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1. INTRODUCTION & PROBLEM SETUP

Optimization problems constrained by parabolic PDEs are
common in science and engineering, involving challenges
like optimal control and inverse problems. Traditional
methods require numerous iterations to solve discretized
PDEs, often creating a computational bottleneck. Sur-
rogate models, especially reduced order models (ROM)
obtained from reduced basis (RB) methods, offer increased
efficiency by approximating these high-fidelity solutions.
This contribution explores how machine learning (ML) can
enhance surrogate model construction in the framework of
error aware trust region (TR) optimization methods.
Consider a bounded domain Ω ⊂ Rd and let V be a Hilbert
space, with H1

0 (Ω) ⊂ V ⊂ H1(Ω) . Our goal is to find a
parameter µ within a bounded parameter domain P ⊂ RP ,
minimizing the least-squares objective functional, relative
to a desired state gref ∈ V K :

J(u(µ);µ) := ∆t

K∑
k=1

‖uk(µ)− gkref‖2V + λR(µ),

where u(µ) := (uk(µ))k∈{0,...,K} ∈ V K+1 represents
the solution trajectory to a time-discretized parametrized
parabolic PDE (primal problem), i.e, u(µ) solves
(uk(µ)− uk−1(µ), v)L2(Ω)

∆t
+ a(uk(µ), v;µ) = b(tk)f(v;µ)

u0(µ) = 0

for all v ∈ V and k ∈ {1, . . . ,K}, where a(·, · ;µ) and
f(· ;µ) are parameter-dependent (bi)linear forms, and b a
time-dependent forcing input. Regularization is provided
by a smooth R(µ) for λ > 0, cf. Qian et al. (2017).
The gradient of J (µ) := J(u(µ);µ) will be computed via
an adjoint approach, by ∇µJ (µ) = ∇µL(u(µ), p(µ);µ),
with the Lagrangian L and the adjoint solution p(µ) ∈ V K+1

w.r.t. u(µ), cf. Qian et al. (2017) for details.

2. MODEL REDUCTION AND MACHINE LEARNING

To numerically solve the primal and adjoint problems,
spatial discretization is employed, projecting the problems
into a high-dimensional space Vh ⊂ V . RB methods,
project these problems further into a space VRB ⊂ Vh
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with significant lower dimension, thus reducing the com-
putational burdens. This approach yields RB approxi-
mations uRB(µ) and pRB(µ) to the high-fidelity solu-
tions and thereby for the objective functional JRB(µ) :=
J(uRB(µ);µ) and its gradient ∇µJRB(µ). Additionally, an
a posteriori error estimator ∆J

RB(µ) measuring the error
|J (µ) − JRB(µ)| is provided, cf. Qian et al. (2017); Keil
et al. (2021).
A way to further reduce computational costs is to re-
place these RB-ROMs with a machine learning surrogate,
cf. Fresca and Manzoni (2022); Haasdonk et al. (2023).
These models allow, by design, faster evaluations, pro-
viding an approximation to uML(µ). Suitable ML mod-
els are, for example, kernel methods. Here, the Degree
of Freedom vector for the primal RB trajectory uRB(µ)

is approximated by a linear combination of smooth ker-
nel functions. The associated coefficients are learned us-
ing previously collected RB solutions as training data,
(µ1, uRB(µ1)), . . . , (µN , uRB(µN )). The surrogate to the
objective functional, utilizing an ML-ROM, is defined sim-
ilarly to that of RB-ROMs. However, the gradient will be
calculated directly by applying the chain rule.

3. TRUST REGION OPTIMIZATION

A trust region method iteratively replaces the global op-
timization problem by solving a sequence of sub-problems
restricted to a local trust region T (i) ⊂ P, i.e.,

µ(i+1) := argmin
µ∈P

J (i)(µ) s.t. µ ∈ T (i), (1)

employing a local surrogate J (i) to J , for i ∈ I := {0, . . . , I},
with I ∈ N0 ∪ {∞}.
Problem (1) is addressed using a projected BFGS method
with an Armijo-type backtracking line search, starting at
µ(i) and stopping if a suitable termination criterion is
reached, generating a sequence (µ(i,l))l∈{0,...,L(i)}, cf. Keil
et al. (2021). The guess µ(i,L(i)) will be rejected and (1)
solved again with a shrunken trust region, if a sufficient
decay condition is not satisfied and accepted otherwise.

For each i ∈ I, let V (i)
RB ⊂ Vh be fixed RB spaces, iteratively

constructed by basis enrichment, starting with V
(0)

RB := 〈∅〉.
This enrichment is performed by computing high-fidelity
solutions at µ(i) and applying proper orthogonal decom-
position (POD) to them. After orthogonalization, the so
selected singular vectors are added to the basis of V

(i)
RB.

This process uniquely defines for all i ∈ I the RB surrogate
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J
(i)
RB(µ), its gradient ∇µJ

(i)
RB(µ), and the error estimator

∆
J,(i)
RB (µ).

For the ML models, in contrast, it is essential to re-adapt
(retrain) them to the RB solution manifold at a relatively
high frequency compared to the RB space enrichment.
This adaptation is necessary for ensuring that the error
remains acceptably small.

Let J
(i,m)
ML (µ), ∇µJ

(i,m)
ML (µ) for m ∈ N, denote the approx-

imative cost functional and its gradient given by trajecto-
ries in V

(i)
RB, yielded from the m-th ML-ROM. When the

underlying ML model is (re)trained, the functionals are
updated to J

(i,m+1)
ML (µ) and ∇µJ

(i,m+1)
ML (µ).

In general, ML surrogate models lack an efficent a pos-
teriori error estimator. For RB-ML-ROMs, however, it is
possible to extend the error estimators of the RB-ROMs
to the ML setting. Nevertheless, the evaluation of such
estimators is usually very costly relative to the faster
parameter inference of ML models Haasdonk et al. (2023).
This could offset the reduction in computational time
gained by the ML-ROM, when training and less accurate
approximations of the ML model are counted in.
This raises the problem that a solely error-based trust
region, such as

T̃ (i) :=

{
µ ∈ P

∣∣∣∣∣ ∆J,(i)
RB (µ)/J

(i)
RB(µ) ≤ ε(i)

}
for some ε(i) > 0, as outlined in Qian et al. (2017), cannot
be used due to the lack of efficient error estimations for
the ML surrogate. To address this, we choose

T (i) :=

T̃ (i) ∪
⋃

µ∈∂T̃ (i)

{
µ̃ ∈ RP

∣∣ ‖µ̃− µ‖RP ≤ κ(i)
}∩P

with κ(i) := α
(i)
0 lcheck, where lcheck ∈ N and α

(i)
0 is the

step size from the Armijo-type line search. By verifying
µ(i,l) ∈ T̃ (i) every lcheck-th step during the BFGS opti-
mization, we ensure that all queried parameters are within
T (i). If this condition fails, the last accepted parameter
µ(i,l) is returned as an approximate solution to (1). For
shrinking the trust region, we set ε(i+1) := β1ε

(i) and
α
(i+1)
0 := β2α

(i)
0 , where β1, β2 ∈ (0, 1), if µ(i+1) is rejected.

Utilizing ML-ROM poses another challenge: the line search
may result in excessively small updates of the parameter,
due to the generally larger error of the ML models com-
pared to RB-ROMs. We therefore propose terminating the
line search for ML surrogates if it does not succeeds within
a reasonable number of steps. In this case, the line search
is rerun using J

(i)
RB(µ) and ∇µJ

(i)
RB(µ) and the so collected

RB trajectories will be used to retrain the ML-ROM. If the
second backtracking also fails, the last accepted step µ(i,l)

is returned. Initially, the first lwarmup ∈ N line searches use
RB-ROMs only to gather training data. Details are given
in Algorithm 1.

4. CONCLUSION

This contribution shows how machine learning can be
integrated in a trust region method for parameter opti-
mizations constrained by parabolic PDEs, by combining

reduced basis models and kernel-based ML surrogates.
However, maintaining accuracy requires frequent retrain-
ing and error management due to inherent errors of the
ML-ROM. This highlights the potential for efficiently solv-
ing high-dimensional problems, but emphasizing the need
to carefully balance between efficiency and accuracy.
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Algorithm 1 Inner loop
1: Set l := 0, m := 0, µ(i,0) := µ(i), no_progress :=

false, use_ML := true and choose lwarmup, kmax ∈ N.
2: while a termination criteria is not met or l = 0 do
3: if lmod lcheck = 0 or no_progress then
4: if µ(i,l) /∈ T̃ (i) then Go to line 33.
5: end if
6: Set k := 0 and no_progress← false.
7: while a line search stopping criteria is not met do
8: Get µ(i,l)(k) by k-th line search iteration.
9: if l ≤ lwarmup or not use_ML then

10: Get J
(i)
RB(µ

(i,l)(k)),∇µJ
(i)
RB(µ

(i,l)(k))
11: else
12: Get J

(i,m)
ML (µ(i,l)(k)),∇µJ

(i,m)
ML (µ(i,l)(k))

13: end if
14: if k = kmax and l > 0 then
15: no_progress← true
16: Go to line 20.
17: end if
18: k ← k + 1
19: end while
20: if no_progress and not use_ML then
21: Go to line 33.
22: else if no_progress then
23: use_ML← false
24: Update the search direction, using RB-ROMs.
25: else
26: use_ML← true and no_progress← false
27: µ(i,l+1) := µ(i,l)(k)
28: Update the search direction.
29: Train ML-ROM.
30: l← l + 1 and m← m+ 1
31: end if
32: end while
33: return µ(i+1) := µ(i,l)
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