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Abstract: The global energy transition increasingly relies on renewable energy sources and the use of 

batteries for electrical energy storage. Efficient battery utilization necessitates accurate state estimation 

algorithms and appropriate control mechanisms. This paper presents and evaluates a data-driven 

approach for estimating a battery's dynamic model using tensor trains, that efficiently reconstruct 

complex multidimensional systems with respect to time and memory, enabling the development of 

adaptive models capable of capturing real-time variations in system parameters. In this study, the 

proposed method is applied to reconstruct a dynamic battery model from operational data and is tested 

upon a solid-state lithium-ion battery cell. The method's explanatory capabilities are demonstrated 

through the extraction of key parameters such as open circuit voltage and impedance in the form of 

relaxation times distribution. The accuracy is further validated against the results of conventional battery 

characterization tests. Owing to its intrinsic scalability and low computational cost, this method holds 

potential for integration into artificial intelligence-driven battery management systems, enhancing battery 

longevity and safety while optimizing time-intensive battery characterization processes. 
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1. INTRODUCTION 

Batteries start to play a crucial role in the global energy 

system, enabling renewable energy integration and 

supporting electrification of transport. Grid-level storage 

demands scalability, durability, and cost-effectiveness, while 

electric vehicles prioritize safety, price, and energy density. 

Aviation requires the highest standards for safety and 

efficiency, which current battery technology struggles to 

meet (Bills et.al.). 

Battery Management Systems (BMS) monitor battery 

performance, estimating key metrics like State of Charge 

(SOC) and State of Health (SOH) to improve safety and 

durability. These systems use mathematical models or 

machine learning techniques to optimize battery behaviour, 

and can be enhanced through real-time data and control. In 

aviation, rigorous certification standards are assumed to be 

partially addressed through solid-state batteries and advanced 

safety designs. Predictive BMS tools are also essential to 

meet the safety margins, requiring accuracy and adaptability. 

This research introduces a real-time model estimation 

algorithm based on low-rank data decomposition based on 

tensor trains (TT), which efficiently estimates SOC as well as 

physically relevant parameters without time-consuming 

battery characterization tests for a preliminary tuning 

(Pattipati et.al.). Experiments with lithium-ion solid-state 

batteries are used to validate the method, demonstrating high 

accuracy and negligible sub-second training time. The 

model's ability to explain physical battery behaviour is vital 

for safety-critical applications, showing its potential in 

enhancing battery management across various sectors. 

2. METHODS 

TT are widely used in machine learning as allow to 

efficiently process sparse high-dimentional data (Oseledets). 

In the present work we use TT to build two models: battery 

dynamic mode, that includes an open cirquit voltage (OCV) 

and impedance, depending on the relative state of charge 

(SoC), and SoC as a function of observables, that include in 

the present case voltage drop on the battery current collecors, 

load and the battery temperature. The first one can be used 

for predictive modelling and safety status assessments, while 

the later provides an adaptable battery state estimation tool 

for the BMS.  

Temperature, voltage (for the state estimation) or SoC (for 

the dynamic model estimation) are represented using a series 

of Chebyshev polynomials of the order up to 8. The load, or a 

current, is recalculated into a number of “smoothed” 

functions to use a relaxation times distribution method 

(Heinzmann et.al.). In order to build a model, 3 rank-3 or 2 

tensors are randomly generated on the initial phase, 

corresponding to temperature, load and voltage/SoC. Scalar 

product of inputs with the tensors, and further convolution of 

tensors with each other allows to calculate the output, that 

correspond either to SoC (state estimation) or to voltage 

(dynamical model). Each tensor is calculated using Ridge 

regression method (Marquardt et.al.) with quadratic 

reqularization assuming the environment is frozen. 

Experiments demonstrate, that 2-5 sweeps over the tensors, 

each taking <1ms on a single-core 3GHz CPU, is enough to 

get a converged solution. Bonds dimensions of up to 3 is 
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enough to get the reconstruction accuracy within ~1% 

average and ~5% maximum error. 

3. RESULTS 

Experiments were conducted on 30 Ah lithium-ion solid-state 

cells with a voltage window from 2.75 to 4.2 V. The specific 

energy is 270 Wh/kg and 560 Wh/L. The batteries have a 

durability of 500 cycles with 80% capacity retention at 3C, 

and a maximum operation current of 7C. The cells use NMC 

cathodes, graphite anodes, and a solid-state electrolyte, 

though the exact formulation is undisclosed. Experiments are 

performed in climatic chambers with fixed temperatures. 

 

Fig. 1. Experimental SoC (left axis) for charge-discharge 

cycle (solid line) and reconstructed SoC using TT for 3 

training data ranges, and corresponding error (right axis). 

 

Fig. 2. OCV and resistance from characterization tests (dots) 

and extracted from TT for 3 training data ranges. 

Standard battery characterizatiopn tests were conducted with 

different temperatures to obtain reference OCV and 

resistance values. Cycling tests, mimicking the battery 

operation in EV/HEA are performed to assess the method 

performance, with data collected every second. 

The developed method is first used as a state estimation tool. 

SoC is typically calculated as the cumulative sum of charge 

passed through the battery, normalized by its capacity, and 

scaled so that SoC values range from 0 to 1, corresponding to 

the voltage vindow limits. For the model training, a charge 

conservation is used. This method calculates the change in 

capacity between two time stamps by integrating the current 

passed through the battery over that time period. The model 

allows to calculate observables into the latent spase variable 

(SoC), with the error within 5% on the whole testing dataset 

(one cycle is plotted at Fig.1). Therefore, potentially the 

method can substitude such widely used methods as KF, that 

require preliminary characterization tests data, that are 

obtained on the beginning of the battery’s lifetime and 

change during a long-term operation thus dicreasing the state 

estimation accuracy. 

Secondly, the method is applied to reconstruct a dynamic 

battery model. Here, SoC is assumed to be available along 

with load and temperature, while the voltage is the output 

value. The relaxation times distribution method allows to 

explicitly parse the trained TT to extract OCV and resistance 

functions vs. temperature and SoC (Fig.2). Note, that these 

functions correspond to the current battery “health” status 

and can be treated as synthetic characterization tests. 

4. CONCLUSIONS 

The safe and efficient use of batteries requires monitoring 

and control systems. Algorithms should be fast, adaptable, 

and representative. TT algorithm solves battery state 

estimation and dynamic model reconstruction problems. The 

state estimation algorithm is used in BMS to optimize battery 

loading, thermal management, and remaining capacity 

calculation. Dynamic model also allows extracting battery 

properties important for the health status calculation and 

early fault prediction. The proposed method does not require 

characterization data obtained under controlled conditions 

with predefined loads. The algorithm uses operational data on 

voltage, temperature and load to train in near-real time. The 

algorithm can be used in safety-critical applications, such as 

aviation, and in fully adaptive BMS. It can optimize or 

eliminate the need for time-consuming battery 

characterization tests. 
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