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Abstract

While in the past decade there has been significant progress in open-source circuit synthesis and verification tools

and flows, one piece is still missing in the open-source design automation ecosystem: a tool to estimate the power

consumption of a design on specific target technologies.

We present amethod to characterize target technologies using generic benchmark designswith hardwaremeasurements,

whose results are used to fit power models on these target technologies. A setup to gather the power measurement

data of the Lattice iCEBreaker FPGA board is provided. For stimulation of designs we resorted to both LFSRs and

directly mapping the 12MHz clock input as the stimulus. We also implement these testbenches on the simulation side

to extract valuable information on internal transitions. Benchmark designs to characterize the FPGA are created with

low complexity in mind to allow for simple reasoning about their internal behavior and to reduce the need for complex

testbenches. The benchmarks include LFSR, ring oscillator, divider and arbiter circuits. Modelling of the FPGA is done

as a linear system based on a CMOS model for the internal components. The model fitting is done by solving the linear

system fed by benchmarks with classic optimization algorithms. For the assertion of estimation quality we compare

the output of our estimator to the vendor tool in three practical use cases, such as a CPU, a stream cipher and a hash

algorithm. Hardware measurements of the vendor synthesis have also been taken to provide a ground truth. Applied

to the use case benchmarks our estimation works really well. Especially compared to the vendor provided tooling we

reach similar accuracy.
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Kurzfassung

In den letzten Jahrzehnten gab es signifikanten Fortschritt im Bereich der Open-SourceHardware-Synthese undVerifika-

tion. Ein Teil der jedoch immer noch im Open-Source Design-Automation-Ökosystem fehlt ist ein Tool zum Abschätzen

der Leistung welche ein Design auf spezifischer Zieltechnologie benötigt.

Wir stellen eine Methode zur Charakterisierung von Zieltechnologien unter Verwendung generischer Benchmark-

Designs mit Hardware-Messungen vor, deren Ergebnisse zur Anpassung von Leistungsmodellen für diese Zieltech-

nologien verwendet werden kann. Es wird ein Setup zur Erfassung der Leistungsmessdaten des Lattice iCEBreaker

FPGA-Boards bereitgestellt. Zur Stimulierung der Designs haben wir sowohl auf LFSRs als auch auf die direkte Abbil-

dung des 12MHz-Takteingangs als Quelle zurückgegriffen. Wir implementieren diese Testroutinen auch in Simulation,

um wertvolle Informationen über interne Transitionen zu gewinnen. Die Benchmark-Designs zur Charakterisierung

des FPGAs wurden mit Fokus auf geringe Komplexität erstellt, um einfache Rückschlüsse auf das interne Verhalten

zu ermöglichen und den Bedarf an komplexen Testroutinen zu reduzieren. Zu den verwendeten Benchmarks gehören

LFSR-, Ringoszillator-, Frequenzteiler- undArbiter-Schaltungen. DieModellierung des FPGAs erfolgt als lineares System

basierend auf einem CMOS-Modell für die internen Komponenten. Das Modellfitting erfolgt durch Lösen des linearen

Systems, das mittels der Benchmarks gefüttert wird, durch klassische Optimierungsalgorithmen. Um die Qualität der

Schätzung zu überprüfen, vergleichen wir die Ergebnisse unseres Schätzers mit dem Tool des Herstellers in drei prax-

isnahen Anwendungsfällen, wie z.B. einer CPU, eines Stream-Cipher und einem Hash-Algorithmus. Es wurden auch

Hardware-Messungen der Herstellersynthese durchgeführt, um ihren Grundverbrauch zu erhalten. Angewendet auf

die praxisnahen Benchmarks funktioniert unsere Schätzung sehr gut. Insbesondere im Vergleich zu den vom Hersteller

bereitgestellten Programmen erreichen wir eine ähnliche Genauigkeit.
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Chapter 1

Introduction

PRE-PUBLICATION NOTE: We submitted a work-in-progress paper to a workshop to discuss the current state of

this thesis with the relevant peer group. The content of Sections 3.2 to 3.4 and chapter 2 are mostly taken verbatim

from this paper [6] Stefan Riesenberger and Christian Krieg. “Towards Power Characterization of FPGA Architectures

To Enable Open-Source Power Estimation Using Micro-Benchmarks”. In: Proceedings of the 3rd Workshop on Open-

Source Design Automation (OSDA), 2023, co-hosted with Design, Automation, and Test in Europe (DATE) conference

in Antwerp, Belgium, April 17, 2023. This work was entirely done by Stefan Riesenberger under the supervision of

Christian Krieg.

1.1 Problem Statement

Modern FPGA hardware design practice quite often requires awareness about the impact of specific design decisions

on the power consumption. It is important for environments that are constrained in energy or thermal dissipation to

achieve an optimal solution for given requirements. Besides these aspects it is also interesting from an educational

point of view to analyze designs and to evaluate power hotspots. This allows for a better understanding and can help

the designer to create more optimal designs by default.

Most FPGA vendors provide tools for power estimation in their proprietary toolchains. Such tools vary widely in their

capabilities and some are lacking detailed output that would enable deeper understanding of the power consuming

mechanisms in a provided design. In addition, these tools are locked behind convoluted licenses and are not easily

integrated into open workflows using i.e. Yosys1.

1.2 Motivating Example

In the hardware design process, the designer is interested in expected power consumption of their design. There exist

a multitude of tools from every FPGA vendor for this need of power estimation. These tools differ broadly between

supported features and are very often integrated into their EDA suite. The prime example is Vivado with the Xilinx

Power Estimator (XPE) tool for power estimation. It provides state of the art features for detailed power estimation of

1 https://github.com/YosysHQ/yosys
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18 CHAPTER 1. INTRODUCTION

a given design for a Xilinx FPGA platform. Results are provided fine grained per signal, logic type and I/O.

The open toolchain around Yosys provides most features to allow hardware design for Lattice FPGAs. One major lacking

point is not supporting power estimation features on its own. It is compatible to be mixed with the tools provided by

Lattice, but these tools do not suffice in level of detail about power consumption similar to what XPE offers, as shown

in Table 2.1. Proper integration into the Yosys workflow would also be a highly desired aspect.

1.3 Research Questions

1. Which variation of power consumption can be observed by variations on the design structure? What

main parameters does a designs power consumption depend on and how does the design structure influence it.

2. What degrees of precision and accuracy can be achieved by design variation in terms of the estimated

compared to measured power consumption? Evaluation of our method’s quality by utilizing use case bench-

marks that were not used for fitting.

3. What features and level of detail do hardware vendor power estimation tools from Altera, Xilinx and

Lattice provide? This shall give an overview of existing tools and what new tooling should support to compete

with them.

4. How can the power of a Lattice iCEBreaker FPGA board accurately be measured over a collection of

configurations and inputs? Working out a measurement setup to conduct hardware power measurements on

the Lattice iCEBreaker FPGA board, with minor modifications to the board and precise enough measurement

accuracy to gather data.

5. Can low complexity benchmarks be used to analyze power characteristics of a Lattice iCEBreaker FPGA

board? Providing example benchmarks, which show frequency dependent power utilization to enable the char-

acterization of the FPGA’s power behavior.

6. How can activation rates for components be extracted from existing simulation VCD files? Here we

show the extraction of activation rates from VCD files generated by simulation on the post synthesis benchmarks.

7. How can the parameters of an activation rate based power estimation model be extracted from power

measurements on hardware? Analyzing hardware power measurements to infer the model characteristics.

Extracting FPGA component model parameters from these measurements by means of solving optimization.

8. How well does the provided power estimation solution perform compared to hardware measurements

and vendor tools? A qualitative comparison using hardware measurements between the estimates of the vendor

tool and our solution is provided.

1.4 Scientific Contributions

In this chapter we discuss our work based on our research question and provide summary answers to them.
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1.4.1 Hardware vendor tool feature levels

The question is about what features and level of detail do hardware vendor power estimation tools from Altera, Xilinx

and Lattice provide. We showed in our feature matrix Table 2.1 that some vendors provide extensive tooling for their

products and others segregated the capabilities between different tools and product categories.

We also noted that research is quite often using vendor tools as their ground truth for benchmarking, which is not great

when other papers already claim that vendor tools are not very accurate in their estimations.

1.4.2 Microbenchmarks on Lattice iCEBreaker

At first we develop a tool to generate simple designs containing only i.e. DFFs utilizing tool chain specific features to

place elements at the desired location on the Field Programmable Gate Array (FPGA). After this we start constructing

regularly structured designs via generate statements from simple designs like ring oscillators, arbiter and frequency

divider to instantiate arbitrary scaled versions of them.

1.4.3 Power measurements

We analyze the schematic and layout of the iCEBreaker FPGA board and identify positions for measurement shunt

resistors to enable power measurements. Then we design a measurement board utilizing current sense amplifiers to

amplify the shunt resistor voltage to an easier measurable level. This is then captured by an oscilloscope due to the

initial test with a USB measuring card not being sufficient.

1.4.4 Activation rate extraction

Given a specific HDL design in combination with a testbench the activation rate extraction. We first synthesize the

design down to the hardware specific gate level and then simulate it with the testbench to generate a waveform of the

Device Under Test (DUT). This waveform contains all gates’ IO states which in turn is used for activation rate extraction.

We achieved this with a tool to parse the waveform file to accumulate the activation rates per gate IO and return the

data as a common digestible matrix notation.

1.4.5 Power model, fitting and estimation

For our power model we resort to a linear model based on CMOS gates. A CMOS’s total power utilization is described

by a static leakage term Ps and a dynamic loss term Pd. Ps represents the power lost from leakage currents times the

supply voltage UIleak. Pd on the other hand describes the capacitive switching losses at a given switching frequency in

the from fCcmosU
2. Based on this the power of every component made from CMOS gates is just a sum of the power of

their CMOS parts.

Based on the mentioned model a linear system in matrix notation Pt,B = Ax is constructed, which is feed by the

design parameters power, activation rate and cell usage extracted previously. The linear system is solved by common

algorithms like the least squares algorithm given the matrix A is positive-definite. For our use case the classic least

squares has the issue of returning negative parameter estimates and it does not function properly on singular input

matrices. These problems are solved by using the NNLS algorithm, which is a constraint optimization algorithm. It
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solves the given system with inequality constraints to prevent our fitted solution x, containing the leakage current and

capacitance values, to be negative.

The tools created for fitting the model parameters are with minor tweaking also used to run estimation on a given

design. For estimation of an arbitrary design only the calculation of the matrix A is required, due to x being known at

this point already, then the power is calculated from the linear system Pt,B = Ax.

1.4.6 Comparison of our results

Based on the designs and measurements from Section 4.3 we can draw a few comparisons between our implementation

and the vendor tooling. Unfortunately the biggest andmost complicated benchmark based on the Picorv32 is not possible

to be placed and routed onto our FPGA with the vendor tool, due to high resource utilization. This is due to the design

using some architecture specific cell definitions that both tools are able to parse, but only Yosys is able to properly

synthesize it. This shows that vendor lock-in can go both ways. Looking at the functional designs from Table 1.1 we

can see that the SHA256 is a problem for both tools at a relative error of 75% for our and 90% for the vendor estimate.

We double-checked this result to ensure no measurement error. ChaCha looks more inline with 143% of relative error

for our solution and 109% for the vendor’s.

Vendor Ours
Picorv32 ChaCha SHA256 Picorv32 ChaCha SHA256

SB_LUT4 52435 3734 3044 4282 3728 3066
Total Power [mW] - 6.9 6 31.6 5.6 9.5

Measured Power [mW] - 3.3 64 11.8 2.3 38.4
Relative error [%] - 109 90 167 143 75

Table 1.1: Hardware utilization and power estimation of the practical benchmarks with vendor tool and our solution.

1.5 Community Service

When working on parts of the implementation of this thesis, we encountered a few problems with open source compo-

nents that we are using. We investigated those issues and submitted fixes upstream.

1.5.1 nextpnr

Using cells with no output worked fine when placing and routing DFFs, but the ice40 packing code of nextpnr made

it crash when doing the same for LUT. The reason for this is that the code that tries packing LUTs and DFFs into the

same logic cell is expecting the LUT to have an output. This output is then used to check, if a DFF is used in the same

logic cell. Due to our benchmarking LUT not having an output exposed, the code crashed right at the access of the

missing output. The offending code is found in Listing 1.1. The solution to this issue is to check for the existence of the

entry at id_O and only execute the rest of the DFF packing code if it does.

The fix for this bug is submitted as a pull-request2 and merged into the nextpnr repository.
1 NetInfo *o = ci->ports.at(id_O);

Listing 1.1: Crashing nextpnr code

2 https://github.com/YosysHQ/nextpnr/pull/944

https://github.com/YosysHQ/nextpnr/pull/944


1.5. COMMUNITY SERVICE 21

1.5.2 yosys

When attempting to simulate ring oscillator circuits with path delays in Icarus Verilog (iverilog) utilizing the simulation

library from Yosys revealed that the path delay definitions in said library do not comply to the Verilog standard. This

resulted in errors when parsing them in iverilog. This is fixed by our pull request3 to Yosys.

3 https://github.com/YosysHQ/yosys/pull/3542

https://github.com/YosysHQ/yosys/pull/3542
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State of the Art

Commercial vendors provide software tools for power estimation. These tools are quite often locked behind licenses

and one vendor can provide different tiers of features depending on the FPGA architecture specific tooling. The tools we

investigate in the feature matrix below are the ones included in Lattice Diamond and iCEcube2, Altera PowerPlay

and the Xilinx Power Estimator, which covers a big portion of around 90% of the FPGA market1. Main focus is on

Lattice and Xilinx provided tools, due to them being our test platforms.
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Lattice Diamond
Intel PowerPlay
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(our solution) IcePwrEst

Table 2.1: Feature matrix of vendor tools

Standard procedure for power estimation in literature is to provide a model that gets parameterized by regression al-

gorithms applied on given empirical power data. This data can on the one hand be acquired directly by measurements

on hardware [3], which requires elaborate measurement setups to extract the power data. The decent accuracy of the

measurements are also important, which is difficult to achieve on highly clocked systems like MCUs/CPUs [7]. On the

other hand, measurement data is acquired by utilizing existing vendor power estimation tools [8]. Depending on the

features of each tool, these directly provide the power of different components. This second approach requires trust in

the accuracy of the vendor provided tools, which can vary to a substantial degree as mentioned in [3] (referencing [2]

and [4]). Typically the logic components are building blocks like adders and multipliers [8, 5]. Clock frequencies and

the placement and routing are also affecting the dynamic power of an estimate [3]. To estimate the power, activation

rates/frequencies also need to be known either by means of estimation or simulation. Estimated values can change based

1 https://web.archive.org/web/20220125223413/https://seekingalpha.com/article/
4481365-lattice-semiconductor-strong-competition-limits-stock-price-upside

23

https://web.archive.org/web/20220125223413/https://seekingalpha.com/article/4481365-lattice-semiconductor-strong-competition-limits-stock-price-upside
https://web.archive.org/web/20220125223413/https://seekingalpha.com/article/4481365-lattice-semiconductor-strong-competition-limits-stock-price-upside
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on assumptions like zero-delay, logic-delay and interconnect-delay, which introduce additional glitching, due to all this

the process of estimating the activation rates is a highly complex task as well [1].

Our main target in this work is the Lattice iCEBreaker FPGA board, which contains an FPGA of the iCE40 UltraPlus

family. This family embeds Programmable Logic Blocks (PLB), Embedded Block RAM (EBR), Single Port RAM (SPRAM),

etc. . . . The PLB contains Look-up-Tables with 4 inputs (LUT4), D-Flip-Flops (DFF) with configurable set/reset and enable

controls, and carry logic. All literature that we found is working on Xilinx FPGAs investigating power estimation, but

the Lattice iCE40 family seems like it hasn’t been focus of such research.

Here follows a short summary of the contents of the references that we are basing our work on.

2.1 Summaries

The goal of [1] is to estimate the switching activity of a design and the interconnect capacitance. They report that

the power consumption of a Xilinx Virtex II FPGA is to 50 − 70% due to interconnect loss. Switching activity data is

generated by simulation of benchmark designs with random input vectors. It compares zero-, logic- and routed-delay

transition count, where they show that the amount of transitions increases between each delay category. Then they fit an

estimation model onto the routed switching activity and compare the results against the simulation. They show that the

zero- and logic-delay switching activity is always underestimating compared to the routed delay activity as the ground

truth. Their predictions on the other hand over- and underestimate compared to routed delay activity. Which they claim

allows for better results, due to the mispredictions averaging out for the most part. For the interconnect capacitance

estimation they generate placed netlists of the various benchmarks and modify the netlist to result in different routing

solutions with otherwise identical circuits. This allows them to extract the difference in interconnect capacitance by

running the resulting circuits through the Xilinx power estimator. With this they can fit their multi-dimensional model

by means of regression analysis to provide estimates for the capacitance. This is a very well made paper, but they only

compare to Xilinx power estimator and no hardware measurements. Hardware measurements would have made their

contribution even more valuable. For our work we are using their idea of extracting the routed-delay switching activity

from simulation.

In [3] they provide a hardware measurement setup for FPGA and techniques to separate the power consumption of the

hardware into different groups (static, clock, interconnect and logic power). This enables designers to target the most

relevant parts when optimizing for power. Their measurement setup consists of an FPGA, a fixed voltage regulator,

a shunt resistor and a differential probe. A DSP controller is used for the input vector stimulus. First they propose a

procedure to extract the static and clock power of a given circuit by different input vectors. Then they utilize specifically

designed circuits to extract the interconnect power by moving modules inside the FPGA away from the IO-pins. The

input buffer capacitance is also extracted by measuring 2 different test circuits. A tool for extraction of wire and inter-

connect lengths of a design is proposed for Xilinx based FPGAs. At the end they compare their hardware measurements

to Xilinx Power Estimator (XPower), which show a significant difference. We used their hardware measurement setup

as a basis for our setup. The authors’ investigation of XPower’s estimation accuracy was also very motivating to not

blindly trust vendor tools.

A design flow to consider power utilization at a high design level is proposed in [2]. They show that classic power

estimation flows are not efficient, since they have to be redone for every new design. Their approach describes a system
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where an application is partitioned in IP-blocks and those blocks are picked from a library with constraint optimized

version. If an IP-block does not exist, it is designed, optimized for the constraints and then added to the library. A simple

power estimation concept is proposed based on this block scheme. This estimation is compared to real measurements

and the XPower tool with considerably better results for their solution than the vendor tool.

Paper [5] describes a methodology to estimate the power of a hardware design by characterizing essential operator

blocks. They fit adder and multiplier block and also describe logic, clock and signal dependent power that they model.

For activation rate they also provide an estimation model. They provide a hardware measurement setup similar to [3]

consisting of the FPGA, a voltage regulator, a shunt and an oscilloscope. The input stimulus is generated by a Spartan3

board. With this they compare their estimate to XPower and hardware measurements.

Reference [8] provides a power model that they fit by using XPower as the ground truth. This model is then compared

to a similar previous art and XPower. An interesting anecdote is their use of K-means clustering on their circuits to

cluster them into useful groups.

The work in [4] proposes a switched capacitor based measurement method to enable the accurate measurement of low

power designs. They compare their setup to another hardware measurement done with a multi-meter and to XPower.

Their solution provides decent accuracy with similar results to the multi-meter and that the results from XPower. The

setup is even capable of characterizing the state machine of an SDRAM controller. This work is interesting for us, if we

needed a high accuracy and high time resolution measurement setup.

In [7] a similar approach to [4] is taken for measurements. They provide a capacitor based measurement setup for

small power consumption. Though this design requires more components and special parts like supercapacitors. They

validate their setup against a multi-meter on multiple benchmark, where it fairs quite well. The approach is interesting,

but for our purposes the more simple switched capacitor solution from [4] is more useful.





Chapter 3

Methodology and Implementation

This chapter goes over the entire implementation of each component that is done in this work, starting with our mea-

surement setup, which is essential for data acquisition. After this, we go over our methodology for designing the

testbenches that we are using with our benchmarks. The testing is accompanied by the benchmark designs that we put

on the FPGA for evaluation of the hardware. Then we set up a model fitting scheme, which uses the measurements to

produce the needed parameters for the estimator. Finally, we use the fitted estimator model on a handful of use case

designs to evaluate its performance to the vendor tool.

3.1 Overview

This work is an attempt to create a power estimation tool for a given FPGA architecture. Here we will coarsely go over

the methods that we are using in the following parts of the work.

Power measurements are conducted by inserting a shunt resistor in the Vcore supply line of the FPGA on the eval-

uation PCB and measuring its voltage drop to get the current, which is proportional to the used power.

Testbenches for stimulation of benchmarks that require multiple changing inputs we resorted to LFSRs generated by

a microcontroller. For single input designs we directly map the 12MHz clock input as the signal. We also implement

these testbenches on the simulation side to extract valuable information on internal transitions.

Benchmarks to characterize the FPGA are designed with low complexity in mind to allow for better reasoning about

their internal behavior and to reduce the need for complex testbenches. This also allows better debugging of suspicious

results. The benchmarks include LFSR, ring oscillator, divider and arbiter based circuits.

Modelling of the FPGA is done as a linear system based on a Complementary Metal-Oxide Semiconductor (CMOS)

model (Equations (3.1) to (3.3)) for the components inside the FPGA.

Pt = Ps + Pd (3.1)

Ps = UIcell (3.2)

27
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Pd = fCcellU
2 (3.3)

Model fitting The fitting of the model is done by solving the linear system of the aggregated benchmarks with classic

optimization algorithms.

Estimation and evaluation For the assertion of estimation quality we compare the output of our estimator to the

vendor tool in three practical use cases, such as a CPU, a stream cipher (ChaCha) and a hash algorithm (SHA256).

Hardware measurements have also been taken to provide a ground truth.

3.2 Power measurements

This section goes over our power measurement setup based on the physical FPGA board, shunt resistors, a current sense

amplifier and an oscilloscope. This setup is needed to measure the power utilization of our target hardware.

3.2.1 Initial measurement attempt

Our initial measurement setup is using an USB measurement card with a 12Bit Analog-Digital Converter (ADC). At

a supply voltage of 5V, this results in at best ≈ 1.2mV of quantization step size. From this the minimal current that

can possibly be measured from the 1.5Ω shunt resistor is ≈ 800µA. This turns out to be insufficient measurement

precision, due to the low power FPGA used. Even bigger design targets like the Dhrystone benchmark1 running on a

PicoRV32 core2 on the iCEBreaker board show power utilization in the range of a few quantization steps, which made

those measurements also not very expressive.

These problems mean that we have to put more focus on the measuring setup and benchmarking. Our target for useful

measurements is around a minimum of 100µV, which would allow currents in the range of 66µA. This seems to

be possible to achieve by amplifying the differential voltage of the shunt with an operational amplifier or a dedicated

Integrated Circuit (IC) and measuring the single ended resulting voltage with an accurate ADC. For this work we pursue

a solution with a dedicated IC, because such chips have better component matching and less offset errors in addition to

very good noise and frequency characteristics.

3.2.2 Current Sense Amplifier Board

To ease the measurement of small differential voltages on the shunt resistors, the current sense amplifier IC INA293B5

is utilized. This IC is a good compromise on gain, bandwidth and noise for our purposes. Its most interesting electrical

characteristics are listed in Table 3.1 Figure 3.1 shows an amplifier circuit that supports 3 differential inputs. The bill of

materials is found in Table 3.2.

3.2.3 iCEBreaker FPGA Measurement Setup

The iCEBreaker board is using a low power Lattice iCE40UP5k FPGA IC, which has a small amount of logic cells com-

pared to Xilinx FPGAs. This results in the situation that even the power draw of designs that fill almost the entire FPGA,

is very minor.
1 https://github.com/YosysHQ/picorv32/tree/master/dhrystone
2 https://github.com/YosysHQ/picorv32

https://github.com/YosysHQ/picorv32/tree/master/dhrystone
https://github.com/YosysHQ/picorv32
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INA293B5
Gain [V/V] 500

PSRR [µV/V] 0.1
CMRR [dB] 140

Bandwidth [kHz] 900
Voltage noise density [nV/

√
Hz] 50

Table 3.1: Electrical characteristics of the INA293B5

Figure 3.1: Schematic of the amplification circuit for 3 differential inputs

Component Value Reference Count
OpAmp INA293B5 U1, U2, U3 3

Capacitor 0.1µF C2, C3, C4 3
Capacitor 4.7µF C1 1

Screw Terminals J1, J2, J4, J6 4
Pins J3, J5, J7 3

Table 3.2: Bill of material for amplifier board

The iCEBreaker PCB has preexisting jumper pads shown in Figure 3.2, which are by design intended to be used for

shunt resistors to allow for current measurements of the FPGA. For our setup 1.5Ω shunt resistors are used. The setup

to measure the power of the board is depicted in Figure 3.3. The differential voltage of the Vcore shunt resistor is getting

amplified by the current sense amplifier PCB Section 3.2.2. The IO shunt resistors on the other hand are connected to

subtraction circuits due to higher currents, which clip when amplifying with the INA293B. The outputs of all amplifiers

are measured with an oscilloscope.

Figure 3.2: Bottom side of iCEBreaker PCB with position for measurement shunts marked in red
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Figure 3.3: Schematic of the power measurement setup on the iCEBreaker board

3.2.4 Hardware Measurement

This section contains initial measurements based on the validation setup Figure 3.4. At first, we validate the mea-

surement setup with a simple test with known parameters. After this we conduct initial power measurements on the

iCEBreaker board with our first microbenchmarks to gain some insight into the FPGA’s behavior.

Amplifier Prototype Validation

Before the amplifier board is used for target hardware measurements it needs validation to confirm it properly working.

The simple validation setup is depicted in Figure 3.4. The variable values in Table 3.3 are selected in such a way that

a current of approximately 0.1mA is measured at the shunt resistor RSH resulting in 1mV. If the circuit is working

correctly, this differential voltage should get amplified by the INA293 to around 0.5V.

Figure 3.4: Schematic of the amplifier prototype validation setup
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picked value measured value
U1 [V] 3.3 3.3

G [V/V] 500 –
RL [kΩ] 33 31.8
RSH [Ω] 10 10.3

Table 3.3: Component values of the validation setup

Measurement Results

For the measurements it has to be taken into account that the resistance of the connecting points lies in the range of

0.1 . . . 0.7Ω, which includes the wire and contact resistance. The resistor tolerances used in the setup are 1%. The three

amplifiers are measured one after another. The measurement results of the differential voltageUdiff , the amplified output

voltage Uout and the calculated amplified voltage Uamp_calc are found in Table 3.4. The relative errors of 1.2 . . . 6.25%

between the amplified and calculated values are acceptable when comparing to the uncertainties and variances of the

whole setup.

The overall behavior of the circuit is correct, which validates its functionality for this DC test. This provides the needed

basis for utilizing the circuit for power measurements of the FPGA board.

Amp1 Amp2 Amp3
Uout [V] 0.415 0.417 0.416

Udiff [mV] 0.82 0.8 0.78
Uamp_calc [V] 0.41 0.4 0.39

erel [%] 1.20 4.08 6.25

Table 3.4: Measurements from the validation setup

3.3 Testbench

This section explains the method used to generate stochastic inputs and how they are used to test designs. Testbenches

are important to explore and test the behavior of designs. In our case we utilize them as a reproducible stimulus for our

target benchmark designs. We go over the basic design of our testbench, the Verilog implementation and the hardware

realization of our setup.

3.3.1 LFSR based testing

To stimulate the input of a DUT with stochastic inputs that are not too highly correlated a pseudo random sequence

generated by an LFSR is used.

This testing method is simple to describe for reproduction, because the LFSR has only 3 degrees of freedom. These are

the polynomial order, the feedback taps and the initial register seed. In practice these degrees of freedom are reduced

even more, when only polynomials with maximum length are chosen. This limits the sets of feedback taps that are used

for a given polynomial order. Lists of polynomial orders and their maximum length tap configurations are found in most

literature about LFSRs and also on the Internet3.

3 http://users.ece.cmu.edu/~koopman/lfsr/

http://users.ece.cmu.edu/~koopman/lfsr/


32 CHAPTER 3. METHODOLOGY AND IMPLEMENTATION

3.3.2 Verilog Testbench

A Verilog testbench is utilized to simulate the DUT with the stochastic inputs that are used in the hardware testbenches.

The simulation of the testbench is used to acquire an approximate representation of the internal signals of a design

running on hardware. It is not fully accurate, since no gate or interconnect delays are taken into account. The values

are rather a lower bound of the internal signal changes. These signal changes are used to calculate activation rates,

which are required for most power estimation models.

3.3.3 Microcontroller Testbench

A microcontroller testbench is used to examine a design on hardware. It is based on a microcontroller that is connected

to the FPGA IOs and the measurement device. The FPGA contains the DUT design which gets stimulated by stochastic

signals from the microcontroller. The measurement device receives a trigger signal from the microcontroller when the

testing begins. The microcontroller itself is controlled by the PC, which starts the test runs and is able to configure

some testing parameters. The FPGA is also connected to the PC to allow for exchange of the DUT. The data from the

measurement device is either directly copied to the PC or indirectly via a data storage depending on the capabilities of

the device.

FPGAPC

µC

measurment  
device

Figure 3.5: Principle of microcontroller testbench with measurement device

3.4 Benchmarks

Benchmarks are essential for targeted analysis of certain aspects of FPGA hardware. These benchmarks are tedious to

create and vary in parameters like component count or placement position. Thuswe decided to create a simplifiedway of

creating such microbenchmarks by providing a tool, which generates said benchmarks in Verilog and an accompanying

constraint file from a benchmark definition file. The microbenchmarks depend on the target toolchain and hardware,

which requires specific handling in the generator tool. In particular we are looking into Lattice iCE40 FPGAs, due to

their well supported open source workflow.

Our main goal is to accelerate the creation of microbenchmarks for FPGA hardware analysis by providing a simple tool

that generates said benchmarks and its variations. The resulting Verilog files are then used by other tools also utilizing

the definition file to implement testbenches, which conduct simulations and automated hardware testing.

After this we also present benchmarks that use the generate statement from Verilog to create parametrizable designs

that can very flexibly scale in FPGA resource usage.
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3.4.1 Generator

The basic idea is to instantiate a minimum amount of cells and move them around in the FPGA. This includes not

connecting the output of the component to reduce wires. Such outputless components are detected by the optimization

tool. To prevent them being optimized away it is important to add the Verilog keep attribute.

gen_properties() create_cell()

verilog_file() constraints_file()gen_constraints()

otherice40

gen_attributes()

othernextpnr

nextpnr other

gen_placement()

Figure 3.6: Benchmark generator hierarchy and data flow

The various toolchain vendors require different handling of the placement constraints of components. Figure 3.6 shows

the general hierarchy of the functions of the benchmark generator and their data dependencies. Two examples in the

next sections require completely different parts of the pipeline to override placement.

3.4.2 Nextpnr (Yosys)

Nextpnr is a place and route tool that in combination with the synthesis tool Yosys supports the entire hardware syn-

thesis process for the Lattice iCE40 FPGA family. To forcefully place a component with Nextpnr one has to specify the

attribute in Listing 3.1. For example a look-up-table is positioned by specifying its X and Y coordinate on the grid of the

FPGA and the desired logic cell. The Lattice iCE40up5k has for example 8 logic cells per valid grid position.

1 (* BEL="X4/Y4/lc3" *)

Listing 3.1: Verilog attribute to place a component into the given logic cell

3.4.3 iCEBreaker FPGA – Evaluation

The measurements of the Lattice iCE40UP5k FPGA are of particular interest to us for analyzing the internals of the

FPGA. To gather information about the properties of internals of the FPGA, different circuits and measurements are

used. The following sections go over the different circuits and their measurement results.

LUT4

One of the basic internal building blocks of the FPGA is the LUT with 4 inputs and one output, which is measured in this

section. The circuit in this setup consists of LUT only, that get instantiated by the benchmark generator in Section 3.4.1.

The inputs of all LUTs are connected to 4 inputs of the FPGA in parallel. This allows to control all LUTs by only using

4 inputs. The idea behind connecting all LUTs in parallel is to be able to measure their power in an additive way. This

should result in a proportional increase of power in regards to the number of LUTs used. For example reducing the

LUT amount from 5 k to 1 k would result in approximately a fifth of the power after correcting for a constant offset

value.
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Figure 3.7 contains measurements of the iCEBreaker board with 5 k and 1 k LUT instantiated on the FPGA respectively.

These inputs then get stimulated by an maximum length 4Bit-LFSR every 100µs after the trigger signal rising. When

looking at Figure 3.7 one can see the voltage spikes in a regular pattern. This pattern matches the LFSR changing values

and one can also see its period of 15. Comparing the three graphs does not bring the desired result of proportional

dependency of the power to the number of LUT. This means the voltage spikes on the shunt are the result of something

else. For further investigation Figure 3.8 is created. The setup for these measurements is one instantiated LUT and only

one input connected to one bit of the LFSR. The purpose of this measurement is to investigate how the power relates to

the connected signals and their state.

Comparing the measurements from Figure 3.7 and Figure 3.8 shows that the voltage on the shunt resistor does not

depend on the number of LUT at all, due to there being no real difference in the amplitude of the voltage spike. On

the other hand the comparison allows the conclusion that the amplitude of the voltage spike depends on the amount

of inputs in high state. In Figure 3.8 the voltage spikes occur only sparsely due to the LFSR still being of period 15 and

only one bit being connected to the LUT.
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Figure 3.7: Measurements of LUTs stimulated by 4Bit-LFSR
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Figure 3.8: Measurements of 1 LUT4
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1 module ringoscillator_test_not(
2 input [0:0] test_in1,
3 output [0:0]test_out1
4 );
5
6 wire internal_w[5:0];
7 wire last_w[0:0];
8
9 assign test_out1[0] = last_w[0];

10 (* keep *)
11 and(internal_w[0],test_in1[0],last_w[0]); //and(Y,A,B) Y = A&B
12 (* keep *)
13 not(internal_w[1],internal_w[0]); //not(Y,A) Y = ~A
14 (* keep *)
15 not(internal_w[2],internal_w[1]);
16 (* keep *)
17 not(internal_w[3],internal_w[2]);
18 (* keep *)
19 not(internal_w[4],internal_w[3]);
20 (* keep *)
21 not(internal_w[5],internal_w[4]);
22 assign last_w[0] = internal_w[5];
23 endmodule

Listing 3.2: Example code of Verilog high level ringoscillator implementation

This testing shows that this type of benchmarks is not sufficient to analyze low power FPGA hardware like the Lattice

iCE40UP5k chip on the iCEBreaker FPGA board. Filling the FPGA hardware to the brim with simple constructs and

stimulating it at low frequency is not enough to get measurable power consumption.

Ring-oscillator

The next circuit to test for power measurements is a simple ring oscillator. This is constructed by daisy-chaining an

uneven number of NOT-gates together and connecting the output of the last gate with the input of the first. Such a

construct is used on FPGAs for example to generate random numbers.

As a first attempt to instantiate a ring oscillator the Verilog code in Listing 3.2 is used. This code should generate a ring

oscillator that is turned on and off with an FPGA input via an AND-gate. The keep attribute prevents the synthesis

tool from optimizing gates away.

After a few synthesis steps in Yosys, the resulting circuit in Figure 3.9 shows that the attempt of using keep is futile

and that most gates are optimized away. The reason for the optimization kicking in is due to the translation of the

NOT and AND-gates to LUT, which the keep attribute did not propagate to. This means that a more elaborate way to

instantiate the ring oscillator is required. It is also important to note that in the place and route step the additional flag

–ignore-loops has to be used for nextpnr to allow the placement of such an oscillator. This in turn disables the static

timing analysis of the router.

ringoscillator_test_not

internal_w[0]

I0
I1
I2
I3

internal_w[0]_SB_LUT4_O
SB_LUT4 O

I0
I1
I2
I3

test_out1_SB_LUT4_O
SB_LUT4 O

BUF

BUF

internal_w[2]

internal_w[4]

internal_w[5]

last_w[0]

test_in1

test_out1

BUF

BUF

1'0

1'0

1'0

1'0

1'0

Figure 3.9: Schematic of the synthesized not based ring oscillator
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1 module ringoscillator_test(
2 input test_in1,
3 output test_out1
4 );
5
6 parameter [15:0] not_cfg= 16'b0000_0000_0000_0001;
7 parameter [15:0] and_cfg= 16'b0000_0000_0000_1000;
8
9 wire internal_w[5:0];

10 wire last_w[0:0];
11
12 assign test_out1 = last_w[0];
13
14 (* keep *) (* BEL="X1/Y1/lc0" *)
15 SB_LUT4 #(.LUT_INIT(and_cfg)) test_lut_x1y1bel0(.I0(test_in1),.I1(last_w[0]),.I2(1'b0),.I3(1'b0),.O(internal_w[0])); //and
16 (* keep *) (* BEL="X1/Y1/lc1" *)
17 SB_LUT4 #(.LUT_INIT(not_cfg)) test_lut_x1y1bel1(.I0(internal_w[0]),.I1(1'b0),.I2(1'b0),.I3(1'b0),.O(internal_w[1])); //not
18 (* keep *) (* BEL="X1/Y1/lc2" *)
19 SB_LUT4 #(.LUT_INIT(not_cfg)) test_lut_x1y1bel2(.I0(internal_w[1]),.I1(1'b0),.I2(1'b0),.I3(1'b0),.O(internal_w[2])); //not
20 (* keep *) (* BEL="X1/Y1/lc3" *)
21 SB_LUT4 #(.LUT_INIT(not_cfg)) test_lut_x1y1bel3(.I0(internal_w[2]),.I1(1'b0),.I2(1'b0),.I3(1'b0),.O(internal_w[3])); //not
22 (* keep *) (* BEL="X1/Y1/lc4" *)
23 SB_LUT4 #(.LUT_INIT(not_cfg)) test_lut_x1y1bel4(.I0(internal_w[3]),.I1(1'b0),.I2(1'b0),.I3(1'b0),.O(internal_w[4])); //not
24 (* keep *) (* BEL="X1/Y1/lc5" *)
25 SB_LUT4 #(.LUT_INIT(not_cfg)) test_lut_x1y1bel5(.I0(internal_w[4]),.I1(1'b0),.I2(1'b0),.I3(1'b0),.O(internal_w[5])); //not
26 assign last_w[0] = internal_w[5];
27 endmodule

Listing 3.3: Example code of Verilog low level ringoscillator implementation

Utilizing the tricks from the benchmark generator we can approach the issue from further down the synthesis flow.

The code in Listing 3.3 shows a functionally equivalent implementation of the ring oscillator as described in Listing 3.2,

but this time the general gates are replaced with the iCE40 specific LUT. Figure 3.10 show that this time the synthesis

tool did not optimize the intermediate gates away. This means with this approach we can generate the desired ring

oscillators that we want to measure on FPGA hardware.
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Figure 3.10: Schematic of the synthesized LUT based ring oscillator

For the following results, a total number of approximately 3000 NOT gates is instantiated on the iCEBreaker board.

These gates are all chained together in the same fashion as shown in Listing 3.3 for the first ring oscillator O1. The

second design O2 consists of two chains of half the length of O1 with double the oscillation frequency. The third the

design O4 consists of half the length of O2 with double the chains, which results in two times the frequency. This

scaling is useful to evaluate the sensitivity of power usage to frequency changes.

Figure 3.11b shows the output of the oscillating signal of one chain in each of the three designs. One can clearly observe

the doubling of the oscillator frequency between each of the designs by counting the number of positive edges between

the period of the previous oscillator. This confirms the oscillator designs properly working and scaling. The significant

measurements are found in Figure 3.11a, which shows an increasing voltage on the Vcore shunt that corresponds to

the average core current. Using the measurement and assuming an approximately constant core voltage it is trivial to

calculate the dynamic power used based on the simple model from Equation (3.4).
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Figure 3.11: Measurements of 3000 NOT gates in a ring oscillator configuration

1 module not_mod(output b, input a);
2 assign b=~a;
3 endmodule
4
5 module ringoscillator_test_not(
6 input [0:0] test_in1,
7 output [0:0]test_out1
8 );
9

10 wire internal_w[5:0];
11 wire last_w[0:0];
12
13 assign test_out1[0] = last_w[0];
14
15 and (internal_w[0],test_in1[0],last_w[0]); //and(Y,A,B) Y = A&B
16
17 (* keep_hierarchy *)
18 not_mod not1(internal_w[1],internal_w[0]); //not(Y,A) Y = ~A
19
20 (* keep_hierarchy *)
21 not_mod not2(internal_w[2],internal_w[1]);
22
23 (* keep_hierarchy *)
24 not_mod not3(internal_w[3],internal_w[2]);
25
26 assign last_w[0] = internal_w[3];
27 endmodule

Listing 3.4: Example code of Verilog high level ring oscillator implementation

Post-experimental improvement discovery

After further research on Verilog attributes we found the perfect fit that we can use for easier creation of the ring

oscillator circuits. At this point the experiments have already been conducted, but the improved construct is still useful

for the following benchmarks. The attribute in question is keep_hierarchy. This prevents the in-lining of modules

in the flatten synthesis step by keeping their hierarchical boundary. This means that optimizations will only affect the

connecting circuits and the low-level implementation, but not the interface boundary itself.

Figure 3.12 shows a ring oscillator with 3 NOT gates and a AND to turn the oscillator on and off. This design is

synthesized down to the iCE40 technology level from Listing 3.4. The NOT module contains only one SB_LUT4, which

results in 4 LUT used for the entire oscillator.

Divider – Setup

Dividers are useful to manipulate the existing clocks in a controlled manner. Benchmarking them allows usage in other

benchmarks. As a divider design we settle on dividing by powers of two, since this is realized by a counter and accessing

the n-th bit for the divided output. Listing 3.5 contains the source code that we use.

We test a few different combinations of dividers as seen in Table 3.5. The parameters that get varied are the number

of instances NUM and the division factor DIV. The 12MHz clock of the FPGA is the input of the dividers. The actual
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Figure 3.12: Schematic of the synthesized not based ring oscillator

1 module div
2 #( parameter integer DIVIDER = 5)
3 ( input clk,
4 output d);
5
6 reg [DIVIDER:0] cnt = 0;
7
8 always @ (posedge clk)
9 begin

10 cnt <= cnt+1'b1;
11 end
12
13 assign d = cnt[DIVIDER];
14
15 endmodule

Listing 3.5: Example code of Verilog high level divider implementation

measurement evaluation is done in Section 3.4.4.

DIV 1 2 4 5 6 8
NUM 50 50 50 1 1 1
NUM 100 100 100 50 50 50
NUM 150 150 150 100 100 100
NUM 250 250 250 250 150 150
NUM 500 500 500 500 250 250
NUM 2000 500

Table 3.5: All measured divider configurations.

Arbiter – Setup

Our arbiter consists of WIDTH wide multiplexer (MUX) with the same count in parallel and DEPTH amount of them

daisy-chained together. The MUX (Figure 3.13b) is implemented with a variable width to allow for a more configurable

arbiter. Listing 3.6 contains the Verilog code for the arbiter on which the schematics are based upon. It can freely be

configured by the corresponding Verilog properties. A helpful Yosys feature is the command attrmap to disable the

keep_hierarchy attribute. This allows the use of a single Verilog file to generate the comparison shots in Figure 3.13. In

Figure 3.13a one can observe a synthesized arbiter without the keep_hierarchy attribute, which gets optimized away

completely. Figure 3.13c on the other hand shows the proper version.

To create a useful benchmark out of the arbiter we add a divider as the input. The divider has the 12MHz clock of

the FPGA as an input, which is then divided by powers of 2 with the parameter DIV representing the exponent of

the division factor. The different combinations of configurations in Table 3.6 are measured. The actual measurement

evaluation is done in Section 3.4.4.
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1 module muxN
2 #( parameter integer WIDTH = 4)
3 (input [WIDTH-1:0] a, input [$clog2(WIDTH)-1:0] s, output o);
4 genvar i;
5 generate
6 wire [WIDTH-1:0] internal_w;
7 assign internal_w[0] = a[0] & (s == 0);
8 for (i=1; i<WIDTH; i=i+1) begin
9 assign internal_w[i] = (a[i] & (s == i)) | internal_w[i-1];

10 end
11 endgenerate
12 assign o = internal_w[WIDTH-1];
13 endmodule
14
15 module arbiter
16 #( parameter integer DEPTH = 600, //600 => 4792LUT4, 300 => 2100LUT4
17 parameter integer WIDTH = 4)
18 ( input test_in1,
19 input [$clog2(WIDTH)-1:0] chal, //input [$clog2(WIDTH)*DEPTH-1:0] chal,
20 output [WIDTH-1:0] test_out1);
21 localparam integer GATE_CNT=2*1500;
22
23 genvar j;
24 genvar i;
25 generate
26
27 wire internal_w[DEPTH-1:0][WIDTH-1:0];
28 wire challenge_w[DEPTH-1:0][WIDTH-1:0];
29 //connect inputs of arbiter
30 for (i=0; i<WIDTH; i=i+1) begin
31 (* keep_hierarchy *)
32 muxN #(.WIDTH(WIDTH)) muxf({test_in1, test_in1, test_in1, test_in1}, chal[($clog2(WIDTH)-1):0], internal_w[0][i]);
33 end
34
35 // setup remaining mux connections
36 for (j=0; j<DEPTH-1; j=j+1) begin
37 for (i=0; i<WIDTH; i=i+1) begin
38 (* keep_hierarchy *) muxN #(.WIDTH(WIDTH)) muxi({internal_w[j][(i+3)%WIDTH], internal_w[j][(i+2)%WIDTH],internal_w[j][(i+1)%WIDTH], internal_w[j][(i+0)%

WIDTH]},
39 chal[($clog2(WIDTH)-1):0], internal_w[j+1][i]);//chal[(($clog2(WIDTH))*(j+2)-1):(($clog2(WIDTH))*(j+1))]
40 end
41 end
42
43 //connect outpus of arbiter
44 for (i=0; i<WIDTH; i=i+1) begin
45 assign test_out1[i] = internal_w[DEPTH-1][i];
46 end
47
48 endgenerate
49 endmodule

Listing 3.6: Example code of Verilog high level arbiter implementation
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Figure 3.13: Arbiter synthesis comparison

LFSR – Setup

An LFSR is interesting as it is a simple structure with pseudo-random behavior. It is also used to stimulate other systems

if a seemingly random and wide input is needed. Similarly to the arbiter circuit the LFSR is also stimulated by the FPGA

12MHz clock going through a divider. The NUM parameter is the number of parallel instances of the LFSR. The actual
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DEPTH 100 100 100 100 300 300 300 300 600 600 600 600 600
WIDTH 4 4 4 4 4 4 4 4 4 4 4 4 4

DIV 1 2 4 8 1 2 4 6 1 1 2 5 8

Table 3.6: All measured arbiter configurations.

measurement evaluation is done in Section 3.4.4.

DIV 0 1 2 4 8
NUM 100 100 – 100 100
NUM 400 400 400 – 400
NUM – 800 800 800 800

Table 3.7: All measured LFSR configurations.

3.4.4 Combined Power Measurement – Results

In this section we present the power measurements of all the circuits shown previously. The reason for this is that all

measurements share the same hypothesis of scaling power with utilization and stimulation frequency.

The 3-dimensional plots Figure 3.14a, 3.14b and 3.14c plot the parameter space in the X-Y-plane and the power utilization

on the Z-axis. The graphs all show the same trend of increasing power when reducing the division factor DIV or

increasing the number of instances NUM. The ring oscillator in Figure 3.14d only has one parameter 1/LEN, since the

number of instances is kept constant. This means with each length reduction one identical parallel ring oscillator is

instantiated to make up for the reduced instances in one oscillator chain. The main takeaway point from Figure 3.14

is to show that the power draw of each benchmark scales as intended with changing its parameters. Increasing the

number of instances, decreasing the division factor or reducing the length all should result in higher power draw. On

some measurement this is not the case, but this is very likely due to measurement inaccuracies from the setup.

With the confirmation of the expected power scaling of our benchmarks we can move on to building a model for power

estimation in Section 3.5 and fitting it with our gathered data.

3.4.5 iverilog iCE40 simulation with delays

Having a working simulation environment to work with is useful to evaluate the behavior of designs beforehand. This

is especially important for low level implementations on FPGA logic blocks and high frequency circuits like ring oscil-

lators. For the low-level implementation a zero delay simulation is good enough, but the high frequency circuits require

approximate timings of the FPGA. A high frequency ring oscillator can cause the destruction of the FPGA by overloading

the internal paths due to high frequency switching. Synthesis tools might detect such high frequency paths and prevent

them, but designers can choose to implement the oscillator by disabling these safeguards. To prevent the destruction it

is important to know the approximate oscillation frequency, which is determined from simulation that includes the gate

delays. The frequency is an upper bound to the real frequency, due to path delays being missing in this step.

For Verilog simulation the open source tool iverilog is used. Verilog that is synthesized down to the iCE40 technology

mapping is simulated with iverilog by including the simulation library from Yosys. It is to note the Verilog path delay

definitions in Yosys’s simulation library do not comply to the Verilog standard and iverilog errors out when parsing
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(a) divider benchmarks (b) arbiter benchmarks

(c) LFSR benchmarks (d) ring oscillator benchmarks

Figure 3.14: Combined power measurements of all benchmarks.

them. This is fixed by our pull request4 to the library.

Listing 3.7 shows an example on how to simulate an iCE40 synthesized design with iverilog. The argument -gspecify is

necessary to enable the usage of Verilog specify blocks, which contain the path delay definitions. With the flag -D the

corresponding Verilog define variables are set. Yosys’s simulation library contains timing definitions for the different

variants of the iCE40 architecture. To select the low power variant the variable ’ICE40_LP=1’ has to be defined.

1 iverilog \

2 -gspecify \

3 -D 'VCDFILE="simulation_trace.vcd"' \

4 -D 'NO_ICE40_DEFAULT_ASSIGNMENTS=1' \

5 -D 'ICE40_LP=1' \

6 -o simulation_output \

7 $(yosys-config --datdir/ice40/cells_sim.v)) \

8 test_ice40.v

9 vvp simulation_output

Listing 3.7: Example code to run a simulation including path delays with iverilog

4 https://github.com/YosysHQ/yosys/pull/3542

https://github.com/YosysHQ/yosys/pull/3542
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3.5 Model Fitting

After the heavy lifting of designing benchmarks and acquiring data from the hardware in Section 3.4.3, this chapter

goes over fitting this data to a simple model. Figure 3.15 shows the conceptual flow of the entire analysis of a single

benchmark benchmark.v plus its testbench tb.v. Most parts of the analysis flow didn’t deserve their own section, so

they are packed together in Table 3.8 with a short description. The design analyzer Section 3.5.1 and model fitting Octave

script Section 3.5.2 on the other hand are the key ingredient, specifically created to accomplish our power estimation

goal. The following parts will go over each step in the analysis flow.
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Figure 3.15: Data flow diagram of the analysis flow.
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Figure 3.16: Flow diagram of the entire flow to calculate the
fitting parameters from a list of benchmarks.

3.5.1 Design Analyzer

Design Analyzer is our main tool to parse previously generated files, containing design specific properties, synth.v,

trace.vcd and pnr_info.txt. This data is then combined into per-cell entries in design_data.m.

In the first step the synthesized Verilog file synth.v is parsed into a map of all module instances and their name. The

module instances are differentiated between parent modules and the hardware-architecture-specific cells (LUT, DFF,

CARRY). After that the VCD file trace.vcd is parsed into a map of the signal names and their toggles, metadata and

the delta time in that the signal toggles occur in. Combining all the previous data the Verilog modules get an activation

frequency assigned to their ports. As a final step the data structure is dumped into design_data.m, a file that Octave is

able to parse. Containing a utilization matrix M where each row describes the type of cell represented by a module as

shown in Table 3.9 and f containing the sum of the activation frequencies of all ports of a module.

3.5.2 Octave – Fit Model

An FPGA consists of basic cells like LUT, DFF, CARRY, etc. These cells are made from CMOS logic. The classic way to

model the power of CMOS logic is to consider a static term (Equation (3.5)) and a dynamic term (Equation (3.6)), which
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Yosys – Synthesis Yosys takes the benchmark design benchmark.v and synthesizes it down to a target
FPGA architecture specific netlist in the form of synth.json and a Verilog design
file synth.v.

iVerilog – Simulation iVerilog is used to simulate the synthesized benchmark synth.v in combination with
the corresponding testbench tb.v. This produces a trace file trace.vcd containing
information about how all the components of the synthesized design react to the
testbench stimulus.

nextpnr – Place and Route Nextpnr utilizes the netlist generated by Yosys and places it onto the given FPGA
device structure. The placed cells are then connected by routing their connections
with the wires and MUXes provided by the FPGA resulting in the ASCII encoded
bitstream file pnr.asc.

icepack – Packing Icepack simply packs the human-readable bitstream from pnr.asc into a binary rep-
resentation pnr.bin, which is needed for the flash memory on the FPGA.

iceprog – Flashing Iceprog flashes the bitstream pnr.bin via USB onto the iCEBreaker FPGA board.

icebreaker – Hardware The iCEBreaker board is configured via the bitstream pnr.bin and provides shut
resistors to measure its current.

Power Measurements The power measurements are done via hooking of the shunt resistors as described
in Section 3.4.3. The measurements are preprocessed as power_data.m into the
matrix format that Octave can read to make them directly usable in later steps.

Icetime – Timing Data Icetime is a static timing analysis tool for the iCE40 FPGA, which is used by nextpnr
to determine if frequency constraints are meet with a given bitstream or not. We
modified it to be able to export all internal timing information of each cell in
pnr_info.txt.

Table 3.8: Description of analysis flow parts

LUT 1, 0, 0
DFF 0, 1, 0

CARRY 0, 0, 1
PARENT 0, 0, 0

Table 3.9: Rows of ice40 architecture mapping per cell type

are summed in Equation (3.4) to give an approximation of the real power consumption. This means the simplest yet

reasonable model for the elemental FPGA cells assuming linearity is to consider them the same as a CMOS gate. The

total power consumption of an FPGA is calculated by adding all individual cells together (Equation (3.7)). This results

in a power model that is linear when considering the cell properties Icell and Ccell. Such a linear model is represented

as a product of a matrix and a vector (Equation (3.11)).

Pt = Ps + Pd (3.4)

Ps = UIcell (3.5)

Pd = fCcellU
2 (3.6)

PT =

cells�
Pt (3.7)

With a bit of effort the multitude of benchmark measurements and data are arranged into the matrix form of a linear

transformation and then solved with an algorithm for linear systems i.e. least squares provided by the computer algebra

system. Due to linearity of the underlyingmodelmost data from a benchmark is collapsed into lower dimensional vectors
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U supply voltage
f activation frequency of a cell

Ccell equivalent capacitance of a cell
Icell static leakage current of a cell
Ps static power dissipation of a cell
Pd dynamic power dissipation of a cell
Pt total power dissipation of a cell
PT total power dissipation of a system of cells
Pt,B vector of PT entries from benchmarks
M cell utilization matrix of a design
Mji scalar of the utilization matrix at row j and column i

si aggregated static utilization of column i

s static usage aggregation vector of a design
S static usage aggregation matrix from benchmarks
f activation frequency vector of a design
F activation frequency matrix of a design
fi accumulated activation frequency of column i

facc frequency accumulation vector of a design
FB frequency accumulation matrix from benchmarks
c parasitic capacitance of cell types vector
i static current of cell types vector

dim(Pt,B) = q number of benchmarks used
dim(x) = n number of variables

dim(A) = q × n

o number of used cells of a benchmark
dim(F ) = o× n

Table 3.10: Explanation of all the variables used in the fitting model equations.

as by Equation (3.16) and Equation (3.12). This greatly reduces the size of the data vectors of each benchmark.

Starting off with a single benchmark one can calculate the total power of the system over all its cells with Equation (3.8).

It is to note that cells of the same type are collapsed into one entry, so this sum over cells only means unique cells. After

this one can arrange multiple total power values of benchmarks into a sum of vectors (Equations (3.9) to (3.10)). The

sums in these vectors is rewritten as vector products Si and FBc. S is the result of the column sum of the utilization

matrix M as in Equations (3.12) to (3.14), which describes the amount of cells with static leakage current utilization.

FB describes the accumulated activation frequency of each benchmark as per Equations (3.15) to (3.18). The vector i

contains the static leakage current of each cell type in its entries and c the parasitic capacitance per cell type. As a

final step, the sum of the two vectors is repacked into a linear transformation in Equation (3.11), which concludes the

preparations that have to be done to the system to solve it easily with common solver algorithms.

PT =

cells�
Ps + Pd (3.8)

Pt,B = [PT,i . . . PT,q]
⊺
=


cells,i�

Ps,i + Pd,i

...
cells,q�

Ps,q + Pd,q

 =


cells,i�

Ps,i

...
cells,q�

Ps,q

+


cells,i�

Pd,i

...
cells,q�

Pd,q

 = (3.9)

=


cells,i�

UIcell
...

cells,q�
UIcell

+


cells,i�

fCcellU
2

...
cells,q�

fCcellU
2

 = U


cells,i�

Icell
...

cells,q�
Icell

+ U2


cells,i�

fCcell

...
cells,q�

fCcell

 = (3.10)
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= U2FBc� �� �
Pd,B

+USi����
Ps,B

=
�
U2FB|US

�� �� �
A

c
i


����
x

(3.11)

si =

o�
j=1

Mji (3.12)

s = [s1 . . . sn] (3.13)

S =


s1
...

sq

 (3.14)

F = f .M (3.15)

fi =

o�
j=1

Fji (3.16)

facc = [f1 . . . fn] (3.17)

FB =


facc,1

...

facc,q

 (3.18)

Model Properties and Constraints

Since the linear CMOS model Equation (3.11) is derived from a physical model, it has a few constraints to keep in mind

when running fitting algorithms on it or using it. The most important constraint is that the constructed matrix A⊺A

has a full rank. This means that its rows and columns are linearly independent of all others. As the second property the

parameter vector x in our model represents the physical values of capacitance c and leakage current i. A capacitance

can only have positive values, which constrains c to be always greater or equal to zero. In general, an electrical current

can be negative, but the leakage current has to describe a power loss. Hence, the current i also has to be strictly non-

negative. A consequence of the non-negativity of both the values in x and A is, that the resulting power estimate can

only be non-negative as well. This is important because a negative resulting power estimate would make no sense in a

model describing loss.

A summary of the properties:

1. The rank of A⊺A is full.

2. The parameters of x is non-negative.

3. The estimated power is non-negative.

3.5.3 Octave Model Fit

Solving the linear model from Section 3.5.2 for its parameters x is done with the least squares approximation (Equa-

tion (3.20)). Given the matrix A has full column rank, which implies that the columns of the matrices FB and S are

linearly independent to themselves and each other. To calculate all the required matrices the computer algebra system

Octave is used. It takes the two output files form the analysis flow power_data.m and design_data.m to determine the

unknowns of the linear model. The number of columns of the matrixM from design_data.m determines the dimension
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of x by 2col(M) = dim(x). This means with the current setup a linear system with three cell types has 6 unknowns

to solve for. After solving the system one only requires the design specific matrix A to estimate the power utilization of

the design. The upcoming chapters go over estimation on the benchmarks used for fitting and some specific use cases

that are not in the training set.

Pt,B = Ax (3.19)

x = inv(A⊺A)A⊺Pt,B (3.20)



Chapter 4

Results

4.1 Power Estimation of Benchmarks

This chapter covers combining all the former results to generate data and compare it to the hardware power measure-

ments, which is considered our ground truth. Comparing to the real hardware is important, since using the vendor

power estimators would not tell us how accurate we are to the real world.

4.1.1 Benchmarks used for fitting

As an immediate comparison, the fitting benchmarks are fed into the power estimation algorithm and are directly

compared to the measured data with the CMOS model Equation (4.1). As a bonus model, the static power of the CMOS

model is omitted to create a solely dynamic power model (Equation (4.2)). Fitting this extra model came practically for

free from the code of the CMOS model. To calculate a power estimate from a given design the entire analysis process

used for calculating the fitting parameters has to be run, but at the end instead of the power data the fitted parameters

x are used in the model equations. This means due to the fitting process the design characteristics matrix A is already

available and directly used on the benchmarks.

Pt,B,CMOS = U2FBc� �� �
Pd,B

+USi����
Ps,B

=
�
U2FB|US

�� �� �
ACMOS

c
i


����
xCMOS

(4.1)

Pt,B,dyn = U2FBc� �� �
Pd,B

=
�
U2FB

�� �� �
Adyn

�
c



����
xdyn

(4.2)

Figure 4.1 shows the bar plot of all 62 benchmarks with three bars per benchmark. First (blue) bar in the triple represent-

ing the measurement done on hardware, second (orange) the estimation result from the CMOS model and last (green)

the purely dynamic model. In numbers the overall average relative error from the power estimation of the dynamic

eavg,rel,Pdyn
and CMOS eavg,rel,PCMOS model is shown in Equation (4.3). The CMOS model reduces the error by 34%

almost halving it compared to the dynamic model. The overall trend of the CMOS model looks quite promising with

over and underestimation on the benchmark designs. The dynamic model on the other hand performs very poorly in

47
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general and is not worth pursuing any further.

Considering the variation seen in Figure 4.2 between some of the benchmarks more model structures have to be explored

to possibly find improvement opportunities.

eavg,rel,Pdyn
= 80.0% eavg,rel,PCMOS = 46.1% (4.3)
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Figure 4.1: Results of running the fitted CMOS and dynamic model over the benchmarks used for fitting.

Per IO CMOS Model Fitting

Going from 3 CMOS elements (combined all IOs) to 12 CMOS elements describing one IO of the fundamental compo-

nents each shows an improvement across the board in the benchmarks. Especially some outliers like div_test_5_1,

div_test_6_1, div_test_8_1, are now better estimated. Other divider benchmarks haven’t improved by quadrupling

the fitting variables. An investigation of the trace from the div_test_1_100 showed that the values for the number of

instances and the division factor are swapped. This means that i.e. for this benchmark only 1 instance is created and the

division factor is 2100. Such a high division factor results in practically no activation rate, which make the benchmarks

not useful for our purpose.

4.2 Improvements to the implementation

In this section we go over a few validation and optimization steps some of which are already teased in previous sec-

tions.
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Figure 4.2: Relative error of CMOS model per benchmark estimate to measurement.
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Figure 4.3: Relative error of CMOS model per benchmark with per IO CMOS.

4.2.1 Validation of vector x

Following the previous advice from Section 3.5.2 we analyze the vector x resulting from our least squares solution. It

turns out some of the parameters in the fitted x are negative, which is undesirable and needs to be remedied. Since x

results from the fitting algorithm used and the input data, we resolve this by changing the fitting algorithm.
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Non Negative Least Squares

A robust way to prevent the parameters of vectorx to become negative is to solve the given system not as a least squares

problem, but instead as an optimization problem with an inequality constraint of x ≥ 0. Sticking to the idea of the least

squares solution the NNLS exists to solve the exact problem we have at our hands. The NNLS is provided as a standard

function lsqnonneg in Octave and Matlab. Equipped with this tool we can get a solution for x, which adheres to our

constraints of the physical values represented in the vector. With this the possibility of negative power estimates is

remedied as well.

4.2.2 Validation of matrix A

Taking a look at the resulting matrix from A⊺A we can calculate its rank, which should be the same as its number of

rows/columns. Unfortunately this is not the case for the data generated by our fitting benchmarks.

To solve this issue we can for one get rid of the entries in x corresponding to linear dependent columns in A⊺A, but

this will arbitrarily degenerate our model by getting rid of plausible (from a physics perspective) parameters.

The second knob to adjust are the fitting benchmarks where we can add more diverse benchmarks, which hopefully

improve the linear independence of the current parameter set.

Singular Value Decomposition

Some readers with a bit of experience in linear algebra might have noticed by now that due to the rank deficit of A⊺A

we can not actually solve the least squares problem with the given matrix anyway. So why is Octave able to produce an

answer for x? Let’s zoom in on the bit of code that does all the heavy lifting!

Listing 4.1: Calculation of least squares solution in Octave
1 x = pinv(A'*A)*A'*P;

As we can see, we are in fact inverting an indefinite matrix, which is not possible! Taking a closer look at the documen-

tation of the inversion function that we are using reveals the following: "Return the pseudoinverse of x. Singular values

less than tol are ignored."1. So we are not inverting the matrix with a classic algorithm, but instead we find the pseudo

inverse by utilizing the Singular Value Decomposition (SVD). This algorithm can handle indefinite matrices by setting

problematic singular values to 0, which allows it to return even with seemingly unsolvable inputs. This explains why we

get a more or less decently working solution for our least squares problem even with more or less bogus inputs.

Estimates of Practical Benchmarks

This section shows our first comparison of the benchmarks in Section 4.3. For the power estimations we incorporated

all discoveries up to this point.

4.2.3 Missing Components

After further analysis of the synthesized components we realize that we miss variations of the DFF in our component

handler. These unassigned components certainly contribute to the power consumption, which further adds to cover
1 https://octave.sourceforge.io/octave/function/pinv.html

https://octave.sourceforge.io/octave/function/pinv.html
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Figure 4.4: Measured and estimated (CMOS model) power of the practical benchmarks with NNLS and all the previews
model improvements.
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Figure 4.5: Relative error of the practical benchmarks estimated (CMOS model) power compared to the measured results.

more properties with our model. They are added to the plain SB_DFF stats as a simple measure to include them.
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SB_DFFE SB_DFFSR SB_DFFR SB_DFFSS SB_DFFESR SB_DFFER SB_DFFESS SB_DFFES
SB_DFFNE SB_DFFNSR SB_DFFNR SB_DFFNSS SB_DFFNESR SB_DFFNER SB_DFFNESS SB_DFFNES

Table 4.1: Previously missing DFF variants.

4.2.4 Component matrix analysis

After all these fixes we gaze at the component matrix A Table 4.2 for our practical benchmarks, which gives us some

insights into the behavior of our benchmarks. Taking a look at AChaCha one can see that some activation rates are

zero. This is very abnormal and upon taking a look into the simulation trace we see that the ChaCha core did not work

properly. The defective behavior only occurred after synthesis, which shows that simulating a synthesized design is

a very important to ensure proper functionality on hardware. This means the results from this core are ignored and

retaken for proper comparison.

U2fLUT,I0 U2fLUT,I1 U2fLUT,I2 U2fLUT,I3 U2fLUT,O U2fDFF,C U2fDFF,D U2fDFF,Q U2fCARRY,CI U2fCARRY,I0 U2fCARRY,I1 U2fCARRY,CO UsLUT UsDFF UsCARRY

AChaCha 0 0 0 2.18e+08 3.27e+08 3.51e+11 1.09e+08 1.09e+08 0 0 0 0 1.23e+04 5.32e+03 3.46e+03
AIce,idle 7.83e+10 1.66e+11 1.97e+11 2.24e+11 2.21e+11 2.34e+12 4.29e+10 3.33e+10 2.48e+10 1.02e+10 1.35e+10 2.26e+10 1.5e+04 3.55e+03 3.62e+03
AIce,Dhry 6.64e+10 1.46e+11 1.76e+11 2.24e+11 1.93e+11 2.34e+12 3.64e+10 2.75e+10 2.14e+10 9.04e+09 7.88e+09 1.94e+10 1.5e+04 3.55e+03 3.62e+03
ASHA256 2.5e+10 1.13e+11 9.52e+10 1.06e+11 1.64e+11 2.81e+11 4.79e+10 3.34e+10 3.33e+10 2.48e+10 2.28e+10 3.43e+10 1.01e+04 4.26e+03 1.25e+03

Table 4.2: Component activation and utilization matrices from all 4 practical benchmarks.

4.3 Power Estimation of use cases

For proper validation of the qualitative performance of our estimation we pick designs of different complex applications.

The biggest constraint for the design selection is that it has to fit onto the Lattice iCE40up5k, which a few designs that

we want to consider violate. The final selection of practical designs for the real world accuracy and usability analysis

consist of a RISC-V CPU, a stream cipher and a cryptographic hash algorithm.

4.3.1 Use case 1 – PicoRV32

This CPU core is designed for a small size footprint, which makes it ideal to use on our low LUT count FPGA. For this

evaluation of our estimator we simply use the provided picosoc implementation, which adds some additional periphery

to allow communication to the system via Universal Asynchronous Receiver/Transmitter (UART). The software running

on the core is the also included Dhrystone benchmark.

4.3.2 Use case 2 – SHA256

For a hash we want to select the more modern BLAKE3 algorithm. Unfortunately this design did not fit into our LUT

budget. Hence we use the very common SHA256. The testbench setup is based on a self looping design as shown in

Figure 4.7. This means the algorithm is fed an initial state and then mutates that input by hashing it and uses that output

as its new input.

4.3.3 Use case 3 – ChaCha

Initially we look into an AES core, but this does not fit onto the FPGA. After further search we settle with the popular

symmetric ChaCha stream cipher. The cipher core is implemented in a similar self looping fashion as the hash design

with a fixed key. Due to the cipher being symmetrical this results in continuous encrypting and decrypting the initial

message. This is neatly observed when simulating the testbench.
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Figure 4.6: Measurement of Picorv32 running the Dhrystone benchmark 5 times
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Figure 4.7: Testbench of the self looping SHA256 benchmark

4.3.4 Vendor Tool Measurements

For a proper evaluation of our method we compare our results with an estimator provided by the vendor tooling. Due to

differences in synthesis the results do not translate exactly, but with similar resource consumption they should return

a comparable value. Using the practical benchmarks from before we synthesize them with the vendor tool. The LUT

usage and power consumption for each design is shown in Table 4.3. The ChaCha and SHA256 benchmarks both

have a similar hardware utilization as when synthesized with Yosys, which is a good indicator for comparability to our

results. The Picorv32 design uses some architecture specific primitives, which the vendor tool seems to support with

some workarounds, but the synthesis resulted in high consumption of LUTs. We are unable to fix this benchmark to

allow the mapping onto the FPGA. This makes the benchmark not usable for the comparison.

Picorv32 ChaCha SHA256
SB_LUT4 52435 3734 3044

Static Power [mW] 0.087 0.519 0.442
Dynamic Power [mW] - 6.383 5.55

Total Power [mW] - 6.90 6

Table 4.3: Hardware utilization and power estimation of the practical benchmarks with vendor tool.
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4.3.5 Comparison

Table 4.4 provides a comparison between the vendor tool and our estimates. It also provides the measurements from the

designs synthesized by Yosys. This means the measurements should be considered the ground truth to our estimates.

For the vendor tool they don’t correctly represent the hardware power consumption from the synthesized designs, since

we don’t know what exactly their estimates include. The estimates of ChaCha and SHA256 on both tools resulted in

power of the same order of magnitude, but they are a few factors off from the hardware measurements. The SHA256

is the design with the largest discrepancy. It has a relative error of 75% for our and 90% for the vendor estimate.

Initially we thought that this might be a measurement error. We check the synthesis again and remeasured the power

on hardware, but we still get a similar value. The ChaCha design’s estimates on the other hand seem less like outliers

with 143% of relative error for our solution and 109% for the vendor’s.

Vendor Ours
Picorv32 ChaCha SHA256 Picorv32 ChaCha SHA256

SB_LUT4 52435 3734 3044 4282 3728 3066
Total Power [mW] - 6.9 6 31.6 5.6 9.5

Measured Power [mW] - 3.3 64 11.8 2.3 38.4
Relative error [%] - 109 90 167 143 75

Table 4.4: Hardware utilization and power estimation of the practical benchmarks with vendor tool and our solution.
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Conclusion

Our proposed methodology provides a flow to characterize a given FPGA architecture and in the end to estimate the

power of new hardware designs. With test benchmarks we offer the basis to characterize parts of a FPGA hardware that

they are synthesized onto. The testbenches provide the needed activation rate data and describe the requirements for

the top level design for running the benchmarks on hardware. With our measurement work flow in combination with

testbenches and characterization benchmarks we are able to collect power measurements that are needed for fitting .

We fit this data utilizing a CMOS model using our design analyzer tools.

For direct use with our results and data, one has to some constraints. A Lattice iCE40up5k based FPGA has to be used

and one has to provide a simulation testbench for the design that is estimated. With the use case benchmarks we show

that our method works quite well, given the limited fitting data sets and low complexity of our approach. In comparison

to the vendor tool, it works on a similar level of accuracy with the relative error of our worst estimate only differing by

34%. Our best result even surpasses the vendor estimate by 15% in relative error.

This work can provide a basis for further work on the topic of FPGA power estimation by highlighting certain pitfalls

and providing useful ideas on how to approach some aspects.
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