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Abstract

In quantum mechanics Orbital Angular Momentum (OAM) can be seen as an azimuthal
phase structure imprinted on a wavefunction. As it turns out any azimuthal structure
can be described using superpositions of the OAM basis functions, eiℓφ, where ℓ, an
integer, representing the OAM divided by h̄. OAM is therefore a discrete quantum
mechanical (QM) degree of freedom. Since these basis functions are also solutions of the
cylindrical Schrödinger equation it follows that even free particles can possess QM OAM
around the flight axis. In neutrons so far three other QM degrees of freedom have been
identified: energy, position/momentum and spin. The addition of a fourth degree of
freedom such as OAM would open up new avenues for experiments exploring quantum
information and contextuality. In addition, various theoretical literature points out that
neutrons carrying OAM should interact differently with some types of matter. However,
generation of neutron OAM remains difficult, due to the low flux and coherence of typical
neutron beams.

The aim of this thesis is to identify, develop and test new neutron optical equipment
for the generation of OAM in neutrons. In particular I explore the neutron-spin elec-
tric field coupling (Schwinger effect), the neutron-nucleus weak interaction and space
coherent averaging methods. Using some of the devices detailed in this thesis the first
measurements towards the search for OAM dependent neutron absorption cross sections
in polarized Helium-3 have been conducted. In addition, we look at an experiment mea-
suring the Sagnac effect arising due to the coupling between a neutrons OAM and the
rotation of the earth. Finally we propose that these exotic measurements may serve as
useful OAM detectors, as they provide direct insight into the OAM of the particles.
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Zusammenfassung

In der Quantenmechanik kann ein Bahndrehimpuls (OAM) als eine azimutale Phasen-
struktur, die auf eine Wellenfunktion aufgedruckt ist, verstanden werden. Wie sich her-
ausstellt, kann jede azimutale Struktur durch Überlagerungen der OAM-Basisfunktionen
eiℓφ beschrieben werden, wobei ℓ eine ganze Zahl ist. Der Bahndrehimpuls ist dann
gleich ℓh̄. Daher kann OAM als ein diskreter quantenmechanischer Freiheitsgrad ver-
standen werden. Da diese Basisfunktionen auch Lösungen der zylindrischen Schrödinger-
Gleichung sind, folgt daraus, dass sogar freie Teilchen einen quantenmechanischen Bahn-
drehimpuls um die Flugachse besitzen können. Bei Neutronen wurden bisher drei weitere
QM-Freiheitsgrade identifiziert: Energie, Position/Impuls und Spin. Die Hinzufügung
eines vierten Freiheitsgrades wie OAM würde neue Möglichkeiten für Experimente zur
Erforschung von Quanteninformation und Kontextualität eröffnen. Darüber hinaus weist
verschiedene theoretische Literatur darauf hin, dass Neutronen, die OAM tragen, unter-
schiedlich mit Materie interagieren könnte. Die Erzeugung von Neutronen-OAM bleibt
jedoch schwierig, aufgrund des niedrigen Flusses und der Kohärenz typischer Neutro-
nenstrahlen.

Ziel dieser Dissertation ist es, neue neutronenoptische Elemente für die Erzeugung von
OAM in Neutronen zu identifizieren, zu entwickeln und zu testen. Insbesondere un-
tersuche ich die Kopplung von Neutronen-Spins mit dem elektrischen Feld (Schwinger-
Effekt), die schwache Wechselwirkung zwischen Neutron und Kern sowie Methoden zur
räumlichen Kohärenzmittelung. Mit einigen der in dieser Dissertation beschriebenen
Geräte wurden erste Messungen zur Suche nach OAM-abhängigen Absorptionsquer-
schnitten in polarisiertem Helium-3 durchgeführt. Außerdem betrachten wir ein Experi-
ment, das den Sagnac-Effekt misst, der aufgrund der Kopplung zwischen dem OAM der
Neutronen und der Erdrotation entsteht. Schließlich schlagen wir vor, dass diese exotis-
chen Messungen als nützliche OAM-Detektoren dienen könnten, da sie direkte Einblicke
in das OAM der Teilchen bieten.
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1 Introduction

Angular momentum is ubiquitous in nature, being found on the largest length and time
scales, such as galactic clusters, all the way down to the shortest scales, for example
the spins of fundamental particles. Our classical understanding of angular momentum
is captured by our intuition, formed by every day experiences. When thinking about
angular momentum we are likely to imagine a spinning object or a mass moving on a
circular trajectory. We may think of the centripetal force required to keep a spinning
object on a circular path. Most of our classical intuition and images break down when
we consider the angular momentum of waves. As will also be shown in this thesis, wave
angular momentum [1, 2] does not need a centripetal force to persist and does not require
mass or some circular motion. Yet when absorbed waves with angular momentum can
exert torque on a massive macroscopic object [3, 4, 5]. To complicate things further
quantum mechanics has demonstrated that at the fundamental level matter behaves like
waves. So if all of our intuitive pictures breakdown at the fundamental level, what is
angular momentum really?

Angular momentum is one of natures conserved quantities. In classical physics it is
simply the cross product between position r and momentum p

L = r × p (1.1)

This mathematical structure, derived from our intuitive picture, contains within itself a
broader definition than what our intuitive image usually encompasses. It is quite clear
from this equation that for a particle to possess some angular momentum, it need not be
moving on a circular or even a closed trajectory. In fact a particle moving in a straight
line at some distance from the origin will posses angular momentum with respect to the
frame of reference. According to Newtons third axiom, such motion does not require a
restoring force, hence angular momentum may also persist in classical physics without
a central force. A simple example of this is a particle striking a wheel off axis, thereby
causing the wheel to spin. Since the spinning wheel possesses angular momentum and
angular momentum is conserved, it follows that the initial particle had the same amount
of angular momentum. Wave angular momentum not requiring a restoring force therefore
need not be counter-intuitive if we do not think of it as something requiring rotational
velocity. Instead we can think of wave angular momentum as a type of spatial wave
structure. It is thus a vortex or helical wave structure which carries angular momentum
(see figure 1.1).

In quantum mechanics equation 1.1 does not tell the complete story. Particles have an

15



1 Introduction

additional intrinsic angular momentum, called spin, which in our current understand-
ing is not necessarily related to motion. Nonetheless quantum mechanical spin can be
transferred to macroscopic objects and induce rotation [3]. The total angular momentum
of a particle is made up of this intrinsic spin component and an extrinsic component
called orbital angular momentum (OAM). Quantum mechanical OAM is analogous to
the classical quantity described in equation 1.1, however the vectors are promoted to
operators

L̂ = r̂ × p̂ (1.2)
it will be shown that the eigenvalues of L̂ are quantized/discrete. This property makes
OAM a useful tool for quantum information [6, 7, 8], contextuality [9, 10, 11] and as a
quantum probe for example in the quantum Cheshire cat [12]. In addition this degree
of freedom can be used to sense rotation [13, 14, 15, 16], as will be further explored
in this thesis. Quantum mechanical OAM has various expressions. In atomic physics
bound electrons carry OAM with respect to the nucleus they orbit [17]. In interferometry
split wavefunctions carry OAM with respect to the center of the interferometer [18, 13].
Roughly three decades ago twisted or helical waves, that carry OAM, were realized
for the first time. The phase fronts of these waves appear to twist around the axis of
propagation (see figure 1.1). Despite this apparent rotation around the momentum axis

Figure 1.1: Depiction of the areas of equal phase/wavefronts for planewaves (a) and he-
lical waves (b). The helical wave appears to twist as it propagates across the
page. Hence when it is absorbed it can exert a torque around the propaga-
tion axis on a macroscopic object

these states can exist in free space in the absence of a restoring force, since no rotational
velocity is associated with this twisting. These states have been realized in photons
[1, 2], electrons [19], free atoms [20] and cold neutrons [21].

Neutron OAM has a wide range of applications, beyond the general uses of OAM

16



recorded above. Various calculations suggest that neutrons carrying OAM scatter dif-
ferently from nuclei than neutrons without OAM [22, 23, 24], allowing one, for example,
to observe independently the real and imaginary parts of the nuclear scattering ampli-
tude. Furthermore it has been predicted that twisted neutrons may be invaluable for
probing microscopic chiral structures [25, 26]. Finally vortex particles may be used to
stimulate giant multipole resonances [27] and since giant resonances are nuclear excita-
tions, twisted neutrons may be particularly suited to excite these transitions, since they
interact primarily via the strong nuclear interaction. This may ultimately be utilized
to investigate the possibility of a nuclear battery, where energy is stored in the nucleus
instead of the electrons.

Due to these promising applications the aim of this dissertation is to investigate and
develop instrumentation for the generation and detection of neutron OAM. Development
of neutron OAM began in 2015 with the advent of the aluminium spiral phase plate for
neutrons [28]. This device imprints a vortex phase structure on the neutron beam,
however the method was criticized [29], since the imprinted structure was much larger
(∝ cm) than the coherence length of an individual neutron (∝ nm − µm). As a result
critics concluded that the neutrons making up the beam all possessed different OAM
with respect to their axis of propagation, thereby making the composite state a mixed
state. In 2016 a method using a quadrupole was introduced [30], which attempts to
create a spin-orbit (spin-OAM) entangled state, by exchanging spin angular momentum
to OAM. This technique suffers from the same complications as the spiral phase plate.
Hence, a similar technique was proposed in 2018 [31, 32], which uses coherent averaging.
Coherent averaging is the process of separating an input wavefunction into many partial
wavefunctions and arranging these in a way such that the composite wavefunction (i.e.
the coherent sum of all partial wavefunctions) exhibits the desired phase structure. The
method introduced in 2018 uses at least two perpendicular linear magnetic gradients to
implement a coherent averaging protocol. The end result is a lattice of vortices across
the beam cross section. With a strong enough magnetic field the vortices could be
tuned down to the transverse coherence length of individual neutrons. The technique
was demonstrated experimentally in 2019 [33], where the authors were able to create
vortices with a diameter on the order of 6 mm. In practice it is exceedingly difficult to
produce magnetic potentials strong enough such that vortices on the order of the neutron
coherence length could be observed. To remedy this, in 2023, the coherent averaging
technique for neutrons was generalized in interferometry, such that the the strong nuclear
potential can be exploited, which is 1000 times stronger than the magnetic potentials
used in the 2019 experiment [34]. In 2021 it was demonstrated that a strong electric field
polarized along the flight path of a neutron beam can generate OAM in spin polarized
neutrons, by exchanging spin angular momentum for OAM [35]. While the electric fields
required are too large to be produced in the lab, the natural electric field present inside
of atoms, between the nucleus and the electron shell is very large (∝ 1010V · m−1) and
can be exploited in diffraction from perfect crystals [36]. Later in this thesis it will be
demonstrated that the experiment detailed in [36], constituted an observation of a spin-
orbit entangled state. The neutron nucleus weak interaction also produces spin-orbit
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1 Introduction

entangled states, by exchanging neutron spin for OAM in a spin polarized beam, the
effect may be enhanced in p-wave resonances such as those found in Lanthanum 139 [37].
This may be useful for the production of spin-orbit entangled states in hot (E ∝ eV )
neutrons. Vortex states in neutrons with a diameter on the order of the transverse
coherence length were produced in cold neutrons in 2022 [21] using forked phase gratings.
These gratings imprint a spiral phase pattern multiplied by a planewave phase pattern on
the neutron wavefunction, thereby producing the desired states. However the efficiency
of these gratings is very low and as a result can only be used for neutrons on the
tail of the cold spectrum. To increase the available flux of twisted neutrons, methods
must be developed for producing vortex states on the thermal and cold peaks. To
this end electric fields and coherent averaging are the most promising techniques. The
coherent averaging proposals from 2018 [31, 32] and 2019 [33], which was expanded on
in 2023 [34], are reciprocal space coherent averaging schemes, that is to say, the partial
wavefunctions are separated and arranged into a spiral pattern in reciprocal space. The
2023 paper proposes a real space coherent averaging scheme, where partial wavefunctions
are arranged in a spiral pattern in real space. As it turns out the latter is more feasible
for neutrons, such that even the smaller potentials found in magnetic prisms can be
exploited. In 2024 a real space coherent averaging interferometer was reported on [38].
The technique is based on Spin Echo Small Angle Neutron Scattering (SESANS) [39, 40],
a spin echo type interferometery technique which uses real space coherent averaging [41]
to produce a composite wavefunction with a larger coherence, thus able to probe larger
structures not accessible with regular neutron scattering techniques.

Detection of neutron OAM has been limited to interferometric techniques, where the
vortex neutron is superposed with a reference wavefunction, thereby resolving the rela-
tive phase structure between the two. Such techniques place constraints on instruments,
requiring an interferometer to assess the quality of the OAM states. In addition these
techniques are time consuming as they must resolve the phase structure of a 2D wave-
function. This requires a sufficient level of statistics, which take a long time to achieve
since neutron beams have relatively low flux. Additional techniques have been proposed
to detect neutron OAM, relying on the different scattering and absorption properties
of vortex neutrons [22, 23, 24], however these rely on unknown matrix elements, which
have failed to be detected to date. In 2024 a new technique was proposed, which uses
the Sagnac effect, a coupling between the rotation rate of the reference frame and the
OAM of the particles [14], thereby definitively detecting the OAM of the beam.

After a theoretical introduction describing general concepts and properties of quantum
OAM possessed by free particles the following methods of neutron OAM production will
be detailed:

• Static electric fields

– Theoretical overview

– Generalization of the dynamical theory of diffraction to accommodate the
potential generated by the intra-atomic electric field
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– Neutron diffraction experiment from a perfect quartz crystal demonstrating
the generation of a neutron vortex state

• The neutron nucleus weak interaction

– Theoretical overview

– Neutron optical experiment demonstrating angular momentum conservation

• Coherent averaging

– Reciprocal space coherent averaging applied to neutron interferometry

– Real space coherent averaging

– Development of CANISIUS the real space coherent averaging interferometer

∗ The white beam SESANS technique

Next a few detection methods are explored

• Interferometry

• Absoprtion cross-sections

– Neutron optical experiment measuring the neutron nucleus absoprtion cross
section of 3He for twisted neutrons

• OAM Rotation Coupling

– Theoretical overview

– SESANS experiment demonstrating a coupling between the transverse OAM
of a neutron and the rotation of the earth

– Future development

Finally a general summary and outlook on the future of neutron OAM, looking both at
production and detection techniques, as well as possible applications, will be provided.
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2 General Theory

In this chapter we introduce the general concepts and methods used to discuss quantum
mechanical OAM. First we will derive the Eigenstates and Eigenvalues of the OAM
operator (eq. 1.2) and demonstrate that these are also Eigenstates of the free space
Schroedinger equation, thereby proving that vortex states can exist in the absence of a
restoring potential. At this point it is useful to introduce two integral transforms, the
azimuthal Fourier transform, which allows one to extract the OAM mode distribution
from any wavefunction and the Hankel transform [42], which allows us to examine the
radial wavevector distribution of a wavefunction. Next We will introduce the distinction
between intrinsic and extrinsic OAM and derive the conditions necessary to produce
the former. Finally We will demonstrate that quantum mechanical OAM can be both
parallel to propagation (longitudinal) or transverse to it and go over various properties
of both types of OAM.

2.1 The Orbital Angular Momentum Operator and its
Eigenstates

The quantum mechanical OAM operator is given by the cross product between the
position and momentum operators

L̂ = r̂ × p̂ (2.1)

In Cartesian coordinates the kth component of the OAM operator is given by

L̂k = −ih̄[xi
∂

∂xj

− xj
∂

∂xi

] (2.2)

The Eigenfunctions can easily be determined by transforming to a polar coordinate
system xi = r cos(φ) and xj = r sin(φ), with 0 < r < ∞ and 0 < φ < 2π. The OAM
operator then becomes

L̂k = −ih̄ ∂

∂φ
(2.3)

In this form Eigenfunctions can easily be determined

L̂kfℓ = ℓh̄fℓ → fℓ = eiℓφ (2.4)
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2 General Theory

where ℓ must be integer to satisfy the continuity conditions: fℓ(φ = 0) = fℓ(φ =
2π). The Eigenfunctions of the OAM operator are therefore simply phase vortices, the
phase being proportional to the azimuthal coordinate, varying from 0 to ℓφ. Since we
often associate rotational motion with angular momentum it is useful to determine the
azimuthal contribution of the velocity of these Eigenfunctions.

< vφ >=
�

dr2f ∗
ℓ v̂φfℓ = −

�
dr2e−iℓφ ih̄

mr

∂

∂φ
eiℓφφ̂ =

�
dr2 ℓh̄

mr
φ̂ (2.5)

which we will solve by converting to Cartesian coordinates

< vφ >=
�

dxdy
ℓh̄

m(x2 + y2) [−yx̂ + xŷ] = 0 (2.6)

which is zero since the integrands are odd functions: 1
x2+y2 is even while the x and y are

odd. As a result the quantum mechanical OAM is not associated with any kind of rota-
tional velocity [43]. It follows that quantum OAM does not require any kind of restoring
potential to persist. In the next section we will show that the OAM eigenfunctions are
also eigenfunctions of the free space Schroedinger equation. Before moving on it is useful
to explore the OAM carried by planewaves. Starting from a planewave propagating in
the xj direction

ψ = eikjxj (2.7)

we can determine the OAM density of a planewave

ψ∗L̂kψ = h̄kjxi (2.8)

it follows that planewaves carry OAM locally in the directions perpendicular to propaga-
tion. This is analogous to the classical angular momentum carried by a particle traveling
in a straight line. When averaged over all space the mean OAM of such a planewave is
zero.

< L̂k >=
�

dr2ψ∗L̂kψ = 0 (2.9)

However if the planwave has some spatial envelope (i.e. localization), the expectation
value of the OAM operator is no longer necessarily zero and some net OAM is carried
with respect to the chosen reference frame. Finally we define the OAM raising and
lowering operators

ℓ̂± = e±iφ (2.10)

By the product rule it can easily be seen that these operators raise/lower the OAM
expectation value by one unit of h̄ for any wavefunction

< ℓ̂±|L̂k >=< L̂k >±= −ih̄
�

dr2e∓iφψ∗ ∂

∂φ
e±iφψ =< L̂k > ±h̄ (2.11)

Later we will see that these operators appear in OAM generating potentials, such as the
potential seen by a neutron in an electric field [35] or a quadrupole magnetic field [30].
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2.2 Orbital Angular Momentum in Free Space

2.2 Orbital Angular Momentum in Free Space

In the previous section it was demonstrated that the Eigenfunctions of the OAM operator
do not carry any rotational velocity. This makes intuitive that quantum mechanical
OAM can persist without a restoring force. In this section we shall show that the
OAM Eigenfunctions are also Eigenfunctions of the cylindrical free space Schroedinger
equation:

− h̄2

2m
[1
r

∂

∂r
(r ∂

∂r
) + 1

r2
∂2

∂φ2 + ∂2

∂z2 ]ψ = Eψ (2.12)

We can see that the second derivative in the azimuthal coordinate is simply L̂2
z/h̄2, which

obviously has the same Eigenfunctions as L̂z and Eigenvalues −ℓ2. In addition the second
derivative in z is the cartesian kinetic energy operator, which has planewave solutions.
Hence under the assumption that ψ is separable such that ψ(r, φ, z) = R(r)Φ(φ)Z(z)
we can easily see that

Φ(φ) = eiℓφ Z(z) = eikzz (2.13)

Filling these solutions into the cylindrical Schroedinger equation we are left with a
differential equation in r.

[r2 ∂2

∂r2 + r
∂

∂r
− ℓ2 + (2mE

h̄2 − k2
z)r2]R = 0 (2.14)

which is the Bessel equation and has the Bessel functions of the first kind as solution.
We exclude Bessel functions of the second kind since these are singular at r = 0 and
therefore not physical as free space solutions to the Schroedinger equation. Hence the
eigenfunctions of the Schroedinger equation in cylindrical coordinates are

ψ = Jℓ(krr)eiℓφeikzz (2.15)

with kr = 2mE
h̄2 − k2

z . It therefore follows that the kinetic energy of these Bessel waves is
given by

E = h̄2

2m
[k2

z + k2
r ] (2.16)

once again confirming that quantum mechanical OAM does not correspond to any sort
of rotational velocity, since the OAM does not contribute to the energy of the particle.
While all realistic wavefunctions spread as they propagate it should now be clear that
OAM does not cause wavefunctions to spread by some quantum mechanical equivalent
of the centrifugal force. Since the intensity of a Bessel beam |ψ|2 has the same profile for
all z the wave is non-diffracting [44]. For visualization the transverse profile of a Bessel
beam with ℓ = 50 and kr = 1 is shown in figure 2.1. Note that the cylinder wave of
mode ℓ passes through ℓ light and dark fringes over a circle of radius roughly equal to
ℓ. Although Bessel beams cannot be produced in the lab since they are not localized,
approximations have been generated, which demonstrate interesting properties including
non-diffraction [45].
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2 General Theory

Figure 2.1: Real part of a cylindrical Eigenfunction of the free space Schroedinger
equation (eq. 2.15) with ℓ = 50 and kr = 1. Note that the ring at
r =

√
x2 + y2 = 50 consists of 50 dark and 50 light fringes equal to the

mode number of the Bessel beam.

As in the previous section we will now look at the angular velocity, OAM density and
OAM expectation value carried by these Bessel waves. The angular velocity

< vφ >=
�

dr3ψ∗v̂φψ =
�

dr3 h̄ℓ

mr
J2

ℓ (krr)φ̂ = 0 (2.17)

is once again zero. This is most easily seen by transforming to Cartesian coordinates

< vφ >=
�

dr3 h̄ℓ

m(x2 + y2)J2
ℓ (kr

�
x2 + y2)[−yx̂ + xŷ] = 0 (2.18)

since as in the previous section the integrand is an odd function: 1
x2+y2 is even and the

squared Bessel function is even for all ℓ. They are multiplied by the odd functions x and
y, making the whole integrand odd. This confirms the above result that no centrifugal
force acts on a Bessel beam even if it carries OAM.
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2.3 Useful Integral Transforms

Moving on to determining OAM density we start by writing the OAM operator (eq. 2.1)
using cylindrical coordinates

L̂ = r̂ × p̂ = −ih̄

 y ∂
∂z

− z ∂
∂y

z ∂
∂x

− x ∂
∂z

x ∂
∂y

− y ∂
∂x

 = −ih̄


r sin(φ) ∂

∂z
− z(sin(φ) ∂

∂r
+ cos(φ)

r
∂

∂φ
)

z(cos(φ) ∂
∂r

− sin(φ)
r

∂
∂φ

) − r cos(φ) ∂
∂z

∂
∂φ

 (2.19)

next we convert the Cartesian vector to a cylindrical one with [ρ̂ φ̂ ẑ]T

L̂ = −ih̄

 − z
r

∂
∂φ

z ∂
∂r

− r ∂
∂z

∂
∂φ

 (2.20)

We now apply this operator to equation 2.15 to determine the cylindrical OAM density
of Bessel beams.

ψ∗L̂ψ = −ih̄

 − iℓz
r

|ψ|2
krzJℓ(krr)[Jℓ−1(krr) − ℓ

krr
Jℓ(krr)] − ikzr|ψ|2

iℓ|ψ|2

 (2.21)

Since both the r̂ and φ̂ components are odd functions it can easily be understood that
ẑ is the only non-zero component of the OAM expectation value

< L̂ >=

 0
0
ℓh̄

 (2.22)

Pure Bessel beams therefore only carry OAM along the z-axis, the axis of propagation.
Superpostions of Bessel beams may propagate along a different axis, since they form a
complete basis and one can therefore expand a wavefunction propagating in any direc-
tion using cylindrical Bessel waves. Later we will explore how such superpositions can
generate states where OAM and propagation are not parallel. However first in the next
section I introduce the azimuthal Fourier transform and the Hankel transform, which
are useful tools to extract the cylinder wave components of any wavefunction.

2.3 Useful Integral Transforms

In this section starting from the two dimensional Fourier transform we will derive the
azimuthal Fourier transform (also known as the multipole expansion) and the Hankel
transform [46]. The former will be especially useful for us, since it will allow us to
determine the OAM mode distribution of any wavefunction.

In Cartesian coordinates the unitary two dimensional Fourier transform is well known

F (kx, ky) = 1
2π

�
dxdyf(x, y)e−i(kxx+kyy) (2.23)
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We start by applying a coordinate transformation to cylindrical coordinates. Here we
define θ as the reciprocal azimuthal angle and φ as the real space angle.

F (kr, θ) = 1
2π

� ∞

0

� 2π

0
drdφrf(r, φ)e−ikrr cos(θ−φ) (2.24)

Inserting the Jacobi Anger expansion [47]

eiz cos(φ) =
ℓ=∞�

ℓ=−∞
iℓJℓ(z)eiℓφ (2.25)

the cylindrical Fourier transform becomes

F (kr, θ) = 1
2π

�
ℓ

� ∞

0

� 2π

0
drdφrf(r, φ)iℓJℓ(krr)e−iℓφeiℓθ (2.26)

from this follow the definitions of the Azimuthal Fourier and Hankel transforms, further
explored in the next subsections.

2.3.1 Azimuthal Fourier Transform

While the cylindrical Fourier transform F (kr, θ) described in equation 2.26 has its utility,
for this work it would be more useful to obtain a result which expresses the OAM mode
number distribution. To this end we focus on the integration over φ in equation 2.26 and
for the time being separate out the φ independent terms. This leads us to the azimuthal
Fourier transform

f ℓ(r) = 1
2π

� 2π

0
dφf(r, φ)e−iℓφ (2.27)

henceforth abbreviated as AFT. We can easily verify that the inverse transform is

f(r, φ) =
�

ℓ

f ℓ(r)eiℓφ (2.28)

which we also refer to as the multipole expansion. The AFT and multipole expansion
allow us to express any wavefunction in terms of the OAM Eigenfunctions. One of the
most important such expansions is the Jacobi Anger expansion (equation 2.25), which
expresses a planewave in cylindrical coordinates. In addition these transforms allow us
to derive the OAM mode number distribution of any wavefunction. This can most easily
be derived by examining the OAM expectation value. As previously shown in cylinder
coordinates we need only look at the z-component

< L̂z >= −ih̄
�

drrdφf ∗(r, φ) ∂

∂φ
f(r, φ) (2.29)

the multipole expansion of f(r, φ) is applied leading to

< L̂z >=
�
l,m

�
drrdφh̄ℓfm∗(r)f ℓ(r)ei(ℓ−m)φ (2.30)
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2.3 Useful Integral Transforms

Then we recognize that the integral
� 2π

0 dφei(ℓ−m)φ is zero for ℓ ̸= m and 2π for ℓ = m.
Using this our expectation value becomes

< L̂z >= 2π
�

l

�
drrh̄ℓ|f ℓ(r)|2 (2.31)

If we now omit averaging over the mode number ℓ we obtain the OAM distribution
function

p[ℓ] = 2π
�

drr|f ℓ(r)|2 (2.32)

it obviously follows
< L̂z >=

�
l

ℓh̄p[ℓ] (2.33)

We will use the OAM distribution function mainly to determine the relative amplitude
of each OAM mode that make up the wavefunction.

2.3.2 Hankel Transform

When we substitute the multipole expansion (eq. 2.28) into the cylindrical Fourier
transform (eq. 2.26) and execute the trivial integration over φ we obtain

F (kr, θ) =
�

ℓ

iℓ
� ∞

0
drrf ℓ(r)Jℓ(krr)eiℓθ (2.34)

applying the AFT to F (kr.θ) we find that the multipole components F ℓ(kr) are related
to the multipole components f ℓ(r) by a Hankel transform

F ℓ(kr) = iℓ
� ∞

0
drf ℓ(r)Jℓ(krr)r (2.35)

The inverse is given by

f ℓ(r) = −iℓ
� ∞

0
dkrF

ℓ(kr)Jℓ(krr)kr (2.36)

Using this result we will try to express the probability amplitude of the ℓth mode (eq.
2.32) in both reciprocal and real space. To do this we multiply equation 2.36 by its
conjugate and integrate over all space� ∞

0
drr|f ℓ(r)|2 =

� ∞

0
drr

�
[−iℓ

� ∞

0
dkrF

ℓ(kr)Jℓ(krr)kr][iℓ
� ∞

0
dk′

rF
ℓ,∗(k′

r)Jℓ(k′
rr)k′

r]
�

(2.37)
switching the order of integration leads to� ∞

0
drr|f ℓ(r)|2 =

� ∞

0

� ∞

0
dkrdk′

rkrk
′
rF

ℓ(kr)F ℓ(k′
r)

� ∞

0
drrJℓ(krr)Jℓ(k′

rr) (2.38)
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We note that the Bessel functions Jℓ(krr) and Jℓ(k′
rr) are orthogonal functions, such

that
�

drrJℓ(krr)Jℓ(k′
rr) = δ(kr−k′

r)
kr

. Using this the above reduces to
� ∞

0
drr|f ℓ(r)|2 =

� ∞

0
dkrkr|F ℓ(kr)|2 = 1

2π
p[ℓ] (2.39)

which is Parseval’s theorem for Hankel transforms [48]. This demonstrates not only that
the OAM expectation value is conserved upon transformation to and from reciprocal
space, but also that the probability amplitude of each individual mode is unchanged
upon transformation.

In this thesis we often make use of the table of integrals by Bateman [42], where the
following more elegant Hankel transform is used

F (kr) =
�

drf(r)Jℓ(krr)
�

krr (2.40)

which is its own inverse.

2.3.3 Effects of Transforms on the OAM Operator

Finally it should be noted that under the two dimensional Fourier transform the z-
component of the OAM operator retains its mathematical form

L̂z = −ih̄(x ∂

∂y
− y

∂

∂x
) F−→ −ih̄(kx

∂

∂ky

− ky
∂

∂kx

) (2.41)

Hence if any kind of wavefunction structure in real space produces OAM an identical
structure in reciprocal space will also produce OAM. This fact is further emphasized
by equations 2.35 and 2.36, which shows that the ℓth order multipole component in
reciprocal space depends only on the ℓth order component in real space. In fact equation
2.39 demonstrates that the probability amplitude of the ℓth is the same in both reciprocal
and real space. This means angular structure is conserved by the Fourier transform.

A final interesting question remains: what happens to the real space wavefunction if
the reciprocal wavefunction has its OAM raised or lowered? This question was in part
answered above, when we showed that the OAM operator retains its form under trans-
formation, hence raising or lowering the OAM by one unit of h̄ in reciprocal space has
the exact same effect in real space. The question remains, however, if multiplying the
reciprocal wavefunction with the OAM raising/lowering operator (eq. 2.10) is identical
to multiplying the real space wavefunction by the raising or lowering operator and vice
versa. To investigate this we start from equation 2.26 and multiply the function under
investigation by the raising/lowering operator

F (kr, θ) = 1
2π

�
ℓ

� ∞

0

� 2π

0
drdφrf(r, φ)iℓJℓ(krr)e−i(ℓ∓1)φeiℓθ (2.42)
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and we substitute the multipole expansion (eq. 2.28) for f(r, φ)

F (kr, θ) =
�

ℓ

iℓ
� ∞

0
dr rf ℓ∓1(r)Jℓ(krr)eiℓθ (2.43)

We can substitute n = ℓ ∓ 1 and rewrite the equation in terms of the reciprocal raising
and lowering operator When applying the AFT we can see explicitly that the ℓth mode
in reciprocal space becomes related to the (ℓ ∓ 1)th mode in real space by a Hankel
transform of order ℓ

F ℓ(kr) = iℓ
� ∞

0
drf ℓ∓1(r)Jℓ(krr)r (2.44)

In this form is it quite clear that applying the OAM raising or lowering operator in real
space is not equivalent to applying the reciprocal space variant. We can check this by
lowering/raising the index of eq. 2.44 by one (i.e. the opposite of the operation we
applied in real space), if the two operations were equivalent the result should reduce to
eq. 2.35. This is obviously not the case. Though if it were not for the Hankel transform
the two operations would be the same. In summary when we apply the raising operator
in real space the index of the Bessel function is shifted with respect to the index of f .
Conversely raising the index of F results in all indices on the right hand side of the
transform being raised.

Exploring this question has led us to unknowingly use the convolution theorem for AFTs.
The only step taken between eq. 2.42 and eq. 2.44 through eq. 2.43, was to execute the
AFT (eq. 2.27). Since the AFT is identical to the standard Fourier transform, with the
exception that the transform variable is discrete, we can apply the convolution theorem

� 2π

0
dφ f(r, φ)g(r, φ)e−iℓφ =

�
n

fn(r)gℓ−n(r) (2.45)

where the convolution is of course discrete. In the case of the raising/lowering operator
g(r, φ) = e±iφ and gℓ = δℓ,±1, with δ the Kronecker delta. So the convolution would
reduce to f ℓ∓1, consistent with our result above.
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2.4 Intrinsic and Extrinsic Orbital Angular Momentum

In discussions of OAM in free quantum particles one distinguishes between intrinsic and
extrinsic OAM [49, 50, 43, 34]. That is OAM that depends on the choice of the coordinate
system (extrinsic) and OAM that is to a degree independent of the coordinate system
(intrinsic). In the intrinsic case OAM emerges from the non-locality of the wavefunction,
the fact that wavefunctions can have structure. In the case of localized point particles,
the OAM they carry must be a consequence of the coordinate system and hence must be
extrinsic. These points can be demonstrated and explored by looking at what happens
to the OAM operator (eq. 2.1) and its expectation value under translation r̂′ → r̂ + r̂0

L̂′ = (r̂ + r̂0) × p̂ = L̂ + r̂0 × p̂ (2.46)

Previously we showed that in cylindrical coordinates the only non-zero component of L̂
is the z-component(equation 2.20). For a localized particle ∂

∂φ
is zero. It follows that all

of its OAM is a consequence of the choice of coordinate system. Hence classical particles
can only carry extrinsic OAM.

Intrinsic OAM must be translation invariant. In our previous examination of the OAM
of Bessel beams only the z component of this expectation value is non-zero. This exami-
nation used an "on-axis" coordinate system. If OAM in the radial or azimuthal direction
were to arise in another coordinate system it would by definition be extrinsic. Hence,
in determining what properties a wavefunction must have to possess intrinsic OAM, we
need only examine which properties ensure that < L̂z > is translation invariant. To
this end let us examine the difference between the z component of the translated OAM
operator (eq. 2.46) and the untranslated operator (eq. 2.1)

ΔL̂z = −ih̄(x0
∂

∂y
− y0

∂

∂x
) (2.47)

and determine its expectation value

< ΔL̂z >= −ih̄
�

dxdy ψ∗(x0
∂

∂y
− y0

∂

∂x
)ψ (2.48)

Since this must be zero for all combinations of x0 and y0 it follows that each integral
must be zero. This leads to the following two conditions for intrinsic OAM

�
dxdy ψ∗ ∂

∂x
ψ = 0 →< kx >= 0 (2.49a)�

dxdy ψ∗ ∂

∂y
ψ = 0 →< ky >= 0 (2.49b)

hence, if the momentum components perpendicular to the OAM are zero, the OAM can
be considered translation invariant and therefore purely intrinsic.
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2.4 Intrinsic and Extrinsic Orbital Angular Momentum

Let us now examine whether or not the OAM Eigenfunctions eiℓφ satisfy this condition,
by substituting them for ψ and transforming the integrals to cylindrical coordinates:

−
�

drdφ e−iℓφ sin(φ) ∂

∂φ
eiℓφ = −i

�
drdφ ℓ sin(φ) = 0 (2.50a)�

drdφ e−iℓφ cos(φ) ∂

∂φ
eiℓφ = i

�
drdφ ℓ cos(φ) = 0 (2.50b)

which are zero since
� 2π

0 dφ cos(φ + θ) is zero for all θ. It follows that the OAM Eigen-
functions carry intrinsic OAM. Let us now consider an arbitrary superposition of OAM
Eigenfunctions ψ =  

ℓ Aℓ(r)eiℓφ

< kx >∝
�

drdφ
�
ℓ,n

Aℓ,∗(r)e−iℓφ[r cos(φ) ∂

∂r
− sin(φ) ∂

∂φ
]An(r)einφ (2.51a)

< ky >∝
�

drdφ
�
ℓ,n

Aℓ,∗(r)e−iℓφ[r sin(φ) ∂

∂r
+ cos(φ) ∂

∂φ
]An(r)einφ (2.51b)

which are only zero if�
dφ cos(φ)

�
ℓ,n

Aℓ,∗(r)An(r)e−i(ℓ−n)φ = 0 (2.52a)
�

dφ sin(φ)
�
ℓ,n

Aℓ,∗(r)An(r)e−i(ℓ−n)φ = 0 (2.52b)
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Figure 2.2: Transverse intensity distribution |ψ|2 for various superpositions of different
Bessel modes. kr is always equal to 1. Insets (a)-(c) contain non-neighboring
superpositions (a) ℓ = 50, (b) ℓ = 50; ℓ = 52, (c) ℓ = 50; ℓ = 53; ℓ = 56; ℓ =
59, while (d)-(f) show superpositions of different numbers of neighboring
modes: (d) ℓ = 50; ℓ = 51 (e) ℓ = 50; ℓ = 51; ℓ = 52 (f) ℓ = 50; ℓ =
51; ℓ = 52; ℓ = 53. In case of neighboring superpositions of OAM the
intensity distribution localizes to one side of the plane, indicating a preferred
propagation direction. When the superposition does not contain neighboring
mode there is no localization to one side of the plane, hence there is no
preferred propagation in the x or y direction.
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We may begin by recognizing that this is the case for all ℓ − n ̸= ±1. Using this the
above conditions reduce to�

n−ℓ=1
Aℓ,∗(r)An(r) +

�
ℓ−n=1

Aℓ,∗(r)An(r) = 0 (2.53a)
�

n−ℓ=1
Aℓ,∗(r)An(r) − �

ℓ−n=1
Aℓ,∗(r)An(r) = 0 (2.53b)

which is only ever the case if
Aℓ,∗(r)Aℓ±1(r) = 0 (2.54)

which leads to the curious conclusion that superpositions of OAM Eigenfunctions can
only carry purely intrinsic OAM if the superposition does not consist of any spatially
overlapping neighboring modes. If the superpostion on the other hand contains neigh-
boring and spatially overlapping modes it follows that at least a part of the carried
OAM is extrinsic, depending on the choice of coordinate system. The implication is
that the existence of overlapping neighboring modes mean propagation, since our con-
dition of < kx >=< ky >= 0 is not met in this case. This phenomenon of neighboring
modes inducing propagation is illustrated in figure 2.2. This figure demonstrates that
superpositions of neighboring modes localize to one side of the plane, indicating a pre-
ferred Cartesian propagation direction. As the number of neighboring modes in the
superposition increases the intensity distribution begins to localize to a point.

To separate the intrinsic and extrinsic contributions to the OAM, for example in the case
of a superposition of neighboring cylindrical modes, we need a method of calculating
either the intrinsic or extrinsic component independently. Since the extrinsic OAM
component arises solely from coordinate translation it follows that it can be calculated
using the cross product of the position and momentum expectation values [43]:

< L̂ext >=< r̂ > × < p̂ > (2.55)

and the intrinsic component can then easily be determined using the total OAM

< L̂int >=< L̂ > − < L̂ext > (2.56)

As an example we will determine the intrinsic and extrinsic OAM components of a
superposition of two neighboring cylindrical modes 1√

4π
(eiℓφ + ei(ℓ+1)φ). We start by

calculating the total OAM

< L̂z >= h̄

4π

�
dφ(e−iℓφ + e−i(ℓ+1)φ)(ℓeiℓφ + (ℓ + 1)ei(ℓ+1)φ) = h̄(2ℓ + 1)

2 (2.57)

Next we must determine the extrinsic OAM component which we do by first determining
the transverse position expectation value

< r̂⊥ >= 1
2π

�
dφ

�
r cos(φ)
r sin(φ)

�
cos(φ) =

�
r/2
0

�
(2.58)
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followed by the transverse momentum expectation value

< p̂⊥ >= − ih̄
4π

�
dφ(e−iℓφ + e−i(ℓ+1)φ)

�
∂/∂x
∂/∂y

�
(eiℓφ + ei(ℓ+1)φ) (2.59)

which when completely rewritten in cylindrical coordinates becomes

< p̂⊥ >= h̄

4πr

�
dφ(e−iℓφ + e−i(ℓ+1)φ)

�− sin(φ)
cos(φ)

�
(ℓeiℓφ + (ℓ + 1)ei(ℓ+1)φ) (2.60)

this can be further simplified by eliminating all terms that integrated become zero

< p̂⊥ >= h̄

4πr

�
dφ

�− sin(φ)
cos(φ)

�
(2ℓ cos(φ) + eiφ) = h̄

4r

� −i
2ℓ + 1

�
(2.61)

Leading to an extrinsic and intrinsic OAM of

< L̂z,ext >= h̄(2ℓ + 1)
8 (2.62a)

< L̂z,int >= 3h̄(2ℓ + 1)
8 (2.62b)

Perhaps a counter-intuitive result, since the calculated intrinsic OAM is slightly lower
than the averaged intrinsic OAM of the constituent states that make up our superpo-
sition: ℓh̄ and (ℓ + 1)h̄ respectively. In fact later we will see that as the number of
neighboring modes is increased, the intrinsic component of the OAM decreases.

We have learned that pure OAM states (i.e. Jℓ(krr)eiℓφ) carry purely intrinsic OAM,
that is the expectation value < L̂z > is translation invariant. In addition we have seen
that this expectation value remains invariant under translation for superpositions of
any number non-neighboring cylinder modes. However, if a wavefunction carries pure
intrinsic OAM in one reference frame, that OAM is no longer pure in a translated frame
of reference. That is to say the OAM distribution function (eq. 2.32) is not translation
invariant. We can demonstrate this by examining the second moment of the OAM
operator

L̂2
z = −h̄2 ∂2

∂φ2 = −h̄2(x2 ∂2

∂y2 + y2 ∂2

∂x2 − 2xy
∂

∂x

∂

∂y
− y

∂

∂y
− x

∂

∂x
) (2.63)

the difference between this operator and its translation is then given by

ΔL̂2
z = −h̄2((x2

0−2xx0)
∂2

∂y2 +(y2
0 −2yy0)

∂2

∂x2 +2(xy0+yx0)
∂

∂x

∂

∂y
+y0

∂

∂y
+x0

∂

∂x
) (2.64)

while the last two terms have an expectation value of zero for wavefunctions with intrinsic
OAM, all other terms must also have an expectation value of zero if we want < L̂2

z > to
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2.4 Intrinsic and Extrinsic Orbital Angular Momentum

be translation invariant. This is not the case. Take for example the momentum spread
operator p̂2

x = − ∂2

∂x2 , which for a pure OAM state has a non-zero expectation value

< p̂2
x >= −

�
dφe−iℓφ ∂2

∂x2 eiℓφ = −
�

dφe−iℓφ(cos(φ) sin(φ) ∂

∂φ
+ sin2(φ) ∂2

∂φ2 )eiℓφ = πℓ2

(2.65)
except in the case where ℓ = 0. So we can expect the expectation values of pure OAM
states to be translation invariant, however which Eigenstates and their amplitudes that
compose the wavefunction will always change under translation except if no OAM is
carried at all. For many observable phenomenon and interactions it is not < L̂z >
that is of great importance, but rather the amplitude of each individual OAM mode
(i.e. eq. 2.32) [22, 23, 24, 51]. In some literature it is argued or implied that for OAM
to be "quantum" it must be intrinsic or that extrinsic OAM always mimics classical
angular momentum and is not related to wave structure [43, 29]. Both of these claims
are untrue as demonstrated by the analysis above. The states eiℓφ and ei(ℓ+1)φ, both
individually carry intrinsic and quantized/integer OAM, however as previously shown
the superposition of the two does not produce a purely intrinsic OAM state. Yet why
would the superposition of two quantum states produce a non-quantum state? It follows
that intrinsicality is not a deciding factor when it comes to the quantumness of OAM.
Our example also demonstrates that extrinsic OAM can still be related to wave structure,
as in this example it arises from the superposition of two vortex structures. In fact all
waves that carry OAM, carry it due to their wave structure, as will be shown in the
next section on transverse and longitudinal OAM, it is simply a matter of perspective.
Finally an extrinsic OAM state can often be transformed into an intrinsic one (and vice
versa) by transforming to a moving frame, such that < ky >=< kx >= 0. Note that
such a transformation is a translation in reciprocal space.

While intrinsic OAM is robust to translations in real space, in reciprocal space this
property is not given. There are also states such as eiℓθ (with θ the reciprocal azimuthal
coordinate), which have an OAM expectation which is translation invariant in reciprocal
space. Finally it should be obvious that no wavefunction can have a translation invariant
OAM expectation value in both real and reciprocal space. If we translate the OAM
operator (eq. 2.1) in both momentum and space we get

L̂′ = (r̂ + r̂0) × (p̂ + p̂0) = L̂ + (r̂ × p̂0) + (r̂0 × p̂) + (r̂0 × p̂0) (2.66)

the difference between this and the untranslated OAM operator is then

ΔL̂ = (r̂ × p̂0) + (r̂0 × p̂) + (r̂0 × p̂0) (2.67)

The expectation value of the first two terms could be zero as previously shown if the
wavefunctions fulfills the properties < kx >=< ky >=< x >=< y >= 0, however the
final term (r̂0×p̂0) does not produce a zero expectation value for all possible translations.
It follows that there are no wavefunctions which have a translation invariant OAM
expectation value in both real and reciprocal space. That is not to say that there isn’t
a component to a particles total OAM, that is robust to translations in both space and
momentum, as will be demonstrated in the next section.
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2 General Theory

2.5 Transverse and Longitudinal Orbital Angular
Momentum

In this section we explore the effect of orientation on the properties of quantum me-
chanical OAM. The OAM orientation is defined by the propagation axis. Hence we can
define longitudinal OAM, where the OAM is parallel to the propagation direction and
transverse OAM, which is perpendicular to propagation [52]. Mainly, the difference be-
tween intrinsic longitudinal and transverse OAM is simply a matter of perspective. As
shown in [52] transforming the frame of reference may change a longitudinal state into
a transverse one and vice versa. In the section on OAM in free space it was shown that
the intrinsic OAM expectation value of a free particle can be fully defined in cylindrical
coordinates by a single axis, the cylinder axis, henceforth called the z-axis. Intuition
may lead us to believe that this is the propagation direction, since the preferred propa-
gation direction of the Eigenstates of the free space Schroedinger equation is obviously
along the z-axis. However as shown in the last section a superpostion of two neighbor-
ing cylinder modes (i.e. eiℓφ + ei(ℓ+1)φ) has a preferred propagation in the x-y plane. A
more extreme example was used in the section on useful integral transforms: the Jacobi
Anger expansion (eq. 2.25), rewrites a planewave propagating in the x-y plane in terms
of an infinite number of cylindrical modes. The OAM of each mode in this case is very
obviously transverse to the propagation direction. However as shown in equation 2.9,
planewaves carry on average no OAM. Nonetheless we can multiply a planewave by the
OAM raising operator (eq. 2.10) to generate a wavefunction carrying on average one
unit of quantum mechanical OAM transverse to the propagation direction

ℓ̂+eikxx =
ℓ=∞�

ℓ=−∞
iℓJℓ(z)ei(ℓ+1)φ (2.68)

We can easily understand that the transverse OAM carried by this wavefunction is in-
trinsic. This follows from the fact that the extrinsic OAM, < r̂ > × < p̂ > is zero, since
< r̂ >= 0 for planewaves. This OAM carrying planewave is shown contrasted with the
regular planewave in figure 2.3 The planewave carrying transverse OAM has a forked
structure. This is particularly interesting, since this phase profile is often imprinted on
waves, by means of forked gratings [53, 54, 19, 21], to produce particles carrying longi-
tudinal OAM. However since such a grating also imprints a small transverse planewave
component on the incoming beam, the OAM is strictly speaking quasi-longitudinal with
respect to the incoming beams momentum.

Sometimes extrinsic transverse OAM is compared to classical angular momentum, since
it can be calculated in the same way (eq. 2.55) and it therefore has no "quantum"
nature. In addition, it is sometimes said that this type of OAM is not related to wave
structure. In the following we will examine these claims with an example wavefunction,
a planewave with Gaussian envelope moving offset from the axis of propagation by some
distance δ:

ψt = Ae
− (x−δ)2

σ2
x

− y2

σ2
y eikyy (2.69)
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2.5 Transverse and Longitudinal Orbital Angular Momentum

Figure 2.3: Real parts of (a) a planewave traveling along the x-direction with k = 1,
contrasted against (b) the same planewave multiplied by the OAM raising
operator. As a result this forked planewave carries one unit of h̄ of transverse
OAM

σx and σy denote the coherence lengths in x and y direction respectively and A is a
normalization constant. It is apparent that the classical or extrinsic transverse OAM is
then given by

< ψt|L̂z,ext|ψt >= h̄δky (2.70)

We can calculate the total OAM quite simply as well

< ψt|L̂z|ψt >= −iA2h̄
�

dxdy e
− (x−δ)2

σ2
x

− y2

σ2
y e−ikyy(x ∂

∂y
− y

∂

∂x
)e

− (x−δ)2

σ2
x

− y2

σ2
y eikyy (2.71)

The partial derivatives in x and y of the Gaussian yield anti-symmetric functions which
when integrated over all space yield zero, hence we may drop these terms.

< ψt|L̂z|ψt >= A2h̄ky

�
dxdy e

−2 (x−δ)2

σ2
x

−2 y2

σ2
y x (2.72)

the integral is nothing more than the x position expectation value of the Gaussian.
Therefore the total OAM of our wavefunction is fully determined by its extrinsic OAM

< ψt|L̂z|ψt >=< ψt|L̂z,ext|ψt >= h̄δky (2.73)

So the first claim, that extrinsic transverse OAM mimics classical OAM is correct. To
investigate the second and third claims we will use two approaches. The first approach is
quantitative. We will expand ψt in terms of its cylinder modes using the integral trans-
forms derived earlier. In particular we will derive the OAM distribution function (eq.
2.32). In the second approach we will qualitatively compare the main vortex/cylinder
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mode which makes up ψt with ψt. We will start our derivation of the OAM distribution
function by writing ψt in cylindrical coordinates

ψt = Ae
− (r cos(φ)−δ)2

σ2
x

− r2 sin(φ)2

σ2
y eikyr sin(φ) = Ae

− r2+2δ2
2σ2

x
− r2

2σ2
y e

− r2 cos(2φ)(σ2
y−σ2

x)
2σ2

xσ2
y e

2δr cos(φ)
σ2

x eikyr sin(φ)

(2.74)
After the second equality the φ independent terms are grouped together, while each φ
dependent exponential is written in a way such that the Jacobi Anger expansion (eq.
2.25) can be applied to each exponential.

ψt = Ae
− r2+2δ2

2σ2
x

− r2
2σ2

y

�
j,m,n

ij+mJj(i
r2(σ2

y − σ2
x)

2σ2
xσ2

y

)Jm(−2iδr

σ2
x

)Jn(kyr)ei(2j+m+n)φ (2.75)

In this form the azimuthal Fourier transform is trivial

ψℓ
t(r) = Ae

− r2+2δ2
2σ2

x
− r2

2σ2
y

�
2j+m+n=ℓ

ij+mJj(i
r2(σ2

y − σ2
x)

2σ2
xσ2

y

)Jm(−2iδr

σ2
x

)Jn(kyr) (2.76)

this expression will become important later on for numerically calculating the OAM
distribution function of planewaves with Gaussian envelopes. For now we will simplify
our analysis by assuming σx = σy = σ

ψℓ
t(r) = Ae− r2+δ2

σ2
�
m

imJm(−2iδr

σ2 )Jℓ−m(kyr) (2.77)

Using Graf’s addition theorem [55] the summation over m can be explicitly calculated

ψℓ
t(r) = Ae− r2+δ2

σ2 eiℓαJℓ(k′r) (2.78)

with k′ =
�

k2
y − 4 δ2

σ4 and α = sin−1(−2iδ/σ2k′) = cos−1(ky/k′). Finally the OAM
distribution function can be determined according to equation 2.32.

p[ℓ] = A2e− 2δ2
σ2

√
k′ eiℓ(α−α∗)

�
dr

√
re− 2r2

σ2 Jℓ(k′∗r)Jℓ(k′r)
√

k′r (2.79)

which is a standard Hankel transform given in [42]

p[ℓ] = A2σ2

4 eiℓ(α−α∗)e− σ2k′2
4 − 2δ2

σ2 Iℓ(
σ2|k′|2

4 ) (2.80)

Figure 2.4 shows this OAM distribution function for various combinations of σ and δ.
It demonstrates quite clearly a central point of this chapter any wavefunction can be
seen as a superposition of vortex waves. This is useful to know, since these vortices will
each individually interact with matter and fields as vortex states, as we will see in later
chapters where it is shown that planewaves interact in an unintuitive or unexpected way
with rotating media/frames of reference. A particularly interesting example of this is
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2.5 Transverse and Longitudinal Orbital Angular Momentum

the rotary drag effect, in which an image imprinted on a beam appears to rotate or drag
along as it passes through a rotating medium [56]. This is the cylindrical equivalent
of the Fizeau effect. In the rotating frame of reference φ′ → φ + Ωt each OAM mode
becomes doppler shifted E ′ → E + ℓh̄Ω, causing each mode to experience a different
refractive index in the medium. This can ultimately lead to spatial separation of the
different modes that make up the total wavefield.

In addition figure 2.4 shows that the central vortex mode of a planewave with a Gaussian

Figure 2.4: OAM distribution function of a planewave with a Gaussian envelope accord-
ing to equation 2.80 for various different coherence lengths, σ and offsets
from the cylinder axis δ. In insets (a) and (b) the coherence length is fixed
to 5 and 20 respectively, while in (c) and (d) δ has been fixed to 0 and 100
respectively. The momentum ky is −1 in all cases.

envelope has a mode number equal to the OAM expectation value of the wave. In fact
we will now qualitatively show that this Gaussian planewave can also be seen as a part
of the vortex state. In figure 2.5 the real part of the Gaussian planewave (eq. 2.69) and
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its dominant cylinder mode (eq. 2.78) are compared for two different momenta ky = 2
and ky = 4. One can see that the Gaussian planewave makes up a fragment of the

Figure 2.5: Comparison between the real part of a vortex state with ℓ = 20 (a) and a
planewave with Gaussian envelope and a momentum ky = 2 (b). In addition
a vortex state with ℓ = 40 (c) is compared to a Gaussian planewave with
ky = 4 (d). The planewaves are calculated using equation 2.69, while the
cylinder waves are determined using 2.78. The coherence length is chosen to
be σ = 2 and the offset from the cylinder axis is δ = 10

vortex wave. In fact one can imagine that one could construct the entire vortex ring
using a superposition of such planewaves. This should come as no surprise given our
knowledge on Fourier analysis. It will be the basic principle behind producing vortex
states using the coherent averaging method. This demonstrates that the claims that
extrinsic (transverse) OAM has nothing to do with wave structure and is therefore not
quantum are therefore false. We have seen that it is simply a matter of perspective.
Extrinsic OAM can just as well be seen as a type of wave structure. In addition these
states can be seen as a superposition of many vortex states, each with its own quantized
OAM.

A particularly useful Gaussian planewave superposition to look at and construct is a
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2.5 Transverse and Longitudinal Orbital Angular Momentum

pair of wavepackets propagating on opposite sides of the cylinder with some phase shift
β between them

ψt,2 = A√
2

(eiβ/2e− (x−δ)2−y2

σ2 + e−iβ/2e− (x+δ)2−y2

σ2 )eikyy (2.81)

Analogous to the analysis from before the azimuthal Fourier transform of this wavefunc-
tion is

ψℓ
t,2(r) =

√
2Ae− r2+δ2

σ2 Jℓ(k′r) cos(ℓα + β/2) (2.82)
and therefore the OAM distribution function is given by

p[ℓ] = A2σ2

2 e− σ2k′2
4 − 2δ2

σ2 Iℓ(
σ2|k′|2

4 )| cos |2(ℓα + β/2) (2.83)

This OAM distribution function is shown in figure 2.6, for β = 0, β = π and various
values of σ. The OAM of this particular wavefunction is intrinsic, albeit zero on average,

Figure 2.6: OAM distribution function for a superposition of two Gaussian planewaves
propagating on opposite in the same direction on opposite sides of the cylin-
der axis (eq. 2.83), for various coherence lengths σ. δ is fixed to 100 and
ky = 1. In inset (a) there is a phase shift of β = π between the two wavepack-
ets while in (b) the phase shift is zero.

< L̂z >= 0. However, as seen in the figure, when δ > σ equation 2.83 always exhibits
a double peak structure (ℓ = ±kyδ), which remain equidistant for all translations of
the frame of reference. So the OAM difference is always Δℓ = 2kyδ, regardless of the
observer. Hence such a wavefunction can be useful for experiments that probe large
amounts of OAM. The double peak structure remains for all σ in case β = π, however
when σ is much larger than δ, the peaks move to larger |ℓ|. Due to the sin2 function,
when β = π, the ℓ = 0 mode is always eliminated for all combinations of ky, σ and δ.

Finally we will explore the longitudinal case, i.e. the special case where ky = 0. kz

can take on any value as it doesn’t affect L̂z. Figure 2.7, shows the OAM distribution
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function 2.83 for ky = 0, in the cases β = 0 and β = π, for various coherence lengths.
One can see that for β = 0 and short coherence lengths compared to the separation

Figure 2.7: OAM distribution function eq. 2.83, in the special case where ky = 0, δ = 100
(a) β = 0 and (b) β = π for various coherence lengths σ. Since ky = 0 the
OAM is longitudinal as long as kz is not also zero. For both β the OAM
amplitude is non-zero only for every other mode, as derived in the previous
section where it was shown that kx = ky = 0 implies that no neighboring
modes are present. In (a) only odd modes contribute, while in (b) only even
modes make up the wavefunction.

parameter δ, many modes contribute to the wavefunction, while as the coherence length
increases the number of modes decrease. The state becomes purer. We note that all
non-zero modes have an even mode number. As was shown in the previous section
neighboring modes are not allowed since this would imply transverse propagation. In
the case of β = π only odd modes contribute to the wavefunction.

A particularly interesting wavefunction which will find much use later on is found in
the case β = π and δ < σ, such a wavefunction may be approximated by an equal
superposition of ℓ = 1 and ℓ = −1. In other words a superposition of a right and left
twisting state. Analogous to polarization optics, this can be seen as the OAM equivalent
of a linearly polarized state, which is quite distinct from the ℓ = 0 state, despite having
the same OAM expectation value. The principle behind such linear OAM state is shown
in the figure 2.8 Here a left rotating state is subtracted from a right rotating state
to produce a linearly polarized (sine oscillation) state. Such a linearly polarized state
can be approximated by a superposition of two Gaussian wavepackets with opposite
amplitudes on opposite sides of the cylinder axis (eq. 2.81). If σ is chosen much larger
than δ, figure 2.7 and equation 2.83 demonstrate that this very closely approximates
a linearly polarized OAM state with |ℓ| = 1. As will be shown later, such states are
remarkably simple to produce using existing neutron optics and are therefore a good
starting point to study OAM dependent interactions.
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2.5 Transverse and Longitudinal Orbital Angular Momentum

Figure 2.8: Illustration of the construction of a linearly polarized OAM state. A clock-
wise rotating state (a)/(d) has a counter clockwise rotating state (b)/(e)
subtracted from it, producing a linearly polarized state (c)/(f). The top
insets (a)-(c), show the imaginary parts of the respective transverse wave-
function, while the bottom insets (d)-(f) show the absolute values, which is
directly related to the expected intensity pattern.

We have shown that transverse and longitudinal OAM can both have extrinsic and in-
trinsic components. Moreover, it has been demonstrated that while extrinsic transverse
OAM mimics classical angular momentum it can still be seen as related to wave structure
and is "built" using quantum states, since in fact all wavefunctions can be described using
superpositions of quantum vortex states. Finally we introduced a few useful wavefunc-
tions which to an extent exhibit tuneable OAM. In addition in this chapter we explored
the basic properties of the OAM operator and its close relatives. It was shown that
the Eigenfunctions of the OAM operator are also Eigenfunctions of the Schroedinger
equation in free space. The Fourier transform and its properties in cylindrical coordi-
nates were explored. This led us to define the very useful OAM distribution function
2.32. Finally we found that in some cases the OAM expectation value is invariant under
spatial translations. In these cases we speak about intrinsic OAM. However it was also
argued that this is not a necessary condition for the "quantumness" of OAM. After this
general introduction to OAM we will now move on to the OAM generation and detection
methods that were explored, during this project.
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This chapter describes the interaction between neutrons and external static electric
fields, known as the Schwinger interaction [57]. In particular we will find that this
coupling produces spin flips in the neutron, while also preserving the total angular
momentum of the neutron, thereby generating OAM [58, 35]. We will find that the
electric field strength required to generate large amplitudes of longitudinal OAM states
is prohibitively large. As a result we will dive into the theory of dynamical diffraction
[59, 60, 61], which describes the propagation of waves in periodic potentials such as in
perfect crystals. In particular we will look into integrating the electric potential produces
by the positively charged nuclei into the formalism of dynamical diffraction [62]. This
is because in non-centrosymmetric crystals the nuclear electric field, which is several
order of magnitude larger than that which can be produced in the lab, can be exploited,
leading to easily measurable changes in neutron spin and even spin flips [63, 64, 65].
we will demonstrate that previous experiments with perfect quartz, which predate the
concept of neutron vortex states, produced linear OAM states, defined in the last chapter
as an equal superposition of ℓ = 1 and ℓ = −1 [66, 36]. Finally we report on our own
measurement carried out at a test beamline of the reactor institute of the Technical
University Delft, looking at OAM generation in Bragg and Laue diffraction from perfect
crystal quartz.

3.1 Neutrons in Electric Fields

Despite being electrically neutral, the magnetic moment of a moving neutron can still
couple to an external electric field. This is due to the relativistic relationship between
electric and magnetic fields. An observer moving through a lab frame, with static charges
producing electric fields, will see moving charges (we.e. currents) producing magnetic
fields [67]. If the observer is moving much slower than the speed of light v << c, the
magnetic field seen by the observer B′ can be expressed in terms of the electric field in
the lab frame E as follows

B′ = v × E
c2 (3.1)

Hence neutrons which possess a magnetic moment µ̂ experience a potential equal to

V̂ = − µ̂ · (p̂ × E)
mc2 (3.2)
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conversely in the lab frame a moving magnetic dipole appears to exhibit an electric
dipole moment

d̂′ = v × µ̂

c2 (3.3)

which leads to the exact same potential in the lab frame as in the moving frame of the
neutron (eq. 3.2). Using this potential we can write down the Schroedinger equation

(− h̄2

2m
∇2 − h̄γ

2mc2 σ̂ · (p̂ × E))ψ = Eψ (3.4)

we have used that µ = h̄γ
2 σ, with γ the gyromagnetic ratio of the neutron and σ̂ the

Pauli spin matrices. We will simplify our analysis by setting h̄ = 1 and assuming a static
electric field E = Ez ẑ. Then we can rewrite the differential equation as

(−∇2 − γEz

c2 σ̂ · (p̂ × ẑ))ψ = ϵψ (3.5)

with ϵ = 2mE. We will now follow the solution given in [35].

We start by explicitly writing out the dot and cross products in the above differential
equation. This leads to

−∇2ψ̂± + iC( ∂

∂y
± i ∂

∂x
)ψ∓ = ϵψ± (3.6)

Here the wavefunction ψ is described by a two dimensional spinor ψ =
�

ψ+(x, y, z)
ψ−(x, y, z)

�
,

where the basis has been chosen such that the index ± refers to the spin state parallel or
anti-parallel to the z-axis respectively. The coupling constant C is given by C = γEz/c2.
Next the Fourier transform in the x − y plane is taken which reduces the coupled second
order partial differential equation to an ordinary coupled differential equation

−( ∂2

∂z2 − k2
x − k2

y)ψ̂± + iC(iky ∓ kx)ψ̂∓ = ϵψ̂± (3.7)

which when transformed to cylindrical coordinates becomes

−( ∂2

∂z2 − k2
r)ψ̂± ∓ iCkre

∓iθψ̂∓ = ϵψ̂± (3.8)

At this point we note that in reciprocal cylindrical coordinates the potential term of the
Schroedinger equation appears to contain the OAM raising and lowering operator e±iθ

(eq. 2.10). In this way the reciprocal space potential offered by a static electric field
mimics that of a quadrupole in real space [30].

We can diagonalize equation 3.8, by transforming the wavefunction spinor ψ̂ = T ψ̂′

and multiplying eq. 3.8 by T −1 from the left.

[−( ∂2

∂z2 − k2
r + ϵ) ∓ Ckr]ψ̂′

± = 0 (3.9)
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For this particular diagonalization T is given by
�

ie−iθ −ie−iθ

1 1

�
. The general solu-

tion to Eq. 3.9 is simply a superposition of a forward and backward propagating plane
wave for each spin state

ψ̂′ =
�

t̂1e
ik+z + t̂2e

−ik+z

t̂3e
ik−z + t̂4e

−ik−z

�
(3.10)

with k± =
�

ϵ − k2
r ± Ckr. The amplitudes can be deduced from the boundary con-

ditions. If we assume that the spatial extent of the electric field is semi infinite i.e.
constant on the domain 0 < z < ∞, we can set the amplitudes of the backward propa-
gating waves, t̂1 and t̂3, to zero. The general solution of the untransformed wavefunction
ψ̂ is simply found by applying the transformation T ψ̂′.

ψ̂ =
�

ie−iθ[t̂2e
−ik+z − t̂4e

−ik−z]
t̂2e

−ik+z + t̂4e
−ik−z

�
; z > 0 (3.11)

To solve for the values of t̂2 and t̂4 we must specify the incident wavefunction impinging
on the electric field boundary. For this we use a planewave of arbitrary amplitude,
such that later we can produce any type of wavefunction using as superposition of our
solutions. Hence in real space the incident wavefunction is given by

ψI
± = f±(r, φ)e−ikzz; z < 0 (3.12)

and therefore in reciprocal space we can write

ψ̂I
± = f̂±(kr, θ)e−ikzz; z < 0 (3.13)

using these we may express the boundary conditions used to solve for t̂2 and t̂4

ψ̂±(kr, θ, z = 0) = f̂± + r̂±

ψ̂±,z(kr, θ, z = 0) = ikz(r̂± − f̂±)
(3.14)

The subscript z here denotes the first partial derivative in z, while r̂± denotes the
transverse wavefunction amplitude of the wave reflected at the boundary:

ψR
± = r±(r, φ)eikzz; z < 0 (3.15)

To determine the transmitted and reflected amplitudes we rewrite the boundary value
problem as a simple linear algebra problem

���
1 −1 1 0
1 1 0 −1

k+ −k− −kz 0
k+ k− 0 kz

���
���

t̂2
t̂4

ir̂+eiθ

r̂−

��� =

����
−if̂+eiθ

f̂−
−ikzf̂+eiθ

kzf̂−

���� (3.16)
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By inverting the matrix we can find the transmission and reflection amplitudes

t̂(2
4) = ∓ikzf̂+eiθ + kzf̂−

(kz + k±)

r̂± = ±(k2
z − k+k−)f̂± ∓ ikz(k+ − k−)e∓iθf̂∓

(k+ + kz)(k− + kz)

(3.17)

which leads us to the following solution for the transmitted waves

ψ̂± = kzf̂± ± ikzf̂∓e∓iθ

(kz + k+) e−ik+z + kzf̂± ∓ ikzf̂∓e∓iθ

(kz + k−) e−ik−z (3.18)

Here one can see that the spin flipped component of the wavefunction also has its OAM
raised/lowered, confirming the assertion that the total angular momentum J = L + S
of the neutron is conserved. In section 2.3.3 we demonstrated that this raising/lowering
operation being carried out in reciprocal space increases/decreases the OAM expectation
value in real space by one unit of h̄, however it is not equivalent to applying the same
raising/lowering operator in real space. So it is important to properly invert the two
dimensional Fourier transform to obtain the real space wavefunction. Applying the
conjugated version of eq. 2.26 to eq. 3.18 leads to

ψ± =
�

ℓ

i−ℓkzeiℓφ
� ∞

0

 f̂ ℓ
± ± if̂ ℓ±1

∓
(kz + k+) e−ik+z + f̂ ℓ

± ∓ if̂ ℓ±1
∓

(kz + k−) e−ik−z

 Jℓ(krr)krdkr (3.19)

3.1.1 Longitudinal OAM Generation in Transmission Geometry

We begin by looking at a special case where the transmitted beam acquires OAM in
the longitudinal direction . The simplest case to explore would be an incident wave
described by a Bessel beam with definite OAM (i.e. f̂± = b±δ(kr − kρ)/kre

iℓθ with b±
a complex spinor describing the initial spin state and ϵ = k2

z + k2
ρ). In section 2.2 we

showed that Bessel functions are Eigenfunctions of the Schroedinger equation, making
them a sensible option to explore. We start by looking at the case where the incident
Bessel beam carries no OAM. In this case the ℓ = 0 and |ℓ| = 1 components of the real
space wavefunction in the electric field are given by

ψ0
± = kzb±J0(kρr)( e−i

√
k2

z+Ckρz

(kz +
�

k2
z + Ckρ)

+ e−i
√

k2
z−Ckρz

(kz +
�

k2
z − Ckρ)

)

ψ1
± = ±kzb∓J1(kρr)( e−i

√
k2

z+Ckρz

(kz +
�

k2
z + Ckρ)

− e−i
√

k2
z−Ckρz

(kz +
�

k2
z − Ckρ)

)
(3.20)

where ψ0
± and ψ1

± are the components without and with OAM respectively, such that
ψ± = ψ0

± + e∓iφψ1
±. For a collimated beam geometry we may use kρ = kz tan(α) ≈ kzα,

48



3.1 Neutrons in Electric Fields

where α is the beam divergence. Furthermore if Ckρ is sufficiently small we may linearize
the square root terms in equation 3.20 and obtain a much simpler expression for the
transmitted wavefunction.

ψ± = [b± cos(γEzα

2c2 z)J0(kρr) ± b∓ sin(γEzα

2c2 z)e∓iφJ1(kρr)]e−ikzz (3.21)

Since in this case the OAM of each individual spin state can be described by a pure
OAM state we can conclude that the OAM is intrinsic as shown in section 2.4. From
this expression one can deduce that the beam enters a fully "twisted" state (i.e. ℓ = ±1)
once the voltage drop V = Ezz experienced by the neutron is

V = πc2

γα
(3.22)

Hence an electric longitudinal OAM generator could consist simply of a parallel plate
capacitor, with the surfaces of the plates normal to the beam. As indicated by eq. 3.22
the efficiency of such a device would be wavelength independent, making it a broad-band
OAM generator. The only free parameter is the beam divergence α. Realistically if the
beam divergence is one degree this results in a required voltage drop of 88 GV , which
cannot be produced in the lab.

The solution explored so far is valid for a single Bessel beam. However Bessel functions
are not normalizable [68] and therefore have infinite coherence, making them unphysical.
In a realistic setup the incident wave can always be expressed as a normalizable super-
position of Bessel beams, which has finite coherence. This superposition interferes and
results in damping of OAM production, due to dephasing. Using eq. 3.18 we can calcu-
late the OAM distribution function (eq. 2.32) of the transmitted wave for any transverse
momentum distribution |f̂±|2 and extract the probability of finding the neutron in the
ℓ = ±1 state

A∓1
± = 2π

�
drkr|ψ̂∓1

± (kr)|2 (3.23)

These probabilities are shown in figure 3.1 for the most common divergence profiles,
assuming that the incident wave is polarized along the + direction (i.e. b+ = 1 and
b− = 0) and carries no OAM. Here we see dephasing effects which cause the contrast of
the oscillations to wash out as the wave penetrates deeper into the electric field. As the
transverse wavelength spread is decreased the dephasing effects are also reduced. This is
analogous to dephasing seen in magnetic spin echo instruments, due to the longitudinal
wavelength spread [69]. Also in this case, where we consider incident waves that can
be described as superpositions of Bessel beams in the ℓ = 0 mode, the OAM can be
considered intrinsic since once again if the incident wave is purely in the ℓ = 0 state,
then the spin flipped state will be purely in the ℓ = 1 state, hence the OAM is pure and
therefore intrinsic.

The voltage constraints, however, demonstrate that intrinsic longitudinal OAM states
will not be produced using standard lab equipment. Hence we will continue to explore
other geometries in which OAM could be generated using electric fields.
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Figure 3.1: For various common collimator types such as two identical pinholes (left), a
large exit and a comparatively small pinhole (middle) and an annulus with
pinhole (right), we show the possible beam paths through a hypothetical
instrument (top) and the respective divergence profiles (middle). The paths
with the lowest divergence are drawn as dashed orange arrows, while the
maximum divergence paths are shown in solid green. The divergence profiles
are used as |f+|2(kr) in equation 3.23 to determine the probability of finding
the particle in the l = 1 OAM state as a function of the z position in an
electric field (bottom). The parameters are chosen such that kz = 1, ϵ ≈ k2

z

and C = 0.1. We note that that in a real instrument these divergence profiles
might represent the incoherent average of all possible incident wavefields and
not the actual transverse incident wavefield of a single neutron.



3.1 Neutrons in Electric Fields

3.1.2 OAM Generation in Reflection Geometry

Next we consider waves interacting with an electric field interface at grazing incident
angles. This results in a more pronounced coupling, due to a larger kr and a smaller
value for kz. The OAM carried by the transmitted and reflected waves in this case is
quasi-transverse to the wavevector k⃗. Since the quantization axis of the OAM is normal
to interface, parallel to the electric field, the incident wave must be described by an
infinite superposition of OAM modes. Nonetheless the mean OAM of the transmitted
and reflected waves can be raised or lowered by one unit of h̄ with respect to the incident
OAM. The reflection probability |R±|2 can be calculated using eq. 3.17

|R±|2 =
�

dkydkx|r±|2 (3.24)

This reflectivity, normalized to the total flux (Reflection + Transmission) is shown as a
function of incident angle in Fig. 3.2 for an electric field of 1010V/m (found in electric
double layers [70, 71]), a neutron wavelength of 2 Å and an initial spin aligned along the
−z direction. As demonstrated previously OAM generation occurs in the flipped spin

Figure 3.2: Reflection (a) and transmission probabilities according to equation 3.24 as-
suming f̂+ = 0 and f̂− = 1. A wavelength of 2 Å and an electric field of
1010V/m are assumed. The blue solid curve corresponds to a spin flip reflec-
tion/transmission which generates OAM, while the red dashed curve shows
the non spin flip reflection/transmission probability.

state (+z) to conserve the total angular momentum of the neutron. From the figure,
we can deduce the maximal reflectivity of the spin flipped state occurs between 0.0005
and 0.0015 degrees incident angle. Though at these angles there is still a strong mixing
with the non-spin flip state |R−|2 which does not carry OAM. This can be filtered out
either by spin filtering or by choosing a higher angle of reflection. The combination of
the relatively low spin flip probability and the small angular acceptance, likely make this
OAM generation technique unfeasible.
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3 Electric Fields as OAM Generators

3.1.3 Transverse OAM Generation in Transmission Geometry

In this subsection we explore in more detail transverse OAM generation in a transmission
geometry. In this geometry the flux limitation encountered in the last subsections can be
overcome. We consider transmission through a transversely polarized electric field which
leads to the generation of transverse spin.OAM coupled states. To demonstrate this we
consider the time dependent Schroedinger equation for a neutral spin 1/2 particle in an
electric field

[−∇2 − γ

c2 σ⃗ · (p⃗ × E⃗)]ψ = −i
∂

∂t
ψ (3.25)

Again we will assume that the electric field is polarized along the z-direction. However
this time we will consider a field which extends infinitely in space. To reduce the problem
to an ordinary differential equation we apply an unbounded Fourier transform to the
spatial coordinates. In cylindrical coordinates this leads to

ϵψ̂± ∓ iCkre
∓iθψ̂∓ = −i ∂

∂t
ψ̂± (3.26)

ϵ now denotes the kinetic energy parameter k2
r + k2

z . Once again we diagonalize this set
of equations using the transform ψ̂ = T ψ̂′

[ϵ ∓ Ckr]ψ̂′
± = −i ∂

∂t
ψ̂′

± (3.27)

Applying the initial conditions ψ̂±(t = 0) = â±(kr, θ, kz) we can determine the homoge-
neous solution of equation 3.26.

ψ̂± = eiϵt[â± cos(Ckrt) ± â∓ sin(Ckrt)e∓iθ] (3.28)

which appears almost equivalent to equation 3.21. If the wave propagates along the
y-direction the value of kr, which may be approximated by ky is a factor 102 −103 larger
than in the longitudinal case (equation 3.21). Hence the required electric field integral
to raise or lower the mean OAM is reduced to a more practical level. The incident wave
in this case must be described by an infinite superposition of transverse OAM modes.
Upon being transmitted through an ideal beam twister device the mean ℓ value of this
superposition will be raised or lowered by one. Here we will assume that â± can be
approximated by a Gaussian. The standard deviation in kx direction is expressed as σx,
while the standard deviation in ky is σy. The reciprocal space amplitudes can then be
written as

â± = e
− (ky−k′

y).2

σ2
y e

− k2
x

σ2
x (3.29)

,with k′
y, the mean momentum in the y-direction. In Fig. 3.3 we show one such Gaussian

wavepacket multiplied by the OAM raising operator transformed to real space. The
wavepacket with transverse OAM appears to be displaced along the transverse axis,
while along the longitudinal axis the wavepacket is shifted by π/2. From fig. 3.3 it
is clear that the transverse OAM generated by the Schwinger interaction is extrinsic,
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3.1 Neutrons in Electric Fields

Figure 3.3: Surface plots of the real parts of Gaussian wavepackets in real space, with
k′

y = 1 and σ2
x = σ2

y = 0.1 carrying (a) no orbital angular momentum and
(b) one unit of transverse orbital angular momentum.

since it can be understood simply as a displacement of the wavepacket. To be precise
the displacement is such that one unit of OAM is generated i.e. pΔx = ±h̄. Intrinsic
transverse OAM can be produced if the electric field is co-moved with the neutron. In
this case k′

y goes to zero in the frame of the applied field:

â′
± = e

− ky.2

σ2
y e

− k2
x

σ2
x (3.30)

and the raising/lowering operator is applied to this amplitude. After the field induces a
π flip the reciprocal wavefunction can then be described in the lab frame as

ψ̂± = ±â′
∓e∓iθeiϵt ∗ δ(ky − k′

y) (3.31)

and hence the real space wavefunction is simply

ψ± = ±eiϵt
�

dkxdkyâ′
∓e∓iθeikxxei(ky−k′

y)y (3.32)

The convolution with the delta function has been taken into the kernel of Fourier trans-
form. An example real space wavefunction with raised OAM, assuming a Gaussian
reciprocal amplitude â′

±, is shown in figure 3.4 (b). In this case the transverse OAM is
intrinsic and mimics the characteristic forked structure we saw previously in figure 2.3
(section 2.5). The main problem with this approach of using a co-moving electric field to
produce intrinsic transverse OAM, is that in this case the electric field cannot couple to
a large momentum k′

y but must, like in the longitudinal case, couple to the momentum
spread in x and y direction. This means that the coupling strength is reduced to a level
comparable to the longitudinal case. The only advantage that remains in the transverse
case is that a relatively low voltage, which can correspond to a large electric field, can be
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3 Electric Fields as OAM Generators

Figure 3.4: Real parts of (a) a Gaussian wavepacket without OAM according to the
Fourier transform of the reciprocal wavefunction eq. 3.29, compared to (b)
the same reciprocal wavefunction with raised OAM, produced using a co-
moving electric field. The wavefunction is calculate using 3.32. In both
cases k′

y = 1 and σx = σy = 0.1

applied over a larger distance, leading to a higher field integral. Even then, however, it is
technically impossible to produce a field integral with a co-moving source corresponding
to the required 10 − 100 GV . Instead we need to find a method which either amplifies
the electric field, the transverse momentum spread and/or slows down the neutron. In
the next section we explore dynamical diffraction, where all of these conditions can be
fulfilled. For now the most important take-away from this section on OAM generation
in electric fields is that the Schwinger interaction generates OAM in the spin flipped
state by angular momentum conservation.

3.2 Theory of Dynamical Diffraction

The theory of dynamical diffraction describes interactions with perfectly periodic poten-
tials, such as those found in perfect crystals [59, 60, 61]. This description is necessary to
make accurate predictions of wave propagation if a momentum component of the particle
matches the lattice spacing. As a result, dynamical diffraction has been an indispensable
tool for describing neutron and x-ray perfect crystal interferometers [72, 73, 74]. Our
interest derives from the large electric fields present in crystals. In particular the electric
field between a nucleus and the electron shell. The electromagnetic potential seen by a
bound Hydrogen electron is −13.6 eV, while the diameter of the electron shell is about
1Å. As a result the electric field between the nucleus and the electron corresponds to
∝ 1011 V · m−1. If this nuclear field can be exploited it would easily be sufficient to pro-
duce a highly efficient "beam twister" as shown in the previous section. In most crystals
the average electric field seen by neutrons is zero, due to symmetry. However, in crys-
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3.2 Theory of Dynamical Diffraction

tals which lack a center of symmetry (non-centrosymmetric crystals) this is no longer
the case and neutrons see a net non-zero field which can be exploited. Furthermore,
we will see that according to the theory of dynamical diffraction, neutrons diffracted
from a perfect crystal in Laue geometry slow down as the propagate through the crystal
[75]. The most extreme case occurs at a Bragg angle of 90 degrees, where the particle
completely stops propagating in the crystal. Thus by choosing a Bragg angle close to
90 degrees we can produce large amplitudes of the ℓ = ±1 state as it exploits both the
large electric field present in the crystal and the long interaction time that follows from
the low propagation velocity.

In the following subsections we will begin by introducing a bare bones version of the
dynamical theory of diffraction, following mostly [72], sufficient for calculating reflected
and transmitted wavefunctions in Laue and Bragg geometry. Then following [61] and [62]
we will add the Schwinger potential and spin to the formalism. Finally using our model
we will explicitly calculate the wavefunctions produced from diffraction from perfect
quartz in reflection and transmission in both Bragg and Laue geometry and determine
the OAM carried by these wavefunctions.

3.2.1 Basic Dynamical Diffraction

The simplest theory of diffraction, the kinematic theory, is quite accurate when it comes
to determining diffraction angles and the derivation is quite didactic. It leads to the
famous Bragg condition [76]

nλB = 2d sin(θB) (3.33)

where d is the crystal lattice spacing and θB is the Bragg angle. However since the
kinematic theory does not properly model multiple scattering from every atom within the
lattice it fails to accurately describe more subtle effects. Examples include refraction and
specular reflection due to the crystal potential and anomalous absorption effects, where
an otherwise absorbing crystal becomes more transparent close to a Bragg angle in Laue
geometry, since the wavefield can slip through the lattice planes without encountering
any atoms [77, 78]. Furthermore the effect of the nuclear electric field which we wish
to study cannot be properly accounted for. Hence we turn to the dynamical theory of
diffraction, which properly describes these phenomena. We will for the first part just
take into account nuclear scattering, mainly follow the approach described in [72].

We start by describing the strong nuclear interaction of thermal and cold neutrons with
nuclei via the Fermi pseudo potential [79]

V̂ = 2πh̄2b

m
δ(r) (3.34)

Generally a complex number, b, is the coherent neutron scattering length. The real
part represents coherent scattering, while the imaginary part can be understood as the
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3 Electric Fields as OAM Generators

absorption part of the scattering length. In a macroscopic target the total potential one
simply sums over all atoms

V̂ = 2πh̄2

m

�
j

bjδ(r − rj) (3.35)

with rj the position of the jth atom. If the target is a perfect crystal, that is the atoms
are ordered in a periodic lattice, the position is separable rj = Rj + ri, with Rj the
position of the jth unit cell

Rj = Ha1 + Ka2 + La3 (3.36)

with an the basis vectors of the unit cell shown in figure 3.5 and H K and L integers.
ri is the position of the ith atom within the unit cell, which is the same for all unit cells.
These vectors are all visualized in figure 3.5. Taking the Fourier transform of eq. 3.35
over the crystal volume, 1

V
�

V drV e−ikr, allows us to view the potential in momentum
space

V̂ = 2πh̄2

mV
�

j

e−ik·Rj
�

i

bie
−ik·ri (3.37)

with V the total crystal volume, which can be expressed in terms of the lattice volume
Vl and the number of cells Nl: V = NlVl. In the case of a macroscopic crystal where
we must sum over a very large number of cells, we note that the first summation in eq.
3.37 (known as the lattice factor) is only non zero if k · Rj is a multiple of 2π, this is by
definition the case if k is equal to the reciprocal lattice vector

G = hg1 + kg2 + lg3 (3.38)

with h, k and l integer, and gi are related to the basis/lattice vectors ai by

g1 = 2π

Vl

a2 × a3; g2 = 2π

Vl

a3 × a1; g3 = 2π

Vl

a1 × a2 (3.39)

Using the fact that the lattice factor is zero for macroscopic crystals if k ̸= G we can
rewrite the potential eq. 3.37

V = 2πh̄2

mVl

�
G

δ(k − G)
�

i

bie
−ik·ri (3.40)

We will now invert the Fourier transform

V (r) =
�

dkeik·r 2πh̄2

mVl

�
G

δ(k − G)
�

i

bie
−ik·ri =

�
G

eiG·r 2πh̄2

mVl

Fhkl (3.41)

Here we have defined the structure factor

Fhkl =
�

i

bie
−iG·ri (3.42)
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3.2 Theory of Dynamical Diffraction

Figure 3.5: Schematic representation of the structure of a quartz crystal [80]. rj denotes
the position of the jth atom, which can be separated into Rj +ri, with Rj the
position of the jth unit cell (drawn as a black rectangle) and ri the position
of the ith atom in a cell. a1 and a2 are the basis vectors of the unit cell.

Finally defining the crystal or lattice potential

V (G) = 2πh̄2

mVl

Fhkl (3.43)

we can express the real space potential quite compactly

V (r) =
�
G

eiG·rV (G) (3.44)

With the potential in this form we can begin to solve for the wavefunction. The Bloch
Ansatz

ψ = eik·ru(r) = eik·r �
G

u(G)eiG·r =
�
G

u(G)ei(G+k)·r (3.45)

is an established approach to finding solutions to the Schroedinger equation with a
periodic potential [81]. Before inserting our Ansatz into the Schroedinger equation it is
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useful to simplify the expression V (r)ψ

V ψ =
�
G′′

eiG′′·rV (G′′)
�
G′

u(G′)ei(G′+k)·r =
�
GG′

V (G − G′)u(G′)ei(k+G)·r (3.46)

where we have defined G = G′′ +G′. Now we can insert our Ansatz into the Schroedinger
equation to determine the amplitude terms u(G)

�
G

h̄2

2m
(k+G)2u(G)ei(k+G)·r+

�
GG′

V (G−G′)u(G′)ei(k+G)·r = E
�
G

u(G)ei(G+k)·r (3.47)

we then group the terms with the same summation index together
�
G

[ h̄2

2m
(k + G)2 − E]u(G)ei(k+G)·r = − �

GG′
V (G − G′)u(G′)ei(k+G)·r (3.48)

since each planewave component must be equal we can drop the summation over G, this
is equivalent to the Fourier transform rule�

dxf(x)eikx =
�

dxg(x)eikx → f(x) = g(x) (3.49)

Hence it follows

[ h̄2

2m
(k + G)2 − E]u(G) = − �

G′
V (G − G′)u(G′) (3.50)

From here on out we will follow the two beam approximation in which we assume only the
forward (transmitted) beam (G = 0) and the diffracted (reflected) beam (G = H, with
H the specific reciprocal lattice vector under consideration) have a non-zero amplitude.
In this case we can rewrite 3.50 as a simple matrix vector problem�

h̄2

2m
k2 − E + V (0) V (−H)

V (H) h̄2

2m
(k + H)2 − E + V (0)

� �
u(0)
u(H)

�
= 0 (3.51)

The solutions of u are only non trivial if the determinant of the matrix is zero. From
this determinant

( h̄2

2m
k2 − E + V (0))( h̄2

2m
(k + H)2 − E + V (0)) = V (H)V (−H) (3.52)

we can derive the dispersion relation via a perturbation approach where we allow k to
vary by a small amount normal to the crystal boundary around the incident wavevector
k0:

k = k0 + |k0|
cos(γ)ϵn → |k|2 ≈ |k0|2(1 + 2ϵ) (3.53)

with n the unit vector normal to the crystal surface and γ the angle between n and k0.
We may then solve eq. 3.52 for the perturbation parameter ϵ

(2ϵ + V (0)
E

)((2
b
ϵ + a + V (0)

E
) = V (H)V (−H)

E2 (3.54)
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with a = H2

k2
0

+ 2k0·H
k2

0
and 1

b
= 1 + n·H

|k0| cos(γ) . The solutions to this quadratic equation in ϵ

are given by

ϵ1,2 = 1
4

−ab − V (0)
E

(1 + b) ±
�����

ab + V (0)
E

[1 + b]
�2

− 4b

��
V (0)

E

�2
+ a

V (0)
E

− V (H)V (−H)
E2

�
(3.55)

It follows that within the crystal there are two transmitted

ψT = eik0·r
�
ei k0ϵ1

cos(γ) n·ru1(0) + ei k0ϵ2
cos(γ) n·ru2(0)

�
(3.56)

and two reflected waves

ψR = ei(k0+H)·r
�
ei k0ϵ1

cos(γ) n·ru1(H) + ei k0ϵ2
cos(γ) n·ru2(H)

�
(3.57)

Next we can determine the relation between the reflected and transmitted amplitudes:

u1,2(H)
u1,2(0) = −

h̄2

2m
k2 − E + V (0)

V (−H) = −2ϵ1,2 + V (0)
E

V (−H)
E

= X1,2 (3.58)

The coefficients u1,2(0) follow from the boundary conditions, which depend on the ge-
ometry and the incident wavefield. For now we will assume that the incoming wave is
simply a planewave with arbitrary amplitude and momentum

ψI = u0e
ik·r (3.59)

Later we will then be able to determine the solution for any incident wave if we expand
our incident wave in terms of planewaves. As for geometry we will examine both Bragg
and Laue diffraction. For both geometries at the crystal surface r · n = 0, the sum of
the transmitted amplitudes must be equal to the incident wave amplitude

u1(0) + u2(0) = u0 (3.60)

Bragg Geometry

We start by determining the boundary condition given by Bragg geometry. Here the
lattice planes are roughly parallel to the crystal surface on which the external wave is
incident. This particular geometry is shown below in figure 3.6 It is quite clear that at
the back of the crystal there is no reflected wave. Hence it follows that the reflected
wavefield (eq. 3.57) at the end of the crystal r · n = D is zero. From this we can derive
our second boundary condition

X1u1(0)ei
k0ϵ1

cos(γ) D + X2u2(0)ei
k0ϵ2

cos(γ) D = 0 (3.61)
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3 Electric Fields as OAM Generators

Figure 3.6: Schematic representation of Bragg diffraction. The solid black lines denote
the crystal borders, while the dashed lines indicate lattice planes. The in-
cident, reflected and transmitted waves are colored green, red and blue re-
spectively. The Bragg angle θB is shown as the angle between the incident
wavevector and the lattice planes, while the angle γ indicates the angle be-
tween the surface normal, n, and the incident wavevector.

Using this and our universal boundary condition eq. 3.60 we can solve for u1 and u2

u1(0) = X2e
ik0ϵ2D

cos(γ)

X2e
ik0ϵ2D

cos(γ) − X1e
ik0ϵ1D

cos(γ)
u0 (3.62a)

u2(0) = − X1e
ik0ϵ1D

cos(γ)

X2e
ik0ϵ2D

cos(γ) − X1e
ik0ϵ1D

cos(γ)
u0 (3.62b)

With all the amplitudes determined we can calculate the reflectivity R and transmission
T

R = |ψR(r · n = 0)|2 (3.63a)
T = |ψT (r · n = D)|2 (3.63b)

Figure 3.7 shows the reflection and transmission probabilities experienced by a planewave
neutron under various incident angles close to the Bragg angle. These are called rocking
curves, since they are usually obtained by rocking a crystal through a neutron beam
with fixed momentum. The probabilities are calculated for quartz crystals of 100 and
200 micron thickness. In each case the (110) reflection (i.e. h = 1, k = 1 and l = 0)
is considered. Absorption is taken into account and amplified to show the effects of
absorption on diffraction. Both reflectivity and transmission are characterized by a
plateau, known as the Darwin Plateau, very close to the Bragg condition and oscillations,
known as Pendellösung oscillations, slightly further away from the Bragg condition.
Once sufficiently far from the Bragg condition these oscillations dampen out completely
and both transmission and reflectivity become constant. Absorption skews the rocking
curves. The width of the Darwin plateau for this particular reflection corresponds to
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3.2 Theory of Dynamical Diffraction

Figure 3.7: Bragg geometry reflection (blue) and transmission (red) probabilities against
rocking angle for a 2 Å neutron incident on the (110) plane of alpha quartz.
The crystal thickness is varied between 100 µm (a) and (c) and 200 µm (b)
and (d). Furthermore in figure (c) and (d) absorption is amplified by setting
the imaginary part of the scattering length of the oxygen atoms to −0.05
fm.

roughly 0.8", a typical number for thermal neutrons diffracted from perfect crystals. In
general the Darwin width may be approximated with the following formula [82]

Δθ = 2λ2
BFhkl

πV sin(2θB) (3.64)

which can be understood intuitively. We see that the Darwin width is proportional to
the structure factor Fhkl which is in turn proportional to the lattice potential. One can
imagine for small lattice potential, more lattice planes must contribute to the reflection,
due to the larger penetration depth into the crystal. As a result the angular range over
which constructive interference can be produced in the far field is reduced, resulting in
a smaller Darwin width. In a similar way the Bragg wavelength λ2

B is inversely propor-
tional to the neutrons kinetic energy. Low energies typically correspond to a stronger
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interaction with the crystal, resulting in a lower penetration depth. High energies there-
fore correspond to a larger penetration depth in the crystal, resulting in more lattice
planes becoming excited and contributing to the reflection. As explained before a large
number of excited point sources contributing to the reflection results in a more narrow
Darwin width.

Laue Geometry

We now move on to Laue geometry, where the lattice planes are roughly perpendicular
to the crystal surface on which the incoming wavefield impinges. The geometry is shown
in figure 3.8 Interestingly in Laue geometry when on Bragg condition, the crystal acts

Figure 3.8: Schematic representation of Laue diffraction. The solid black lines denote the
crystal borders, while the dashed lines indicate lattice planes. The incident,
reflected and transmitted waves are colored green, red and blue respectively.
The Bragg angle θB is shown as half the angle between the transmitted
and reflected wavevectors, while the angle γ indicates the angle between the
surface normal, n, and the incident wavevector.

as a waveguide for the incident wave, which propagates through the crystal along the
lattice planes by many reflections. In this geometry we note that contrary to the Bragg
case there is no reflected wave at the entry surface. This leads to the second boundary
condition in the Laue case

X1u1(0) + X2u(0) = 0 (3.65)

Combined with our universal boundary condition 3.60 we can derive the wave amplitudes
in the crystal for this geometry by elimination

u1(0) = X2

X2 − X1
u0 (3.66a)

u2(0) = − X1

X2 − X1
u0 (3.66b)
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and also the transmission and reflection probabilities

R = |ψR(r · n = D)|2 (3.67a)
T = |ψT (r · n = D)|2 (3.67b)

Figure 3.9 shows various rocking curves containing the reflection and transmission prob-
abilities experienced by a planewave neutron impinging on a crystal in Laue geometry
under various incident angles close to the Bragg condition. We see that in Laue diffrac-

Figure 3.9: Laue reflection (blue) and transmission (red) probabilities against rocking
angle for a 2 Å neutron incident on the (110) plane of alpha quartz. The
crystal thickness is varied between 100 µm (a) and (c) and 200 µm (b) and
(d). Furthermore in figure (c) and (d) absorption is amplified by setting the
imaginary part of the scattering length of the oxygen atoms to −0.05 fm.

tion close to the Bragg condition intensity is shuffled back and forth between the reflected
and transmitted beam. As the crystal thickness is increased these oscillations become
more dense as in the Bragg case. As a result for a realistic beam with non-zero diver-
gence about half of the incident intensity is reflected while the other half is transmitted.
When absorbing nuclei are present we find that the transmission probability may become
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larger, close to the Bragg condition (in our figure to the right of the Bragg condition),
compared to far from the Bragg condition when them beam isn’t diffracted. One way
to understand this is by recognizing that the forward and reflected waves in the crystal
interfere to produce two standing waves. One of the standing waves has its anti-nodes on
the lattices planes (i.e. on the nuclei), while the other has anti-nodes between the planes
[83, 74]. The first standing wave therefore has a higher probability of being absorbed,
while the other standing wave can "slip" through the lattice without being absorbed.
This leads to anomalous transmission. Since in Laue geometry the wave must passes
through the entire crystal, the neutron ends up interacting with far more nuclei. Intu-
itively, Laue geometry is therefore ideal to search for weak neutron/nuclear interactions.
In addition neutrons slow down in the crystal coming to a complete halt for Bragg angles
of 90 degrees, as is shown by the perturbation parameter ϵ1,2, eq. 3.56 and eq. 3.57 [75].
This allows for longer interactions times, amplifying weak interactions.

3.2.2 Adding Electric Fields to Dynamical Diffraction

To study OAM generation in dynamical diffraction we need to add the Schwinger term
to the potential 3.35. Since the Schwinger term is SU(2), we need to analyze our work
from the previous subsection, to verify that the steps taken to determine the perturbation
parameter ϵ1,2 and the wavefunction amplitudes u1 and u2, which now become spinors,
are valid for lattice potentials that can only be described using matrices. We will follow
the approaches given by [62] and [61], while sticking with the perturbation approach
used in the previous section where we assume that the momentum in the crystal can
be described by the incident wave momentum plus some perturbation, ϵ, parallel to the
surface normal. We will begin by examining the total potential in the crystal which
corresponds to the sum of the strong nuclear potential and the Schwinger term

V = 2πh̄2

m

�
j

bjδ(r − rj) + µ

mc2 σ · [p × E(r)] (3.68)

The electric field is given by

E = −∇
�

j

Zje

|r − rj| − �
k

e

|r − rk|

 (3.69)

with e, the electron charge, Zj the atomic number of the jth nucleus and rk the position
of the kth electron. The Fourier components of the potential V (G) are then given by

V (G) = 2πh̄2

mVl

[Fhkl +
�

i

(−2iγiσ · K × G
|G|2 )e−iG·ri ] (3.70)

with
γi = γe2

2mc2 Zi[1 − fi(G)] (3.71)
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where the index i refers to the ith atom in the unit cell, f(G) the electronic structure
factor of the relevant atom and K the momentum operator in reciprocal space which
we will approximate with the incident moment k0. We note that then V (G = 0) is
practically a scalar and commutes with all operators. In the previous section we did not
use the commutation property or the inversion of V for the perturbation parameter ϵ1,2,
hence we may safely assume that it can be calculated according to eq. 3.55 using the
potential 3.70. Afterwards when it comes to calculating the amplitudes u1,2(G) we need
to be more careful, since when we take neutron spin into consideration, which is necessary
when looking at the Schwinger interaction, these amplitudes must be described using
spinors. As a result we can no longer divide amplitudes by each other like we did in eq.
3.58. In addition since the perturbation parameter is now a matrix, the exponentials,
ei k0ϵ1,2

cos(γ) n·r, in eq. 3.56 and 3.57 are also matrices. We can begin by rewriting the equations
3.51 using matrices

M1,2u1,2(0) + V (H)u1,2(H) = 0 (3.72a)
V (−H)u1,2(0) + M ′

1,2u1,2(H) = 0 (3.72b)

with M1,2 = [2Eϵ1,2 + V (0)]I and I the identity matrix. It follows that the forward and
backward amplitudes are therefore related by

u1,2(H) = −V −1(H)M1,2u1,2(0) = X1,2u1,2(0) (3.73)

To determine the amplitudes u1,2(0) we need to apply the boundary conditions. The
universal boundary condition 3.60 is unchanged. Bragg and Laue geometries need to be
examined individually. At this point we note that to obtain a large non-zero Schwinger
effect in the dynamical theory of diffraction we require that V (H) ̸= V ∗(−H), since
otherwise the Schwinger term would not produce a polarization dependent change in
the perturbation parameter ϵ1,2. As a result the crystals we investigate must violate
Friedels law and therefore be non-centrosymmetric [84, 85]. For this reason we specif-
ically look at the [110] planes of quartz which lacks a center of symmetry. In addition
large perfect crystals of quartz are produced commercially. Finally before deriving the
spinor amplitudes of the reflected and transmitted waves in Bragg and Laue geometry it
is useful to define and visualize the relevant axes. For this we refer to figure 3.10 which
shows our definition of the spin axes, as well as the so called ρ axis, which will be used
later when deriving the OAM produced in diffraction.
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3 Electric Fields as OAM Generators

Figure 3.10: Three dimensional render depicting Bragg diffraction of a neutron (green)
by a crystal (white). The axes that define the spin operators σ are shown
in black, the surface normal in red and the so called ρ axis in blue. Rocking
represents a rotation of the surface normal towards or away from ρ, while
a rotation around the ρ axis is defined as tilting.

Bragg Geometry

We begin determining the transmitted and reflected wave amplitudes in the Bragg case.
In this geometry the second boundary condition stating that there is no reflected wave
at the back part of the crystal, eq. 3.61, can be expressed with SU(2) operators as

E1X1u1(0) + E2X2u2(0) = 0 (3.74)

with E1,2 = e
ik0ϵ1,2D

cos(γ) . Together with the universal boundary condition we can derive the
amplitudes for the Bragg case.

u1(0) = −(E1X1 − E2X2)−1E2X2u0 (3.75a)
u2(0) = −(E2X2 − E1X1)−1E1X1u0 (3.75b)

The reflectivity is practically unchanged compared to the case which ignores the Schwinger
effect. However the electric fields do influence the neutron polarization, P which can be
calculated for the transmitted and reflected beams using the spin operator σ

PR = < ψR(r · n = 0)|σ|ψR(r · n = 0) >

R
(3.76a)

PT = < ψT (r · n = D)|σ|ψT (r · n = D) >

T
(3.76b)
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3.2 Theory of Dynamical Diffraction

Figure 3.11: Plots of the y (blue) z (red) components of the neutron polarization against
rocking angle after being Bragg reflected from a (a) 100 µm and (b) 200 µm
thick piece of quartz ([110] plane). Insets (c) and (d) show the polarization
components of the transmitted waves for both thickness respectively. The
incident wave is initially polarized along the x direction which is chosen to
be parallel to the incident wavevector. The incident wave has a wavelength
of 2 Å

In figure 3.11 these polarizations are shown for the case where neutrons are reflected from
the [110] planes of quartz. From these figures it is quite clear that the y component of
the polarization appears to rotate by 180 degrees when the sign of the rocking angle is
inverted. Inverting the rocking angle is equivalent to inverting the neutron momentum
component parallel to the lattice planes. Hence after diffraction from the [110] planes of
quartz neutron momentum are polarization are coupled/entangled. Since a 180 degree
rotation of the momentum leads to a 180 degree rotation of the spinor amplitude, the
nature of the momentum coupling is such that one can speak of spin-orbit (i.e. spin-
OAM) coupling/entanglement. In short Bragg diffraction from quartz produces OAM in
neutrons. To investigate OAM generation in more detail we will calculate the reciprocal
two dimensional wavefunctions produced by diffraction from the [110] planes of quartz.

67



3 Electric Fields as OAM Generators

Figure 3.12: OAM distribution functions 2.32 calculated for a 2 Å neutron diffracted
from a 300 micron thick piece of [110] quartz. Inset (a) shows the distribu-
tion functions of the reflected wave, while inset (b) treats the transmitted
waves. Both insets assume that φ is defined around the reciprocal lattice
vector H. Inset (c) and (d) also show the distribution functions of the
reflected and transmitted waves respectively, however here the OAM is lon-
gitudinal (i.e. φ is defined around the momentum vector) The blue curve
shows the non-spin flipped distribution while the red curve refers to the spin
flipped distribution function. Finally we note the fast oscillations visible in
(c) and (d) indicating strong suppression of neighboring modes, indicating
an intrinsic OAM component.

To do this we need to consider not only the rocking angle as we have before, but also
the perpendicular angle, commonly referred to as the rho angle, or tilt. This tilting
is visualized in figure 3.10. We will calculate numerically the reflected and transmitted
wave amplitudes in the case where the [110] planes of a quartz crystal are illuminated by
an incident wavefunction with a wide and homogeneous angular/momentum distribution
i.e. ψI(kx, ky) = 1, where we approximate kx via the incident momentum |k0| and the
rocking angle, θ i.e. kx = |k0|(π − θ) and the momentum component ky is approximated
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3.2 Theory of Dynamical Diffraction

H, + H, − k0, + k0, −
R 0 −11.1 0 −34.5
T −0.1 −22.2 0.1 −18.8

Table 3.1: Mean mode numbers of the (non) spin flipped transmitted and reflected wave-
functions. The distribution functions are shown in figure 3.12. The index +
indicates non-spin flip, while - indicates a spin flip. The vectors H and k0
define the axes around which the azimuthal coordiante φ is defined.

in a similar way using the tilt angle ky = |k0|ρ. After calculating the wavefunctions
we will apply a numeric version of the AFT (2.27) to determine the OAM distribution
functions (2.32) of the (non) spin flipped reflected/transmitted wavefunctions. We note
that the azimuthal coordinate of φ is in this case defined around the reciprocal lattice
vector H. We may also calculate the longitudinal OAM by defining φ around k0, which
results in kx be defined by kx = |k0|Δθ with Δθ the deviation from the Bragg angle.
OAM distribution functions for both definitions of φ are shown in figure 3.12, for a 2 Å
neutron diffracted from 300 micron thick [110] quartz.

Examining the figure closely one can observe a shift/translation along the mode number
ℓ between the spin flipped and non-spin flipped distributions. Indicating a change in
the OAM expectation value < Lz >. The table 3.1 indicates the calculated expectation
value for each distribution function. The oscillating nature of the OAM distribution

Figure 3.13: Reflectivity of a [110] quartz for neutrons with (a) 2 Å and (b) 5.0279 Å
wavelength. The latter corresponds to backscattering (i.e. a Bragg angle of
90 degrees). In the latter case we can see that the momentum distribution
of the reflected wavefunction is symmetric and that tilt and rocking angle
become virtually identical.

functions indicates that neighboring modes are suppressed in the longitudinal OAM
case. As a result it is likely that the OAM can be considered partially intrinsic. The
suppression is only partial since the angular acceptance of a crystal is usually much
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larger in the tilt direction that in the rocking direction. This results in reflected and
transmitted waves with ellipsoidal transverse momentum distribution and therefore a
distortion of the phase imprinted on the wavefunction. To circumvent this and obtain
pure OAM states one must go into a backscattering geometry where the Bragg angle
is close to 90 degrees. In this case the acceptance in ρ and θ are identical as shown
in figure 3.13 Such a symmetric momentum distribution is practically a prerequisite for

Figure 3.14: Phase of the (a) reflected and (b) transmitted non spin flipped wavefunc-
tions and the (c) reflected and (d) transmitted spin flipped wavefunctions.
The latter show a clear vortex structure "spinning" in opposite directions.
The vortex line is the line on which the phase flips from +π to −π. Since
there is only one vortex line (or curve) in this case we can conclude that
the mode number is equal to ℓ = ±1. The incident wave has a wavelength
of 5.0279 Å with a spin polarized along the momentum direction.

producing pure vortex states. To prove this statement we will numerically calculate the
transverse wavefunctions of the reflected and transmitted waves as before, now assuming
an incident wavelength of 5.0279 Å, which corresponds to a Bragg angle of 90 degrees. In
figure 3.14 the results of these numerical calculations are shown. Specifically the phase
of the wavefunctions is pictured, showing clearly the vortex structure of the spin flipped
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wavefunctions in both reflection and transmission. There is only one vortex line, which
signifies the phase transition from +π to −π, indicating that the mode number of the
spin flipped wavefunction corresponds to unity. This is confirmed by applying an AFT
and calculating the OAM distribution function, which is non-zero only at ℓ = −1 for
the reflected spin flipped wavefunction and ℓ = 1 for the transmitted wavefunction. We
conclude that backscattering from a non-centrosymmetric crystal in Bragg geometry acts
as an OAM raising/lowering operator coupled to a spin flip operator, thereby entangling
the spin and OAM degrees of freedom. The additional detail that the OAM carrying part
of the wavefunction is also spin flipped, makes it exceptionally easy to detect as a spin
filter could be used to separate the spin flipped beam from the non-scattered beam, even
in a backscattering geometry. The limiting factor with this method is the low efficiency.
For a 10 mm thick quartz crystal the ratio between the integrated spin flipped reflectivity
and the non spin flipped reflectivity is on the order of 10−6. The same is true for the
transmitted wave. Note that these ratios improve for shorter wavelengths (6% at 2 Å),
however as shown above the spin-orbit states produced with thermal neutrons are not
pure. We will find in Laue geometry the efficiency is much higher, even in backscattering,
since the neutrons must propagate through the whole crystal.

Laue Geometry

We now proceed to look at vortex state generation by diffraction from [110] quartz in
Laue geometry. We will start by deriving the transmission and reflection amplitudes, so
that we may once again numerically determine the reflected and transmitted wavefunc-
tions. To begin we must write down the second boundary condition which is unique to
Laue geometry. Again this condition states that there is no reflected wavefield at the
crystal entrance. This condition previously written as eq. 3.65 can be expressed using
matrices and spinors as follows

X1u1(0) + X2u2(0) = 0 (3.77)

which leads to the following spinor amplitudes

u1(0) = (X2 − X1)−1X2u0 (3.78a)
u2(0) = −(X2 − X1)−1X1u0 (3.78b)

As in the Bragg case we will first look at the polarization of the reflected and transmitted
waves

PR = < ψR(r · n = D)|σ|ψR(r · n = D) >

R
(3.79a)

PT = < ψT (r · n = D)|σ|ψT (r · n = D) >

T
(3.79b)

The orthogonal polarization components, assuming a thermal incident wave polarized
along the momentum direction x, are shown in figure 3.15 for two different crystal thick-
nesses. As in the Bragg case, spin-orbit entanglement is evident in the y component of
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Figure 3.15: Plots of the y (blue) z (red) components of the neutron polarization against
rocking angle after being Laue reflected from a (a) 100 µm and (b) 35 mm
thick piece of quartz ([110] plane). Insets (c) and (d) show the polarization
components of the transmitted waves for both thickness respectively. The
incident wave is initially polarized along the x direction which is chosen to
be parallel to the incident wavevector. The incident wave has a wavelength
of 2 Å. For the thicker crystal an approximation is used which averages over
the Pendelösung oscillations (visible in the top insets), this aids in visibility
of the polarization.

the neutron polarization. A few differences are however apparent. First the coupling
can be much stronger in the Laue case, since neutrons can propagate through the full
length of large crystals. In addition the polarization of the reflected and transmitted
waves are qualitatively quite different. When we investigate further, however, we find
that the OAM states produced in Laue diffraction aren’t as "clean" as those produced in
Bragg diffraction. We will numerically calculate the transmitted wavefunction produced
in back diffraction, assuming that the initial spin is polarized along the flight direction.
While real Laue back diffraction is not possible, since the angle between n and k0 would
be 90 degrees and the incoming wave wouldn’t impact the crystal surface, we can tilt
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the surface slightly to allow for a Bragg angle close to 90 degrees. In the following
calculations we will however assume a flat surface and look at Bragg angles close to 90
degrees. Below in figure 3.16 one can see the orthogonal polarization components calcu-
lated using the exact wavefunction of a neutron initially polarized along the momentum
direction, diffracted from [110] planes of quartz in Laue configuration. The figures indi-

Figure 3.16: Orthogonal polarization components of a neutron diffracted from a 35 mm
thick piece of [110] quartz. The initial polarization is chosen along the
momentum direction x. The insets each show a different polarization com-
ponent (a) Py and (b) Pz of the transmitted beam and (c) Py and (d) Pz

of the reflected beam. Since the wavelength of the incident beam is chosen
such that we are in a Backscattering configuration, λ = 5.0279Å, kx going
through 0 represents the rocking angle surpassing 90 degrees which cannot
technically be accomplished in a true Laue geometry, unless the entry sur-
face of the crystal is tilted. Note the colorbar to the left of each figure,
indicating that Py of the transmitted and reflected waves are almost iden-
tical, however Pz of the reflected wave is a few orders of magnitude weaker
than that of the transmitted wave.

cate that the polarization is separated over two lobes, the left lobe represents the side
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of the rocking curve below the 90 degree Bragg angle which can be physically reached,
while the right lobe goes beyond 90 degrees. In both lobes we see that the transverse
polarization components of the transmitted wave follow very closely the azimuthal co-
ordinate vector φ̂, indicating a coupling between polarization and orbit (i.e. spin-orbit
entanglement). For the reflected beam it is evident that this coupling is much weaker.
Orthogonal polarization components such as those seen in figure 3.16 are basically the
interference between the non spin flipped ψ+ and spin flipped ψ− states. Hence a po-
larization vortex indicates that the OAM of the up and down spin states are different.
To further explore this we can calculate the OAM distribution function of ψ∗

+ψ−. By
using this product common phase factors between the up and down wavefunctions can
be eliminated. These distribution functions are shown in figure 3.17. Note that from
this point forward all analysis focuses on the left lobe of the wavefunctions indicated in
figure 3.16. Both figures in 3.17 show clearly that the average OAM of the flipped and

Figure 3.17: OAM distribution functions of the product between the conjugate of the up
spin wavefunction with the down spin wavefunction, ψ∗

+ψ−. Inset (a) shows
the transmitted wave case, while inset (b) looks at the reflected wave. Both
waves OAM distributions have an average mode number of ℓ̄ = −1.

non flipped wavefunctions differ by one unit of h̄, indicating that the electric field in
quartz can lower/raise the OAM of an incident wave. Interestingly in the transmitted
beam case the most prominent mode number is ℓ = −1, while in the reflected case ℓ = 0
and ℓ = −2 are the most prominent modes. Indicating that the transmitted beam might
be more useful for studying OAM dependent interactions (as we will see later), since the
state is purer. We can finally look at the OAM distribution functions calculated using
the pure wavefunctions ψ+ and ψ−. These are shown in figure 3.18. Note that these
distributions feature many more symmetric sidebands, which emerge from the very fast
Pendellösung oscillations induced by the nuclear potential in the crystal. Recall from
section 2.5 that symmetric bands (i.e. equal amplitudes at ℓ = n and ℓ = −n), which
when calculating the OAM distribution functions of transverse standing waves, also in-
dicate what we have termed linear OAM states. It is clear that both the reflected and
transmitted spin flipped waves have had their OAM lowered as the central mode appears
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Figure 3.18: OAM distribution functions of the (a) transmitted and (b) reflected spin
flipped (red) and non spin flipped (blue) wavefunctions. The average mode
number of the spin flipped wavefunctions is ℓ̄ = −1, while the non spin
flipped wavefunctions have an average mode number of zero.

on ℓ = −1 and the symmetric sidebands emerging from transverse standing waves have
also been lowered by one unit of h̄. The non spin flipped wavefunctions however appear
to have an average OAM of zero, nonetheless, Laue diffraction appears to induce a great
number of linear OAM modes.

We may conclude that both Bragg and Laue diffraction can be used to produce linear
OAM states in thermal neutrons. In back diffraction the average intrinsic OAM produced
in the Bragg and Laue case are the same. OAM produced by Bragg diffraction is cleaner
and has a higher purity, however only in the Laue case can a sufficient intensity of
OAM carrying neutrons be produced. A 35 mm thick crystal is sufficient to produce
a maximally entangled spin-orbit state (i.e. a π/2 pulse). This observation leads us
to conclude that experiments such as those described in [66] and [36], unknowingly
produced twisted spin-orbit neutron waves before the field of twisted neutrons was even
established.

3.3 OAM Generation in Bragg Reflection from Perfect
Quartz

The previous sections of this chapter treated the theoretical arguments for OAM gen-
eration in neutrons by the Schwinger effect, specifically in dynamical diffraction from
perfect crystals. In this section experiments testing the generation of spin-orbit states in
thermal neutrons by dynamical diffraction are described. The example crystal used in
all calculations was quartz, specifically the [110] planes. This was not a randomly chosen
example, since quartz not only fulfills the theoretical conditions necessary to produce
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large effective electric fields, such as non-centrosymmetry, but also can technically be
produced to a high degree of perfection at a low cost. Hence also the crystals used in
these experiments consist of perfect quartz, cut with surface parallel to the [110] planes.

Experiments described here were carried out at a thermal test beamline of the 2.3 MW
reactor of the Reactor Institute Delft as a collaboration between TU Wien and TU Delft.
A schematic of the setup is shown in figure 3.19. Neutrons are polarized vertically (i.e.

Figure 3.19: Schematic of the setup used to test spin-orbit state generation in neutrons
by dynamical diffraction. A broad-band unpolarized (green) neutron beam
comes from the guide (1) and enters a bender mirror (2) where the beam is
polarized along z (red). A perfect crystal quartz monochromator (3) reflects
a small portion of the beam into the setup. The crystal is cut such that the
[110] planes are parallel to the crystal surface. The Bragg angle is chosen to
be 22.5 degrees which results in a wavelength of 1.8 Å, corresponding to the
peak of the spectrum. Neutrons continue from the monochromator through
a slit collimator (4) to a π/2 flipper, which prepares the neutron spin along
the x direction (blue). After this the neutron is Bragg (a) or Laue (b)
reflected from a second "test" quartz crystal (6), cut in the same orientation
as the monochromator. A movable π/2 flipper (7) paired with a polarization
analyzer (8) project the neutron spin on the y direction (yellow). Finally the
neutrons are detected using a He3 counter. A 1 mT guide field surrounds
the entire setup. The test crystal is attached to a pair of rotation stages,
enabling rotations around the z-axis (rocking) and the x-axis (tilt).

along z) by a polarizer mounted in the guide, after which they are Bragg reflected by a
25 x 25 x 5 mm3 [110] quartz crystal into the setup. The first coil in the setup rotates
the neutron spin such that it is parallel to the momentum (x-) direction. After this the
neutrons are Bragg or Laue reflected from a 25 x 25 x 35 mm3 [110] test quartz crystal.
By combining a movable π/2 flipper and a polarization analyzer the y-projector can be
measured. The advantage of using a quartz monochromator is that it removes minimal
intensity from the guide, while at the same time providing a dispersion which fits the
test crystal perfectly, hence minimizing unusable background in the setup. The Bragg
angle was selected to use the peak of the spectrum offered by the guide 1.8Å. While the
transmitted beam demonstrates unique polarization effects in Laue geometry, it was not
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possible to measure these since the background in transmission direction was too high.
Hence we will look at the polarization states produced first in Bragg geometry and then
in Laue geometry.

3.3.1 Linear OAM States in Bragg Geometry

We begin by looking at the generation of linear OAM states in Bragg geometry. An
unpolarized rocking curve compared to the theoretical expectation is shown in figure
3.20 The theoretical expectation is calculated by convolving two Bragg reflection curves,

Figure 3.20: (a) Intensity measured against rocking angle in seconds of arc, the blue
points show the data, while the red curve represents a Gaussian fit. (b)
Theoretical expectation for the rocking curve according to the dynamical
theory of diffraction.

comparable to figure 3.7, one for each crystal. One can see that the experimental rock-
ing curve is significantly wider than the curve calculated using dynamical diffraction.
The standard deviation of the two distributions differ by a factor of 4 − 6. Numerous
explanations exist, ranging from imperfections in the test crystals leading to mosaicity
to stress and strain within the test crystals leading to a gradient in the lattice spacing
[86]. Regardless of the cause, a washing out of the rocking curve will also lead to a
washing out of the spin-orbit coupling. This spin-orbit coupling observed in a Bragg re-
flection geometry is shown in figure 3.21 together with a simple model which convolves
the calculated polarization (i.e. figure 3.11) with the estimated resolution function of
the monochromator, a Gaussian with half the width of that shown in figure 3.20 (a).
Qualitatively the two agree in terms of form. Quantitatively, slight differences can be
seen in terms of amplitude and width, likely due to the fact that the resolution function
of the monochromator is not exactly known, in addition to possible defects in the test
crystal (described above), which perturb the polarization.

Nonetheless the data shows evidence for neutron spin neutron orbit coupling as the
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Figure 3.21: (a) The y polarization component measured against rocking angle in arcsec-
onds. The data is shown in blue, while a fit, based on the first derivative of a
Gaussian is shown in red. The rocking curve is shown scaled in green. This
measurement is compared to (b) a model which convolves the expected po-
larization calculated using dynamical theory of diffraction with a Gaussian
resolution function, to account fro the momentum spread of the monochro-
mator.

polarization rotates by 180 degrees for a 180 degree rotation of the transverse momentum.
Since we do not expect a coupling between the any other momentum component with
any other polarization component we may wish to conclude that we are dealing with
a linearly polarized OAM state (i.e. a superposition of ℓ = ±m). To examine this
in more detail we attempted to further characterize the spin-orbit state. To this end
the z-polarization was also measured against divergence in z-direction. This is similar
to tilting the crystal (i.e. changing the ρ angle). Recall in the case of an ℓ = −1 or
ℓ = +1 state this polarization component ought to mimic the shape of the y-polarization
against rocking angle (i.e. a flip in the divergence angle should flip the polarization
component). Again the dynamical theory of diffraction predicts no such coupling for
thermal neutrons in quartz, however other spin-optical components in the setup may
introduce such a spin-momentum dependence. Our measurement was implemented by
vertically scanning a thin horizontal cadmium slit between the analyzer and detector and
measuring the z-polarization against the position of the slit. The analyzer coil (nr. 7 in
figure 3.19) was disabled for this measurement. The polarization against the estimated
vertical divergence angle is shown in figure 3.22 Despite the large error, the data shows a
clear linear dependence of the z-polarization on the vertical divergence angle. Our model
using dynamical diffraction predicts a spin rotation on the order of 10−3 radians, smaller
than the measurement error. Hence a different mechanism is necessary to explain this
coupling. Such a mechanism is proposed in figure 3.22 (b). If the preparation coil is
tilted even by a small amount, neutrons traversing through the coil with a divergence in
direction of the coil tilt experience a shorter path length and therefore less spin rotation
than neutrons traveling straight through the coil. In addition neutrons diverging under
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Figure 3.22: (a) z (vertical) polarization component measured as a function of vertical
divergence in degrees. A linear fit is shown in red. (b) Hypothetical mech-
anism by which this momentum-spin coupling is produced. A divergent
neutron beam (green) passes through a slightly tilted coil (blue square).
Due to the different path lengths taken through the coil, the spin (blue
arrows) rotation angle becomes coupled to the divergence angle.

an angle opposite the tilt angle of the coil experience an even larger path length causing
the spin to be over-rotated. This divergence dependent phase can be expressed as

δφ = γB
ΔL

v
= γB

L

v
[ 1
cos(θ) − 1

cos(θ − α) ] = π

2 [ 1
cos(θ) − 1

cos(θ − α) ] (3.80)

θ is the tilt angle of the coil and α the divergence angle of the beam. In the last step
we assume that B is chosen such that for α = 0 the coil provides a π/2 flip. For small
θ this equation is second order in α. In the case of a 5 degree coil tilt the spin phase
would change by 5 · 10−4 radians over a 1 degree divergence change. However, if an
external guide field is present a larger B field is required to produce the π/2 leading to
a larger divergent dependent phase. For a 1 mT guide field and a 5 degree coil tilt the
spin phase as a function of divergence increases significantly to 1.5 · 10−2. The effect can
be further amplified in the case of an open coil design as in our experiment, since the
field bulge results in a higher effective θ. This method of tilting a magnetic field region
to generate spin-momentum coupling, here used unintentionally, is the basic principle
behind Spin Echo Small Angle Neutron Scattering (SESANS) [39, 40] and the coherent
averaging method for producing OAM states [31, 32, 33, 38] discussed in chapter 5.

However figure 3.22 demonstrates that Pz is rather small compared to Py shown in
figure 3.21, hence on the momentum scale of the rocking width the OAM state of the
wavefunction can be understood as a linearly polarized state. Adding a sufficiently strong
vertical magnetic gradient however, could produce an ℓ = 1 or ℓ = −1 state on the same
length/momentum scale. Note that this length/momentum scale is quite important, as
for thermal neutrons diffracted from quartz the vertical momentum spread is much wider
than in rocking direction, hence when calculating the expectation value integral < Lz >
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the OAM washes out when integrated over the whole space. If one however constrains
integration to a length/momentum scale similar to that of the rocking width one would
find a non-zero value, even in the thermal neutron case.

3.3.2 Null Result in Laue Geometry

We now move on to Laue geometry where the polarization of the reflected beam was
measured as a function of rocking angle. Recall that the theory of dynamical diffraction
predicts no visible coupling between momentum and polarization in this case. In this
measurement the crytal was moved into Laue geometry ((b) in figure 3.19). Again the
preparation coil was used to prepare the neutron spin along the momentum direction,
while the analysis coil together with the polarization analyser measured the orthogonal,
y component of the polarization. This y component is measured against rocking angle
and shown in figure 3.23. Our measurement confirms the lack of polarization rotation

Figure 3.23: (a) y-component of the neutron polarization against rocking angle in Laue
reflection geometry. The data is shown in blue, while the intensity/rocking
curve is shown in red. (b) Predicted y polarization of the Laue reflected
beam according to the dynamical theory of diffraction.

predicted by the dynamical theory of diffraction, shown in figure 3.23 (b). However we
may observe that the measured rocking width is much wider than the predicted width
according to the dynamical theory, hence any Schwinger effect would also be weakened.

Recall that our theory does predict that the spin flipped wavefunction carries OAM,
however the observable evidence for this isn’t as obvious as in the transmission or Bragg
case, where we can observe a coupling between polarization and momentum. These
other OAM dependent observables, such as the change in absorption cross sections were
not measured in this experiment but are discussed in more detail in the chapters on
OAM detection.
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3.4 Conclusion

In this chapter we have seen that static electric fields act as a sort of catalyst enabling
coupling between neutron spin and neutron momentum. The exchange of spin angu-
lar momentum to the neutron momentum generates OAM by the principle of angular
momentum conservation. The nature of this mechanism also ensures that the spin and
OAM degree of freedom become coupled or entangled, thereby generating so called spin-
orbit states. While the electric fields produced in the lab are too low to create significant
OAM, the nuclear electric field found between nuclei and electrons is about the right or-
der of magnitude to produce large amplitudes of non-zero OAM states. These fields can
be exploited in diffraction from perfect non-centrosymmetric crystals. We investigated
OAM generation in neutrons in dynamical diffraction from quartz, both theoretically
and experimentally. We found a backscattering configuration to be ideal for producing
twisted wavefronts. In Bragg geometry we found that the spin-flipped transmission and
reflection wavefunctions carry a classic spiral phase pattern, however the amplitude of
this state is relatively small. In Laue geometry we found that the OAM of the spin-
flipped wavefunction is raised or lowered compared to the non-spin-flipped wavefunction
and the amplitude of the spin-flipped wavefunction can be significant, however many
sidebands are produced in the OAM spectrum. Hence, the state is not pure. Finally
an experiment was presented which looked at spin-orbit coupling in thermal neutron
reflected from perfect quartz. In Bragg geometry we found a positive result and argued
that the OAM state can be interpreted as a linearly polarized state and could be trans-
formed into an ℓ = 1 or ℓ = −1 state with an appropriate magnetic gradient. In Laue
reflection we found no such coupling between momentum and polarization, confirming
our theoretical predictions.
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Nucleus Weak Interaction

In the previous chapter we exploited that electric fields act as a mediator effectively
coupling neutron momentum to neutron spin, allowing for angular momentum exchange
between the two. We found that if spin angular momentum is transferred to the neutron
momentum by a spin flip, OAM is generated to conserve total angular momentum. Hence
we can imagine that any interaction that couples neutron momentum to neutron spin
can produce OAM states. The weak interaction is another such example. This, including
the neutron nucleus weak interaction is explored in great theoretical detail in [87], which
already includes angular momentum considerations. While the weak interaction can be
observed in a variety of ways, purely using neutrons this interaction can be observed
through the slight neutron spin rotation induced by the interaction. However, since
the interaction strength is so low, this spin rotation can only be observed, to date, in
materials that exhibit a strong p-wave resonance, which amplifies the weak interaction
[88]. Some of these resonances are broad enough such that the spin rotation can even be
observed in cold and thermal neutrons. Hence in 1980 this spin rotation was observed for
the first time after passing cold neutrons through specific tin isotopes, which exhibit a
broad p-wave resonance [89]. Only four years later the spin rotation effect was observed
from the strongest known amplifier of the neutron nucleus weak interaction: Lanthanum
139 [37]. Despite being the strongest amplifier of the neutron nucleus weak interaction
the total effect still only amounts to a spin rotation of 2.2 · 10−4rad · cm−1. Furthermore,
due to strong absorption in these materials the neutron nucleus weak interaction is not
likely to be a primary method by which OAM is produced in thermal and cold neutrons.
Nonetheless it may represent an interesting avenue for analyzing neutron OAM.

In addition to Tin and Lanthanum a few other nuclei have been found to exhibit a
strong p-wave resonance, such as Xenon-131 [90], Bromine-81 and Cadmium-111 [91].
Since then spin-optics adapted to epithermal (∝ eV) neutrons, such as the polarized
Helium-3 based neutron spin filter [92, 93], have been developed, which help to explore
these spin rotations closer to the resonance energy [94, 95]. At these energies the effect
is much more pronounced. In Lanthanum the spin rotation is about ten times stronger
than for thermal and cold neutrons. This in addition to the lack of a large arsenal of
neutron optical devices for these energies, may make Lanthanum not only a good spin
polarizer/analyzer, but also ideal for OAM generation/detection.

Similar to the last chapter we will begin by exploring the theoretical basis for OAM
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generation in the neutron nucleus interaction weak interaction, starting from the weak
potential in the Schroedinger equation. Finally we report on an experiment demonstrat-
ing angular momentum conservation in the neutron nucleus weak interaction.

4.1 Theoretical Framework

Our starting point for analyzing OAM generation in the neutron nucleus weak interac-
tion will be the Hamiltonian derived from the lowest order approximation of the weak
interaction [87].

Ĥ = − h̄2

2m
∇2 + bσ̂ · p̂ (4.1)

with b effectively a coupling constant for the weak interaction. We note that there exists
also a so called spin dichromism term proportional to ib′σ · r̂, which can be used to
polarize neutrons with energies close to the p-wave resonance. Given that the form of
this term is similar to that of a magnetic quadrupole [30], which is known to generate
OAM, one may intuit, that this term also promotes OAM generation. However as b′

drops off quickly away from the resonance this term is no longer relevant for cold and
thermal neutrons and hence we ignore it in our analysis of OAM generation in the
neutron nucleus weak interaction in cold and thermal neutrons.

Our Hamiltonian 4.1 is quite close to that of a neutron in an electric field experiencing the
Schwinger interaction 3.2. The main difference being that the weak potential couples
spin and momentum directly via the dot product. Hence, the subsequent derivation
of the neutron wavefunction will follow closely the derivation detailed in the previous
chapter. The analysis of this Hamiltonian begins by taking the Fourier transform and
examining its form in reciprocal cylindrical coordinates.

Ĥ = k2
r + k2

z − b′
�

kz kre
−iφ

kre
iφ −kz

�
(4.2)

Note that h̄2

2m
has been set to one. We observe the OAM raising/lowering operator on

the off-diagonal components of the potential matrix, indicating that angular momentum
changes that occur due to spin flips can be conserved by OAM generation. Applying a
parity (r′ → −r) or mirror (r′

i → −ri) operation to this Hamiltonian, leads to a flip of
the sign of the potential. Hence, our interaction does not conserve parity, it is parity
odd.

The Eigenvalues of our Hamiltonian are given by E± = k2
r + k2

z ∓ b′
�

k2
r + k2

z , where the
± subscript denotes the up and down spin state respectively. We can diagonalize the
Hamiltonian such that Ĥ ′ = T −1ĤT , with

T =
 e−iφ [kz+

√
k2

r+k2
z ]

kr
e−iφ [kz−

√
k2

r+k2
z ]

kr

1 1

 (4.3)
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In this transformed frame we can solve the time dependent Schroedinger equation:

Ĥ ′ψ̂′ = ∂

∂t
ψ̂′ (4.4)

The solution for the reciprocal wavefunction ψ̂′ is then given by

ψ̂′
± = a±eiE±t (4.5)

Finally we determine ψ̂ by inverting the transform: ψ̂ = T ψ̂′. Furthermore we find the
integration constants a± using the initial conditions ψ̂±(t = 0) = c±(kr, φ, kz).

ψ̂ =
 c+ cos(b′√ϵt) − i[ c+kz√

ϵ
− c−kr√

ϵ
e−iφ] sin(b′√ϵt)

c− cos(b′√ϵt) + i[ c−kz√
ϵ

− c+kr√
ϵ

eiφ] sin(b′√ϵt)

 (4.6)

with ϵ = k2
r + k2

z the kinetic energy parameter. Up to now we haven’t defined a flight
direction or initial spin orientation. Both can be freely chosen. Defining the direction
of propagation along z (i.e. kz >> kr), we can choose to have the initial spin aligned in
this direction too. If the initial spin is prepared along the flight axis (z-direction) with
c− = 0, we find that over time the spin rotates to point anti-parallel to the flight axis.
During this process the wavefunction obtains one unit of h̄ of longitudinal orbital angular
momentum parallel to the propagation direction. Hence the total angular momentum
of the neutron is conserved. This mechanism is proportional to kr

ϵ
, which is equal to the

beam divergence for small angles, hence this type of parity odd spin rotation is roughly
a factor of 100 to 1000 weaker than previously observed parity odd spin rotation, where
the spin is prepared perpendicular to the flight direction. When we look at the case
where the initial spin is prepared perpendicular to the flight path (i.e. the classical
parity non-conserving spin rotation experiments [37]), we find that transverse OAM is
generated. In this case we place the propagation direction in the kr plane, while we
take the initial spin perpendicular to the flight path (for example c− = 0). kr is now
the dominating factor, while c± kz√

ϵ
≈ 0. Under this approximation and

√
ϵ ≈ kr the

expression 4.6 becomes identical to the expression found for twisted neutrons in electric
fields eq. 3.28.

ψ̂± = c± cos(b′krt) ± ic∓e∓iφ sin(b′krt) (4.7)
Thus all parity odd spin rotations induced by the neutron nuclear weak interaction
are compensated by an equal amount of orbital angular momentum generation thereby
preserving total angular momentum.

As with electric fields in the transverse case the generated OAM is extrinsic and consists
simply as a displacement of the spin flipped wavefunction with respect to the incident
and non spin flipped wavefunction, such that pΔx = ±h̄. For a single unit of OAM
this displacement corresponds to about one sixth of a wavelength. Resolving such a
small displacement would be difficult. In general doing so would require a potential
which presents a gradient in the direction of the displacement. This can be realized
for example by refraction or reflection from a curved mirror. An additional difficulty
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4 OAM Generation in the Neutron Nucleus Weak Interaction

arises from the weak interaction strength, as stated in the introduction thermal neutrons
experience a spin rotation of 2.2 · 10−4 rad · cm−1 in Lanthanum-139, leading to a very
weak signal.

In the longitudinal OAM case, where the initial spin is also longitudinal, the efficiency
is modified by a factor k⊥/k∥. Hence it is particularly effective to use a conical beam
with a large opening angle to detect the longitudinal OAM effect. This can be achieved
by passing a neutron beam through a powdered crystal. Diffraction from the powder
causes the beam to be reflected on to multiple cones, where the opening angle of the
cone corresponds to four times the Bragg angle of the respective lattice plane. After
scattering the conical beam can be passed through a weak field, where the spin couples
to the transverse momentum component. Since this momentum component is coupled
to the angular coordinate on the cone, the spin after passing through the weak field
will be aligned to the azimuthal coordinate, thereby producing a spin-orbit entangled
state. This setup is shown in figure 4.1 Such an experiment requires a spin analyzer

Figure 4.1: Schematic representation of a proposed setup to measure the longitudinal
OAM generating mechanism in the weak interaction. An incident neutron
(green arrow) with longitudinal polarization is scattered by a powder sample
(metallic sphere) into a conical beam. This beam traverses through cylin-
drical Lanthanum-139 sample (blue), where the initially longitudinal spin
couples to the transverse momentum component, thereby coupling the spin
to the azimuthal coordinate. This spin-orbit coupling is visualized by the
colors of the exiting beams, black and yellow represent spin right and spin
left, while blue and red indicate spin up and spin down.

with a wide angular and spatial acceptance to resolve the spin structure of the conical
beam. In addition an appropriate powder sample is required to produce a beam with an
appropriate opening angle and significant intensity. While these technical challenges can
be overcome, in a demonstration experiment they can be circumvented by realizing that
the proposed experiment relies simply on the dot product between spin and momentum.
In figure 4.1 the momentum structure is conical and the spin longitudinal, however this
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can just as well be reversed, such that one uses a par-axial beam with a conical spin
distribution across the beam. This leads to the exact same dot product σ · p as the case
shown in the figure. Doing so removes the need for a wide angle spin analyzer as well as
an appropriate powder sample. These requirements are replaced by the need for a spin
optical device, which can produce the conical spin pattern. This can be accomplished
using a magnetic quadrupole [30]. Note that this particular spin pattern corresponds to
a spin orbit state. When passed through a weak field the spin-orbit pattern is rotated
around the optical axis, despite this changing the spatial distribution of OAM and spin
angular momentum, the total angular momentum of the neutron is conserved. Although
this effect can be reproduced with a longitudinal magnetic field, the magnetic interaction
does not generally conserve the total angular momentum of a neutron. In addition to
demonstrating that the weak interaction conserves total angular momentum, it can be
argued that the described experiment shows that the weak interaction generates OAM.
In particular when one takes the difference between the spin-orbit pattern produced by
the quadrupole and the pattern produced using the combination of quadrupole and weak
field one obtains another spin-orbit pattern equivalent to that which would be produced
in the conical beam experiment (figure 4.1).

4.2 Experimental Evidence for Angular Momentum
Conservation in the Neutron-Nucleus Weak
Interaction

In this section we explore an experiment, demonstrating OAM production and angular
momentum conservation in the neutron nucleus weak interaction. Our experiment, arose
from a collaboration between TU Wien and Indiana University and was conducted at
the IN3 triple axis instrument of the Institute Laue Langevin, which hosts a 60 MW
research reactor. Our setup, shown in figure 4.2, uses a magnetic quadrupole to produce
a spin-orbit pattern, as described in the previous section. This spin-orbit pattern is
past through a 5 cm long Lanthanum-139 sample, the strongest known amplifier of the
neutron nucleus weak interaction. Since the interaction strength is weak (2.2 · 10−4 rad ·
cm−1), both the Lanthanum target and the quadrupole are contained within a zero field
chamber. This zero field chamber, originally named Poly-Axis Neutron Depolarization
Analyzer (PANDA) [96], kindly provided by the Reactor Institute Delft, consists of
three shielding layers, two passive metal (steel and µ metal) and one internal active
stage. This active shielding is realized by three pairs of orthogonal Helmholtz coils. The
coils are driven using a feedback loop which is controlled using a fluxgate inside the zero
field chamber. When activated the remnant field in the chamber can be suppressed to
∝ 100 nT . The Lanthanum target sits in an aluminium and µ metal housing, to further
suppress the field and prevent oxidation. In addition to the magnetic shields PANDA
has a pair of mezei and v-coils on the entrance and exit of the chamber, so that the
neutron spin can be prepared and analyzed along any direction.

87



4 OAM Generation in the Neutron Nucleus Weak Interaction

Figure 4.2: Schematic representation of a top down view of the setup at IN3 used
to demonstrate OAM generation and angular momentum conservation in
the weak interaction. Thermal neutrons coming from the guide are Bragg
diffracted and monochromatized (∝ 1.8Å) by a pyrolytic graphite crystal
(a). After reflection neutrons are polarized by a bender polarizer (b). Next
neutrons enter the zero field chamber (d) via the spin preparation/analysis
coils (c). Inside the chamber a spin orbit state is prepared using a quadrupole
(e), after which neutrons propagate through a Lanthanum target. Behind
the zero field chamber a bender (g) analyzes the neutron spin. Finally a
position sensitive detector (h) resolves the spin-orbit pattern. The x and y
axes are shown in black, while the z-axis points out of the page.

The instrument uses a pyrolytic graphite monochromator in a thermal guide to reflect
neutrons from the thermal peak into the setup. Neutrons are then polarized via a bender
and enter into the PANDA chamber. While entering the chamber the neutron spin is
rotated in the longitudinal (x) direction. Inside the chamber a quadrupole produces the
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spin orbit pattern. To resolve the spin orbit pattern both transverse spin components
need to be analyzed using the exit coils and the bender and the resulting intensity
pattern must be imaged using a position sensitive detector. In our case the position
sensitive detector cosnsists of a Helium-3 wire chamber with 2x2 mm2 resolution [97, 98].
At thermal energies the efficiency is around 80%. When the Lanthanum inserted in
the beam the spin orbit pattern is rotated. By subtracting the spin pattern measured
without Lanthanum from the pattern measured with Lanthanum one can obtain the
OAM generation efficiency, as well as the change in spin. This allows us to determine
whether or not angular momentum is conserved within the neutron.

The magnetic quadrupole is realized by a figure eight coil. Pictures of this quadrupole,
the setup, PANDA and the packed Lanthanum target are shown in figure 4.3.

Figure 4.3: Pictures of the zero field chamber PANDA (a), the magnetic quadrupole
used to produce spin-orbit patterns (b), the Lanthanum target inside of the
zero field chamber (c) and the full setup at IN3 (d).

We note that this is the first neutron spin-optical experiment demonstrating twisted spin
patterns using a magnetic quadrupole. The transverse polarization patterns produced

89



4 OAM Generation in the Neutron Nucleus Weak Interaction

using the quadrupole are shown in the top insets of figure 4.4. These spin orbit patterns
rotated by the weak interaction are shown in the bottom insets. This rotation is cannot
be seen upon visual inspection, hence additional analysis is required, to determine the
rotation angle. To this end we make circular cuts out of the y and z polarizations and

Figure 4.4: Transverse polarization patterns produces using the quadrupole magnet. The
z component is shown in (a), while the y component can be seen in (b). The
same components are shown rotated due to the weak interaction in (c) and
(d) respectively.

perform AFTs on each cut. For illustration purposes we have plotted the polarization
against the azimuthal angle φ for one such circular cut in figure 4.5. Here the y and z
polarization are shown for a cut out of the spin-orbit pattern produced by the quadrupole
without Lanthanum in the beam. After performing these cuts for various different radii,
we apply the azimuthal Fourier transform for ℓ = 1 to extract the phase of this particular
OAM mode from Py + iPz. Finally the extracted phases are averaged over the different
radii and the average phase determined without the Lanthanum sample is subtracted
from the phase determined with the Lanthanum sample in the beam. The phase is
shown as a function of the ring radius in figure 4.6. When calculating the weighted
average over these phases we find an average image rotation of (2.4±0.27) ·10−3 radians.
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Figure 4.5: Polarization against azimuthal angle (b) for a certain circular cut out of the
two dimensional polarization pattern (a). The circular cut taken is shown as
a grey annulus. The pixels that lay inside of the ring are used to construct
the polarization plots seen in (b).

This is about two times the rotation expected due to the weak interaction, hence it
is reasonable to assume that the Lanthanum sample includes a magnetic component
arising from ferromagnetic impurities in the sample. This can be isolated by rotating
the Lanthanum sample by 180° such that the surface normal is inverted. This inverts
the effective magnetic field due to impurities seen by the neutrons, while leaving the
weak contribution unchanged. Doing so we find that the magnetic contribution to the
spin rotation was 1.1 ·10−3 radians. Hence we can conclude that the contribution coming
from the weak interaction is within the expected range for Lanthanum. At this point
we note that this is the first measurement of the parity non-conserving spin rotation
produced by Lanthanum in thermal neutrons. We find, as expected, that this value does
not differ from that found in cold neutrons [37]. At the start of this section we promised
to demonstrate that the angular momentum of the neutron is conserved in the weak
interaction. In figure 4.7 we show the orbital and spin angular momentum of the beam
with and without the Lanthanum sample in the beam as a function of beam radius. The
OAM is calculated simply via the expectation value of −i ∂

∂φ
, while the Spin expectation

value is approximated by the average magnitude of the measured 2D polarization vector.
The difference between the total angular momentum of the empty beam and the beam

with Lanthanum in it is zero to within error (±4 · 10−4).

Finally at the beginning of this section we argued that the difference between the spin
patterns produced with and without Lanthanum in the beam is also twisted and carries
one unit of OAM. Figure 4.8 shows the OAM distribution function calculated using this
difference. It can be seen that the main mode number in this case is also ℓ = 1. This
demonstrates that a neutron which posses a spin-momentum pattern such that σ · p is
conical in space will gain some OAM as it traverses through a weak field.
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Figure 4.6: Image rotation phase plotted against the ring radius within which the image
rotation is calculated. Inset (a) shows the entire dataset, while inset (b)
shows a zoomed variant, localized to an area in which the statistical error
was small.

Figure 4.7: (a) Expectation value of the orbital angular momentum operator as function
of beam radius for the empty beam (blue) and the case where Lanthanum
is inserted into the beam (red) and (b) the expectation value of the spin
angular momentum as a function of beam radius.
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Figure 4.8: OAM distribution function of the difference between the spin pattern pro-
duced with and without Lanthanum in the beam.

4.3 Conclusion

We have demonstrate that the neutron nucleus weak interaction in a very similar way to
the Schwinger interaction generates OAM in neutrons by spin flips and conservation of
total angular momentum in the neutron. Furthermore using thermal neutrons we have
experimentally confirmed previous experiments done with cold neutrons on Lanthanum-
139 that the weak interaction in this sample, amplified by a p-wave resonance, induces
a parity non conserved spin rotation of (2.2 ± 0.5) · 10−4 rad · cm−1. By entangling spin
and OAM this spin rotation is transferred to an image rotation which we have measured
experimentally. Our experiment simulates a neutron beam with a conical momentum
distribution by introducing a conical spin distribution using a magnetic quadrupole and
demonstrates that in this case one unit of OAM is generated in the neutron. Finally we
showed that in this experiment total angular momentum is conserved in the neutron to
within statistical error.
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In this chapter we explore the application of coherent averaging, originally a technique
to enhance measurement sensitivity [99, 100], to OAM generation [32]. In the context of
this chapter we view coherent averaging as an interferometric technique, which takes a
simple input wavefunction and splits this input wavefunction up into an arbitrary number
of copies called partial wavefunctions. Simple neutron optical devices, such as prisms
or magnetic coils are used to individually manipulate these partial wavefunctions (i.e.
translations/phase shifts). Then, finally, these partial wavefunctions are recombined
to generate the output wavefunction. Hence one can look at coherent averaging as
exploiting the Huygens principle to generate any kind of structured wavefunction [101].
As a reminder, Huygens principle states that a wave of any structure can be seen as an
infinite number of spherical point sources with a unique phase.

Generation of non-zero average OAM can occur with as few as three partial wavefunc-
tions. Take the simple example of a Gaussian input wavefunction, split into three partial
wavefunctions. These partial wavefunctions can be translated such that the composite
output wavefunction has a spiral shape, with ℓ = 1 or ℓ = −1. With only two point
sources of partial wavefunctions one can generate states that exist in an equal super-
position of ℓ = 1 and ℓ = −1 or ℓ = 2, ℓ = 0 and ℓ = −2 depending on the phase
difference between the partial wavefunctions. This simple principle underlies all the
methods described in this and all the following chapters.

Coherent averaging has been used to produce OAM states in photons [32] and neutrons
[33, 34]. In [33], authors used a Mach-Zehnder interferometer, which used magnetic
refraction to separate the input wavefunction into four partial wavefunctions by a small
microscopic distance (0.01-10 µm). Due to this small separation the partial wavefunc-
tions can not be individually manipulated, however due to the different spin associated
with each path one can use appropriate magnetic coils to produce the phase differences
between the partial wavefunctions required to produce a vortex. This type of interferom-
eter mirrors the Spin Echo type instruments [102, 69] used to measure ultra small angle
scattering [39, 40, 41]. This OAM view of Spin Echo Small Angle Neutron Scattering
will be discussed in section 5.2. In addition we will look at a spin echo interferometer
developed at the Atominstitut specifically to explore linear OAM states [38]. But first
we will look at the generalized method described in [34] in section 5.1. Furthermore we
will look at an experiment were three partial wavefunctions are produced using a nested
loop perfect crystal neutron interferometer [103, 104]. Since in this case the separation
is macroscopic (∝ cm), each partial wavefunction can be manipulated independently
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using prisms and phase shifters to produce a twisted composite wavefunction. An added
advantage of this setup comes from the fact that the strong nuclear interaction can be
used, which couple more strongly to the neutron than the magnetic fields that can be
produced in spin echo type interferometers. This stronger coupling results in a higher
flexibility in terms of possible vortex sizes and shapes which can be generated. How-
ever, finally we will establish a coherent averaging method, which enable us to generate
vortices of almost any size, while using relatively small potentials (magnetic or nuclear).

5.1 Generation of Phase Vortices in Neutron
Interferometry

In this section we present and discuss the work presented in [34], which reports on a
generalized method for producing phase vortices using the coherent averaging technique.
Here we will begin by qualitatively describing the experiment. Next we move on to
the theoretical description, followed by the experimental results and applications of
our method. Finally we will look at a more generalized theoretical model for OAM
production using coherent averaging.

5.1.1 Qualitative Description

Our experiment addresses the challenge of generating OAM in thermal neutrons by gen-
eralizing the magnetic coherent averaging method described in [33], such that the strong
nuclear potential can be exploited, enabling production of smaller vortex diameters at
thermal energies. This experiment demonstrates the generation of a vortex lattice using
strongly interacting aluminium prisms in a nested loop neutron interferometer. In a two
path, singe loop, interferometer the combination of a phase shifter and a pair orthogonal
prisms enables us to generate a composite wavefunction exhibiting azimuthal structure
where the ℓ = ±1 mode amplitude is significant (as demonstrated in Chapter 2, figure
2.7). To extract the phase structure of the composite wavefunction an additional ref-
erence beam is needed. For this purpose a three path nested loop interferometer was
used.

In somewhat more qualitative detail, the purpose of the prisms is to translate trans-
versely (either vertically or horizontally) the reciprocal partial wavefunctions with re-
spect to each other, while the phase shifter effects the relative phase between the partial
wavefunctions. The latter can also be seen as a longitudinal translation. Combining
these different tools we can re-arrange the composite wavefunctions such that the com-
posite wavefunction displays some helicity.

The experiment was carried out at a wavelength of 1.92 Å on the thermal neutron inter-
ferometry station, S18, at the high-flux reactor of the Institute Laue Langevin (ILL) in
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Grenoble, France [105]. Our setup is shown in figure 5.1. This interferometer generates
three nested loops [103, 104, 106, 107], two small loops between the first and third plate
and the second and fourth plate respectively, and a large loop between the first and
fourth plate. Our prisms each have a 5 degree slope and are made from aluminium.
To control the phase difference of each loop a minimum of two phase shifters are re-

Figure 5.1: Sketch of the 4 plate interferometer (145 mm long), containing two (red) or-
thogonal prisms (blown up on the top portion) and two phase shifters (blue).
The neutron beam, coming from the right, forms three loops, two small ones
between the first and third and second and fourth plate respectively and a
large loop between the first and last plate. The phase shifters can be rotated
around the vertical to induce phase shifts between the paths in their respec-
tive loops. A position sensitive detector is shown in black. Additionally in
black the coordinate convention is shown

quired. These phase shifters consist of flat silicon and sapphire slabs. To resolve the
phase vortices produced by this setup we employed a scintillator based position sensitive
detector.
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5.1.2 Theoretical Description

We now move on to a theoretical description of the states produced in our interferometer.
In the case of thermal neutrons where the nuclear potential is low compared to the kinetic
energy, the action of a prism can be approximated by a translation of the reciprocal
wavefunction (i.e. by convolving with a delta function) ψ′(k) = ψ0(k) ∗ δ(k − k′),
while phase shifters imprint a global phase on the wavefunction ψ′(k) = eiαψ0(k).In
principle prisms also apply a global phase to the wavefunction, however for the sake of
this model we choose to account for this phase in the action of the phase shifter. The
input wavefunction (in k-space) is assumed to be Gaussian

ψ0(k) =
�

1
2πζ2 e

− (k2
x+k2

y)
4ζ2 Φ(kz) (5.1)

with kx and ky denoting the transverse wavenumbers and ζ the transverse momentum
spread. Again this momentum spread is related to the average divergence of individual
neutrons, θ, by ζ ≈ kzθ, for small θ. Φ(kz) refers to the longitudinal part of the reciprocal
wavefunction that is virtually unaffected by the action of the prisms. The composite
wavefunction projected from the last interferometer plate to the detector can then be
written as

ψ1(k) = 1√
3

[ψ0(k) + eiα1ψ0(k − k⊥ŷ) + eiα2ψ0(k − k⊥x̂)] (5.2)

where the transverse momentum shift, k⊥, is related to the angle of refraction, γ, induced
by the prisms k⊥ = kzγ. It can be instructive to look at equation (5.2) in real space
cylindrical coordinates, (ρ, φ, z), since the real space equation allows us to more easily
deduce the orbital angular momentum properties of this wavefunction.

ψ1(r) = 1√
3

ψ0(r)[1 + eiα1eik⊥ρ sin(φ) + eiα2eik⊥ρ cos(φ)] (5.3)

The expression ψ0(r) =
�

2
πσ2 e− ρ2

σ2 Φ(z) is the Fourier transform of (5.1). σ = 1
ζ

denotes
the real space coherence length and Φ(z) is the real space component of the wavefunction
along the z direction. We require that Φ(z) is normalized (i.e.

�
dz|Φ(z)|2 = 1). From

here on out it is important to distinguish between the constant reference wavefunction,
ψ0(r), and the test wavefunction ψt(r), which is postulated to carry OAM.

ψt(r) = 1√
2

ψ0(r)(eik⊥ρ sin(φ) + eiΔαeik⊥ρ cos(φ))

ψ1(r) = 1√
3

[ψ0(r) +
√

2eiα1ψt(r)]
(5.4)

with Δα = α2 −α1. We note that the above wavefunctions are not properly normalized,
since they do not represent the total neutron wavefunction emerging from the interfer-
ometer, but only the part of the wavefunction projected towards the detector. The test
wavefunction is the wavefunction of which we are investigating the OAM properties.
This is similar to the wavefunction we investigated at the end of chapter 2 (i.e. figure
2.7). However in section 5.1.4 we will also investigate the OAM of ψ1 numerically.
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5.1 Generation of Phase Vortices in Neutron Interferometry

Calculation of the OAM of the Test Wavefunction

We begin by calculating the OAM expectation value (eq. 2.9) using our test wavefunction
(eq. 5.4). For a step by step derivation we refer to the appendix (A.1). For now let
it suffice to say that it can be shown that the OAM expectation value of our test
wavefunction can be written as

< Lz >=
√

2π sin(Δα)
�

dρk⊥ρ2|ψ0|2J1(
√

2k⊥ρ)�
dr|ψ(r)|2 (5.5)

In our special case of where ψ0(r) is Gaussian this integral is a standard Hankel transform
with the result

< Lz >= sin(Δα)k2
⊥σ2

4N
e− k2

⊥σ2

4 (5.6)

with the normalization parameter N =
�

dr|ψ(r)|2 = 1 + cos(Δα)e− k2
⊥σ2

4 . For large
k⊥, the normalization parameter goes to unity. We can easily see in this limit that
the OAM is maximal/minimal for Δα = ±π/2. In addition using N ≈ 1 and the
derivative of equation 5.6 we find the approximate value of k⊥ for which the OAM
is maximized/minimized: k⊥ = ± 2

σ
= ±2ζ. That is to say that the refraction angle

must be about one order of magnitude larger than the average momentum spread of
an individual neutron for maximal OAM. Another interesting region of equation 5.6, is
found for small k⊥ in the vicinity of Δα ≈ π. Here, around Δα = π, the OAM may vary
rapidly and even attain a significant value for a relatively small value of k⊥.

Recall that OAM can always be considered entirely intrinsic if

< kx >=< ky >= 0 (5.7)

Since for our setup < kx >=< ky >= k⊥ and k⊥σ is at most 0.01 we can consider the
OAM to be quasi intrinsic, since k⊥r0 ≈ 0. As the interaction range of the neutron is
proportional to its’ coherence length it does not make sense to look at r0 >> σ when
examining the OAM of single neutrons. In section 5.1.4 we will look at the intrinsic
nature of the OAM more rigorously.

In addition to the expectation value it is instructive to look at the OAM spread, defined
as a standard deviation:

χ =
�

< L2
z > − < Lz >2 (5.8)

with the second moment given by (see the appendix A.1 for a complete derivation)

< L2
z >= k2

⊥σ2

4N
− cos(Δα)k4

⊥σ4

16N
e− σ2k2

⊥
4 (5.9)

It can be seen that the OAM bandwidth is maximal for a phase shift Δα = ±π. Both
the OAM bandwidth and the expectation value are shown for a variety of Δα and
k⊥ (in units of ζ) in figure 5.2. At this point it should be remembered that perfect
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Figure 5.2: (a) Expectation value of the test wavefunction (eq. 5.4) as given by the
analytical expression in equation 5.6 for various transverse momentum shifts
k⊥ and phase shifts Δα. Around Δα = ±α/2 and k⊥ = 4π the OAM
attains a maximal/minimal value of ±0.4 (b) The OAM bandwidth defined
by equation 5.8 for ψt as a function of transverse momentum shift k⊥ and
phase shift Δα. Inserts (c) and (d) show the behavior of < Lz > and χ
respectively for small k⊥ in the vicinity of Δα = π. In all figures k⊥ is in
units of ζ. In the case of the described experiment the normalized k⊥ ranges
from 10−5 (vertical refraction) to 0.02 (horizontal refraction).
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crystal neutron interferometry, the momentum spread ζ is direction dependent, due to
dynamical diffraction, such that the input wavefunction should be written as

ψ0(k) =
�

1
2πζxζy

e
− (ζ2

yk2
x+ζ2

xk2
y)

4ζ2
xζ2

y Φ(kz) (5.10)

where ζx and ζy differ by three orders of magnitude. Nonetheless the above theory for
isotropic momentum spread (ζx = ζy = ζ) is still valid if the transverse momentum
shifts induced by the prisms are adapted to the momentum spread in the respective
direction. However, the experiment we are describing employed identical prisms, hence
it is possible that figure 5.2 does not give an accurate representation of the quasi-intrinsic
OAM of our wavefunction. Nonetheless, when we calculate the OAM expectation value
analytically (the step-by-step calculation is shown in the appendix A.1), using the ψ0(r)
implied by equation 5.10, it can be be shown that

< Lz >= sin(Δα)
k2

⊥(σ2
x + σ2

y)
8N

e− k2
⊥(σ2

x+σ2
y)

8 (5.11)

which in form is identical to equation 5.6. This expression becomes completely identical
to equation 5.6, if we define an effective transverse coherence σ2 = (σ2

x + σ2
y)/2, the

normalization parameter N is then unchanged. So figure 5.2 can also be considered for
anisotropic momentum spreads and the maximal amount of OAM generated by this type
of setup is not affected by an anisotropic momentum distribution. It follows that in the
experiment described here the effective k⊥σ is on the order of 0.015.

Given this effective k⊥σ, we may regard the OAM as quasi intrinsic. However as can be
seen in figure 5.2 the OAM production is small for this configuration. Nonetheless it is
instructive to look at the amplitudes of the wavefunctions first OAM modes for small
k⊥σ. To this end we calculate the AFT of the test wavefunction which is given by the
Jacobi-Anger expansion [47]

ψℓ
t(ρ) = (−1)ℓ 2

σ
e− ρ2

σ2 Jℓ(k⊥ρ)

1 + i−ℓeiΔα

�
(5.12)

Note that we have dropped the longitudinal part of the wavefunction, Φ(z) for this
analysis. Realistically the refraction angle induced by a neutron optical prism is much
smaller than the beam divergence, therefore the width of the Gaussian envelope in (5.12)
is much smaller than the period of the Bessel functions, Jℓ(k⊥ρ). This implies that
linearizing the Bessel functions will yield a good approximation of the OAM amplitudes.
We note that in the linear limit only Bessel functions of modes ℓ = −1, ℓ = 0 and
ℓ = 1 are non zero, therefore only these OAM modes play a non-vanishing role in our
wavefunction. The approximation yields

ψℓ=0
t (ρ) ≈ 2

σ
e− ρ2

σ2 (1 + eiΔα)

ψℓ=±1
t (ρ) ≈ ∓k⊥ρ

σ
e− ρ2

σ2 (1 ∓ ieiΔα)
(5.13)
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Figure 5.3: Probability amplitudes of the first and zeroth order OAM modes. The first
order mode probabilities ℓ = 1 (blue), ℓ = −1 (red dashed) and the zeroth
order mode probability ℓ = 0 (black) are plotted against the phase shift Δα
(centered on Δα = π) for various transverse momentum shifts, (a) equal
to the experimental case k⊥σ = 0.015, (b) ten times larger and (c) thirty
times larger than in the experimental case. In (a) the ℓ = 0 amplitude is
not plotted for improved visibility. It can be clearly discerned that ℓ = ±1
probabilities widen for increasing refraction, k⊥. In addition the ℓ = 1 and
ℓ = −1 probabilities appear to be mirror images of one another (mirrored
around Δα = π).

As previously shown the average OAM ⟨Lz⟩ is zero for Δα = ±π. However this analysis
using the AFT shows that, despite this, the intrinsic neutron OAM is dominated by an
equal superposition of ℓ = ±1 modes, while the ℓ = 0 mode is totally suppressed. Hence
in this case we have created a linear OAM state as described in the last section of chapter
2. We may calculate the probability amplitudes of the ℓ = 0 and ℓ ± 1 modes, using
the OAM distribution function (eq. 2.32) and our approximate expressions in equation
5.13. Figure 5.3 shows these probability amplitudes for various k⊥ around Δα = π. It
can be seen that for increasing k⊥ the ℓ = 1 and ℓ = −1 probabilities widen and begin to
separate from one another. It can also be seen that the ℓ = 1 and ℓ = −1 amplitudes are
asymmetric around Δα = π, having a steeper slope to one side of the peak compared to
the other side. This results in the OAM becoming net positive for Δα < π and negative
for phase shifts above π.

Treatment of Beam OAM

Until now we have considered a microscopic treatment of OAM where a single wave-
function is centered on the optical axis. Now we turn to the macroscopic treatment
where we consider an ensemble of quasi-paraxial wavefunctions which make up a beam.
On this scale vortex lattices can appear, which carry macroscopic beam OAM. Since
the individual neutrons that make up the beam can be far off-axis, compared to their
coherence length, our theory predicts that most neutrons will have extrinsic OAM with
respect to the axis around which (beam) OAM is defined.
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It is well known that a prism inserted into a single loop interferometer generates a Moire
fringe pattern along the refraction direction [32]. In our nested loop interferometer the
Moire patterns generated by each loop are overlaid, thereby creating a lattice like struc-
ture. The spatial intensity profile can be calculated using the wavefunction projected to
the detector (equation 5.3). The wave function impinging on the detector at position r′

is simply equation 5.3 with the input wavefunction ψ0(r) translated by r′

ψ1(r − r′) = 1√
3

ψ0(r − r′)[1 + eiα1eik⊥y + eiα2eik⊥x] (5.14)

The intensity profile which would be measured can be calculated by taking the absolute
value squared of equation (5.14):

I(r′) =
�

P
dr|ψ1(r − r′)|2 (5.15)

with P a domain given by the pixel size of the detector, which is quasi infinite in
size compared to the wavefunction. Assuming r′ falls within the domain P , we may
approximate this integral by

I(r′) = 1
3

�
P

drδ(r − r′)[3 + 2 cos(k⊥y + α1)+

2 cos(k⊥x + α2) + 2 cos(k⊥(x − y) + Δα)]
(5.16)

where we used that |ψ0(r − r′)|2 may be approximated by a delta function since the
coherence length is very small compared to the period of the cosines. Hence it follows

I(r′) = 1
3[3 + 2 cos(k⊥y + α1)+

2 cos(k⊥x + α2) + 2 cos(k⊥(x − y) + Δα)]
(5.17)

For the prisms used in this experiment we expect a value of k⊥ which corresponds to a
lattice period of 1.75 mm.

5.1.3 Experimental Results and Applications

We now look at the experimental results and compare these with our theory. Afterwards
we will look at the potential applications of our setup and explore possible improvements
to increase vortex yield.

Experimental Results

The vortex lattice generated by our setup is shown in figure 5.4 (a). In addition, the
figure contains a fit (fig. 5.4 (b)) based on equation (5.17). For more details on the fitting
technique, image processing and data reduction the reader should refer to the appendix
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Figure 5.4: Measurement results and fit. (a) The processed, normalized and filtered
image of the neutron vortex lattice, recorded using the position sensitive
detector seen in figure 5.1. The contrast, according to the fit (b) based on
(5.17), is 0.53. The lattice period is 1.83 mm.

A.2. The discrepancies between the fit and the data could be explained by different
amplitudes of the three Cosine terms in equation 5.17. These amplitudes can differ
depending on the amount of material each partial wavefunction in the interferometer
goes through. If two paths "see" a similar amount of material, the amplitude of the
Moire fringes from that loop will be large, while if there is a discrepancy in the amount
of material, dephasing may occur, thereby lowering the amplitude of the respective loop.

Since the model used for our fit assumes that the intensity is given by |ψ1(r)|2, we
may extract a part of the test wavefunction, ψt(r)/ψ0(r), from the data, using our
model, yielding the phase data needed to compute the amplitude of each OAM mode
and the average OAM normal to any domain. Note that since the reconstructed test
wavefunction is given by ψt(r)/ψ0(r), we do not observe any coherence effects, as these
are all contained within ψ0(r). Figure 5.5 (a), shows the real part of the reconstructed
test wavefunction zoomed in on a single vortex. For numerical calculation purposes we
introduce a spatially averaged AFT

ψ̄ℓ
t =

�
D

eiℓφ(x,y)ψt(x, y) d2x (5.18)

with φ(x, y) defined by the argument between the x and y coordinate (i.e. φ = Arg(x +
iy)) and D an arbitrary two dimensional domain, over which the average mode amplitude
is to be determined. From the amplitudes calculated in equation (5.18) an approximate
expectation value of the OAM orthogonal to the domain surface can be determined

⟨Lz⟩ =
 

ℓ ℓ|ψ̄ℓ
t |2 

ℓ |ψ̄ℓ
t |2

(5.19)
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To closely approximate an actual AFT a circular domain is chosen to calculate the
amplitudes, ψ̄ℓ

t , given by equation (5.18). To first order it was shown that the ℓ = ±1
amplitudes increase linearly with ρ (equation (5.13)), hence a larger domain will see a
larger maximal value of the OAM. We will, therefore, choose the maximal domain size on
which the first order approximations of the test wavefunction are valid. The first order
approximation can be used up to k⊥ρ = 0.75 with a maximal relative error of less than
0.1. In our setup this corresponds to a domain size of 0.22 mm. Being much larger than
the effective transverse coherence of the beam (roughly 5 µm) it follows that the OAM
must be considered to be extrinsic. The domain on which the spatially averaged AFT is
calculated is indicated in figure 5.5 (a). It can be scanned across the reconstructed test
wavefunction, ψt(r)/ψ0(r), to calculate ⟨Lz⟩ in each section of the image. This OAM
expectation value is shown in figure 5.5 (b). Note the diagonal (45 degree) "lines" of
constant OAM in figure 5.5 (b), confirming the predictions made in section 2.4.

Figure 5.5: (a) Image of the real part of the test wavefunction of a single vortex carrying
extrinsic OAM. This test wavefunction is reconstructed using the fit param-
eters generated by the model shown in figure 5.4. A circle is drawn in the
center of the image indicating the domain on which the spatially averaged
AFTs are applied and the first order approximations used throughout the
paper are valid. The axis around which the OAM is defined is centered on
and normal to this circular domain. (b) The average extrinsic OAM ⟨Lz⟩
over the image is shown. This is calculated using the spatially averaged AFT
(equation 5.18) and equation (5.19).

Discussion and Applications

We see that our method using only two prisms generates extrinsic vortices with a signifi-
cant ℓ = ±1 component, such that the average beam OAM can reach up to |⟨Lz⟩| ≈ 0.35.
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While the vortex diameter is still much larger than the calculated coherence length and
therefore cannot be applied to experiments requiring intrinsic OAM [22, 23, 24]. How-
ever spatially modulated beams like the one generated in our setup can be applied to
ultra small angle scattering. In numerous configurations it has been shown that one
dimensional intensity modulation (such as Moire patterns) can be applied to ultra small
angle scattering, for example in neutron dark field imaging/Talbot-Lau interferometry
[108, 109] and spin echo modulated small angle neutron scattering [110, 111, 112]. With
the exception of a recent development in Talbot-Lau interferometry [113] the latter
methods can only measure the elastic scattering function S(q) in one dimension. Two
dimensional intensity modulation, as generated by our setup, could be used to measure
two dimensional elastic scattering functions, allowing analysis of anisotropic samples
in a single measurement. Such a measurement would employ the same instrument as
described here. A sample could be placed between the interferometer and position sen-
sitive detector. Small angle scattering from the sample would wash out the intensity
modulation leading to contrast reduction. This contrast reduction is proportional to
the Fourier transform of S(q) analogous to spin-echo modulated small angle neutron
scattering methods [110, 111]. By Fourier transforming the modulated intensity pattern
it is possible to separate the contrasts of the vertical and horizontal modulation. This
allows the instrument to distinguish between vertical and horizontal scattering. Hence,
the instrument could simultaneously measure S(qx) and S(qy). This scheme could also
be applied to the magnetic method for generating vortex lattices [33]. Both the latter
method and our approach still lack the focusing prisms used for first order corrections to
the divergence/coherence, which prevent dephasing and are available in the one dimen-
sional method [110, 111, 112]. Though a recent analysis [114] has demonstrated how to
implement first order divergence corrections in a setup analogous to the magnetic co-
herent averaging method [33] and the setup described in this paper. Focusing elements
increase the modulation contrast and allow for larger beam sizes/divergences, thereby
increasing the available intensity. These focusing prisms become a requirement when
one looks towards generating intrinsic OAM using our method. Equation (5.6), shows
that the refraction angle of the prisms or k⊥ must be on the same order of magnitude
as the beam divergence or ζ, such that the amplitude of the |ℓ| = 1 mode becomes
significant. This may be achievable in the near future with recent developments in com-
pound neutron optics [115] and micromachining [116]. In addition, steeper prisms made
from more dense optical material can be employed in compound devices. The additional
space required by obligatory focusing prisms call for larger perfect crystal interferom-
eters. Ongoing developments in neutron interferometry with split crystals may make
this possible in the near future [117]. However a fundamental limit is reached as k⊥
approaches the beam divergence ζ along the diffraction direction, as in this case beams
are only poorly diffracted by interferometer plates. For diffraction to efficiently occur
the momentum shifted wavefunction ψ0(k − k⊥ĵ) must have significant overlap with the
input wavefunction ψ0(k), which is defined by the angular acceptance of the interfer-
ometer. ĵ here refers to the direction normal to the crystal planes. As a result we can
estimate that k⊥ can be on the order of ζ. Using equation 5.6 it can be shown that the
OAM expectation value cannot exceed 0.1, due to the diffraction limit. Though as will
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be discussed in the next subsection, if we adopt a real space coherent averaging scheme
we can avoid the diffraction limit altogether.

5.1.4 Generalizations of Coherent Averaging

In this subsection we will further generalize the theory of coherent averaging presented
in the previous subsections. we will begin by presenting and justifying the real space
coherent averaging scheme, which was implicitly explored at the end of chapter 2. After
that, following the work described in [101], we will explore the general case of coher-
ent averaging where N sources or partial wavefunctions are used to create an output
wavefunction with arbitrary OAM.

Real Space Coherent Averaging

In the experiment described thus far we have conducted our translation and phase shift
operations on the reciprocal space wavefunctions. However as we already demonstrated
in section 2.3.3 any kind of reciprocal space structure that produces OAM also produces
OAM when constructed in real space, since the form of the OAM operator does not
change under Fourier transformation. This offers enormous advantages, since as it will
turn out optics for real space coherent averaging are simpler and much smaller vortices
can be produced with comparatively low effort.

As an example one could use a composite wavefunction where the partial wavefunctions
are shifted in real space relative to each other.

ψ(r) = 1√
2

[ψ0(r − δŷ) + eiΔαψ0(r − δx̂)] (5.20)

Where real space separations, δ, can be achieved using prism pairs or parallelogram
shaped optical devices. Note that this is the real space equivalent of the reciprocal test
wavefunction used previously. Since the OAM operator does not change form under a
Fourier transform, it follows that the OAM of equation 5.20 can be derived identically to
that of equation 5.4, detailed in the previous subsections. Therefore the form of the OAM
expectation value is identical to that which is described in 5.6. Contrary to what one may
intuitively think the wavefunction in equation 5.20 does not obey < kx >=< ky >= 0 it
follows that, the OAM is therefore not invariant under translation. However as shown
in figure 5.3, such a state is a linear OAM state, which can be seen as a superposition
of the two intrinsic OAM states with ℓ = 1 and ℓ = −1. As stated before this method
is much simpler than the reciprocal space method, since a pair of prisms can produce
displacements, δ that are on the order of the coherence length σ, which is necessary to
produce large amplitudes of OAM. It is even possible to produce displacements orders
of magnitude larger than the coherence length [118, 119].
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Moving forward it is therefore pertinent to focus on real space coherent averaging to
produce a high yield OAM generator device for neutrons. For this reason in the following
sections we will focus only on the real space variant of the technique.

Coherent Averaging with an Arbitrary Number of Discrete Sources

we now turn to what is basically a special application of Huygens principle. Specifically
we will look at producing vortex states with mode number ℓ using N discrete sources or
partial wavefunctions arranged in a circular pattern. This is explored in more detail in
[101]. Here we will explore the idea in a more simple fashion. we will start by describing
the composite wavefunction as a superposition of N partial wavefunctions

ψc(r) =
N−1�
i=0

eiϕiψi(r − ri) (5.21)

where the partial wavefunctions are defined by a phase ϕi and a displacement ri. To
generate the ℓth mode number we require that the phase is given by

ϕi = iℓ
2π

N
(5.22)

since for the ℓth mode the phase of the composite wavefunction must goes through ℓ
oscillations. We will also require the position ri to be such that the partial wavefunctions
sit on a circular domain of radius δ

ri = δ[cos(2πi

N
)x̂ + sin(2πi

N
)ŷ] (5.23)

It is useful then to look at the AFT of the composite wavefunction

ψn
c (r) =

�
i

eiϕi

� 2π

0
dφ ψi(r − ri)e−inφ (5.24)

if we assume ψi to be a symmetric Gaussian (i.e. σx = σy = σ) we can completely
re-use our work from section 2.5, specifically equation 2.78, if we realize, that a simple
coordinate rotation (φ′ = φ − 2πi

N
) can reduce each Gaussian ψi to eq. 2.69 with ky = 0.

The solution to the above AFT is then

ψn
c (r) = Ae− r2+δ2

σ2 inJn(2i δ

σ2 r)
�

i

ei 2πi
N

(ℓ−n) (5.25)

We can already intuitively see that for quasi-infinite N, the summation will go to zero
for all terms ℓ ̸= n, hence for infinite sources/partial waves we can generate a perfect
vortex state of any mode number. If we recognize the summation as a finite geometric
series we may further simplify our expression

ψn
c (r) = Ae− r2+δ2

σ2 inJn(2i δ

σ2 r) 1 − ei2π(ℓ−n)

1 − ei 2π
N

(ℓ−n) (5.26)
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From this expression it is trivial to derive the OAM distribution function, given that we
have already done the heavy lifting in section 2.5

p[n] = A2σ2

4 e− δ2
σ2 In( δ2

σ2 )1 − cos(2π(ℓ − n)))
1 − cos(2π

N
(ℓ − n)) (5.27)

Now let us examine more closely the relationship between the number of sources N
and the desired amount of OAM ℓ of the composite state. We can easily see that the
distribution is maximal when p[n = ℓ]. It is also trivial to recognize that for there to be
some net OAM we require p[n = ℓ] ̸= p[n = −ℓ]. Using this we can derive the minimal
number of sources/partial waves required to generate a vortex state with mode number
ℓ.

N > 2|ℓ| (5.28)

This is a minimal requirement. As it turns out if x > 1 we require more sources to
produce the vortex state. To further investigate this we will numerically calculate the
OAM expectation value. First however it is useful to recognize that for our wavefunction
to be normalized the parameter A must contain a factor of 1/σ. In addition we can reduce
the number of variables in our OAM distribution function using x = δ

σ
. Thus we can

use the following simplified distribution function

p[n] ∝ e−x2
In(x2)1 − cos(2π(ℓ − n)))

1 − cos(2π
N

(ℓ − n)) (5.29)

to calculate the OAM expectation value

< L̂z >=
 

n np[n] 
n p[n] (5.30)

Numerical results are shown in figure 5.6 for the first few vortex modes. The figure
confirms the rule we found regarding the minimal number of sources (eq. 5.28). In
addition we find that the largest OAM generation efficiency occurs for small x (i.e. the
displacement δ must be equal to or smaller than the coherence length σ). The downside
of using small x, can be seen in the composite wavefunction. For small x the partial
wavefunctions destructively interfere producing a low intensity output. To account for
this we can define a figure of merit which weighs the OAM yield by the intensity.

F = | < L̂z > |I
ℓ

(5.31)

with I =
�

dr|ψc|2 the intensity. This figure of merit is shown for two case in figure
5.7. Here we find that the figure of merit is maximized for x = 0.6, as soon as the
number of sources N exceeds the minimal number of required sources (eq. 5.28). This
result shows why in the case of neutrons real space coherent averaging is superior to the
reciprocal space analog when working with neutrons. It is incredibly difficult to displace
the wavefunction in reciprocal space by such a large amount to produce a value of x
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Figure 5.6: OAM expectation value of the composite wavefunction described in this sec-
tion plotted against the number of partial wavefunctions that contribute to
the total wavefield N and the ratio between the displacement parameter δ
and the coherence length σ. Plots are shown for four different cases (a)ℓ = 1,
(b)ℓ = 2, (c)ℓ = 3 and (a)ℓ = 4. We find that the highest yield occurs when
the parameter x is below one and when equation 5.28 is satisfied.

large enough to maximize the figure of merit, while in real space these displacements
can be produced with relative ease [118, 74].

In summary, the key takeaway from this subsection is to produce a vortex state of mode
ℓ by coherent averaging with N Gaussian partial waves, one requires at least N = 2ℓ+1
partial waves. In addition for maximal efficiency the displacement parameter δ should
equal 0.6 coherence lengths σ. Finally this implies that real space coherent averaging is
more feasible for producing a high yield OAM generating device than reciprocal space
coherent averaging.
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Figure 5.7: Plots of the figure of merit defined by equation 5.31 for two different cases
(a) ℓ = 1 and (b) ℓ = 2. The figure of merit is plotted against the number of
partial wavefunctions that contribute to the total wavefield N and the ratio
between the displacement parameter δ and the coherence length σ.

5.2 OAM in Spin Echo Small Angle Neutron Scattering

In this section we will explore OAM generation in the Spin Echo Small Angle Neutron
Scattering (SESANS) technique, which was first done theoretically in [31] and later
experimentally [33], using a setup closely related to SESANS. we will begin by shortly
presenting the SESANS technique and analyze the states generated by a SESANS device
through the lens of OAM. After this we will look at the SESANS instrument CANISIUS
built at the Atominstitut to investigate neutron OAM. Finally we will adapt SESANS
to construct a coherent averaging device capable of producing ℓ = 1 and ℓ = −1 states.
we will mainly follow the work described in [38].

5.2.1 SESANS: An Overview

Originally neutron spin echo (NSE) [102, 69], referred to an interferometric high resolu-
tion inelastic scattering technique used to resolve slow dynamics. The technique employs
two rectangular shaped magnetic field regions, with opposite fields, but equal length.
Neutrons entering the first region are split longitudinally according to their spin state
(either aligned with the field or anti-aligned). The second region, being equal in length,
but opposite in field recombines the two spin states. If no scattering takes place be-
tween the two field regions, the original polarization is recovered. If however there is
some scattering between the two regions, the two spin states fail to fully recombine and
we can measure a depolarization, proportional to the change in energy induced by the
scattering event.
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Now over 50 years later, there exist a whole host of different spin echo techniques. Some
of these techniques serve the original purpose of measuring inelastic scattering, however
spin echo has also been adapted to small angle scattering [39, 40] as will be discussed
in this subsection. The main difference between this SESANS technique and NSE is the
shape of the field regions. In SESANS we use field regions shaped as parallelograms which
has as end result that the final polarization becomes sensitive to the scattering angle if
scattering takes place between the two arms (see figure 5.8). Since this technique is not
sensitive to divergence it was initially designed to measure small angle scattering smaller
than the beam divergence, without sacrificing intensity. SESANS can also be seen as

Figure 5.8: Schematic representation of Spin Echo Small Angle Neutron Scattering. Two
inclined magnetic field regions of opposite polarization (represented in light
blue and red) are used to induce a transverse separation between the two neu-
tron spin states, also indicated in blue and red. The SESANS configuration
shown here also induces a longitudinal separation between the wavepackets
indicated by vτSE. The sample indicated in gray causes the beam to be
scattered by a small angle α. As a result the path length through the second
field region is changed L′

2, resulting in a net phase shift between the two spin
states upon recombination.

an interferometric technique. Since the face of the magnetic field regions are inclined
with respect to the momentum vector of the incident neutron spin dependent magnetic
refraction takes place upon entering the field, thereby transversely separating the spin
states [41]. In recent years the interferometric applications were further developed and
applied to a variety of questions ranging from quantum contextuality [10, 11] to (exotic
[120]) gravity [121] and to probe properties of the neutron itself, such as the intrinsic
coherence of a single neutron [119].

As stated earlier regular Spin Echo, uses two oppositely polarized field regions, such that
all precession induced in the first field region is reversed in the second, if the neutron
velocity does not change in the instrument, ie.

γB1
L1

v1
= −γB2

L2

v2
(5.32)

with B the magnetic field strength, L the length of the precession region and v the
neutron velocity. The index refers to the first or second precession region. It follows
that such a spin echo instrument is sensitive to small changes of the neutrons kinetic
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energy. In SESANS the field regions are inclined (see figure 5.8), so that the instrument
becomes sensitive to small changes in the neutrons transverse wavevector component,
q (small angle scattering). If the velocity of the neutron is unchanged the net phase
accumulated by the neutron after a small angle scattering event is simply

χ = γB2
ΔL2

v
(5.33)

where ΔL2 is the difference between the scattered and non-scattered neutron flight path
length in the second arm, given by

ΔL2 = L2 cot(θ0)α = L2 cot(θ0)
q

k
(5.34)

with α the scattering angle. It follows that the phase is given by

χ = γmB2L2 cot(θ0)λ2

4π2h̄
q = δSEq (5.35)

with the spin-echo length δSE equal to the induced transverse separation between the
up and down spin state. When the SESANS instrument utilizes a resonant spin echo
technique, such as the instrument described later in this manuscript, the spin-echo length
is twice as large

δSE = γmB2L2 cot(θ0)λ2

2π2h̄
(5.36)

since the RF flippers used in these techniques induce zero field precession at an effective
rate equal to two times the applied magnetic field.

Note that figure 5.8, also indicates a longitudinal separation between the spin states
referred to as the spin-echo time, τSE, which is relevant for inelastic scattering, but in
the case of the work presented here, the spin echo time is simply an undesired artifact,
which we will later learn how to compensate. Returning to the analysis at hand: given
the form of the phase χ, the polarisation can be written a cosine transform of the
scattering function S(q)

P =
�

dq cos(δSEq)S(q) = G(δSE) (5.37)

with G(δSE) the real space correlation function. Since δSEis proportional to λ, a broad-
band/white beam instrument, measures many different correlation lengths simultane-
ously. Then the polarization can be written as

P =
�

dλG(δSE)I(λ)�
dλI(λ) (5.38)

with I(λ) the intensity distribution of the sampled beam. To extract the wavelength
information an additional precession coil can be inserted into the beam. This precession
coil adds a phase which is field and wavelength dependent

ϕ = γBmλd

2πh̄
= κλ (5.39)
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with d the length of the precession coil. Hence by simply adding a precession coil the
final polarisation becomes the cosine transform of the correlation function times the
intensity distribution

P (κ) =
�

dλG(δSE)I(λ) cos(κλ)�
dλI(λ) (5.40)

with κ proportional to the field and therefore current in the precession coil. It follows
that the cosine transform of the polarization of the spin echo group, P (κ) yields the
correlation function weighted by the normalized intensity distribution. The correlation
function of a specific sample can be extracted by normalizing the cosine transform of
the spin echo group with sample, P1(κ) by a cosine transform of the spin echo group
without the sample, P0(κ).

G(δSE) =
�

dκP1(κ) cos(κλ)�
dκP0(κ) cos(κλ) (5.41)

Since the correlation function of a vacuum is constant, the cosine transform of the spin
echo group without a sample should simply be equal to the normalized spectrum.

SESANS may also be used to produce simple structured waves. In the quantum me-
chanical view magnetic refraction splits the two spin states transversely (see figure 5.8),
hence such an instrument can be used for coherent averaging with two partial wavefunc-
tions. As stated earlier the longitudinal separation induced by a SESANS instrument
is an undesired artifact for coherent averaging. This can be compensated by using a
different tilt angle in the second arm compared to the first arm, since this retains the
length of both arms (i.e. γB1L1 = γB2L2) and therefore brings the two wavepackets
back in phase longitudinally. Due to the different angle of the interface, however the
refraction angle changes and the second arm fails to focus the spin states transversely
and we are left with a residual transverse separation between the wavefunctions. The
concept is illustrated in figure 5.9. This residual transverse separation is given by

δres = γmBLλ2

4π2h̄
(cot(θ1) − cot(θ2)) (5.42)

where we have assumed that B = B1 = B2 and L = L1 = L2. So for a Gaussian input
wavefunction

ψ0 = Ae−x2/σ2
eikyy (5.43)

Then the output wavefunction after spin selection would be equal to

ψ1 = A′[e−(x− δres
2 )2/σ2 + eiηe−(x+ δres

2 )2/σ2 ]eikyy (5.44)

with η a longitudinal phase between the two partial wavefunctions. Note that we have
already analyzed the longitudinal OAM of this type of wavefunction in section 2.5. The
OAM distribution function is shown in figure 2.7 and can also be deduced from the work
done in the previous section. In this figure we show that for small transverse separations
compared to the coherence length we can produce linear OAM states that exist in an
equal superposition of ℓ = −1 and ℓ = 1. As we will see this may be useful for detecting
changes in scattering and absorption cross sections, due to OAM.
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Figure 5.9: Schematic representation of the coherent averaging mode of a SESANS in-
strument. This mode is almost equivalent to regular SESANS, the only dif-
ference being the different angles between the two field regions. This leads
to an incomplete focusing of the two spin states, which is indicated by the
residual distance δres between the states at the end of the instrument.

5.2.2 CANISIUS the Austrian Spin Echo Interferometer

In this subsection we report on the new broad band spin-echo interferometer, CANISIUS
(Coherent Averaging Neutron Instrument for Spin-echo Interferometry and fUndamental
Science), designed to investigate the properties of vortex neutrons carrying non-zero
OAM. CANISIUS follows similar design doctrines as the Offspec [122] and Larmor [123,
124] instruments at the ISIS neutron source. That is to say, CANISIUS uses adiabatic RF
flippers [125] to generate the magnetic field regions by the zero field precession technique
[126] and to ensure broad band efficiency. The instrument is built in a modular way
so that it can be applied to a variety of different modes (SESANS, SEMSANS [112],
NRSE and MIEZE). In addition CANISIUS can quickly change between a continuous
white beam and a pulsed beam for time of flight. Here we will report on the design and
efficiency of the adiabatic RF-flippers and the instrument, the interferograms produced
by the instrument in broad-band and time of flight (ToF) and the calibration of the spin
echo length in SESANS mode.

Instrument Overview

A three dimensional render of the CANISIUS instrument in a SESANS configuration is
shown in figure 5.10. CANISIUS is situated at the white beamline of the Atominstitut
(TU Wien) 250 kW reactor. The instrument can be operated in either a continuous
broad-band or two distinct ToF modes. A standard mechanical chopper is used for the
regular ToF mode. The second mode is enabled by a spin chopping system, which is
made possible since the beam is initially polarized by double reflection from a pair of
m=4 single flat substrate supermirrors, this allows the beam to be chopped by inserting
a broad-band spin flipper between the two mirrors which can be pulsed [127, 128]. Due
to the cut-off of the supermirrors the available wavelength range is 2Å − 6Å, with a
peak at 2.5Å. After the double reflection polarizer the beam is passed through a v-coil
which adiabatically rotates the neutron spin around the propagation axis from vertical
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Figure 5.10: Render of the CANISIUS instrument configured for white beam SESANS.
The beam propagates from right to left. First the beam is polarised by
double reflection from two single substrate m=4 polarising supermirrors
(1). Next the polarisation is adiabatically rotated by 90 degrees by a v-coil
(2). The beam then passes through a pair (arm 1) of adiabatic RF flippers
with parallelogram shaped poleshoes, which act as the first beam splitter
and mirror (3). A field stepper is positioned between the first and second
pair (arm 2) of RF flippers, to facilitate a fast non-adiabatic field transition
from arm 1 to arm 2 (4). Samples of various types may be inserted right
before the field stepper. The second arm of RF flippers serve effectively as
a mirror and beam splitter to recombine the split beams. Between the last
two RF flippers the beam is passed through a precession coil (5). Finally
before the spin is selected by the last polarising supermirror (7) the neutrons
pass through a final v-coil facilitating another adiabatic 90 degree rotation
(6). Neutrons passing the polarising supermirror are detected by a high-
efficency 3He counting tube. In addition to the usual continuous mode of
operation the CANISIUS instrument can also be operated in ToF mode. For
this purpose two chopper device are available: a conventional mechanical
chopper (10) as well as a spin-chopper system (9), consisting of an RF flipper
in combination with the pre-polarizer, that is the very first supermirrors (1).
The length of the instrument, given by the distance between chopper (9,10)
and detector (8) is 3 meters.
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to horizontal. Quantum mechanically this implies that the neutron spin can be seen as
being in a superposition of the up and down spin state. In the first arm of the instrument
which consists of a pair of adiabatic RF flippers [129], the two spin states are separated
longitudinally (standard NRSE) and if parallelogram shaped poleshoes are employed
also transversely (SESANS). The second arm with equal but opposite field of the first
arm recombines the spin states. Spatial overlap between the two spin states is ultimately
measured by a spin projective measurement, which in practice is enabled by a v-coil and
a supermirror. An additional closed coil in arm 2, allows variation of the phase between
the two spin states. Finally a series of wedges can be inserted to change and calibrate
the angle of the poleshoes by up to ±5 degrees. This gives some more flexibility to
tune the transverse spin state separation, however its primary purpose is to enable the
new coherent averaging mode, to produce structured neutron waves.If both arms of the
interferometer are operated at a different poleshoe angle the instrument fails to focus
the spin states transversely. As a result some residual separation is left between the spin
states. As shown previously, this residual separation induces a structured wave with
OAM. The residual separation may also be scanned, thus allowing one to measure the
correlation between the spin up and down wavefunctions, similar to what is described
in [118]. In Chapter 6 we will explore measuring wavefunction correlations with this
technique to determine the structure of said wavefunction. On average over the entire
wavelength band the polarization of the instrument in the non-echo mode (RF system
and v-coils turned off), in which there should be no spin precession, is 0.904. The RF
coils are matched to the output impedance of the amplifiers for operation at 1.4 MHz,
however the coils may also be operated in resonant mode (ToF or monochromatic), in
which case they can be operated at any frequency between 10 kHz and 5 MHz, since
the power requirements are low (1-2 W) and the amplifiers are equipped to handle up
to 400 W of reflected power. We will now turn to the details of the instrument starting
with the design of the RF flippers and then moving on to the Time of Flight operations
and then finally we turn to the measurements conducted in SESANS mode.

Adiabatic Radio Frequency Flippers

An RF flipper, used by the CANISIUS setup, is depicted in figure 5.11, for 3 different
poleshoe configurations, square for NRSE and MIEZE, parallelogram for SESANS and
SEMSANS and tilted parallelgram for coherent averaging. The poleshoes in addition to
the magnetic cores were machined from soft iron and subsequently heat treated. The
yokes were machined from construction steel. Coils of 400 windings each are situated
around each magnetic core. The gap between the poleshoes is 30 mm, in which the
RF system is situated (figure 5.11 (d)). This RF system consists of an aluminium
housing containing an 80 mm long RF coil with a diameter of 20 mm and a gradient
coil which has minimal winding density in the center and increases towards in the ends
of the coil. The RF coil consists of 2 mm copper tubing (inner diameter 1.5 mm)
wound on a PEEK bobbin and encased in kapton foil to prevent arcing. 250 ml/min
of G12 coolant is pumped through the tubing, to facilitate heat transport, the coolant
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Figure 5.11: Render of the adiabatic RF spin flippers with parallelogram shaped
poleshoes at 45 deg (a), 45 ± 5 deg (b), and 90 deg in (c). The photo
in (d) shows a top-view of one RF coil partly taken out of the parallelo-
gram shaped poleshoes for demonstration purposes to see water the cooled
RF coil, the gradient field coil, as well as the inlet of the coolant and the
electrical conducting.
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Figure 5.12: Flipping efficiency of one adiabatic RF flipper against wavelength measured
using the ToF technique. This is calculated using ToF spectrums with
the flipper on and off, the result is finally normalised by the instrument
efficiency of 0.904. The weighted average of the flipping effiency over the
entire spectrum is 0.977.

is cooled to 3 degrees by a secondary loop connected to a chiller. Matching of the RF
coils to the amplifier output is done capacitvely for a single frequency, 1.4 MHz. Mica
capacitors were used for their high stability and low loss at typical NRSE frequencies. In
adiabatic flipping mode, roughly 60 W are dissipated in each coil, in addition to 40 W in
each gradient coil. In resonant flipping mode only 1-2 W are required depending on the
frequency, hence in this mode matching between load and amplifier is not necessary. The
efficiency of a single adiabatic RF flipper is shown in figure 5.12, which is determined
first by measuring the polarization in a non precessing mode (v-coil turned off) and then
normalizing said polarization by the the instrument spin transport efficiency, which as
mentioned earlier is 0.904. The polarization is calculated using the well known formula

P = I+ − I−
I+ + I−

(5.45)

with I+ the intensity of the spin state aligned to the analyzing direction (i.e. when the
flipper is turned on) and I− the opposite spin state. Figure 5.12 demonstrates that our
RF flippers have a constant flip efficiency over the entire wavelength band indicating a
good adiabicity of the flippers. A weighted average efficiency of 0.977 can be extracted
from the data shown in figure 5.12. This is comparable to some other adiabatic RF
flipper designs [130]. Though we note that flipping efficiency of 99% are possible with
similar design [131]. In some other desings efficiencies of up to 99.9% have been reported
[132].
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Figure 5.13: Normalized Time of Flight spectra produced using the RF spin chopping
device (blue circular data points) and the mechanical chopper (red cross
shaped data points).

Time of Flight Options

CANISIUS has two options available for producing a pulsed beam. The first is a fermi
like chopper which consists of stacked, short, straight, cadmium lined channels, which is
spun at 50 Hz, resulting in an effective pulse frequency of 100 Hz. The second method,
uses an RF flipper positioned between the two polarizing supermirrors. In this case the
the two mirrors are oriented to select opposite spins, so that when the flipper is off no
beam is transmitted into the instrument. In resonant mode the phase accumulated by
a neutron in the flipper is given by

α = γBRF t (5.46)

with γ the gyromagnetic moment of the neutron BRF the field strength and t the time for
which the particle is exposed to the field. Hence if the RF pulse time is much shorter than
the flight time through the device of the fastest neutron then this phase is wavelength
independent. Therefore to produce a pulsed beam the RF flipper is simply shortly pulsed
in resonant mode, which flips all neutrons that are in the RF coil at the time of the pulse.
These neutrons can then be transmitted through the instrument and to the detector.
This RF flipper is designed equivalently to the others described in the previous section,
with the exception of the gradient coil, since this is not required. The RF field pulse
length is 5 µs, ten times shorter than the flight time of 2.5Å neutrons through the RF
coil. This corresponds to 7 cycles of the RF field at 1.4 MHz. In figure 5.13 a comparison
between the ToF spectra of the mechanical and spin chopper can be seen. It can be seen
that for short wavelengths the chopper systems perform with equal relative efficiency,
however at longer wavelengths the spin chopper has a higher transmission compared to
the mechanical chopper. This is due to the wavelength dependent transmission of the
mechanical fermi chopper [133] which we may approximate at long wavelengths by 1
minus the ratio between the channel width seen by a neutron of wavelength λ and the
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Figure 5.14: (a) Polarisation of the spin echo group measured against current in the
precession coil. The individual data points with errorbars are shown in blue
and in interpolation of the data is shown in red. (b) The Fourier transform
of the spin echo group is shown in black, while the spectra measured using
both chopping techniques also shown in figure 5.13 is superposed.

channel width when the chopper is at rest:

T = 1 − ωmλD2

4πdh̄
(5.47)

with ω the rotation frequency of the device, D the length and d the width of the channels.
The transmission of the spin chopper on the other hand is independent of wavelength
when the RF pulse time is much shorter than the flight time of the neutron through the
RF coil. In this case, much like the double disk chopper [134], the wavelength resolution
is also wavelength independent, depending only on the distance between the chopper
and the detector, L and the length of the RF coil D

Δλ

λ
= D

L
(5.48)

In addition the RF pulse frequency can be optimized for a given detector distance to
maximize intensity.

Interferograms and Calibration of SESANS mode

Figure 5.14 (a) shows an interferogram measured by scanning the precession coil (nr.
5 in figure 5.10). Recall that we previously showed that this so called spin-echo group
is the Fourier transform of the wavelength spectrum (i.e. equation 5.40), hence figure
5.14 (b) shows the Fourier transform of the measured spin echo group superposed on
the spectra measured using time of flight methods. The spin echo length of CANI-
SIUS was calibrated using two different kinds of nanoporous alumina membranes from
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smartmembranes [135], similar to the method described in [136]. The first sample has
pores with a diameter of 25nm and a pitch of 65nm, while the second sample has pores
with a diameter of 40nm and a pitch of 125nm. Both samples have a thickness of 50
microns. The pore diameter and the pitch were both confirmed by SEM imaging (see
figure 5.15). Since both samples display some long range ordering, we expect the cor-
relation function G(δSE) to be sinusoidal for δSE equal to small multiples of the pitch.
And since sample two has twice the pitch of sample 1 we expect the period of the os-
cillations in the correlation function of sample 2 to be twice as large as those in the
correlation function of sample 1. Hence these samples are ideal for calibrating the spin
echo length of the instrument. The raw correlation functions of both samples measured
by CANISIUS are shown in figure 5.16. The correlation function of the sample with the
shorter pitch, shows clearly multiple oscillations with a period of approximately 58.5nm,
while the correlation function of the longer pitch sample shows only one full oscillation
where we estimate the period to be equal to 112.6nm. This is confirmed by taking the
Fourier transform of the data and determining the location of the peak in the Fourier
transform. To reduce 1/f noise we use the transmitted corrected data for the Fourier
transform which is defined as [136]

GT C = log(G(δSE))/λ2 (5.49)

These Fourier transforms show that the periods of the correlation functions do indeed
differ by a factor of two within the sampling width, indicating that CANISIUS does
indeed split a neutron wavefunction into two equal parts separated transversely by
100 − 600 nm. Our calibration measurements show that the expected spin echo length,
calculated using equation 5.35, is within 10% of the actual spin echo length produced
by the instrument.

Figure 5.15: SEM images recorded of the (a) 65nm and (b) 125nm period smartpore
alumina membranes. The scale indicated at the bottom right is the same
for both images and is equal to 400nm
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Figure 5.16: Correlation functions of the (a) 65nm and (b) 125nm pitch smartmembrane
alumina membranes measured using CANISIUS. The insets (c) and (d)
show the Fourier transforms of the transmission corrected versions of the
correlation functions shown in insets (a) and (b) respectively. Each inset
shows the spin echo length in nm on the x-axis. In the case of the Fourier
transforms this axis corresponds to the period as opposed to the frequency.
The spin echo lengths shown are calculated based on equation 5.35

5.2.3 Two Dimensional SESANS as a Generator of OAM

In the previous subsection we showed that a regular SESANS instrument produces two
partial wavefunctions which can be used for coherent averaging. This is sufficient to
produce linear OAM states, which have an average OAM of zero. As we will see later
this can be quite useful and has a few unique applications, however in some cases it is
necessary to produce an OAM state with a non-zero OAM expectation value. As we
saw in section 5.1.4, we need at least 3 partial wavefunctions to produce an ℓ = 1 or
ℓ = −1 state, ideally more. In this subsection we will see that a SESANS instrument
where the fields of arm 1 and arm 2 are orthogonal to each other, produces four partial
wavefunctions. In principle the work described in [33] and [114] describes such a two
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dimensional spin echo device, though they considered a SEMSANS instrument which
uses reciprocal space coherent averaging. Here we will look at the SESANS equivalent
using real space coherent averaging. The former setups, but also the one we are about
to describe uses magnetic Wollaston prims [112], which have the added advantage of
not introducing a spin-echo time, as was the case in the previous setups. A schematic
representation of a Wollaston prism can be seen in figure 5.17 The square prism is
divided into two right sided triangular field regions with a field of equal magnitude but
opposite direction. As a result at the interface between the two field regions the neutron
spin states are split apart transversely according to the Zeeman interaction. Since both
field regions are equal in length the net field integral and therefore the result spin-echo
time are zero. That is to say the Wollaston prism induces transverse separation but
no longitudinal displacement. A pair of Wollaston prisms with opposite fields can be
used for real space coherent averaging, as the second prism stops the divergence of the
two partial wavefunctions and thereby fixes the transverse displacement between the
two partial waves. An additional precession coil can be used to influence the phase
between the partial wavefunctions. A regular SESANS instrument would have a second
arm consisting of two more Wollaston prisms with opposite field direction. This arm
would spatially recombine the spin states. However if we rotate the second arm of the
device 90 degrees with respect to the first beam around the beam, the second arm induces
transverse splitting in the direction orthogonal to the splitting produced in the first arm.
Each partial wavefunction produced by the first SESANS arm is split transversely into
two new partial wavefunctions. Hence the second arm produces a total of four partial
wavefunctions. As we know from our work in section 5.1.4 this is a sufficient number of
waves to produce an ℓ = 1 or ℓ = −1 state. The instrument we just described is shown
schematically in figure 5.18. The state of the total wavefunction is written explicitly in
the figure to show how it evolves as it traverses the instrument.

We have already shown generally how to create and |ℓ| = 1 vortex state with four partial
wavefunctions in 5.1.4. In particular we must choose Δθ1 = Δθ2 = π

2 to produce the
desired vortex state. In addition the displacement parameter d must be chosen such
that d < σ. Since ideally we would like the vortex state to be pure (i.e. the distribution
function should be zero for all ℓ except the desired vortex mode), we will calculate
equation 5.29 for the special case where N = 4 and ℓ = 1 for various δ/σ. The results
are shown in figure 5.19 We find that full suppression of side-bands occurs for δ/σ < 0.5,
though as figure 5.3 shows for small displacement parameters the phase parameter, must
be very precisely set or else no vortex states are produced at all. For this reason it can be
advantageous to accept small side-bands and use a higher displacement as this produces
(a) more intensity and (b) requires less precision in terms of calibration.

Since this type of setup, produces relatively pure vortex states it is ideal for investigating
the properties of single vortex modes, in particular scattering and absorption character-
istics. Hence we will use this type of setup in chapter 7 where we look at the dependence
of absorption cross sections on the OAM of the incident beam.
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Figure 5.17: Schematic of a magnetic Wollaston prism. The square prism is divided
into two right sided triangles. The two colors, orange and blue, represent a
magnetic field of equal magnitude but opposite direction. A neutron which
is initially in a superposition of the up and down spin state, splits spatially
in its two separate spin states ones it reaches the field boundary, causing
the two states to diverge transversely from each other.
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Figure 5.18: Schematic of a setup showing a neutron being separated in the x-direction
by a pair of Wollaston prisms. Next a longitudinal phase difference is in-
duced using a magnetic coil (here called accelerator coil). Afterwards a
second pair of Wollaston prisms split the neutron in the y-direction (into
the page not visible). A second precession coil induces another phase shift.
Finally a π/2 flipper and a polarizing bender select the L=-1 composite
state. The composite state is passed through a sample which is being in-
vestigated after which the intensity normalized by the monitor value is
measured.
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Figure 5.19: OAM distribution function for N = 4 and ℓ = 1 (i.e. the state produced in
the instrument shown in figure 5.18) for various displacement parameters.
In blue we see a displacement parameter that is 50% of the coherence length,
in red 100% and yellow 200%. We see that full suppression of sidebands
already occurs for a displacement parameter that is 0.5σ or smaller.

5.3 Conclusion

We have explored the coherent averaging method and its application to producing vortex
states. We saw that this method was first explored in spin echo methodologies in [32]
and [33] and later generalized to interferometry in [34]. The latter experiment and its
potential applications were also explore in this chapter. The former methods all utilized
reciprocal space coherent averaging, however in this chapter we found that real space
coherent averaging would be a better fit to neutron optics, as it is more efficient, produces
larger amplitudes in the vortex state and existing neutron optics are more suited to this
particular method. With this knowledge we generalized the real space coherent averaging
method and calculated OAM distribution functions of composite wavefunctions which
are made up of N partial Gaussian wavefunctions. We found that one requires at least
N = 2ℓ + 1 partial waves to produce a composite wave with an OAM equal to ℓ. With
this knowledge we moved on to applying real space coherent averaging to spin echo
interferometry. We found that a regular SESANS instrument can produce linear OAM
states which consist of an equal superposition of ℓ = 1 and ℓ = −1. In addition when
the second arm is rotated around the beam by 90 degrees with respect to the first arm,
the instrument can produce high purity ℓ = 1 or ℓ = −1 states. Finally we looked at the
CANISIUS spin echo interferometer built at the Atominstitut with the explicit purpose
of exploring linear OAM states, finding that both the wavelength and spin echo length
calibrations were quite precise, with theory and measurement differing only by 10%.
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6 OAM Detection in Interferometry

Up until now we have look at the general theory behind neutron OAM and various
methods of producing vortex states in OAM, while giving very little attention to the de-
tection of neutron OAM. In these last chapters we will turn our attention to the problem
of OAM detection. This first chapter on detection focuses on the use of interferometry
to determine the OAM of a test wavefunction. However you may have noticed, in the
previous chapters on generation of OAM we did claim to demonstrate some wave or
beam OAM. So how did that OAM detection scheme work? There we used the simplest
interferometric technique, which attempts to resolve the interference pattern between
a reference wavefunction and the wavefunction under investigation. For this reason in
all these chapters we either used a detector with position resolution, or angular (i.e.
momentum) resolution. This method becomes technically impossible once we decide
to produce vortices on the length scale of the neutron coherence length (i.e. by real
space coherent averaging), since there are no detectors with this type of resolution and
in addition the neutron flux would be insufficient to provide sufficient statistics to get a
meaningful result.

In this chapter we will look at a modified interferometric technique which can be used to
resolve azimuthal structure of a test wavefunction relative to a reference wavefunction
on the length scale of the neutron coherence. The chapter is subdivided into two sec-
tions, a theoretical overview and an experimental demonstration, where we measure the
autocorrelation of a typical neutron wavefunction. These techniques are derived from
previous work done with perfect crystal neutron interferometers [118]. We will focus in
particular on applying this method to spin-echo interferometry, since the perfect crystal
analog has been covered extensively in previous literature.

6.1 Theoretical Overview

Our methodology for resolving the wavefunction is based strongly on our work done
on coherent averaging, in particular coherent averaging using a regular one dimensional
SESANS instrument. Our method relies on using a SESANS in which the tilt angle of
the second arm (θ2) differs from that of the first arm (θ1). As a result the two spin
states fail to fully recombine (figure 5.9). The output wavefunction shown schematically
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in figure 5.9 can be written as

ψ =
�

ψ↑(x, y, z)
ψ↓(x + δres, y, z)

�
(6.1)

where the basis (z) is chosen parallel to the direction of the magnetic fields. Without
position sensitivity the transverse polarization components are then

< σx > (δres) =
�

dr ψ+
↑ (x, y, z)ψ↓(x + δres, y, z) + ψ↑(x, y, z)ψ+

↓ (x + δres, y, z) (6.2)

and

< σy > (δres) = i
�

dr ψ+
↑ (x, y, z)ψ↓(x + δres, y, z) − ψ↑(x, y, z)ψ+

↓ (x + δres, y, z) (6.3)

which appear to be the transverse cross correlations between the up and down state
wavefunctions, also known as coherence functions [137, 138]. If the two wavefunctions
are the same we obtain the autocorrelation. Thus we can obtain information about
the wavefunction structure by measuring < σx > and/or < σy > as a function of the
tilt angle of the second arm of a SESANS interferometer. Similar principles have been
used to measure the longitudinal coherence in neutron spin echo. In fact the spin echo
group is nothing other than the longitudinal autocorrelation function [124, 41, 74, 137].
However in this chapter we will continue to focus on the transverse cross correlations,
since longitudinal OAM is a transverse structure.

While autocorrelations are useful to determine the coherence of a wavefunction, it can-
not resolve the phase structure of the underlying function. For this reason we require
a reference function that carries a known amount of OAM to resolve the azimuthal
structure of an unknown vortex state. That is to say, one of the spin states would be
occupied by the reference wavefunction, while the other spin state would by equal to the
wavefunction under investigation. Ideally this reference wavefunction would be a delta
function as in that case the cross correlation is equal to the test wavefunction. To be
more precise < σx > would reveal the real part while < σy > the imaginary part of the
wavefunction. In reality we have to settle for Gaussian or Sinc type reference functions.
The sinc reference function is motivated by the fact that the transverse momentum dis-
tribution in a neutron instrument is usually determined by a pair of slits, which results
in a square momentum distribution (see figure 3.1). The Fourier transform therefore
dictates that the real space wavefunction must be a sinc.

Since a vortex state manifests as a two dimensional phase structure a one dimensional
coherence function is insufficient to determine whether or not a wavefunction carries
OAM. A two dimensional coherence function must be measured. This can be done
by either rotating the SESANS instrument around the beam, or by rotating the OAM
generator around the beam, which effectively rotates the generated vortex. We have
seen that we require 2|ℓ| + 1 coherent sources to generate a vortex of mode ℓ. A similar
argument can be made for detection: we require the coherence function for 2|ℓ| + 1
different angles to be able to resolve vortices of mode |ℓ| or smaller. This is because
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6.1 Theoretical Overview

the OAM of the sum of the two polarization components < σx > +i < σy > (the
two dimensional coherence function) carries the same OAM as the test wavefunction
assuming the reference wavefunction carries no OAM. For visualization we show a pair
of two dimensional coherence functions in figure 6.1, for a test wavefunction with ℓ = 1
and ℓ = 2 OAM under the assumption that the reference is a sinc wave. It is quit clear

Figure 6.1: Plots of the two dimensional coherence functions eq. 6.2 (left) and 6.3 (right)
for an ℓ = 1 vortex (top) and an ℓ = 2 vortex (bottom). The reference
wavefunction is assumed to be a sinc function with no azimuthal structure.
The color axis is arbitrary and therefore not labeled

that the sum of the imaginary and real two dimensional coherence functions have the
same azimuthal structure as the test wavefunction. As a result we can conclude that
this is a fitting method for measuring the OAM of an unknown vortex state. A danger
exists in undersampling. A vortex state with a higher mode number may appear to
have a lower mode number using this method if insufficient samples are chosen along
the azimuthal direction.
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6 OAM Detection in Interferometry

6.2 Measurement of the Autocorrelation of a Neutron
Wavefunction on a Spin Echo Interferometer

The method described above has not yet been applied to vortex states, since the ther-
mal neutron vortex generators as well as the interferometers required to resolve them are
quite large, such that they haven’t both been accommodated by a single beamline yet.
Though the methodology has been applied plenty of times to measuring the coherence
length and autocorrelation of the neutron wavefunction [118, 74]. Here we report on
such an experiment where the one dimensional transverse coherence function of a neu-
tron was determined using a SESANS interferometer. The interferometer used for this
investigation is the versatile Offspec spin echo and reflectometry instrument [122, 139],
which combines a multitude of spin echo techniques (SESANS, SEMSANS, NRSE) with
reflectometry (SERGIS) [140]. Just like CANISIUS, Offspec produces the magnetic field
regions necessary for SESANS using adiabatic RF spin flippers with shaped poleshoes.
The poleshoes are rotatable making the instrument ideal for coherent averaging methods
and the technique described in the previous section.

As we argued above when the beam is collimated by a single slit the transverse wave-
function can be described by a sinc function:

ψ⊥(x, y) = sinc(kxx)sinc(kyy) (6.4)

with the transverse wavevectors equal to the magnitude of the total wavevector times the
beam divergence kx,y = |k|θx,y. At a distance D from a slit with diameter d the maximal
divergence angle is given by θ = d

2D
. The intensity is distributed uniformly over all

angles small than θ. When we pair two slits together with diameters d1 and d2 and a
distance D between them, we must convolve the two uniform momentum distributions
provided by each slit to obtain the total momentum distribution [141]. In real space
this is the same as multiplying the sinc wavefunction that would be generated by slit 1
by the sinc wave generated by slit 2. So for 2 slits/collimators we can write the total
wavefunction as

ψ⊥(x, y) =
2�

i=1
sinc(πdx

i

Dλ
x)sinc(πdy

i

Dλ
y) (6.5)

with di the diameter of the ith slit in x or y direction. We can define a coherence for
each individual term in the wavefunction by σ⊥ = 1/k⊥

σx,y = Dλ

πdx,y

(6.6)

which interestingly is proportional to the wavelength. The residual transverse separa-
tion/spin echo length on the other hand is proportional to λ2 (eq. 5.42). Hence in
SESANS we scan through the entire transverse coherence by fixing the tilt angles of the
two field regions and scanning only the wavelength.
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We will now begin estimate < σx > by filling in our guessed wavefunction (eq. 6.5)
into equation 6.2 (note since our measurement is one dimensional we will neglect the
y-coordinate)

< σx > (δres) = A
�

dx
2�

i=1
sinc(πdx

i

Dλ
x)sinc(πdx

i

Dλ
(x + cλ2)) (6.7)

with A a normalization constant and c = γmBL
4π2h̄

[cot(θ1) − cot(θ2)] (justified by eq. 5.42).

Our measurement carried out at Offspec used a wavelength band of 2Å−12Å, an effective
magnetic field of B = 68.6mT, a field region length of 1m, the tilt angle of the first field
region (see for example figure 5.9) was effectively 55.72 degrees, while the tilt angle of
the second field region was scanned. Both slits were set to a diameter of 5mm with
a distance of 5.84m between them. Results of our measurements superposed on the
expected polarization (based on eq. 6.7) are shown in figure 6.2 Since our theoretical

Figure 6.2: Experimental data (points with errorbars) superposed on theoretical calcula-
tions (solid lines based on eq. 6.7) for the coherence measurements conducted
on the Offspec instrument. The tilt angles α0 and α1 are the angles of the
first and second arm respectively (see figure 5.9).

prediction is in good agreement with the experimental data we may carefully conclude
that our estimated wavefunction correctly describes the average neutron wavefunction on
Offspec. Carefully since the cross correlation is not an invertible operation, so in principle
other wavefunctions could explain our result. Nonetheless the combined data from theory
and experiment give a strong argument for our wavefunction. As a result we can conclude
the coherence length of neutrons in this experiment ranged from 75nm − 450nm.
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6 OAM Detection in Interferometry

Our experiment serves as a proof of principle, demonstrating that wavefunction structure
can be resolved using this interferometric technique and therefore could be applied to
measuring OAM states in the future when more compact OAM generators such as those
described in [21] become available for thermal neutrons.
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7 OAM Dependent Cross Sections

Neutron scattering and absorption depend strongly on the state of the nucleus and
the neutron. For example for thermal and cold neutrons all absorption cross sections
are directly proportional to the inverse of the neutrons kinetic energy. In addition
many nuclei display a strong spin asymmetry in their scattering and or absorption cross
sections. One of the most notable examples is nuclearly polarized Helium-3, which due
to the Pauli exclusion principle only absorbs neutrons with the opposite spin polarization
of the nucleus into the singlet state [142]. In principle neutrons with parallel spin could
be absorbed into the triplet state, but this is energetically unfavorable and hence a non-
zero cross section has not been determined experimentally to date [143]. In fact due
to this strong asymmetry polarized Helium-3 has been employed very successfully as a
neutron spin filter [94].

Since such strong spin asymmetries have been observed one may begin to wonder whether
or not other forms of neutron angular momentum may contribute to the scattering and
or absorption cross section. Absorption of optical OAM has been observed in trapped
ions [144]. Furthermore twisted x-rays are being investigated as a means to excite giant
resonances [27]. Since neutrons interact directly with the nucleus, it follows that twisted
neutrons could be an even better candidate for exciting these resonances. Either way, if
scattering and/or absorption are OAM dependent, these methods could provide a good
way of detecting the OAM of a neutron beam.

Scattering [22, 23, 51] and absorption [145, 24] of twisted neutrons by matter has been
studied extensively in theory. The general consensus is that OAM does change scatter-
ing/absorption behavior, however in the case of macroscopic targets, the modification
of the scattering function is prohibitively small to measure using current techniques.
There is one exception however, the only analysis conducted on absorption of twisted
neutrons in Helium-3 so far [24] concluded that large OAM dependent asymmetries in
the absorption cross section are possible. The paper reports on a theoretical estimate of
a 60% difference between the ℓ = 1 and ℓ = −1 absorption cross sections. While their
analysis appears to be correct, it seems to be missing important considerations, such as
the coherence length of the neutron and the so called impact parameter, which is the
distance between the target nucleus and the vortex center at the moment of absorp-
tion. The authors also neglect Doppler shifting, arising from the fact that the thermal
Helium gas is in motion and therefore sees a different effective OAM in its own frame
of reference, though this may be negligible since this is an extrinsic contribution to the
neutrons OAM, while the vortex states investigated in [24] are intrinsic.
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7 OAM Dependent Cross Sections

Despite these objections the authors make a compelling case to set up an experiment
to attempt to measure the change in Helium-3 absorption cross section that occurs due
to neutron OAM, while at the same time a more detailed theoretical analysis should be
conducted. In this chapter I report on the theoretical analysis conducted so far, covered
in [24] and report on an experiment carried our at the High Flux Isotope Reactor (HFIR)
at Oak Ridge National Laboratory (ORNL), which attempted to measure the OAM
asymmetry in the Helium-3 cross section. Finally we will conclude with an outlook on
future searches for OAM dependent cross sections.

7.1 Theory and Motivation

This section serves primarily as the motivation for the experiment detailed in the next
section. we heavily rely on the work provided by the authors of [24], who extend the
calculations conducted in [146] on spin dependence in absorption of a neutron into a
polarized Helium-3 nucleus to consider the total angular momentum of the neutron.
Though their calculations only allow for ℓ = 1 and ℓ = −1 neutrons. This is quite
important since it means that the most likely state, ℓ = 0, is excluded.

Just like in [24] we will begin by considering absorption of neutrons without OAM in
Helium-3. Since both systems are spin 1/2 the total angular momentum of the composite
state can be either j = 1 (triplet case) or j = 0 (singlet). The triplet capture cross
sections is given by

σj=1 = K(j = 1)
4 [3 + PNp] (7.1)

while the singlet cross section is given by

σj=0 = K(j = 0)
4 [1 − PNp] (7.2)

here K is a parameter that must be determined experimentally and p and PN are defined
as the neutron and nuclear polarization respectively. Interestingly we see that in the
singlet state when neutron and nuclear polarization are aligned the cross section drops
to zero. Only when they are anti-aligned is the cross section non-zero. This is the basis
of the neutron spin filter. The triplet case has not yet been observed since K(j = 1) is
prohibitively small. The authors then define an OAM polarization, where the neutron
can be either in the ℓ = 1 or ℓ = −1 state

PL = pℓ,+ − pℓ,−
pℓ,+ + pℓ,−

(7.3)

with pℓ,± the probability of finding the neutron in the ℓ = 1 or ℓ = −1 state. With the
additional OAM degree of freedom the total angular momentum of the composite state
can be j = 0, j = 1 or j = 2. When we extend the arithmetic discussed in [146, 24] to
include OAM authors find

σj=2 = K ′(j = 2)
24 [24 − 5(1 − pPL) − 4(1 − pPN) − 5(1 − PLPN)] (7.4)
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σj=1 = K ′(j = 1)
24 [3(1 − pPL) + (6 − 4

√
2)(1 − pPN) + (3 + 4

√
2(1 − PLPN))] (7.5)

and
σj=0 = K ′(j = 0)

12 [1 − pPL + pPN − PLPN ] (7.6)

Note that when PL = 0 the cross sections do not reduce to the case we discussed pre-
viously where OAM is neglected. This is because in this analysis PL = 0 corresponds
to a linear OAM state (an equal superposition of ℓ = 1 and ℓ = −1), which is qualita-
tively different than a non-vortex state (ℓ = 0). Furthermore since this analysis rejects
the ℓ = 0 possibility it follows K ′(j) is not necessarily equal to K(j). Nontheless the
authors of [24] make compelling energetic arguments as to why K ′(j = 1) = 0 and
K ′(j = 0) = K ′(j = 2) = K(j = 0), energetically speaking the composite state n +3 He
is for thermal neutrons only slightly above the absorption resonances leading to the j = 0
and j = 2 states, while this total energy is below the energy level of the j = 1 state.
The total estimated absorption cross section according to [24] can then be written as

σ = K(j = 0)
12 [1−pPL+pPN −PLPN +12− 5

2(1−pPL)−2(1−pPN)− 5
2(1−PLPN)] (7.7)

Assuming a Helium polarization of +50% the maximal change can be observed if the
OAM polarization is parallel to the Helium polarization PL = 1 and the neutron spin
is flipped. In this case the cross section changes by a factor of 2.6. A more interesting
experiment however is to keep the neutron polarization constant and flip the OAM
polarization. To this end it is best to keep the neutron polarization parallel to the
Helium polarization. In this case the cross section changes by a factor of 1.86 upon
flipping the OAM. Note that when we neglect OAM and have 100% Helium polarization
there is no absorption when the neutron polarization is parallel, once we introduce OAM
this changes. Also, interestingly PL = 0 implies a linear OAM state, which is different
from an ℓ = 0 neutron. Helium-3 is therefore expected to exhibit a different absorption
cross section in this case. It follows that a SESANS instrument like CANISIUS could in
principle be used to investigate the interaction between polarized Helium-3 and polarized
neutrons. For the time being however we will focus on a device that can generate pure
vortex states of ℓ = 1 or ℓ = −1. In the next section we will look at an attempt to
measure this cross section using a polarized Helium-3 target and an OAM generator
which exploits coherent averaging.

7.2 Measurement of the Helium-3 Capture Cross
Section with |ℓ| = 1 Neutrons

Here we report on an experiment conducted in July and August 2023 on the HB1D
beamline at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory
(ORNL) aiming to determine the change of the Helium-3 cross section that occurs due
to flipping the OAM of the incident neutron. Our setup is identical to that shown in
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figure 5.18. The figure is copied here for ease of access for the reader (see figure 7.1). As

Figure 7.1: Schematic of a setup showing a neutron being separated in the x-direction by
a pair of Wollaston prisms. Next a longitudinal phase difference is induced
using a magnetic coil (here called accelerator coil). Afterwards a second pair
of Wollaston prisms split the neutron in the y-direction (into the page not
visible). A second precession coil induces another phase shift. Finally a π/2
flipper and a polarizing bender select the ℓ = 1 or ℓ = −1 composite state
(depending on the settings of the accelerator coils). The composite state
is passed through the polarized Helium-3 target after which the intensity
normalized by the monitor value is measured. The length of the Helium-3 cell
was 9cm, with a filling pressure of 1.5bar. The average Helium polarization
obtained was 67%

demonstrated in chapter 5 at numerous instances this type of setup is ideal for producing
pure vortex states with mode number ℓ = 1 or ℓ = −1. Our measurements consisted of
setting the displacement parameter δSE equal to 0.7 coherence lengths and then scanning
the current on both precession coils shown in figure 7.1. As a result of these scans we
would see the effect of each phase combination on the absorption cross section of the
Helium-3. Our measurements consisted of simple transmission measurements, where we
measured the beam intensity with and without the Helium-3 sample for various phase
shift combinations. The displacement parameter was set to 0.7 transverse coherence
length2, by using the assumption that the transverse wavefunction could be described
as Gaussian. Then by using the fact that the transverse polarization can be described as
the cross correlation between the up and down spin wavefunctions (Chapter 6) we can
calculate the expected loss in polarization that results from setting δSE to 0.7 transverse
coherence lengths. Finally we scan the current in the wollaston prisms of the first arm
until the expected degree of polarization loss is reached. We repeat this procedure on the
second arm. By then scanning through all combinations of Δθ1 and Δθ2 (see fig. 7.1), we
can scan through the ℓ = 1, ℓ = −1 and ℓ = 0 state. The calculated interferogram, OAM
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7.2 Measurement of the Helium-3 Capture Cross Section with |ℓ| = 1 Neutrons

expectation value and transmission are shown as a function of both phase shifts, Δθ1 and
Δθ2 in figure 7.2. The interferogram shows the intensity before the Helium-3 sample,
hence it does not contain the transmission. As a starting point for our calculations we

Figure 7.2: Calculated interferogram/intensity (a), OAM expectation value (b) and
Helium-3 transmission (c) as a function of both phase shift parameters Δθ1
and Δθ2 (allowing us to choose between ℓ = 1 and ℓ = −1.). The interfero-
gram is calculated before the Helium sample and does therefore not contain
the transmission. As a starting point for these calculations we used the ex-
perimentally determined, Helium polarization (67%), cell length (9cm), cell
filling pressure (1.5bar) and neutron polarization (95%). In addition for cal-
culating the absorption cross section and resulting transmission we used the
values given in [24].

used the experimentally determined, Helium polarization (67%), cell length (9cm), cell
filling pressure (1.5bar) and neutron polarization (95%). In addition for calculating the
absorption cross section and resulting transmission we used the values given in [24]. We
can see that the expected change in transmission that occurs due to flipping the OAM is
significant (100% change). An additional telltale metric that can be used is the period
of the oscillations in the transmission compared to that in the intensity. Notice that the
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period of the transmission oscillations is larger compared to those in the intensity (by
a factor

√
2). Finally the direction along which the oscillations occur change as well.

Hence we have a sufficient number of obvious variables to look out for making it easy
enough to measure whether or not the Helium-3 transmission changes as a function of
OAM.

Raw Measurement results are shown in the top insets of figure 7.3. Since the raw data

Figure 7.3: (a) Raw interferogram, (b) raw transmission data, (c) interferogram con-
volved with a Gaussian filter and (d) Transmission convolved with a Gaus-
sian filter. All data is plotted against the current in the first and second
accelerator coils.

is noisy we applied a Gaussian smoothing filter to the data. The filtered data is shown
in the bottom insets of figure 7.3. Both the raw and filtered interferogram show clearly
a periodic structure traveling diagonally from top left to the bottom right. This is
confirmed by the Fourier Transform of the data shown in figure 7.4 The transform also
reveals a problematic issue, the interferogram only contains one diagonal oscillation,
while our calculations in figure 7.2 show that the interferogram should consist of a
superposition of two perpendicular diagonal oscillations. This could be due to one of
the SESANS arms not being sufficiently aligned with the optical axis of the beam which
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Figure 7.4: Fourier transform of the raw (a) interferogram and (b) the transmission.
The FTs confirm that both signals have a diagonal oscillation with the same
period.

causes dephasing. This is confirmed by the fact that when we measure interferograms in
front of the polarized Helium setup, closer to the OAM generator, we do indeed see both
oscillations. This is further evidenced by a different interferogram measured using the
same setup, using a slightly different tune of the Wollaston prisms (see figure 7.5). The

Figure 7.5: High contrast interferogram measured against both accelerator coil currents.
The contrast here is better since the magnetic Wollaston prisms were tuned
slightly differently. This measurement cannot be used to determine the He-
lium transmission since it cannot be properly normalized by a monitor mea-
surement.

Fourier transform of the transmission reveals that this oscillation persists in the shape
of the transmission, which is curious, but not consistent with our calculations. One may
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also wonder why we did not use the higher contrast interferograms such as that shown
in figure 7.5, to determine the transmission. This because for these measurements the
monitor and detector were spatially separated, which results in a different phase and
contrast of the oscillations, so the only correct way to measure the transmission was to
conduct a measurement with the target in the beam and one without. The detector
would has to remain at the same position for both measurements. One can perform
phase corrections to this dataset, however in this case we also do not see any of the
expected signs in the transmission (such as a rotation of the oscillations or a change in
the period).

We conclude that none of our measurements contain any signs of a large asymmetry in
the neutron absorption cross section of polarized Helium-3 connected to the neutrons
OAM. While our experimental method contains flaws, leading to a lower contrast, which
could be corrected in a follow up experiment, the theory is missing key considerations
such as a discussion pertaining to the impact parameter and Doppler shifting due to
the thermal motion of the Helium gas. These issues need to be clarified before a second
measurement attempt is made.

7.3 Conclusion and Outlook

A strong OAM dependent asymmetry in the polarized Helium-3 cross section was not
confirmed experimentally. In fact no discernible structure was found in the transmission
profile within error. This however, does not imply that there is no asymmetry or even
that there is no strong asymmetry. The latter can be understood from our work done
in chapter 2, where we showed that an initially pure vortex state that is displaced from
the origin must be described using a superposition of many different modes. It follows
that if the Helium-3 nucleus is not located on the vortex center when absorption occurs,
the composite nucleus cannot be described by the formalism covered in [24]. This has
also been demonstrated in work conducted with twisted photons [147]. So it is possible
that a Helium nucleus absorbing a vortex neutron on axis, would still display a large
asymmetry as discussed in [24], however the probability of such an event is very low, as
the Helium nucleus has a radius of ∝ fm, while the thermal neutron transverse coherence
length is at least 10nm, so the probability of a Helium-3 nucleus being on the vortex
center is on the order of 10−15. Since such an event is so unlikely to happen and it
is difficult to envisage a way to either sufficiently shrink the transverse coherence of
thermal neutrons or increase the target size, it is necessary to expand the theory of
twisted neutron absorption to allow for arbitrary mode numbers, such that one can
account for off-axis absorption. Should these calculations predict a measurable change
in cross section follow up experiments should be conducted.

Should an updated theory also suggest that linear OAM states interact differently with
a macroscopic Helium-3 target compared to the simple ℓ = 0 state, one could con-
duct follow up measurements on a simple one dimensional SESANS like CANISIUS, as
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these instruments are simpler to tune than the two dimensional variant used for this
experiment.

Even if macroscopic targets have only a minute sensitivity to the vorticity of incident
neutrons it can be of scientific and societal interest to continue research into the topic,
as if OAM can be transferred from neutrons to nuclei it becomes possible to excite
giant resonances [27], which can be of particular interest in the case of some super
stable metastable nuclei such as 180Ta. These isomers gain their immense stability from
the fact that the transition from the excited to the ground state is forbidden, due to
angular momentum considerations [148]. Should it be possible to deplete these isomers
on demand, by adding or subtracting angular momentum with vortex particles, one
would have an incredibly dense energy source. These nuclear batteries would have a
much higher energy density than that found in chemical batteries. As a result further
exploration in the topic of nuclear scattering with twisted particles is warranted.
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8 Rotation Angular Momentum
Coupling

The final OAM measurement technique explored in this manuscript exploits a coupling
between rotation and (orbital) angular momentum arising from (Galilean) relativity. In
particular we will look at the Fizeau and Sagnac effects [18, 149, 56], applied to the
problem of quantum mechanical OAM. Both of these effects arise from the rotational
Doppler shift experienced in a rotating frame of reference. Assuming the frame rotates
around the z-axis with a rate Ω we can describe the shifted azimuthal coordinate as

φ′ = φ + Ωt (8.1)

with t the time and φ the azimuthal coordinate in the non-rotating frame. It follows
that the OAM Eigenstates, eiℓφ become Doppler shifted, such that their total energy
becomes

E ′ = E0 + h̄ℓΩ (8.2)

with E0 the particles energy in a non-rotating frame. As a result OAM states become
dispersive in a rotating frame of reference and the change in energy is directly propor-
tional to the OAM quantum number ℓ. This dispersion is the origin of both the Sagnac
and Fizeau effects. The former simply describes the phase shift acquired by OAM states
in a rotating frame of reference, while the latter describes the additional phase shift that
is acquired if the OAM state is propagating through some medium. This latter addi-
tional phase shift has its origin in the fact that the index of refraction presented by a
medium is dependent on the energy of the incident particle. Especially in the vicinity of
absorption resonances this effect can be strongly amplified leading to observable phase
shifts even in neutrons.

This chapter will cover the Sagnac effect through the lens of neutron OAM. A neutron
optical experiment will be presented which uses the rotation of the earth to measure the
transverse OAM of neutrons. Then we will shortly look at the "quantum" version of the
Sagnac effect. Finally the Fizeau effect will be discussed in this context and we will look
at a class of previous neutron interferometric experiments that observed this effect.
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8 Rotation Angular Momentum Coupling

8.1 The Sagnac Effect

This section covers the most immediate angular momentum rotation coupling known
as the Sagnac effect [149]. Here we will closely follow the work we presented in [14].
The effect was first observed with photons in 1913 by Georges Sagnac. In an attempt to
prove the existence of an ether, Sagnac observed a phase shift in his interferometer which
depended on the direction in which the interferometer was rotated [18]. In addition the
famous 1925 experiment by Michelson, Gale and Pearson, was also able to observe this
coupling in a very large optical interferometer due to the Earth’s rotation [150]. Since
then this coupling has been observed in various types of matter waves, including super-
conducting electrons [151], free electrons [152], atoms [153, 154] and, indeed, neutrons
[13, 14]. The 1979 neutron experiment conducted by Werner, Staudenmann, and Colella
was the first to demonstrate that free matter waves are also subject to the Sagnac effect.
Specifically neutrons traversing a rotating interferometer also experience a phase shift
proportional to the inner product between the rotation frequency, Ω and the Orbital
Angular Momentum (OAM), L̂ spanned by the neutron’s motion in the interferometer
(Ω · L̂) [13]. The rotation of the interferometer was realized by the natural rotation of
the earth, as was the case in the 1925 Michelson/Gale/Pearson experiment.

In 1988 Mashhoon realized that this rotation coupling applies to the total angular mo-
mentum

Ĵ = L̂ + Ŝ (8.3)

therefore extending the effect to the spin angular momentum Ŝ of particles as well as their
orbital angular momentum [155]. Recently the Mashhoon effect has been observed in
neutron polarimetry [156] and in neutron interferometry [157]. In these cases the rotating
frame was realized by creating a rotating magnetic field in the laboratory frame of the
interferometer which, for the projective measurement of the neutron spin employed in
the apparatus, can be shown to be equivalent to observing the neutron spin in a rotating
frame of reference.

In this section we present a theoretical framework and an experiment designed to mea-
sure OAM using the Sagnac effect. To this end a neutron interferometer with a precisely
calibrated path separation was used. Since, this spatial separation and the neutron
momentum are precisely known, it follows that the extrinsic transverse OAM carried
by the neutrons is also precisely known. By measuring the resulting Sagnac phase we
are able to determine the sensitivity of the setup to any transverse OAM, whether ex-
trinsic or intrinsic. Compared to the previous neutron Sagnac effect measurement [13],
the experiment described here improves the angular momentum sensitivity by 5 orders
of magnitude. This improvement in sensitivity marks an important step towards ob-
servation of the quantized Sagnac effect, the final subject of this section. In optics this
quantized Sagnac effect has been observed using spinning Dove prisms [15]. The observa-
tion of a quantized energy shift from the Sagnac effect is an attractive method to resolve
quantized OAM states in neutrons. We will report on an experimental observation of
the Sagnac effect in a neutron interferometer which uses microscopic path separation on
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8.1 The Sagnac Effect

the order of the transverse coherence of the neutron (0.001µm − 100µm) [118, 158, 119].
In addition we demonstrate that the Sagnac effect provides a good method for a basis
to definitively detect the OAM of a particle. Our experiment was carried out on the
Larmor instrument at the ISIS pulsed neutron source. Larmor is a neutron spin echo
type interferometer [41], which employs shaped RF spin flippers to induce horizontal
spin and energy dependent path separation [111, 123].

This section is subdivided into three subsections, we will first cover the theoretical
frameworks necessary to understand the Sagnac effect and the setup used in the next
subsection describing the experiment and the results. Finally we will provide an outlook,
looking at applications and the quantum Sagnac effect.

8.1.1 Theoretical Framework

In a rotating frame of reference, particles experience a pseudo potential proportional to
the rotation rate of the frame and the OAM possessed by the particle around the axis
of rotation. Equation 8.2, strongly implies the form of the "Sagnac potential"

V̂ = Ω · L̂ (8.4)

Intuitively, such a potential allows us to measure the OAM component of a wavefunc-
tion parallel to the axis of rotation. As discussed extensively in sections 2.5 and 5.1.4
wavefunctions traversing an interferometer carry OAM transverse to the propagation
direction (parallel to the normal of the plane of splitting) and longitudinally, parallel
to the propagation direction. Our setup, shown in figure 8.1, consists of a SESANS
type intereferometer. As we have motivated in previous chapters the spin polarized

Figure 8.1: Schematic of the Larmor neutron spin echo interferometer, the propagation
of the + and - spin through the device and the neutron optical components:
(1) polarizer (2) adiabatic π/2 rotator (v-coil), (3) RF spin flipper with tilted
field region, (4) ramped π/2 rotator (5) guide field, (6) spin analyzer and (7)
detector.
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wavefunction can be described mathematically as

ψ± = A√
2

e±iβ/2e− (x±δSE/2)2−y2−z2

σ2 eikyy (8.5)

The ± refers to the spin state either being aligned with the z-axis + or anti-aligned −.
β is an arbitrary phase between the up and down spin state. As shown previously (for
example figure 2.6 and eq. 2.73) the average OAM mode transverse to the propagation
direction of such a wavefunction is given by

ℓ± = ±δSE|k|
2 (8.6)

Usually the state in the interferometer is expressed as a spin-path entangled state. The
path states are often characterized by the spin echo length δSE. As we have seen this
degree of freedom also characterizes the transverse OAM of the wavefunction. It follows
that the two path states, defined by the spin echo length, can also be described by two
OAM states. Thus, for the purposes of this experiment, we describe our state not as spin-
path entangled, but as spin-orbit entangled, such that the state in the interferometer
can be described as

|ψ⟩ =iβ/2 |ℓ+⟩ |+⟩ + e−iβ/2 |ℓ−⟩ |−⟩ (8.7)

We note that state preparation and measurement are not instantaneous. Between the
first and second RF flipper spin echo length and therefore transverse OAM is linearly
increased, while between the third and fourth RF flipper, the spin echo length and
transverse OAM are reduced back to zero. The Sagnac effect will obviously also act on
these intermediate states. This is taken into account by allowing for an OAM which
depends on the y-coordinate. The precession frequency between the two states due to
the Sagnac effect follows from eq. 8.4 and 8.6 and is given by

δωs = [ℓ+ − ℓ−]Ω sin(Λ) (8.8)

with Λ the latitude of the interferometer. This expression demonstrates one of the
advantages of using the Sagnac effect to measure OAM: the precession frequency depends
only on the OAM difference between the two states. This difference is invariant under
spatial translations of the frame of reference, hence intrisicality/extrinsicality becomes an
irrelevant detail. Integrating this precession frequency over the length of the instrument
leads to the Sagnac phase shift

δφs =
�

dt δωs = mΩΔℓ

h̄|k| sin(Λ)[L1 + L3 + 2L2], (8.9)

which can be reduced to the result shown in [13, 121], for a horizontal interferometer

δφs = 2mAΩ
h̄

sin(Λ) (8.10)
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with A the area spanned by the two paths of the interferometer. The area, illustrated
in figure 8.1, is given by

A = δSE[L1 + L3

2 + L2]. (8.11)

As we have shown for spin echo interferometers the spin echo length, δSE is propor-
tional to wavelength squared. Hence to vary the area of the interferometer and therefore
strength of the Sagnac effect, we may simply vary the wavelength of incident neutrons,
whereas the 1979 perfect crystal experiment required physical rotation of the interfer-
ometer, which may induce systematic errors.

We have calculated the OAM along the z-axis and the resulting phase shift that occurs
as a result of this angular momentum. The longitudinal OAM of our wavefunction eq.
8.5 has been described in section 2.5, specifically equation 2.83. This OAM also couples
to rotation, but the coupling is orders of magnitude weaker, since the amount of OAM
along this axis is orders of magnitude lower, compared to the transverse OAM. Hence
our experiment will only "see" the transverse OAM of neutrons in the instrument.

In equation 8.9 we put the acquired Sagnac phase in a form that shows that one can
extract the difference between the quantum numbers for two OAM states, assuming
instrument parameters and the rotation rate of the instrument are well known. Hence,
using the Sagnac effect can be a good relative measure to determine the OAM of a beam.

8.1.2 Experimental Setup and Results

Measurements were carried out on the Larmor instrument at the ISIS pulsed neutron
source [159]. Larmor is a SANS instrument with a versatile neutron resonant spin echo
toolbox, based on four gradient radio frequency spin flippers with shaped poleshoes,
capable of performing inelastic techniques such as Modulated Instensity Emerging from
Zero Effort (MIEZE) [123] and Spin Echo (Modulated) Small Angle Neutron Scattering
(SE(M)SANS) [40, 112, 10, 11]. Our experiment makes use of the SESANS mode of the
instrument.

Since Larmor uses spin dependent refraction to realise the interferometer, the path and
spin states of the neutron are coupled (i.e. mode entangled). Hence any path dependent
phase shift is projected onto the spin and vice-versa. As pointed out previously the path
and OAM degree of freedom are related, hence the path state and also path phases,
may also be described as orbit states/phases. In SESANS the spin is usually prepared,
along the x-axis, orthogonal to the beam propagation and B0 direction. The expectation
value of the spin, also called polarization, is usually also measured along the x-direction,
leading to a polarization of

Px = P0 cos(Δφ(λ)) (8.12)

with P0 =
�

P 2
x + P 2

y + P 2
z and Δφ(λ) a polynomial in λ

Δφ(λ) = a0 + a1λ + a2λ
2 + O(λ3). (8.13)
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One may independently control the a0 term by means of a ramped precession field,
with B(t) ∝ 1/t, which ensures that the spin of each wavelength on a ToF source is
rotated by the same angle [160, 161]. By setting a0 equal to π/2 we effectively change
the measurement direction to along the y-axis, the propagation direction. Hence the
measured polarization becomes

Py = P0 sin(Δφ′(λ)), (8.14)

which for small Δφ′ may be linearized. For more details on the pre- and post-selection
in SESANS type interferometers we direct the reader to [162]. To remove the scaling
factor P0, we may normalise Py by Px. This normalized polarization still has a simple
and accurate linearization for small Δφ

Py

Px

≈ ϵ + a1λ + a2λ
2 (8.15)

with ϵ any imprecision in the quality of the π/2 rotation provided by the ramped preces-
sion field. We can estimate the second order parameter, due to the Sagnac effect using
equations 8.10 and 5.36

a2 = cSE
mΩ
h̄

sin(Λ)[L1 + L3 + 2L2]. (8.16)

with the spin echo constant cSE = γmB2L2 cot(θ0)
2π2h̄

, such that δSE = cSEλ2. Additional
perturbations arising from imperfections in the instrument can occur which can affect
the magnitude of the second order term. Most notably a slight change in the precession
plane can occur if an imperfect spin optical component introduces an unintended low
probability spin flip. Components that may be suspected to introduce such an effect are
primarily those which use adiabatic field changes to effect a spin rotation, for example v-
coils (item 2 in figure 8.1) and adiabatic RF flippers (item 3 in figure 8.1), since adiabatic
spin flip probabilities in both of these components can be described as

ρ ≈ Aiλ
2 cos2(kiλ + α) (8.17)

assuming only slight imperfection [129, 163] (i.e. low spin flip probability). As a result
the precession plane will appear to oscillate with an amplitude proportional to λ2 and
in addition this effect will produce an abberation on a2, since the cos2 component in
equation 8.17 produces a constant offset (A cos2(x) = A/2(1 + cos(2x))). This offset
can of course be isolated and subtracted from a2, by measuring the amplitude of the
precession plane oscillation. Since this effect is small it has not been relevant to measure-
ments conducted with Larmor before, however our experiment has sufficient sensitivity
to uncover this systematic.

Measurements of the Sagnac phase were conducted using a poleshoe angle of θ = 40
degrees and at an RF frequency of 2 MHz corresponding to an effective magnetic field
strength of 68.6 mT. These consisted of polarization measurements with the ramped
π/2 rotator turned off and on with both polarities (corresponding to a π/2 or −π/2
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Figure 8.2: Calibration curves of the instrument produced using a 2 µm period silicon
grating. (a) Plot of the normalized spin-echo polarization against wave-
length. The nth peak corresponds to a spin echo length equal to n times
the grating period. The wavelength and corresponding spin echo length is
extracted and plotted in the next panel (b). The quadratic fit is drawn in
red.

rotation). In addition with the ramped π/2 rotator turned off a calibration measurement
was carried out, in which a 2 micron silicon grating was inserted into the sample position
of the instrument. The resulting correlation function, shown in figure 8.2 (a), allows us
to experimentally determine the proportionality constant between the spin echo length
and the wavelength squared, which is essential to estimate a2. Since the nth peak in
figure 8.2 (a) corresponds to a spin echo length of n times the grating period, one can
extract the relationship between spin echo length and wavelength, shown in figure 8.2
(b). By applying a quadratic fit one finds the spin echo constant, cSE, to be equal to
0.137µmÅ−2. Using this and equation 8.16 it follows that for the instrument settings
used in this experiment the Sagnac constant a2, should be equal to −1.15 × 10−3Å−2.
Equations 8.6 or 8.9, show that the difference between OAM states scales linearly with
λ (i.e. δℓ = cOAMλ). Using equation 8.9 we can express cOAM in terms of a2

cOAM = 2πh̄a2

mΩ sin(Λ)[L1 + L3 + 2L2]
(8.18)

which for our estimated value of a2 is equal to −8.62 × 103Å−1. Since according to
equation 8.6 ℓ+ and ℓ− are equal in magnitude it follows that the OAM of each state
scales with ℓ± = ±1

2cOAMλ.
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Measurement Results

The normalized polarization, for the positive π/2 rotator polarity, is shown in figure 8.3
(a). This represents a typical spin-echo curve obtained from this experiment. It is clear
that the raw data contains oscillations which increase in amplitude with wavelength
squared, analogous to the precession plane oscillation described in the previous section
(see eq. 8.17). By subtracting a quadratic fit from the data and dividing the result by λ2,
the oscillations can be isolated (see figure 8.3 (b)). It can be shown that the abberation

Figure 8.3: (a) Typical normalized polarization for the 40 degree poleshoe setting, in
which the Sagnac phase shift is expected (blue). A quadratic fit is shown
in red. The quadratic fit can be subtracted from the data to isolate the
oscillations (b) Since the amplitude of the oscillations scale with wavelength
squared, we divide these by λ2. A fit consisting of two sines is shown in red.

consists of two oscillations with frequencies k2 ≈ 2k1. As pointed out previously it is
important to correct for these oscillations, since in addition to improving the overall fit
quality, the amplitude information is necessary to correct for a systematic error coming
from imperfections of the instrument, hence both amplitudes are listed in table 8.1. The
data is corrected by fitting two sine waves to the oscillations and subtracting said fit
multiplied by λ2 from the data. The corrected data for both π/2 coil settings is shown
in figure 8.4. Quadratic fits using a weighted least squares method are applied to the
corrected data. The weights are given by the inverted variance. The second order fit
parameters are illustrated in table 8.1. The first estimate for the second order parameter
aS

2 , due to the Sagnac effect is obtained using the following

aS
2 = a+

2 − a−
2

2 (8.19)

Alternatively the corrected data may be aggregated according to a similar formula

PS = P+ − P−
2 (8.20)
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a2 (Å−2) × 103 |A1| (Å−2) × 105 |A2| (Å−2) × 105

P+ −0.891 ± 0.0853 14.4 ± 2.31 8.22 ± 2.24
P− 0.898 ± 0.0739 8.88 ± 1.85 6.23 ± 1.83

aS
2 = (−0.894 ± 0.0564) × 10−3Å−2 cOAM = −6767 ± 427Å−1

Table 8.1: Table containing the second order fit parameters, a2 and their respective stan-
dard deviations, for both coil polarities and the amplitudes of the oscillations
found in the data with their respective errors. The final estimate for the sec-
ond order parameter due to the Sagnac effect, aS

2 , which is calculated using
equation 8.19, is shown at the bottom, in addition to the OAM proportional-
ity constant (see equation 8.18).

Figure 8.4: Plots of the normalized and corrected polarization in blue for (a) positive
polarity and (b) negative π/2 rotator polarity. The quadratic fits are plotted
in red. The errorbar introduced by subtracting the sinusoidal fit is negligible.

and a weighted least squares quadratic fit is applied to this result. PS is shown in figure
8.5. The resulting second order fit parameter is (−0.899 ± 0.0631) × 10−3, which is in
good agreement with the value aS

2 shown in table 8.1. For comparison figure 8.5 contains
a fit in green which uses the theoretically exact value for the second order parameter,
while the zeroth and first order coefficients are determined via least squares regression.

Discussion

Figure 8.5 indicates a good agreement between our calculated Sagnac parameter of
−1.15 × 10−3Å−2 and the measured parameter, however the exact fit parameters shown
in table 8.1, indicate that for a single π/2 rotator polarity, the measured value differs from
our calculation by roughly 3σ. Furthermore the averaged fit parameter aS

2 , differs from
theory by 4.3σ, indicating a high likelihood of a systematic perturbation. In this section
we correct this perturbation to the second order fit parameter, assuming it is caused by
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Figure 8.5: Averaged normalized polarization of all data, according to equation 8.20,
shown in blue. The quadratic fit is shown as a red solid line. While a fit
containing the exact theoretical expectation value for the second order term
due to the Sagnac effect is shown as a green dashed line.

imperfections in the adiabatic spin optical components. Both the oscillations shown in
figure 8.3 and the large ∝ 4σ deviation between data indicate that such imperfections
are likely. As indicated earlier at low efficiencies adiabatic spin flip probabilities scale
with λ2, consistent with our observation. Therefore we postulate that the oscillations
shown in figure 8.3 (b) arise due to an oscillation of the precession plane of the form

P = 2λ2[|A1| cos2(k1λ + φ1) + |A2| cos2(k2λ + φ2)] (8.21)

similar to equation 8.17, which introduces a systematic to the second order fit parameter
of ±[|A1| + |A2|]. Where the sign is determine by the polarity of the π/2 rotator. The
corrected second order parameters, ā2, using the amplitudes shown in table 8.1 are
shown in the table 8.2. After applying this correction the average estimated second
order parameter due to the Sagnac effect is (−1.083 ± 0.078) × 10−3, which is within 1σ
of the expected theoretical value. This corresponds to an OAM proportionality constant
of −8197 ± 590 units of h̄/Å according to equation 8.18. From this the average OAM
Eigenvalues ℓ± of the two path states can be extracted: ℓ± = ±4098 ± 295h̄/Å · λ. This

P̄+ P̄−
P̄+−P̄−

2
ā2(Å−2) × 103 −1.117 ± 0.121 1.049 ± 0.098 −1.083 ± 0.078

c̄OAM(Å−1) −8454 ± 916 7940 ± 742 −8197 ± 590

Table 8.2: Corrected estimates for the second order parameter due to the Sagnac effect,
ā2, and their respective errors for both π/2 coil polarities and their average,
in addition to the OAM proportionality constant, c̄OAM for each setting. For
comparison our theoretical estimate for a2 is −1.15 × 10−3Å−2 and for cOAM

is −8.62 × 103Å−1
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can be compared to the results of our calibration measurement (figure 8.2), which, based
on equation 8.6, allows us to estimate the average OAM Eigenvalue ℓ± = ±4310, which
is within 1σ of the estimate achieved using the Sagnac effect. In 2022 the first definitive
observation of intrinsic longtiudinal OAM was reported [21]. We now conclude that the
Sagnac effect represents the first definitive detection of transverse neutron OAM, since
it depends only on the projection of the OAM on the axis of rotation (equation 8.4),
meaning that OAM must be present to explain a non-zero result.

8.1.3 Conclusion and Outlook

Before concluding the subject of the Sagnac effect we first look forward to potential appli-
cations and realizations of our OAM detection scheme. We posit that our measurement
can be an answer to criticism raised in [29], against the first experiments with neutron
beam OAM [28]. We propose to use OAM-rotation coupling to definitively detect longi-
tudinal OAM. To accomplish this two technical difficulties need to be overcome (1) the
sensitivity of the technique needs to be increased and (2) the rotation axis should be
more closely alligned with the beam axis to measure the longitudinal OAM component.
The sensitivity of this method, using the earths rotation, is sufficient for detecting large
quanta of OAM |ℓ| > 103, however it can be significantly improved by increasing the
rotation frequency. A higher effective rotation frequency can be achieved by inserting
a rotating Dove mirror (see figure 8.6 and [15, 16, 35]) in the center of the instrument.
Such devices are ubiquitous in photo-optics when it comes to measuring and sorting

Figure 8.6: Schematic representation of a dove mirror assembly. It can be seen that the
dove mirror inverts an image with respect to the axis of reflection. As a
result, the image is also rotated around the optical axis. Spinning the device
around the optical axis results in a spinning image, as if one were observing
the image in a rotating frame of reference, necessary for observing the Sagnac
effect. The two arrows are shown in different colors, for ease of visibility of
the function of a dove mirror, but also can indicate the two perpendicular
spin states that are separated transversely in a SESANS interferometer

spin-orbit states [164, 165], hence we expect them to be equally useful in neutron optics,
should they be implemented. A pair of dove mirrors effectively rotate the image around
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the optical axis of the devices. A low rotation frequency of 1 Hz, would increase sensi-
tivity by 105, compared to earths rotation. This method would increase a2 and cOAM ,
such that the systematic induced by the slight oscillations of the precession plane, be-
comes insignificant, since both parameters are proportional to the rotation frequency Ω.
In addition the dove prism would address the second difficulty as well, since the axis of
rotation for such a device can be chosen arbitrarily, including parallel to the propagation
direction. The Dove mirror could be made compact, albeit monochromatic, if mosaic
crystals are used to produce reflections. Intuitively one may come to the conclusion
that the dove mirror technique would only work if the cross section of the dove mirror
is of a similar size as the neutron coherence length, owing to the fact that a neutron
propagating off-axis but parallel to optical axis of the dove mirror, in its own frame of
reference is not only rotated around its propagation axis, but also translated on a circle
around the optical axis of the dove mirror. However intrinsic longitudinal OAM is trans-
lation invariant. In addition we have shown that the Sagnac method measures the OAM
difference between two states which is translation invariant. As a result we conclude
that the ratio between the cross section of the mirror and the neutron coherence length
is irrelevant to the success of this technique. Instead in SESANS interferometers it is
important that the optical axis of the dove mirrors is precisely aligned with the optical
axis of the interferometer. SESANS is designed to measure ultra small angle scattering,
hence the alignment precision must exceed the instrument resolution. Luckily the res-
olution is proportional to the spin-echo length qmin ∝ 1

δSE
and figure 2.7, demonstrates

that a low spin echo length produces an optimal superposition of ℓ = ±1. Thus for a
typical thermal neutron beam the alignment of the dove prism must be to within 0.1−1
degree of the optical axis of the interferometer, so as to not introduce artifacts. We pos-
tulate that dove mirrors will play an important role in neutron OAM optics for OAM
manipulation and detection, since as opposed to the scattering methods reported on in
[22, 23, 24] and chapter 7 of this manuscript, which depend on still unknown matrix ele-
ments, the efficiency of a Sagnac based method is independent of other attributes of the
neutron wavepacket such as transverse momentum and coherence length. In addition the
Sagnac method ought to provide a faster method than the interferometric methods used
in for example [21, 34], since these approaches require detectors with spatial resolution
to resolve the OAM phase structure. Due to the low flux of neutron beams this require-
ment of spatial or angular resolution results in a larger integration time compared to the
Sagnac method. Since the matrix elements, which determine the scattering amplitudes
of twisted neutrons from nuclei are still unknown, the Sagnac method may be used to
calibrate twisted scattering techniques. (Dove) mirrors may also be used to increase
the sensitivity of our measurement to extrinsic transverse OAM. A mirror at the center
of our instrument rotating around the vertical of the instrument effectively acts as a
rotation of the instrument. As a result one can simulate faster rotating frequencies than
that provided by the earth.

As pointed out in previously our technique uses spin-orbit entanglement to imprint OAM
dependent phases on the spin (see for example eq. 8.7) and to characterize these phases
by measuring the spin projection. This is somewhat analogous to the entangled optical
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interferometer reported on in [166], which makes use of inter-particle entanglement,
while we report on intra-particle or mode entanglement. The 1σ precision achieved in
our experiment corresponds to a rotational sensitivity of 5.1µrad · s−1, similar to what
is reported in [166], which to our our knowledge is the most sensitive measurement of
the Sagnac effect using entanglement.

In this section we have reported on the Sagnac effect and its application to OAM de-
tection. We have seen that the efficiency of the technique is directly proportional to the
amount of OAM carried by the beam. Hence this technique nicely augments the inter-
ferometric method reported on in chapter 6, which is useful primarily for detecting lower
mode numbers. Though once the neutron optical dove prism is developed, the quantum
Sagnac effect will likely displace interferometric techniques for detecting OAM, given
that no position or angular resolution is needed to measure the OAM of a beam using
this technique.

8.2 Rotary Drag: The Fizeau Effect

The second type of OAM rotation coupling discussed in the introduction to this chapter
is the Fizeau effect, sometimes also called the rotary drag effect. We described the
Fizeau effect as a phase shift that occurs due to a change in the refractive index of a
rotating material, owing to a rotational Doppler shift. The refractive index is given by

n =
�

1 − V

E
=

�
1 − λ2Nbc

π
(8.22)

with N the number density of the particles in the medium and bc the coherent scattering
length of said medium. Given that the potential V (E) is flat for many materials in the
thermal energy range, that V/E is exceedingly small and ℓh̄Ω is usually much smaller
than E, it is not possible to measure the Fizeau effect in most materials with neutrons
[167]. However some materials exhibit an absorption resonances which causes the ma-
terials potential to vary rapidly with energy. One of the first non-zero measurements of
the neutron Fizeau effect was carried out in a perfect crystal neutron interferometer with
a rotating disk of Samarium-149, which exhibits an absorption resonance at 97.3meV.
Here the disk was rotated at a frequency of roughly 300Hz resulting in a phase shift
of 3 degrees [168]. Since in perfect crystal interferometry we are dealing with particles
carrying 109 units of OAM it should be obvious that this method will not suffice for
detecting single quanta of neutron OAM. The Fizeau phase shift can be written as the
difference between the wavevector in the non-rotating and rotating medium times the
path length of the medium

δφ = (k − k′)D ≈ k0D(1 − V

2E
− 1 + V

2(E + ℓh̄Ω)) = k0DV
ℓh̄Ω
E2 (8.23)

which for single units of angular momentum and thermal neutrons is about 10−14 radians
if the medium rotates at a frequency of 100 Hz.
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However a second Fizeau type phase shift arises if the boundaries of the medium are in
motion with respect to the particle. This situation is described in detail in [169]. This
phase shift basically arises from the fact that the material is either moving towards or
away from the particle, which results in the particle staying in the potential for a shorter
or longer time respectively. This effect is much stronger than the first Fizeau effect we
discussed here. In 1981, authors measured a 90 degree phase shift by passing neutrons
through a double slit interferometer and a quartz rod which was rotating at 100 Hz
[170]. Though contrary to what one may think we cannot look at the work done in [169]
and [170] through the lens of OAM, as for realistic rotational velocities the phase shift
is independent of the neutron momentum and hence also independent of neutron OAM.
Hence we conclude that neutron OAM detection using rotary drag is only an intellectual
curiosity, except in the case of very fast moving matter and ultra cold neutrons.

8.3 Conclusion

In this chapter we have presented two types of coupling between rotation and angular
momentum, the Fizeau effect and the Sagnac effect. While the former turned out to
be unfeasible in practice for detecting any kind of OAM except very large quanta of
transverse and extrinsic OAM, the Sagnac effect was shown to be incredibly effective
at determining the OAM of a neutron beam. This is confirmed by our experiment on
Larmor where we precisely detect the transverse OAM of the beam using the Sagnac
phase shift to within statistical error, despite the relatively slow rotation rate of the
interferometer, given by Earths rotation. Furthermore we argued that by employing the
neutron optical equivalent of dove mirrors we may be able to increase sensitivity by five
orders of magnitude thereby paving the way for detecting single quanta of longitudinal
neutron OAM. If single quanta of OAM become accessible it follows that the Mashhoon
effect (half integer angular momentum) would also become visible in these kinds of
setups, thereby opening an avenue to measuring the total angular momentum, spin
angular momentum and OAM in a single measurement.

Finally it should be emphasized that the Sagnac method is the most direct method
presented in this manuscript of determining OAM and according to the author the most
direct technique to determine neutron OAM to date. This due to the fact that the Sagnac
effect is a direct linear coupling to the neutrons OAM, without any pollution from other
parameters and the technique reduces the measurement of OAM to one observable, a
phase, directly proportional to the neutrons OAM. Hence it is important that neutron
dove mirrors are developed are developed to facilitate easy and fast detection of neutron
OAM.
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9 Conclusion

This thesis has introduced and explored the topic of neutron orbital angular momentum
from a theoretical and applied perspective. On the theoretical side first an introduction
to the mathematical formalism was provided. This included a derivation of the OAM
Eigenfunctions and a proof that quantum mechanical OAM does not require a restoring
source, contrary to popular intuition, since twisted vortex states are not associated with
an azimuthal velocity. As a result we found that vortex states are solutions to the free
space cylindrical Schrödinger equation. Next in the context of integral transforms we
derived the OAM distribution function, which is an indispensable tool in the field and
especially for the work shown throughout this thesis.

After this general theoretical introduction we looked at two special theoretical topics,
first the intrinsic and extrinsic natures of quantum mechanical OAM and second we
looked at the distinction between longitudinal and transverse OAM states. While ex-
ploring the formed topic we found that the OAM expectation value of pure vortex states
is translation invariant and hence we can consider this type of OAM to have an intrin-
sic character. Hence, we refer to all OAM states which exhibit a translation invariant
expectation value as intrinsic, while other OAM states are regarded as extrinsic. How-
ever we disputed the idea that intrinsic states are "quantum" while extrinsic states are
classical, by showing that superpositions of two pure vortex states with neighboring
mode numbers exhibit extrinsic OAM and since we consider pure states to be "quan-
tum" we must consider this superposition and therefore the extrinsic OAM state to also
have quantum properties. Furthermore we demonstrated that despite the expectation
value being invariant, the OAM distribution function is not invariant under translation,
thus upon translation a pure vortex state loses its purity. On the topic of longitudinal
and transverse states, we found that besides the extrinsic transverse OAM states which
mimic classical non-accelerating angular momentum, in that it arises from the choice
of reference frame, there exist also intrinsic transverse OAM states. Using an example
wavefunction we derived the (transverse and longitudinal) OAM distribution function
of a displaced Gaussian and a split Gaussian wavefunction. These findings were used in
almost every following chapter. Finally we introduced the concept of a linear OAM state
which consists of a superposition of two vortex modes, equal in magnitude but opposite
in sign. A concept that was also used in many of the following chapters.

After this theoretical chapter we moved on to a series of chapters that cover the novel
methods of neutron OAM production, explored during the time of this thesis. Starting
with the Schwinger interaction, where an electric field acts as a mediator, coupling neu-
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9 Conclusion

tron spin to neutron momentum. This allows for angular momentum exchange between
the neutron spin and the momentum (and therefore orbital angular momentum). We
showed that the total angular momentum in this interaction is conserved, hence when
the spin is flipped by an electric field we gain some OAM which compensates the change
in total angular momentum. Since the required fields to produce longitudinal OAM
states is incredibly large (1010 V · m−1), we looked into exploiting intra-atomic electric
fields (i.e. the field between nuclei and electron shells), as here we find fields of the
required magnitude. For this reason we introduced the theory of dynamical diffraction,
which describes the propagation of neutrons through perfect crystals. Naturally we in-
cluded the Schwinger spin-orbit term so that we would be able to calculate the amount
of OAM generate in neutrons diffracted from crystals in Laue and Bragg geometry. All
calculations were focused on quartz, since this crystal is well explored for the purpose of
neutron diffraction, can be produced to a very high degree of perfection and produces
a large spin-orbit contribution due to its non-centrosymmetry. We found that OAM
is produced in all geometries, however clean textbook vortex states are only produced
in a Bragg backscattering geometry, though only with a very small amplitude. In Laue
geometry we found that OAM is also produced, however the state is not pure, judging by
the OAM distribution function. In all backscattering cases, the OAM of the spin flipped
wavefunction is raised/lowered by one unit of h̄ compared to the incident wave. Finally
we presented an experiment looking at polarized dynamical diffraction from quartz and
found that in Bragg geometry likely linear OAM states were produced.

By analogy we showed that the neutron nucleus weak interaction produces OAM in a
similar way as the Schwinger interaction. This theoretical demonstration was followed by
an experimental proof of angular momentum conservation in the weak interaction. This
experiment made use of a Lanthanum-139 target the strongest known amplifier of the
neutron nucleus weak interaction, due to a relatively broad and low energy resonance.

After this we moved on to coherent averaging methods, for producing OAM. We started
by presenting the status quo and our neutron interferometric experiment on OAM gen-
eration using reciprocal space coherent averaging. Our experiment generalized the exist-
ing coherent averaging method, allowing us to exploit the much stronger strong nuclear
interaction. We demonstrated that it is possible to generate a tight lattice of beam
vortices. After this we moved on to a theoretical section, motivating why real space
coherent averaging is a more efficient approach and producing a generalized theoretical
approach to coherent averaging. Here we derived the number of partial waves necessary
to produce a vortex with mode number ℓ. After this we showed that certain types of
spin echo interferometers are particularly suited for real space coherent averaging and
we presented the Austrian SESANS instrument designed specifically for generating lin-
ear OAM states and investigating the properties of OAM. Finally we presented a two
dimensional SESANS type scheme which can be used to generate pure ℓ = 1 or ℓ = −1
vortex states, by coherently averaging four partial waves in real space. This approach
was later used to investigate unique scattering properties of twisted states.

Next we moved on to three different OAM detection methods, the first, interferometry
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relies on using a neutron interferometer to measure the transverse cross correlation
function between the test wavefunction, which presumably carries some OAM and a
reference wavefunction which ideally does not carry any OAM. While this technique
allows us to resolve vortices, it becomes increasingly difficult as the vortex number is
increased. To demonstrate the method we presented an experiment where we used a spin
echo type interferometer to measure the one dimensional transverse auto-correlation of
a neutron wavefunction.

Following this chapter we looked into OAM dependence of neutron cross sections, specifi-
cally the absorption cross section of Helium-3, given that this cross section already shows
a strong angular momentum dependence, at least when it comes to spin. However we
demonstrated experimentally that if any effect exists it is more subtle than that which
was predicted in the theoretical literature. We then provided a few qualitative argu-
ments explaining this discrepancy, the most important of which is likely the difference
between the size of the neutron vortex versus the helium nucleus, as the nucleus needs
to be captured in the center of the vortex for any meaningful OAM dependent effect
to be measured. We argue that this topic requires more theoretical investigation before
any follow up experiment is conducted.

Finally in the penultimate chapter of this manuscript different kinds of rotation OAM
couplings were explored (1) the Sagnac effect and (2) the Fizeau effect. It was deter-
mined that only the Sagnac effect is strong enough to produce an observable effect with
quantum OAM, when the wavefunction carries only a few h̄ of longitudinal OAM. This
was demonstrated by our experiment which was sufficiently sensitive to observe a cou-
pling between the very slow rotation rate of the earth and a few thousand h̄ worth of
transverse neutron OAM. Hence we argued that a neutron optical dove mirror spinning
at only 1 Hz would produce a strong enough signal to measure the OAM of neutrons
carrying only a few quanta of OAM. The Sagnac effect is a particularly elegant method,
since the coupling depends only on the OAM of the test particle and the rotation rate
of the system, hence the result is not polluted by other parameters such as transverse
momentum.

Looking forward the author posits that the quartz diffraction and real space coherent
averaging methods should be developed further as these have yielded the most promising
results and theory indicates that these methods produce the purest vortex states at very
high yields. On the measurement side, it is important to develop the neutron optical
dove mirror, as this provides the most direct measure of neutron OAM and such a device
can be relatively compact, especially compared to devices based on any other detection
method discussed in this thesis. Once dedicated instruments are produced, which can
generate and characterize vortex states accurately one can revisit explorations into OAM
dependent interactions. These investigations could be of societal importance especially
in the realm of energy storage, since they could help reveal methods for depleting super
stable metastable nuclei, thereby paving the way towards nuclear batteries with very
high energy densities.
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A Appendix 1

A.1 Note 1: Calculation of the Moments of < L̂ > for
Section 5.1.2

In this note the step by step calculations of < Lz > (for isotropic and anisotropic
momentum distributions) and < L2

z > of the test wavefunction 5.4 are shown. Starting
with the calculation of < Lz > in cylindrical coordinates

< Lz >= −i
�

drψ∗
t (r) ∂

∂φ
ψt(r)�

dr|ψt(r)|2

with �
dr|ψt(r)|2 = 1 + cos(Δα)e− σ2k2

⊥
4 = N

and
−i ∂

∂φ
ψt(r) = 1√

2
ψ0[k⊥ρ cos(φ)eik⊥ρ sin(φ) − eiΔαk⊥ρ sin(φ)eik⊥ρ cos(φ)]

hence it follows

< Lz >= 1
2N

�
dr|ψ0|2[k⊥ρ cos(φ) − k⊥ρ sin(φ) + k⊥ρ cos(φ)e−iΔαeik⊥ρ(sin(φ)−cos(φ))

−k⊥ρ sin(φ)eiΔαeik⊥ρ(cos(φ)−sin(φ))]

which, using
� 2π

0 dφ cos(φ) =
� 2π

0 dφ sin(φ) = 0, simplifies to

< Lz >= 1
2N

�
drk⊥ρ|ψ0|2[cos(φ)e−iΔαeik⊥ρ(sin(φ)−cos(φ)) − sin(φ)eiΔαeik⊥ρ(cos(φ)−sin(φ))]

< Lz >= 1
2N

�
drk⊥ρ|ψ0|2[cos(φ)e−iΔαei

√
2k⊥ρ sin(φ−π/4) − sin(φ)eiΔαe−i

√
2k⊥ρsin(φ−π/4)]

Then we apply the Jacobi-Anger expansion, eiz sin(φ) =  
ℓ Jℓ(z)eiℓφ, and use that

� 2π
0 dφeiℓφ =

0 for ℓ ̸= 0 This allows us to easily solve the azimuthal integral.

< Lz >= π

2N

�
dρk⊥ρ2|ψ0|2[J−1(

√
2k⊥ρ)e−iΔαei π

4 + J1(
√

2k⊥ρ)e−iΔαe−i π
4
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−iJ−1(
√

2k⊥ρ)eiΔαei π
4 + iJ1(

√
2k⊥ρ)eiΔαe−i π

4 ]
Next we use the anti-symmetry of the Bessel function of first order J−1(z) = −J1(z) and
begin grouping the exponential/trigonometric terms.

< Lz >= −i π

N

�
dρk⊥ρ2|ψ0|2J1(

√
2k⊥ρ)[e−iΔα sin(π

4 ) − eiΔα cos(π

4 )]

< Lz >= 2π
sin Δα√

2N

�
dρk⊥ρ2|ψ0|2J1(

√
2k⊥ρ)

Which can be rewritten into the form of a standard Hankel transform of first order with
known result. This brings us to the equation (8) seen in the main text

< Lz >= sin(Δα)k2
⊥σ2

4N
e− σ2k2

⊥
4

Next we examine the generalized case where the momentum distribution is anisotropic
(see equation (13) in the main text). This is best done in Cartesian coordinates:

Lzψt = −i(x ∂

∂y
− y

∂

∂x
)ψt

= − i√
πσxσy

e
− x2

σ2
x

− y2

σ2
y (2xy(eik⊥y + eiΔαeik⊥x)[ 1

σ2
x

− 1
σ2

y

] + ik⊥xeik⊥y − ik⊥yeiΔαeik⊥x)

Hence it follows

< Lz >= k⊥
πσxσyN

�
dxdye

−2 x2
σ2

x
−2 y2

σ2
y [xe−ik⊥(x−y)−iΔα − yeik⊥(x−y)+iΔα]

Where all odd terms have been dropped since their integral is zero. To proceed we use
i ∂
∂k

e−ik(a+b) = (a + b)e−ik(a+b) to get

< Lz >= k⊥
πσxσyN

�
dxdye

−2 x2
σ2

x
−2 y2

σ2
y [i ∂

∂k⊥
e−ik⊥(x−y)−iΔα − i ∂

∂k
eik⊥(x−y)+iΔα

+ye−ik⊥(x−y)−iΔα − xeik⊥(x−y)+iΔα]
Note the final term is minus the complex conjugate of our previous expression for < Lz >
hence it follows

< Lz >= k⊥
πσxσyN

�
dxdye

−2 x2
σ2

x
−2 y2

σ2
y [i ∂

∂k⊥
e−ik⊥(x−y)−iΔα − i ∂

∂k
eik⊥(x−y)+iΔα]− < Lz >∗
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and since expectation values must be real we can conclude

< Lz >= ik⊥
2πσxσyN

�
dxdye

−2 x2
σ2

x
−2 y2

σ2
y

∂

∂k⊥
[e−ik⊥(x−y)−iΔα − eik⊥(x−y)+iΔα]

We may now swap integration and differentiation and realize that we are left with a
standard Fourier transform

< Lz >= ik⊥
2πσxσyN

∂

∂k⊥

�
dxdye

−2 x2
σ2

x
−2 y2

σ2
y [e−ik⊥(x−y)−iΔα − eik⊥(x−y)+iΔα]

Conducting the transform and grouping the exponential/trigonometric terms leads to

< Lz >= k⊥
2N

∂

∂k⊥
e− (σ2

x+σ2
y)k2

8 sin(Δα)

Finally carrying out the differentiation leads to the result shown in equation (14) of the
main text

< Lz >= sin(Δα)
k2

⊥(σ2
x + σ2

y)
8N

e− k2
⊥(σ2

x+σ2
y)

8

Finally we calculate the second moment of the OAM distribution, < L2
z >

< L2
z >= −

�
drψ∗

t (r) ∂2

∂φ2 ψt(r)
N

∂2

∂φ2 ψ(r) = − 1√
2

ψ0[(k2
⊥ρ2 sin2(φ)+ik⊥ρ cos(φ))eiΔαeik⊥ρ cos(φ)+(k2

⊥ρ2 cos2(φ)+ik⊥ρ sin(φ))eik⊥ρ sin(φ)]

Therefore

< L2
z >= 1

2N

�
dr|ψ0|2[(k2

⊥ρ2 sin2(φ) + ik⊥ρ cos(φ)) + (k2
⊥ρ2 cos2(φ) + ik⊥ρ sin(φ))+

(k2
⊥ρ2 sin2(φ)+ik⊥ρ cos(φ))eiΔαeik⊥ρ[cos(φ)−sin(φ)]+(k2

⊥ρ2 cos2(φ)+ik⊥ρ sin(φ))e−iΔαeik⊥ρ[sin(φ)−cos(φ)]]

First we use cos(φ) − sin(φ) = −√
2 sin(φ − π

4 )

< L2
z >= 1

2N

�
dr|ψ0|2[k2

⊥ρ2 sin2(φ) + k2
⊥ρ2 cos2(φ)+

(k2
⊥ρ2 sin2(φ)+ik⊥ρ cos(φ))eiΔαe−i

√
2k⊥ρ sin(φ− π

4 )+(k2
⊥ρ2 cos2(φ)+ik⊥ρ sin(φ))e−iΔαei

√
2k⊥ρ sin(φ− π

4 )]

We simplify the expression by using the identity cos2(φ) + sin2(φ) = 1

< L2
z >= 1

2N

�
dr|ψ0|2[k2

⊥ρ2 + (k2
⊥ρ2 sin2(φ) + ik⊥ρ cos(φ))eiΔαe−i

√
2k⊥ρ sin(φ− π

4 )]+
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(k2
⊥ρ2 cos2(φ) + ik⊥ρ sin(φ))e−iΔαei

√
2k⊥ρ sin(φ− π

4 )]
We solve the azimuthal integral by using use the Jacobi-Anger expansion again, eiz sin(φ) = 

ℓ Jℓ(z)eiℓφ, and again use that
� 2π

0 dφeiℓφ = 0 for ℓ ̸= 0. Note that the latter identity
paired with the trigonometric terms in the previous line filter out all but the ℓ = 0 and
ℓ = ±1 terms of the Jacobi-Anger expansion.

< L2
z >= 1

2N

�
dρρ|ψ0|2[2πk2

⊥ρ2 + (πk2
⊥ρ2J0(

√
2k⊥ρ) − √

2πk⊥ρJ1(
√

2k⊥ρ))eiΔα+

(πk2
⊥ρ2J0(

√
2k⊥ρ) − √

2πk⊥ρJ1(
√

2k⊥ρ))e−iΔα]
Here we have once again used the asymmetry of the first order Bessel function. Next we
group together the trigonometric terms

< L2
z >= 1

2N

�
dρρ|ψ0|2[2πk2

⊥ρ2 + cos(Δα)(2πk2
⊥ρ2J0(

√
2k⊥ρ) − √

8πk⊥ρJ1(
√

2k⊥ρ)]

Now we attempt to solve the radial integrals

< L2
z >= 1

πσ2N

�
dρρe−2 ρ2

σ2 [2πk2
⊥ρ2 +cos(Δα)(2πk2

⊥ρ2J0(
√

2k⊥ρ)−√
8πk⊥ρJ1(

√
2k⊥ρ)]

The first integral seen above:

� ∞

0
dρ2πk2

⊥ρ3e−2 ρ2
σ2

can be solved using integration by parts and substitution (u = ρ2 and du = ρdρ)

� ∞

0
duπk2

⊥ue−2 u
σ2 = [−πk2

⊥
uσ2

2 e− −2u

σ2 ]∞0 +
� ∞

0
duπk2

⊥
σ2

2 e−2 u
σ2 = πk2

⊥σ4

4
The next radial integral in < L2

z > is a Hankel transform with a known result:

2π cos(Δα)
� ∞

0
dρk2

⊥ρ3e−2 ρ2
σ2 J0(

√
2k⊥ρ) = πk2

⊥σ4

4 cos(Δα)e− σ2k2
⊥

4 (1 − k2
⊥σ2

4 )

The final integral is the same Hankel transform as for the first moment

−√
8π cos(Δα)

�
dρe−2 ρ2

σ2 k⊥ρ2J1(
√

2k⊥ρ) = − cos(Δα)πk2
⊥σ4

4 e− k2
⊥σ2

4

Hence we find

< L2
z >= k2

⊥σ2

4N
+ cos(α)k2

⊥σ2

4N
e− σ2k2

⊥
4 (1 − k2

⊥σ2

4 ) − cos(α)k2
⊥σ2

4N
e− k2

⊥σ2

4

< L2
z >= k2

⊥σ2

4N
− cos(α)k4

⊥σ4

16N
e− σ2k2

⊥
4
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A.2 Note 2: Image Processing and Data Reduction of
Phase Vortices Produced in Interferometry

Here the processing and fitting techniques are shown which were used to reconstruct the
test wavefunction and obtain the images shown in section 5.1.

A.2.1 Data Processing

The images shown in section 5.1 were generated using two recorded datasets, the first
with prisms inserted in the interferometer and the second without prisms. Each dataset
consists of 14 recordings 30 minutes a piece. The raw images shown in figure A.1 show
the summed averages over all 14 images. To obtain the image shown in figure 5.4 both
raw images (figure A.1) are binned by a factor of 10 × 10 squared pixels to increase
statistics. Next the binned "prisms-in" image is divided by the binned "prisms-out"
image to remove artifacts induced by uneven illumination of the detector and spatial
phase drifts inherent to the interferometer. After this initial normalization the resulting
image still has a slight intensity drift over the vertical (y) direction. This is removed
by fitting a quadratic polynomial to the average intensity along the vertical direction
and dividing the image by this polynomial. After this step the image is normalized by
dividing it by the mean intensity and subtracting one Inorm = I

<I>
− 1. Finally a noise

reduction scheme is applied to improve the overall signal quality. This is achieved by
Fourier transforming the image, removing all content from the FT below a certain noise
floor and transforming the modified FT back to real space. Figure A.2 shows the image
at each point of the data reduction.

A.2.2 Fitting Procedure

The fit shown in figure 5.4 is based on equation (5.17), with a few modifications to take
into account perturbations not considered in our simplified theory. By normalizing the
data as described above we forfeit the need for a constant offset in the fit function. In
addition to account for the dephasing which reduces the contrast towards the edges of
the image since the neutrons have to pass through more material, we multiply (5.17)
by a Gaussian envelope. Finally we note that the interference pattern in the images
indicate that the prisms were not totally orthogonal, as a result the fit function takes
on the form

f = e
(x⃗−µ⃗)2

s2 [a1 cos (η⃗1 · x⃗ + α′
1) + a2 cos (η⃗2 · x⃗ + α′

2)
+ a3 cos([η⃗1 − η⃗2] · x⃗ + α′

1 − α′
2)]

(A.1)

Here initial guesses for η⃗1, η⃗2, α′
1, α′

2 a1, a2 and a3 are extracted from the Fourier
transform of the processed data. An initial guess for µ⃗ is found by determining the
expectation value of the squared processed data < x⃗ >=

�
dxdyx⃗I2�
dxdyI2 . Finally the parameter
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Figure A.1: Sum over the raw datasets used to generate the figures shown in this paper.
(a) Image with the prisms inserted. (b) Image of the intensity distribution
without prisms in the interferometer.

s2 is guessed by calculating the variance of the squared processed data
�

dxdy|x⃗|2I2�
dxdyI2 − <

x⃗ >2
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Figure A.2: Step by step illustration of the image processing technique. The raw image
(a) is binned (b) by a factor of 10×10 squared pixels. The first normalization
is shown in (c), followed by the next normalization steps (d) by dividing by a
quadratic polynomial and subsequently dividing by the mean intensity and
subtracting one. Finally the Fourier filter is applied resulting in the last
image (e)
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