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∗ Department of Mathematics, Faculty of Science, University of
Zagreb. Croatia (e-mail: drmac@math.hr).

∗∗ Department of Mechanical Engineering, University of Califormia,
Santa Barbara, (e-mail: mezici@aimdyn.com)

1. INTRODUCTION

The Dynamic Mode Decomposition (DMD) Schmid and
Sesterhenn (2008), Schmid (2010) is a versatile computa-
tional tool for data driven analysis of nonlinear dynamical
systems, with applications in e.g. computational fluid dy-
namics, aeroacoustics, robotics. It can be used for model
order reduction, analysis of latent structures in the dy-
namics, and e.g. for data driven identification, forecasting
and control. The theoretical underpinning of the DMD is
in the framework of the Koopman (composition) operator
theory Rowley et al. (2009), Mezić (2013).

The Koopman (composition) operator provides an in-
finitely dimensional linearization of nonlinear dynamical
systems, and it is a tool of the trade for computational
data driven analysis (identification, prediction, control)
of nonlinear dynamics. For instance, consider the discrete
dynamical system

xi+1 = T(xi), (1)

where T : X −→ X is a map on a state space X ⊆ Rn and
i ∈ Z. The xi’s are e.g. obtained by numerical simulations
of a continuous system (i.e. system of differential equa-
tions), or by measuring experimental data. Further, the
mapping T might be unknown, but an abundance of data
snapshots xi is available. The Koopman operator K ≡ KT

for the discrete system (1) is defined on a suitable (Hilbert)
space of observables F by

Kf = f ◦T, f ∈ F . (2)

The key observation is that for a vector valued observable
f = (f1, . . . , fn)

T of interest, its value along the trajectory
of (1) can be represented as f(x1) = (K0f)(x1), f(x2) =
(Kf)(x1), f(x3) = (K2f)(x1), . . ., f(xm+1) = (Kmf)(x1),
where the action of K defined component-wise. Hence, to
reveal the latent structure of (1) and to develop forecasting
skills, or to identify T, it is plausible to try to identify
K (based on the data only) and compute its approximate
eigenvalues and eigenvectors (using a data driven compres-
sion of K and the well known procedures from numerical
linear algebra, but adapted to the data driven scenario).

The available data are stored in the snapshot matrix F
with columns f(x1), f(xk+1)=(Kf)(xk), xk+1=T(xk):
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F=(f(x1) ... f(xm) f(xm+1))=

 f1(x1) ... f1(xm) f1(xm+1)
f2(x1) ... f2(xm) f2(xm+1)

...
...

...
...

fd(x1) ... fd(xm) fd(xm+1)

.

(i) The snapshots are generated by a nonlinear system.
(ii) The snapshots are a Krylov sequence f ,Kf ,K2f , . . .,
driven by the linear operator K and evaluated along a
trajectory initialized at x1.

It makes sense to find a matrix A that reproduces the
Krylov sequence (over available data), i.e. such that

Af(xk)=(Kf)(xk)=

(
(Kf1)(xk)

...
(Kfn)(xk)

)
= f(T(xk)), k = 1, . . . ,m.

(3)
The Koopman Mode Decomposition (KMD) represents
the scalar observables fi in terms of the eigenfunctions
of K, so that for an x

(Kkf)(x) =

(Kkf1)(x)
...

(Kkfn)(x)

 ≈
m∑
i=1

ziϕi(x)λ
k
i , k = 0, 1, . . .

(4)
where (Kϕi)(x) ≈ λiϕi(x). It can be shown that (zi, λi)’s
are approximate eigenpairs of A (Azi ≈ λizi). This
requires solving the eigenvalue problem for the matrix A
defined in (3).

2. THE DMD AND THE KMD: NUMERICAL
ALGORITHMS

The application of the KMD introduced in §1 is based on
a supplied sequence of snapshots fi ∈ Cn of an underlying
dynamics, that are driven by an unaccessible black box
linear operator A;

fi+1 ≈ Afi, i = 1, . . . ,m, m < n, (5)

with some initial f1. No other information is available.

The two basic tasks are then:

(1) Identify approximate eigenpairs (λj , zj) such that

Azj ≈ λjzj , j = 1, . . . , k; k ≤ m, (6)

This is solved by a data driven Rayleigh–Ritz proce-
dure introduced by Schmid (2010).

(2) Derive a spectral spatio–temporal representation of
the snapshots fi (KMD):

fi ≈
ℓ∑

j=1

zςjαjλ
i−1
ςj , i = 1, . . . ,m, (7)
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Algorithm 1. (Zk,Λk, rk, [Bk], [Z
(ex)
k

]) = xGEDMD(X,Y; tol)

Input: X = (x1, . . . ,xm),Y = (y1, . . . ,ym) ∈ CN×m that
define a sequence of snapshot pairs (xi,yi). Tolerance
tol for the numerical rank of X.

1: D = (diag(∥X(:, i)∥2)mi=1)
†; Xc = XD; Yc = YD.

2: [U,Σ,V] = svd(Xc) ; {The thin SVD: Xc = UΣV∗,
U ∈ Cn×m, Σ = diag(σi)

m
i=1.}

3: Determine numerical rank k, using the threshold tol.
4: Set Uk = U(:, 1:k), Vk = V (:, 1:k), Σk = Σ(1:k, 1:k).
5: Bk = Yc(VkΣ

−1
k ); {Schmid’s data driven formula for

AUk [optional output].}
6: Sk = U∗

kBk {Sk = U∗
kAUk is the Rayleigh quotient.}

7: [Wk,Λk] = eig(Sk) {Λk = diag(λi)
k
i=1; SkWk(:, i) =

λiWk(:, i); ∥Wk(:, i)∥2 = 1.}
8: Zk = UkWk {The Ritz vectors.}
9: Z

(ex)
k = BkWk {The (unscaled) Exact DMD vectors

[optional output].}
10: rk(i) = ∥BkWk(:, i) − λiZk(:, i)∥2, i = 1, . . . , k. {The

residuals.}
Output: Zk, Λk, rk, [Bk], [Z

(ex)
k ].

for some suitable selection of the modes zςj . The co-
efficients are computed by using a sparsity promoting
optimization Jovanović et al. (2014), or by solving a
Khatri–Rao structured least squares problem Drmač
et al. (2020).

2.1 An improved DMD/KMD

The original method Schmid (2010) is considerably im-
proved in Drmač et al. (2018), and a robust software
implementation is available in the LAPACK library Drmač
(2024a). One of the key features of the modified DMD is
that it provides computable residuals (rk(ςj) = ∥Azςj −
λςjzςj∥2), that can be used to select physically meaningful
eigenvalues and modes, and to guide sparse representation
of the snapshot in the KMD (7).

The improved version of the DMD is summarized in Al-
gorithm 1. In the case of physics–informed DMD, where
it is known that the underlying operator is Hermitian, a
Hermitian version of the DMD requires careful implemen-
tation as in Baddoo et al. (2021), Drmač (2024b).

2.2 An example

An example of DMD/KMD is illustrated in Figure 1.
The data are collected by solving the two–dimensional
Navier–Stokes equation for 150 discrete time steps. The
grid data are reshaped into columns and arranged column–
wise in the 89351 × 151 matrix F . The input to DMD is
X = F (:, 1 : 150), Y = F (:, 2 : 151). Only nine modes
(eigenvectors of A) are enough to represent the entire
simulation with high fidelity, and to provide very good
forecasting skill.
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