
Confronting knowledge-based and machine
learning models in describing batch

fermentation.
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1. INTRODUCTION

Batch fermentation processes are widely used in industry
to produce antibiotics, enzymes, biofuels, and fermented
foods and beverages such as wine, yogurt, bread, and beer.
The underlying concept is to introduce specific microor-
ganisms into a medium with the nutrients necessary for
cells to grow. During growth, microorganisms transform
nutrients into biomass, releasing the desired products.

Optimizing fermentation processes, including species and
conditions, is essential for improving yield and produc-
tivity. Knowledge-based models facilitate decision mak-
ing while minimizing experiments (Lopatkin and Collins,
2020; Wang et al., 2023). Although they offer many advan-
tages, the formulation of such models requires data, time,
and insight.

In recent years, machine learning (ML) algorithms have
gained significant attention due to their ability to analyze
vast amounts of data and uncover patterns that traditional
methods might miss. ML has the potential to optimize
workflows, reduce costs, and improve product quality. In
the context of fermentation, ML has been used to predict
production when historical data are available (Shah et al.,
2022) or as a surrogate model for scaling up (del Rio-
Chanona et al., 2019). However, its effectiveness relies on
the availability and quality of the data.

Fermentation knowledge-based models are often formu-
lated using time-series data for biomass, substrate, and
product dynamics, with fewer than ten sampling points.
Experiments may vary temperature or pH to explain their
impact. The laws of mass and energy conservation com-
pensate for the limited data. Can ML be applied under
these conditions?

This work addresses this question by considering a case
study related to yeast fermentation. We first built a
knowledge-based model to describe the process under
temperature-varying conditions and then used the same
data to formulate an ML model of the process.
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Our results show that: i) building a knowledge-based
model is an iterative, time-consuming process; ii) ML
model design is easier, needing no specific process knowl-
edge, but requires testing multiple architectures; iii) ML
models simulation is faster; but iv) ML is not competitive
for the same amount of data, offering worse predictive
capabilities.

2. RESULTS

2.1 Kinetic model

We have generalized the model by Moimenta et al. (2023)
to account for the effect of temperature. The model con-
sists of a set of ordinary differential equations (ODEs)
describing biomass growth phases, uptake of sugars and
yeast assimilable nitrogen, and relevant products.

The model was built using a multi-experiment identifica-
tion approach. Six experiments, performed at three dif-
ferent constant temperatures with two different levels of
sugars, were used for model formulation and calibration;
and two additional experiments, performed at a time-
dependent temperature profile were used for validation.
We considered five different sets of fermentations led by
five industrial yeast species to test the generalizability of
the model. Model identification was implemented in the
AMIGO2 toolbox (Balsa-Canto et al., 2016).

The model successfully explained the data, with a normal-
ized mean square error in the prediction of less than 10%
for all species.

2.2 Machine learning models

We used regression models based on artificial neural
networks (ANN), specifically the multilayer perceptron
(MLP). We first consider the case of a particular yeast
strain (S. cerevisiae GALA) and try to predict the pro-
duction of ethanol, glycerol, acetate, and succinate. We
compared three different scenarios:

(1) Model ML-KIn: using the same inputs as the kinetic
model, including time, initial conditions of tempera-
ture and sugar, and yeast assimilable nitrogen (YAN).
The model architecture includes 4 input variables, a
hidden layer with 2 neurons, and 4 output variables.
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(2) Model ML-12In: using twelve inputs, including time,
initial conditions, YAN, and the following amino
acids: cysteine, glycine, histidine, methionine, aspar-
tate, phenylalanine, isoleucine, and leucine. Note that
selected amino acids present distinct dynamic pro-
files. The model architecture includes 12 input vari-
ables, a hidden layer with 3 neurons, and 4 output
variables.

(3) Model ML-22In: using 22 inputs including time, ini-
tial conditions, and all amino acids measured exper-
imentally, except proline, ornithine. The model ar-
chitecture includes 22 input variables, a hidden layer
with 5 neurons, and 4 output variables.

The selected network structures demonstrated minimal
overfitting after testing various combinations with the
dataset. We also explored combining data from five in-
dustrial yeast S. cerevisiae strains, which, despite simi-
lar ethanol yields, produced varying amounts of glycerol
and succinate, enriching the data. The resulting models,
ML-KI-AllSp, ML-12I-AllSp, and ML-22I-AllSp, shared
the architecture with those obtained with a single species
dataset.

For the training of ML models, the input and output data
were normalized; missing data was imputed, and outliers
were removed from the dataset. The six models were
trained using the mean square error (MSE) metric as the
loss function, a learning rate of 0.1, a sigmoid activation
function and the Stochastic Gradient Descent optimizer.
The modeling workflow was implemented in Python using
the Keras toolbox (Chollet et al., 2015).

2.3 Comparative analysis

Our results show that when used under the same condi-
tions, ML offers poor performance. Only when data for
multiple species were combined, the ML became more
accurate (see Figure 1). Model ML-KI-AllSp shows an
overall normalized mean square error of 18%, while Model
ML-12I-AllSp shows a 13%, attributed to the increase in
input data from 4 to 12 inputs. The addition of data in
Model ML-22I-AllSp did not result in further improve-
ments. Even with five times more data, the top ML model
underperformed compared to the kinetic model.

3. CONCLUSION

The widespread enthusiasm for machine learning (ML) has
led to its use in numerous fields. Although ML provides
powerful tools for modeling, balancing this excitement
with a clear understanding of its limitations and the
contexts in which it can truly add value is essential.

In this work, we have confronted knowledge-based kinetic
models with ML models in the prediction of yeast batch
fermentation. Our results showed that the kinetic model
outperformed the ML models, despite the latter being
trained on a larger dataset. This is attributed to the fact
that ML models rely solely on experimental data and lack
prior knowledge, making them susceptible to errors and
bias. This highlights the need for a hybrid approach that
combines ML and knowledge-based models to exploit their
individual advantages and compensate for their individual
limitations (Procopio et al., 2023).
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Fig. 1. Kinetic versus ML models for selected examples.
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