1
�

(60), (61)
� q

k[�]−k′
E Hk′,i

� . (63)

This concludes Case 4.3. �
Overall, the estimates (60), (61) and (63) result in

Hk
� � q k−k′

E Hk′
� for all (�, k, j) ∈ Q with 0 ≤ k′ ≤ k ≤ k[�], (64)

where the hidden constant depends only on M , Cstab[2τ ], α, L[2M], CC éa[2M], Crel,
λlin, and qE . Furthermore, we recall from (53) that

[
E(u�

�−1) − E(u�
�)

]1/2 � Hk
�−1.

Together with nested iteration uk,i�−1 = u
0,i
� = u0,�� , this yields that

H0
� = [

E(u
k,i
�−1) − E(u�

�)
]1/2 + η�(u

k,i
�−1) �

[
E(u�

�−1) − E(u�
�)

]1/2 + Hk
�−1 ≤ Hk

�−1

and thus

H0
� � Hk

�−1 for all (�, 0, 0) ∈ Q with � ≥ 1. (65)

Step 5 (tail summability with respect to � and k). The estimates (64)–(65) from
Step 4 as well as (55) from Step 3 and the geometric series prove that

∑

(�′,k′,i)∈Q
|�′,k′,i |>|�,k,i |

Hk′
�′ =

k[�]∑

k′=k+1

Hk′
� +

�∑

�′=�+1

k[�′]∑

k′=0

Hk′
�′

(64)
� Hk

� +
�∑

�′=�+1

H0
�′

(65)
� Hk

� +
�−1∑

�′=�

Hk
�′

(55)
� Hk

� + Hk
�

(64)
� Hk

� for all (�, k, i) ∈ Q. (66)

Step 6 (contraction in i). For i = 0 and k = 0, we recall that u0,0� = u
0,i
� = u0,�� by

definition and hence H0,0
�

(6)� H0
� . For k ≥ 1, nested iteration uk,0� = u

k−1,i
� , contraction
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of the exact Zarantonello iteration (10), and energy equivalence (6) imply that

|||uk,�� − uk,0� ||| ≤ |||u�
� − uk,�� ||| + |||u�

� − u
k−1,i
� |||

(10)≤ (q�
Zar[δ; 3M] + 1) |||u�

� − u
k−1,i
� |||

(6)
� 2Hk−1

� .

Therefore, by using the equivalence (6) once more, we obtain that

Hk,0
� � H(k−1)+

� for all (�, k, 0) ∈ Q, where (k − 1)+ := max{0, k − 1}.
(67)

Let (�, k, i) ∈ Q. It holds that

Hk,i
�

(42)= |||u�
� − uk,i� ||| + |||uk,�� − uk,i� ||| + η�(u

k,i
� )

(A1)≤ Hk,i−1
� + (2 + Cstab[10τ ]) |||uk,i� − uk,i−1

� |||
(11)≤ Hk,i−1

� + (2 + Cstab[10τ ])(qalg + 1) |||uk,�� − uk,i−1
� |||

(42)
� Hk,i−1

� ,

(68)

where Cstab[10τ ] stems from the uniform bound (23) from Theorem 4. Hence, we
obtain

Hk,i
� � Hk,i ′

� � qi−i ′
alg Hk,i ′

� for all (�, k, i) ∈ Q with 0 ≤ i ′ ≤ i ≤ imin.

For all 0 ≤ i ′ < imin ≤ i < i[�, k], we obtain with an a posteriori estimate based on
the contraction of the Zarantonello iteration (10) (where q�

Zar = q�
Zar[δ, 2τ ] depends

on τ from (21)), the a posteriori estimate (41) for the algebraic solver, the failure of
the accuracy criterion of (15), and the contraction of the algebraic solver (11) that

Hk,i
�

(42)= |||u�
� − uk,i� ||| + |||uk,�� − uk,i� ||| + η�(u

k,i
� )

≤ |||u�
� − uk,�� ||| + 2 |||uk,�� − uk,i� ||| + η�(u

k,i
� )

≤ q�
Zar[δ; 2τ ]

1 − q�
Zar[δ; 2τ ] |||uk,i� − u

k−1,i
� |||

+
(
2 + q�

Zar[δ; 2τ ]
1 − q�

Zar[δ; 2τ ]
)

|||uk,�� − uk,i� ||| + η�(u
k,i
� )

(41)
� |||uk,i� − u

k−1,i
� ||| + |||uk,i� − uk,i−1

� ||| + η�(u
k,i
� )

(15)
� |||uk,i� − uk,i−1

� |||
(11)

� |||uk,�� − uk,i−1
� |||

(11)
� qi−i ′

alg |||uk,�� − uk,i
′

� ||| ≤ qi−i ′
alg Hk,i ′

� , (69)
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Altogether, the combination of (68) and (69) proves that

Hk,i
� � qi−i ′

alg Hk,i ′
� for all (�, k, i) ∈ Q with 0 ≤ i ′ ≤ i ≤ i[�, k], (70)

where the hidden constant depends only on q�
Zar[δ; 2τ ], qalg, λalg,Cstab[10τ ], and imin.

Step 7 (tail summability with respect to �, k, and i). Finally, we observe that

∑

(�′,k′,i ′)∈Q
|�′,k′,i ′ |>|�,k,i |

Hk′,i ′
�′ =

i[�,k]∑

i ′=i+1

Hk,i ′
� +

k[�]∑

k′=k+1

i[�,k′]∑

i ′=0

Hk′,i ′
� +

�∑

�′=�+1

k[�′]∑

k′=0

i[�′,k′]∑

i ′=0

Hk′,i ′
�′

(70)

� Hk,i
� +

k[�]∑

k′=k+1

Hk′,0
� +

�∑

�′=�+1

k[�′]∑

k′=0

Hk′,0
�′

(67)

� Hk,i
� +

∑

(�′,k′,i)∈Q
|�′,k′,i |>|�,k,i |

Hk′
�′

(66)

� Hk,i
� + Hk

�

(46)

� Hk,i
� + Hk,i

�

(70)

� Hk,i
� for all (�, k, i) ∈ Q.

SinceQ is countable and linearly ordered, [15, Lemma4.9] applies and provesR-linear
convergence (43) of Hk,i

� . This concludes the proof. ��
Given full R-linear convergence from Theorem 5, then convergence rates with

respect to the degrees of freedom coincide with rates with respect to the overall com-
putational cost, where we recall cost(�, k, i) from (18). Since all essential arguments
are provided, the proof follows verbatim from [21, Corollary 16].

Corollary 1 (rates =̂ complexity) Suppose full R-linear convergence (43). Recall
cost(�, k, i) from (18). Then, for any s > 0, it holds that

M(s) := sup
(�,k,i)∈Q

(#T�)
s Hk,i

� ≤ sup
(�,k,i)∈Q

cost(�, k, i)s Hk,i
� ≤ Ccost M(s), (71)

where the constant Ccost > 0 depends only on Clin, qlin, and s. Moreover, there exists
s0 > 0 such that M(s) < ∞ for all 0 < s ≤ s0. ��

5 Optimal complexity

A formal approach to optimal complexity relies on the notion of approximation
classes [4–6, 15], which reads as follows: For s > 0, define

‖u�‖As := sup
N∈N0

[
(N + 1)s min

Topt∈TN

ηopt(u
�
opt)

]
,

where u�
opt denotes the exact discrete solution associatedwith the optimal triangulation

Topt ∈ TN (T ). For s > 0, we note that ‖u�‖As < ∞ means that the sequence of
estimators along optimally chosen meshes decreases at least as fast as (N + 1)−s �
N−s .
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Finally, we are in the position to present the third main result of this paper, namely
optimal complexity of Algorithm 1. Its proof relies, in essence, on perturbation
arguments. More precisely, sufficiently small θ and λlin are required to ensure that
Algorithm 1 guarantees convergence rate s with respect to the overall computational
cost (and time) if the solution u� of (2) can be approximated at rate s in the sense of
‖u�‖As < ∞.

Theorem 6 (Optimal complexity) Define τ := M + 3M
( L[3M]

α

)1/2 ≥ 4M with M
from (4). Let 0 < δ < min{ 1

L[5τ ] ,
2α

L[2τ ]2 } to ensure validity of Theorem 4. Define

λ�
lin := min

{
1,

(α (1 − q2E )

2 q2E

)1/2
/Cstab[3M]

}
. (72)

Suppose the axioms (A1)–(A4). Let 0 < θ < 1, 0 < λalg, and 0 < λlin < λ�
lin such

that

0 < θmark := (θ1/2 + λlin/λ
�
lin)

2

(1 − λlin/λ
�
lin)

2 < θ� := (1 + Cstab[2M]2 C2
rel)

−1 < 1. (73)

Then, Algorithm 1 guarantees, for all s > 0, that

sup
(�,k, j)∈Q

cost(�, k, i)s Hk, j
� ≤ Copt max{‖u�‖As , H

0,0
0 }. (74)

The constant Copt > 0 depends only on qE , α, Cstab[10τ ], Crel, Cdrel, Cmark, Cmesh,
Clin, qlin, #T0, and s. In particular, there holds optimal complexity of Algorithm 1.

To prove the theorem, we require the following results on the estimator, which relies
on sufficiently small adaptivity parameter λlin > 0.

Lemma 5 (Estimator equivalence) Suppose the assumptions of Theorem 4. Recall λ�
lin

from (72). Then, for all (�, k, i) ∈ Q with k[�] < ∞, it holds that

η�(u
�
�) ≤ (1 + λlin/λ

�
lin) η�(u

k,i
� ), (75a)

and, for 0 < λlin < λ�
lin,we furthermore have that(1 − λlin/λ

�
lin)η�(u

k,i
� ) ≤ η�(u

�
�).

(75b)

For 0 < λlin < λ�
lin, Dörfler marking for u�

� with parameter θmark from (73) implies

Dörfler marking for u
k,i
� with parameter θ , i.e., for any R� ⊆ T�, there holds the

implication

θmark η�(u
�
�)

2 ≤ η�(R�; u�
�)

2 �⇒ θ η�(u
k,i
� )2 ≤ η�(R�; uk,i� )2. (76)

Proof The proof consists of two steps.
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Step 1. First, we obtain from Remark 3(ii) that

α

2
|||u�

� − u
k,i
� |||2 (40)≤ λ2lin q

2
E

1 − q2E
η�(u

k,i
� )2.

Exploiting this together with stability (A1), nested iteration (22), and boundedness of
the exact discrete solution (4), we obtain for any U� ⊆ T� that

η�(U�; u�
�)

(A1)≤ η�(U�; uk,i� ) + Cstab[3M] |||u�
� − u

k,i
� |||

≤ η�(U�; uk,i� ) + λlin Cstab[3M]
( 2 q2E
α (1 − q2E )

)1/2
η�(u

k,i
� )

= η�(U�; uk,i� ) + λlin/λ
�
lin η�(u

k,i
� ).

(77)

The choice U� = T� yields (75a). The same arguments prove that

η�(U�; uk,i� ) ≤ η�(U�; u�
�) + λlin/λ

�
lin η�(u

k,i
� ). (78)

For 0 < λlin < λ�
lin and U� = T�, the rearrangement of (78) proves (75b).

Step 2. Let R� ⊆ T� satisfy θ
1/2
mark η�(u�

�) ≤ η�(R�; u�
�). Then, (77)–(78) prove

[
1 − λlin/λ

�
lin

]
θ
1/2
mark η�(u

k,i
�

)
(75b)≤ θ

1/2
mark η�(u

�
�) ≤ η�(R�; u�

�)

(77)≤ η�(R�; uk,i�
) + λlin/λ

�
lin η�(u

k,i
�

)

(73)= η�(R�; uk,i�
) + [

θ
1/2
mark

(
1−λlin/λ

�
lin

) − θ1/2
]
η�(u

k,i
�

).

This yields θ1/2 η�(u
k,i
� ) ≤ η�(R�; uk,i� ) and concludes the proof. ��

Proof of Theorem 6 By Corollary 1, it is enough to show

sup
(�,k,i)∈Q

(
#T�

)s Hk,i
� � max{‖u�‖As ,H

0,0
0 }. (79)

Without loss of generality, wemay suppose that ‖u�‖As < ∞. The proof is subdivided
into two steps.

Step 1. Let 0 < θmark := (θ1/2 + λlin/λ
�
lin)

2 (1 − λlin/λ
�
lin)

−2 < θ� := (1 +
Cstab[2M]2 C2

rel)
−1 and fix any 0 ≤ �′ ≤ � − 1. The validity of (A4) and [15,

Lemma 4.14] guarantee the existence of a setR�′ ⊆ T�′ such that

#R�′ � ‖u�‖1/s
As

[η�′(u�
�′)]−1/s,

θmark η�′(u�
�′) ≤ η�′(R�′ , u�

�′), (80)
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where the hidden constant depends only on (A1)–(A4). By means of (76) in Lemma 5,
we infer that R�′ satisfies the Dörfler marking (17) in Algorithm 1 with θ , i.e.,
θ η�′(uk,i

�′ )2 ≤ η�′(R�′ ; uk,i
�′ )2. Hence, since 0 < θ < θmark < θ�, the optimality

of Dörfler marking proves

#M�′ ≤ Cmark #R�′
(80)
� ‖u�‖1/s

As

[
η�′(u�

�′)
]−1/s

. (81)

Moreover, full R-linear convergence (43) together with a posteriori error estimates
for the final iterates (40) and (41), the norm-energy equivalence (25), and estimator
equivalence (75a) prove

H0,i
�′+1

(43)
� Hk,i

�′
(42)= |||u�

�′ − u
k,i
�′ ||| + |||uk,�

�′ − u
k,i
�′ ||| + η�′(uk,i

�′ )

(41), (25)
� |||u�

�′ − u
k,i
�′ ||| + [E(u

k,0
�′ ) − E(u

k,i
�′ )]1/2 + η�′(uk,i

�′ )

(40), (16)
� η�′(uk,i

�′ )
(75a)
� η�′(u�

�′).

(82)

Consequently, a combination of (81) and (82) concludes that

#M�′
(81)
� ‖u�‖1/s

As

[
η�′(u�

�′)
]−1/s

(82)
� ‖u�‖1/s

As

[
H0,i

�′+1

]−1/s
. (83)

Step 2. For (�, k, i) ∈ Q, full R-linear convergence (43) and the geometric series
prove

∑

(�′,k′,i ′)∈Q
|�′,k′,i ′|≤|�,k,i |

(Hk′,i ′
�′ )−1/s

(43)
� (Hk,i

� )−1/s
∑

(�′,k′,i ′)∈Q
|�′,k′,i ′|≤|�,k,i |

(q1/slin )|�,k,i |−|�′,k′,i ′| � (Hk,i
� )−1/s .

(84)

We recall the mesh-closure estimate [4, 39–41]

#T� − #T0 ≤ Cmesh

�−1∑

�′=0

#M�′ for all � ≥ 0, (85)
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where Cmesh > 1 depends only on T0 and hence in particular on the dimension d. For
(�, k, i) ∈ Q, the preceding estimates show that

#T� − #T0
(85)
�

�−1∑

�′=0

#M�′

(83)
� ‖u�‖1/s

As

�−1∑

�′=0

(
H0,i

�′+1

)−1/s

≤ ‖u�‖1/s
As

∑

(�′,k′,i ′)∈Q
|�′,k′,i ′|≤|�,k,i |

(Hk′,i ′
�′ )−1/s

(84)
� ‖u�‖1/s

As
(Hk,i

� )−1/s .

Note that 1 ≤ #T� − #T0 yields #T� − #T0 + 1 ≤ 2 (#T� − #T0). Hence, we get that

(#T� − #T0 + 1)s Hk,i
� � ‖u�‖As for all (�, k, i) ∈ Q with � ≥ 1.

Theorem 5 proves that

(#T� − #T� + 1)s Hk,i
� = Hk,i

0

(43)
� H0,0

0 for all (�, k, i) ∈ Q with � = 0.

For all T� ∈ T, elementary calculation [49, Lemma 22] shows that

#T� − #T0 + 1 ≤ #T� ≤ #T0 (#T� − #T0 + 1). (87)

For all (�, k, i) ∈ Q, we thus arrive at

(#T�)
s Hk,i

�

(87)
� (#T� − #T0 + 1)s Hk,i

�

(86)
� max{‖u�‖As ,H

0,0
0 }.

This concludes the proof of (79). ��

6 Numerical experiments

Theexperiments are performedwith theopen-source software packageMooAFEM[50].
In the following, Algorithm 1 employs the optimal local hp-robust multigrid
method [47] as algebraic solver. We remark that in our implementation the condi-
tion (19) is slightly relaxed to |E(uk,0� ) − E(uk,i� )| < 10−12 =: tol.

Experiment 1 (modified sine-Gordon equation [35, Experiment 5.1]) For� = (0, 1)2,
we consider

− �u� + (u�)3 + sin(u�) = f in � subject to u� = 0 on ∂� (88)
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Fig. 2 Experiment 1: Convergence plots of the error |||u�−u
k,i
�

||| (diamond) and the error estimator η�(u
k,i
�

)

(circle) over cost(�, k, i) (left) and over computational time in seconds (right)

with the monotone semilinearity b(v) = v3 + sin(v), which fits into the locally
Lipschitz continuous framework (cf. [36, Experiment 26]). We choose f such that

u�(x) = sin(πx1) sin(πx2).

For T ∈ TH , the refinement indicators ηH (T ; ·) read

ηH (T , vH )2 := h2T ‖ f + �vH − b(vH )‖2L2(T )
+ hT ‖[[∇vH · n]]‖2L2(∂T∩�)

. (89)

For p = 2, damping parameter δ = 0.3, and imin = 1, we stop the computation as
soon as η�(u

k,i
� ) < 10−4. Table 1 depicts the values of the weighted cost

η�(u
k,i
� )cost(�, k, i)p/2 (90)

to determine the best parameter choice. For a fair comparison, the weighted cost
from (90) balances the overachievement of the prescribed tolerancewith the associated
cumulative computational cost. We observe that the parameters θ ∈ {0.3, 0.4} and
λlin ≥ 0.5 perform comparably well. The parameter λalg may be used for fine-tuning,
but for moderate θ ∈ {0.2, 0.3, 0.4, 0.5, 0.6} and as soon as λlin is set, the influence
is comparably low.

For the following experiments, we set δ = 0.3, θ = 0.3, λlin = 0.7, and λalg = 0.3.

Figure2 depicts the error |||u� − u
k,i
� ||| and the estimator η�(u

k,i
� ) over cost(�, k, i)

(left) and over the cumulative time in seconds (right) for the displayed polynomial
degrees p ∈ {1, 2, 3}.

In both plots, the decay rate is of (expected) optimal order p/2 for p ∈ {1, 2, 3}.

Experiment 2 We consider a globally Lipschitz continuous example from [20, Sec-
tion 5.3] with Lipschitz constant L = 2 andmonotonicity constant α = 1−2 exp(− 3

2 )

and hence δ = α/L2 ≈ 0.138434919925785 is a viable choice. For d = 2 and the
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Table 1 The weighted cost (90) with p = 2 of the sine-Gordon problem (88) for different adaptivity
parameters λlin, λalg, θ ∈ {0.1, 0.2, . . . , 0.9} and fixed damping parameter δ = 0.3, where the mesh

refinement is stopped if η�(u
k,i
�

) < 10−4, where the θ -blockwise minimal values are highlighted in green
and the overall minimal value in red (with white font)

δ = 0.3 θ = 0.1 θ = 0.2 θ = 0.3

λalg

λlin
0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

0.1 1306 650 660 660 660 735 639 347 347 347 724 659 373 373 373

0.3 928 660 660 660 660 545 269 269 269 269 505 333 241 241 241

0.5 654 654 654 654 654 534 274 274 273 273 462 278 262 262 262

0.7 649 617 617 617 617 293 262 262 262 262 420 298 259 259 259

0.9 676 646 646 646 646 268 269 269 269 269 422 321 247 247 247

θ = 0.4 θ = 0.5 θ = 0.6

0.1 807 643 357 357 357 816 658 337 350 350 882 600 332 361 361

0.3 533 375 252 252 252 532 448 266 266 266 663 466 293 293 293

0.5 464 346 253 253 253 572 399 278 278 278 643 389 292 292 292

0.7 487 377 247 247 247 573 427 293 293 293 606 402 296 296 296

0.9 502 390 264 264 264 520 417 288 288 288 563 512 288 288 288

θ = 0.7 θ = 0.8 θ = 0.9

0.1 856 634 361 337 337 985 741 413 375 375 1028 710 466 344 344

0.3 663 457 321 321 321 673 471 328 328 328 735 551 349 349 349

0.5 705 446 299 299 299 638 452 340 340 340 700 542 374 374 374

0.7 630 541 338 338 338 752 518 343 343 343 680 586 352 352 352

0.9 639 518 347 347 347 770 579 373 373 373 722 667 367 367 367

L-shaped domain (−1, 1)2\([0, 1] × [−1, 0]) ⊂ R
2, we seek u� ∈ H1

0 (�) such that

− div(μ(|∇u�|2)∇u�) = f in �,

where f is chosen such that u� reads in polar coordinates (r , ϕ) ∈ R>0 × [0, 2π)

u�(r , ϕ) = r2/3 sin
(2 ϕ

3

)
(1 − r cosϕ) (1 + r cosϕ) (1 − r sin ϕ) (1 + r sin ϕ) cosϕ.

This example has a singularity at the origin. We consider p = 1, since stability (A1)
in the quasilinear case remains open for p > 1. Moreover, the parameters are θ = 0.3,
λlin = 0.7, λalg = 0.3, and imin = 1.

In Fig. 3, we plot a sample solution (right) as well as convergence results of various
error components (left) over the degrees of freedom.We observe that after a preasymp-
totic phase, optimal convergence rate −1/2 is restored for the exact error (diamond),
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Fig. 3 Experiment 2: Convergence plots of various error components over the degrees of freedom (left).
Right: Plot of the approximate solution u1,113 on X13 with #X13 = 10209

Fig. 4 Convergence plots of the error estimator η�(u
k,i
�

) over computational time of Experiment 3. Left:
Convergence plot for p = 1 Right: Convergence plot for p = 3

the quasi-error Hk,i
� , the linearization error E(u

k,0
� ) − E(u

k,i
� ) (triangle), and the error

estimator η�(u
k,i
� ) (circle).

Experiment 3 (singularly perturbed sine-Gordon equation) This example is a variant
of [35, Experiment 5.2]. For d = 2 and the L-shaped domain (−1, 1)2\([0, 1] ×
[−1, 0]) ⊂ R

2, let ε = 10−5 and consider

−ε�u� + u� + (u�)3 + sin(u�) = 1 in � subject to u� = 0 on ∂�,

with the monotone semilinearity b(v) = v3 + sin(v). In this case, the exact solution
u� is unknown.We use the energy norm ||| · |||2 = ε 〈∇· , ∇·〉+〈· , ·〉. The experiment
is conducted with damping parameter δ = 0.1, λalg = 0.7, θ = 0.3, and imin = 1.
The refinement indicator (89) is modified along the lines of [16, Remark 4.14] to

ηH (T , vH )2 := �
2
T ‖ f + ε�vH − vH − b(vH )‖2L2(T )

+ �T ‖[[ε ∇vH · n]]‖2L2(∂T∩�)
,

where the scaling factors �T = min{ε−1/2 hT , 1} ensure ε-robustness of the estimator.
In Fig. 4, we plot the error estimator η�(u

k,i
� ) for all (�, k, i) ∈ Q against the

computational time for λlin ∈ {0.1, 0.2, ..., 0.9} and polynomial degrees p ∈ {1, 3}.
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Fig. 5 Mesh plot of Experiment 3 for p = 3. Left: Adaptivity parameter λlin = 0.2. Right: Adaptivity
parameter λlin = 0.7

The decay rate is of (expected) optimal order p/2. The choice of λlin does not play
a major role in Fig. 4 (left) for p = 1, but significantly prolongs the preasymptotic
phase for p = 3; see Fig. 4 (right). Figure5 shows meshes with #nDof = 12475 for
λlin = 0.2 and #nDof = 12152 for λlin = 0.7. We see that the selection of a large
λlin = 0.7 results in fewer linearization steps as well as fewer and algebraic solver
steps but is subsequently taken care of by the mesh adaptivity. Hence, we observe
stronger refinement in the interior.

This experiment shows that Algorithm 1 is suitable for a setting with dominating
reaction given that a suitable norm on X is chosen. A large choice of λlin seems
possible, but pays off only after a long preasymptotic phase.
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