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1. INTRODUCTION

Model Order Reduction (MOR) for stochastic linear sys-
tems is concerned with approximating the high-dimensional
Full Order Model (FOM)

dx(t) = [Ax(t) + Bu(t)] dt+MdW (t), x(0) = x0, (1)

by a surrogate model. Such arise, for example, from spatial
discretisations of PDEs, with noisy boundary conditions.
Here, the so-called drift of (1)is a function of the state
x(t) ∈ Rn and the control u(t) ∈ Rm given by the respec-
tive multiplication with A ∈ Rn×n and B ∈ Rn×m. The
term MdW (t) is called the diffusion term and describes the
influence of the noise-generating process W (t) ∈ Rd on the
state variable. In this case the process is a d-dimensional
standard Brownian motion. The matrix M ∈ Rn×d is
called the diffusion coefficient. Due to the structure of
the SDE (1) the FOM state variable x(t) is Gaussian for
each fixed time t if x0 is Gaussian or constant. Hence,
the distribution of x at the time t ∈ [0, T ] is completely
determined by the expectation E(t) ∈ Rn and covariance
C(t) ∈ Rn×n.

2. PROJECTION-BASED MOR

Projection-based MOR constructs such Reduced Order
Models (ROMs) by approximating the FOM state variable
in an r-dimensional subspace Vr, that is, one assumes
x(t) ≈ VrV

T
r x(t) = Vrxr(t), where orthogonal columns

of Vr = [v1, . . . , vr] ∈ Rn×r span the subspace Vr. By the
requiring a Galerkin condition on the residual of the FOM
dynamics, one obtains

dxr(t) = [Arxr(t) + Bru(t)] dt+MrdW (t), (2)

with the reduced coefficients

Ar :=VT
r AVr ∈ Rr×r, Br := VT

r B ∈ Rr×m,

Mr :=VT
r M ∈ Rr×d, xr(0) := VT

r x0 ∈ Rr.

If r ≪ n, then (2) is much cheaper to compute than
the FOM (1). Since projections retain the linear structure
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of the original FOM equations, the ROM state xr(t) is
Gaussian as well for each fixed t ≥ 0. One can show that
the expectation of the projected state Er(t) := E [xr(t)]
satisfies the ODE

Ėr(t) = ArEr(t) + Bru(t), Er(0) = E [xr,0]

and approximates the FOM expectation after lifting with
Vr, since VrEr(t) = VrE[xr(t)] = E[VrV

T
r x(t)] ≈ E[x(t)].

Analogous results for the covariance matrix Cr(t) =
cov[xr(t)] hold, see Freitag et al. (2024).
A popular data-driven method to construct Vr is Proper
Orthogonal Decomposition (POD) method. In this method,
the dominant subspace of observed snapshots Xs =
[x(t1), . . . , x(ts)] is chosen as Vr. This is achieved by taking
the r leading left-singular vectors of Xs as the columns of
Vr = [v1, . . . , vr]. To construct a ROM in such a way, it is
necessary to have access to the FOM matrices A,B, and
M. Such methods are called intrusive and can be infeasible
in the case of, for instance, black-box or legacy code.

3. NON-INTRUSIVE MOR

To address this issue, so-called non-intrusive methods
have been developed. These methods do not require the
availability of the FOM system coefficients, but instead
rely on the availability of large amounts of data or the
ability to query the FOM. One well-known method is the
Operator Inference (OpInf) approach by Peherstorfer and
Willcox (2016), which recently has been extended to the
SDE setting by Freitag et al. (2024) We briefly illustrate
this extension. In the standard OpInf approach for SDEs,
one first collects L samples of s trajectory observations
x(t1), . . . , x(ts) of the FOM state, which are then used to
compute approximations of the reduced expectation

EL
r,i = VT

r E
L
i , E

L
i ≈ E(ti) := E [xti ] , i ∈ {1, . . . , s}.

of the ROM state variable xr at the observation times.
An approximation of the time derivative Ėr(t) of the
reduced expectation can be obtained by a finite difference

approximation EL,h
r,i using EL

r,i := VT
r E

L
i , where h is given

by the difference between the (equidistant) observation
times ti. Thus, to obtain approximations to Ar and Br,
one can solve the least-squares problem

[A∗
r B∗

r ] = argmin
Õ∈Rr×(r+m)

∥ÕDL − RL,h∥F , (3)
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where

DL =

[
EL
r,1 . . . EL

r,s

u(t1) . . . u(ts)

]
and RL,h =

[
EL,h
r,1 , . . . ,EL,h

r,s

]
.

Since DL and RL,h are constructed from approximations,
one can view (3) as a perturbed version of an unperturbed
least-squares problem, where direct observations would
be available. Freitag et al. (2024) show that if the data
matrix DL ∈ Rr+m×s is of full rank, the unique solution is
an almost-surely convergent estimator of the unperturbed
least squares solution in the limit of L → ∞ and h → 0.
Using an analogous approach, Freitag et al. (2024) obtain
an estimation of the product MrM

T
r ∈ Rd×d for the

diffusion coefficient by utilising the inferred A∗
r instead of

Ar.
One drawback of the standard OpInf formulation, as
Peherstorfer (2020) points out, is that the projected FOM
trajectories can differ from the trajectories of the intrusive
ROM (2). This so-called closure error arises due to the
inability of ROMs of the form (2) to model the non-
Markovian dynamics of the projected FOM state variable
with respect to the subspace Vr. Thus, the ROM obtained
from standard OpInf can fail to approximate the reduced
dynamics in Vr. To address this issue, Peherstorfer (2020)
proposes a modified sampling scheme called re-projection.
We illustrate this method in the SDE setting of this paper.
The core idea is to estimate the re-projection sampling,
performed directly on the expectation, by computing the
empirical mean of re-projected samples. To perform the re-
projection scheme, access to the stepping function f(x, u)

x̃i+1 = f(x̃i, ui) = Ãx̃i + B̃ui + M̃zi, zi ∼ N (0d, Id),

of the time-discretised FOM is required. Here, 0d is the d-
dimensional zero vector and Id the identity matrix of size
d× d. The sampling algorithm then computes trajectories
{x̂i, i = 1, . . . , s} ⊂ Rr by projecting each query result
onto Vr, that is, one computes x̂i+1 = VT

r f(Vrx̂i, ui) and
constructs the matrices

X̂s =

[
x̂E
1 . . . x̂E

s−1
u(t1) . . . u(ts−1)

]
∈ R(r+m)×(s−1) and

Ŷs =
[
x̂E
2 . . . x̂E

s

]
∈ Rr×(s−1)

from the empirical estimation x̂E
i of the expectation of x̂i.

An approximation to the time-discrete reduced operators
is obtained by solving the least-squares problem[

Â∗
r B̂∗

r

]
= argmin

Ô∈Rr×(r+m)

∥ÔX̂s − Ŷs∥F . (4)

As in the standard OpInf method, the condition number of
the data-matrix Xs can be improved by sampling linearly
independent pairs of initial conditions and control. Lastly,
the availability of f enables us to easily obtain an estima-
tion of the projected time-discrete diffusion operator M̃r.
While one could proceed as in Freitag et al. (2024) by using
the covariance matrices of the re-projected time-steps, it
is much simpler to sample the projected time-stepping
function f with a zero initial condition and control, since

VT
r f(0r, 0) = VT

r M̃z, z ∼ N (0d, Id).

The covariance matrix C̃f of such samples is an estimation

of VT
r M̃M̃TVr. An approximation of M̃r is then obtained

by, e.g., an eigenvalue decomposition of C̃f . Note, that this
approach approximates the reduced system coefficients of
the time-discretised FOM, instead of the reduced system
coefficients of the time-continuous FOM.
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Fig. 1. Relative errors of expectation and covariance. FOM
dimension n = 1357. Number of samples and time
steps for inference and testing L = 104 and s = 103.
Time-step size h = 10−3.

4. NUMERICAL EXAMPLE

The FOM is obtained from the Steel Profile Benchmark
from the Oberwolfach Benchmark Collection (2005). The
control function models the temperature controls, which
can be applied on m = 7 sections of the boundary
of the profile. One can model a noisy control u, which
is perturbed by white noise, by choosing the diffusion
coefficient to be M = B

∥B∥ . The step function f is given by

a semi-implicit Euler-Maruyama time-discretisation of the
corresponding SDE. Figure 1 reports the relative summed
errors in the expectation and covariance between the
FOM and the POD and the FOM and Operator Inference
with re-projection ROMs. The code used to perform the
experiment displayed in Figure 1 is available at https://
github.com/JMNicolaus/SDE_OpInfRP
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