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Abstract: To determine failure rates is a challenge, if there are only a few failures and typical
failure rates are low. As an application example we are interested in failure rates of electrical
automotive components for automated/autonomous driving. As method we focus here on the
exploitation of field data. Our contribution classifies different approaches from statistics and
shows how this can be applied to real-world production figures as available in industry.
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1. APPROACHES TO FAILURE RATES

For applications like autonomous/automated driving a
high reliability of the used components is required for
functional safety. Therefore long survival times with a high
statistical confidence should be known for the components
before the design of the vehicle electrical system and its
production. So-called FIT rates, i.e. failure rates in the
order of 1 FIT, i.e. 1 failure in 1 billion (=109) hours of life-
time seem to be acceptable for the envisaged application.
Since components are under certain stresses not only when
in use and ageing happens all the time, failure rates are
calculated w.r.t. hours of lifetime, not hours of operation.

Moreover, it is necessary to define a failure precisely
by a so-called failure criterion. This might depend on the
type of the component, e.g. the doubling of the Ohmic
resistance for a welded splice. Furthermore, we could dif-
ferentiate between failure modes like “open” or “short-
circuit”.
There are three important approaches to determine failure
rates: (i) exploitation of data from field returns (so-called
field data), (ii) standardized handbooks with failure rates,
and (iii) laboratory exposure tests. In approach (i) the
field data, i.e. failures and survivals from components
used in the field, is evaluated statistically. The number of
legitimate failures (e.g. a wrong coloring of the component
might not enhance its functionality) compared with the
number of components and hours of lifetime allow to
estimate a failure rate (not necessarily constant). This
approach is also known as REX (return of experience).
The handbooks in (ii) rely on expert opinions and previ-
ous records (including statistics and partially field data).
There are several international standards for failure rates,
FIDES (2022) being the most recent. For approach (iii)
long term exposure tests are designed, that try to trigger
each a specific physical failure mechanism. In order to ob-
serve failures in reasonable time and for a sufficient number
of specimens, exposure tests that can speed-up time due

to overstresses are crucial. is then analyzed statistically.
Here the focus is on the approach (i) using field data to
determine low failure rates, in particular in the case of zero
or only a few observed failures.

2. PROBABILISTIC AND STATISTICAL MODELS

We examine a family of identical, independent, newly
manufactured specimens over a given time period where it
is possible to track the specimen for failures. As collective
we consider the number of specimen N times the time
period under consideration T (in h). We consider X as the
random variable with values in N0, x denotes the observed
realizations. A point estimate of the failure rate in our
collective serving as a sample is

Θ̂ =
X

n
=

X

N T
(FIT = # failures/(109h)). (1)

However, a point estimate lacks a statement about the
statistical confidence of the result. If, let’s say we observe
0 failure among a sample of length N = 1000 or N = 109

(for the same T ) should make a difference, but in both

cases we estimate Θ̂ = 0 FIT for the failure rate.
We assume that a required confidence level ν, e.g. 90%, is
prescribed (by rules or economically) for the application.
If we consider a suitable confidence interval [Θ, Θ̄] for the
unknown parameter Θ for the confidence level ν, than
the upper bound Θ̄ of the confidence interval may be
considered as a conservative estimate for the failure rate
λtotal that here incorporates all influences on the failure
rate. However, the construction of a confidence interval
depends on the underlying model, e.g. whether a non-
parametric or parametric estimate is appropriate. We will
discuss shortly the two models in the following.

2.1 Binomial Distribution as Model

We suppose that Θ is the probability that an event occurs
among N components in a given time interval of length
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T . Let X denote the random variable of the sum of events
E within n = NT trials. Accordingly the probability for
observing events per time is given by (1).
We follow Stange (1970, p. 436) for the construction of the
corresponding (typically non-unique) confidence interval.
If a required confidence level ν or vice versa the probability
of error α1 + α2 = 1− ν is given 1 , then there holds

P (x ≤ X ≤ x̄) =

x̄∑
i=x

(
n

i

)
Θi(1−Θ)n−i = 1−α1−α2, (2)

where x or x̄ is the smallest / largest natural number

greater / less than or equal to nΘ ∓ q1/2

√
nΘ(1−Θ),

where qi = q
B(Θ,n)
1−αi

is the quantile of the binomial dis-
tribution with parameters Θ and n w.r.t. 1− αi, i = 1, 2.
The crucial estimate Θ̄ for X = x is determined by

x∑
i=0

(
n

i

)
Θ̄i(1− Θ̄)n−i = α1. (3)

In particular, in the case x = 0, that is important for the
applications, (3) simplifies to Θ̄ = 1− n

√
α ,where we have

naturally α1 = α and α2 = 0. Thus we have the confidence
interval [0, Θ̄] for zero failures.
If we have zero failures the question whether failed compo-
nents are (instantaneously) replaced is obsolete. Moreover,
for a few failures, i.e. x � n the question of replacing
components has no numerical influence on the results.
We see that the construction of a confidence interval as for
the binomial distribution may yield technical challenges.
By using Fisher’s F -distribution this might be overcome.
Further details yielding the so-called Pearson-Clopper val-
ues, see Stange (1970, p. 433 ff.), will be presented on site.

2.2 Maximum Likelihood

In addition, we have modelling challenges due to the
censoring of the data. In statistics censored data means
that random variables, as the survival times here might not
be observed/measured over the whole time. If we cannot
track each sample until a failure occurs, then this is a
typical example for right-censoring, whereas if the starting
time of the observation/measurement cannot be traced
back yields a so-called left-censoring.
Considering a constant (random) failure rate, we illustrate
here the case of the exponential distribution. For X ≥ 1,
the maximum likelihood estimate is in the uncensored case
identical to (1), in the general case of censored data (no
replacement of the component)

Θ̂ =
X∑N
i=1 ti

=
X∑X

i=1 ti + (N −X)T
, (4)

where ti denotes the random survival time of component
i, being T , if component i does not fail in the observed
time period. W.l.o.g. the components with failures get the
lowest indices. For the observed times with components
in function, appearing in the denominator, we abbreviate

Tobs =
∑X
i=1 ti + (N −X)T . We obtain (Sundberg (2001))

the confidence interval

P

(
q
χ2(2X)
α1

Tobs(X)
≤ Θ̂ ≤ Θ̄ :=

q
χ2(2X)
1−α2

2Tobs(X)

)
= 1− α1 − α2, (5)

1 α1 is the probability of an error above the sample mean plus a
margin of error and α2 is the probability of the error below.

where q
χ2(2X)
ν̃ is the quantile of the χ2-distribution with

2X degrees of freedom w.r.t. the confidence level ν̃. We
see that the results for the sample mean for the binomial
as for the exponential distribution coincide, whereas the
relevant estimate in (5) might be different already in the
uncensored case.

3. DATA OF FIELD RETURNS AND OUTLOOK

On site we present data of field returns for welded automo-
tive splice and follow approach (i). Moreover, we include
here so-called dark figures for N and X, these percentages
model that not all components in the collective may be
tracked and that not all failures might be reported in the
real world. Finally, we will discuss phenomena due to the
size of the collective and to the split of components into
smaller groups.
It turns out in this example that the binomial model and
the maximum likelihood method yield the same estimates
for the failure rate λtotal. Following approach (ii) we obtain
a higher value for the failure rate. However, both values
were undercut by laboratory long exposure tests following
approach (iii) for this component (ZVEI-BI, 2021, Section
7.5). Note that the three approaches yield different FIT
rates not only here and to be on the safe side, the worst
(highest) FIT rate is used as prescribed in the FIDES.
The reason for this is that a chain is only as strong as its
weakest link. However, it is recommendable to use several
approaches as pillars for the FIT rates.
Finally, we will discuss the stated results and close with
an outlook. It should also be mentioned that we consider
here only constant failure rates, modelling random errors.
Systematic errors are assumed to be avoided by a strong
quality management. This approach has been applied by
the authors together with industrial partners for several
electric components as splice, power and data cables, fuses,
and mass connections in automotive cable harnesses, see,
e.g., ZVEI-BI (2021); Kimmerle & Liess (2019).

ACKNOWLEDGEMENTS

We acknowledge support from several industrial partners
by data and within projects.
In particular, we would like to thank very much Rudolf
Avenhaus at UniBw München for stimulating discussions.

REFERENCES
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