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1. INTRODUCTION

The iterative rational Krylov algorithm (IRKA) was intro-
duced in Gugercin et al. (2008) and has become a widely
adopted method in the model reduction community for
computing locally optimal solutions for the H2 model re-
duction problem. IRKA relies on the first-order optimality
conditions for the solution of the H2 optimization problem
derived in Meier and Luenberger (1967). One of the main
assumptions needed for IRKA to work properly is for the
error transfer function between the full and reduced order
models to be in H2. Recently, in Borghi and Breiten
(2024), this assumption was relaxed to account for non
asymptotically stable systems, giving the possibility of
designing an extended version of IRKA by developing a
new framework and deriving its optimal interpolation con-
ditions. Throughout this paper we refer to this algorithm
as extended IRKA.

The contribution of this work is twofold: (1) We build upon
the findings in Borghi and Breiten (2024) and show that
the optimal interpolation points are related to the Schwarz
function (see Davis (1974)); (2) We show numerically
that we can use the adaptive Antoulas-Anderson (AAA)
algorithm developed in Nakatsukasa et al. (2018) to ap-
proximately compute the interpolation points in extended
IRKA for user-defined domains in the complex plane.

2. PRELIMINARIES

We consider the large-scale minimal single-input single-
output (SISO) linear time invariant (LTI) dynamical sys-
tem{

ẋ(t) = Ax(t) + bu(t),

y(t) = cx(t), x(0) = 0,
G(s) = c(sI−A)−1b, (1)

with A ∈ Cn×n, c⊤ ∈ Cn, and b ∈ Cn. In addition, for
a fixed time t, x(t) ∈ Cn, u(t) ∈ C, and y(t) ∈ C, denote
the state, input, and output of the system respectively.
Here, G denotes the transfer function of the system in the
frequency domain. We refer to (1) as the full-order model
(FOM). We assume the eigenvalues {λj}nj=1 of A to be
in a simply-connected open set A in the complex plane.
Most importantly, A does not have to be in the left half-
plane C−, which can result in (1) not being asymptotically
stable. Our work deals with the computation of a reduced-
order model (ROM) of a form analogous to (1) but with
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system matrices Ar ∈ Cr×r, c⊤r ∈ Cr, br ∈ Cr, where
r ≪ n, and transfer function Gr(s) = cr(sI − Ar)

−1br
with poles {λ̂j}rj=1 ∈ A. Similar to the H2-optimal model
reduction framework, we seek Gr such that

min
deg(Gr)=r

∥G−Gr∥∗, (2)

is solved, where ∗ indicates a proper norm. In Borghi and
Breiten (2024) anH2(Āc) space for systems with poles in A
and analytic in its exterior Āc was introduced to include
error transfer functions that are not in H2. For the de-
velopment of the H2(Āc)-optimal model reduction frame-
work, the concept of conformal map (see Theorem 6.1.2
in Wegert (2012)) is pivotal. Under proper assumptions
on the conformal maps and Gr ∈ H2(Āc) being a local
minimizer of (2), simplified H2(Āc) optimality conditions
were derived in (Borghi and Breiten, 2024, Corollary 3)
resulting in

Gr(φ(λ̂j)) = G(φ(λ̂j)) and G
′
r(φ(λ̂j)) = G′(φ(λ̂j)), (3)

for j = 1, . . . , r, with

φ(s) = ψ(−ψ−1(s)) = ψ(−ψ−1(s)), (4)

where ψ(s) = ψ(s). The conditions in (3) then led to the
development of extended IRKA. In the next sections, we
leverage the connection between (4) and Schwarz functions
to approximate φ given only points on the boundary of
user defined domains. However, the approximation will not
necessarily satisfy the assumptions made in Borghi and
Breiten (2024).

3. OUR METHOD

Before introducing the result of this work, we give a
brief summary of the concepts of Schwarz reflection and
Schwarz function based on Davis (1974). For a more
detailed description of this topic see Davis (1974) and
Shapiro (1992). We consider the analytic arc Γ given by
the parametrization z = f(θ) with θ ∈ [a, b], a, b ∈ R.
Given any point θ0 ∈ [a, b], f is a bijective conformal
map in the disk Dθ0 =

{
τ ∈ C

∣∣|τ − θ0| < ρ(θ0)
}
, with

ρ : [a, b] → (0,∞). Let z̃ = f(τ) for τ ∈ Dθ0 . Then
z̃ is called the Schwarz reflection of z with respect to
the analytic arc Γ. The Schwarz function is defined as
S(z) = z̃ and analytic in a neighborhood of Γ. For z ∈ Γ
we get S(z) = z. The complex conjugate of the Schwarz
function applied to a point is the Schwarz reflection of the
point with respect to Γ (see Chapter 6 in Davis (1974)).
For the ease of notation we use the term anti-conformal
reflection R(·) = S(·) from Shapiro (1992) to indicate the
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Fig. 1. Depiction of the interpolation points for IRKA
(left) and extended IRKA (right).

Schwarz reflection. It is possible to use f to get an explicit
formulation of the anti-conformal reflection for any point
z in the neighborhood of Γ. The steps are the following

z
f−1

−−→ τ
(·)−→ τ

f−→ z̃ = R(z), (5)

which lead to the definition

R(·) = f(f−1(·)), (6)

and, consequently, S(·) = f(f−1(·)). Let us now set

f(τ) = ψ(iτ) and so f−1(z) = −iψ−1(z), (7)

with ψ a conformal map satifying the assumptions below.

Assumption 1. Let X ⊆ C include iR, and Y ⊆ C include
the analytic closed curve ∂A. Furthermore, Let X− =
X\C+, X+ = X\C− such that

{
s ∈ C

∣∣− s ∈ X−
}
⊆ X+,

∂A− = Y\Āc, and ∂A+ = Y\A. We assume ψ : X → Y to
be a bijective conformal map such that (i) ψ ◦ i : R → ∂A,
(ii) ψ : X+ → ∂A+ and (iii) ψ : X− → ∂A−.

With (7) we can connect the definition of φ in (4) and the
anti-conformal reflection in (6). As a matter of fact, by
substituting f in (6) with (7) we get

R(·) = ψ(i(−iψ−1(·))) = ψ(−ψ−1(·)) = φ(·).
The composition of φ is similar to (5) but instead of
applying a complex conjugation we take the mirror image
with respect to the imaginary axis. In more detail, we have

z
ψ−1

−−−→ τ
−(·)−−−→ −τ ψ−→ φ(z).

While ∂A is defined by the user, the function φ is unknown
a-priori. For this reason, now that the connection between
the anti-conformal reflection and (4) has been established,
we use the AAA algorithm to approximate φ given ∂A.
It is important to emphasize that the function S is solely
determined by the chosen ∂A. This gives us the possibility
to approximate φ with AAA using only samples of ∂A. To
do so we take points z ∈ ∂A, approximate S(z) = z with
AAA (see also Trefethen (2024)), and complex conjugate
the resulting function. The approximated φ is then used for
computing the interpolation points employed by extended
IRKA. The main drawback of this approach is that, as S
is defined in a neighborhood of ∂A, the same applies for
the approximation to φ.

4. NUMERICAL EXAMPLE

We test the extended IRKA with interpolation points com-
puted through AAA on the controlled linear undamped
wave equation from Borghi and Breiten (2024). After dis-
cretization by centered finite differences we get a FOM
with n = 400 and poles on the imaginary axis. We are
interested in the poles near the origin as they provide an
approximately good description of the original system. For
this reason, we use the ‘boomerang’ shape illustrated in

Fig. 2 on the left for ∂A. We parametrized ∂A such that it
has only one segment near the FOM poles and it is close
to the origin (see Fig. 2 on the right). We do so in order
for extended IRKA to identify these poles as dominant
and place the reduced poles accordingly. In Fig. 2 we show

the resulting ROM poles {λ̂j}rj=1 and interpolation points

{φ(λ̂j)}rj=1 for r = 18. In addition, Fig. 3 shows that the
impulse response of the resulting ROM well approximates
the one of the FOM.
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Fig. 2. Chosen ∂A, poles of the FOM and ROM, and the
computed interpolation points. The plot on the right
is a magnification of the one the left near the origin.
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Fig. 3. (Top) output trajectories of the FOM (y) and ROM
(yr) with respect to time t. (Bottom) absolute error.
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