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1. INTRODUCTION

Crop protection science plays a role in responding to the
challenge of food demand with growing population and
climate change. Mathematical models able to predict the
interactions between the biocides and the crops can be
exploited to develop new products that are also safer for
the environment, aligning with sustainable agricultural
practices (Umetsu and Shirai (2020)), at a lower cost and
time to the market.

This project focuses on modelling the foliar uptake of
pesticides (Wang and Liu (2007)). The goal is to obtain
a reliable model to describe the phenomena taking place
when the formulated active ingredients (AI) are sprayed on
the crops leaves and to predict the percentage of Al uptake
by the crop. Since plants are biological systems, there
is biological variability between different species, between
plants of the same species, and also between leaves of the
same plant. This variability is reflected in the large vari-
ance observed in the experimental data used to calibrate
the model. Another source of uncertainty is the fact that
the physico-chemical phenomena affecting it are strictly
correlated and observing them independently is extremely
challenging. Therefore, an objective is also to understand
the trade-off between complexity and explainability of the
model, to guarantee that eventually the uncertainty in the
model predictions and the correlations between the model
parameters are acceptable.

In the literature there has been several works towards the
modelling of the foliar uptake of pesticides, ranging from
simple empirical correlations (Forster et al. (2004)), to
compartmental models (Bridges and Farrington (1974)),
up until more detailed physics-based ones (Tredenick et al.
(2019)). However, the effect of the parametric uncertainty
in order to guarantee the applicability of the model in
predictions has not been addressed in detail in the previous
works.

The novelty in this research is that the predictive mathe-
matical model is used also to optimize the experimental
campaigns, allowing a better exploitation of time and
resources, and to achieve this result is fundamental to
systematically take in to account the uncertainty in pre-
dictions.
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2. METHODOLOGY

The modelling procedure is adapted from Franceschini and
Macchietto (2008) and the framework is shown in Fig. 1.
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Fig. 1. Model building approach based on Franceschini and
Macchietto (2008). The focus of this paper is on the
steps 3 and 4, highlighted in blue.

The framework consists of 6 key steps:

(1) Formulation of different candidate models to describe
the system under study.

(2) Preliminary analyses on the identifiability of the
model parameters are conducted and any identifia-
bility issue is addressed.

(3) A model is fit to characterise the variability in the
experimental data.

(4) The application of Model-Based Design of Experi-
ments (MBDoE) techniques for model discrimination
and for parameter precision (Franceschini and Mac-
chietto (2008)).

(5) The model parameters are precisely estimated and
validated statistically.

(6) The model predictions are validated based on new
experimental data and the statistics of model predic-
tions.

Steps (1) and (2) of this procedure have been addressed by
the authors in Sangoi et al. (2024a,b), where different for-
mulations of dynamic models for foliar uptake mechanism
are presented, while this paper focuses on the MBDoE
(step 4 of the procedure).

2.1 Model-Based Design of FExperiments

To describe the dynamics of Al leaf uptake we consider
dynamic models generally formulated as in

§(t) = g(=(t), u(t), 0)
where & € RM» is a vector of state variables, & € RV«
indicates the time derivatives of the states, § € R™v the
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Fig. 2. Sampling of the parameter uncertainty region.

vector of predicted model outputs, u € RN« the vector
of known system inputs, & € R the model parameters
vector. The model considered in this paper is diffusion-
based with no flux boundary conditions (Sangoi et al.,
2024a), with three parameters: i) the partition between the
droplet and the leaf Ky, ii) the equivalent diffusion of Al
through the leaf D, iii) the metabolism rate constant (Al
consumption) K. MBDoE techniques allow to exploit
the mathematical formulation of the dynamic model to
optimize the experimental campaigns, so that the data
obtained are the most informative for the modelling task,
e.g. to improve parameter precision (MBDoE-PP), and
that model and experiments are coupled in a bi-directional
way. To apply MBDoE-PP the information content of the
experiments is generally quantified through a metric of the
Fisher Information Matrix H (2) or the covariance matrix

of the parameter estimates V (3).

H(p) = Vy(0,0)Z, ' Vy(0,0) (2)

Vilg) = [H(p)] (3)

In equation (2), the symbol ¢ stands for the experi-
mental design vector, in this application defined by the
sampling times in biokinetic experiments of uptake, and
3., represents the covariance matrix of the measurement
error. Therefore in order to apply successfully MBDoE
techniques it is crucial to characterise the uncertainty
associated to the experiments (step 3 of the procedure
in Fig. 1). MBDoE allows to optimise the experimental
design vector ¢. This can be approached also by minimis-
ing the uncertainty in model predictions V,, (Cenci et al.

(2023)) instead of Vg, an option that can be useful in the
foliar uptake case study to guarantee that the final model
is reliable in its predictions.

3. RESULTS

As a preliminary study before the application of MBDoE,
the results of the error propagation from the parameters to
predictions are presented. Samplings are collected from the
parameters uncertainty region, obtained from parameter
estimation, with a Monte Carlo simulation (Fig. 2). An
uncertainty reduction scenario is considered, assuming a
50% reduction in the standard deviation of parameters,
and their effect is propagated to model predictions, i.e.
the AT mass on the leaf surface and in the tissue (spatial
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Fig. 3. Monte Carlo based uncertainty propagation from
model parameters to the predictions.

integral of the discretized variable). Results on prediction
uncertainty are shown in Fig. 3: the lower parameter un-
certainty allows to sensibility reduce the prediction uncer-
tainty for the AT on the leaf surface (green area), aligning
with the observed experimental variability shown via the
error bars. This analysis paves the way to the application
of MBDoE techniques in the context of biological systems,
in particular for the foliar application of biocides.
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