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1. INTRODUCTION

In this contribution we present an abstract framework for
adaptive model hierarchies together with several instances
of hierarchies for specific applications. The hierarchy is
particularly useful when integrated within an outer loop,
for instance an optimization iteration or a Monte Carlo
estimation where for a large set of requests answers ful-
filling certain criteria are required. Within the hierarchy,
multiple models are combined and interact with each other
pursuing the overall goal to reduce the run time in a
multi-query context. To this end, models with different
accuracies and effort for evaluation are used in such a way
that the cheapest (and typically least accurate) models are
evaluated first when a request comes in. If the result fulfills
a prescribed criterion, it can be returned to the outer loop.
Otherwise, the model hierarchy falls back to more costly,
but at the same time more accurate, models. The cheaper
models are improved by means of training data gather
whenever the more accurate models are evaluated.
In the next section we provide an abstract and detailed
description of the components of the hierarchy and their
interaction. Subsequently, various applications are briefly
discussed for which hierarchies with different numbers of
stages were developed.

2. ABSTRACT DESCRIPTION

The idea of a model hierarchy in the context of parame-
trized partial differential equations (PDEs) was originally
introduced in Haasdonk et al. (2023). Here we describe
the concept in a general form that is applicable in a wide
range of scenarios and for several types of models.
In our abstract description we consider a solution opera-
tor S:P → V that maps from an admissible input space P
to a possibly infinite dimensional solution space V, where
usually we know that S exists, but it might not be accessi-
ble. A typical example would be the solution operator of a
parameterized PDE where P corresponds to the parameter
set. Furthermore, we assume that we are given a hierarchy
of approximate models M1,M2, . . . that approximate the
map S, where two successive models Ml and Ml+1 in the
hierarchy satisfy the following multi-fidelity assumptions:
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• C(Ml) < C(Ml+1), where C(Ml) denotes the model
complexity as a measure for the runtime.

• E(Ml(µ), µ) ≥ E(Ml+1(µ), µ), where E(Ml(µ), µ) de-
notes an error measure w.r.t. S(µ) for µ ∈ P.

• Model Ml can be improved by means of information
from model Ml+1.

Assume now that a request µ ∈ P in an outer multi-
query loop needs to be processed. The request is first
passed to model M1 which produces a result M1(µ) for the
request. This result is evaluated using the error measure,
i.e. it is verified whether E(M1(µ), µ) ≤ TOL is satisfied.
In order to check the criterion it might be necessary to also
retrieve additional information from model M2. In general,
if model Ml fulfills the criterion, the result of model Ml

is returned to the outer loop. If the criterion is not met,
the request is passed to model Ml+1 which is assumed
to be more accurate and is therefore more likely to fulfill
the prescribed criterion. Model Ml+1 now proceeds similar
to model Ml, i.e. the request is processed resulting in
an answer of model Ml+1. When evaluating model Ml+1,
data is collected that can be used, according to the third
assumption from above, to improve model Ml. Hence,
model Ml is constructed and enhanced in an adaptive
manner. The result of Ml+1 might now be passed on,
depending on the structure of the remaining parts of
the hierarchy. Due to the involved check of the accuracy
criterion for all results, the output of the model hierarchy
is certified. The overall hierarchical structure of the multi-
fidelity algorithm is shown in Fig. 1 when applied in an
outer loop for a hierarchy consisting of multiple stages.
For the algorithm performing the outer loop, the hierarchy
behaves like a single model that returns a certain result of
guaranteed accuracy. All the internal model selection and
adaptation is invisible from the outside.
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Fig. 1. Visualization of a model hierarchy applied within
an outer loop that sends requests to the hierarchy
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3. APPLICATIONS

In the following paragraphs we discuss applications where
the concept of an adaptive model hierarchy was utilized
successfully to speed up different computational tasks.

PDE-constrained optimization. In Keil et al. (2022) we
introduced a two-stage hierarchy consisting of a full or-
der model and a machine learning surrogate for a PDE-
constrained optimization problem that occurs in enhanced
oil recovery. The machine learning surrogate approxi-
mates the objective function and is based on training data
gathered when evaluating the full order model (involving
the costly simulation of a three-phase flow in a porous
medium). From the point of view of the model hierarchy
as shown in Fig. 1, the machine learning surrogate cor-
responds to model M1 and during its evaluation an opti-
mization problem for the approximate objective function
is solved. The accuracy of the result of this inner optimiza-
tion loop is then evaluated by computing an approximate
gradient using the full model M2.

Parametrized parabolic PDEs. As a second example,
we considered in Haasdonk et al. (2023) parametrized
parabolic PDEs where the hierarchy consists of a full
order model, a reduced basis reduced order model and
a machine learning model. The latter model is based on
the approach of learning the reduced coefficients with
respect to a reduced basis as introduced in Hesthaven
and Ubbiali (2018). The reduced basis is computed using
evaluations of the full order model whereas the machine
learning surrogate is trained based on solutions of the
reduced basis model and therefore contains an additional
layer of approximation. Accuracy of the reduced basis and
the machine learning model is verified by means of an
a posteriori error estimator for reduced models of parabolic
problems. Since the machine learning surrogate uses the
same reduced space as the reduced basis model, the a pos-
teriori error estimator is applicable also to the machine
learning approximation. Hence, a close connection between
the two surrogate models facilitates their interaction in the
hierarchy in this case. The full order model here serves as
reference and is therefore assumed to be arbitrarily accu-
rate. Hence, no accuracy check of the full order solution is
performed.

Parametrized optimal control problems. A three-stage
adaptive model hierarchy for linear-quadratic optimal con-
trol problems with parameter-dependent system compo-
nents was developed in Kleikamp (2024). The general
structure is comparable to the one for parabolic PDEs. In
particular, the three involved models and their interaction
are similar and an a posteriori error estimator is used
to certify the results obtained by the reduced models.
The special structure of the considered optimal control
problems allows to identify solutions to the associated
optimality system by the optimal adjoint at final time.
The reduced basis model thus builds on an approximation
of the set of optimal final time adjoints by linear subspaces.
As before, the machine learning surrogate makes use of the
same reduced space which allows to reuse the a posteriori

error estimate of the reduced basis model.
An additional speedup can be obtained by also reducing
the primal and adjoint trajectories in an efficient manner
as described in Kleikamp and Renelt (2024). The resulting
fully reduced model is based on the reduced basis model for
approximate final time adjoints. It is moreover possible to
incorporate machine learning in the fully reduced model.
We hence obtain a four-stage hierarchy consisting of the
full order model (FOM), the reduced basis reduced order
model (RB-ROM), the fully reduced model (F-ROM) and
the machine learning fully reduced model (ML-F-ROM).
In Tab. 1 we present the results in terms of number of
evaluations and average run time of the individual mod-
els within the four-stage hierarchy, when querying the
hierarchy for 10, 000 randomly chosen parameters and a
fixed error tolerance of 10−4 in the cookie baking example
described in Kleikamp and Renelt (2024). As can be seen

Table 1. Results of the four-stage model hier-
archy applied to the cookie baking test case

Model Number of solves
Average time for
error estimation
and solving [s]

FOM 4 76.24
RB-ROM 12 19.55
F-ROM 437 1.03

ML-F-ROM 9,547 0.54

from the numerical results depicted in Tab. 1, the ML-F-
ROM, which is the fastest of the four involved models, is
sufficiently accurate in more than 95% of the calls to the
hierarchy. In contrast, the full order model has to be solved
only four times in order to meet the accuracy requirements.

4. CONCLUSION

The introduced concept of adaptive model hierarchies pro-
vides a possibility to combine different models of varying
complexity within a joint hierarchy that can be evaluated
efficiently. As discussed in the last section, model hierar-
chies are applicable in different contexts and make use of
the advantages of all involved models.
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