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Certifying entanglement is an important step in the development of many quantum technologies,
especially for higher-dimensional systems, where entanglement promises increased capabilities for
quantum communication and computation. A key feature distinguishing entanglement from classical
correlations is the occurrence of correlations for complementary measurement bases. In particular,
mutually unbiased bases (MUBs) are a paradigmatic example that is well-understood and routinely
employed for entanglement certification. However, implementing unbiased measurements exactly is
challenging and not generically possible for all physical platforms. Here, we extend the entanglement-
certification toolbox from correlations in MUBs to arbitrary bases. This practically significant
simplification paves theway for efficient characterizations of high-dimensional entanglement in awide
range of physical systems. Furthermore, we introduce a simple three-MUBs construction for all
dimensions without using the Wootters–Fields construction, potentially simplifying experimental
requirementswhenmeasurements inmore than twoMUBsare needed, especially in high-dimensional
settings.

Entanglement is an important signature of “quantumness” and a central
resource in quantum information processing. In particular, it is a crucial
ingredient to achieving quantum advantages in many communication1–5,
metrological6,7, and computational tasks8. Consequently, continuous efforts
are being made to develop mathematical tools for the detection and
quantification of entanglement in experiments9.

The certification of high-dimensional entanglement is of particular
relevance to setups that usemultilevel quantumsystems to store andprocess
information10,11. Entanglement in higher dimensions can be more robust to
noise and can allow for higher data throughput whenused for teleportation,
such that the performance of many quantum information-processing tasks
improves with the dimension of the accessible entanglement resources. For
example, using higher-dimensional entanglement can improve secure key
rates in quantum key distribution12 and benefit a wide range of quantum
technologies such as entanglement-enhanced imaging13–15.

Moreover, entanglement certification can serve as a benchmark for
quantum computers and simulators: If a device is supposed to output
states with high-dimensional entanglement, then certifying the latter in
the actual outputs can indicate how well the device is functioning11,16. At
the same time, entanglement certification can increase one’s confidence
that a quantum advantage can be achieved since the hardness of

classically simulating a many-body system increases with the amount of
entanglement17–19.

A central intuition behind entanglement detection is that entangle-
ment leads to correlations between outcomes of local measurements in two
ormore complementary bases. In this context, complementarity is typically
approached via the extremal case ofmutually unbiased bases (MUBs). For a
quantum system prepared in any basis state of any one of these bases, all
measurement outcomes for any of the other MUBs are equally likely, i.e.,
knowing the measurement outcome in one basis tells us nothing about the
outcomes in the complementary bases. Consequently, MUBs have been at
the centre of many existing entanglement-detection methods10,20–23. Corre-
lationsmeasured inMUBs can in turn be used to boundwell-definedfigures
of merit that quantify how strongly entangled the underlying state is. An
example of such a quantity is the Schmidt number24—a generalization of the
Schmidt rank for mixed states—that is used here to quantify entanglement
dimensionality.

However, while some systems allow one to freely select the measure-
ment bases (e.g., via spatial light modulators and single-mode fibres for
spatial degrees-of-freedomof photons10,22), this is generically not the case for
all setups. The inability to measure in the desiredMUBs often goes hand in
handwith (but does notmathematically imply) the impossibility of carrying
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out tomographically complete sets of measurements. For previous
approaches to certifying high-dimensional entanglement, such limited
control has been prohibitively restrictive.

Nevertheless, classical correlations cannot simultaneously be arbi-
trarily strong for any set of bases that are complementary in the sense of
corresponding to non-commuting observables. Indeed, the detection of
bipartite entanglement from measurements in arbitrary bases can, in
principle, be achieved via entropic uncertainty relations25,26, which provide a
lower bound on the entanglement cost27, but not on the Schmidt number.

In this work, we fill this gap by proposing a family of Schmidt-number
witnesses based on correlations in at least two coordinated local ortho-
normal bases which can be chosen arbitrarily. We provide analytic upper
bounds of the corresponding witness operators evaluated on any bipartite
state with Schmidt number at most k (Theorem 1 & Lemma 1). The main
advantage of our method is that the upper bounds depend only on the
absolute values of the basis-vector overlaps and are independent of the
relative phases between themeasurement bases, which are often not directly
measurable in experiments. Therefore, our witness significantly simplifies
the requirements for certifying high-dimensional entanglement in experi-
ments across a wider range of platforms. We also show that the bounds are
the tightest when the underlyingmeasurement bases aremutually unbiased
(Corollary 1), confirming the intuition that MUBs are optimal for entan-
glement detection within this framework.

In addition, we analytically lower bound the entanglement fidelity
(or the singlet fraction28,29)—the maximum fidelity of a bipartite state
with any two-qudit maximally entangled state—using our witness
(Theorem 1 & Lemma 1). This provides an alternative way to quantify
high-dimensional entanglement. Next, we demonstrate the effectiveness
of our Schmidt-number witnesses with two examples: the two-qudit
isotropic state and the noisy two-qudit purified thermal states, and
evaluate the difference between the actual entanglement fidelity and our
bound for these examples (see also the Supplementary Information
which includes the detailed analyses of the examples of isotropic states
and noisy purified thermal states, discussions regarding the applications
of random measurement bases and AMUBs, the proofs of eqs. (12) and
(13) and Lemma 2, and refs. 30–47). To complete our analysis, we
compare the white-noise tolerances of our witnesses with those proposed
in ref. 10. We also discuss the possibility of using random measurement
bases in high dimensions or approximately MUBs (AMUBs) (see the
Supplementary Information) to witness Schmidt numbers and propose a
simple (and, to the best of our knowledge, new) construction of three
MUBs for all dimensions without using the Wootters-Fields
construction48. Finally, we compare various existing methods for certi-
fying high-dimensional entanglement with our method in Table 1.

Results
Background and notation
To detect bipartite entanglement, partiesA andBmeasure their shared state
ρAB in m local bases with global projectors jezaihezaj � j~ez�a ih~ez�a j where
jezai
� �d�1

a¼0 is the z-th orthonormal basis of the m bases, jϕ�i denotes the
complex conjugate of the state jϕi with respect to the computational basis
jiif gd�1

i¼0 , and j~ez�a i :¼ Ujez�a i withU ∈ U(d) fixed for all a and z. Note that
we do not require themmeasurement bases to be MUBs as in ref. 23. The
entanglement witness is then defined to be the sumof the probabilities of all
matching outcomes in all matching pairs of bases, i.e.,

SðmÞ
d ðρABÞ ¼

Xm
z¼1

Xd�1

a¼0

heza;~ez�a jρABjeza;~ez�a i: ð1Þ

In Theorem 1, we show how the upper bound of eq. (1) depends on the
Schmidt number k(ρAB)

24 of the state ρAB, which is defined as

kðρABÞ :¼ inf
DðρABÞ

max
fðpi;jψiiÞgi

rankðTrBjψiihψijÞ
� �

; ð2Þ

where DðρÞ is the set of all pure-state decompositions, fðpi; jψiiÞgi, of ρ ¼P
ipijψiihψij and fpigi is a probability distribution. In addition, we show

that the maximum fidelity of ρAB with any maximally entangled state,

F ðρABÞ :¼ max
UA

hΦþ
d jðUA � 1BÞρABðUA � 1BÞyjΦþ

d i; ð3Þ

where the maximization is over all unitaries UA acting on subsystem A and

jΦþ
d i ¼ 1ffiffi

d
p
Pd�1

i¼0 jiii, can be lower bounded using the quantity SðmÞ
d ðρABÞ.

From now on, we call F ðρABÞ the entanglement fidelity (also known as the
singlet fraction in the case of qubits28,29) of ρAB.

Let us define themaximumandminimumoverlaps between two bases

z and z0 as cz;z
0

max ¼ maxa;a0 jhezajez
0
a0 ij2 and cz;z

0
min ¼ mina;a0 jhezajez

0
a0 ij2,

respectively.We thendefineC ¼fjhezajez
0
a0 ij2ga;a0;z≠z0 (C ¼ fðcz;z0max; c

z;z0
minÞgz≠z0 )

to be the set that contains all (pairs of maximum and minimum) overlaps
between any two different measurement bases.

Schmidt-number witness & entanglement-fidelity bound
Wenowpresent ourmain results that use the expectation valueSðmÞ

d to infer
lower bounds on the Schmidt number and entanglement fidelity of the
state ρAB.

Theorem 1. For any bipartite state ρAB of equal local dimension d and
Schmidt number at most k, it holds that

SðmÞ
d ðρABÞ≤

kðm� T ðCÞÞ
d

þ T ðCÞ ¼: Bk; ð4Þ

where the upper bound Bk depends on the integers d and k, the number
of measurement bases m, and a quantity T ðCÞ which depends on the
set of bases overlaps. More specifically, T ðCÞ :¼ minfλðCÞ;mg,
λðCÞ :¼ 1

2 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2d

P
z≠z0G

z;z0
q� �

≥ 1, andGz;z0 :¼ 1� ðd þ 1Þcz;z0min þ 1
d

P
a;a0 j

hezajez
0
a0 ij4. Furthermore, the entanglement fidelity of ρAB can be lower

bounded as follows:

F ðρABÞ≥ max 0;
SðmÞ
d ðρABÞ � T ðCÞ
m� T ðCÞ

( )
¼: Fm: ð5Þ

The proof of Theorem 1 is given in full in the Methods. Theorem 1

implies that if themeasuredquantitySðmÞ
d ðρABÞ exceedsBk for 1 ≤ k ≤ d− 1,

then the Schmidt number of ρAB must be at least k+ 1. For a given set of

local measurement bases ffjezaigd�1
a¼0g

m

z¼1, parties A and B can maximize the
certified Schmidt number by choosingU (their relative reference frame) that

maximizes SðmÞ
d ðρABÞ since the upper bound in eq. (4) is independent of U.

Notice that if all the measurement bases are MUBs, i.e.,
jhezajez

0
a0 ij2 ¼ 1

d 8 a; a0; z≠z0, then T ðCÞ ¼ 1 and the bound in eq. (4) coin-
cides with the one in ref. 23. Since T ðCÞ≥ 1 for anym ≥ 2, we immediately
arrive at Corollary 1.

Corollary 1. The boundBk in eq. (4) is the tightest for all k < dwhen them
measurement bases are MUBs.

In case we only have access to the set of maximum and minimum
overlaps C instead of all the overlaps C, we can still bound the Schmidt
number and the entanglement fidelity by loosening the bounds in Theorem
1. By maximizing the term

P
a;a0 jhezajez

0
a0 ij4 in eq. (4) such that the overlaps

are compatiblewithC, we obtain the following lemmawhich is proven in the
Methods.
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Lemma 1. For any bipartite state ρAB of equal local dimension d and
Schmidt number at most k, it holds that

SðmÞ
d ðρABÞ≤

kðm� T ðCÞÞ
d

þ T ðCÞ ¼: Bk; ð6Þ

where the upper bound Bk depends on d, k, the number of measurement
bases m, and a quantity T ðCÞ which depends on the set of minimum and
maximum bases overlaps. More specifically, T ðCÞ :¼ minfλðCÞ;mg,

λðCÞ :¼ 1
2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2d

P
z≠z0Gðcz;z

0
max; c

z;z0
minÞ

q	 

≥ 1, Gðcz;z0max; c

z;z0
minÞ :¼ 1�

ðd þ 1Þcz;z0min þΩz;z0 , Ωz;z0 :¼ Lz;z
0 ðcz;z0maxÞ

2 þ ðd � Lz;z
0 � 1Þðcz;z0minÞ

2 þ ½1

�Lz;z
0
cz;z

0
max � ðd � Lz;z

0 � 1Þcz;z0min�2, and

Lz;z
0
:¼

1�cz;z
0

mind

cz;z
0

max�cz;z
0

min

� �
if cz;z

0
max>c

z;z0
min;

d if cz;z
0

max ¼ cz;z
0

min:

8><>: ð7Þ

Furthermore, the entanglement fidelity of ρAB can be lower bounded as
follows:

F ðρABÞ≥max 0;
SðmÞ
d ðρABÞ � T ðCÞ
m� T ðCÞ

( )
¼: Fm: ð8Þ

Similar to Theorem 1, if SðmÞ
d ðρABÞ>Bk, the Schmidt number of ρAB

must be at least k+ 1. Furthermore, if all themeasurement bases areMUBs,
i.e., cz;z

0
max ¼ cz;z

0
min ¼ 1

d 8 z; z0, then T ðCÞ ¼ 1 and Bk coincides with the
bound in ref. 23. Since T ðCÞ≥ 1, MUBs give the tightest bounds Bk.

Examples of witness violation
To illustrate that ourmethod can verify Schmidt numbers and lower bound
the entanglementfidelity,wefirst applyourwitness and thefidelity bound to

a standard benchmark for entanglement witnesses, i.e., isotropic states
ρisoAB ¼ ð1� pÞjΦþ

d ihΦþ
d j þ p

d2
1d2 , whose Schmidt number is k+ 1 if and

only if the white-noise ratio p satisfies dðd�k�1Þ
d2�1

≤ p< dðd�kÞ
d2�1

¼: pðkÞiso
24. We

compare this with the noise that our witness can tolerate until we can no
longer witness the actual Schmidt number of ρisoAB. Since

SðmÞ
d ðρisoABÞ ¼ p

m
d
þ ð1� pÞm; ð9Þ

for SðmÞ
d ðρisoABÞ to exceed the bound Bk in Theorem 1, the white-noise ratio

must satisfy

p<
ðm� T ðCÞÞðd � kÞ

mðd � 1Þ ¼: pðkÞc;m: ð10Þ

In the case when d+ 1 MUBs exist andm = d+ 1, we see that pðkÞc;m ¼ pðkÞiso
for all k.

Suppose thatwehave theworst possible choice ofmeasurement bases

for a given cmin :¼ minz;z0 c
z;z0
min such that cmin ¼ cz;z

0
min and cz;z

0
max ¼ 1�

ðd � 1Þcmin ¼: cmax for all z; z
0 (As it is harder to witness a state to have

Schmidt number k+ 1 with a larger boundBk, this is the worst-case bases

choice for a given cmin ¼ minz;z0 c
z;z0
min because (i) it gives themaximal value

allowed for cmax ¼ maxz;z0 c
z;z0
max such that

P
a0 jhezajez

0
a0 ij2 ¼ 1 holds for all

a, and (ii) T ðCÞ (and therefore Bk) increases with cmax for a fixed cmin due
to the enlargement of the feasible set of the optimization problem in Pro-
position 3). We can use the upper bound in Lemma 1 by replacing T ðCÞ in
eq. (10) with T ðCÞ, where λðCÞ ¼ 1

2 ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2dmðm� 1ÞGðcmax; cminÞ

q
Þ

in eq. (6). To verify that our state has Schmidt number at least k+ 1, the
bound Bk must be violated. In Fig. 1, the white-noise thresholds pðkÞc;m for

witnessing the Schmidt number of ρisoAB in d= 5 to be at least k+ 1 with m
measurement bases are plotted against the parameter ϵmin :¼ 1

d � cmin,

Table 1 | A comparison of different methods for the verification of high-dimensional entanglement

Methods Features and experimental/computational requirements

Our witness •Measure in at least two coordinated local (arbitrary) orthonormal bases
• Only need to know the (minimum and maximum) absolute values of the overlaps between the local measurement bases

Reference 10’s witness • Precise control over the absolute values & the complex phases of the overlaps between different local measurement bases
and within each basis

•Measure in the computational basis+ at least one coordinated “tilted” basis

SDP witness55 • Treat bases bias as imperfect implementations of measurements in MUBs
•Memory issue/long computational runtime for large dimensions
• Efficient only for small dimensions in which case it is possible to obtain tighter bounds compared to our witness

Entropic uncertainty relationship25,27

[eq. (17.135) in ref. 56]
• Need to know the absolute values of the bases overlaps of only one party and the classical entropies corresponding to the
two parties’ measurements

• Can lower bound the distillable entanglement instead of the Schmidt number

Generalized Bell
inequalities57,58

• To witness Schmidt number without any measurement assumptions, require non-trivial optimization over all possible local
measurements and all states with Schmidt number ≤ k for every local dimension, which is computationally costly

• Certify lower Schmidt numbers than other methods can in general
•Standard approaches involve finding the largest eigenvalue corresponding to eigenvectors with Schmidt rank ≤ k of the Bell
operator59 associated with restricted measurement settings58,60 to keep optimization problems numerically tractable (more
specifically, ref. 58 usesphysical arguments to restrict themaximization of theBell operator’s expectation value to restricted
sets of states with different maximum Schmidt numbers—referred to therein as entanglement dimensions—of which the
union is believed to contain the experimental states) → also require measurement assumptions and are computationally
feasible only for small dimensions

Correlation-matrix norms from
randomized measurements61

• Independent of the relative reference frame between the two parties as the matrix p-norms for all even p 2 N of the
correlation matrix remain unchanged under any local unitary transformation of a bipartite state61.

• Require sampling local unitaries randomly from (Haar measure or) t-designs, where exact sampling is highly inefficient62.
•While approximate sampling from t-designs canbeefficient63, it is unclear howapproximate sampling canaffect theSchmidt
-number witness in ref. 61.

• Analytic bounds of the 2- and 4-norms of the correlation matrices corresponding to states with Schmidt number ≤ k are
known only for k = 2

• For certifying Schmidt number ≥ 3, require numerical optimizations which can be computationally costly for large
dimensions and the bounds can be loose since there are no tighter known constraints on the singular values of the
correlation matrix other than the purity bound Trðρ2Þ<1 (see Appendix C of ref. 61.)
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which quantifies the deviation of the measurement bases fromMUBs. Note
that themaximumvalue that cmin can take is

1
d inorder for

P
a0 jhezajez

0
a0 ij2 ¼ 1

to hold for all a, z and z0, so ϵmin 2 ½0; 1d�. When ϵmin ¼ 0, corresponding to

measurements in MUBs, pðkÞc;m attains its maximum. In general, the witness

can be violated undermorewhite noise for smaller k. In addition, as pðkÞc;m goes

to zero when λðCÞ ¼ m, we see that whenever

cmin ≤
3d � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 þ 10d � 7

p
2dðd � 1Þ ; ð11Þ

we cannot witness any Schmidt number 2 ≤ k+ 1 ≤ d of the state ρisoAB as
pðkÞc;m ¼ 0 for all m ≥ 2. To see how the Schmidt number is related to other
standard measures of bipartite entanglement, we also compare the entan-
glement of formation (EoF) (see eq. (4.2) of ref. 49), the entanglement
fidelity/singlet fraction (EF/SF), and the negativity (see eq. (26) of ref. 50)
with the exact Schmidt number (SN) of the isotropic state of d = 5 for
different white-noise ratios p in Fig. 2.

In the Supplementary Information, we provide more elaborate ana-
lyses of our witness when applied to isotropic states. First, we show that the

entanglement fidelity of ρisoAB satisfies eq. (5) in Theorem1. Then, we provide
an example suggesting that our Schmidt-number witness can tolerate less
bases bias in larger local dimensions. Finally, we compare the white-noise
tolerance of our witness and our lower bound on the entanglement fidelity
with the counterparts from ref. 10.

To give a more comprehensive picture, we provide another example,
i.e., the purified thermal states with white noise, in the Supplementary
Information, to demonstrate that ourmethod also works in cases where the
eigenvalues of the single-party reduced states are not degenerate and to
compare the white-noise tolerance of our witness with that of ref. 10 in such
cases. We also show that adding a third basis that is slightly biased with
respect to two mutually unbiased measurement bases can increase our
witness’ tolerance to white noise in this example. On the other hand, adding
a basis that is too biased with respect to the other bases could worsen our
witnesses’ performance due to an increased upper bound Bk (Bk) in The-
orem1 (Lemma1).We summarize this observation in the following remark.

Remark 1. There exist scenarios where an additional measurement basis
improves the noise tolerance of our Schmidt-number witness. However, the
opposite can also occur for certain choices of bases. Therefore, in order to
witness the highest Schmidt number of a state, one should apply the witness
inequality in Theorem 1 or Lemma 1 to all subsets of the total set of m0

available measurement bases and find the largest k such that SðmÞ
d ðρÞ>Bk or

Bk whenevaluatedover all subsets ofm chosenbases for allm 2 f2; . . . ;m0g.
The intuitionbehindRemark1 is thatonecanpotentially certify ahigher

Schmidtnumberbypost-selecting a subset of the totalmeasurementdata that
achieves the optimal balance between showing the strongest measurement
correlations andminimizing bias in the measurement bases. In practice, this
can be realized easily by using as many local orthogonal measurement bases
as possible for both parties and then calculating both the sum of expectation
values SðmÞ

d ðρÞ and the bounds Bk or Bk for each subset of measurement
bases, using the corresponding subset of the full measurement data.

As a further remark, we observe that in d = 6, adding a fourth basis to a
set with three MUBs decreases the noise tolerance for witnessing Schmidt
numbers in isotropic states for a wide range of choices for the additional
basis. Since it iswidely believed that themaximumnumberofMUBs ind = 6
is 338, this observation could indicate that our witness performs best when
the localmeasurement bases consist only of themaximal set ofMUBs in the
given local dimension and no other bases.

Implication of concentration of measure
We have seen from Corollary 1 that measuring in MUBs will give the best
Schmidt-number witness. However, requiring all local measurement bases
to beMUBs is experimentally demanding as it requires precise control over
the relative phases among all measurement bases. In light of this practical
difficulty, it is natural to ask, how likely will a set of measurement bases
chosen uniformly at random in Cd be close to being mutually unbiased?
Using Lévy’s lemma34–36, a result from concentration of measure, we show
that the likelihood of any two randomly chosen orthonormal bases to be
biased decreases exponentially with the dimension d, i.e., for ϵ > 0,

Pr hezajez
0
a0 i



 

2 � 1
d





 



>ϵ� �
≤ 2 exp � dϵ2

18π3 ln 2

	 

; ð12Þ

for all a; a0 and z≠z0. Therefore, in large dimensions d, random measure-
ment bases are likely to be sufficient for our method to witness high-
dimensional entanglement. The proof of eq. (12) can be found in Sec. S.III of
the Supplementary Information.

Maximal number of orthonormal bases
Intuitively, one cannot construct arbitrarily many orthonormal bases when
the maximal and minimal bases overlaps are specified. For example, it was

known that there cannot be more than d+ 1 MUBs in Cd (where

cz;z
0

max ¼ cz;z
0

min ¼ 1
d)

48. By making a connection to theWelch bounds37, we can

Fig. 2 | Comparing other standard measures of bipartite entanglement with the
Schmidt number. The entanglement of formation (EoF), the entanglement fidelity/
singlet fraction (EF/SF), the negativity (Neg), and the exact Schmidt number (SN) of
the isotropic state ρisoAB of d = 5 are plotted for different white-noise ratios p.

Fig. 1 |White-noise tolerance of our Schmidt-number witness.The upper bounds
of the white-noise ratio, pðkÞc;m in eq. (10), for witnessing Schmidt number k+ 1 versus
ϵmin :¼ 1=d � cmin in local dimension d = 5, where we set cmax ¼ 1� ðd � 1Þcmin.
When ϵmin ¼ 0 (i.e., cmin ¼ 1=d for MUBs), pðkÞc;m reaches its maximum, (m − 1)
(d− k)/[m(d− 1)].Whenm = d+ 1 = 6, it coincides with pðkÞiso , themaximumwhite-
noise ratio for ρisoAB having Schmidt number k+ 1. The noise tolerance of the witness
is higher for largerm or smaller k but reduces as ϵmin increases, and eventually, when
ϵmin ≥ 1=5� ð7� ffiffiffiffiffi

17
p Þ=20 � 0:0562, we cannot witness non-trivial Schmidt

numbers of ρisoAB .
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upper bound the number of orthonormal bases using the function λðCÞ
defined in Theorem 1 such that

m≤
d þ 1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8λðCÞðλðCÞ � 1Þ

d2 � 1

r !
¼: md; ð13Þ

which is proven in Sec. S.IV of the Supplementary Information. ForMUBs,
we have λðCÞ ¼ 1, so eq. (13) becomes m ≤ d+ 1, which agrees with the
knownupper bound48. In general, the bound does not imply the existence of
md orthonormal bases. For instance, the existence of d+ 1 MUBs for non-
prime-power dimensions d is still an open problem51. In Sec. S.I.1 of
the Supplementary Information, we use this bound to show that eq. (5) is
satisfied for our example.

Simple construction of three MUBs in any dimension
As a by-product of investigating the use of AMUBs for witnessing high-
dimensional entanglement (see Sec. S.VI of the Supplementary Information),
we discover a construction of threeMUBs that has a simple analytic form and
works for anydimensiond 2 N. Thenice feature about this is that it does not
rely on (the tensor products of) theWootters–Fields bases48, which inevitably
requires knowing the prime factorization of the dimension. Since factorizing a
large integer is assumed to be hard (at least before any quantum device can
properly implement Shor’s algorithm)52 and the description of the
Wootters–Fields bases can be non-trivial for large prime powers48, con-
structing MUBs with the tensor products of the Wootters–Fields bases will
require a certain amount of computational overhead, whereas our construc-
tion does not suffer from these problems despite having only three MUBs.

The explicit form of our three-MUBs construction is stated in the
following lemmaand its proof canbe found inSec.S.Vof theSupplementary
Information.

Lemma 2. For any d 2 N, the three orthonormal bases fje1ai ¼ jaigd�1
a¼0,

fje2aigd�1
a¼0, and fje3aigd�1

a¼0 , with

je2ai ¼
1ffiffiffi
d

p
Xd�1

j¼0

ei2π
aj
dþf ðjÞ½ �jji; ð14aÞ

je3ai ¼
1ffiffiffi
d

p
Xd�1

j¼0

ei2π
ðd�pr Þj2

2d þaj
dþf ðjÞ

� �
jji; ð14bÞ

where f is any real-valued function, r 2 N∪ f0g, and p is any odd prime
such that gcd(d, p) = 1 and d > pr, are mutually unbiased. The simplest
example would be having pr = 1.

Since the function f (and to some degree, pr) can be chosen freely, it can
be optimized such that the relative phases in eqs. (14a) and (14b) are more
easily realizable for different experimental setups. This flexibility is parti-
cularly useful in caseswhere the dimension of theHilbert space inwhich the
experiment operates can change over time (e.g., in scenarioswhere onehas a
dynamical encoding protocol that encodes information in different sub-
spaces of the physical system at different times toprotect against some time-
dependent noise which affects various parts of the system in distinct ways)
or the experiment has to measure different subsystems with distinct sub-
space dimensions at different times, as recalibration of the relative phases of
our basesmay require less drastic changes to the setup thanusing (the tensor
product of) the Wootters-Fields bases. For the simplest example, if one
needs to encode information ormeasure in 3MUBs and the corresponding
Hilbert space switches from dimension 7 to 6, then our simple construction
only requires a slight change in the phases (especiallywith the free choices of
f(j) and pr for compensation), whereas using theWootters-Fields bases will
need to switch from the prime-dimensionWootters-Fields basis for d = 7 to
the tensor products of the Wootters-Fields bases of dimensions 2 and 3,
which introducemore drastic changes to the relative phases. For large d, the
change to the relative phases can be even more drastic.

Discussion
Our results provide a fresh perspective on the longstanding problem of
detecting entanglement using only a few, potentially restricted, measure-
ment settings. Specifically, we introduced a family of Schmidt-number
witnesses basedoncorrelations in at least twocoordinated local orthonormal
bases that can be chosen arbitrarily. We established analytic upper bounds
for the corresponding witness operators when evaluated on any bipartite
state with a Schmidt number of at most k. The main advantage of our
method is that the bounds depend solely on the absolute values of the
overlaps between different measurement bases, but not on their relative
phases, which are often inaccessible in experiments. These features of our
witness simplify experimental requirements for certifying high-dimensional
entanglement across many platforms.We demonstrated the effectiveness of
ourwitness with two-qudit isotropic states and noisy purified thermal states.
We also discussed the use of randommeasurement bases towitness Schmidt
numbers. Finally, we compare ourmethodwith various existing approaches
for certifying high-dimensional entanglement in Table 1.

As Corollary 1 suggests, one should aim at locally measuring in as
many MUBs as possible to get the best performance of our witness. Sadly,
the total number of MUBs is unknown for dimensions that are not prime
powers51. In fact, given the prime factorization of the dimension d ¼Qjp

nj
j

with p
nj
j <p

njþ1

jþ1 8 j, (tensor products of) the Wootters–Fields construction
only guarantees pn11 þ 1 MUBs to exist38. Alternatively, if one can measure
in bases that are nearly mutually unbiased, then one can construct d+ 1
AMUBs for any dimension d40.We constructed Schmidt-numberwitnesses
based on the AMUBs proposed in ref. 40, but we did not observe any
advantage of measuring in 4 ≤m ≤ d + 1 AMUBs compared to measuring
in threeMUBs in the non-prime-powered dimensions d = 6, 10, 14, 22 (see
Sec. S.VI of the Supplementary Information). The discovery of the simple
three-MUBs construction in any dimension (Lemma 2) by modifying the
AMUBs construction in ref. 40 suggests that there could be other con-
structions of AMUBs that are more suitable for witnessing Schmidt num-
bers and we leave finding such bases as an open problem. Furthermore,
given theflexibility of our three-MUBs construction, itmay even contribute
to answering a longstanding mathematical problem: Are there more than
three MUBs in even, non-prime-power dimensions such as d = 6?

Methods
Proof of Theorem 1
To prove Theorem 1, we start by stating the following propositions that we
will need in the main proof.

Proposition 1. It holds that A� 1djΦþ
d i ¼ 1d � AT jΦþ

d i for
all A 2 MðCdÞ.

Proof. Let A ¼Pd�1
i;j¼0 Aijjiihjj. Then,

A� 1djΦþ
d i ¼ 1ffiffi

d
p

Pd�1

i;j;k¼0
Aijjiihjjki � jki

¼ 1ffiffi
d

p
Pd�1

i;j¼0
Aijjii � jji;

ð15aÞ

1d � AT jΦþ
d i ¼ 1ffiffi

d
p

Pd�1

i;j;k¼0
Ajijki � jiihjjki

¼ 1ffiffi
d

p
Pd�1

i;j¼0
Ajijji � jii;

ð15bÞ

so we indeed have A� 1djΦþ
d i ¼ 1d � AT jΦþ

d i.□

Proposition 2. Let jψi and jϕi be normalized states. Then, the eigenvalues
of jψihϕj þ jϕihψj are upper bounded by jhψjϕij þ 1 and lower bounded
by �ðjhψjϕij þ 1Þ.
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Proof. Let jϕi ¼ ajψi þ bjψ?i such that ∣a∣2+ ∣b∣2 = 1, hψjψ?i ¼ 0, and
hψjψi ¼ 1 ¼ hψ?jψ?i. Then, jψihϕj þ jϕihψj ¼ ðaþ a�Þjψihψj þ b�jψi
hψ?j þ bjψ?ihψj, which has eigenvalues λ ± ¼ ReðaÞ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Im ðaÞ2

p
.

Since Re(a) ≤ ∣a∣ and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Im ðaÞ2

p
≤ 1, we have jλ± j≤ jaj þ 1 ¼ j

hψjϕij þ 1.□

Wearenow ready to state the formal proof ofTheorem1which follows
similar arguments for proving Result 1 in ref. 23 except here, the reference
frame of party B relative to party A’s is fixed by an arbitrary unitary and we
cannot assume that jhezajez

0
a0 ij2 ¼ 1

d for all z≠z
0.

Proof of Theorem 1. Let us define the witness operator

W ¼
Xm
z¼1

Xd�1

a¼0

jezaihezaj � j~ez�a ih~ez�a j ð16Þ

so that Tr ðWρABÞ ¼ SðmÞ
d ðρABÞ, where j~ez�a i ¼ Ujez�a i and U is a fixed

unitary that is the same for all a and z. Via the definition of j~ez�a i, we havePd�1
a¼0ðjezaihezaj � j~ez�a ih~ez�a jÞð1d � UÞjΦþ

d i ¼
Pd�1

a¼0ðjezaihezaj � Ujez�a i
hez�a jÞjΦþ

d i ¼
Pd�1

a¼0 jezaihezajezaihezaj � UjΦþ
d i ¼ ð1d � UÞjΦþ

d i ¼: jeΦþ
d i,

where we have used Proposition 1 in the second step. Hence, we have

WjeΦþ
d i ¼ mjeΦþ

d i. Since W is positive semi-definite, it has a spectral

decomposition:W ¼ mjeΦþ
d iheΦþ

d j þ
Pd2

i¼2 λijλiihλij where all normalized

eigenvectors jλii are orthogonal to jeΦþ
d i.

Next, we will derive an upper bound for all the eigenvalues λi with
i = 2,…, d2. To do this, we consider the operator

W2 ¼ W þP
z≠z0

P
a;a0

jhezajez
0
a0 ij2jeza~ez�a ihez0a0~ez

0�
a0 j

¼ W þP
z≠z0

cz;z
0

minT
z;z0
1 þ T 2;

ð17Þ

with T z;z0
1 ¼Pa;a0 jeza~ez�a ihez0a0~ez

0�
a0 j ¼ djeΦþ

d iheΦþ
d j since V ⊗ V* with V ¼Pd�1

j¼0 jezj ihjj is a symmetry of jΦþ
d i by Proposition 1, and

T 2 ¼
P
z≠z0

P
a;a0

jhezajez
0
a0 ij2 � cz;z

0
min

� �
eza~e

z�
a ihez0a0~ez

0�
a0



 


¼ P

z≠z0

P
a;a0

jhezajez
0
a0 ij2 � cz;z

0
min

� �
1
2 jeza~ez�a ihez0a0~ez

0�
a0 j þ H:c:

� �
;

ð18Þ

where we use the fact that jhezajez
0
a0 ij ¼ jhez0a0 jezaij 8 a; a0; z; z0 and “H.c.”

stands for the Hermitian conjugate of the previous term. Then, we use (i)
jhezajez

0
a0 ij2 � cz;z

0
min ≥ 0, (ii) jeza~ez�a ihez0a0~ez

0�
a0 j þ H:c: ≤ λmaxðjeza~ez�a ihez0a0�~ez

0�
a0 jþ

H:c: Þ1d2 , where λmaxðAÞ denotes the largest eigenvalue of A, (iii)
λmaxð

P
iAiÞ ≤

P
iλmaxðAiÞ for allAi 2 Herm ðCdÞ53, and (iv) Proposition 2

to obtain

T 2 ≤
1
2

P
z≠z0

P
a;a0

j ezajez
0
a0

� �j2 � cz;z
0

min

� �
λmax jeza~ez�a ihez0a0~ez

0�
a0 j þ H:c:

� �
1d2

≤ 1
2

P
z≠z0

P
a;a0

j ezajez
0
a0

� �j2 � cz;z
0

min

� �
j ezajez

0
a0

� �j2 þ 1
� �

1d2 :
ð19Þ

Finally, we use the equality
Pd�1

a0¼0 jhezajez
0
a0 ij2 ¼ 1 to get

T 2 ≤
1
2

P
z≠z0

P
a
ð1� cz;z

0
min � cz;z

0
mindÞ þ

P
a;a0

jhezajez
0
a0 ij4

" #
1d2

¼ d
2

P
z≠z0

1� ðd þ 1Þcz;z0min þ 1
d

P
a;a0

jhezajez
0
a0 ij4

" #
1d2

¼: d2
P
z≠z0

Gz;z01d2 :

ð20Þ

After combining eqs. (17) and (20), we obtain

W2 ≤W þ d
X
z≠z0

cz;z
0

minjeΦþ
d iheΦþ

d j þ
1
2
Gz;z01d2

	 

: ð21Þ

Since W2 ¼ m2jeΦþ
d iheΦþ

d j þ
Pd2

i¼2 λ
2
i jλiihλij and due to eq. (21), we

have that λ2i ≤ λi þ d
2

P
z≠z0G

z;z0 for i = 2, …, d2, which implies that

λi ≤
1
2 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2d

P
z≠z0G

z;z0
q� �

¼: λðCÞ. Since Gz;z0 ≥ 0 8 z≠z0 [see

eq. (19)], λðCÞ≥ 1. On the other hand, we know that λmaxðWÞ ¼
λmaxð

Pm
z¼1

Pd�1
a¼0 jezaihezaj � j~ez�a ih~ez�a jÞ≤Pzλmaxð

P
ajezai hezaj � j~ez�a i

h~ez�a jÞ ¼ m, so λi ≤ T ðCÞ :¼ minfλðCÞ;mg. Therefore, with

WjeΦþ
d i ¼ mjeΦþ

d i, we have that

W ≤ ðm� T ðCÞÞjeΦþ
d iheΦþ

d j þ T ðCÞ1d2 : ð22Þ

Finally, we arrive at our bound in eq. (4) in Theorem 1:

SðmÞ
d ðρABÞ ¼ Tr ðWρABÞ≤ ðm� T ðCÞÞF ðρABÞ þ T ðCÞ

≤ kðm�T ðCÞÞ
d þ T ðCÞ;

ð23Þ

wherewehave used the fact that heΦþ
d jρABjeΦþ

d i≤F ðρABÞ≤ k
d for all bipartite

state ρAB of equal local dimension d and Schmidt number at most k24. The
fidelity lower bound in eq. (5) can also be obtained by rearranging the first
line of eq. (23) and is non-trivial only if T ðCÞ<SðmÞ

d ðρABÞ. Otherwise, we set
Fm ¼ 0 as F ðρABÞ≥ 0 always holds.□

Proof of Lemma 1
To prove Lemma 1, we need the following proposition which is proven in
“Proof of Proposition 3”.

Proposition 3. The optimal solution to the optimization problem: maxPd2

i¼1 x
4
i subject to

Pjdþd
i¼jdþ1 x

2
i ¼ 1 for j = 0,…, d − 1, and 0≤ffiffiffiffiffiffiffiffi

cmin
p

≤ xi ≤
ffiffiffiffiffiffiffiffi
cmax

p
≤ 1 8 i is dfLc2max þ ðd � L� 1Þc2min þ ½1� Lcmax

�ðd � L� 1Þcmin�2g, where

L ¼
1�cmind
cmax�cmin

j k
if cmax > cmin;

d if cmax ¼ cmin:

(
ð24Þ

Proof of Lemma 1. We will prove that T ðCÞ≥ T ðCÞ for all bases overlaps
C so that

SðmÞ
d ðρABÞ ≤ Bk ¼ ð1� k

dÞT ðCÞ þ km
d

≤ ð1� k
dÞT ðCÞ þ km

d

ð25Þ

for all k ≤ d as in eq. (6). This boils down to showing thatP
a;a0 jhezajez

0
a0 ij4 ≤Ωz;z0d which implies Gz;z0 ≤Gðcz;z0max; c

z;z0
minÞ 8 z; z0.

For every pair of distinct bases z; z0, we want to maximizeP
a;a0 jhezajez

0
a0 ij4 given that

P
a0 jhezajez

0
a0 ij2 ¼ 1 8 a and 0≤

ffiffiffiffiffiffiffiffi
cmin

p
≤ j

hezajez
0
a0 ij≤

ffiffiffiffiffiffiffiffi
cmax

p
≤ 1 8 a; a0. By setting xi ¼ jhezajez

0
a0 ij and i ¼ daþ a0 þ 1,

we can apply Proposition 3 to obtain the maximum value, Ωz;z0d. Hence,
T ðCÞ≥ T ðCÞ andeq. (6) holds. Finally, thefidelity lower bound in eq. (8) can
be obtained in a similar fashion as in the proof of Theorem 1. The bound is
non-trivial only if T ðCÞ<SðmÞ

d ðρABÞ. Otherwise, we set Fm ¼ 0 since
F ðρABÞ≥ 0 always holds.□

Proof of Proposition 3. A general constrained optimization problem can
be written in the following form54.
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Problem1. Let~x 2 Rd . A constrainedoptimizationproblemcanbewritten
as

minimize f ð~xÞ
subject to h1ð~xÞ ¼ 0; . . . ; hmð~xÞ ¼ 0;

g1ð~xÞ≤ 0; . . . ; grð~xÞ≤ 0;
ð26Þ

where f,hi, gj are functionsmapping fromRd toR. The feasible setX � Rd

is composed of all the~x 2 Rd that satisfy all the equality and inequality
constraints. The associated Lagrangian of the problem is given by

Lð~x;~λ;~μÞ ¼ f ð~xÞ þ
Xm
i¼1

λihið~xÞ þ
Xr
j¼1

μjgjð~xÞ; ð27Þ

where λi; μj 2 R are Lagrange multipliers.
It is useful to give the following definitions which we quote directly

from ref. 54 before stating Lemma 3.

Definition1. (Localminimum). A vector~x� 2 X is a localminimumof the
objective function f over the feasible set X if there exists an ϵ > 0 such that
f ð~x�Þ ≤ f ð~xÞ for all~x 2 X where jj~x �~x�jj<ϵ.

Definition 2. (Active constraints). The set of active inequality constraints
Að~xÞ at a point~x 2 X is the set of indices of the inequality constraints that
are satisfied as equalities at~x, i.e., Að~xÞ ¼ fjjgjð~xÞ ¼ 0g.

Definition3. (Regularity).A feasible vector~x is regular if the gradients of all
the equality constraints ∇hið~xÞ; i ¼ 1; . . . ;m, and the gradients of all the
active inequality constraints ∇gjð~xÞ; j 2 Að~xÞ, are linearly independent.

Lemma 3. (Proposition 3.3.1 in ref. 54). Let~x� be a local minimum of
Problem 1 where f, hi, gj are continuously differentiable functions fromRd

to R, and assume that ~x� is regular. Then, there exist unique Lagrange
multiplier vectors ~λ

� ¼ ðλ�1 ; . . . ; λ�mÞT 2 Rm and ~μ� ¼ ðμ�1 ; . . . ; μ�r ÞT
2 Rr , such that

∇xLð~x�;~λ
�
;~μ�Þ ¼~0

μ�j ≥ 0; j ¼ 1; . . . ; r;

μ�j ¼ 0; 8 j =2Að~x�Þ;

8>><>>: ð28Þ

where Að~x�Þ is the set of active constraints at~x�.

Proof of Proposition 3. We will first translate our optimization problem
into the form in Problem 1, where we have f ð~xÞ ¼ �Pd2

i¼1 x
4
i ,

hjþ1ð~xÞ ¼
Pjdþd

i¼jdþ1 x
2
i � 1, g2jdþkþ1ð~xÞ ¼ xjdþkþ1 �

ffiffiffiffiffiffiffiffi
cmax

p
, and

gð2jþ1Þdþkþ1ð~xÞ ¼
ffiffiffiffiffiffiffiffi
cmin

p � xjdþkþ1 for j, k = 0, …, d − 1, where
0≤ cmin ≤ cmax ≤ 1. This is in fact a sum of d independent optimization
problems of identical form, which simplifies our whole optimization pro-
blem to:

minimize f ð~xÞ ¼ �d
Pd
i¼1

x4i

subject to hð~xÞ ¼Pd
i¼1

x2i � 1 ¼ 0;

gkð~xÞ ¼ xk �
ffiffiffiffiffiffiffiffi
cmax

p
≤ 0;

gdþkð~xÞ ¼
ffiffiffiffiffiffiffiffi
cmin

p � xk ≤ 0; k ¼ 1; . . . ; d;

ð29Þ

where we redefine the objective function f ð~xÞ. The associated Lagrangian is
given by

Lð~x; λ;~μÞ ¼ Pd
i¼1

�dx4i þ λx2i þ ðμi � μiþdÞxi
� �

�λ�Pd
i¼1

ð ffiffiffiffiffiffiffiffi
cmax

p
μi �

ffiffiffiffiffiffiffiffi
cmin

p
μiþdÞ;

ð30Þ

where λ; μj 2 R. Let us determine which ~x is regular by evaluating the
following gradients:

∇hð~xÞ ¼
X
i

2xijii; ∇gið~xÞ ¼ jii; ∇giþdð~xÞ ¼ �jii: ð31Þ

If gið~xÞ≤ 0 is active (i.e., xi ¼
ffiffiffiffiffiffiffiffi
cmax

p
), then giþdð~xÞ≤ 0 for the same imust

be inactive unless cmin ¼ cmax, and vice versa. Note that the only feasible
solution of the case when cmin ¼ cmax are non-regular since both gið~xÞ≤ 0
and giþdð~xÞ≤ 0 are active for all i, so ∇hð~xÞ;∇gið~xÞ, and ∇giþdð~xÞ for
i = 1, …, d are linearly dependent. Also, if

ffiffiffiffiffiffiffiffi
cmin

p
<xi<

ffiffiffiffiffiffiffiffi
cmax

p
, then both

gið~xÞ≤ 0 and giþdð~xÞ≤ 0 are inactive. Hence, for ~x� to be regular, the
following must hold:
(i) At least one component x�i must satisfy

ffiffiffiffiffiffiffiffi
cmin

p
<x�i <

ffiffiffiffiffiffiffiffi
cmax

p
so that both

gið~x�Þ≤ 0 and giþdð~x�Þ≤ 0 are inactive.
(ii) In case cmin ¼ 0, if at least one component x�i ¼

ffiffiffiffiffiffiffiffi
cmin

p ¼ 0 so that the
i-th component of∇hð~x�Þ is 0while∇giþdð~x�Þ ¼ �jii, then condition
(i) is not necessary. If x�i >08 i, condition (i) must hold.

Since the functions f, h, gi, gi+d for all i = 1, …, d are continuously
differentiable, all regular local minima of Problem (29)must satisfy Lemma
3. Let us evaluate

∇xL ¼
Xd
i¼1

�4dx3i þ 2λxi þ μi � μiþd

� �jii; ð32Þ

and consider the casewhere the i-th component of a regular localminimum
~x� satisfies

ffiffiffiffiffiffiffiffi
cmin

p
<x�i <

ffiffiffiffiffiffiffiffi
cmax

p
. By Lemma 3, μ�i ¼ μ�iþd ¼ 0, implying that

�4dðx�i Þ3 þ 2λ�x�i ¼ 0. Hence,

λ� ¼ 2dðx�i Þ2: ð33Þ

Since λ* is a parameter independent of the index i, we can constrain all
components of ~x� that lie within the interval, ð ffiffiffiffiffiffiffiffi

cmin
p

;
ffiffiffiffiffiffiffiffi
cmax

p Þ, with this
common parameter. According to eq. (33), x�i ¼ x�j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ�=ð2dÞ

p
for all i, j

such that
ffiffiffiffiffiffiffiffi
cmin

p
<x�i ; x

�
j <

ffiffiffiffiffiffiffiffi
cmax

p
.Hence, for any regular localminimum~x� of

the optimization problem (29), each component x�i can only take one of the
three possible values:

ffiffiffiffiffiffiffiffi
cmin

p
;
ffiffiffi
χ

p
;
ffiffiffiffiffiffiffiffi
cmax

p
, where χ 2 ðcmin; cmaxÞ.

Therefore, we can translate our optimization problem of (29) into a
much simplified form:

maximize d½Lc2max þ Lχ2 þ ðd� L� LÞc2min�
subject to Lcmax þ Lχ þ ðd� L� LÞcmin ¼ 1;

0 ≤ Lþ L≤ d; L; L 2 N;

0≤ cmin<χ<cmax ≤ 1;

ð34Þ

where we converted our problem back to a maximization problem. Clearly,
the optimal solution can be obtained by maximizing L while satisfying all
constraints, including eq. (34) which can be rearranged into:

L ¼ 1� cmind
cmax � cmin

� L
χ � cmin

cmax � cmin
: ð35Þ
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Since the last fraction lies within the interval (0, 1), the maximum value

allowed for L is b 1�cmind
cmax�cmin

c, leaving either L ¼ 0 if 1�cmind
cmax�cmin

2 N, or L ¼ 1

with χ ¼ 1� Lcmax � ðd � L� 1Þcmin otherwise.
Next,we consider the remaining cases: (1) regular localminima~x� with

no components satisfying
ffiffiffiffiffiffiffiffi
cmin

p
<x�i <

ffiffiffiffiffiffiffiffi
cmax

p
when cmin ¼ 0, and (2) non-

regular points~x with each component xi 2 f ffiffiffiffiffiffiffiffi
cmin

p
>0;

ffiffiffiffiffiffiffiffi
cmax

p g [see condi-
tions (i) and (ii)]. Note that the case where cmin ¼ cmax is included here.
Similar to the previous regular cases, we can simplify our optimization
problem to:

maximize d½Lc2max þ ðd � LÞc2min�
subject to Lcmax þ ðd � LÞcmin ¼ 1;

0≤ L≤ d; L 2 N; 0≤ cmin ≤ cmax ≤ 1:

ð36Þ

If cmin<cmax, the problem has a feasible optimum only if L ¼ 1�cmind
cmax�cmin

2 N.
If cmin ¼ cmax, the problem has a feasible solution only if cmin ¼ cmax ¼ 1

d.
Finally, since the global optimum to our initial Problem (29) is the

minimum over the set composed of all feasible points fulfilling Lemma 3 (a
set containing all regular local minima) together with all irregular feasible
solutions,we can conclude that the global optimum~x� satisfies: x�i ¼

ffiffiffiffiffiffiffiffi
cmax

p
for i = 1, …, L, x�j ¼

ffiffiffiffiffiffiffiffi
cmin

p
for j = L+ 1, …, d − 1, and

x�d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Lcmax � ðd � L� 1Þcmin

p
, where

L ¼
1�cmind
cmax�cmin

j k
if cmax>cmin;

d if cmax ¼ cmin:

(
ð37Þ

□
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