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A B S T R A C T

All nations in the world were under tremendous economic and logistical strain as a result of the advent of COVID-
19. Early in the epidemic, getting COVID-19 diagnostic tests was a significant difficulty. Furthermore, logistical
challenges arose from the restricted transportation infrastructure and disruptions in international supply chains
in the distribution of these testing kits. In the face of such obstacles, it is critical to give patients’ needs top
priority in order to provide fair access to testing. In order to manage contagious disease testing, this work
proposes a bi-objective and multi-period mathematical model with an emphasis on mobile tester route plans and
testing resource allocation. In order to optimize patient scores and reduce the likelihood of patients going un-
treated, the suggested team orienteering model takes into account issues like resource limitations, geographic
clustering, and testing capacity limitations. To this aim, we present a comparison between quarantine and non-
quarantine scenarios, introduce an equitable categorization based on disease backgrounds into “standard” and
“risky” groups, and cluster geographical locations according to average age and contact rate. We use a Multi-
Objective Variable Neighborhood Search (MOVNS) and a Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) to solve our problem. Due to the superiority of MOVNS, it is applied to a case study in Vienna, Austria.
The results demonstrate that, over the course of several weeks, the average number of unserved risky patients in
the prioritizing scenario is consistently lower than the usual number of patients. In the absence of prioritization,
the average number of high-risk patients who remain untreated rises sharply and exceeds that of regular patients,
though. Furthermore, it is clear that waiting times are greatly impacted by demand volume when comparing
scenarios with and without quarantine.

1. Introduction

In late 2019, a new virus, COVID-19, emerged in Wuhan, China,
rapidly spreading worldwide within weeks. As of January 18, 2024,
statistics indicate that 701,980,740 people were infected, and 6,970,519
lives were lost. For example, the number of infected people in the United
States, Austria, and Germany was 110,610,761, 6,081,287, and
38,796,602, respectively. The total number of deaths in these countries
was 1,192,813, 22,542, and 182,375, respectively1.

An important strategy in keeping COVID-19 from spreading was the
appropriate assignment of testing resources to individuals that showed
symptoms of COVID-19. For instance, Austria’s government managed

the pandemic with lockdowns, vaccination campaigns, and widespread
testing. In April 2021, the “Alles Gurgelt” campaign launched in Vienna,
offering PCR testing twice a week for residents. Individuals with COVID-
19 symptoms contacted a hotline, and contact tracing was initiated
based on disease records. Subsequently, the laboratory dispatched mo-
bile testers, prioritized according to urgency, to collect samples from
patients in patients’ homes [45]. Results were promptly communicated,
allowing for swift treatment and contact tracing. Depending on the test
outcome, individuals could initiate treatment and inform other poten-
tially infected individuals with whom they have recently been in con-
tact, such as family members, neighbors, or coworkers [32].

From a logistics point of view, mobile testers depart from depots,
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visit patients, and collect samples before returning to the laboratories.
Following Wolfinger et al. [46], we call this the Contagious Disease
Teasing Problem. We model the problem as Team Orienteering Problem
(TOP). By optimizing routes and resource allocation, the TOP facilitates
efficient delivery of testing kits while minimizing exposure risks, which
is essential in navigating the challenges of a pandemic. The TOPwas first
described by Chao et al. [10], considering multiple vehicles. Its main
goal is to maximize the total collected reward by selecting a subset of
customers for each vehicle and ordering their visits. In the TOP, the fleet
size is limited, and vehicles have a maximum tour length or service time
limit. This means that only a subset of customers in the network can be
served, which corresponds to the situation of limited resources as
observed in the COVID-19 pandemic. The main objective is to maximize
the total collected reward from customer visits. Because the TOP is
NP-hard, most of the solution approaches in the literature make use of
metaheuristics such as tabu search algorithms and the variable neigh-
borhood search algorithm introduced by Archetti et al. [2].

In the face of the overwhelming challenges posed by the COVID-19
pandemic, prioritizing patients based on urgency became paramount
in the efficient allocation of limited testing resources. This is especially
for equitable testing, ensuring that those most in need receive timely
care and attention. Identifying and swiftly attending to individuals
exhibiting symptoms not only ensures timely diagnosis and treatment
but also plays a crucial role in containing the spread of a virus. By
focusing on those most in need of testing and medical attention,
healthcare systems can effectively manage their resources and mitigate
the strain on hospitals and laboratories, ultimately safeguarding public
health. So, prioritizing patients in the logistical management of a
pandemic such as emerging with COVID-19 is a critical strategy in
optimizing equitable delivery of essential healthcare services.

Therefore, in this paper, a bi-objective and multi-period mathemat-
ical model for the equitable contagious disease testing problem is
investigated. The proposed model optimizes the equitable delivery of
testing kits from depots to patients’ locations and, finally, their delivery
to laboratories. The main goal of this research is to maximize the score of
the collected patients and minimize the number of unserved patients.
The main contributions of this paper include: Firstly, we introduce a
multi-period and bi-objective TOP for managing the equitable conta-
gious disease testing problem and address it with a mixed-integer linear
programming formulation (MILP). Secondly, we cluster geographical
areas based on the age of patients and their contact rate, and prioritize
patients based on their level of risk considering resource limitations.
Thirdly, we investigate the Multi-Objective Variable Neighborhood
Search (MOVNS) and the Non-Dominated Sorting Genetic Algorithm II
(NSGA-II) metaheuristics to tackle this problem and validate them
through extensive computational experiments. Given the NP-hard na-
ture of the multi-period team orienteering problem, employing a met-
aheuristic approach enables satisfactory results for real-world scenarios
within reasonable time frames. Fourthly, we examine instances of the
problem using real-world data from Austria, providing managerial in-
sights into COVID-19 testing procurement.

The remainder of this paper is as follows. In Section 2, the problem
description is discussed. Section 3 covers the literature review and
research gaps, while Section 4 addresses assumptions and the mathe-
matical model. Then, in Section 5, the solution methodology is
described, followed by computational results, managerial insights
(Section 6), and conclusions (Section 7).

2. Problem description

We aim to discover an effective routing for a group of mobile testers
who gather patient specimens from various locations. The network
features mobile testers originating from depots, efficiently collecting
specimens from patient locations, and ensuring delivery to laboratories.
Starting from a designated depot in the testing area, each route taken by
a mobile tester concludes at the laboratories, after a day’s tour. Due to

the limited testing capacities of the laboratories, determined by the
availability of testing kits and the working time of mobile testers, the
number of specimens collected at the laboratories should not surpass
this limit.

The patient’s service depends on the laboratories and mobile testers’
capacity as well as the working hour limitations of resources. The
overarching objective of this paper is to optimize patient allocation and
routing plans for mobile testers. We seek to maximize the overall patient
scores by strategically prioritizing risky and standard patients in the
process. This prioritization is crucial as it ensures equitable resource
allocation and improves the overall quality of testing provided.
Conversely, another objective is to address the critical need to minimize
the number of unserved patients within the system. By considering
strategically prioritizing patient groups based on factors such as age and
recent contacts, the model aims to mitigate the potential negative con-
sequences of unserved patients while equitably managing available
resources.

The score of a patient is determined as follows. The patients are
divided into risky and standard patients based on the concept of hazard
ratio. The patients with a hazard ratio equal to 1 are considered standard
patients, while those with a hazard ratio greater than 1 are considered
risky patients. To calculate the hazard ratio for each patient, we utilize
the methodology proposed by Jahn et al. [23], who calculate hazard
ratios for various patient groups based on specific health conditions. For
instance, patients with kidney disease have a hazard ratio of 2, while
those with diabetes have a hazard ratio of 1.95. For heart disease, the
hazard ratio is 1.17, for respiratory disease, it is 1.63, for liver disease, it
is 1.75, and for cancer, it is 1.72. If a patient has several diseases
simultaneously, the corresponding coefficients are multiplied. For
example, a patient who has both cancer and hypertension has a hazard
ratio value equal to 1.59 * 1.75 * 1.72= 4.7859. The literature indicates
that regions with greater contact rates and higher average ages face
increased exposure to infectious diseases. Therefore, residents of these
areas should receive higher priority for services. Consequently, priority
groups are defined to include those least susceptible to extremely sus-
ceptible individuals.

The prioritization of patients is based on their disease records ob-
tained from contact tracing. We also consider clustering of geographical
areas based on contact rate and a higher average age. First and foremost,
clustering facilitates equitable resource allocation and enables the tar-
geted distribution of limited healthcare resources to priority groups
based on susceptibility and geographic location. This strategic allocation
ensures that areas and individuals at the highest risk receive timely and
adequate attention. Additionally, clustering allows for targeted in-
terventions by identifying high-risk geographic locations characterized
by a higher contact rate and an older average age. The idea is that
prioritized services for the most vulnerable populations contribute to the
reduction of overall mortality and morbidity rates.

The priority group utilized to categorize all infected into different
segments. In computing the priority group, two parameters are used: age
and the number of recent contacts. Patients are categorized based on age
into the following intervals: 1–18, 18–40, 40–50, 50–60, 60–70, 70–80,
80+. Each interval has a hazard ratio following Jahn et al. [23]. By
multiplying the hazard ratio for age and contact rate, the importance of
that cluster is obtained, and results are normalized to 100 %.

3. Literature review

The literature review comprises three parts: the first part covers the
contagious disease testing problem, the second part addresses the TOP in
healthcare applications, and the third part discusses approaches
involving priorities and clustering patients in a pandemic situation.

Table 1 presents an overview of work related to the contagious dis-
ease testing problem, focusing on diverse vehicle types, solution pro-
cedures, and modeling approaches. Vehicle types are categorized as
heterogeneous and homogeneous, while solution procedures encompass
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Table 1
Literature on the contagious disease testing problem.
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exact, heuristic, and metaheuristic methods. Modeling techniques include
nonlinear, fuzzy, and scenario-based models, addressing stochastic,
probabilistic, and deterministic scenarios. Patient categorization
through clustering and prioritizing, along with commodity types (single
and multi), are examined alongside objective functions covering cost,
risk, profit, and time optimization. Period and type of planning are
differentiated as single ormulti, encompassing simulation, conceptual, and
mathematical models. Decision-making phases involve routing, consid-
eration of the number of infected individuals, scheduling, and allocation,
within the broader transportation phases of delivery and collection.

3.1. Contagious disease testing problem

Bish et al. [7] developed a multi-period mathematical model for
swab test allocation, using real-case data from 2018 to 2021. Their
objective was to minimize the overall cost of the supply chain while
ensuring efficient test distribution. A key contribution of their study was
the introduction of a multi-disease testing design model, which
improved resource allocation.

A mathematical model for assigning vaccinations and diagnostic kits
to patients has been presented by Thul and Powell [41]. The suggested
model can capture passive information processes and active learning for
diagnostic kit allocation. A parameterized rolling horizon approach is
utilized to solve a multi-agent model. The case study is situated in
Nevada, USA, and the findings show that the suggested model is resilient
to resource scarcity. Another mathematical model is put out by Wolf-
inger et al. [46] to minimize the expenses associated with reopening
testing sites and allocating the COVID-19 testing teams. One of their
objectives is the routing and assignment of the suspicious cases to the
laboratories. A large neighborhood search approach has been applied to
solve the proposed model with two Austrian case studies for Upper
Austria and the City of Vienna. Navaei et al. [30] proposed a
distribution-location-allocation multi-period, multi-objective model for
designing the testing kit supply chain. A key contribution of their work
was incorporating sustainability into the supply chain design while
leveraging the Internet of Things (IoT) for improved efficiency. They
solved the model using NSGA-II and the Augmented ε-Constraint2
(AUGMECON2) method, and applied it to a real-case scenario in Iran.
Arbabian and Rikhtehgar [1] focused on swab inventory management in
the supply chain during a pandemic, aiming to determine the production
capacity of swab suppliers. They solved the problem using a heuristic
approach. A key contribution of their work was considering disruptions
in the supply chain. The results compared stationary and stochastic
demand, providing insights into how different demand scenarios affect
the supply chain’s performance.

Colajanni et al. [12] examined the swab test supply chain using
unmanned aerial vehicles (UAVs) during the pandemic. Their objective
was to minimize costs and maximize profits by optimizing the allocation
between patient locations and laboratories. They focused on the delivery
decision, leveraging UAVs to improve efficiency and reduce the time and
cost associated with swab test transportation. A mathematical model for
the assignment of Covid-19 tests is proposed by Shahnejat-Bushehri
et al. [37]. They consider time windows and workload balancing.
Their primary objectives are to reduce the overall penalty of the
maximum deviation in the testers’ workload and the costs of trans-
portation. An adaptive large neighborhood search is used to solve the
model. Ozdemir et al. [31] optimize the coverage level and reduce the
walking distance for the retrieval of COVID-19 diagnosis kits for tem-
porary testing locations. A total number of 99 hospitals in Seoul, South
Korea, and Istanbul, Turkey are included in the model’s analysis. Four
heuristics – NodeSelection, Node Potential, Set Covering, and CoEC-
NodePotentialr – are applied to solve the problem.

Santini [36] presented a mathematical model for swab test assign-
ment to minimize patients’ waiting time in the laboratory during a viral
epidemic. Among the contributions of their model is the consideration of
bottlenecks for testing, including the lack of chemical reagents. The

proposed model has been tested with real data from Italy and solved
using hierarchical multi-objective optimization.

A multi-stage mathematical model for the logistics management of
the COVID-19 sample routing is presented by Hosseini-Motlagh et al.
[22]. This involves the use of molecular, diagnostic, and antibody as-
says. By allocating appropriate test kits, their primary objective is to
reduce the possibility of testing errors while also decreasing the ex-
penses associated with providing the service. Fuzzy goal programming is
presented as a solution to this problem. The case study of Tehran, Iran
shows that the system’s costs rise sharply with increased demand. The
modeling of a mobile laboratory movement route for the purpose of
collecting COVID-19 tests is surveyed by Singgih [38]. Their goal is to
cover as much ground as possible for an Indonesian case study. They
consider the capacity in each time period to collect the completed tests.
The findings suggest that changing the allocation over different time
periods may raise the coverage level to an advantageous level.

3.2. Team orienteering problem in medical problems

Wemodel the problem at hand as TOP. For more information related
to the general TOP and its variants, we refer to Wu et al. [47], Zhang
et al. [49], Hanafi et al. [18], Lou et al. [28], and Lin and Vincent [27].

Aringhieri et al. [3] developed a team orienteering model for swab
test collection in the city of Turin. They proposed a heuristic algorithm
based on machine learning to optimize routing decisions while consid-
ering working time limitations, improving efficiency in test collection
logistics. The logistics management for distributing and gathering
COVID-19 testing samples is surveyed by Tlili et al. [42]. The primary
objective of the model, which they view as a multi-origin-destination
team orienteering problem, is to schedule and route ambulances. A
case study for the City of Tunis is used to customize the mathematical
model, which makes use of both hybrid genetic algorithms and memetic
algorithms. According to the findings, the coverage maintains a stable
level as demand rises. Roozbeh et al. [35] present a mixed integer model
for routing and positioning in emergency response situations. They use
the Cooperative Orienteering Problem with Time Windows, and their
goal is to maximize the reward in each location. Finally, their model is
solved using Adaptive Large Neighborhood Search, and the results are
compared with simulated annealing. Jin and Thomas [24] present a
mathematical model for intrahospital phlebotomist routing using the
TOP for the routing and scheduling of hospital personnel. They consider
uncertainty in rewards and service times. They customize their model
for the University of Iowa Hospitals and Clinics, and finally, the model is
solved with Variable Neighborhood Search. Yücel et al. [48] present a
mathematical model for locating and routing mobile medical facilities
based on the team orienteering problem. Their main goal is to maximize
the difference between the sum of fully and partially covered scores and
the total traveling cost. Finally, the proposed model for the City of
Istanbul was tested and solved using CPLEX.

3.3. Priorities and clustering patients equitably in pandemics

Vahdani et al. [44] investigate the fair-split distribution of vaccines
during the outbreak of COVID-19. Their main goal is to minimize the
costs of distribution and transportation and to control the inventory of
vaccines. The results show that prioritizing the elderly, regardless of
model variables such as vaccine effectiveness, will lead to the greatest
reduction in mortality. Chen et al. [11] applied Monte Carlo stochastic
simulation to the testing kit supply chain, focusing on inventory allo-
cation and delivery of testing kits. Their main contribution was the
development of a fair allocation strategy. They solved the model using a
Perturbation Search heuristic, which improved the efficiency of the
allocation process. The results showed a fair solution while minimizing
the feasible time for allocation.

Jahn et al. [23] prioritize individuals for the administration of the
COVID-19 vaccine based on its limitations. This prioritization is
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determined by risk factors including age group and comorbidities such
as cancer, diabetes, chronic liver disease, etc. Additionally, they utilize a
dynamic agent-based model to compare various vaccine distribution
strategies. The findings indicate that elderly individuals with multiple
diseases should be given higher priority. Foy et al. [17] investigate the
effectiveness of prioritizing people in the distribution of COVID-19
vaccines. Their prioritization is based on the age of people and their
call rate, and therefore, older people with a higher call rate have higher
priority. Their main goal is to maximize the level of vaccine coverage.
Rao and Brandeau [34] address the allocation of limited vaccine to
eligible individuals in New York state. They prioritize young people to
reduce the likelihood of new infections and older people to reduce the
likelihood of death, thus aiming to minimize the loss of life-years or
quality-adjusted life years.

3.4. Research gaps

Many studies overlook the importance of prioritizing patients based
on factors such as severity of symptoms or other relevant criteria. Our
paper addresses this gap by introducing an approach to prioritize pa-
tients within the contagious disease testing management. We categorize
patients based on specific disease backgrounds as either ’risky’ or
’standard’ patients. This facilitates the strategic allocation of limited
healthcare resources and prompts consideration of equity in allocating
resources to patients. Additionally, our paper considers the clustering of
geographical locations based on contact rate and average age. This
clustering enables the targeted allocation of resources to priority groups,
ensuring timely attention to high-risk areas and individuals. Another
research gap is the disregard for real-world scenarios in the context of
COVID-19 conditions. In many existing studies, there is a notable
absence of consideration for the intricacies and complexities that arise in
actual pandemic situations. In this paper, we aim to address this gap by
delving into the comparison between scenarios such as ‘quarantine’ and
‘non-quarantine’. Furthermore, we apply a real case study for Vienna,
Austria, to ground our analysis in concrete, localized data, thus offering
a more comprehensive understanding of a pandemic’s dynamics.
Finally, waiting time and the minimization of unserved patients are
often ignored. Therefore, in this paper, we maximize the score of the
collected patients and minimize the number of unserved patients, along
with routing and allocation decisions.

The most related paper to ours is the one by Wolfinger et al. [46].
One of their assumptions is that every suspected case can be covered.
However, this assumption is not always feasible in the peak conditions of
a pandemic. Hence, we use a TOP-based formulation, where it is not
necessary to cover all patients, and coverage should be based on their
priority. Furthermore, we employ clustering of geographical locations
based on contact rate and a higher average age. To better reflect
real-world scenarios, we consider multiple periods and divide patients
into two categories: high-risk and standard. In each period, priority is
given to high-risk patients, and unserved patients are transferred to the
next period. Also, the function considered by Wolfinger et al. [46] aims
to minimize the total costs, which includes the cost of using vehicles, the
cost of routing, and the establishment of laboratories. Considering that
in crisis situations, the priority is to minimize service time at the expense
of considering costs, we thus consider the two goals of maximizing the
reward of patients and minimizing the number of unserved patients.

4. Mathematical modeling

The problem at hand is conceptualized as a multi-period TOP. We
model two echelon networks between depots, patient nodes, and labo-
ratories. The main objectives are to maximize the total collected reward
and to minimize the number of unserved patients. The reward is
considered as a dynamic parameter. Patients are divided into risky and
standard categories based on their disease background, and they have
different service times. The score of standard patients is divided by the

period number, while the score of risky patients is multiplied by the
period number. Dividing the score by the period number is a method to
reflect the impact of time on the patient’s condition appropriately,
considering their risk category. Standard patients, by definition, have a
more stable background. As time progresses, their condition is expected
to stabilize or improve gradually due to ongoing treatment and man-
agement. Dividing their score by the period number reflects this stabi-
lization or improvement over time, reducing the impact of their initial
score as they progress through the periods. Risky patients have a more
severe or volatile disease background. As time progresses, their condi-
tion may deteriorate or become more complicated without significant
intervention. Multiplying their score by the period number reflects the
increasing risk and potential complications that can arise over time if not
managed aggressively. Given the limitations in testing capacity due to
resource constraints such as testing kits and personnel availability, it
becomes imperative to ensure that the number of collected specimens at
any laboratory remains within its capacity bounds. The mathematical
model is as follows.

4.1. Notations

Indices 
i, j Index of patient’s nodes
t, t́ Index of time periods
v Index of mobile testers
o Index of depots
l Index of laboratories
r Index of priority groups
Sets 
Nc Set of patient’s nodes {1,…, NN}

O Set of depots
V Set of mobile testers
L Set of testing laboratories
b Number of all nodes
T Time period
R A set of priority groups
Parameters 
dit 1, if there is demand of node i at period t, o.w 0
λr The weight of a priority group r at period t.

∑R
r=1

λr = 1
Cl Capacity of testing laboratory l
pit Score of patient i in period t
ko Number of mobile testers in depot o
tij Travel time from i to j
t́oi Travel time from o to i
tʹ́il Travel time from i to l
si Service time for patient i
NN Total number of the nodes
Tmax Maximum total travel time for a mobile tester
M Big number
Variables 
xijvt 1, if node i is visited after node j by mobile tester v at period t, o.w 0
x́oivt 1, if mobile tester v travels from depot o to node i at period t, o.w 0
xʹ́

ilvt 1, if mobile tester v travels from node i to laboratory l at period t, o.w 0
yivt 1 if patient i is served by mobile tester v at period t, o.w 0
zlvt The number of demands from mobile tester v go to laboratory l at

period t.
udit The new demand received in node i for period t
NTi The number of periods that the demand of patient i has not been

served
uivt Auxiliary decision integer variable is used in the sub-tour elimination

constraints

OBJ1 = Max
∑

t∈T

∑

r∈R

∑

i∈Nc

∑

v∈V
(λrpityivt) (1)

OBJ2 = Min
∑

i∈Nc

∑

t∈T

(

udit −
∑

v∈V
yivt

)

(2)

Constraints
∑

v∈V

∑

iϵNc

xʹ
oivt ≤ ko o ∈ O, t ∈ T (3)
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∑

iϵNc

xʹ
oivt ≤ 1 o ∈ O, v ∈ V, t ∈ T (4)

∑

oϵO
xʹ

ojvt +
∑

iϵNc

xijvt = yjvt j ∈ Nc, v ∈ V, t ∈ T (5)

∑

oϵO
xʹ

ojvt +
∑

iϵNc ,i∕=j
xijvt =

∑

lϵL

xʹ́
jlvt +

∑

iϵNc , i∕=j
xjivt j ∈ Nc, v ∈ V, t ∈ T (6)

uivt − ujvt + NN × xijvt ≤ NN − 1 i, j ∈ Nc, v ∈ V, t ∈ T (7)

udit = dit +
∑t− 1

tʹ=1

(

uditʹ −
∑

v∈V
yivtʹ

)

i ∈ Nc, t ≥ 2 (8)

udi1 = di1 i ∈ Nc (9)

∑

v∈V
yivt ≤ diti ∈ Nc, t ∈ T (10)

NTi =
∑

t∈T

(

dit −
∑

v∈V
yivt

)

i ∈ Nc (11)

∑

iϵNc

(
tʹoi + si

)
× xʹ

oivt +
∑

iϵNc

∑

jϵNc

(
tij + sj

)
× xijvt +

∑

lϵL

∑

iϵNc

tʹ́il × xʹ́
ilvt ≤ Tmax o

∈ O, v ∈ V, t ∈ T
(12)

∑

v∈V
zlvt ≤ Cl l ∈ L, t ∈ T (13)

zlvt =
∑

iϵNc

yivt ×
∑

iϵNc

xʹ́
ilvt l ∈ L, v ∈ V, t ∈ T (14)

xijvt, xʹ
oivt , x

ʹ́
ivt , yivt ∈ {0,1}

NTi, udit , zlvt ∈ integer i, j ∈ Nc, l ∈ L, o ∈ O, v ∈ V, t ∈ T (15)

The objective function (1) seeks to maximize the overall collected
patient scores. Based on various factors such as age and number of recent
contacts, a risk group with greater weight receives higher priority for the
service. Therefore, λr represents the susceptibility of each risk group
based on the priority group weighting. The second objective function (2)
minimizes the number of unserved patients. Constraint (3) sets the
upper bound of the number of mobile testers. Constraint (4) guarantees
that at most one patient can be served from each depot each period. In
other words, the output from each depot in each tour and period should
be at most one. Constraint (5) depicts the relationship between the
allocation variable and the routing variables in each period. This
constraint indicates whether patient j is visited by mobile tester v in
period t or not. In other words, this constraint shows the inputs to node j.
If there is an input to this node, the variable yjvt must be equal to 1. In
fact, if the variable yjvt becomes equal to 1, either the mobile tester goes
from the depot directly to node j (

∑
oϵOxʹ

ojvt = 1), or it goes to node j from
another node (

∑
iϵNc

xijvt = 1). Constraint (6) serves as a balance
constraint, ensuring equilibrium between input and output at patient
nodes. Constraint (7) utilizes the subtour elimination method by Bektaş
and Gouveia [4]. This follows the Miller–Tucker–Zemlin (MTZ) subtour
elimination constraint that generally used for classic vehicle routing
problems (VRPs). This constraint ensures that if patient i is visited before
patient j, the position of j in the tour must be greater than the position of
i. If xijvt = 1 (i.e., the mobile tester travels directly from i to j), then ujvt

must be greater than uivt by at least 1. The term NN× xijvt allows the
constraint to be relaxed if i and j are not consecutive in the tour.
Constraint (8) calculates the updated demand for each period in a way
that ensures it equals the initial demand for the period plus the uncov-
ered demand. Constraint (9) specifies that the updated demand in the

first period equals the initial demand. Constraint (10) indicates that if
there is a demand for a patient in a given period, at most one mobile
tester should serve that patient. Conversely, if the patient does not have
a demand in a given period, none of the mobile testers should serve the
patient. Constraint (11) calculates the number of periods during which
the demand for patient i has not been met. This is determined by the
difference between the number of new patients demands in each period
and the number of demands served. Constraint (12) ensures that the
time taken by each mobile tester to complete their tour does not exceed
the maximum allowed time, denoted as Tmax. Constraint (13) indicates
that the sum of collected specimens at testing laboratory should be less
than or equal to its capacity, denoted by Cl. Constraint (14) specifies the
relationship between the allocation and routing variables. If the mobile
tester does not visit the hospitals (

∑
iϵNc

xʹ́
ilvt = 0), the patient is not

assigned to them. However, if the mobile tester visits the hospitals
(
∑

iϵNc
xʹ́

ilvt = 1), the number of allocated patients is equal to the total
number of patients that the mobile testers transferred to that hospital.
Given that this constraint is nonlinear, its linearization is provided in
Appendix E. Constraint (15) describes the type of variables in the model.

5. Solution methodology

In this research, we apply the Epsilon-Constraint Method (ECM) to
solve the proposed model exactly for small instances. Furthermore, we
propose MOVNS and NSGA-II to solve the model for large instance sizes.

5.1. Epsilon-constraint method

The ECM is commonly used in multi-objective optimization problems
and it is one of the most applicable exact multi-objective methods [16].
Suppose that fj(x) represents the jth objective function. If j ∈ {1, …k},
then the multi-objective optimization transforms into the following
single-objective optimization. Thus, S is a feasible solution in the solu-
tion space, and εi equals the upper bound of the ith objective function.

Min fj(x) ∀j ∈ {1,…k} (16)

s.t.

fi(x) ≤ εi ∀i ∈ {1,…k}, i ∕= j (17)

x ∈ S (18)

In our paper, the implementation of the ε-constraint method is as
follows. First, we choose the first objective function as our main objec-
tive function. Next, we solve the problem for each of the objective
functions individually to obtain their optimal values. We then divide the
interval between the optimal values of the sub-objective functions into a
predetermined number of buckets and create a table of values for ε2, ...,
εn. Subsequently, we solve the problem using the original objective
function with each of these ε-values. Finally, we report the Pareto so-
lutions found. Furthermore, by adjusting the values on the right side of
the constraints (εi), we obtain efficient solutions for the problem.
Therefore, the second objective function is considered as a constraint,
and its value is considered to be less than ε1. Then, we introduce a new
constraint for that objective function with a lower bound of ε2, denoted
as OBJ2 ≤ ε2. If the obtained solutions are not Pareto-optimal, we adjust
the value of ε2 and repeat the optimization process until a satisfactory set
of Pareto-optimal solutions has been obtained (see Eqs. (19)–(21).

OBJ1 (19)

s.t.

OBJ2 ≤ ε2 (20)

Constraint 3 − 15 (21)
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5.2. Multi-objective variable neighborhood search (MOVNS)

The Variable Neighborhood Search (VNS) proposed byMladenović&
Hansen [29] is a metaheuristic approach used for solving optimization
problems heuristically. It is based on systematically changing the
neighborhood structure during the search [19]. It shifts from its present
location in the solution space to a new one if an enhancement has
occurred or specific acceptance criteria are satisfied [8].

So far, many successful applications of the multi-objective VNS
approach have been recorded [15,25]. Geiger [20] introduced the first
multi-objective VNS algorithm, aiming to address the Permutation Flow
Shop Scheduling Problem by minimizing various combinations of
criteria. The adaptation of the VNS framework to multi-objective opti-
mization problems introduces significant innovations in how solutions
are conceptualized and improved. By redefining the solution as an
approximate set of efficient points found during the search process, the
VNS can effectively handle multiple objectives simultaneously. Hence,
the VNS can be seen under the umbrella of population-based meta-
heuristics, which traditionally maintain a set of solutions akin to the
Pareto front. By viewing the approximate Pareto front as the incumbent
solution, we can naturally extend various VNS variants to
multi-objective problems. Fig. 1 shows the pseudocode of our proposed
MOVNS algorithm. This approach is applicable and well-established for
solving the TOP. The VNS not only addresses the complexities of opti-
mizing multiple routes to maximize the total score but also leverages
adaptive strategies to balance exploration and exploitation throughout
the search process, thus yielding high-quality solutions to the TOP [43].

The process starts by generating an initial solution using Variable
Neighborhood Descent (VND), and this solution is set as the best-found
solution, denoted as X*. The main loop of the algorithm continues until a
predefinedmaximum number of iterations has been reached. Within this
loop, the algorithm iterates through each neighborhood structure,
applying a shaking mechanism to perturb the current solution and

exploring the new solution X that results. If X dominates X* (meaning X
is better in at least one objective and no worse in others), X* is updated
with X, and the search process reverts to the first neighborhood struc-
ture. If not, X is stored in a repository of non-dominated solutions, and
the algorithm proceeds to the next neighborhood structure. In addition
to the core MOVNS operations, the algorithm incorporates mechanisms
for managing and selecting multiple non-dominated solutions. Once the
inner loop over neighborhood structures is complete, the algorithm
forms a Pareto frontier from the stored non-dominated solutions. It then
divides this frontier into grid cells based on objective values, calculates
the probability of each cell, and uses a roulette wheel selection mech-
anism to choose a solution from these grid cells. The selected solution is
then used to update X*. If no significant improvement is observed ac-
cording to predefined criteria (e.g., SM, MID and HV), the algorithm
terminates early. This approach balances exploration and exploitation
by iteratively refining solutions and incorporating diversity through
grid-based selection and non-dominated sorting.

5.2.1. Neighborhood structures
First, the MOVNS generates an initial solution. Fig. 2 shows an

instance of the multi-period TOP formulated above along with a feasible
solution. The instance includes 10 patients (nodes 1 to 10), two depots
(nodes 11 and 12), one laboratory (node 13), and two periods (t = 1,2).
Additionally, two mobile testers provide service in two periods. The
routes marked with blue are for the first period, and the routes marked
with red are for the second period. The demand of nodes 6, 1, 4, 2, 10,
and 7 is for the first period, and the demand of nodes 8, 3, 5, and 9 is for
the second period.

There are three types of strings in the designed neighborhood. The
first string, called the visiting order string, has a length of

∑
i∈Nc

∑
t∈Tdit +

(|t| − 1), which represents the visiting order for all periods and clusters
and |t| represents the total number of periods. In this string, the visiting
order of each period is separated from other periods by a 0. To examine

Fig. 1. Pseudocode of MOVNS algorithm.
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the solution space more effectively, we randomly select a series of points
instead of choosing the entire solution space from the visiting order
string. This approach allows the algorithm to produce more diverse
solutions and explore the solution space better. Additionally, it helps
reach a locally optimal solution more efficiently. The second neighbor-
hood is called the period string, and it is divided into three parts. The first
part of this neighborhood consists of a string that represents the routing
and movement sequence of mobile testers. The first cell of this string is
the depot node, the next cells are the locations of patients or demand
points. Due to the existence of only one laboratory in the problem, the
first cell of the second string is the laboratory, and the next cells in the
second string are depots. The third part of the string is the number of the
mobile testers, and the number of cells in this part is always one less than
the second string. Because by removing the first cell of the second string,
each depot is connected to its corresponding mobile tester in the third
part.

Consider this example for better understanding: In period 1, mobile
tester 2 (the first cell of the third part) starts moving from depot 12 (the
second cell of the second part) and after visiting patients 10 and 2, it
delivers the specimens to laboratory 13 (the first cell of the second part).
Next, mobile tester 1 (the second cell of the third part) moves from depot
11 and goes to laboratory 13 after visiting patients 6, 1, and 4. The point
is that at the end of each period, the cells related to the location of the
patients are compared with the visiting order string cells. If the visiting
order cells exceed the serviced cells, the surplus cells (representing un-
served patients) are stored in a string called the storage string. The space
between periods is marked with cell 0. This string is responsible for
transferring the surplus cells to the demand string for the next period.
Here, because the visiting order of node 7, which was for the first period,
was not served, this node is stored in the storage string and transferred to

the second period. In the second period, mobile tester 1 moves from
depot 11 and after visiting node 7, delivers the specimens to the labo-
ratory (13). Also, mobile tester 2 moves from depot 12, and after visiting
nodes 8, 3, and 5, it delivers the samples to the laboratory (13),
respectively. In this period, the cells related to the location of the pa-
tients are again compared with the cells of the visiting order string, and
cell 9 is stored as an unserved cell in the storage string. Given that there
were only two periods in this instance, this node is reported as an un-
served patient.

5.2.2. Variable neighborhood descent (VND)
After the initialization phase, the initial solution is improved in

different steps. At the core of our MOVNS implementation, there is a
VND procedure combining 2-Opt and 3-Opt. The steps of the proposed
VND algorithm are shown in Fig. 3. The process begins with the creation
of an initial solution, after which the 2-Opt operator is applied to
generate all possible improved solutions. These solutions are then
evaluated and a Pareto frontier is established through non-dominated
sorting within the repository. To manage the search space effectively,
grid boundaries and resolution are defined, and each Pareto solution is
assigned to a grid cell based on its objective values. The probability of
selecting each of the Pareto points in each cell is calculated, and a
roulette wheel is constructed with segments proportional to these
probabilities. The solution X* is selected from the chosen grid cell, and
the 3-opt operator is applied to further refine the solution. This process
of forming the Pareto frontier, defining grid boundaries, and recalcu-
lating probabilities is repeated to continuously improve the solution.
The heuristic leverages the grid and roulette wheel mechanism to sys-
tematically explore and exploit the solution space, optimizing the so-
lution through a sequence of neighborhood changes.

Fig. 2. Problem instance together with a feasible solution.
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5.2.3. Change neighborhood (shaking)
In this study, we utilize the cross-exchange method, a robust neigh-

borhood structure widely recognized for addressing multi-period VRPs,
initially proposed by Taillard et al. [39]. The essence of cross-exchange
lies in interchanging two segments from different routes while main-
taining their respective sequences. Let us denote NR as the number of
patients in a given route R. In the neighborhood, the maximum length of
a segment is given by min(NR, k). The minimum segment length is set at
1 for the first route and 0 for the second route, enabling the possibility of
relocating nodes between routes. However, a challenge arises when a
patient is randomly relocated to a route with insufficient remaining
working hours, resulting in an infeasible solution. To mitigate this issue,
patients are transferred only to routes where adequate working hours
are available for their travel.

Within each neighborhood, all possible segments of equal lengths are
considered. Following a cross-exchange operation, new routes are
generated. However, due to constraints such as working hour limits and
time restrictions, these routes may lead to infeasible solutions. These
issues are addressed during the iterative improvement phase. By
ensuring that segment lengths are constrained to 1 and 0, we maintain
nested neighborhoods consistently. This approach encourages the
exploration of shorter segments, focusing on refining the solution space
and aligning more closely with the current optimal solution. The way
this operator works is that first, two nodes (X1,Xʹ

1) and (Y1,Yʹ
1) are cut

from route 1, and (X2,Xʹ
2) and (Y2,Yʹ

2) are also cut from route 2. Then
parts Xʹ

1 − Y1 and Xʹ
2 − Y2 which include an arbitrary number of pa-

tients, are swapped, and new routes are generated as (X1,Xʹ
2), (Y2,Yʹ

1),
(X2,Xʹ

1) and (Y1,Yʹ
2) .

To handle multiple periods, we designate the demand of patients
entering the calculation from period 1 onward as new request and the
demand of period 1 as current request. Therefore, to handle the new
request, we utilize the second type of operator, called Exchange 1, which
involves selecting a route and a position within this route and removing
the amount p unserved patients found at this position. To calculate the
value of p, the amount of travel time and service time of the patients are
added cumulatively until this value exceeds the working hour limitation.
Therefore, we transfer patients whose cumulative time exceeds the
working hour limitation (unserved patients) to the next period and
remove them from the current period. For example, if in the third period,
according to the number of available mobile testers, the cumulative time
of the 20th patient exceeds the working hour limitations, we transfer this
patient to the fourth period and remove this request (which is equivalent
to p = 1 in this case) from the third period. Next, the number of q pa-
tients (which is equal to the updated request udit) is replaced by those
demands (dit) (please see Constraint 8).

To prioritize patients, we introduce the Exchange 2 operator, which
handles patient selection. This operator involves selecting a route and a
position on it, and then replacing a certain number of requests based on
priority within this route. The way this operator works is that if there are
new risky requests within a period, these requests replace the standard
requests, and the standard requests are transferred to the next period in
case of a working hour limitation as long as there are no risky requests.

If, in the stage of Exchange 1, the patient transferred to the next
period is a risky patient, we need an Exchange 2 operator. The Exchange
2 operator checks the patients assigned to the route in the previous
period if the patient transferred to the next period is of a risky type. If all
patients were of the risky type, then no change is needed. However, if
there is a standard patient, the risky patients of the next period (who
were unserved patients of the previous period) will replace these stan-
dard patients. This process is repeated until either all risky patients re-
turn to the previous period or there are no more standard patients in the
previous period.

Fig. 4 shows the pseudo-code for shaking. Steps 1 to 8 display the
code for the Cross-Exchange operator. The Exchange 1 operator and the
Exchange 2 operator are coded in steps 9 to 13 and 14 to 20, respec-
tively. Finally, steps 21 to 27 show the Iterative Improvement.

Continuing with this operator, the iterative improvement approach
is balanced, aiming to manage the new demand in subsequent periods to
prevent the route from becoming infeasible.

5.2.4. Iterative improvement
At this point, the local solutions obtained in the previous step are

improved. Therefore, to enhance the solutions of the operators, Ex-
change 1, Exchange 2 and Cross-Exchange, we employ the 3-opt
approach to optimize the paths that became infeasible in the previous
step. The 3-opt operator, introduced by Lin [26], works by considering
three edges of a route and exploring alternative ways to reconnect them
while preserving the overall tour structure.

By evaluating the objective functions, the algorithm can determine
whether the move improves the current solution. The change made in
this approach is that the movement chain is limited to no more than
three nodes. Due to the working hour limitations that can render the
algorithm infeasible, we only consider moves that do not invert this
chain and are feasible. This strategy represents the initial improvement
approach that restarts iteratively immediately following each improving
move.

5.2.5. Acceptance criterion
We decide whether to accept the solution obtained from the new

neighborhood. This may involve considering factors such as the solution

Fig. 3. Proposed VND Algorithm.
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quality, improvement, or other criteria specific to the problem.We apply
a multi-objective function improvement criterion in our research, i.e., a
solution is accepted only if it is non-dominated relative to the current set
of solutions. This means the solution does not have any other solutions
that are better in all objectives and at least as good in one objective.

5.2.6. Stopping criterion
In this study, two types of stopping criteria are used. If any of these

two conditions occur, the algorithm will stop. These two criteria are as
follows:

- We stop after the determined number of iterations.
- We stop when a determined number of iterations have been per-
formed without improvement.

If the stopping criterion is not met, we start the initial improvement
process again.

5.3. Non-dominated sorting genetic algorithm (NSGA-II)

NSGA-II is an updated version of traditional Genetic algorithms,
specifically designed for multi-objective optimization. First proposed by
Deb et al. [14], NSGA-II has become a widely recognized and applicable
method due to its efficiency and ability to generate a diverse set of so-
lutions. The algorithm utilizes non-dominated sorting to rank

individuals in the population, coupled with crowding distance to
maintain diversity in the Pareto front. This makes NSGA-II particularly
effective for solving problems with multiple conflicting objectives, as it
produces a set of Pareto-optimal solutions [21].

Fig. 5 presents the NSGA-II pseudo-code, outlining key steps:
initialization (steps 1–4), non-dominated sorting and ranking (steps
5–6), crowding distance calculation (steps 7–10), crossover and muta-
tion (steps 11–20), merging and sorting of populations (steps 21–23),
and final selection for the next generation (steps 24–28).

5.3.1. Chromosome representation
The proposed chromosome structure is similar to the MOVNS

structures shown in Fig. 2. The first, known as the visiting order chro-
mosome, has a length of

∑
i∈Nc

∑
t∈Tdit + (|t| − 1) and separates the

visiting order of each period using a 0. The second, the period chromo-
some, is divided into three parts: the first represents the routing and
movement sequence of mobile testers, the second starts with a labora-
tory followed by depots, and the third indicates the number of mobile
testers, with one fewer cell than the second string to maintain depot-to-
tester connections. At the end of each period, patient locations are
compared with the visiting order chromosome. Any unserved patients
are stored in a separate string called the storage chromosome (See Fig. 2).

5.3.2. Crossover operator
In this paper, a double-point crossover operator is employed in

Fig. 4. Pseudocode of shaking algorithm.
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NSGA-II. This operator involves randomly selecting two parent chro-
mosomes and determining two crossover points within each. The genes
between these points are then swapped, producing two offspring that
inherit traits from both parents. We applied the double-point crossover
to the visiting order chromosome, period chromosome, and storage
chromosome. For instance, Fig. 6 illustrates the double-point crossover
applied to the visiting order chromosome.

5.3.3. Mutation operator
In this paper, we use the reverse operator for mutation. The reverse

mutation involves reversing a segment of the chromosome, altering the
sequence of genes. The steps for mutation are as follows: first, select a
segment within the chromosome; second, reverse the selected segment;
and finally, replace the original segment with the reversed one. We
apply the reverse operator mutation to the visiting order chromosome,
period chromosome, and storage chromosome. For instance, Fig. 7 il-
lustrates the reverse mutation applied to the visiting order chromosome.
We assumed that the number of cells to be mutated should be half of the
total number of cells. The obtained value is rounded up. For the visiting
order chromosome, the number of mutated cells would be 6. Therefore,
6 cells are randomly selected, and the selected segment is reversed.

Fig. 5. Pseudocode of NSGA-II algorithm.

Fig. 6. Double-point crossover for visiting order chromosome. Fig. 7. Reverse mutation for visiting order chromosome.
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5.3.4. Crowding distance
In this paper, we use the crowding distance sorting mechanism in

NSGA-II to maintain diversity among solutions in the population while
exploring the Pareto front. The crowding distance (CDi) for a solution i
in a bi-objective optimization problem is defined as:

CDi =
f (1)i+1 − f (1)i− 1

f (1)max − f (1)min

+
f (2)i+1 − f (2)i− 1

f (2)max − f (2)min

(22)

where f (1)and f (2)represent the two objective functions (1) and (2). The
terms f (m)

i+1 and f (m)

i− 1 denote the objective values of the next and previous
solutions in the sorted list for each objective m, respectively. Addition-
ally, f (m)

max and f (m)

minare the maximum and minimum values of the objective
m within the front. To ensure the selection of boundary solutions, they
are assigned an infinite crowding distance.

5.3.5. Stopping criterion and parameter tuning
For the stopping criterion, two conditions are used to determine

when the algorithm should stop. The algorithm stops either after a
predetermined number of iterations or when a specific number of iter-
ations have been completed without any improvement. If neither cri-
terion is met, the initial improvement process is restarted.

For parameter tuning, we follow the approach of Navaei et al. [30].
They implemented the NSGA-II algorithm for a multi-period, multi--
objective mathematical model for the distribution of testing kits. To
adjust the parameters, they used the Taguchi method [40]. So, based on
Navaei et al. [30], we set the population size (Npop) to 200, the cross-
over rate (Pc) to 0.4, the mutation rate (Pm) to 0.3, and the maximum
number of iterations (Maxit) to 450.

6. Computational experiments

Section 6 is organized into two main subsections. In Section 6.1, the
we evaluate or solution methods validation, including the computa-
tional setup and the evaluation of model performance at small, medium,
and large scales using artificial data. In Section 6.2, the computational
setup and managerial insights for the case study are described.

6.1. Validation of solution method

6.1.1. Computational setup
To evaluate the effectiveness of the multi-objective algorithms, three

assessment metrics are employed:

• Spacing Metric (SM): measures the standard deviation of the dis-
tances between solutions of the Pareto front [50].

SM =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N − 1

∑N− 1

i=1
(d − di)

2

√
√
√
√ (23)

where di is equal to the Euclidean distance between two adjacent Pareto
points, and d is the average Euclidean distance. The lower the value of
this metric, the smaller the distance between the Pareto points and the
better the performance of the algorithm. For example, if this value is
exactly equal to zero, the distance between neighboring Pareto’s is the
same. Also, N is the number of Pareto points.

• Mean ideal distance (MID): measures the convergence rate of Pareto
fronts up to a certain point (0, 0) [51].

MID =

∑n
i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

f1i − f*1
fmax
1,global − fmin

1,global

)2

+

(

f2i − f*2
fmax
2,global − fmin

2,global

)2
√
√
√
√

n
(24)

Here, fji equals the jth objective function for the ith Pareto front. Also,
fmin
j,global and fmax

j,global are the minimum and maximum of the jth objective
function among the Pareto points. Additionally, f*1 and f*2 are the ideal
values of the first and second objectives, respectively and n is the
number of Pareto points. According to this definition, the algorithmwith
a lower value of the MID has a better performance.

• The Hypervolume metric (HV):

The hypervolume indicator, first introduced by Zitzler and Thiele
[52], is a robust measure in multi-objective optimization that assesses
solution quality by quantifying the volume of the objective space
dominated by a set of solutions relative to a reference point. This metric
aids in evaluating how closely a solution set approximates the Pareto
front, guiding optimization towards optimal and diverse solutions [13].
Its unique ability to capture both convergence and diversity combined
with properties like scale independence and sensitivity to solution effi-
ciency, positions it as a premier metric for comparing diverse optimi-
zation algorithms. This indicator is defined as Eq. (25):

H
(
v(1),…, v(μ);R

)
= Λk

( ⋃μ

i=1

[
v(i),R

])
(25)

with v(1),…, v(μ) ∈ Rk as non-dominated set and R ∈ Rk such that v(i) <
R for all i = 1, …, μ. The reference point (R = (r1, r2,…, rk)

T
) can be

taken as the vector of the worst values of the objective functions. Also,
Λk(.) represents the Lebesgue measure in Rk. Due to the two objectives
(k = 2) of our model, the calculation of (25) reduces to Eq. (26):

H
(
v(1),…, v(μ);R

)
=
[
r1 − v(1)1

]
.
[
r2 − v(1)2

]
+
∑μ

i=2

[
r1 − v(i)1

]
.
[
v(i− 1)2 − v(i)2

]

(26)

6.1.2. Evaluation of model performance
In this section, MID, SM and HVmetrics are employed to compare the

effectiveness of the MOVNS and NSGA-II with the exact solution
approach. Therefore, for each sample, these threemetrics are reported in
Table 2. We consider 30 samples in three different sizes: S1 to S10
(“small scale”), M1 to M10 (“medium scale”), and L1 to L10 (“large
scale”). The lower the values of MID and SM, the better the algorithm
has performed, and the larger the value of the hypervolume metric, the
better.

Considering that the calculated MID and SM metric values are below
1, we can trust the quality of the solutions. Furthermore, the comparison
of solution times for the proposed algorithms shows that the MOVNS
algorithm outperforms both ECM and NSGA-II, making it the most
efficient choice for solving the case study. HV values consistently
highlight the quality and efficiency of the solutions, with higher values
indicating superior performance. For instance, in instances S1 through
S10, the HV values for the ECM, NSGA-II, and MOVNS methods are
closely matched, indicating that the algorithms perform comparably
well in terms of approximating the Pareto front. Also, the metric values
show that MOVNS performs better than NSGA-II in all metrics, including
CPU time. Moreover, the ECM is unable to solve the mathematical model
due to the long solution time resulting from the NP-hardness of the
model; therefore, the model on a large scale is solved only with the
MOVNS approach. This trend indicates that MOVNS has an edge in
delivering higher convergence and more diverse solutions for more
complex scenarios compared to NSGA-II. For more information on the
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payoff of single-objective versus multi-objective optimization using the
MOVNS algorithm, please see Appendix D. Also, test instances for
further research are provided in Appendix C.

6.2. Case study

After validating the model performance using GAMS 42.1.0 with the
CPLEX 11.0 solver, we solve the model using MOVNS and NSGA-II in
MATLAB on an Intel(R) Core(TM) i7 CPU running at 1.60 GHz with 16
GB RAM. Due to the superiority of MOVNS compared to NSGA-II and the
epsilon constraint method in terms of CPU time and performance met-
rics, we solve the real case study using MOVNS.

6.2.1. Computational setup
In the following, we investigate a case study for the city of Vienna to

validate the mathematical model and investigate its impact under real-
life conditions. The data collected spans from 2020–02–06 to
2020–03–04. The synthetic caller data, which represents the demand for
the MOVNS algorithm, comes from an agent-based epidemic model that
was developed and used in the course of the COVID-19 pandemic with
the aim of being able to compare different measures and their influence
[5]. The model is population dynamic, with each model agent inter-
preted as a statistical representative of a real person. More details on the
simulation model can be found in Appendix A.

The Vienna case involves the establishment of mobile testing services
during the pandemic, with Klinik Penzing hospital serving as the central
laboratory capable of conducting 70 tests per day, while three depots in
different areas accommodate mobile testers with a capacity of 10 tests
each. Mobile testers operate within an 8-hour daily time frame, con-
ducting tests at patient locations. Service time per patient, including kit
preparation and sample collection, is estimated at 11 minutes based on
Callahan et al. [9]. The travel time between locations is calculated using
Open Street Map data. Overall, the scenario outlines a mobile testing
system with a central laboratory and depots, adhering to specific time
and capacity constraints to facilitate widespread testing across Vienna.

Patients are categorized into the following age intervals: 1–18,
18–40, 40–50, 50–60, 60–70, 70–80, and 80+. Using the k-means al-
gorithm, a sufficient number of clusters is estimated as 2. The first group
has a weight of 0.703, and the second group has a weight of 0.297.

The hazard ratios for individual patients were calculated using the
methodology outlined by Jahn et al. [23], which assessed hazard ratios
based on specific disease background as Table 3. A hazard ratio of 1
signifies no risk, with kidney disease patients having a hazard ratio of 2,
diabetes patients at 1.95, heart disease at 1.17, respiratory diseases at
1.63, liver disease at 1.75, and cancer at 1.72. If a patient has multiple
coexisting conditions, the respective hazard ratio coefficients are
multiplied. For instance, a male patient with both cancer and hyper-
tension (patient number 1) has a hazard ratio of 4.7859. Patients with a
hazard ratio of 1 are considered “standard”, while those with a hazard
ratio above 1 are deemed “risky”. The table specifies whether the patient
belongs to cluster 1 or 2. The hazard ratio for standard patients in each
period is divided by the period number, while for risky patients, it is
multiplied by their period number.

Table 4 presents instances of contact tracing information for 20 pa-
tients, including recent contacts, ages, and their disease backgrounds.
This information is used to calculate the weight of a priority group and
the score of each patient.

Table 2
Assessment metrics for the effectiveness of MOVNS, NSGA-II and exact solution approach.

Instances MID SM HV CPU time (s)

ECM MOVNS NSGA-II ECM MOVNS NSGA-II ECM MOVNS NSGA-II ECM MOVNS NSGA-II

S1 0.136 0.136 0.136 0.038 0.038 0.038 0.823 0.823 0.823 3 3 3
S2 0.129 0.133 0.133 0.031 0.035 0.037 0.845 0.841 0.841 4 4 4
S3 0.142 0.145 0.149 0.059 0.061 0.061 0.811 0.807 0.805 5 4 5
S4 0.220 0.223 0.227 0.078 0.079 0.083 0.852 0.850 0.844 155 23 28
S5 0.208 0.213 0.218 0.086 0.092 0.095 0.836 0.831 0.822 188 31 39
S6 0.260 0.265 0.270 0.105 0.109 0.114 0.818 0.811 0.805 356 44 47
S7 0.283 0.290 0.293 0.098 0.106 0.115 0.854 0.845 0.842 426 65 71
S8 0.291 0.296 0.302 0.120 0.125 0.131 0.845 0.832 0.821 505 80 88
S9 0.311 0.314 0.317 0.167 0.173 0.175 0.861 0.842 0.838 588 106 118
S10 0.342 0.351 0.363 0.187 0.200 0.205 0.855 0.851 0.847 912 132 143
M1 0.407 0.414 0.422 0.312 0.318 0.329 0.764 0.755 0.750 2018 191 205
M2 0.343 0.354 0.355 0.210 0.221 0.228 0.741 0.737 0.724 2790 237 251
M3 0.186 0.194 0.209 0.388 0.397 0.410 0.757 0.754 0.737 3951 317 331
M4 0.457 0.471 0.477 0.157 0.162 0.180 0.732 0.725 0.711 5548 511 535
M5 0.309 0.321 0.323 0.173 0.187 0.198 0.754 0.747 0.744 6779 719 743
M6 0.215 0.218 0.224 0.281 0.286 0.292 0.719 0.711 0.701 8375 902 952
M7 0.263 0.285 0.298 0.193 0.209 0.214 0.783 0.772 0.746 10566 1035 1063
M8 0.195 0.202 0.217 0.284 0.290 0.294 0.759 0.745 0.729 12561 1282 1311
M9 0.403 0.416 0.422 0.211 0.224 0.232 0.776 0.755 0.748 14073 1315 1332
M10 0.445 0.456 0.471 0.230 0.245 0.252 0.729 0.724 0.704 20423 1550 1586
L1 - 0.315 0.318 - 0.158 0.173 - 0.695 0.684 - 1629 1629
L2 - 0.341 0.353 - 0.219 0.222 - 0.647 0.638 - 1811 1876
L3 - 0.294 0.308 - 0.161 0.186 - 0.593 0.543 - 2102 2148
L4 - 0.317 0.338 - 0.162 0.179 - 0.626 0.615 - 2293 2317
L5 - 0.302 0.316 - 0.278 0.301 - 0.673 0.634 - 2405 2439
L6 - 0.313 0.353 - 0.290 0.311 - 0.645 0.630 - 2732 2809
L7 - 0.297 0.309 - 0.265 0.275 - 0.684 0.655 - 3104 3186
L8 - 0.405 0.427  0.321 0.334 - 0.690 0.662 - 3527 3563
L9 - 0.351 0.363 - 0.307 0.316 - 0.581 0.563 - 3770 3819
L10 - 0.419 0.426 - 0.310 0.336 - 0.628 0.604 - 4208 4316

Table 3
Hazard ratio for patients.

Criteria Hazard ratio

Cancer 1.72
Liver disease 1.75
Respiratory diseases 1.63
Heart disease 1.17
Diabetes 1.95
Kidney disease 2

P. Ghasemi et al. Omega 135 (2025) 103305 

13 



6.2.2. Managerial insights
In this subsection, the outputs of the mathematical model for the real

case study in Vienna are analyzed. These analyses include comparisons
between scenarios with and without priority to check the effect of eq-
uity, as well as between quarantine and non-quarantine scenarios.
Additionally, analyses based on location, allocation, and routing are
provided. An exemplary output and analysis of a solution is provided in
Appendix B.

Fig. 8 illustrates the comparison of average waiting times,
measured in days, over a span of four weeks, both with and without-
priority scenarios. In the without-priority scenario, we consider a coef-
ficient of 1 for the score of each patient. Firstly, both risky and standard
patients experience longer waiting times during the fourth week
compared to the preceding weeks in the with-priority scenario.
Conversely, the waiting times for both groups are notably lower during
the second week. The significant waiting times experienced by both
risky and standard patients during the fourth week suggest po-
tential bottlenecks or inefficiencies in the system’s capacity to
handle patient loads. This could indicate a need for more flexible
scheduling strategies to better accommodate fluctuations in demand and
optimize resource allocation based on patient priorities. In a scenario
without priority, the waiting time for risky patients increases compared
to the scenario with priority, while it decreases for standard patients.

Fig. 9 illustrates a comparison of the average number of unserved
patients over a four-week period, both with and without priority sce-
narios. In the with-priority scenario, the average number of unserved

risky patients remains consistently lower than that of standard patients
across all weeks. Consequently, the model prioritizes serving risky
patients with higher priority than standard patients to ensure eq-
uity. For instance, in the first week, the average number of unserved
risky patients are 0.033, 0.047, 0.057, and 0.072, while for standard
patients, the figures are 0.277, 0.254, 0.305, and 0.324, respectively.
However, in the scenario without priority, the average number of un-
served risky patients drastically increases. Additionally, in weeks 1 and
3, the average number of unserved risky patients exceeds that of stan-
dard patients.

Fig. 10 illustrates the average waiting times for Vienna’s 23 dis-
tricts based on the day of testing. The waiting times vary across districts
due to different factors affecting demand and geographic location. Dis-
tricts 1, 7, and 8 experience higher demand for testing kits compared to
other districts, resulting in longer average waiting times. This increased
demand is reflected in the data. Districts 22 and 23 exhibit longer
waiting times due to their considerable distance from both the depot and
laboratory facilities. The logistical challenges posed by these distances
contribute to delays in testing availability. Conversely, District 14 ex-
periences the shortest waiting time among all districts, attributed to its
lower demand for testing services. Districts 15, 16, 17, and 18 demon-
strate a similar trend in waiting times, with average waiting times of
0.231 and 0.174, respectively. These districts benefit from their
strategic locations situated between depots and laboratories,
resulting in relatively shorter waiting times compared to others.

Table 4
Contact tracing information.

Time Recent Contact Age Diabetes Kidney Heart respiratory Liver Cancer Hypertension

2020–02–06T20–35–48 123 73 false false false false TRUE false true
2020–02–06T17–52–55 37 80 false true true false false false false
2020–02–06T10–14–00 41 48 false false false false false false false
2020–02–06T23–42–30 34 53 false false false false false false false
2020–02–06T06–03–19 25 84 false false true false false false true
2020–02–06T15–33–43 24 49 false false false false false false false
2020–02–06T09–51–45 54 21 false false false true false false false
2020–02–06T18–46–07 54 65 false false false false false false true
2020–02–06T19–19–45 172 50 false false false false false false false
2020–02–06T19–09–05 20 79 false false false false false false true
2020–02–06T23–53–47 140 30 false false true false false false true
2020–02–06T06–48–20 277 38 false false false false false false false
2020–02–06T06–04–54 158 20 false false false false false false false
2020–02–06T16–32–46 25 86 false false false true false true false
2020–02–06T23–53–33 176 72 false false false false false false false
2020–02–06T12–41–03 309 30 false false false false false false true
2020–02–06T08–26–36 47 64 false false false true false false false
2020–02–06T08–31–51 15 46 false false false true false false true
2020–02–06T07–06–17 35 51 true false false false false false false
2020–02–06T22–32–33 76 27 false false false false false false false

Fig. 8. Comparison of weekly average waiting times with and without priority scenarios.
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6.2.3. Comparison of quarantine and non-quarantine scenarios
The data sets used in this work were generated using two different

epidemic scenarios. The first scenario (“quarantine scenario”) is
parameterized to the first SARS-CoV-2 wave in Vienna (Austria) during
spring 2020 (2020–02–01 to 2020–06–01). Around mid-March, with
approximately 250 daily new confirmed cases, the city implemented a
strict lockdown. With α = 2⋅10− 5,β = 5⋅10− 8, there were between 100
and 250 additional contacts per day from non-infected agents. The
second scenario (“non quarantine”) covers the same timeframe but in-
volves no interventions to curb disease spread. Consequently, the wave
peaked at around 10,000 daily new confirmed cases in May due to

natural immunity.
In Fig. 11, every curve represents one simulation run with the sto-

chastic model, where blue indicates the quarantine scenario and red
represents the no-quarantine scenario. The left and right plots display
the same curves but use different y-limits. The plotted outcome shows
the daily new confirmed COVID-19 cases in Vienna.

Fig. 12 shows the comparison of average waiting times in quar-
antine scenarios and without quarantine. As can be seen, the volume
of demand in non-quarantine conditions is much higher than in quar-
antine conditions, and therefore the average waiting time in quarantine
conditions is much lower than in non-quarantine conditions.

Fig. 9. Comparison of weekly unserved patients with and without priority scenarios.

Fig. 10. Average waiting time based on Vienna districts.

Fig. 11. Simulation run with the "Quarantine" scenario and "non-quarantine" scenario.
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Quarantine significantly reduces waiting times by limiting the
influx of demand, as depicted in Fig. 12, showcasing the vital role of
quarantine in streamlining processes and minimizing delays. The strong
contrast in average waiting times between quarantine and non-
quarantine scenarios underscores the importance of implementing
quarantine measures to effectively manage and optimize resource
allocation.

6.3. Sensitivity analysis

In this subsection, sensitivity analysis is performed on important
parameters of the model, including the number of mobile testers, labo-
ratory capacity, number of laboratories, and demand. Also, the effects of
changing these parameters on the decision variables and objective
functions are examined.

Fig. 13 depicts the sensitivity analysis of the number of mobile
testers on average waiting time. In this analysis, the number of mobile
testers varies, decreasing and increasing by 20 % and 40 %. A total of 30
mobile testers are considered as a base case. As evident, increasing the
number of mobile testers results in a reduction of the average
waiting time. For instance, during the first week, the average waiting
time for the benchmark mode for risky and standard patients is 0.101
and 0.505, respectively. With a decrease of 20 % and 40 %, these values
rise to 0.079, 0.417 and 0.071, 0.199. Likewise, an increase of 20 % and
40 % leads to a reduction of 0.017, 0.128, and 0.045, 0.338. The key
observation is that increasing the number of mobile testers consistently
leads to a reduction in average waiting time. Conversely, decreasing the
number of mobile testers results in an increase in average waiting time.
This suggests that the availability of mobile testers has a

substantial impact on the overall efficiency of the testing and de-
livery system. The impact on both risky and standard patients implies
that a sufficient number of mobile testers is crucial not only for
addressing risky patients promptly but also for maintaining efficient
service for standard cases.

Fig. 14 illustrates the sensitivity analysis of the number of mobile
testers on the average number of unserved patients. Consequently,
the number of mobile testers decreases and increases by 20 % and 40 %
each week compared to the standard mode. As observed, with the in-
crease in the number of mobile testers, the average number of unserved
patients decreases, and the slope of the graph is lower for risky patients
than for standard patients. This indicates that the reduction in the
number of mobile testers has a greater impact on standard patients.
The analysis demonstrates the importance of optimal resource alloca-
tion, particularly in allocating mobile testers.

Fig. 15 depicts the effects of altering laboratory capacity on the
average waiting time, measured in days over a four-week period. Both
increases and decreases in capacity are implemented at rates of 20% and
40%. It is important to note that the standard capacity for laboratories is
set at 70 people per day. Changes in laboratory capacity significantly
influence the average waiting time for patients. Given the priority
assigned to risky patients, alterations in capacity have a more pro-
nounced impact on standard patients. Consequently, the graph slope is
steeper for standard patients compared to risky patients. The significant
impact of capacity changes in laboratory operations is evident in the
substantial influence on average waiting times for patients. This influ-
ence is further exacerbated by the prioritization of risky patients, which
results in a more pronounced impact on standard patients when labo-
ratory capacity fluctuates, as indicated by the steeper slope in the graph

Fig. 12. Comparison of weekly average waiting times with and without quarantine scenarios.

Fig. 13. The impact of mobile tester numbers on the average waiting time.
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for standard patients compared to risky patients. These findings un-
derscore the challenges posed by resource constraints, with limited
laboratory capacity making the system more susceptible to variations
and struggling to meet demand, particularly for standard patients.
Consequently, the prioritization of risky patients creates a more
challenging situation for standard patients when laboratory ca-
pacity is altered, emphasizing the need for strategic resource alloca-
tion, flexibility in capacity planning, and investment in technology and

automation to mitigate these challenges and optimize patient care
delivery.

Fig. 16 illustrates the effect of changes in laboratory capacity on
the number of unserved patients. Both increasing and decreasing its
capacity significantly influence the number of unserved patients,
causing considerable fluctuations. Additionally, the graph indicates that
the slope for risky patients is lower than for standard patients. This
implies that standard patients are more affected by changes in

Fig. 14. The impact of mobile testers on the average number of unserved patients.

Fig. 15. The impact of laboratory capacity on the average waiting time.

Fig. 16. The impact of laboratory capacity on the number of unserved patients.
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capacity compared to risky patients and suggests that the system is
more sensitive to changes in laboratory capacity when resources
are limited.

Fig. 17 shows the effect of increasing and decreasing the number
of laboratories on the average waiting time. The number of labs in
standard conditions was initially 1, and it was tested here with 5, 10, 20,
and 30. As it is known, the increase in the number of laboratories every
four weeks reduces the average waiting time for both risk and standard
patients. This indicates that investing in expanding infrastructure (in
this case, laboratories) can have a direct impact on improving service
delivery and patient satisfaction. This is despite the fact that the impact
of these changes on standard patients is much higher than on risky
patients.

Finally, Fig. 18 shows the effect of changes in demand on the
average waiting time and average number of unserved patients. As
demonstrated, an increase in demand leads to higher average waiting
times and average numbers of unserved patients for both risk and
standard patients. Additionally, the rate of increase in average waiting
time and average number of unserved patients is greater for risk patients
compared to standard patients.

Finally, the managerial insights from outputs are as follows: Firstly,
prioritizing risky patients over standard patients leads to lower waiting
times for the risky patients but can result in longer waiting times for the
standard patients, especially during periods of high demand. This
highlights the need for equitable and dynamic scheduling strategies to
balance priorities effectively. Additionally, quarantine measures signif-
icantly reduce waiting times by limiting demand influx, underscoring
the importance of proactive measures to manage resource allocation
effectively. Sensitivity analysis demonstrates the critical role of effective

resource planning and allocation, particularly regarding the number of
mobile testers and laboratory capacity. Adjusting these resources based
on demand fluctuations can help optimize service delivery and reduce
waiting times. Investing in expanding infrastructure, such as labora-
tories, can directly improve service delivery and patient satisfaction by
reducing waiting times, although the impact may vary between risky
and standard patients. By incorporating these insights into strategic
planning processes, healthcare systems can enhance efficiency, optimize
resource allocation, and ultimately improve patient care delivery.

7. Conclusion

In this paper, a bi-objective mathematical model for routing and
equitable distribution of testing kits for contagious diseases has been
presented. Due to limited resources and the fact that it is not possible to
serve all patients, a multi-period TOP modeling has been proposed. The
main goal of this research is to maximize the reward obtained from
patient visits and minimize the number of unserved patients. Therefore,
clustering of geographical areas based on the age of patients and their
contact rate as well as prioritization of patients based on their level of
risk was performed to ensure equity in testing. Numerical examples have
been used to validate the model, which has been solved using the ECP.
Indicators such as MID and SM demonstrate the quality of the solutions.
The comparison of solution times for the proposed algorithms shows
that the MOVNS algorithm outperforms both ECM and NSGA-II, making
it the most efficient choice for solving the case study. Therefore, the
MOVNS approach has been used to solve the model for a case study
involving real data from the COVID-19 pandemic in the City of Vienna,
Austria.

Fig. 17. The impact of number of laboratories on the average waiting time.

Fig. 18. The impact of demand changes on the average number of unserved patients and average waiting time.
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The findings show that in the priority scenario, both risky and
standard patients experience longer waiting times during the fourth
week. Conversely, waiting times decrease for standard patients but in-
crease for risky patients in the non-priority scenario, indicating a trade-
off between prioritization and overall waiting times. Also, in the quar-
antine scenario, the average waiting time is notably lower compared to
the non-quarantine scenario, attributed to reduced demand volume.
This highlights the crucial role of quarantine in streamlining processes
and optimizing resource allocation to minimize delays. The sensitivity
analysis output indicates that increasing the number of mobile testers
consistently reduces average waiting time, emphasizing the critical role
of tester availability in system efficiency. Furthermore, changes in lab-
oratory capacity significantly impact the number of unserved patients,
with standard patients being more affected than risky patients, indi-
cating higher sensitivity to capacity fluctuations in resource-limited
scenarios.

In the realm of managing contagious disease testing, several future
suggestions can be proposed. Firstly, considering correlation between
demand nodes could prove beneficial. By identifying correlated nodes,
unnecessary visits could be eliminated. Secondly, acknowledging the
inherent uncertainty in such operations, incorporating stochastic service
times and other forms of uncertainty through chance constraint-based
models could improve the decision-making processes. Finally, consid-
ering a cooperative game among the components of the supply chain for

distributing diagnostic kits to reduce response time and increase synergy
between players could be advantageous.
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Appendix A

The simulation model consists of four modules: The population module can be seen as the basis of the whole model [6]. It generates the initial agent
population using census data and handles the population dynamics (births, deaths, migration). The contact module generates contacts between agents
based on contact locations (households, workplaces, schools, etc.). These are in turn used by the disease module to transmit the virus. Once transmission
has taken place, the agent runs through a disease or treatment pathway that ends in recovery and time-limited immunisation. The fourth module is the
policy module, which is used to simulate measures such as quarantine, contact tracing, school closures, lockdowns or vaccination programmes. One of
the unique features of the model is its hybrid time update strategy: while interactions between the agents take place at predefined discrete time steps
(daily), status updates from agents that are independent of others are processed on an event-based basis. The latter particularly refers to the disease
and treatment pathway, and has already proven to be very valuable for the generation of synthetic data [33,46]. In the present work, the disease
pathway, represented in DWH report2, was divided at the “React on Disease” event. This event marks the point where an affected agent, presumably a
person or organism, recognizes symptoms of a disease and decides to seek testing. Following this decision, the agent initiates a “Phonecall” event to
contact the relevant authority responsible for conducting the test.

The distribution of the phone call events throughout the day is chosen in consultation with domain experts so that there are two peaks – one in the
morning and one in the evening, which corresponds to the off-peak times before and after work. To create additional realism, a certain number of non-
infected agents also make a call to the test authority in the model in addition to the actually infected model agents, e.g. because they are overly
cautious or are experiencing symptoms due to another infection. The probability that an uninfected agent will generate a Phone call event per day is
defined as α + βC, where C corresponds to the number of active-confirmed cases at that time. With α an epidemic-independent background noise is
modelled, with β an increased caution during the disease waves.

Appendix B

Exemplarily, the following figure illustrates the outputs of allocation and routing decisions. The color of each patient node represents the allocation
of patients to a specific depot: red nodes are allocated to depot 1, black nodes to depot 2, and blue nodes to depot 3. Yellow nodes signify patients who
are not served by the end of the period. Additionally, this figure depicts the two tours of each depot. The unserved patient locations, situated far from
the depots, highlight the significance of depot locations in effectively serving patients. Moreover, the allocation trend reveals that the number of nodes
allocated to depot 2 (black) exceeds those allocated to depot 1 and 3. The results show that the central regions, such as 1, 8, 7, and 9, bear the greatest
load on the depots.

Fig. B1

2 https://www.dwh.at/projects/covid-19/Covid19_Model-20230322.pdf
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Fig. B1. Allocation and routing output map.

Appendix C

The detailed information related to test instances is presented in Tables C1 and C2. Numerical experiments with problems of different scales (small,
medium, and large) are presented in Table C1, while the test instance inputs are defined in Table C2 based on a uniform distribution function.

Table C1
Numerical experiment of problems in different scales.

Classification Instances Nc o v l t

Small S1 3 1 1 1 1
S2 4 1 1 2 1
S3 6 1 2 1 1
S4 7 2 2 2 2
S5 8 1 2 3 2
S6 10 2 3 1 2
S7 12 2 3 3 2
S8 13 2 3 3 1
S9 14 2 3 1 2
S10 16 1 3 2 2

Medium M1 19 3 4 3 3
M2 22 2 4 2 3
M3 25 3 4 3 4
M4 30 3 5 4 4
M5 33 3 5 3 3
M6 36 4 6 5 5
M7 40 4 4 4 4
M8 42 4 6 7 6
M9 45 3 5 4 4
M10 50 4 6 4 5

Large L1 60 3 7 2 4
L2 65 4 5 3 4
L3 70 5 4 4 5
L4 75 5 6 4 5
L5 80 4 6 5 4
L6 90 6 7 6 4
L7 110 7 7 6 5

(continued on next page)
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Table C1 (continued )

Classification Instances Nc o v l t

L8 125 7 8 7 5
L9 130 8 9 8 6
L10 150 10 13 9 6

Table C2
Test instances inputs.

Scales Instances λr Cl pit ko tij (Min) t́oi (Min) tʹ́il (Min) si (Min) Tmax (Min)

Small S1 u ∼(0, 1) u ∼(3, 5) u ∼(1, 3) u ∼(1, 3) u ∼(5, 20) u ∼(5, 20) u ∼(5, 20) u ∼(5, 15) u ∼(30, 120)
S2 u ∼(0, 1) u ∼(4, 10) u ∼(1, 4) u ∼(2, 4) u ∼(5, 25) u ∼(5, 25) u ∼(5, 15) u ∼(5, 15) u ∼(30, 180)
S3 u ∼(0, 1) u ∼(5, 10) u ∼(1, 3) u ∼(2, 6) u ∼(5, 20) u ∼(5, 10) u ∼(5, 20) u ∼(5, 15) u ∼(30, 240)
S4 u ∼(0, 1) u ∼(6, 12) u ∼(1, 5) u ∼(3, 8) u ∼(5, 35) u ∼(5, 20) u ∼(5, 25) u ∼(5, 15) u ∼(60, 240)
S5 u ∼(0, 1) u ∼(5, 16) u ∼(1, 4) u ∼(3, 9) u ∼(5, 30) u ∼(5, 25) u ∼(5, 30) u ∼(5, 15) u ∼(120, 240)
S6 u ∼(0, 1) u ∼(5, 10) u ∼(1, 3) u ∼(2, 10) u ∼(5, 35) u ∼(5, 30) u ∼(5, 35) u ∼(5, 15) u ∼(300, 480)
S7 u ∼(0, 1) u ∼(6, 15) u ∼(1, 5) u ∼(4, 8) u ∼(5, 40) u ∼(5, 35) u ∼(5, 40) u ∼(5, 15) u ∼(180, 480)
S8 u ∼(0, 1) u ∼(2, 9) u ∼(1, 2) u ∼(5, 10) u ∼(5, 45) u ∼(5, 40) u ∼(5, 45) u ∼(5, 15) u ∼(120, 540)
S9 u ∼(0, 1) u ∼(4, 9) u ∼(1, 4) u ∼(5, 10) u ∼(5, 50) u ∼(5, 25) u ∼(5, 50) u ∼(5, 15) u ∼(120, 480)
S10 u ∼(0, 1) u ∼(5, 16) u ∼(1, 5) u ∼(6, 12) u ∼(5, 60) u ∼(5, 50) u ∼(5, 60) u ∼(5, 15) u ∼(180, 300)

Medium M1 u ∼(0, 1) u ∼(5, 15) u ∼(1, 5) u ∼(5, 8) u ∼(5, 10) u ∼(5, 55) u ∼(5, 10) u ∼(5, 15) u ∼(120, 480)
M2 u ∼(0, 1) u ∼(10, 15) u ∼(1, 4) u ∼(3, 6) u ∼(5, 15) u ∼(5, 60) u ∼(5, 15) u ∼(5, 15) u ∼(120, 540)
M3 u ∼(0, 1) u ∼(5, 15) u ∼(1, 6) u ∼(3, 7) u ∼(5, 20) u ∼(5, 65) u ∼(5, 20) u ∼(5, 15) u ∼(60, 600)
M4 u ∼(0, 1) u ∼(10, 20) u ∼(1, 4) u ∼(3, 10) u ∼(5, 25) u ∼(5, 70) u ∼(5, 25) u ∼(5, 15) u ∼(120, 540)
M5 u ∼(0, 1) u ∼(5, 20) u ∼(1, 6) u ∼(3, 10) u ∼(5, 30) u ∼(5, 50) u ∼(5, 30) u ∼(5, 15) u ∼(180, 600)
M6 u ∼(0, 1) u ∼(15, 20) u ∼(1, 5) u ∼(3, 9) u ∼(5, 35) u ∼(5, 60) u ∼(5, 35) u ∼(5, 15) u ∼(120, 480)
M7 u ∼(0, 1) u ∼(10, 25) u ∼(1, 7) u ∼(2, 12) u ∼(5, 40) u ∼(5, 70) u ∼(5, 40) u ∼(5, 15) u ∼(180, 540)
M8 u ∼(0, 1) u ∼(10, 20) u ∼(1, 6) u ∼(6, 13) u ∼(5, 45) u ∼(5, 40) u ∼(5, 45) u ∼(5, 15) u ∼(300, 600)
M9 u ∼(0, 1) u ∼(10, 30) u ∼(1, 7) u ∼(5, 10) u ∼(5, 50) u ∼(5, 50) u ∼(5, 50) u ∼(5, 15) u ∼(180, 540)
M10 u ∼(0, 1) u ∼(6, 25) u ∼(1, 8) u ∼(6, 11) u ∼(5, 60) u ∼(5, 60) u ∼(5, 60) u ∼(5, 15) u ∼(120, 600)

Large L1 u ∼(0, 1) u ∼(10, 30) u ∼(1, 9) u ∼(3, 9) u ∼(5, 10) u ∼(5, 60) u ∼(5, 10) u ∼(5, 15) u ∼(240, 600)
L2 u ∼(0, 1) u ∼(30, 40) u ∼(1, 5) u ∼(4, 16) u ∼(5, 15) u ∼(5, 65) u ∼(5, 15) u ∼(5, 15) u ∼(420, 540)
L3 u ∼(0, 1) u ∼(10, 25) u ∼(1, 7) u ∼(4, 15) u ∼(5, 20) u ∼(5, 70) u ∼(5, 20) u ∼(5, 15) u ∼(180, 600)
L4 u ∼(0, 1) u ∼(10, 30) u ∼(1, 6) u ∼(5, 14) u ∼(5, 25) u ∼(5, 50) u ∼(5, 25) u ∼(5, 15) u ∼(120, 540)
L5 u ∼(0, 1) u ∼(30, 40) u ∼(1, 8) u ∼(6, 15) u ∼(5, 30) u ∼(5, 40) u ∼(5, 30) u ∼(5, 15) u ∼(180, 600)
L6 u ∼(0, 1) u ∼(20, 25) u ∼(1, 7) u ∼(5, 10) u ∼(5, 35) u ∼(5, 30) u ∼(5, 35) u ∼(5, 15) u ∼(120, 480)
L7 u ∼(0, 1) u ∼(20, 30) u ∼(1, 6) u ∼(5, 10) u ∼(5, 40) u ∼(5, 20) u ∼(5, 40) u ∼(5, 15) u ∼(240, 540)
L8 u ∼(0, 1) u ∼(30, 35) u ∼(1, 7) u ∼(8, 10) u ∼(5, 45) u ∼(5, 45) u ∼(5, 45) u ∼(5, 15) u ∼(180, 600)
L9 u ∼(0, 1) u ∼(20, 35) u ∼(1, 9) u ∼(8, 12) u ∼(5, 50) u ∼(5, 50) u ∼(5, 50) u ∼(5, 15) u ∼(120, 540)
L10 u ∼(0, 1) u ∼(30, 40) u ∼(1, 7) u ∼(9, 20) u ∼(5, 60) u ∼(5, 60) u ∼(5, 60) u ∼(5, 15) u ∼(240, 600)

Also, for the test instances, we consider 9 laboratories and 10 depots. Their coordinates (longitude and latitude) are as follows:
Laboratories:

(48.09560, 16.25698), (48.17613, 16.28058), (48.19928, 16.26544), (48.24822, 16.34915), (48.22083, 16.46458), (48.22302, 16.36429),
(48.18018, 16.34967), (48.18270, 16.40906), (48.19506, 16.34795)

Depots:

(48.17722, 16.41415), (48.21423, 16.37445), (48.20315, 16.34597), (48.19988, 16.37220), (48.18865, 16.32995), (48.24959, 16.41844),
(48.25584, 16.43712), (48.21587, 16.33444), (48.19247, 16.34709), (48.21253, 16.35301)

Appendix D

Table D1 demonstrates the payoff of single-objective versus multi-objective optimization using the MOVNS algorithm. The model was solved for 30
cases with different scales to compare single-objective optimization with multi-objective optimization. For single-objective optimization, the first or
second objective function was removed (Best OBJ1 column/Best OBJ2 columns), respectively. In the ‘Best Solution of Multi-OBJ’ column, the best
solution for each Pareto front in each case was selected. For the first objective function, the maximum number of Pareto solutions was selected, and for
the second objective function, the minimum number of Pareto solutions was selected. As can be seen, the comparison between the single-objective
model and the multi-objective model demonstrates that the Pareto solutions are between the global optimum of the single-objective function;
however, in some cases, they are equal, for example, in instances 1 to 3 and 5.
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Table D1
Payoff of single objective versus multi objective optimization using MOVNS algorithm.

Instances Single OBJ Best solution of Multi OBJ

Best OBJ1 Best OBJ2

S1 2.13 1 (1.73,1)
S2 2.54 1 (1.54,1)
S3 3.92 2 (2.65,2)
S4 5.35 2 (5.15,3)
S5 5.18 3 (4.94,3)
S6 6.07 4 (5,83,5)
S7 12.34 6 (10.79,8)
S8 9.25 4 (8.25,7)
S9 17.74 6 (17.06,9)
S10 25.09 5 (22.25,8)
M1 22.10 8 (18.64,10)
M2 38.42 11 (34.56,15)
M3 48.83 16 (43.01,19)
M4 41.26 21 (40.35,26)
M5 46.77 18 (41.94,22)
M6 63.32 20 (57.16,24)
M7 86.07 23 (80.90,29)
M8 55.68 21 (51.64,23)
M9 92.90 26 (84.25,32)
M10 118.04 30 (112.78,33)
L1 82.67 36 (74.55,41)
L2 102.43 29 (95.17,32)
L3 107.85 34 (98.96,39)
L4 98.11 38 (91.85,44)
L5 130.07 44 (119.89,46)
L6 153.56 50 (138.05,55)
L7 164.99 51 (158.74,53)
L8 238.21 58 (223.83,65)
L9 188.06 69 (176.96,74)
L10 274.79 63 (262.30,69)

Fig. D1 represents the Pareto frontier of the problem. We present 20 random Pareto points (10 small cases and 10 medium cases) to illustrate the
non-dominance of the frontier and the conflict between objective functions. As can be seen, as the first objective function improves, the second
objective function deteriorates. Also, except for the first three Pareto solutions where the MOVNS solution and the epsilon constraint solution overlap,
the epsilon constraint solution was better than the MOVNS solution in all other cases. Moreover, MOVNS performs better than NSGA-II in terms of
Pareto solutions, as it is closer to the epsilon constraint solution.

Fig. D1. The Pareto solutions.

Appendix E

Linearization process of Constraint (14):

zlvt ≤ M ×
∑

iϵNc

xʹ́
ilvt l ∈ L, v ∈ V, t ∈ T (e1)

P. Ghasemi et al. Omega 135 (2025) 103305 

22 



zlvt ≤
∑

iϵNc

yivt l ∈ L, v ∈ V, t ∈ T (e2)

− zlvt +
∑

iϵNc

yivt + M ×
∑

iϵNc

xʹ́
ilvt ≤ M l ∈ L, v ∈ V, t ∈ T (e3)

Data availability

Data will be made available on request.
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