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1. INTRODUCTION

Model Order Reduction (MOR) for Artificial Neural Net-
works (ANNSs) is an increasingly important field that aims
to reduce the complexity and computational cost of ANNs
while maintaining their predictive accuracy. This is partic-
ularly relevant for scientific machine learning, where neural
networks are used in complex, high-dimensional tasks such
as solving partial differential equations (PDEs), modelling
physical processes, or real-time simulation and control in
engineering systems. In this contribution, we provide an
overview of the state of the art for MOR applied to ANNs,
as well as some ideas we are pursuing for our novel ANNs
generated from data-informed state space systems.

2. TECHNIQUES FOR MODEL ORDER REDUCTION
IN ANNS

Various techniques have been developed to apply MOR in
ANNSs, which can be categorized into parameter reduction,
layer-wise reduction, and structural simplifications.

2.1 Pruning Methods

Pruning removes unnecessary weights, neurons, or layers
from neural networks while maintaining accuracy. Key
methods include: (i) Magnitude-based pruning, which sets
small-magnitude weights to zero; (i) L1/L2 regulariza-
tion, promoting sparsity by penalizing weight size; (i)
Structured pruning, targeting entire neurons, channels, or
layers for more efficient models; and (iv) the Lottery Ticket
Hypothesis, identifying small subnetworks that achieve full
model performance when trained separately.

2.2 Low-rank Factorization

Low-rank factorization reduces large weight matrices into
products of smaller ones, cutting parameters. Techniques
include singular value decomposition (SVD) and advanced
tensor factorization methods like Tucker decomposition
and tensor train. SVD approximates weight matrices with
low-rank representations, while tensor methods decom-
pose higher-order tensors in convolutional layers. These
approaches, applied during or after training, are effective
for compressing convolutional layers in deep convolutional
neural networks (CNNs) for image processing.
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2.8 Quantization

Quantization reduces the precision of weights and acti-
vations, lowering memory use and computation complex-
ity. Techniques include post-training quantization, where
trained weights are mapped to lower precision, like 8-
bit integers, without retraining, and quantization-aware
training, where the network is trained with quantization
constraints to maintain performance. It is commonly used
for deploying ANNs on resource-limited devices like mobile
phones and edge devices.

2.4 Knowledge Distillation

Knowledge distillation involves training a smaller network
(student) to mimic the behavior of a larger network
(teacher). The smaller network is trained to replicate the
outputs (or feature maps) of the larger network, allowing
for substantial reductions in model size while preserving
accuracy. This technique is especially popular in reducing
the size of very large models (such as BERT or GPT) for
practical deployment.

2.5 Neural Network Compression via SVD and PCA

Principal Component Analysis (PCA) and Singular Value
Decomposition (SVD) can be applied to the weight ma-
trices of ANNSs to reduce their dimensionality. These tech-
niques work by identifying directions of variance in the
data (or features) and projecting weights onto a lower-
dimensional space, effectively reducing the number of pa-
rameters and improving computational efficiency.

2.6 Approximation via Surrogate Modeling

In scientific computing and physical simulations, reduced-
order models serve as surrogates for neural networks. They
approximate the network’s behavior, especially in larger
systems like physical process simulations or control appli-
cations. Surrogates, such as Polynomial Chaos Expansions
or Gaussian Processes, are also used with ANNSs to simplify
input-output mappings, particularly for real-time settings.

3. MODEL ORDER REDUCTION IN THE CONTEXT
OF PHYSICS-INFORMED NEURAL NETWORKS
(PINNS)

PINNSs represent a growing area where MOR is critically
needed. PINNs embed physical laws (governed by PDEs)
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Fig. 1. Overview of our proposed workflow illustrating

the systematic construction of continuous-time neural
networks from Linear Time-Invariant (LTT) systems.
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directly into the neural network loss function, making
them suitable for solving complex physical problems like
fluid dynamics, structural analysis, and electromagnetism.
Key MOR approaches for PINNs include reduced basis
methods and Galerkin projection. The former case involves
identifying a low-dimensional subspace of the solution
space, where solutions to the governing equations can
be projected, thus reducing the computational load while
maintaining accuracy. In the latter case, an MOR tech-
nique is used to project the dynamics of high-dimensional
systems into a low-dimensional space by utilizing trial
functions that satisfy the governing equations.

4. ANNS CONSTRUCTED FROM DATA-INFORMED
STATE SPACE SYSTEMS

In Datar et al. (2024), we developed a systematic approach
of constructing continuous-time ANNs for linear dynami-
cal systems, based on original ideas in Meijer (1996). The
idea is to first create a state-space system based on the
available data, in our case using the so-called MOESP
algorithm Verhaegen et al. (1992). Using a sequence of
numerical methods, including QR decomposition and the
Bartels-Stewart algorithm, the state-space system is trans-
formed into an artificial neural network. The procedure
is graphically illustrated in Figure 1. Special about the
methodology is that horizontal layers are being formed
instead of vertical layers, and that the networks are truly
dynamic, i.e. non-recurrent: in the neurons, a first or
second order scalar ODE needs to be solved.

This 1-1 relationship between state-space models and
artificial neural networks will enable us to translate MOR
methods for state-space models into MOR methods for
artificial neural networks:

e First we transform the original state-space model into
an equivalent ANN

e Next, we apply an arbitrary MOR method to the
state-space model

e Then we translate the resulting lower-dimensional
state-space model into a smaller ANN

e We then analyse how the smaller ANN can be ob-
tained from the larger ANN, and how to formulate
the corresponding MOR method for artificial neural
networks.

In the talk, examples will be given of this procedure. It
should be noted that the method described in Datar et al.
(2024) in principle advocates the use of ANN with neuron
activation functions that are special for the underlying
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problem. In the case described in Meijer (1996), the first
and second order ODEs are, in fact, similar to so-called low
and high pass filters in electronics, and all applications
were also in electronics. Recently, we have also worked
on n-body dynamics to predict trajectories and masses
of planets, and in that case we use neurons where the
2-body system is solved (Kepler system). This approach
is actually also advocated in Ferrari et al. (2014), albeit
without mentioning the use of artificial neural networks.

5. CHALLENGES AND FUTURE DIRECTIONS

Despite the progress in MOR for ANNS, several challenges
remain:

e Balancing accuracy and reduction: Maintaining
the accuracy of ANNs while reducing their order is
a central challenge. Often, aggressive reductions can
lead to significant degradation in performance.

e Automated MOR techniques: There is a need for
automated techniques that can determine the optimal
level of reduction for a given task, without requiring
extensive hyperparameter tuning.

e Generalization of reduced models: Reduced
models often perform well on training data but may
generalize poorly to unseen data. Ensuring robust
generalization is critical, particularly in safety-critical
applications.

e Integration with scientific machine learning:
As scientific ML grows, integrating MOR tech-
niques seamlessly into hybrid methods (e.g., physics-
informed ML, data-driven models) will be essential.

6. CONCLUSION

Model Order Reduction is a rapidly advancing field with
significant applications for reducing the computational
cost and complexity of ANNs. Techniques such as prun-
ing, quantization, low-rank factorization, and knowledge
distillation have made it possible to deploy smaller and
more efficient neural networks in real-time and resource-
constrained environments. These developments are espe-
cially crucial for applications in scientific machine learn-
ing, where high-fidelity simulations and real-time control
require efficient approximations of large models.
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