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1. INTRODUCTION

At least since the COVID-19, crisis wastewater-based epi-
demiology (WBE) has been recognised internationally as a
reliable surveillance and early warning system to track cir-
culating pathogens (Singer et al. (2023)). By probing and
sequencing wastewater, WBE allows to detect, quantify
and characterise pathogens circulating in the connected
catchment. Several health authorities have set up WBE
programs in their surveillance efforts. For example in Aus-
tria, wastewater from 48 purification plants is probed on a
weekly basis for SARS-CoV-2 and its variants (see Amman
et al. (2022)), and in parts of Austria also for influenza
and the respiratory syncytial virus. Expansion to other
relevant pathogens is considered.
The main advantage of WBE over traditional case-based
surveillance is its scalability, allowing one sample to cover
thousands without requiring active participation, reducing
costs and bias. While cost-effective, nationwide surveil-
lance at reasonable granularity incurs significant taxpayer
costs. Deciding which wastewater plants to sample and
how often is crucial for public health but must be econom-
ically justified to convince policymakers and the public of
WBE’s value.
In this work, we present a model that simulates the
regional spread of a new pathogen, its concentration at
wastewater plants, and the limit of detection of pathogen
specific assays as a function of wastewater catchment
characteristics. The goal is to minimise detection time by
optimising the selection of plants and sampling intervals.
After introducing the model and showing preliminary
results with manually varied strategies, we propose ideas
for using a simheuristic to solve this optimisation problem.

2. METHODS

2.1 Simulation Model

We follow the network-based SIRS approach in Hethcote
(1978) and specify a model with M nodes, representing
households, and a corresponding vector (Ni)

M
i=1 of inhab-

itants. The nodes are connected by a weighted digraph
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identified by adjacency matrix A ∈ (R+)M×M , whereas
each entry Ai,j corresponds to the average daily number
of contacts between individuals in nodes i and j. With
Si(0) + Ii(0) +Ri(0) = Ni the dynamics is defined by

Ṡi(t) = −Si(t)Θ(I, i) +δRi(t),

İi(t) = Si(t)Θ(I, i) −γIi(t),

Ṙi(t) = γIi(t) −δRi(t),

(1)

Θ(I, i) = Ai,iβ
in Ii(t)

Ni
+
∑
j ̸=i

Ai,jβ
out Ij(t)

Nj
. (2)

Hereby, βin and βout refer to the in-node and out-node
transmission rate, γ to the recovery rate and δ to the
immunity waning rate. Time-unit will be days.
Compartments Si(t), Ii(t), Ri(t) represent the expected
number of susceptible, infectious and recovered persons
in household i at time t. We argue, that Ii is proportional
to the overall quantity of pathogen present in household i
and to the pathogen load excreted into the wastewater.
Furthermore we introduce K purification plant nodes and
include them into the model using adjacency matrix B ∈
{0, 1}K×M . Hereby Bk,i = 1 ⇔ household j lies in the
catchment area of plant k. We define

Wk(t) =

∑M
i=1 Bk,iIi(t)∑M
i=1 Bk,iNi

(3)

as the pathogen ground truth at plant k. It models the ratio
of all pathogen excreted by households in the catchment
area compared to a human control signal.
We finally define the measured signal at plant k via

Ŵk(t) := νk

{
Wk

(⌊
t
ξk

⌋
ξk

)
, if Wk

(⌊
t
ξk

⌋
ξk

)
> µ,

0, else.
(4)

Hereby, µ defines a concentration threshold below which
a given pathogen signal cannot reliably be detected by a
probe. The parameter vectors ν and ξ will be regarded as
probing strategy: νk ∈ {0, 1} defines if plant k is probed at
all, ξk ∈ N defines the interval between taking two probes
from the plant.

2.2 Optimisation Problem

For optimisation we focus on the detection time, i.e. the
first time a signal is detected at any of the probed plants:

9DOI: 10.34726/9004



τ := min
k∈{1,...,K}

τ ik := min
k∈{1,...,K}

min
t>0

(
Ŵk(t) > 0

)
. (5)

In addition to the probing strategy, the value of τ will also
depend on the location of the outbreak. To simulate the
latter we specify the initial conditions Ri(0) := 0,

Ii(0) := δi,i0Iϵ, and Si(0) := Ni(0)− Ii(0), (6)
where node i0 will be regarded as index-household. With
this definition, (ν, ξ) and i0 uniquely map to a detection
time: τ = τ i0,ν,ξ. Considering that the probing strategy
should be able to quickly detect the pathogen independent
of the choice of i0, we specify the optimisation target

F : {0, 1}K × NK → R+ : F (ν, ξ) 7→ 1

M

M∑
i0=1

τ i0,ν,ξ. (7)

Clearly, minimising F alone would be meaningless, since
it does not incorporate any cost or sensitivity constrains.
We define

C1(ν, ξ) =

K∑
i=1

νi, C2(ν, ξ) = 7.0 ·
K∑
i=1

νi
ξ
. (8)

That means, C1(ν, ξ) ≤ c1 limits the total number of
included plants to c1, to restrict the logistic efforts, and
C2(ν, ξ) ≤ c2 limits the total number of probes taken per
week to c2, to restrict the total costs.
In summary, we define the optimisation problem as follows:

(ν, ξ)opt = argmin(ν,ξ)∈Ωc1,c2
F (ν, ξ), with

Ωc1,c2 := {(ν, ξ) : C1(ν, ξ) ≤ c1, C2(ν, ξ) ≤ c2} . (9)

3. RESULTS

For the preliminary results shown in this paper, we ex-
tracted a synthetic contact network from an existing
agent-based epidemics model. It was developed and ap-
plied in the course of the COVID-19 crisis, is specified in
the SI of Bicher et al. (2021), and was used for export
of synthetic data before (see Popper et al. (2021)). We
counted, averaged and exported randomly sampled con-
tacts between the roughly 4.5M model households over ten
simulated days, leading to an integer vector N ∈ N4.5·106

and a sparse matrix A ∈ N4.5·106×4.5·106 . Data about
the catchment areas of the K = 636 largest purification
plants in Austria was used to specify B. Finally, disease
parameters βin, βout, γ and δ were manually chosen to
reflect R0 and immunity waning behaviour of SARS-CoV-
2. To make target function F computeable, we ran the
sum defined in (7) only over 5000 randomly drawn index
households instead of all M possible ones.
In Figure 1 detection times τ i,ν,ξ are compared for two
probing strategies. The reference strategy uses the 48
Austrian plants probed once per week, analogous to the
currently implemented system in Austria. The compara-
tor strategy uses 27 manually selected plants probed in
intervals between 2 and 12 days. Both lie in Ω48,48 and are
therefore comparable with respect to costs.

4. DISCUSSION AND CONCLUSION

Preliminary results show that the currently implemented
strategy for early pathogen detection can be improved.
Manual tests reduced detection time by nearly three days,

reference comparator

60

80

100

d
ay

s
u

n
ti

l
d

et
ec

ti
on

78.3 75.4

Fig. 1. Detection times for two probing strategies in Ω48,48.
The red line shows the target F computed as the
mean of the detection-times for 5000 random index
households.

offering policymakers a crucial time-advantage. Using well-
defined simheuristics instead of manual methods would
yield further improvements.
The optimisation challenge lies in the time-consuming
simulations and vast search space. Despite efficient matrix
multiplications and parallelisation using Numpy and Scipy,
computing I,W , and Ŵ for one index household and
probing strategy still takes about one minute on a well-
equipped server.
Given the complexity of the search space Ωc1,c2 , traditional
population-based metaheuristics like Genetic Algorithms
(GAs) would require large populations to converge effec-
tively. A more integrated approach is needed to reduce
the number of simulations required. The plan is to ex-
ploit additional feedback from the simulation in addition
to the detection time, such as particularly successful or
unsuccessful plants, to guide more targeted crossovers and
mutations in a GA setup.
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