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Abstract

Collaborative robot enable direct human-robot interaction in shared workspaces, offering
space efficiency and enhanced safety through lightweight components. However, these
lighter and therefor less rigid components introduce significant trajectory deviations and
accuracy limitations at the Tool Center Point (TCP). This thesis proposes a vision-based
Iterative Learning Control (ILC) approach to compensate for both systematic kinematic
and non-kinematic errors in repetitive tasks.
The proposed approach follows a two-phase workflow: establishing ground truth and
updating the trajectory. During the ground truth phase, images captured by an eye-
in-hand camera are stored and used to construct a 3D map through triangulation. In
the update phase, newly captured images are processed using an optimization-based
monocular Visual Odometry (VO) algorithm to estimate deviations in the camera’s
movement. Based on these deviations, a PD-type ILC iteratively refines the trajectory,
improving accuracy over successive executions. To achieve this, the computed TCP
deviations are converted into the required joint adjustments using inverse kinematics
and the robot’s kinematic model.

A simulation evaluation was conducted to assess the VO algorithm’s performance.
The study examines how environmental conditions and camera selection affect the
recognition of camera movement. The results show that noise, 3D depth data, and
feature count significantly influence the detectable Signal-to-Noise Ratio (SNR) when
used as an ILC input. Even with a noise standard deviation of 1 pixel and only 20%
depth data availability, the SNR remains above 1, enabling the detection of deviations
of 0.5mm and 0.5mrad.

Further real-world experiments confirm these findings. For a given trajectory, with
dynamic turning points and an added flexible end-effector setup the proposed approach
effectively identifies and corrects both kinematic and non-kinematic errors in the end-
effector’s positioning. It successfully reduces the Absolute Trajectory Error (ATE) of
0.25m and 0.3 rad to below 3mm and 5mrad over the course of 100 iterations. The
proposed framework thus enables high-precision motion for predefined tasks, such as
repetitive pick-and-place applications, even with flexible error-prone robot components.
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Kurzfassung

Collaborative robots (cobots) ermöglichen eine enge Zusammenarbeit zwischen Mensch
und Maschine in gemeinsamen Arbeitsbereichen, wodurch sie Platz sparen und dank
ihrer leichten Bauweise ein höheres Maß an Sicherheit bieten. Allerdings führen diese
leichteren, weniger starren Komponenten zu erheblichen Abweichungen der Trajektorie
am TCP des Roboters.
Diese Arbeit präsentiert ein kamerabasiertes ILC-System, das systematische kinematis-
che und nicht-kinematische Fehler des Roboterendeffektors bei sich wiederholenden Auf-
gaben kompensiert. Das System verwendet eine am Endeffektor montierte Ka- mera und
arbeitet in zwei Phasen: In der Ground-Truth-Phase werden Referenzbilder aufgenom-
men und mithilfe von Triangulation eine 3D-Karte erstellt. Anschließend werden die
Bilder mit der fehlerhaften Trajektorie aufgenommen und mittels einer optimierung-
basierenden visuellen Odometrie (VO) analysiert. Dabei werden Bewegungsab- we-
ichungen der Kamera und somit des Endeffektors im Vergleich zu den Referenzbildern
ermittelt. Auf Basis dieser erfassten Abweichungen optimiert ein PD-basierter ILC-
Prozess die Robotertrajektorie, indem er gezielte Anpassungen an den Gelenkwinkeln
vornimmt. Dabei werden die berechneten TCP-Abweichungen mithilfe inverser Kine-
matik in die erforderlichen Gelenkwinkel umgewandelt.

Simulationen bestätigen die Robustheit des VO-Algorithmus unter verschiedenen Umge-
bungsbedingungen und Kameraeinstellungen. Die Ergebnisse zeigen, dass Faktoren
wie Bildrauschen, 3D-Tiefendaten und die Anzahl der erkannten Merkmale das Signal-
Rausch-Verhältnis (SNR) beeinflussen. Selbst bei einem Bildrauschen mit einer Stan-
dardabweichung von 1 Pixel und einer Tiefendatenverfügbarkeit von nur 20% können
Abweichungen von 0.5mm und 5mrad zuverlässig erfasst werden.
Experimente am Roboter unter Verwendung einer Trajektorie mit dynamischen Wen-
depunkten und einem flexiblen Endeffektor-Setup belegen die Effektivität des Systems.
Die absolute Trajektorienabweichung (ATE) wird so innerhalb von 100 Iterationen von
0.25m und 0.3 rad auf unter 3mm und 5mrad reduziert.
Das vorgeschlagene System ermöglicht so präzise Pick-and-Place-Aufgaben selbst mit
flexiblen Roboterkomponenten.
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CHAPTER 1

Introduction

The emergence of Industry 4.0 has accelerated the market’s need for automation and
interconnected industrial processes. This progression towards more intelligent manufac-
turing systems has exposed substantial limitations in conventional automation concepts,
particularly with regard to the interaction between humans and robots, and integration
into existing systems. [1]
Although industrial robots have proven effective for automating production lines, par-
ticularly in repetitive tasks, their operation is limited to areas isolated from human
workers due to safety concerns. The forces required to manipulate heavy objects pose
lethal risks to humans, necessitating strict separation between robots and workers.
Implementing these systems into existing production processes and facilities presents
significant challenges, and often requires extensive changes to existing workflows and
infrastructure.
These systems require extensive safeguarded workspace and, while programmable for
various tasks, lack the real-time adaptability required in modern manufacturing en-
vironments [2]. In order to integrate robots into an existing production line, process
steps often need to be modified and adapted to the robot application. These major
changes to the process line involve substantial investments, which can be difficult to
justify financially, especially for medium-sized companies.

Collaborative robots (cobots) address this integration limitation by enabling direct
human-robot interaction within a shared workspace. This shared workspace not only
saves valuable floor space but enables effective collaboration, where robots handle
physically demanding operations while humans focus on complex, variable tasks, as it
can be seen in Figure 1.1. In order for cobots to be able to work hand in hand with
human workers, and simultaneously ensure human safety in the event of an unavoidable
collision, they are often built with lighter and more flexible components than tradi-
tional industrial robots, reducing both manufacturing costs and the risk of injury from
accidental human contact.
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CHAPTER 1. INTRODUCTION

However, the utilization of these more flexible components results in deviations between
the robot’s intended task and its actual performance, as well as its designated trajectory.
These deviations impact the Tool Center Point (TCP), which denotes the operational
point of the robot’s end effector where the designated task is executed.
These inaccuracies originate from errors, introduced by additional joint elasticities,

Figure 1.1: Comparison of an industrial robot inside a predefined workspace guarded
by a fence on the left side and a collaborative robot solution without any
area restrictions for the human worker on the right side. [3]

friction, transmission errors, and other kinematic and non-kinematic errors.
Additional sensor systems are used to mitigate these newly introduced inaccuracies
by using multiple different approaches such as force or torque sensors at the joints,
vision-based tracking systems for position correction, high-precision encoders for joint
angle measurements, and real-time feedback control algorithms that can compensate
for elastic deformation and transmission errors [4–6].
A relatively inexpensive and frequently used sensor in a robotic system is a camera
system. The camera is installed either as an external observer of the structure or
directly on the robot’s TCP. The mounting on the TCP is referred to as an eye-in-hand
configuration and, due to its position, directly detects all intentional and unintentional
movements of the robot (cf. Figure 1.2).

These adapted robotic systems are typically controlled by model-based closed-loop
control strategies that use feedback from the various sensors to continuously correct
deviations from the desired trajectory. Although these conventional control approaches
can compensate for some of the above inaccuracies, they often struggle to completely
eliminate systematic errors that occur during task execution, especially at the beginning
of a trajectory. However, many industrial applications, such as assembly, pick-and-place,
or material handling, are characterized by their repetitive nature. This repetitive nature
of robotic tasks provides an opportunity for more advanced control strategies.
The Iterative Learning Control (ILC) utilize repetitive tasks by acquiring knowledge
from prior executions to enhance subsequent task performance. This process enables
the control system to directly compensate for systematic errors, such as those from
kinematic and dynamic flexing in the links and joints, through the iterative repetition
of the task trajectory and the subsequent correction of these errors.

2
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Figure 1.2: Representation of an eye-in-hand camera configuration on the left side,
where the camera is mounted onto the robot end effector. On the right side,
the camera is externally mounted with a fixed relationship to the world
reference frame. [7]

Combining the additional sensors with the ILC’s control concept and using the environ-
ment of the robot provides a novel approach to compensating for the errors introduced
by the more flexible cobots.

1.1 Scope of Thesis

This work integrates ILC with an eye-in-hand camera system for iterative error com-
pensation for repeating tasks. The camera acts as the sole sensor for error detection,
enabling the system to identify and iteratively correct both kinematic and non-kinematic
deviations. This motion error detection is used to update the trajectory until the desired
accuracy is met.

1.2 Outline of Thesis

This thesis is organized as follows: Chapter 2 reviews state-of-the-art methods in
industrial robotics, vision-based systems, and ILC approaches. Chapter 3 details the
implementation of the motion error estimation and ILC architecture, including sensor
integration and control algorithms. Chapter 4 validates the proposed approach through
both simulation studies and real-world experiments on an adapted industrial robot.
Chapter 5 finishes with a comprehensive analysis of the results, system limitations, and
potential improvements for vision-based ILC in collaborative robotics applications.

3



CHAPTER 2

State of the Art

In this chapter, the fundamentals for the proposed vision-based Iterative Learning
Control (ILC) concept are described. The chapter delves into the essential aspects of
robotics and machine vision, beginning with an overview of robots and their classification.
Subsequently, the forward and inverse kinematics problem of a robot are presented,
followed by methods for planning its trajectory. Following this, the ILC concept is
explained in greater detail. Thereafter, some key principles of machine vision, with
a focus on visual odometry, are discussed more comprehensively. Finally, the Robot
Operating System (ROS) middleware and its communication patterns are presented.

2.1 Robots

A robot is a programmable machine built with the aim to carry out a series of actions
autonomously or semi-autonomously [8]. It may be classified by its capability to operate
in different environments and its related mobility, as described in Figure 2.1 [9]. A robot
can, therefore, be divided into two categories: the fixed robot and the mobile robot.
Mobile robots can be further subdivided into the environments in which they operate.
Furthermore, robots can be divided into industrial and service robots based on their

robot

mobile

aquatic

terrestrial

wheeled

legged

airbornefixed

Figure 2.1: Classification of robots by environment interaction [9].

task field and application. Service robots operate in fields such as medical assistance

4
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[10], domestic chores [11], and human transportation such as self-driving cars [12].
Industrial robots often operate in enclosed environments and are primarily used for
tasks such as mechanical manufacturing operations, assembly, or logistics operations
[13]. They are defined as an automatically controlled, reprogrammable multipurpose
manipulator with three or more programmable axes, including a chain of rigid bodies
and its actuators, and the robot controller [8].
Industrial robots are characterized by their mechanical configuration, which is essential
for understanding their movement capabilities and effectively controlling their operations.
This configuration typically involves multiple rigid segments called links which are
connected by joints [8], allowing specific movements while limiting others. Various
types of joints are used in industrial robots, including rotary joints, prismatic joints,
and spherical joints, each providing different movement capabilities.
Certain segments of the robot are assigned more specialized functions, such as the base,
which secures the robot to the ground or a platform, and the end-effector, which is
fixed to the last link of the robot arm and serves as the device interacting with the
environment [14]. A crucial aspect of the end-effector’s functionality is the Tool Center
Point (TCP), a precise reference point that helps determine the end-effector movements
and ensures accuracy in tasks such as picking, placing, welding, or painting.
The entire structure of links and joints is called a kinematic chain and grants the robot
a specific range of motion and degrees of freedom. Based on the combination of links
and joints inside this chain, the robot is considered either a serial or parallel kinematic
structure. The difference between these two kinematic configurations is that in a parallel
kinematic chain, multiple links connect to a single joint, creating a closed-loop system,
as illustrated in Figure 2.2. In a serial kinematic chain, on the other hand, the links are
connected end-to-end, forming an open-loop structure where each joint connects two
links with an end-effector at the end.

Figure 2.2: Illustration of two different robot configurations. On the left side, a serial
kinematic chain is shown, in which the rotary joints are represented as
small spheres connected by lines indicating the links. The configuration on
the right shows a parallel kinematic chain. In both kinematic chains, the
end-effector is illustrated as a clamp.
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2.2 Kinematics

In robotics, kinematics involves the analytical study of the position and orientation
changes, also called motion, of an end-effector without considering the forces and
moments that drive these changes [15]. The consideration of these forces and moments
falls under the study of robot dynamics, which are not further considered in this thesis.

2.2.1 Homogeneous Transformation Matrix

To describe these changes of position and orientation in a Three-dimensional (3D) space,
homogeneous transformation matrices can be used. A homogeneous transformation
matrix combines rotation and translation into a single matrix operation, which simplifies
the coordinate transformation from one reference frame to another [16].

TW
C =

�
R t
0T 1

�
(2.1)

The homogeneous transformation in Equation (2.1), describes the pose of the coordinate
system C in relation to the inertial coordinate system W , with R ∈ SO(3) being the
rotation matrix and t ∈ R3 representing the translation vector.
For the rotation matrix R, a rotation can be parameterized in multiple ways, including
Euler angles and quaternions [14]. Euler angles represent rotations about the axes
of a coordinate system, typically defined with three angles φ = [ϕ θ ψ]T ∈ R3. The
orientation change is performed by subsequent rotation with these angles around the
coordinate axis i, j, k ∈ {x, y, z}. An example of a rotation done with Euler angles
using the axis order z-x-z’ is visualized in Figure 2.3. However, Euler angles can suffer
from gimbal lock, which describes a specific set of angles φ, where one rotational degree
of freedom is lost. This leads to a reduced capability to describe the update in the
orientation of these, making them less suitable for certain applications.
Unit quaternions, which are four-dimensional complex numbers, avoid gimbal lock
and provide a reliable and continuous representation of rotation, making them highly
suitable for precise orientation tasks. The use of unit quaternions in robotics allows for
smooth interpolation between orientations, with the drawback of being less intuitive
than the Euler angles. [14, 17]

Understanding the pose of the end-effector through these transformations is crucial for
describing it in space. This leads to the concepts of forward and inverse kinematics,
which are fundamental for determining the end-effector’s pose based on joint parameters
and vice versa.

2.2.2 Forward Kinematics

Forward kinematics involves calculating the position and orientation of the end-effector
with given joint parameters in a kinematic chain relative to the robot’s base frame.
This is achieved by utilizing the known joint and link parameters, establishing a direct
mapping from the robot’s configuration space to its Cartesian space. If the absolute
coordinates of the robot base are known, the position and orientation of the end-effector

6
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exC

exW

ezW

eyW

ezC

TW
C

dW
C

W

C

ϕ

θ

exC

Figure 2.3: Representation of inertial coordinate system W and the coordinate system
C, where C is shifted by the translation vector dW

C and rotated by the z-x-z”
Euler angles ϕ and θ and a non zero-valued ψ.

can also be expressed in absolute world coordinates.

Focusing entirely on a serial kinematic chain, a widely used method for formulat-
ing the forward kinematics with only rotary and linear joints, is the Denavit-Hartenberg
(DH) convention [18]. The DH convention simplifies the process of modeling robotic
kinematics by standardizing the coordinate frames and transformations. Thus, to
obtain such simplifications, it is necessary to associate each joint i of the robot with a
coordinate frame, and express the relationship between successive frames using four
parameters: link length ai, link twist αi, link offset di, and joint angle θi.
The transformation from one frame to the next frame with a given qi ∈ {θi, di} is
represented by the homogeneous transformation matrix

Ti−1
i (qi) =


cos θi − sin θi cosαi sin θi sinαi ai cos θi
sin θi cos θi cosαi − cos θi sinαi ai sin θi
0 sinαi cosαi di
0 0 0 1

 . (2.2)

The input qi describes either the rotation angle in case joint i is a rotary joint, or the
translation value di in case joint i is a prismatic joint.
By sequentially multiplying these transformation matrices from Equation (2.2) together,
the pose of the end-effector relative to the base frame can be determined. For a serial
n-joint robot, the overall transformation matrix from the base frame to the end-effector
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is
T0

n = T0
1T

1
2T

2
3 · · ·Tn−1

n . (2.3)

Another more modern approach to forward kinematics is the Product of Exponentials
(PoE) method, which takes advantage of the properties of Lie groups and Lie algebras
[19]. In the PoE method, the forward kinematics of a robot arm is expressed as a
product of exponential maps of twists, which describe the motion of each joint.
PoE, specifically the space form of the PoE formula for a robot with n-joints is defined
as

T(θ) = e[S1]θ1e[S2]θ2 · · · e[Sn]θnM, (2.4)

where Sk is the screw axis vector for joint k, consisting of an angular velocity vector
ω ∈ R3 and a linear velocity vector v ∈ R3. The bracket notation [Sk] denotes the

matrix representation in SE(3) as [Sk] =

�
[ω] v
0 0

�
, where [ω] is the skew-symmetric

matrix form of the angular velocity vector. The joint displacement value is represented
by θk and M is the configuration of the end-effector in the zero position. [20]

2.2.3 Inverse Kinematics

The inverse kinematics involves determining a joint configuration that achieves a given
end-effector pose in Cartesian space. Unlike forward kinematics, which has a straight-
forward and general solution, inverse kinematics does not offer a universally applicable
solution for any serial kinematic chain [21].
This challenge is particularly pronounced in inverse kinematics due to several factors.
The equations involved are usually non-linear, making it difficult to find closed-form
solutions. In addition, there may be multiple or even infinite solutions, especially for
redundant robots that have more degrees of freedom than required for a given task [14,
22]. To address these complexities, various methods have been developed, each suitable
for different applications.
For simple robots with few degrees of freedom or manipulators with specially designed
kinematics, a closed-form analytical solution can be used, providing explicit equations
for the joint parameters [14, 23, 24].

Numerical methods encompass iterative approaches that aim to find a satisfactory
solution by minimizing the error of the underlying non-linear system. These methods
can be broadly categorized into three types: Jacobian, Newton, and Heuristic methods
[21].

Jacobian Methods

Jacobian methods use the Jacobian matrix J, which is a matrix of partial derivatives of
the system with respect to the joint parameters θ. The Jacobian matrix relates the joint
velocities to the end-effector velocities (cf. Equation (2.6))[25]. The basic approach
involves iteratively updating the joint parameters to minimize the error between the
current and desired end-effector positions. The entries of the Jacobian matrix are
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defined as
J(θ)ij =

�
∂xi

∂θj

�
, (2.5)

where θ = (θ1, ..., θn)
T with i ∈ [1, k] and j ∈ [1, n]. Here, k represents the number of

end-effectors, and n represents the number of joints.
The basic equation for forward dynamics that describes the velocities of the end-effectors
can be written as follows, using the dot notation for time derivatives:

ẋ = J(θ)θ̇. (2.6)

The goal is to minimize the error e for a value θ, between the actual end-effector
position x(θ) and the desired target end-effector position t:

e = t− x(θ). (2.7)

To solve this, small joint angle updates Δθ are iteratively applied to an initial value.
The relationship between changes in joint angles and the resulting change in end-effector
position Δx is approximated using the Jacobian:

Δx ≈ JΔθ. (2.8)

The required joint angle update Δθ can then be estimated using the inverse of the
Jacobian:

Δθ ≈ J−1e. (2.9)

The final joint angles for a desired end-effector position are obtained by iteratively
updating θi+1 = θi +Δθ until the error e falls below a desired threshold or a maximum
number of iterations is reached.
Due to potential non-invertibility, non-square nature, and the presence of singularities
in the Jacobian matrix, different methods like the Jacobian Transpose, Jacobian Pseudo-
Inverse, damped least-squares [26] or Singular Value Decomposition (SVD) [27] are
applied.

Newton Methods

Newton methods are based on a second-order Taylor expansion of the objective function.
These methods utilize the Hessian matrix to find a second-order approximation of
the inverse kinematics problem. However, calculating the Hessian is computationally
expensive. The quasi-Newton methods, like BFGS, approximate the Hessian to reduce
computational costs while avoiding singularity issues [28].

Heuristic Methods

Heuristic methods employ simpler, iterative approaches that do not rely on complex
equations [21]. These methods are generally faster and computationally cheaper, but
may not produce biomechanically feasible motions. A common method is Cyclic
Coordinate Descent (CCD), which iteratively adjusts one joint at a time to reduce the
end-effector error, starting inward from the end-effector to the base [29, 30]. Another
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method is the Forward and Backward Reaching Inverse Kinematics (FABRIK), which
updates joint positions iteratively by moving forward and backward along the chain to
minimize the distance to the target [31].

2.3 Robot Motion Planning

In robotics, planning a robot’s motion is a fundamental task that involves determining a
feasible path for the robot to move from one configuration to another, avoiding obstacles
and complying with its physical constraints [14]. This path is subsequently extended
with a time parameterization, resulting in a trajectory. This section will cover the
basics of path planning and then expand into the area of trajectory planning.

2.3.1 Path Planning

Path planning addresses the problem of determining a feasible path for the robot to
move through its environment with potential obstacles. This involves not only finding
a valid path, satisfying the start and end configuration, but also ensuring that the
path is collision-free, respects the robot’s kinematic and dynamic constraints, and is
computationally efficient [20].
The complexity of the path can vary, from a simple movement between two points of
the end-effector in space to a specific constructed path with multiple obstacles and
constraints.
The path planning is carried out in the configuration space θ(s), whereas end-effector
movements are planned in Cartesian space xe(s). The variable s ∈ [0, 1] describes here
the progress of the path, where s = 0 is the starting position and s = 1 the end position
of the robot.
To effectively overcome these challenges, various approaches have been developed,
among which sampling-based methods have proven to be particularly successful. Two
prominent examples of these methods are Rapidly Exploring Random Trees (RRT) and
Probabilistic Roadmap (PRM). RRT is an algorithm that incrementally builds a search
tree by randomly sampling the configuration space and extending the tree towards the
sampled points [32]. The PRM algorithm generates a roadmap R by randomly selecting
nodes from the configuration or state space and adding them to the roadmap based on
the shortest distance [33].

2.3.2 Trajectory Planning

Building upon the paths generated in the previous section, represented as θ(s) or xe(s),
the next step involves planning the trajectory, where the focus shifts to the robot’s
movement over time. To achieve this, the time parameterization s(t) is added, assigning
a value s for each time t ∈ [0, T ], s : [0, T ] → [0, 1].
The resulting trajectory θ(s(t)) or xe(s(t)) should then be sufficiently smooth for usage
with the robot’s analog drives and controller, but also respect the permitted position,
speed, and acceleration limits of the actuator.
Time parameterization of a simple point-to-point path can be accomplished by using
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methods like polynomial-time scaling or trapezoidal motion profiles. Polynomial func-
tions offer smooth transitions but may require complex calculations to solve for the
constraints, while trapezoidal motion profiles provide a straightforward approach with
easily controlled acceleration and deceleration phases, though they may produce less
smooth motion at transitions. A basic representation of the motion profile of both the
trapezoid and the polynomial-time scaling can be seen in Figure 2.4 and Figure 2.5.

Figure 2.4: Motion profile of a trapezoid time parameterization. To get a smooth start
and end phase, a constant slope a is applied. [20]

Figure 2.5: Motion profile of a 5th polynomial time parameterization. The maximum
velocity and acceleration are limited by the trajectory duration T . [20]

When dealing with more complex paths, time parameterization becomes increasingly
difficult, leading to methods such as determining the fastest feasible time scaling that
adheres to the robot’s actuator limits or optimizing for minimal energy consumption.
Moreover, integrating the system’s dynamic behavior can introduce varying velocity
and acceleration constraints along the path, introducing additional difficulty. [20]

2.4 Iterative Learning Control

Numerous tasks for an industrial robot involve repeating the same operation or mo-
tion over and over again. For such tasks, conditions, such as the trajectory and the
resulting environmental influence, typically remain consistent with each repetition. ILC
leverages this repetitive nature of the task to improve the performance of a system
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by correcting these constant undesirable environment influences or model inaccuracies.
This improvement is achieved by learning from the observed error information from
previous task iterations and refining the input signal of the system on each iteration.
This leads to a high control performance in the presence of large uncertainty, in contrast
to non-learning controllers which reproduce the same control error in each subsequent
iteration. [34]

One of the simplest formulations of an ILC can be expressed as

uj+1(t) = uj(t) + γek(t+ 1), (2.10)

where uj(t) represents the control input at the j-th iteration of the task, γ is the learning
gain matrix, and ej(t) = yd(t) − yj(t) is the tracking error, defined as the difference
between the desired output yd(t) and the actual output yj(t) [35]. A simplified version
of the learning process for a singular input value uj(t) is illustrated in Figure 2.6.

0 0

1 1

j

j+1 j+1

iterations

uj

uj

yd

time time

ej

uj+1

γ

P

ej

yj+1

j

Figure 2.6: Schematic ILC update step for a one-dimensional value. In each iteration j
the input value uj is updated utilizing the error ej and the learning function
γ resulting the new updated input uj+1. The new error ej+1 is calculated
using the resulting plant output yj+1 and the desired output yd.

2.4.1 The Lifted System Representation

In many applications of ILC, the system might consist of multiple input and output
values and is executed over a finite time horizon, where inputs and outputs are recorded
at each time step. The lifted system representation aggregates these inputs and outputs
into higher-dimensional vectors, also called super-vectors, encapsulating the entire time
horizon in a single representation [34].
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Consider a linear time-invariant (LTI) discrete-time system

xj[k + 1] = Axj[k] +Buj[k] (2.11)

yj[k] = Cxj[k], (2.12)

where k ∈ [0, N ] is the time index, j is the iteration index, xj is the state vector, uj is
the control input and yj the system output.
With xj(0) = x0 for all j, this system is equivalent to

yj(k) = C(qI−A)−1B� �� �
P (q)

uj(k) +CAkx0� �� �
d(k)

. (2.13)

In this equation, P (q) represents the plant with the forward time shift operator q(e.g.,
qz(k) ≡ z(k + 1) shifts one step forward). The term d(k) represents the free response
to the initial condition x0.
To construct the lifted system representation for a given sample number N , the LTI
plant (2.13) is expended as an infinite power series by dividing its denominator into its
numerator. Using negative powers of q to represent time delays:

P (q) = p1q
−1 + p2q

−2 + p3q
−3 + . . . , (2.14)

where q−nx(k) = x(k − n) represents a delay of n time steps. The coefficients pk =
CAk−1B represent the Markov parameters for the given state space description. Markov
parameters describe the pulse response functions of a discrete-time linear system to a
unit pulse input.[36]
The LTI system (2.13) can now be written as the lifted system

yj(1)
yj(2)

...
yj(N)


� �� �

yj

=


p1 0 . . . 0
p2 p1 . . . 0
...

... . . . ...
pN pN−1 . . . p1


� �� �

P


uj(0)
uj(1)

...
uj(N − 1)


� �� �

uj

+


d(1)
d(2)

...
d(N)


� �� �

d

(2.15)

the error can be also displayed with this representation to
ej(1)
ej(2)

...
ej(N)


� �� �

ej

=


yd(1)
yd(2)

...
yd(N)


� �� �

yd

−


yj(1)
yj(2)

...
yj(N)


� �� �

yj

. (2.16)
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The lifted form of the ILC learning algorithm (2.10) becomes
uj+1(0)
uj+1(1)

...
uj+1(N − 1)


� �� �

uj+1

=


uj(0)
uj(1)

...
uj(N − 1)


� �� �

uj

+


l0 l−1 . . . l−N−1

l1 l0 . . . l−N−2
...

... . . . ...
lN−1 lN−2 . . . l0


� �� �

L


ej(1)
ej(2)

...
ej(N)


� �� �

ej

, (2.17)

where L represents the learning function.
This lifted representation allows the ILC algorithm to operate on the entire sequence of
data, enabling the design of control laws that optimize performance across the whole
trajectory rather than at individual time steps.[34]

2.4.2 Designs of Iterative Learning Control

Following the lifted system representation, the learning function L can be derived
through three common methodological approaches: Proportional-Derivative Type (PD-
Type), model inversion, or norm-optimal ILC.
The PD-Type ILC combines proportional and derivative components leading to a
learning function L expressed as

Lej = Kpej(t) +Kd
dej(t)

dt
. (2.18)

Here ej is the error of the current iteration j, Kp is the proportional and Kd the
derivative gain matrices used to tune for a desired performance. This type of ILC is
widely used in various applications due to its model-free nature, requiring only effective
tuning of two parameter matrices. The stability, robustness, and convergence properties
have been extensively analyzed and demonstrated in different scenarios [34].
In order to ensure monotonic convergence and enhance the robustness of the system,
it is typically necessary to modify the learning algorithm to include a lowpass Q-
filter. The effect of this filter is to effectively disable learning at high frequencies,
thereby satisfying the monotonic convergence conditions while simultaneously providing
additional robustness and high-frequency noise attenuation. For the PD-Type ILC, a
Q-filter is typically comprised of Butterworth, Chebyshev, Gaussian, or FIR type. [34]

Model-Inverse ILC

The model inverse ILC on the other hand uses an inverse of the given system model,
leading to the learning function

Lej = P−1ej. (2.19)

The model inverse ILC approach relies on having an accurate mathematical model of
the system, represented by P. With precise model representation, the inverse-based
approach can theoretically achieve perfect tracking in a single iteration.
Nevertheless, there exist certain limitations, including the model accuracy, the non-well
invertibility of the model due to non-minimum phase characteristics, input-output
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dimension mismatch, and singularities in the system model [37].

Norm-Optimal ILC

While PD-ILC offers simplicity and model-free implementation, and model inverse ILC
faces practical limitations, norm-optimal ILC functions as an intermediate approach.
It formulates the learning as an optimization problem that minimizes a cost function,
typically described as

J = êTj+1Weêj+1 + uT
j+1Wuuj+1 + δuT

j+1Wδuδuj+1, (2.20)

where δuj+1 = uj+1−uj and êj+1 = ej− P̂δuj+1 is the predicted next iterations output
error. We,Wu and Wδu are the positive semi-definite weighing matrix. [38]
From this the learning function L can derived as

L = (P̂TWeP̂+Wδu)
−1(P̂TWe). (2.21)

The norm-optimal approach provides a robust framework that reduces the sensitivity
to modeling uncertainties compared to inversion-based ILC while offering systematic
tuning through the weighting matrices.

2.4.3 ILC in Industrial Robot Applications

In the context of industrial robots, there are several approaches to increase their path-
tracking capability by using an ILC approach to mitigate recurring errors. These
methods are typically implemented as augmentations to existing control architectures,
such as feed-forward and feedback control systems, or employed in robot kinematic
calibration procedures. The error feedback for these systems is obtained through the
internal robot joint encoders in conjunction with additional external sensors such as
torque sensors, lasers, or camera systems. [39–41]
As in other areas of robotics, camera systems are available both as eye-in-hand and
externally mounted applications. One vision-based approach utilizes marker detection
for error estimation, where a monocular eye-in-hand camera tracks visual markers to
infer end-effector deviations from a demonstrated trajectory [42]. Applications in the
field of visual sensing and visual odometry are not currently available [43].
To handle the inherent nonlinear dynamics of industrial robots, one approach treats
nonlinearities as perturbations to a linearized system model. Under feedback control,
the robot’s trajectory typically remains within a neighborhood of the reference path,
allowing the nonlinearities to be evaluated along this reference trajectory. This results
in an additive Linear Time-Varying (LTV) system where the perturbations remain
constant across iterations [44].
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2.5 Image Formation

Image formation is the concept in computer vision to capture and represent a 3D scene
onto a Two-dimensional (2D) image plane using a camera system. This procedure
consists of transforming world coordinates into camera coordinates through rigid trans-
formations TC

W , followed by projecting these camera coordinates onto pixel coordinates,
as depicted in Figure 2.7.

P (X, Y, Z)

ezC

exC

eyC

C
c

x

y
p(x, y)

I

W

exW

eyW

ezW TC
W

Figure 2.7: Illustration of a complete camera model. W is the 3D world coordinate
system and C the camera coordinate system. I represents the image frame
of the camera with its own 2D coordinate system c. The 3D-point P is
projected onto I which maps to the 2D-point, resulting in p.

2.5.1 Pinhole Camera Model

The pinhole camera model offers a fundamental method for projecting 3D points onto the
image plane, simplifying the complexities found in real optical systems, and providing
a theoretical foundation in camera optics [45]. It condenses the camera aperture to
a singular point where light rays converge, termed the pinhole, enabling a simplified
projection of an image onto a plane.
The resulting projection leads to the mathematical description of the relationship
between points in the 3D space and its 2D image frame position (cf. Equation (2.22)
and (2.23)). The focal length f is used in these equations to determine the projection
of the 3D point P onto the image plane, specifying its x and y coordinates. Figure 2.8
illustrates a 2D version of a pinhole camera model.

y = f · Py

Pz

(2.22)

x = f · Px

Pz

(2.23)
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optical axis
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Figure 2.8: Working principal of a 2D pinhole camera model. The 3D point P is
projected onto the image plane based on the focal length f .

Although the pinhole camera model is useful for a basic overview, it has significant
limitations in practice. First, it does not account for radial and tangential distortions
introduced by lenses, which can significantly affect the accuracy of image representation
[46]. In addition, the continuous nature is captured as an array of discrete pixels,
specified by the image sensor. This leads to a potential loss of information, which is
only present in subpixel resolution.

2.5.2 Camera Parameters

The transformation of the coordinate systems and projection of images onto the camera
sensor can be further described with camera parameters. Extrinsic parameters define
the rigid transformation, and intrinsic parameters describe the projection from the 3D
scene point to the 2D pixel values. The extrinsic camera parameters are represented by
a homogeneous transformation matrix, described in detail in Section 2.2.1.

T =

�
R t
0T 1

�
(2.24)

The intrinsic parameters can be expressed as the matrix K:

K =

fx s cx
0 fy cy
0 0 1

 . (2.25)

Here, fx and fy represent the focal lengths along the x and y axes of the image plane,
cx and cy are the coordinates of the principal, typically the image center, and the skew
coefficient s.
With these parameters, the pinhole camera model can be elevated to:

r ·
uv
1

 = K
�
R t


 ·

X
Y
Z
1

 . (2.26)
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(a) Uniform Chessboard (b) Barrel Distortion (c) Pincushion Distortion

Figure 2.9: Illustration of different types of image distortions using a chessboard pattern.
(a) The Uniform Chessboard represents a standard grid with no distortion.
(b) The Barrel Distortion demonstrates the outward bulging effect, typical
of wide-angle lenses, where straight lines appear to curve away from the
center. (c) The Pincushion Distortion, where straight lines curve towards
the center.

2.5.3 Camera Calibration

Both the intrinsic camera parameters and the distortion of the lens can be determined
by calibrating the camera to be used. The most common method for camera calibration
involves a planar calibration target [47, 48]. This planar calibration target is used to
provide a known geometric structure that is easily detected and measured in images
captured by the camera. In Figure 2.9, a chessboard pattern is illustrated with an
illustrated barrel and pincushion distortion and can be used for calibration.
By observing the apparent distortion in these structured images, the calibration process
can determine the camera’s intrinsic parameters and the distortion.

2.6 Depth Estimation

As previously stated, a camera’s ability to capture a 2D projection of a 3D world is
inherently limited. However, in numerous applications within the fields of robotics
and computer vision, the precise position of objects in three dimensions is essential.
Consequently, in addition to the captured image, the depth information from the
camera’s viewpoint is crucial for comprehending the entire scene.
Numerous methods can be used to extract depth information from a scene, either by
utilizing or complementing the spatial data obtained in the image.
One reasonably intuitive option is the use of external sensors such as Light Detection
and Ranging (LiDAR), which is based on the Time of Flight method and determines
the distance by measuring the time between a transmitted light signal and its reflected
signal. However, LiDAR systems can be expensive and cumbersome and may struggle
in certain environments, such as those with highly reflective or absorptive surfaces. [49]
As an alternative, depth in a scene can also be estimated without additional sensors,
utilizing images taken by a single camera. This process can be divided into Single Image
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Depth Estimation (SIDE) and multiple-view geometry techniques.
For SIDE, machine learning methods, specifically convolutional neural networks, are
used almost exclusively [50]. Both supervised and unsupervised models are used, often
divided into relative and absolute depth, as well as indoor and outdoor environments.
In multiple-view geometry, depth information necessitates at least two different scene
views. Techniques such as stereo vision or Structure from Motion (SfM), which rely on
triangulation principles, are commonly employed [45].
Stereo vision captures two or more images using cameras positioned at a known distance
apart. By examining the differences between corresponding points in these images,
depth information can be estimated. One significant challenge is the need for precise
camera calibration to ensure accurate depth estimation. In addition, stereo vision
systems can struggle with textureless or repetitive surfaces, making it difficult to find
the corresponding points. Occlusions, where one object blocks the view of another, can
also pose problems by creating gaps in the depth map. [51]
SfM uses an image series of a static scene taken from different viewpoints. These images
are used to create a 3D reconstruction of the scene, most popularly using an incremental
approach.
The incremental SfM method starts by reconstructing a 3D scene using a set of initial
images. This is achieved by the detection and matching of features in these images
(cf. Section 2.7.1). Afterward, more images are progressively added, refining the 3D
structure and camera parameters with each addition. [52]

2.6.1 Triangulation

Triangulation is a fundamental technique used to reconstruct the 3D coordinates of a
point by intersecting the lines of sight from at least two distinct camera views. This
method is deeply rooted in epipolar geometry, which provides a geometric framework
that simplifies the search for corresponding points between two images.

Epipolar Geometry

Using the epipolar geometry shown in Figure 2.10, the relationship between the two
projected points x and x′ can be simplified. If the position of x in the frame I and
the camera origin C ′ are known, x′ can be found only on the epipolar line l′. Thus,
considerably reducing the search area.

The Fundamental Matrix

The fundamental matrix F, a 3x3 matrix, encapsulates the algebraic representation of
epipolar geometry [45]. It ensures that for any corresponding point pair x ↔ x′ across
two images, the following condition holds:

(x′)TFx = 0. (2.27)

This is also called the epipolar constraint.
While F is applicable in scenarios with uncalibrated cameras and includes both intrinsic
and extrinsic parameters, E is used when cameras are calibrated, containing only
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Figure 2.10: Epipolar geometry: The 3D point X is projected onto the image frames
I and I ′ using the pinhole camera model as described in Section 2.5.1.
The cameras are indicated by their origin C and C ′. The projections of
the respective other camera origin form the epipoles e and e′. The lines
between x and e then form the epipolar lines l and l′. The projected points,
together with the epipoles, span the epipolar plane π.

the extrinsic parameters rotation and translation. With the known intrinsic camera
parameter K, the relationship between F and E is:

E = (K)TFK. (2.28)

The essential matrix can also be decomposed using SVD to recover the rotation R and
translation t, based on the recomposition theorem in [53]

E = U diag(1, 1, 0)VT , (2.29)

where det(U) > 0 and det(V) > 0. The translation vector t is obtained by decomposing
U into its scalar matrix elements uij

t = [u13, u23, u33]
T (2.30)

and the rotation matrix R is chosen as

Ra = UDVT or Rb = UDTVT , (2.31)
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where D is a matrix defined as:

D =

 0 1 0
−1 0 0
0 0 1

 . (2.32)

These decompositions result in four potential configurations for the camera’s pose
relative to its initial position

PA = [Ra|t] PB = [Ra| − t]

PC = [Rb|t] PD = [Rb| − t].
(2.33)

To resolve these ambiguities, the chirality condition is applied, which ensures that
triangulated points are in front of both cameras, being physically feasible.

Algorithms

The triangulation problem can be summarized as finding the intersection of the two
projection lines. In the presence of noise, these projection rays are not guaranteed to
cross, introducing complexity into the system [54]. A widely used approach to account
for noise involves optimizing a cost function that minimizes the re-projection error
to determine the best image points x̂ and x̂′. The goal is to find the points x̂ and x̂′

which minimize Equation (2.34), where d(□,□) indicates the Euclidean distance and is
subject to the epipolar constraint.

d(x, x̂)2 + d(x′, x̂′)2 (2.34)

This minimization process can be achieved by utilizing iterative approaches like iterative
least square minimization methods such as the Levenberg–Marquardt algorithm (LM)
[55].
Alternatively, it can also be done with a non-iterative algorithm like the Polynomial
method, which transforms the problem into a sixth-order polynomial. The roots of this
polynomial then represent potential solutions to the minimum of the cost function. [54]

2.7 Visual Odometry

Visual Odometry (VO) is the process of estimating the movement of an agent equipped
with one or more cameras [56]. This movement, known as egomotion, refers to the
3D motion of a camera within an environment, which includes tracking the camera’s
changes in position and orientation over time [57]. The methodologies for VO are
diverse, utilizing various types of equipment to meet specific application requirements.
These methodologies can be categorized into three main types: monocular, stereo, and
visual-inertial odometry.
Monocular odometry relies on a single camera mounted on the agent to estimate motion.
This method is advantageous due to its simplicity and lower hardware requirements
but it often faces challenges related to scale ambiguity and depth estimation. [56]
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Stereo visual odometry uses two cameras to capture the scene. These cameras are placed
at a known distance apart, allowing an accurate depth perception by triangulation [58].
Visual-inertial odometry combines visual data from a camera with inertial measure-
ments from Inertial Measurement Units (IMUs). This fusion of data sources improves
the accuracy and robustness of motion estimation, especially in scenarios with fast
movements or low-texture environments. [59–61]
These hardware setups can also be extended with additional computer vision methods.
For example, deep learning is used in combination with monocular VO to obtain addi-
tional depth data from the scene [62].
In this thesis, monocular visual odometry is highlighted due to its minimal hardware
requirements as well as the special application case, which makes it relatively easy
to generate depth data with just one camera (cf. Section 3.2.1). Therefore, the next
section examines the details and methodologies related to monocular VO.

2.7.1 Monocular Visual Odometry

Monocular VO only uses image sequences from a single camera to estimate motion. To
accomplish this estimation, there are two main methods: feature-based and appearance-
based methods. Feature-based methods rely on detecting and matching distinct points
or features in images, while appearance-based methods utilize the overall intensity
patterns or textures in the images to estimate motion. However, because feature-based
methods are more accurate than appearance-based ones, most implementations of VO
are based on them. [63]
Consequently, this thesis will also focus on feature-based methods.
Thereby, features describe regions within an image, such as edges, corners, or lines,

Image Sequence Feature Detection

Feature MatchingMotion Estimation

Figure 2.11: Illustrative flowchart of a typical feature-based monocular VO process. [56]
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generating a pattern that is distinguishable from its immediate neighborhood in terms
of intensity, color, and texture [56]. These features are used to detect the motion of the
agent in the environment. The fundamental workflow of feature-based VO, which is
subsequently further described, is illustrated in Figure 2.11.

Feature Detection

Because VO needs the reliable detection and matching of distinctive points across
consecutive frames, feature detectors like Scale-Invariant Feature Transform (SIFT)
[64], SURF [65], ORB [66] or FAST [67] are used. A reliable feature detector is crucial
for effective and accurate estimation of the camera motion and, therefore, has to exhibit
several key properties [56]. These include:

• Localization Accuracy: Precise detection of feature locations and scales within
an image is essential, as it serves as the foundation for accurate motion estimation.

• Repeatability: A substantial number of the same features should consistently be
detected across the sequence of images. This is necessary to allow the matching
of features in the image sequence.

• Robustness: The detector must be resilient against various image degradations
such as noise, compression artifacts, and blur.

• Distinctiveness: Features should be sufficiently unique to allow for precise
matching across different images.

• Invariance: The detector should be invariant to changes in lighting conditions
and geometric transformations such as rotation, scaling, and perspective distortion,
as this ensures reliable feature detection and tracking under various environmental
conditions and viewpoints.

Feature Matching

After the features of each image are identified, a matching procedure is carried out
within the sequence of images to spatially relate the images. One approach is to track
the features using local search techniques like Kanade–Lucas–Tomasi (KLT) feature
tracker [68]. This feature tracker uses the concept of optical flow throughout the image
sequence to track feature points. Optical flow assumes that the intensity of features
remains constant between the image sequence, allowing the algorithm to compute the
displacement of each feature by minimizing the difference in intensity. This approach
is common for small changes in the view of the images and might introduce a motion
drift over the sequence. [56]
Another approach is to detect the feature points in all images and match the descriptors
to each other to find the identical scene points.
Descriptors are numerical representations that uniquely identify and encapsulate the
information of a feature, facilitating reliable matching across different images. These
descriptors are computed from the local image patches around each feature point,
using algorithms designed to maximize distinctiveness and invariance to common image
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transformations, like the SIFT descriptor [64].
The identified and located features in both images are subsequently matched to each
other using algorithms such as Brute Force or Fast Library for Approximate Nearest
Neighbors (FLANN) [69].
In Brute Force matching, each descriptor in one image is compared to each descriptor
in the other image using distance functions such as Euclidean, Manhattan, or Hamming
distance to measure similarity, selecting the closest matches based on these calculated
distances.
FLANN is a library designed to speed up the process of matching high-dimensional
descriptors by automatically selecting the most efficient approximate nearest neighbor
algorithm and parameters for a given dataset. It supports various methods, such as
multiple randomized k-d trees and hierarchical k-means trees, to significantly reduce
query time while maintaining high accuracy. [69]
To increase the robustness of the matching, bad matches introduced by outliers are
rejected afterward by the use of Random Sample Consensus (RANSAC) [70] or more
specific approaches like the Lowe Ratio Test [71].

Motion Estimation

Once sufficient features have been detected and matched in the image sequence, a motion
estimation process is required to determine the spatial transformation of the agent
between the corresponding images. The basic concept to determine this transformation
T

Ek−1

Ek over two successive images is shown in Figure 2.12.
Leveraging the epipolar constraints, the essential matrix E (cf. Section 2.6.1) is
estimated, from which the rotation R and translation t are recovered. This estimation
process commonly employs methods such as the normalized eight-point algorithm
[72] or the five-point algorithm [53]. These algorithms require at least eight or five
pairs of corresponding points from two distinct images, respectively, leveraging the
epipolar constraints to formulate polynomial equations. These equations are typically
solved using numerical methods such as SVD or Eigenvalue Decomposition. After the
estimation of the essential matrix, it can be decomposed, as described in Section 2.6.1.
To improve accuracy in real-world applications affected by noise and outliers from
wrong feature point matches, these methods are typically combined with the RANSAC
algorithm. RANSAC iteratively applies them to random subsets of data and selects the
essential matrix that best fits most of the sampled data.
In addition to these algebraic solutions, there are also iterative methods. These transform
the pose-solving problem into a non-linear least square optimization problem that needs
to be solved [73].

2.7.2 Evaluation Metrics

The evaluation of an estimated trajectory x̂ and its ground truth xgt is not straight-
forward, as it is only possible to compare the individual waypoints at given times of
the trajectories. To calculate the error between these trajectories, two common error
metrics are the Absolute Trajectory Error (ATE) and the Relative Error (RE). [74]
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Figure 2.12: Transformation T
Ek−1

Ek between consecutive agent poses Ek and Ek−1, derived
from corresponding 3D points Xi observed from camera positions C and
C ′. The transformation is computed using image projections xi and x′

i

through motion estimation. The camera-to-agent transformations TE
C and

TE
C′ , which link the agent to the camera origins, remain constant across k

Absolute Trajectory Error (ATE)

For a single waypoint of a trajectory the error between x̂i and xgt
i can be parameterized

as
Δxi = {ΔRi,Δpi,Δvi}. (2.35)

ΔRi,Δpi and Δvi represent here the rotation error, the position error, and the velocity
error of the end-effector pose at the waypoint i and can be calculated with

ΔRi = Ri(R̂i)
T (2.36)

Δpi = pi −ΔRip̂i (2.37)

Δvi = vi −ΔRiv̂i. (2.38)

To evaluate the complete trajectory, the root-mean-square error is calculated across its
waypoints. This approach leads to the definitions of the rotation, position, and velocity
absolute trajectory errors (ATErot, ATEpos, and ATEvel) as shown in Equation (2.39),
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Equation (2.40), and Equation (2.41).

ATErot = (
1

N

N−1�
i=0

||∠(ΔRi)||2) 1
2 (2.39)

ATEpos = (
1

N

N−1�
i=0

||Δpi||2) 1
2 (2.40)

ATEvel = (
1

N

N−1�
i=0

||Δvi||2) 1
2 (2.41)

Here, ∠(□) describes the conversion of the rotation matrix R to an angle axis repre-
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1 Cgt
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Δp5

Ĉ1 Ĉ2 Ĉ3 Ĉ4 Ĉ5
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Δp5Δp4Δp3Δp2

Figure 2.13: Simplified example for the timing problem of an ATE trajectory calculation.
A robot end-effector executes the same trajectory twice, moving from C1
to C5. In the upper illustrated trajectory execution, a position error Δp5

occurs at the last waypoint, resulting in a low global error. In the lower
trajectory, the same error occurs earlier at Ĉ2, propagating through the
subsequent waypoints (Δp2, Δp3, Δp4, and Δp5) and causing a larger
cumulative global error.

sentation via Rodrigues [75].
The ATE now describes the error of the whole trajectory in a single metric scalar
number for rotation, position, and velocity estimation. However, ATE is sensitive to
errors occuring during the trajectory, illustrated in Figure 2.13 [76].
Therefore, as an alternative calculation, the RE is additionally used for a more informa-
tive evaluation.
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Relative Error (RE)

The RE measures the accuracy of trajectory estimation by comparing pairs of states at
different points along the path, rather than using absolute positions. By calculating
the rotational and positional differences between the estimated and actual states for
different trajectory segments, RE provides information on both local consistency and
long-term accuracy. While this metric is valuable for systems without a global reference
frame, its complex computational method and multidimensional error representation
make it less intuitive than single-value metrics like ATE. [74]

2.8 Robot Operating System (ROS)

The ROS is a flexible framework designed to aid in the development of robotic setups. It
provides comprehensive hardware abstraction and low-level device control and facilitates
message-passing between processes through a robust package management system [77,
78].
Additionally, ROS supports the seamless integration and management of complex
robotic components through an efficient communication framework comprising nodes,
topics, services, and messages. Nodes are processes that perform computations and
communicate by publishing or subscribing to data streams called topics. Messages
define the data types used in this data stream.
Services in ROS, are an alternative interaction between nodes, providing a synchronous,
request/response interaction paradigm. This architecture allows for a robust and flexible
way to manage the complexities of robotic programming, ensuring that systems can
be efficiently controlled and data flows smoothly between components. The whole
communication is managed by the ROS-Master, which manages interactions between
nodes and maintains reliable networking across the system, as detailed in Figure 2.14.
This networked approach is highly advantageous in robotic development, as it allows for
the effortless integration of subsystems into a larger, pre-existing system. The modular
approach makes debugging easier, as nodes in development can run concurrently with
those that have already been thoroughly debugged.
Furthermore, ROS also offers valuable tools like RVIZ, a service that visualizes different
types of messages including images, poses, or point clouds [79]. To handle information
storage in a running setup, rosbags can be utilized to store serialized message data in
files, including the precise timestamps of when each topic was published [80]. Their
ability to record multiple topics simultaneously and with accurate timing makes rosbags
an excellent resource for capturing and debugging robot operation details during runtime.
Given the complexity of robotics and the numerous challenging subtasks involved, the
thin structure of ROS allows developers to easily integrate existing software libraries
like OpenCV [81], Ceres Solver [82], or MoveIt![83] as well as drivers for different
hardware like the camera_aravis package openly available in GitHub 1. This opens
up the possibility of utilizing established algorithms and tools, avoiding the need to
develop these components from scratch.

1https://github.com/FraunhoferIOSB/camera_aravis
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Figure 2.14: Depiction of a basic ROS program structure, featuring three nodes and a
single topic, with one node also functioning as a service server. The topic
is displayed with a cloud symbol, where the nodes publish and subscribe
from. All nodes and topics are registered with the ROS Master, which
manages them.

2.8.1 MoveIt! Motion Planning Framework

MoveIt! is a software framework for motion planning and mobile manipulation within
the ROS ecosystem [83]. One of the key features of MoveIt! is its ability to maintain
a clear distinction between its core functionalities and the robotic framework-dependent
aspects, such as component communication, which are typically managed via the core
ROS build and messaging systems. This separation allows developers to focus on
high-level motion planning tasks without needing to handle low-level communication
intricacies.
Furthermore, MoveIt! employs a plugin-based architecture for essential functions
including motion planning with Open Motion Planning Library (OMPL) [84], collision
detection using the Fast Collision Library [85], and kinematics handled by the OROCOS
Kinematics and Dynamics Library for both forward and inverse kinematics [86]. This
modular design not only simplifies the comparison of different algorithms by enabling
easy swapping and testing of various plugins but also eliminates the need for developers
to implement these complex algorithms from scratch.

28



CHAPTER 3

Design and Implementation of a vision-based Iterative Learning
Control System

The proposed system aims to identify and mitigate end-effector pose errors using an
eye-in-hand camera system and Visual Odometry (VO) for relative pose estimation.
The joint errors calculated from these estimations are then iteratively minimized
through Iterative Learning Control (ILC). The process begins by capturing a ground
truth trajectory under optimal conditions, such as slow movements, light payloads, or
hand-guided teaching, to establish baseline measurements. Subsequent iterations are
performed under actual operating conditions, with continuous trajectory refinement, as
visualized in Figure 3.1.

Visual Odometry

Trajectory Update

Image Formation

Error Calculation

next iteration

start

Figure 3.1: Single iteration of the ILC setup, updating all waypoints of a trajectory.

3.1 Hardware Setup

For the vision-based ILC to detect pose errors and employ the implemented subsequent
compensation, the hardware setup must be carefully designed. At its core, the system
employs a six-axis rigid industrial robot equipped with a camera mounted on its end-
effector, also known as an eye-in-hand setup. This end-effector mounting configuration
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allows the camera to track unwanted changes in motion that arise from both kinematic
and non-kinematic errors.
To ensure the system can detect even slight deviations in movement, the camera’s prop-
erties must be precisely calibrated to align with the trajectory’s specific requirements.
Additionally, the communication between the robot, the camera, the vision algorithm
hardware setup, and its control is also crucial to ensure the needed constant iterative
nature of the ILC. The communication flow between the system components is depicted
in Figure 3.2, illustrating the interaction between Robot Operating System (ROS), the
robot system, and the camera for trajectory execution and image acquisition.

trajectory

joint positions

image

trigger
ROS RobotCamera

Figure 3.2: System architecture depicting the communication flow between hardware
components (camera and robot) and ROS. The robot executes the given
trajectory and sends continuous joint positions back to ROS. These positions
are to the desired values and subsequently trigger the camera to capture
and send an image.

3.1.1 Robot System

When selecting a robot system, the repeatability of the axis positioning movements
plays an important role. Since the algorithm updates joint angles iteratively, the robot
must reliably achieve commanded positions to prevent non-compensatable errors in the
control loop. Therefore, robots with internal Proportional-Integral-Derivative (PID)
control can be used to compensate for the error deviation within the joint.
Additionally, compensation for both translational and rotational errors requires full
spatial maneuverability. Therefore, at least a 6-axis robot configuration is necessary
to provide the required six degrees of freedom for comprehensive error correction.
While 7-axis robots offer additional flexibility, they introduce control complexity due to
redundant configurations for the same end-effector pose, complicating inverse kinematics
and motion planning.

3.1.2 Camera System

The camera system is an essential component of the thesis, acting as the sole sensor
for the ILC. The role of the camera during the ILC is to capture an image of the
environment at each waypoint of the trajectory, which will later be used in the motion
error estimation (cf. Section 3.2). As the camera progresses along the trajectory,
it detects numerous environmental features. To ensure these features are captured
accurately, it is necessary to account for the minimal detectable movement of a projected
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environment feature.
This minimum motion detection depends on the camera’s resolution, Field of View
(FoV), and frame rate. However, two of these properties, the frame rate, and the
resolution, are constrained by the available bandwidth, which is determined by the
interface used. A higher bandwidth allows for an increased trajectory sampling rate
and enables the execution of faster trajectories.
Table 3.1 compares data transfer rates for various commonly used interfaces.
Using the potential maximum data transmission as a reference, several limitations

Table 3.1: Comparison of data transfer rates for different interfaces

Interface Data Transfer Rate (Gbit/s)

USB 2.0 0.480
USB 3.1 Gen 2 10
USB 3.1 Gen 1 (USB 3.0) 5
Gigabit Ethernet 1
10-Gigabit Ethernet 10
PCI Express 2.0 (x1 lane) 8

of the vision system are analyzed, including resolution, FoV, frame rate, and motion
blur. These characteristics are interdependent, complicating the selection of an optimal
configuration.

Pixel Resolution

The pixel resolution of an image sensor fundamentally limits the accuracy with which the
pose error of the end-effector can be detected. It determines the smallest translational
and angular changes that can be observed and later used in the ILC.
To reliably detect any translational movement of the end-effector, the smallest observable
environment shift in the image is at least one pixel, represented as Δu = 1 or Δv = 1.
The perspective projection model can express the minimal detectable motion, relating
pixel displacements to real-world translations. This is described by:

Δxmin =
pz
f
Δu, Δymin =

pz
f
Δv, (3.1)

where f denotes the focal length, pz the target point distance, and Δxmin, Δymin

represent the minimum detectable translations.
The minimal detectable motion in the z-direction involves complex relationships with
camera parameters and is particularly sensitive to distance, as detectability decreases
with increasing depth. However, since the selected VO approach employs additional
depth data from the ground truth execution (cf. Section 3.2.1), these are effectively
addressed through additional depth information of the scene.
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Field of View

The ability of camera systems to detect angular variations of its position is primarily
limited by the FoV parameter, Θmax. The FoV can be modified for cameras with
interchangeable lenses by changing the lens’s focal length, where the FoV is calculated
using Equation (3.2).

Θhoriz = 2arctan

�
sensor width
2 · focal length

�
, Θvert = 2arctan

�
sensor height
2 · focal length

�
(3.2)

With the resolution, the FoV can now be divided into the least detectable angle rays,
leading to a pixel difference.

αmin =
Θhoriz

resolutionwidth
(3.3)

This minimal angle indicates the smallest rotation around the x and y-axes at which
the camera can still detect the error.
For an error introduced by tilting around the remaining z-axis, the position of possible
environment features in the frame determines the possible minimum rotation angle.
Assuming uniformly distributed global features, the features projected at the frame
edge have a higher influence on the detectability of the camera rotation around z.

Frame Rate

The frame rate plays a critical role in the ILC’s performance by determining the
trajectory’s sampling density. Higher frame rates enable the capture of more waypoints
within a given trajectory duration, resulting in finer motion discretization and smoother
execution.
The maximum achievable frame rate (FPS) can be calculated using Equation (3.4),
which considers both the data transfer rate and chosen resolution, alongside the required
exposure time. The data volume depends on the bit depth per pixel: grayscale images
typically require 8 bits per pixel, while color images (RGB) need 24 bits per pixel.

FPSmax =
1

Exposure Time + Resolution·Bits per Pixel
Data Transfer Rate

(3.4)

The frame rate limitations directly translate into constraints on detectable motion.
When generating depth data, sufficient feature matches between consecutive frames must
be maintained, inherently restricting the camera’s maximum velocity. This constraint
particularly affects rotational movements around the x and y axes, with the maximum
allowable rotation speed determined by both the camera’s frame rate and FoV. For a
specified percentage of frame overlap, the maximum rotational velocity around the x
and y axes can be calculated using:

ωmax = FoV · FPSmax · (1− overlap) . (3.5)

Similar to the minimum detectable translation, the maximum allowable translational
camera motion is constrained by the depth of detected features in the scene. Due to
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perspective projection, features closer to the camera experience larger apparent motion
than those further away.

Motion Blur

Motion blur is an additional limitation, introduced when the camera’s exposure time is
too long relative to the camera motion. The long exposure time will cause unintended
illumination of additional pixels, leading to a distortion of the image’s features. This
distortion changes the descriptor of the feature and deteriorates the matching between
different image frames.
The maximum achievable angular motion, ensuring motion blur does not occur, is
shown in Figure 3.3. The critical camera properties influencing the limitation of angular
motion blur include resolution, focal length, and exposure time. These findings are
specific to the PhotonFocus camera and are based on data presented in Table 3.2,
assuming a constant exposure time of 5 ms.
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Figure 3.3: Depiction of how motion blur impacts the achievable maximum angular
velocity employing the selected PhotonFocus camera, taking into account
an exposure time of 5 ms, a range of focal lengths, and different resolutions.

Selected Camera

Considering the outlined criteria, the Photonfocus DR1-D2048x1088-192-G2 camera is
selected, which is shown in Figure 3.4. This camera features a high resolution and an
extensive active optical area, establishing a solid foundation for achieving a wide FoV.
The camera specifications and calculated VO constraints are summarized in Table 3.2.
The GigE interface provides easy integration with ROS through the camera_aravis
library, simplifying camera management by allowing convenient adjustments to parame-
ters such as exposure time, digital and analog gain, and black level. Additionally, the
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Table 3.2: Photonfocus DR1-D2048x1088C-192-G2 Specifications

Property Value

Resolution 2048 × 1088 px
Active optical Area 11.26mm × 5.98mm
Pixel Size 5.5 µm × 5.5 µm
Interface GigE
Shutter Mode Global Shutter
ext. Focal Length 6mm

Δxmin 0.003mm
Δymin 0.003mm
αmin 0.0364◦

ωmax 239.25 ◦ s−1

library supports software-based triggering of the camera using a dedicated ROS node.
This node interacts with the robot’s status, ensuring that camera signals are always
triggered at the same moments for each waypoint in each iteration.

Figure 3.4: Photon Focus DR1-D2048x1088C-192-G2 color camera [87].

3.2 Motion Error Estimation

The motion error estimation is a central part of the thesis. Its task is to identify
deviations in the trajectory of the robot’s end-effector introduced by kinematic and
non-kinematic errors. These detected deviations are utilized as sensor input for the
update phase of the ILC process.
To estimate these errors, a camera is mounted on top of the end-effector in an eye-
in-hand configuration. The generic environment of the robot is then used to detect
distinct features that establish the baseline of the motion deviations in a trajectory.

For a given trajectory on each waypoint i, a pose error estimation is performed by
comparing the current waypoint images against the ground truth trajectory reference
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images via monocular VO (cf. Section 2.7).
The influence of an error on the individual waypoints of a trajectory can be seen in
Figure 3.5. Here, the trajectory deviations between the ground truth run and itera-
tion j result in spatial displacement of the camera coordinate system C at each waypoint.

While monocular VO enables precise pose deviation detection, the inherent scale

Groundtruth

Iteration j

C0

Cj
1

Cj
2

Cgt
2

Cgt
3

Cgt
N

Cj
2

Cj
N

Cgt
1

Figure 3.5: 2D representation of the deviation between the ground truth trajectory
and the trajectory at iteration j. Where C are the camera origins at each
waypoint i ∈ [0, N ] with a similar initial starting position C0

ambiguity challenges accurate translation estimation [45]. To address this limitation,
the known robot poses and images from the ground truth run are utilized to generate
depth data, providing the necessary scale information.

3.2.1 Depth Estimation

The global feature map is built using the recorded images and their corresponding robot
poses obtained from the ground truth trajectory execution. The map incorporates
environment features extracted and matched across all images taken during the ground
truth trajectory execution (cf. Figure 3.6).
These environment features are extracted using Scale-Invariant Feature Transform
(SIFT) detector, transforming them into image features, each comprising a keypoint
(its position in the image frame) and a descriptor (cf. Section 2.7.1).
The map is initially populated with all image features from the first waypoint recording,
where each image feature is directly mapped to an environmental feature in the global
map. The image features from subsequent waypoint recordings are matched against the
global map using a k-Nearest Neighbours (kNN) matcher.
The matching process adapts its strategy based on whether the best match corresponds
to an environment feature with single or multiple descriptor entries. If the best match
is to a feature with only one descriptor, this indicates that it is a newly added feature.
In this case, the traditional Lowe’s ratio test (cf. Section 2.7.1) is applied by comparing
the distances of the two best matches to ensure that they are sufficiently different. For
features with multiple existing descriptor entries, it calculates the average distance to
all descriptors of the currently best-matched feature and compares this against the best
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I1

I2

IN

Figure 3.6: Visualization of the relationship between the environment features in the
global feature map (spheres), and the image features in the individual frames
of the waypoints (squares). The map features are created via triangulation,
using multiple views of the same environment utilizing the recorded image
Ii from the waypoints i = 1, 2...N .

distance to any other environment feature’s descriptors.
This approach increases the likelihood that new descriptors will be matched with similar,
pre-existing descriptors, helping to reduce false associations and mismatches.
The process is parallelized using OpenMP, allowing efficient handling of long trajec-
tories with numerous waypoints while maintaining data consistency through proper
synchronization.

Successfully matched image features are linked to the corresponding environmental
features in the map, along with the robot’s pose at the relevant waypoint. If an image
feature fails to find a match, it is added as a new environmental feature to the global
map.
This approach enables the map to expand over time, incorporating new features that
can be used for future matching and ongoing refinement.

Given a global feature map with multiple environment features, these features will
contain multiple waypoint image matches and their feature information. For each envi-
ronment feature in the map, the image information is used to perform a triangulation
process to compute a depth estimate in the global environment (see Section 2.6.1).
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This way, multiple depth estimates are generated for each feature through various
waypoint-view combinations.
To minimize noise from the images and incorrect matches, the depth estimation is then
filtered using a geometry-based Random Sample Consensus (RANSAC) algorithm. This
method constructs a fundamental matrix from the keypoint entries of the environment
features, eliminating those that fall outside the acceptable tolerance range. The final
depth value for each environment feature is then calculated as the average of the filtered
depth estimates.

3.2.2 Visual Odometry

A monocular VO algorithm is employed to estimate pose deviations at each waypoint
inspired by [88]. This specific algorithm is chosen for its ability to handle sparse depth
information, incorporating additional depth data from the reference trajectory run
generated by the depth estimation (cf. Section 3.2.1). The features used in this process
are detected and matched using SIFT, ensuring robust feature correspondence between
consecutive frames. This approach is particularly suitable since only sparse depth data
from the ground truth recordings are available.

Mathematical Model

The algorithm uses the camera motion derived as the rigid body transformation in
Equation (3.6), where R is the rotation matrix and t is the translation vector. A tracked
environment feature matched from a waypoint image pair of the iteration Ij and the
corresponding ground truth Igt, denoted as pgt

i and pj
i , is expressed in coordinates

[xj
i , y

j
i , z

j
i ]

T , with the origin positioned at the optical center of the camera Cgt and Cj.
For features with unknown depth, the coordinates are normalized to p̄j

i = [x̄j
i , ȳ

j
i , 1]

T .

pj
i = R · pgt

i + t (3.6)

As the depth of the coordinate at iteration j is not known, Equation (3.6) can be
rewritten as

zji p̄
j
i = R · pgt

i + t. (3.7)

By combining the rows of the matrix, this can be simplified into the following two
equations �

rT1 − x̄j
ir3

�
pgt
i + t1 − x̄j

i t3 = 0, (3.8)�
rT2 − ȳji r3

�
pgt
i + t2 − ȳji t3 = 0 (3.9)

where rTh and th, for h ∈ {1, 2, 3}, represent the h-th row of the rotation matrix R and
the translation vector t, respectively.
For environment features without existing depth estimation from the ground truth
mapping, Equation (3.6) can be rewritten as

zji p̄
j
i = zgti R · p̄gt

i + t. (3.10)
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Both coordinates are subsequently normalized and combined into 3.11, eliminating zji
and zgti .

[−ȳji t3 + t2, x̄
j
i t3 − t1,−x̄j

i t2 + ȳji t1]Rp̄gt
i = 0 (3.11)

The motion is now solved by stacking the residual equations from (3.8) and (3.9), or
by decomposing the matrix equation (3.11) into its three scalar equations, into the
nonlinear function,

f([t;θ]) = ϵ (3.12)

creating a vector ϵ ∈ R2m+3n×1 filled with the residuals. Here, m and n represent the
number of features with depth and without depth values.

Optimization

In order to find values for [t,θ] which minimize the error of the projection between the
two poses, the following optimization problem is formulated:

argmin
t,θ

J(t,θ) = argmin
t,θ

1

2
∥f([t;θ])∥22. (3.13)

To solve this optimization problem, the Levenberg–Marquardt algorithm (LM) is utilized.
The LM algorithm is an iterative optimization method that combines the advantages of
the Gauss-Newton method and gradient descent.
At each iteration, the algorithm computes an update for the parameters [t,θ] by solving
the linearized system

Δ[t;θ] = −(J⊤J+ λI)−1J⊤ϵ. (3.14)

Here, J = ∂f
∂[t;θ]

is the Jacobian matrix of the residuals ϵ, and λ is the damping parameter.
Once the parameter update Δ[t;θ] is computed, the parameters are updated iteratively:

[t;θ]k+1 = [t;θ]k +Δ[t;θ]. (3.15)

The process repeats until one of the convergence criteria is met. These criteria are the
magnitude of the parameter update ∥Δ[t;θ]∥, the falling below a threshold, the relative
change in the cost function being small, or the maximum number of iterations being
reached.
In cases where convergence fails for a particular waypoint, the system adopts a fallback
strategy by using the motion estimation from the previous waypoint as an approximation,
allowing the next iteration to proceed with motion estimation based on this substitute
value.

Implementation

This optimization process is performed for each image waypoint pair using the Ceres-
Solver. Since the ILC update step is performed after the trajectory has been executed,
individual waypoints can be calculated in parallel using multithreading with OpenMP,
significantly reducing processing time. CeresSolver streamlines the optimization
process by automatically computing derivatives and related functions once the residual
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template functions are defined. Given that the optimization is performed offline, com-
putational efficiency becomes secondary to the convergence accuracy. This allows for
the implementation of stringent convergence criteria as shown in Table 3.3, without
real-time performance constraints.

Table 3.3: CeresSolver stopping criteria

Parameter Symbol Value

Function tolerance ϵ1 1e−7
Gradient tolerance ϵ2 1e−11
Parameter tolerance ϵ3 1e−8

3.2.3 Error Calculation

The translational and rotational deviation of the camera [̂t; θ̂], now describes the end-
effector error between the ground truth pose and the estimated pose. This error is now
converted to the individual joint errors to be usable in the ILC.
To achieve this, the known ground truth pose of the camera P

Cgt
W is transformed using

the estimated error resulting in the detected transformed pose P̂
Cj
W .

Therefore, the vector representation θ̂ is transformed into the rotation matrix R̂ and
inserted together with t̂ into the homogeneous transformation matrix T̂

Cj
Cgt .

The now transformed pose P̂
Cj
W is then inverted to the joint angle using the Jaco-

bian Method implemented in MoveIt! and the known robot kinematic model (see
Section 2.2.3). This process is described in the equations 3.16, 3.17, and 3.18.

T̂
Cj
Cgt =

�
R̂ t̂
0 1

�
(3.16)

P̂
Cj
W = T̂

Cj
Cgt ·PCgt

W (3.17)

q̂j = f−1
kin(P̂

Cj
W) (3.18)

The difference between the joint angles of the ground truth and the calculated inverse
of the transformed pose is now the error used to update the ILC, defined as

eqj = q̂j − qgt. (3.19)

This error now describes the joint error of all axis for one single waypoint of the ILC
iteration j.
To improve the accuracy of the inverse kinematics calculation, the search range
[qmin

j , qmax
j ] is iteratively reduced over time:

[qmin
j , qmax

j ] = ± π

1 + 0.2 · niterations
(3.20)

where niterations represents the current iteration number.
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3.3 Iterative Learning Control

For the control of the industrial robot, a PD-type ILC approach is employed for its ability
to operate without an explicit dynamic model of the robot, as well as being particularly
suitable for non-linear systems [34]. This choice avoids the challenges of developing
accurate dynamic models, which often require detailed manufacturing information that
may not be available. The implemented ILC state machine architecture, consisting of
the state machine sequence, ROS action servers, and data handling through rosbags,
is detailed in Figure 3.7.
The complete ILC process structure is integrated as a state machine into ROS using

Execute and
Record Trajectory

Trajectory Update

Plan Trajectory

Error Calculation

Start

Success

Camera

Robot

error < errord

MoveIt

Image

prev. Errors
new Errors

prev. Traj.
new Traj.

Joint Values

Trajectory

Storage

Figure 3.7: Architecture of the ILC state machine implementation. The left side displays
the state sequence, where each state executes specific tasks through dedicated
ROS action servers. States transition sequentially upon successful task
completion. Data from external additional components (camera, robot,
and MoveIt-Planner) shown on the right side are logged and retrieved
via rosbags throughout the process. This sequence iterates continuously,
refining the trajectory until the measured error falls below a desired minimum
error value errord or the maximum number of iterations is reached.

the ros_smach package. The state machine calls modularly implemented ROS action
servers for trajectory planning, handling the simultaneous robot execution and image
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recording, and applying PD-type trajectory updates. Data from previous iteration
executions, such as the waypoint images and the corresponding joint values, are saved
into ROS-BAG files as memory management.
The employed trajectory update Δuj can be expressed in the lifted system as

Δuj = Kp · eqj +Kd ·
Δeqj
Δt

(3.21)

with the gain matrices Kp and Kd.
This update is then filtered using a low-pass filter by applying a filter value α to the
current and previous update obtaining the new trajectory

uj+1 = uj + [α ·Δuj + (1− α) ·Δuj−1]. (3.22)

The joint errors for the update step are calculated as in Section 3.2.3 mapping the
end-effector derivation to the angular joint values usable for the ILC.
The error calculation process, which uses the inverse kinematic model to convert
end-effector deviations into joint values, technically resembles a model-based ILC
approach. However, since the compensation needs to address both kinematic and
dynamic deviations, and the kinematic model alone cannot account for dynamic effects,
the ILC is implemented and tuned as a PD controller instead. The controller gains
are experimentally determined through systematic testing, with particular attention to
minimizing overshoot while maintaining convergence speed.
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CHAPTER 4

Simulational Validation and Real-World Testing of the
vision-based Iterative Learning Control System

In order to evaluate the overall performance of the Iterative Learning Control (ILC)
system mitigating the end-effector deviations, experiments are performed with a given
trajectory in the workspace. Therefore, the broader investigation for the error estimation
is done using simulation, followed by a real-world application using a 6-axis robot.
The evaluation is structured into three main sections: First, the methodology describes
the experimental setup and procedures for both simulation and real-world tests. This is
followed by a comprehensive presentation of the results from both test setups. Finally,
a discussion section analyzes the findings and their implications and limitations for
practical applications.

4.1 Methodology

In this section, the system and its components introduced in Chapter 3 are further
specified for the upcoming simulations and experiments.
For this purpose, the hardware utilized for the simulation and experiment is discussed
first. Subsequently, the robot, its control, the calibration of the camera, and the
connection of these two components to the ROS environment are described.
Finally, the implementation of the error estimation simulation is presented. Furthermore,
also the performance metrics used for the analysis and the experimental execution of
the ILC is described.

4.1.1 Computer Specifications

The simulation, as well as all software implementations, are performed on a single
machine. To provide a complete overview of the simulation and experiment setup for
future comparisons, the hardware specifications are listed in Table 4.1.
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Table 4.1: PC Component Specification

Part Name

CPU Intel Core i9-14900k
GPU Gainward GeForce RTX 4070 Ghost 12GB GDDR6X
RAM Kingston FURY DIMM 32GB DDR5-6000
Mainboard ASUS Prime Z790-P

4.1.2 Robot

The industrial robot ABB-IRB-120 is chosen as the robotic manipulator for the experi-
mental investigation of the ILC. This robot has six rotational axes arranged similar to
an anthropomorphic human arm and allows movements of the end-effector in all six
degrees of freedom.
The robot deploys an angular encoder capable of an angular accuracy in each joint up
to 174µrad, sufficiently enough for the upcoming experiments. Its specifications, such
as angular and Tool Center Point (TCP) limitations, are given in Table 4.2.
To communicate with the employed Robot Operating System (ROS) framework, send
trajectory updates, and receive current joint positions, the open source software
open_abb1 is used. The open_abb software, installed directly on the ABB-IRB-120
robot’s IRC5 controller as well as a ROS package, enables this communication by
providing various ROS services and publishers.

Table 4.2: ABB IRB120 Specifications [89]

Angular Specifications

Movement Joint values Max. angular velocity

Axis 1 +165◦ to -165◦ 250 ◦ s−1

Axis 2 +110◦ to -110◦ 250 ◦ s−1

Axis 3 +70◦ to -110◦ 250 ◦ s−1

Axis 4 +160◦ to -160◦ 320 ◦ s−1

Axis 5 +120◦ to -120◦ 320 ◦ s−1

Axis 6 +400◦ to -400◦ 420 ◦ s−1

Spatial Specifications

Accuracy 0.01mm
Max. TCP velocity 6.2m/s
Max. TCP acceleration 28m/s2

1https://github.com/robotics/open_abb
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4.1.3 Camera Calibration

For the experimental setup, the PhotonFocus R1-D2048x1088C-192-G2 color camera
(Figure 3.4) is attached to the end-effector of the deployed robot.
The camera is calibrated in order to minimize the distortion of the camera for the
motion estimation. For this purpose, the calibrate_camera package from ROS is
utilized. This package can easily determine the internal camera parameters with only
the launch parameters for the camera’s video stream topic and a provided chessboard
pattern. After launching, subsequent images of the chessboard are taken in different
positions and orientations within the Field of View (FoV) of the camera. These recorded
images are processed on the fly for calibration using OpenCV (cf. Section 2.5.3),
providing the intrinsic camera at the end.

4.1.4 Simulation: Motion Estimation

A simulation is carried out using a point cloud to determine the minimum possible
recognizable motion estimation and to determine various influencing factors.
This point cloud is generated from randomly placed 3D points in a predefined area,
which are then projected onto an artificial camera frame using the projectPoints()
function of OpenCV.
The deviating movement of the end-effector is simulated by the extrinsic camera param-
eters Rcam and tcam, which are passed to the function and represent the displacement
of the camera to the global frame of the point cloud.
In order to determine the displacement using the Visual Odometry (VO) of Section 3.2.2,
the points are projected once without displacement and once with displacement pa-
rameters, creating simulated feature points of a scene from two different views. In
addition, Gaussian noise is added, which simulates realistic measurement uncertainties
by applying random perturbations to the projected pixel coordinates of each 3D point
using a zero-mean normal distribution with configurable standard deviation. This
influence of the noise on the individual keypoints is illustrated in Figure 4.1.
The features are then compared with the limits of the image size corresponding to the

camera used in the real experiment. If necessary, the features are discarded.
Since the VO works with a mixture of matched features with and without depth data,
a percentage of the projected reference features are supplemented with the respective
depths, simulating the depth estimation of Section 3.2.1 for the necessary ground truth
trajectory.
In total, three variables can be modified freely to evaluate the quality of the motion
estimation. These variables are the number of 3D points created in the defined scene,
the standard deviation of the noise, and the number of features used with additional
3D depth data.

Due to the possible movement deviation of the camera in all six degrees of freedom,
it is time-consuming to examine all combinations of different displacements. For this
reason, the three translational and rotational movements are each grouped together
and always moved by the same amount in their three directions.
Thus, three different types of movement simulations are performed. The isolated
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Figure 4.1: Feature point projection uncertainty under varying levels of Gaussian noise.
The true keypoint positions (red stars) are shown with their corresponding
noisy measurements, simulated with standard deviations σ ranging from 0.1
to 2.0 pixels. Dashed circles represent the one standard deviation boundary,
illustrating the increasing spatial dispersion of measurements with higher
noise levels.

movements in rotation and translation, as well as their combination, i.e., simultaneous
rotation and translation.
To evaluate the motion estimation’s suitability for ILC, the analysis focuses on the
Signal-to-Noise Ratio (SNR). This metric is chosen as it directly relates to the ILC’s
convergence requirements, where the errors of the estimation itself must be sufficiently
small relative to the true motion deviations that need to be detected. For each parameter
configuration (cf. Table 4.3), 100 trials are conducted to ensure statistical reliability. A
theoretical minimum valid SNR threshold is established as a baseline for acceptable
performance in ILC applications.

4.1.5 Experiment: Iterative Learning Control

The experimental validation of the proposed vision-based ILC utilizes an eye-in-hand
configuration, consisting of an ABB IRB 120 industrial robot with 6 degrees of freedom
(presented in Section 4.1.2) and a PhotonFocus camera (described in Section 3.1.2). Due
to the robot’s inherent rigidity and minimal end-effector flexibility, a custom 3D-printed
camera attachment is used to investigate the end-effector behavior under high flexibility
conditions. The attachment introduces controlled end-effector flexibility, which can

45



CHAPTER 4. SIMULATIONAL VALIDATION AND REAL-WORLD TESTING OF THE VISION-BASED ITERATIVE LEARNING CONTROL SYSTEM

Table 4.3: Simulation parameters and their ranges used for evaluating the motion
estimation algorithm.

Variable Parameters

X range [-5, 5] m
Y range [-5, 5] m
Z range [0, 10] m
Depth ratios {0, 20, 40, 60, 80, 90, 100}%
Translation magnitudes {0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2} m
Rotation magnitudes {0.0005, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2} rad
Number of 3D points {100, 200, 500, 1000, 2000, 5000, 10000}
Noise levels σ {0, 0.1, 1, 2, 5, 10} pixels

be systematically reduced through additional housing components to achieve a rigid
robot-to-camera transformation. The rigid configuration is essential for the ground truth
reference runs, enabling the acquisition of ground truth data for the depth estimation
and VO. The complete setup with the flexibly mounted camera is shown in Figure 4.2.
To evaluate the setup’s capability to compensate for both kinematic and dynamic

(a) (b)

Figure 4.2: Eye-in-hand camera attachment utilized for the ILC experiments. Figure
a) shows the rigid connection serving as a reference in the ILC. In Figure
b), the connection is flexible, resulting in kinematic and non-kinematic
deviations at the end-effector.

impacts on the end-effector accuracy, a trajectory with two transition points of high
gravitational and dynamic influence is selected. The path forms a triangle on the x-axis
plane, traversing between three points (A, B, and C) as shown in Figure 4.3.
The chosen trajectory, which includes 23 waypoints spread throughout the robot’s
workspace, forms the foundation for all the different experimental setups. The quantity
of waypoints is determined by considering the camera’s limiting trigger capability and
the required smoothness and sampling of the given maximum trajectory velocity.
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EB
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Waypoints

Figure 4.3: ABB IRB 120 robot arm with mounted camera, showing the employed
end-effector trajectory and waypoints between the traversing poses EA, EB,
and EC .

To investigate the algorithm’s performance across different operating conditions, the
experiments are conducted at multiple end-effector velocities. These velocities present
the robot’s maximum joint velocity override setting and are denoted as trial_10% to
trial_40%.
The actual end-effector velocity is calculated using MoveIt’s forward kinematics and
the recorded joint data are listed in Table 4.5. The upper limit is constrained by the
camera’s image acquisition timing and triggering capabilities.

Baseline Performance Assessment

The first experimental setup evaluates the motion estimation algorithm’s baseline
accuracy under ideal conditions, with camera housings remaining mounted for both
ground truth and estimation runs to eliminate induced deviations. The investigation
of motion detection in the absence of motion is important because the ILC aims to
converge precisely this non-motion. The accuracy of the ILC can, therefore, be traced
back to the accuracy with which no movement can be detected.
To obtain a valid statistical statement, testing consists of all four velocities trials for 20
iterations each.
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Camera Mount Characteristics

The second experiment analyzes mount-specific influences by comparing the rigid ground
truth and the flexible mount configurations. System performance is evaluated across
200 iterations at the maximum trajectory speed without ILC trajectory updates to
isolate mount-related effects.

Error Deviation Compensation Assessment

The third experiment evaluates ILC performance across the four trial velocities (trial_10%,
trial_20%, trial_30%, and trial_40%) using motion estimation errors for trajectory
updates. For this, conservative control parameters from Table 4.4 are chosen, where the
identity matrix I is employed as a scaling factor to facilitate parameter setting. The
system is run for 100 iterations to ensure sufficient data for convergence analysis while
maintaining trajectory smoothness.

Table 4.4: Experiment: ILC parameter

Parameter Values

Kp I · 0.2
Kd I · 0.002
α 0.75

Dynamic Deviation Compensation Assessment

Since the error estimation cannot be compared by external means, it must nevertheless
be demonstrated that dynamic errors can also be detected and, therefore, mitigated.
These dynamic errors occur predominantly in the current setup due to inertia. For
this reason, the waypoints of the trajectory that are exposed to high accelerations are
analyzed separately, as the dynamic effects are most significant in these cases.
The maximum acceleration is computed through numerical differentiation of the end-
effector’s position, derived from forward kinematics applied to 100 iterations of joint
data recordings. The resulting end-effector trajectory accelerations are visualized in
Figure 4.4. Based on this acceleration profile, waypoints 7, 8, 14, and 15 are identified
as peaks exhibiting the highest acceleration values, warranting further investigation.
To isolate the dynamic effects at these points, a mean kinematic position error due to
static flexibility is calculated from the low-acceleration waypoints and subsequently
subtracted from the selected high-acceleration waypoints, effectively isolating the
position errors attributable to dynamic effects.
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Figure 4.4: Mean end-effector acceleration profiles of the used trajectory. The values are
calculated across 100 iterations of all four velocity trials (10%-40%), utilizing
the kinematic model and recorded joint trajectory data.

4.2 Results

This section presents and analyzes both the simulation and experimental results of the
vision-based ILC implementation. The results were obtained using the methods and
parameters detailed in Section 4.1, and are presented in standardized plots to enable
direct comparison.

4.2.1 Simulation: Motion Estimation

The SNR analysis reveals the relationship between estimation accuracy and motion
magnitude under various conditions. The results are presented for three key influences:
noise (Figure 4.5), depth (Figure 4.6), and feature count (Figure 4.7).

Noise Influence

The analysis in Figure 4.5, performed with 100% depth values, demonstrates that
translational motion estimation is more sensitive to noise than rotational estimation.
Noise with standard deviations exceeding two pixels results in SNR values below one,
particularly at small motions below 1mm.
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Figure 4.5: Simulation results visualizing the camera motion estimation accuracy anal-
ysis under varying image noise, implemented as a zero-mean Gaussian
distribution. The noise applies to the projected 2D coordinates of 3D scene
points. The analysis presents the estimation performance for (a) simultane-
ous translation and (b) simultaneous rotation across all three axes (x, y, z),
where N represents the standard deviation of the noise.
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Depth Influence

The SNR data shown in Figure 4.6 shows the influence of the depth data on the ability
to detect the specified deviations of the camera with an applied standard deviation
noise of 1. The translational SNR becomes exponentially worse the less depth data
is available. This is particularly visible in the translation, where the SNR for 100%
increased rapidly for higher motion magnitudes, whereas only a relatively stable SNR
value of 2 is achieved at 90% depth.
The rotational motion exhibited less sensitivity to depth data reduction compared to
translational motion, except when no depth data was available, where the SNR dropped
below 1. For all other cases, the SNR values consistently initiated with a SNR at
approximately 10 across all depth percentages, reaching a peak of 45 at 0.005 rad of
simultaneous rotation before subsequently declining.

Feature amount influence

The SNR analysis presented in Figure 4.7 demonstrates how the quantity of initially
available and subsequently projected features affects motion estimation accuracy, using
a standard deviation noise of one. Both translational and rotational motions exhibit
increasing SNR values with larger motion magnitudes. In the translational case,
simultaneous motions of 0.5mm yield SNR values below the minimum valid threshold
of 1 across all tested feature quantities. This threshold is only exceeded by all feature
quantities when motions surpass 6mm.
The SNR generally improves with an increased number of projected features used in
the estimation process. However, for rotational motion, this trend shows a limitation,
with SNR values declining for rotations exceeding 0.01 rad.
Overall, just 45 projected features are enough to detect a rotation of 0.5mrad with
sufficient SNR, while 892 projected features allow for the detection of a 5mm translation.

Crosstalk rotation and translation

Figure 4.8 illustrates the coupling effects between rotational and translational motions,
showing that crosstalk increases proportionally with motion magnitude. At lower motion
magnitudes, both rotational and translational crosstalk remain stable at approximately
0.6mm and 5mrad, respectively. However, when simultaneous motion reaches around
0.01m and 0.01 rad, the translational crosstalk error grows linearly, while the rotational
crosstalk follows an exponential trend.

4.2.2 Experiment: Iterative Learning Control

The results obtained from the experiments described in the method Section 4.1.5 are
now presented and described.
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Figure 4.6: Simulation results showing the influence of the amount of depth information
on camera motion estimation with a standard deviation noise of one: (a)
simultaneous translation and (b) simultaneous rotation along the x, y, and
z axes. The depth ratio indicates the percentage of features with depth
information.
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Figure 4.7: Simulation results showing the influence of the total number of features
used for camera motion estimation with a standard deviation noise of 1px:
(a) simultaneous translation and (b) simultaneous rotation along the x, y,
and z axes. The feature amount P indicates the generated 3D points in the
scene, with the points projected onto the frame in brackets.

Baseline Performance Assessment

The baseline performance assessment reveals clear velocity-dependent characteristics
in the visual odometry system. Motion estimation accuracy, as detailed in Table 4.5,
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Figure 4.8: Illustration of the effect of crosstalk between rotation and translation.
Figure a) shows the translational error in a pure rotational movement.
Figure b) shows the rotational error in a pure translational movement.

demonstrates proportional degradation in both positional and rotational precision with
increasing trajectory velocities. Across different velocity trials, the positional Absolute
Trajectory Error (ATE) rises from 0.308mm to 0.561mm, while the rotational ATE
increases from 0.578mrad to 1.084mrad.

Table 4.5: ATE for varying TCP velocities without induced deviations.

Trial TCP Velocity (ms−1) ATE Position (mm) ATE Rotation (mrad)

10% 0.0494 ± 0.0014 0.308 ± 0.042 0.578 ± 0.089
20% 0.097 ± 0.008 0.386 ± 0.066 0.737 ± 0.111
30% 0.142 ± 0.018 0.455 ± 0.063 0.788 ± 0.098
40% 0.184 ± 0.033 0.561 ± 0.061 1.084 ± 0.139

Camera Mount Characteristics

The resulting iteration assessment displayed in Figure 4.9 reveals increasing translational
and rotational drift in the flexible mount configuration, while the ATE of the rigid
reference maintains constant during the experiment. Here, the translational ATE is
increased up to 0.07m, whereas the rotational drift amounts up to 0.10 rad.

Motion Deviation Compensation Assessment

The overall experimental performance of the proposed ILC system is illustrated in
Figure 4.10 through ATE measurements across all performed velocity trials (10%-40%).
For all velocities, the translational and rotational ATE decreased strongly over the
course of the iterations. Higher velocities yield reduced convergence stability, yet all
trials achieve final ATE values below 3mm and 4mrad for translational and rotational
components, respectively.
To quantify this convergence behavior more precisely, a detailed analysis was performed.
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Figure 4.9: Absolute Trajectory Error (ATE) of flexible and rigid camera setup over
time without any error mitigation by the ILC.

As shown in Table 4.6, convergence speed exhibits clear velocity dependence. The
convergence iteration is determined by analyzing a sliding window of ±5 iterations and
identifying the first occurrence where the mean error falls below the threshold. The
ILC requires 30-70 iterations for positional convergence, while rotational convergence
exhibits longer delays, reaching up to 99 iterations at 40% velocity. Despite varying
convergence rates, the final position accuracy remains consistent with a similar standard
deviation of both rotational and translational ATE inside the selected iteration window.
The robot joint errors detected and adjusted by the system during the 10% and 40%

Table 4.6: ILC convergence analysis: Iterations required to achieve stable mean position
and rotation error values (<3mm, <4mrad) across velocity trials

Trial Position Rotation

Iteration ATE (mm) Iteration ATE (mrad)

10% 30 2.90 ± 0.26 32 3.80 ± 0.56
20% 30 2.92 ± 0.34 33 3.75 ± 0.71
30% 46 2.84 ± 0.62 52 3.87 ± 0.43
40% 70 2.95 ± 0.30 99 3.98 ± 0.55

trials are presented in Figure 4.11. The data reveals significant variations in initial
error magnitudes, with Joint 6 showing the highest initial error at −0.6 rad, while other
joints like Joint 1 start with much smaller deviations of 20mrad. All joints converge to
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Figure 4.10: Comparison of the proposed vision-based ILC for multiple trials at different
velocities (10%-40%). For all velocities a learning effect can be observed,
where the ILC successfully lowers the ATE over the iterations, converging
to a near zero value.

approximately 5mrad after the 100 iterations, with the 40% speed trials showing more
pronounced oscillations during convergence compared to the 10% trials.

Dynamic Deviation Compensation Assessment

The dynamic system assessment reveals consistent ATE reduction across all velocity trials
in both motion domains, as demonstrated in Figure 4.12. An analysis of isolated high-
acceleration waypoints shows increased oscillatory behavior in faster trials (30%-40%),
though these oscillations weaken over the iterations.
Despite exhibiting lower initial ATE values, the higher velocity trials (trial_40% and
trial_30%) demonstrate a significantly higher translational ATE of over 10mm at
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Figure 4.11: Experimental results of the ILC reducing the detected individual mean
joint error of the waypoints at different velocity trials (10% and 40%)

iteration 10, compared to approximately 5mm for lower velocity trials. A similar
pattern emerges in the rotational ATE, where higher velocity trials exhibit values
approaching 20mrad at iteration 28, while lower velocity trials maintain values below
4mrad. At the maximum of 100 iterations, the isolated ATE for higher velocity trials
converges to values below 1mm and 2mrad, while lower velocity trials achieve even
better convergence with values below 1.5mm and 0.2mrad.
The mean acceleration data and theoretical end-effector forces in Table 4.7 support this
by demonstrating a direct correlation with ATE characteristics, where higher dynamic
forces lead to increased error magnitude and variability.
The execution durations for the four trajectories at various velocities are shown in
Table 4.8, comparing the initial run with iterations 1, 50, and 100. Higher velocities
exhibit more substantial variations in execution time. The most notable increase occurs
in the 40% trial, where the 100th iteration requires roughly 20% more time than the
initial execution.
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Figure 4.12: System performance of the proposed vision-based ILC multiple velocity
trials (10%-40%), with normalized kinematic errors evaluation at high-
acceleration waypoints.

Table 4.7: Dynamic ATE for varying TCP acceleration compared to theoretical inertia.

Trial TCP Acceler-
ation (ms−2)

Inertia (N) ATE Position (mm) ATE Rotation (mrad)

10% 0.05 0.02 0.90 ± 2.17 0.47 ± 0.46
20% 0.31 0.15 0.95 ± 2.23 0.72 ± 0.82
30% 0.68 0.33 1.25 ± 2.48 1.78 ± 1.76
40% 1.2 0.59 1.99 ± 2.23 3.37 ± 2.53

58



4.3. DISCUSSION

Table 4.8: Trajectory execution times (in seconds) across the ILC iterations for different
velocity trials

Trial Initial Iteration 1 Iteration 50 Iteration 100

trial_10% 12.20 11.55 11.93 11.94
trial_20% 6.64 6.26 6.26 6.22
trial_30% 4.32 4.32 4.54 4.54
trial_40% 3.19 3.19 3.66 3.82

4.3 Discussion

The results presented in Section 4.2 are now discussed and analyzed in more detail. The
analysis will consider the effect of the different influences on the SNR in the simulation,
as well as the crosstalk between the estimated translation and rotation. Finally, the
experiments on the 6-axis robot with the adaptable camera attachment are discussed,
and its limitations are described.

4.3.1 Simulation

The simulation of the VO motion estimation system demonstrates robust performance
even under challenging conditions such as noise and feature sparsity. The simulated
SNR of the system proves sufficient for reliable camera deviation detection, validating
its application as an ILC sensor.
Nevertheless, the simulation shows the influence of the hardware, i.e. the camera used,
on the quality of motion detection. Thus, the data with different amplitudes of noise
(cf. Figure 4.5) illustrate the need for ideal conditions regarding the camera setup and
the lighting in order to minimize the influence of the ever-present noise.
The amount of available 3D data shows a connection to the scale ambiguity often
mentioned in the literature, as the translational movement, is strongly distorted by a
lack of 3D data and quickly falls below the necessary SNR.
The number of projected features, on the other hand, illustrates the need for a high
number of features in order to be able to recognize smaller translational movements
sufficiently.
The consistent decline in rotational SNR observed across all investigated influences
for larger motion magnitudes can be attributed to the limitations of the employed
R̂T ·R metric, which becomes less suitable for evaluating rotational deviations as their
magnitude increases.
Cross-coupling effects between rotational and translational motions remain minimal
within the ILC’s operational range, as seen in Figure 4.8. The induced crosstalk
is consistently smaller than the primary motion and maintains compatibility with
convergence criteria across iterations.
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4.3.2 Experiment

This subsection discusses the baseline of the experimental setup, the general performance
of the ILC, and the dynamic influence of the robot end-effector on the ILC.

ATE Drift Evaluation

In the experimental baseline investigation for the camera attachment, a considerable
ATE drift is detected for the flexible setup compared to the rigid setup as seen in
Figure 4.9. Over the iterations, both translational and rotational ATE exhibited
logarithmic growth from near-zero initial values, reaching peaks exceeding 0.06m and
0.09 rad respectively.
This drift is due to the constant gravitational force applied on the camera, which,
after removing the rigid hull, lowers the attachment further over time. However, the
steady convergence of the ATE during the ILC updates shows that this drift impact is
nevertheless steadily reduced as seen in Figure 4.10. Only the convergence towards zero
is delayed as a result, as the drift effect needs to settle before the ILC can compensate
for it.

Vision-based ILC Evaluation

With the results of the experimental results, it can be clearly shown that the vision-based
ILC concept can both detect and reduce the camera’s motion deviations. As a result,
the accuracy of the given trajectory with the flexible setup can be improved by over 98
% after 30 iterations.

While these results are promising, they cannot be generalized to all possible motion
paths. Even if the initial trajectory is feasible, the ILC’s corrective adjustments might
generate waypoints that fall outside the robot’s operational capabilities, either exceeding
joint limitations or workspace constraints, thus making perfect error compensation
unattainable.
Another limitation arises when the corrected trajectory approaches robotic singularities,
where certain motions become impossible due to the loss of degrees of freedom.
These limitations could be mitigated through implementation on a robot with seven or
more degrees of freedom, where the additional degrees of freedom provide redundancy
in motion planning, allowing more flexible trajectory optimization while maintaining
the desired end-effector pose, even in near-singular configurations.

Velocity Influence Evaluation

The velocity trials, where the same ILC setup is executed with different end-effector
velocities, demonstrate a clear correlation between the dynamic effect on the flexible
setup and both error detection and ILC convergence characteristics.
The velocity trials reveal substantial quantitative differences in system accuracy between
velocity scenarios. Higher velocity trials demonstrate translational errors 100% larger
than lower velocity trials during early convergence (iteration 10), with an even more
significant 400% difference in rotational errors at iteration 28. At final convergence, this
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performance gap remains evident, with the high-velocity translational and rotational
errors being 567% and 900% larger respectively, compared to low-velocity trials.
This difference in ATE indicates, that the VO implementation thus recognizes both
the kinematic and the dynamic errors, with a subsequent compensation via the ILC
(cf. Figure 4.12). However, the high-velocity trials take longer to converge to the
same minimum values. This lower convergence rate could be decreased with further
tuning the ILC-parameter, which exceeded the scope of this thesis which focuses on the
fundamental validation of the system.
The reasons for the poorer convergence behavior at higher speeds are manifold. On the
one hand, the robot’s high end-effector velocities introduce additional timing challenges.
The precise camera triggering becomes increasingly important since minimal timing
variations can result in significant positional discrepancies between the executed itera-
tions and the ground truth recordings. On the other hand, the end-effector experiences
the dynamic influence mentioned above, which might also change over the course of the
iterations, as the flexibility of the camera mounting is not uniformly the same in each
end-effector position.

Initial State Evaluation

The PD-Type ILC’s effectiveness extends to correcting initial state errors, a significant
practical advantage of the system. This robustness to starting position deviations is
particularly valuable for real-world robotic applications, where perfect initial conditions
are rarely achievable.

4.3.3 Error Sources and Limitations

In this subsection, potential error sources, as well as inherent limitations of the setup,
are discussed.

Environmental Error Influence

As the robot’s environment serves as the sole source for motion detection using VO,
it is immensely vital for efficient detection. Both the number of features in general
and their distribution in 3D space, as well as their illumination, play an important role
since, as shown in simulation results (cf. Section 4.3.1), noise and feature versatility
play an important role in the accuracy of the measured camera movement.
It is also important that the environment must not change significantly during the
individual trajectory execution of the ILC, as any change would be misinterpreted as
a movement of the camera. The movement of individual smaller objects would be
balanced out by the Random Sample Consensus (RANSAC) filtering of the feature
matches, but a change of objects with many features would be potentially fatal.

Camera Limitation

The precision of motion estimation, particularly in the 3D depth reconstruction, depends
significantly on the camera’s intrinsic parameters obtained during calibration. These
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parameters aim to compensate for lens-induced distortions in the camera model, which
can affect the accuracy of feature reprojection and affect the overall accuracy of the
visual tracking system.
In addition, the camera’s frame rate and trigger timing play a crucial role in trajectory
quality. Insufficient sampling rates can result in angular, discontinuous motion paths
due to limited data points, affecting both the overall smoothness of motion execution
and the accuracy of trajectory reconstruction. Higher sampling frequencies allow for
more detailed motion capture, leading to smoother, more natural trajectories.

Trajectory Duration

The ILC-updated trajectory may require different joint movements to achieve the desired
corrections, potentially increasing or decreasing the path length between waypoints.
While the robot’s external controller maintains the specified trial speed, these changes
in joint displacements result in varying overall trajectory execution times (cf. Table 4.8).
This time variation effect could be mitigated through the implementation of a more
flexible robot control system that performs independent time parameterization of the
trajectory.

4.3.4 Results Summary

The initial simulation results highlight the importance of the environment and camera
choice for reliably recognizing camera movement. Factors such as noise, available 3D
depth data, and the number of features significantly impact the SNR, which is crucial
for meaningful use in the ILC.
The results demonstrate that even under challenging environmental conditions, with
a noise standard deviation of 1 pixel and only 20% depth data availability, the SNR
remains above the necessary threshold of 1, enabling the detection of small deviations
of 0.5mm and 0.5mrad. Notably, just 45 projected features are sufficient to detect
a rotation of 0.5mrad with reliable SNR, while 892 projected features allow for the
detection of a 5mm translation, even in these adverse conditions.

The subsequent real-world experiment further confirms the simulation findings. For
a given trajectory with two highly dynamic turning points and an additional applied
flexibility setup, the deviation is reduced from an ATE of 0.25m and 0.3 rad to below
3mm and 5mrad across different end-effector velocities. Further results show that both
the kinematic errors and the non-kinematic errors can be recognized and subsequently
compensated.
In summary, the proposed framework is able to enhance the accuracy for predefined
tasks in robotic applications, such as repetitive pick-and-place movements, and thus
enables high-precision motion.
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CHAPTER 5

Conclusion & Outlook

The vision-based Iterative Learning Control (ILC) approaches offer a solution to a major
drawback of using collaborative robots (cobots) in industrial settings. Cobots have
flexible structures that may cause constant deviations in their trajectories. Vision-based
ILC can recognize and compensate for these deviations, thereby increasing the accuracy
and enabling the successful execution of a given task.

In the following section, the conclusions of the introduced novel vision-based eye-
in-hand ILC approach that relies solely on the environment are presented. Additionally,
an outlook on potential future work to further improve the robustness of the trajectory
updates and enhance the accuracy of the motion estimation of the proposed system is
provided.
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5.1 Conclusion

This thesis introduces a novel approach that combines the well-known and extensively
studied control concept of ILC with an eye-in-hand camera mounted on an industrial
robot. The primary goal is to detect deviations in the robot’s end-effector trajectory
during repetitive tasks and iteratively improve the execution accuracy through learning
from previous iterations. The camera uses only the robot’s environment to estimate
these deviations, which serve as the sole input for the ILC algorithm to update the
robot’s trajectory. Deviations introduced by compliant parts of the robot can, therefore,
be detected and mitigated using only its environment, eliminating the need for external
measurement systems as well as special markers or calibration targets while maintaining
high accuracy.
The necessary components and their implementation are discussed in Chapter 3. In
summary, the camera captures images during a robot’s trajectory execution for two
different workflow phases: establishing ground truth and updating the trajectory. For
ground truth, the images are saved and used to create a 3D map through triangulation.
During the update phase, the images are employed to estimate the camera movement
deviation using Visual Odometry (VO).
The VO process relies on an image feature optimization-based algorithm [88], which
accommodates features with and without additional depth data. The estimated camera
motion, combined with the robot’s known kinematic chain, enables the calculation of
individual joint errors. These errors subsequently serve as input for the ILC algorithm
to update the trajectory in the next iteration.
This process is implemented using a state machine architecture within the Robot Operat-
ing System (ROS) framework [78]. ROS facilitates seamless communication between the
hardware and software components, ensuring reliable and timely execution of the system.

The system’s effectiveness is validated through both simulations and real-world experi-
ments. The simulations demonstrate the robustness of the VO motion estimation system
under challenging conditions, including varying levels of camera noise, different densities
of available feature points, and varying quality of 3D depth information, validating its
application as an ILC error input.
The experimental setup utilizes a multipurpose, both flexible and rigid camera-to-robot
setup to easily perform the ground truth and update trajectory executions. The ILC
algorithm demonstrated high learning capability, reducing the initially applied Absolute
Trajectory Error (ATE) of 0.25m and 0.3 rad to below 3mm and 4mrad respectively,
representing an improvement in trajectory accuracy of over 98.5% compared to the
initial flexible robot execution.
Further investigations demonstrated the system’s robustness across varying end-effector
velocities. The VO system successfully detected, and the ILC effectively compensated
for, dynamic effects caused by end-effector inertia. While trajectories with higher
velocities required additional learning iterations, the system consistently achieved a
similar high accuracy levels, confirming capability to detect and correct both kinematic
and non-kinematic errors.

The results presented in this work demonstrate that a vision-based ILC approach
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relying only on environmental features is suitable for trajectory error compensation in
repetitive industrial robot tasks. By efficiently compensating for undesirable flexibilities
typically present in cobots, the system achieves high accuracy. Using only a single
camera at the robot’s end-effector, it operates without requiring external measurement
systems, artificial markers, or calibration targets. Thus, this work lays the foundation
for developing practical vision-based control solutions that address flexibility challenges
in industrial collaborative robotics.
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5.2 Outlook

Although this work successfully demonstrated its capability to detect and compensate
kinematic and non-kinematic errors, the experimental setup employed an exaggerated
flexible camera attachment to validate the approach. For real industrial applications,
where the flexibility effects of a robot system are less apparent, the detection accuracy
of the VO system needs to be improved to capture and compensate for these smaller
deviations.
One major technical limitation of the current setup stems from the camera’s frame rate
and trigger timing. The maximum end-effector velocity is constrained, as sufficient
image sampling during the trajectory must be maintained for reliable VO estimation.
This is particularly critical during highly dynamic portions of the trajectory, where
higher sampling rates are needed to reliably detect and compensate for rapid movements
and accelerations. Future work should investigate cameras with higher frame rate
and improved trigger timing to increase both the motion estimation accuracy and the
maximum achievable velocity while maintaining the required image capture density.

Beyond the hardware limitations, the ground truth generation in the current ap-
proach requires specific test conditions that are not practical in industrial settings. One
alternative method would be to use a slow reference trajectory execution with minimal
dynamic effects for ground truth generation, followed by high-speed ILC executions
where these effects can be learned and compensated. Another approach could involve
performing executions with and without end-effector payload to identify and compensate
for flexibility-induced deviations.
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