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Continuous superradiance using a narrow optical transition has the potential to improve the short-term
stability of state-of-the-art optical clocks. Even though pulsed superradiant emission on a mHz linewidth
clock transition has been shown, true continuous operation, without Fourier limitation, has turned out to be
extremely challenging. The trade-off between maintaining a high atomic flux while minimizing decoherence
effects presents a significant obstacle. Here, we discuss the design of a machine that could overcome this problem
by combining a high-flux continuous beam of ultracold strontium atoms with a bowtie cavity for the generation
of superradiant lasing. To evaluate the feasibility of our design, we present simulation results for continuous
high-efficiency cooling, loading, and pumping to the upper lasing state inside the bowtie cavity. We then present
two different models for simulating the generated superradiant field by taking into account position-dependent
shifts, collisional decoherence, light shifts, and atom loss. Finally, we estimate a laser linewidth of less than
100 mHz, limited by atom number fluctuations, resulting in an output power of hundreds of fW.
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I. INTRODUCTION

Optical atomic clocks are among the most precise devices
in the world, reaching instabilities of 6.6 × 10−19 after 1
hour of averaging [1]. State-of-the-art optical clocks operate
passively, meaning the frequency of the local oscillator is
intermittently compared with the frequency of a narrow clock
transition in an ensemble of trapped atoms or ions. The local
oscillator is typically a laser pre-stabilized to a high finesse
ultrastable macroscopic cavity. One of the main factors limit-
ing the short-term stability of optical clocks is the instability
of this macroscopic cavity, which is susceptible to thermal
fluctuations [2,3].

Conventional lasers operate in the good-cavity regime,
where the cavity loss rate κ is much less than the frequency
gain bandwidth �gain of the gain medium. The phase infor-
mation of such a laser is encoded in the light field. Here,
the output frequency is determined by the frequency νcavity

of a resonant cavity mode, which in turn follows the fluctu-
ations of the cavity length. In contrast, in bad-cavity lasers,
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�gain � κ , and the output frequency is determined primarily
by the transition frequency of the gain medium, making it
almost completely insensitive to fluctuations of the cavity
length. The remaining shift can be described by the “cavity
pulling”, which is reduced by a factor �gain/κ compared to a
good-cavity laser [4]. This opens the possibility of creating
an active frequency standard by combining a “bad” cavity
with an extremely narrow bandwidth gain medium, such as
forbidden transitions in alkaline-earth atoms [5,6]. Because
the linewidth of such a laser is mainly determined by the gain
medium itself, spontaneous decay of the excited state, pump-
ing field, etc., will lead to phase diffusion of the collective
atomic dipole, which limits the achievable performance. Nev-
ertheless, a submillihertz level laser in the optical frequency
domain is within reach [4,6,7].

A special case of a bad-cavity laser is a so-called super-
radiant laser [8]. In this type of laser, the cavity linewidth κ

is large in comparison to the cavity-mediated collective decay
rate of the gain medium. Superradiance refers to the collective
emission of light, enhanced by mutual synchronization of ra-
diating dipoles that interact with each other [9]. Superradiance
has been initially predicted for the case of multiple emitters
localized in a region smaller than the radiation wavelength
[10]. Here, they are prepared in the excited state and then emit
a single bell-shaped light pulse whose peak intensity scales as
N2, where N is the number of emitters. Counterintuitive to this
picture, superradiance can also be observed if the emitters are
in a dilute gas, but are synchronized by a shared cavity mode.
More explicitly, the strong collective coupling created by an
overdamped cavity mode is used to synchronize them [11,12].
In addition, if the inversion of the gain can be maintained by
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some pumping mechanism, we can leave the pulsed regime
and achieve a continuously operating superradiant laser.

True superradiant lasing is difficult to realize experimen-
tally, so many experiments work in the superradiant crossover
regime [13–15]. In this regime, the cavity linewidth κ is larger
than �gain, but smaller than the collectively enhanced decay
rate of the gain medium. In pulsed operation, the peak in-
tensity of the light pulse scales linearly with the number of
atoms [14,15], in contrast to the quadratic scaling expected
in the “true” superradiant regime. In addition, reabsorption of
the intracavity photons and subsequent reemission can lead to
oscillations in the intensity of the light pulse, as was observed
in Ref. [13]. These oscillations can lead to instability in a
continuously operated system, making the crossover regime
not ideal for an active frequency standard [16,17].

To date, a continuously operating active optical clock has
still not been created, although important steps towards this
goal have been taken. In particular, pulsed superradiant las-
ing using the extremely narrow optical 1S0 → 3P0 transition
has been observed with 87Sr atoms [11,18,19]. In addition,
quasi-continuous laser operation has been demonstrated in
the superradiant crossover regime on the 1S0 →3 P1 transition
of 88Sr [13,14]. In such a system, a sub-natural linewidth
has been achieved by optical repumping inside the emission
zone during the emission [20]. Unavoidably, this leads to
light shifts and extra dephasing, which can be reduced but
not totally eliminated [21]. Moreover, loss of atoms from the
cavity makes truly continuous operation in this kind of system
impossible.

To overcome these limitations and achieve continuous op-
eration, we can continuously supply new atoms in the upper
lasing state into the emission zone instead of repumping the
same sample of atoms. For this, a moving magic-wavelength
optical lattice, or an optical conveyor, can be used, which
reduces perturbations on the clock transition. Such an optical
conveyor can be formed by two counter-propagating running
waves with slightly different frequencies excited within a
ring cavity. The optical conveyor potential confines the atoms
deep in the Lamb-Dicke regime along the cavity axis, which
provides coherent interaction on the clock transition with the
resonant running-wave mode of the same cavity. Such a con-
figuration, in comparison to one in which the conveyor runs
perpendicular to the cavity axis, allows for increased atom-
cavity interaction time, while keeping the density of the atoms
moderate [22]. A similar configuration has also been proposed
to realize continuously operating passive optical lattice clocks
with Ramsey interrogation [23]. One of the main experimental
challenges in such a system is the continuous loading of high
flux of cold atoms into a ring cavity. Recent experiments have
demonstrated steps towards this goal, namely loading and
moving of µK cold atoms through a ring cavity [24–27]. These
promising results open the door to reaching truly continuous
superradiance on an extremely narrow transition in neutral
atoms soon. At the same time, the challenges associated with
a truly continuous system demand for in-depth simulations of
the main decoherence effects and systematics in such systems
in order to assess the expected performance of a continuous
superradiant laser.

In this article, we describe our apparatus at the University
of Amsterdam, which combines a truly continuous ultracold

strontium atom source with a ring cavity in order to produce
continuous superradiance on the 1S0 → 3P0 transition in the
future. We simulate the continuous loading of 88Sr atoms into
the ring cavity, the pumping process to the upper lasing state
to create a continuously inverted gain medium, and finally,
the generation of superradiant emission into a ring cavity
mode [22,24]. We also theoretically study the properties of
the generated light field and examine the main systematics in
the system.

II. DESIGN OF APPARATUS

Our apparatus uses a steady-state narrow-line magneto-
optical trap (MOT) operating on the 1S0 → 3P1 transition,
which provides a continuous µK-temperature source of stron-
tium. We employ a very similar design to the one described
in Refs. [28–30], in which we separate the laser cooling and
trapping stages in space rather than in time. Here we can
achieve continuous narrow-line MOT loading with a rate of
up to about 107 s−1 for 87Sr and 108 s−1 for 88Sr.

Once we have a continuous µK source of atoms, the atoms
must be coupled to each other to enable superradiant emis-
sion. To create the coupling field, we use a high-finesse ring
cavity in a bowtie configuration. Emission on the 1S0 → 3P0

transition requires isolation from stray photons and the in-
homogeneous magnetic fields of the continuously operating
MOTs, which can cause decoherence and introduce inho-
mogeneous broadening. We satisfy these requirements by
separating the science chamber that houses the ring cavity
from the red MOT chamber with a differential pumping tube
and enclose the science chamber in a magnetic shield to
prevent interference from the Zeeman slower and the MOTs’
magnetic fields. To ensure a uniform magnetic field along
the cavity mode, especially in the region where we expect
superradiant emission, we used COMSOL to evaluate the
magnetic field uniformity, including the Helmholtz magnetic
field coils around the science chamber, the Zeeman slower and
MOT magnetic fields, as well as the magnetic shields for the
science chamber. The magnetic field inside the shielding is
mainly determined by the two Helmholtz coils located inside
the shielding.

The distance between the red MOT and the optical lattice
is 20 cm, and the atoms must be transported and loaded into
the lattice in a continuous fashion, without significant heating.
Thus we choose to transport the atoms using a combination
of a Bloch accelerator [31] and a 200 W, 150 µm-waist dipole
guide beam with 1070-nm wavelength. The focus of the dipole
guide beam lies at the halfway point between the red MOT and
the optical lattice. The Bloch accelerator, created by the inter-
ference of two independent off-resonant laser beams aligned
at a shallow angle with respect to each other, overlaps the red
MOT. By detuning the frequency of one beam from the other,
we can create a moving potential to accelerate the atoms out of
the MOT and along the dipole guide beam, as shown in Fig. 1.
Atoms then travel along the dipole guide with a velocity of up
to 50 cm/s, while being supported against gravity.

As the atoms arrive in the science chamber, they are decel-
erated by a 689-nm molasses beam and captured in a crossed
dipole trap, which we call the “reservoir.” The reservoir trap
consists of another 1070-nm beam propagating in the (x, z)
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FIG. 1. The architecture of the apparatus. Atoms falling down from a 2D blue MOT (not shown) are continuously collected and cooled in
a red MOT. From there, they are loaded into a dipole guide formed by an incoherent 1070 nm laser beam. The guide beam is overlapped with a
shallow-angle lattice (dashed arrows), which can be used as a Bloch accelerator. The atoms are transported ∼20 cm from the red MOT chamber
to the magnetically shielded science chamber. In the science chamber, the atoms are initially decelerated using a retroreflected molasses beam
operating on the 7.5 kHz 1S0 → 3P1 transition (M1). They are then further cooled into a reservoir dipole trap (denoted by blue dashed oval,
formed by crossing of the guide beam with an extra 1070 nm beam propagating into the (x, z)-plane and tilted by 5◦ with respect to the z-axis)
by the second (M2) and third (M3) set of red retro-reflected molasses beams where (M3) is orthogonal to the (y, z) plane. Next, they are loaded
into the magic wavelength optical conveyor lattice. The optical conveyor moves upwards through a pumping zone, where atoms are pumped to
the excited 3P0 state. Finally, they are transported through a well-controlled emission zone, where superradiant emission into the cavity mode
can occur. Here, the bias magnetic field is generated by a set of Helmholtz coils inside the shield (not shown). After the emission zone, atoms
are ejected by a push beam to avoid coating the surface of the cavity mirrors.

plane, tilted by 5◦ with respect to the z axis, and is also
overlapped with the moving optical lattice. Two additional red
molasses beams, depicted by a red line and red oval in Fig. 1,
aid in cooling the atoms into the reservoir. The main purpose
of reservoir trap is to create a well-defined potential in which
to store cold atoms and to increase the loading efficiency
into the moving optical lattice. The vertically oriented lattice,
power-enhanced by the bowtie cavity, then acts as a conveyor,
moving the atoms from the reservoir upwards through the
pumping region, where they are optically pumped to the 3P0

state (Sec. IV). Once in the excited clock state, the atoms
continue traveling vertically to a well-controlled emission
zone, where superradiant emission into the resonant cavity
mode can occur (Sec. V). Near the top of the cavity, atoms
are ejected from the conveyor using a “push” beam resonant
with a cycling transition so they do not coat the cavity mirrors.

The crux of the design is the bowtie cavity, which creates
not only the conveyor lattice, which can only be achieved
in a ring cavity design, but also the coupling field necessary
to enable superradiant emission. We opt for a bowtie cavity
design instead of a three-mirror ring cavity configuration since
the close to normal angles between the cavity mode and the
mirrors in a bowtie cavity lead to minimal optical aberrations
of the cavity mode. A bowtie design also provides a compact
cavity format and requires only optical access from one side.
The overall dimensions of the cavity are 50 mm in length and
13 mm in width, and it is designed to have a free spectral
range of 1.5 GHz and a finesse of about 50 000 at 698 nm and

2000 at 813 nm. We use mirrors with an ultra high reflectivity
coating for 698 nm, keeping one outcoupler mirror with a
slightly higher transmission, which will allow us to increase
the outcoupled superradiant laser output, while maintaining
the desired finesse. In the interrogation zone, the minimum
waist of the moving lattice is around 140 µm and the 689 nm
cavity mode will be ≈10 µm smaller. To create a resonant
cavity mode with the 1S0 → 3P0 transition, the length of
the cavity can be tuned using a piezo stack attached to one
of the flat mirrors.

Our apparatus can accommodate experiments with both
87Sr and 88Sr. While the bosonic isotope has a relatively
simple level structure and a much higher natural abundance,
a strong magnetic field of a few hundred Gauss is required
to create a large enough transition linewidth [32] to pro-
duce the necessary atom-cavity interaction for superradiance
(Sec. V A). On the other hand, the fermionic isotope will
provide a much smaller flux of atoms into the cavity due to
the reduced natural abundance, but the 1S0 → 3P0 transition
is already slightly allowed even at zero magnetic field through
hyperfine interaction, with a linewidth of 2π × 1.35 mHz
[33]. Therefore only a small magnetic field is needed to avoid
degeneracy of energy levels and undesirable coherent effects.
For the reasons mentioned above, the following simulations
concentrate mainly on the bosonic isotope. The large bias
magnetic field needed to open the clock transition in 88Sr
will be generated by the set of Helmholtz coils inside the
shield, oriented along the x axis. Here, the main purpose of
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the shielding is the magnetic isolation between the red MOT
and the science chamber, which should allow us to maintain
a continuous red MOT. In this configuration, we can take full
advantage of the large atomic flux of 88Sr generated by our
continuous system.

III. COOLING AND LOADING THE ATOMS FROM THE
TRANSPORT GUIDE INTO THE OPTICAL CONVEYOR

We will now focus on simulations of the atoms as they ar-
rive in the science chamber. We first consider the three optical
molasses beams, which are used to cool the atoms before and
during transfer from the dipole guide and reservoir to the mov-
ing optical lattice [Fig. 1(b)]. The first molasses beam (M1)
addresses the 1S0 → 3P1, mJ = 0 cooling transition and is
used to slow the atoms in the guide beam that travel at high ve-
locities before reaching the reservoir. The second beam (M2)
is polarized in (y-z plane) and acts on 1S0 → 3P1, mJ = 1 and
propagates parallel to the first molasses beam, but addresses
the atoms in the region where the dipole guide, the reservoir,
and the cavity mode overlap. Finally, the third beam (M3),
acting on 1S0 → 3P1, mJ = 1, also interacts with atoms in the
reservoir but propagates perpendicular to the dipole guide.
The latter two beams cool the atoms to a mean energy low
enough to be trapped and drawn in by the optical conveyor.

A. Average energy of trapped atoms in the reservoir

We first simulate the average energy of the atoms once they
are collected in the reservoir. We discuss two key aspects of
the cooling and loading process: the differential light shift on
the cooling transition caused by the various light fields and the
scattering dynamics of the cooling process. We calculate the
light shifts using the expression for the polarizability given
in Appendix A and simulate the dynamics of the cooling
process using a semiclassical Monte Carlo method (SCMC),
explained in detail in Appendix B. With the SCMC method,
we calculate the probabilities of photon scattering from dif-
ferent molasses beams by individual atoms with specified
positions and velocities, assuming their internal state is in
local equilibrium.

The dipole potentials of the guide beam, reservoir, and op-
tical lattice for the 1S0, 3P1, mJ = 0 and 3P1, mJ = ±1 states
will cause significant position-dependent light shifts on the
cooling transitions addressed by the optical molasses beams.
First, let us consider only the effect of the differential light
shift from the dipole guide and reservoir beams. The dipole
guide beam propagates along the ẑ-axis, so for this beam,
the potential gradient only affects the (x, y) plane, as the
light shift is essentially constant along the z axis. To slow
down as many atoms in the dipole guide as possible, we
can modulate the frequency of the optical molasses beams
to address different velocity classes. Instead of modulating
frequency in time, we take into account multiple frequencies
simultaneously. We can choose the frequency range of the first
molasses beam to be resonant with the atoms closest to the
center of the dipole guide. However, as the atoms approach
the reservoir, the change in light shift along the ẑ direction
becomes significant, as the reservoir beam propagates 5◦ from
the ẑ direction in the (x, z) plane. This makes the capture

velocity position dependent also along ẑ, as shown in Fig. 2.
This dependence must be considered when choosing the fre-
quencies of the second and third optical molasses beams, as
they interact with atoms in the reservoir. By using a range of
frequencies addressing different velocity classes, we find that
for an average incoming velocity of 10 cm/s, we can reduce
the average energy of atoms trapped in the reservoir to approx-
imately 12 µK [Fig. 2(d)]. Each atom expects approximately
300 recoil photon events inside the reservoir.

B. Loading of atoms into the optical lattice

As the atoms approach the optical lattice, the situation be-
comes more complicated. To simulate loading into the moving
optical lattice, we must also consider the differential light
shift caused by the substantial depth of the lattice, resulting
in a significant change in the capture velocities we previously
calculated. Because we are using a moving optical lattice,
the capture velocity range for the second and third optical
molasses beams will oscillate with the motion of the opti-
cal lattice. Consequently, scattering events will decrease as
atoms move toward the optical lattice since the laser frequen-
cies align only around the maximum value of the light shift
(Fig. 3).

Again using SCMC, but now including the time-dependent
optical lattice light shift, the scattering rate is explicitly time-
dependent (B4). Due to the oscillation of the capture velocity
range caused by the moving lattice, there is an increase in
the average energy distribution of the atoms, which reaches
a value of approximately 20 µK. However, this increase in
average energy can be minimized by tuning the Tensor po-
larizability term of the transition (1S0 → 3P1, mJ = 1) to a
magic polarization [Fig. 3(b)]. We found that with a lattice
speed of approximately 1 cm/s, we achieve a 91% loading
efficiency into the lattice, with an average energy of 12.5 µK,
yielding the simulated atomic trajectories in Fig. 4(a). There
is, however, a tradeoff between the conveyor speed and the en-
ergy and number of atoms trapped. If the conveyor velocity is
too high, the average energy of the trapped cloud increases and
the percentage of trapped atoms sharply drops off [Fig. 4(b)].

IV. PREPARATION OF THE ATOMS IN
THE UPPER LASING STATE

After loading atoms into the optical lattice, we must pump
them into the 3P0 state. A possible pumping scheme com-
patible with our experiment is presented in Fig. 5. In the
presence of the strong magnetic field required to open the
clock transition in 88Sr, the Zeeman sublevels of the 3S1, 3P2,
and 3P1 states will split, allowing them to be independently
addressed. To sufficiently populate 3P0, we first pump atoms
to the 3S1 state. From there, atoms can decay to 3P0, but most
likely will decay to the unwanted states, 3P1, mJ = ±1 and
3P2, mJ = −1, 0, 1 (but not into 3P1, mJ = 0, as this decay is
prohibited by angular momentum selection rules). We must
repump atoms out of these unwanted states, especially the 3P2

states, as they are particularly long-lived [34]. A more detailed
description can be seen in Appendix C. The pumping beam
has a waist of 250 µm and is aligned along the z axis, with
its center positioned 2 mm away from the reservoir along the
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FIG. 2. (a) Potential of reservoir and dipole guide in (y, z) plane. The inset shows the differential light shift in the reservoir for the 1S0 − 3P1

cooling transition, along the z axis. (b) Cooling dynamics of atoms with an incoming velocity of 10 cm/s, where the interaction time for each
molasses beam is marked by the red or orange shading. The first molasses beam (M1, red shading), slows atoms to 1 cm/s. Shortly afterwards,
the atoms enter the reservoir region, where other molassess beams (M2 and M3, orange shading) slow and cool them inside the reservoir.
Finally they can reach µK temperatures. The inset shows how the capture velocity changes with atomic position inside the reservoir. To avoid
heating the frequencies of M2 and M3 are chosen such that there is no unwanted interaction with cold atoms in the center of the reservoir.

y axis. With vconv = 1 cm/s, we have an interrogation time
of 5 ms. To decrease heating, we pump from both directions.
Using this scheme, 83% of the atoms can be successfully
loaded into the lattice and pumped to the 3P0 state, while the
rest are lost somewhere in the loading and pumping process.
The fraction of loaded atoms remaining in the ground state
after pumping is negligible.

Atoms will undergo an average of 12 photon recoils
throughout the pumping process, leading to an average

FIG. 3. (a) The time-dependent oscillation of the capture velocity
range as seen by atoms at a fixed position (z = 10 µm). This oscil-
lation originates from the optical lattice moving with a velocity of
1 cm/s. (b) Polarizability of the atoms as a function of the angle
between the bias magnetic field �B and the optical lattice polarization.
At an angle of ≈74◦ between the optical lattice polarization and the
B field, the 3P1, m = 0 → 1S0 transition becomes magic due to the
tuned tensor polarizability term.

energy of the pumped sample around 16 µK. We choose an
optical lattice depth of 30 µK, which will keep the atoms in
the optical lattice long enough so that they can contribute to

FIG. 4. (a) Density of 100 trajectories of atoms as they travel
along the moving optical lattice (velocity of the optical lattice
=1 cm/s and potential depth =30 µK). A typical trajectory is shown
by the red trace. The outline of the optical lattice is indicated by
the white dashed lines. (b) Average energy in µK (brown circles)
and percentage of atoms trapped (blue triangles) as a function of the
optical lattice velocity is presented.
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FIG. 5. The strontium level structure relevant for our pumping
scheme from 1S0 to 3P0 is shown here, including the Zeeman sub-
levels. The thicker red arrows indicate the main pumping transitions,
while the thinner red arrows represent the relevant repumping transi-
tions. The possible spontaneous decay channels are depicted as blue
dashed arrows.

superradiant emission. Elastic collisions, which could create
higher energy atoms, are negligible under our conditions.

V. SIMULATION OF THE SUPERRADIANT
LASER OUTPUT

To determine the parameters necessary to achieve con-
tinuous superradiant lasing, we have numerically simulated
the intracavity field for atoms traveling in the optical con-
veyor along a running-wave cavity mode resonant with the
1S0 → 3P0 transition. We use a semiclassical model to analyze
the impact of systematic effects, particularly from density
shifts, light shifts, decoherences and losses, and the inhomo-
geneity of external magnetic fields. In our simulations, we
assume a total roundtrip length �cav = 20 cm of the bowtie
cavity and a cavity finesse F = 5 × 104. This corresponds to a
cavity field energy decay rate equal to κ = 2π × 150 kHz. We
also take the speed of the optical conveyor as vconv = 1 cm/s
and the travel distance of the atoms before being ejected as
�conv = 2 cm.

To find the optimal atomic flux, we begin with a simplified
model and consider two-level atoms that are loaded into the
optical conveyor in the upper lasing state. The atoms are then
carried along the conveyor for a time τ before being ejected
from the cavity by the push beam. We suppose that one of the
running-wave cavity modes is resonant with the atoms in the
lattice, taking into account the first-order Doppler shift. We
also assume that the interaction time τ of the atom with the
cavity field is much shorter than all the inverted relaxation
rates of the atomic degrees of freedom. The Hamiltonian
describing such a model in the respective rotating frame has
the form

Ĥ = h̄g
∑

j

� j (t )
[
âσ̂ j

eg + â†σ̂ j
ge

]
, (1)

where g is the coupling strength between the atomic transi-
tion and the cavity field, â and â† are the annihilation and
creation operators of the cavity mode, and σ̂

j
eg = |e j〉〈g j | and

σ̂
j

ge are the rising and lowering operators of the jth atom. Here,
we have also introduced functions � j (t ) = 	(t − t j ) − 	(t −
t j − τ ), which describe the time dependence of the atom-
cavity coupling, where t j is the time of injection of the jth
atom into the conveyor. With coarse-grained time averaging,∑

j δ(t − t j ) ≈ ∑
j δ(t − t j − τ ) ≈ �, where � is the atomic

flux. In this scenario, a stationary solution for the intracavity
field can be found from the equation [5]

sin2 χ = χ2A2, where A =
√

κ

�g2τ 2
. (2)

Here χ = gaτ , a = 〈â〉 is the cavity field in the mean-field
approximation, and κ is the decay rate of the energy of the
cavity mode. This equation has a single solution, assuming
the parameter A lies inside the following interval:

0.21723 . . . < A < 1. (3)

If A > 1, Eq. (2) has no nonzero solutions, which corre-
sponds to no superradiant emission, and if A < 0.22, Eq. (2)
has multiple nonzero solutions, which can lead to unstable
superradiant emission. Note that for real systems with non-
negligible dephasing of the lasing transitions, stable solutions
can also exist for A < 0.22.

In the following sections, we consider two different semi-
classical models of an optical conveyor laser carrying 88Sr
atoms, which include collision-induced effects, as well as
position-dependent shifts caused by inhomogeneity of the
magnetic field. The first “basic” model is based primarily
on the data reported in Ref. [35], whereas the second one
considers a more extensive estimation of the collision-induced
dephasing. For both cases, we simulate the intracavity field
〈â〉 and study the dependence of the number of intracavity
photons n = 〈â†â〉 and frequency shift 
out on the atomic flux
�. We also investigate the influence of the position-dependent
frequency shift created along the conveyor due to magnetic
field inhomogeneities. The number of intracavity photons n
can be used to calculate the output power Pout of the superra-
diant laser as Pout = h̄ωnκη, where η is the probability for the
photon to leave the cavity through the outcoupling mirror.

A. 88Sr atoms in an optical conveyor lattice in the
presence of a magnetic field: the basic model

The single-photon 1S0 → 3P0 transition in neutral bosonic
Sr is forbidden to all orders of multipole expansion. However,
this transition can be partially allowed in the presence of an
external field. For example, a static magnetic field �B [32], can
slightly mix the |3P0〉 and |3P1, mJ = 0〉 states, opening the
1S0 → 3P0 transition. This comes at the expense of a change in
the transition frequency due to the second-order Zeeman shift

mg = δω3P0→1S0

. The induced E1 transition rate γ3P0→1S0
can

be calculated from the second-order Zeeman shift as


mg = γ3P0→1S0

ω3P1→3P0

γ3P1→1S0

= βB2, (4)

where β ≈ −2π × 23.3 MHz/T2 = −2π × 233 mHz/G2 ≈
−1.464 s−1/G2 [32]. From this expression, we can clearly see
the high sensitivity of the clock transition frequency to varia-
tions in the applied bias magnetic field as the frequency shift
scales with B. In our case, the atoms will be most sensitive to
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FIG. 6. Spatial inhomogeneity of magnetic field and the resulting
clock transition frequency change. (a) Magnetic field magnitude B
along the direction of the optical conveyor and (b) corresponding
second-order Zeeman shift, referenced to an offset field of B0 =
230 G, which corresponds to a frequency shift of 
0 ≈ −2π ×
12.3 kHz as given by Eq. (4). The segments that are rendered solid
are within the emission zone. The black curve corresponds to the sim-
ulated magnetic field of the Helmholtz coil pair. The colored curves
represent the presence of an additional magnetic field gradient. The
resulting position-dependent frequency shift is shown in (b) with the
same color encoding.

spatial inhomogeneities and fluctuations of the magnetic field
within the emission zone of the bowtie cavity.

In order to open the 1S0 → 3P0 transition, we ap-
ply a fairly strong and homogeneous bias magnetic field
B ≈ B0 = 230 G. This field strength corresponds to a
1S0 → 3P0 transition linewidth of γ3P0→1S0

≈ 2π × 16.4 µHz
and a second-order differential Zeeman shift of 
mg ≈ 
0 −
2π × 107 mHz/mG × (B − B0), where 
0 = βB2

0 ≈ −2π ×
12.3 kHz. To evaluate the dependence of the second-order
Zeeman shift 
mg on the position along the conveyor, we
first determined the distribution of the magnetic field strength
B with COMSOL, the results of which are shown by the
black curve in Fig. 6. The simulated magnetic field inho-
mogeneity in the center of the emission zone is mostly due
to the incompletely closed magnetic shielding, where holes
are required for optical access and connection to the rest
of the vacuum system. The simulated imperfections lead to
a position-dependent frequency shift 
mg(y) that becomes
more significant as the field strength increases. To counteract
this problem, we consider the possibility of adding an extra
gradient GB to the bias field B, which will add an addi-
tional position-dependent shift 
a(2y/�conv − 1). Therefore
the overall position-dependent shift caused by the magnetic

field has the form


(y) = 
mg(y) + 
a(2y/�conv − 1). (5)

In this expression, the amplitude 
a of the extra position-
dependent shift can be calculated from the magnetic field
gradient GB as 
a = βB0GB�conv. This position-dependent
shift can help us partially compensate irregularities in 
mg

in parts of the emission region. Interestingly, it also allows us
to compensate for the collisional shifts (11), which depend on
the densities of the atoms in the ground and the excited states.
The total collisional shift varies as the atoms move along the
conveyor, as shown in Fig. 7(g).

In our analysis, we use mean-field equations where we
suppose that each atom interacts with the cavity field cre-
ated by the atoms themselves. Quantum correlations between
different atoms have been neglected. We also take into ac-
count collisional decoherence, shifts, and losses, which have
been adapted from Ref. [35]. We suppose that the atoms
interact only with the self-generated, running-wave cavity
mode which co-propagates with the optical conveyor, as this
cavity mode is resonant with the atomic transition, while
the counter-propagating running-wave mode, present in every
ring cavity, will be detuned by about δωDoppler = 2ωvconv/c ≈
2π × 28.6 kHz at vconv = 1 cm/s. This detuning suppresses
lasing on the counter-propagating mode and hinders atoms
from collectively interacting with this mode due to the mis-
match of the relative phases.

To reduce the computational cost, we group the atoms
into M clusters distributed along the optical conveyor, with
all the atoms of the same cluster having the same inter-
nal states. Each cluster occupies a segment of length �c =
�conv/(M − 1) centered at position y j along the conveyor.
The clusters are initialized at position y j,0 = −�c/2, and
the atoms get removed only when they reach the position
y j, f = �conv + �c/2, which corresponds to the end of the emis-
sion zone. When −�c/2 < y j < �c/2 or �conv − �c/2 < y j <

�conv + �c/2, the coupling coefficient g between the atoms
and the cavity field is multiplied by the fraction of atoms
in the cluster inside the emission zone of the conveyor. The
number N j of atoms in the jth cluster is randomly dis-
tributed around ��c/vconv, where we have used a Poissonian
distribution.

The mean-field equations for the cavity field a = 〈â〉 are

da

dt
= −

[κ

2
+ iδa

]
a − i

∑
j

g(y j )σ
j

geN j, (6)

where δa = δc − k0/vconv, δc is the detuning of the cavity field
from the rotating frame in which we consider the system, vconv

is the speed of conveyor, and k0 is the wave number of the
cavity mode. The sum is taken over all atoms in the optical
conveyor. As long as the cavity decay rate κ is much larger
than any shifts, decay rates, or decoherence rates, the field a
quickly equilibrates with the atomic degrees of freedom and
can be adiabatically eliminated:

a = −2i

κ + 2iδa

∑
j

g(y j )σ
j

geN j . (7)
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FIG. 7. Results of superradiant lasing simulation with the basic model. Left: (a) simulated intracavity photon numbers and (b) frequency
shifts of the output field relative to the atomic transition versus gradient GB of the magnetic field for different atomic fluxes � [see legend;
same color code for (a) and (b)]. Here we use B0 = 230 G and F = 50 000. Circled points correspond to stable solutions investigated in
detail in right pane. Right: (c) examples of intracavity photon number over time for � = 7 × 106 s−1 and three different values of the magnetic
field gradient GB. (d) Position dependent distributions of populations σee (solid) and σgg (dashed) along the conveyor. (e) Position-dependent
contribution of the atoms to the cavity field a is defined as the imaginary part of σge exp[−iarg(a)]. (f) Distribution of collision-induced
dephasing. (g) Total (magnetic plus collision-induced) shift 
tot = 
(y) + 
coll along the conveyor. The color code for (c)–(g) is shown in (c).

Next, we can adapt the equations for atomic coherences σ
j

ab = 〈σ̂ j
ab〉 (where σ̂

j
ab = |a j〉〈bj |) of individual atoms from Ref. [35]

as follows:

dσ
j

ge

dt
= −

[
γ + γe + γg + w(y j )

2
+ γR + νp(y j ) + �

j
coll + i

(

(y j ) + 


j
coll + δp(y j )

)]
σ j

ge + ig(y j )a
(
σ j

ee − σ j
gg

)
, (8)

dσ
j

ee

dt
= ig(y j )

[
a∗σ j

ge − aσ j
eg

] − (γe + γ )σ j
ee − n j

(
γeeσ

j
ee + γegσ

j
gg

)
σ j

ee + w(y j )σ
j

gg, (9)

dσ
j

gg

dt
= −ig(y j )

[
a∗σ j

ge − aσ j
eg

] + γ σ j
gg − [

γg + w(y j ) + n jγgeσ
j

ee

]
σ j

gg, (10)

where γ = 7.8 × 10−5 is the spontaneous transition rate at
B = 230 G, and γe and γg are density-independent inverse
lattice lifetimes for the ground and the excited states. Here, we
take γe = γg = 0.33 s−1 as a conservative estimation, which
corresponds to 3 s of lattice lifetime. The position-dependent
pumping rate is denoted by w(y), and the shift and dephasing
rates in the pumping zone are written as δp(y) and νp(y),
respectively. The extra density-independent dephasing rate
caused by elastic collisions with a background gas and Ra-
man scattering of photons from the optical lattice potential is
denoted by γR [36]. We have taken γR = 0.3 s−1 and define
the total rate of collision decoherence as

�
j
coll = n j

[
σ

j
eeγee + [

σ
j

gg + σ
j

ee
]
γge

2
+ γdepσ

j
gg

]
(11)

and the collision shift as



j
coll = n j

[
μ

(
σ j

ee + σ j
gg

) + ε
(
σ j

ee − σ j
gg

)]
. (12)

Here, we define the loss, dephasing, and shift coefficients as
follows: γee = (4 ± 2.5) × 10−12 cm3/s, γge = (5.3 ± 1.9) ×
10−13 cm3/s, γdep = (3.2 ± 1.0) × 10−10 cm3/s, μ = 2π ×
8.2 × 10−11 cm3 · Hz, and ε = 0.33μ [35]. Details of the cal-
culation of the number density nj , coupling strength g, and
other relevant parameters are given in Appendix D.

B. Results of simulation for the basic model

We now present the results of numerical simulations of
the superradiant laser output using the semiclassical model
described above and with the collisional dephasing rate given
by Eq. (11). We assume a total roundtrip length �cav = 20 cm
and cavity finesse F = 5 × 104, which gives the decay rate of
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the cavity field energy:

κ = 2πc

F�cav
≈ 1.88 × 105 s−1. (13)

The output laser power per single intracavity photon can
be estimated as κ h̄ωη ≈ 1.34 × 10−14 W, where ω ≈ 2π ×
429 THz is the frequency of the 1S0 → 3P0 transition and η is
the fraction of output power emitted through the outcoupling
mirror. We assume all four mirrors have equal transparency,
which leads to η = 0.25. As previously defined in Section III,
the waist of the 813-nm magic wavelength optical lattice
mode is 140 µm, and we take the waist W0 of the resonant
co-propagating 698-nm cavity mode as W0 = 130 µm. We
also make a conservative estimation of the temperature of
the atomic ensemble, T = 10 µK, and define the depth of the
optical lattice as Uconv = 30 µK.

The atoms are loaded into the conveyor in the 1S0 state
and get pumped into the upper lasing state, as described
in Sec. IV. The pumping process is simulated using the
position-dependent incoherent pumping rate w(y) = w0 p(y),
the pumping-related dephasing rate νp(y) = ν0

p p(y), and light
shift δp(y) = δ0

p p(y), where

p(y) = exp

(
−2(y − yp)2

W 2
p

)
, (14)

yp = 2 mm, and Wp = 250 µm. We take w0 = 270 s−1 and
ν0

p = 400 s−1 as a typical values (Appendix C). At this point,
we set the pumping-induced light shift, δ0

p = 0. Later, how-
ever, we will show that reasonable values of pumping-induced
light shift will have only a minor influence on the amplitude
and frequency of the output laser field. Using these parame-
ters, we perform a series of simulations of the superradiant
laser output for different atomic fluxes �.

Note that the mean-field equations (6) and (8)–(10) are
invariant to a common phase shift of atomic coherences σ

j
ge

and cavity field a. To break this phase symmetry and initiate
the lasing process, we assume that, at the beginning of the sim-
ulation, the atomic ensembles in the cavity have some small
“seed” populations and coherence: σ

j
ee = (1 − cos(θ0))/2,

σ
j

gg = (1 + cos(θ0))/2 σ
j

ge = sin(θ0) exp(iφ j
0 ), where θ0 =

0.07 rad and φ
j
0 are randomly distributed between 0 and 2π .

All the atomic ensembles loaded into the conveyor after that
have no “seed” coherence.

We first consider the results of simulations of the intra-
cavity photon number n in steady-state and the shift 
out of
the output radiation frequency with respect to the 1S0 → 3P0

transition as a function of atomic flux � and magnetic field
gradient GB, shown in Figs. 7(a) and 7(b). We set B0 = 230 G
and the number of clusters M = 51. We choose � in the range
2.4 × 105 s−1 � � � 8 × 106 s−1, which corresponds to 1 �
A � 0.173. The full simulated time is 40 s, but we truncate the
first 20 s and use the last 20 s to calculate the characteristics
of the signal once stabilized. Only stable solutions, where the
variations of the amplitude of the intracavity field over the last
half of the simulation period were less than 10% of the mean,
are presented in Fig. 7. We can see that for some combinations
of (�, GB), the solutions are unstable. Notably, we see no laser

output for � < 2 × 106 s−1, which corresponds to A > 0.346,
indicating a threshold atomic flux for superradiant emission.

To further investigate the lasing process, we consider sim-
ulations for � = 7 × 106 s−1 at three different values of the
magnetic field gradient: GB = −47, −93, and 0 mG/cm. Sim-
ulated time-dependent intracavity photon numbers for these
three cases are presented in Figure 7(c), and one can see that
for GB = 0 and −93 mG/cm, the solution is stable, whereas
for GB = −47 mG/cm, we have an unstable intracavity field
with irregular superradiant pulses.

In Fig. 7(d), we show the position dependence in the
emission zone for the populations of the ground (σ j

gg) and
excited (σ j

ee) states at the end of the simulation (t = 40 s)
for these same parameters. The decrease of σee + σgg along
the length of the emission zone corresponds to loss of atoms
from the conveyor. For GB = 0 mG/cm (black curves), the
atoms return to the ground state faster than for GB = −47 and
−93 mG/cm (gray and red curves, respectively). This is be-
cause for GB = 0 mG/cm, the atoms are coherently coupled
with the cavity field primarily in the first half of the optical
conveyor, whereas for GB = −93 mG/cm, they are coupled
in the second half, which is in agreement with the atomic
contribution to the intracavity field plotted in Fig. 7(e). For
GB = −47 mG/cm (unstable regime), we see population os-
cillations between the ground and the excited state and similar
oscillations in the intracavity field. We note that at the end
of the emission zone, σee is still larger than σgg for all three
curves, indicating that less than half of the energy stored in
the 1S0 → 3P0 transition gets converted into the energy of the
cavity field.

We define the contribution of the single-atom coherence
to the intracavity field as Im(σge exp(−iarg(a)), which is
consistent with Eq. (7). If we look more closely at the
position-dependence of this quantity in Fig. 7(e), we see
that it is consistent with where the variation in the overall
(magnetic plus collision) shift is minimal. For example, for
GB = 0 mG/cm, the main contribution to the intracavity field
is given by the atoms in the first half of the emission zone,
and this corresponds to a plateau in the overall shift plot-
ted in Fig. 7(g). Similarly, for GB = −93 mG/cm, the main
contribution comes from the last half of the emission zone,
but because a significant fraction of the atoms have been lost
from the conveyor at this point, the amplitude of the signal
is smaller. For the unstable regime where GB = −47 mG/cm,
we see random absorption and emission events between the
atoms and the cavity field. These oscillations of energy lead
to chaotic behavior of the out-coupled laser field.

In Figs. 7(f) and 7(g), we present position-dependent col-
lisional dephasing rates �coll and the total (magnetic and
collision-induced) frequency shifts over the length of the
optical conveyor. For all three values of GB, the collisional
dephasing rate is the highest at the beginning of the emis-
sion zone, when the atoms are still in the ground state, but
abruptly decreases at y = 0.2 cm, when the atoms get pumped
to 3P0. The dephasing rate then starts to grow as atoms emit
and are transferred from the excited state back to the ground
state. This is consistent with our model, in which the dom-
inating source of dephasing is ground state collisions (11).
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Eventually, dephasing decreases again as the total number
density decreases due to losses.

Finally, we can compare the plots of the total position-
dependent shift in Fig. 7(g) and the magnetic shift presented
in Fig. 6(b) for the same B-field gradient to determine the
effect of the collision shift on the total shift. The variation
of the collision shift throughout the emission zone is a dy-
namic process, as it will decrease as atoms are lost from the
optical conveyor but increase as atoms decay from the excited
state back down to the ground state. Qualitative comparison
of the two plots suggests that the magnetic shift dominates
throughout the emission zone, and this variation does not have
a significant effect on the total shift.

We can now estimate the fraction of atoms contributing to
the intracavity field and how much output lasing power we
can expect in such an experiment. For a flux of 7 × 106 s−1,
the maximum power that can, in principle, be emitted into the
cavity mode is h̄ω� ≈ 2 pW. We calculate the power actually
emitted into the cavity field as Pfield = h̄ωκn. For GB = 0 and
n ≈ 11.9, we get Pfield = 0.64 pW. Therefore about 32% of
the atoms that are pumped to the excited state contribute to the
intracavity field. This can be explained by the loss of excited
state atoms from the optical conveyor and by atoms making
only partial transfers between the excited and ground states.
As a result, the output lasing power on the clock transition that
we can expect to achieve under optimal conditions is Pout =
ηPfield = 0.16 pW, where we have again assumed η = 0.25.

To investigate the sensitivity of the laser output to the
pumping-induced light shift δp, we perform additional sim-
ulations for δ0

p = 2π × 25 Hz, a typical order-of-magnitude
estimate of the effective light shift, and δ0

p = 2π × 500 Hz,
a more pessimistic upper bound, for the marked points in
Figs. 7(a) and 7(b) (Table VI). We find that the stability of
solutions with the same � and GB does not depend on δ0

p,
and for stable regimes, the difference in amplitude of the
intracavity field for solutions with the same values of � and
GB, but different δ0

p, differs by less than a few percent. In
addition, the frequency shift of the output field changes by less
than 50 mHz with change of δ0

p from 0 to 500 Hz, which lies
on the edge of the Fourier-limited resolution of our simulation.
Such robustness can be explained by the fact that the atoms do
not contribute to the intracavity field while they are affected
by the pumping-induced light shift δp, as the pumping zone
is about 20 times smaller than the emission zone. The huge
dephasing associated with this pumping also helps to reduce
its influence on the output of the superradiant laser.

The quantum noise-limited linewidth of the superradiant
output can be estimated using the second-order cumulant ex-
pansion [37,38]. This method is based on clustering the atomic
ensemble according to positions in the optical conveyor and
considering the collision-induced shifts and loss and dephas-
ing rates as external parameters, pre-calculated with the help
of the semiclassical model described above. For � = 7 ×
106 atoms/s, the quantum noise-limited linewidths are about
5 µHz for GB = 0, and 7 µHz for GB = −93 mG/cm. Here,
we must emphasize that this subnatural linewidth can only
be achieved due to the collective superradiant nature of the
system, and it occurs even in the presence of the inhomoge-
neous broadening on the Hz level shown in Fig. 7(g). This

suppression of noise is on the order of one million and can
be only explored in a truly continuous system without any
Fourier limitations.

If we consider the sensitivity of the output frequency to
variations of the atomic flux � by looking at Fig. 7(b), we
see that this sensitivity is minimized for negative values of
GB between −120 and −90 mG/cm. In this region, the shift
sensitivity is on the order of 2π × 0.3 Hz per 106 atoms/s.
Thus a mean atomic flux of � = 7 × 106 s−1 with 5% atom
number fluctuation would lead to about a 100 mHz broadened
linewidth of the output frequency. These fluctuations seem to
be the main factor limiting the short-term frequency stability
of the output laser signal.

C. Simulation with extended dephasing model

Our simulations thus far are based on the model presented
in Ref. [35], where the authors assume that the main source of
dephasing is elastic collisions with atoms in the 1S0 ground
state. According to that model, the ground state dephasing
coefficient due to elastic collisions, γdep, is much larger than
the loss coefficients due to inelastic collisions between the
atoms in the excited state (γee) and inelastic collisions between
ground and excited state atoms (γge), by a factor of about 100
and 1000, respectively (see Sec. V A). The role of dephasing
in elastic collisions with atoms in the excited state has thus far
been ignored.

However, we start with a fully inverted sample of atoms,
which means that at the beginning of the emission zone, most
atoms are in the excited state. Furthermore, the atoms will
spend a considerable time in the excited state within the emis-
sion zone, which can be seen in Fig. 7(d). Therefore dephasing
due to elastic collisions in the excited state cannot be ignored
in our case. In this section, we investigate the feasibility of
the bad cavity laser with an “extended” dephasing model,
where we now include dephasing due to elastic collisions
in the excited state. Due to the lack of experimental data,
we set the dephasing coefficient for the excited state γdep =
3.2 × 10−10 cm3/s equal to the dephasing coefficient in the
ground state. Its accurate determination is left as the subject of
future experimental study. It must be noted that dephasing due
to elastic collisions between excited and ground state atoms is
still not considered in this model.

To now account for the additional two-body collision
dephasing effects, we use the following expression for the
dephasing rate:

�
j
coll = n j

[
σ

j
eeγee + [

σ
j

gg + σ
j

ee
]
γge

2
+ γdep

(
σ j

gg + σ j
ee

)]
.

(15)

With this new dephasing rate, we find that we must increase
the bias magnetic field in order to achieve a larger atom-field
coupling to obtain steady-state superradiant emission. Here,
we choose B0 = 574 G, which is 2.5 times stronger than
before. Calculations with COMSOL show a nearly propor-
tional scaling of magnetic field deviations B(y) − B0, within
1%. This field corresponds to γ3P0→1S0

= 6.43 × 10−4 s−1 =
2π × 102 µHz.
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FIG. 8. Simulation for the extended dephasing model. (a) Intracavity photon numbers and (b) frequency shifts of the output field (relative
to the atomic transition) are shown for different magnetic field gradients GB and atomic fluxes � [see legend; same color code for (a) and (b)].
Inset: magnetic field gradient range in which output frequency is least sensitive to flux fluctuations. Circled points correspond to stable solutions
investigated in detail in (c)–(g). (c) Examples of intracavity photon number over time for � = 4 × 106 s−1 and three different values of the
magnetic field gradient GB. (d) Position dependent distributions of populations σee (solid) and σgg (dashed) along the conveyor. (e) Atomic
position dependent contribution to the cavity field a defined as the imaginary part of σge exp[−iarg(a)]. (f) Distribution of collision-induced
dephasing. (g) Total (magnetic plus collision-induced) shift 
tot = 
(y) + 
coll along the conveyor. The color code for (c)–(g) is shown in (c).
The magnetic field is set to B0 = 574 G and all other parameters are the same as in Fig. 7.

The dependences of the intracavity photon number and the
shift of the output radiation on GB for stable solutions are
presented in Figs 8(a) and 8(b). We see that in contrast to
the dependence presented in Figs 7(a), the intracavity photon
number as a function of GB has two maxima and a wide
dip between −180 < GB < 50 mG/cm, caused by the pro-
portionally stronger variation of the magnetic shift along the
optical conveyor.

In Figs. 8(c)–8(g), we present results of simulations for
� = 4 × 106 s−1 and three different values of the magnetic
field gradient, similar to how it has been done for Fig. 7.
We use a smaller atomic flux than was used in the basic
dephasing model since no stable solutions are obtained for
higher values of flux with the extended model. Again, we
present two stable (violet and light blue curves) solutions and
one unstable (yellow curve) solution. The variation of the
position-dependent shift presented in Fig. 8(g) is much larger
than in Fig. 7(d) because of the proportionally larger inhomo-
geneity of the magnetic field along the optical conveyor. The
maximum steady-state intracavity photon number is n ≈ 6.62
in Fig. 8(c), which is 45% lower than the one presented in
Fig. 7(c). This can be partially explained by the 40% lower
atomic flux. For such a flux, the maximum power that can be
emitted into the cavity mode is h̄ω� ≈ 1.14 pW, whereas the
power transferred into the cavity field is about Pfield = 350 fW
for GB = 142 mG/cm, corresponding to a 31% transfer effi-
ciency. As a result, the output laser power Pout = ηPfield can

be estimated as about 90 fW, again by assuming all mirrors of
the cavity have the same reflectivity.

In contrast to the situation presented in Fig. 7(c), the un-
stable solution produces relatively regular pulses, rather than
a chaotic regime. The dynamics of intracavity populations
presented in Fig. 8(d) demonstrate nearly the same population
transfer efficiency for � = 4.0 × 106 s−1, GB = 142 mG/cm
(light blue curves) as for � = 7.0 × 106 s−1, GB = 0 in the
basic model [black curves in Fig. 7(d)]. The smaller atomic
number density and relatively smaller collision losses used
in the extended dephasing model lead to the same trans-
fer efficiency, even though the total shift in the emission
zone is larger. The atomic contribution into the intracavity
field for the unstable solution [yellow curve in Fig. 8(e)]
has 2 strong peaks corresponding to simultaneous lasing on
two slightly different frequencies, resulting in pulses. The
collision-induced dephasing rate presented in Fig. 8(f) is
nearly proportional to the total population change, whereas in
our basic model, it is primarily determined by the population
of the ground state.

The simulations presented in Fig. 8 were performed for a
pumping-induced light shift δp of zero. To check the robust-
ness of the output laser signal against a nonzero shift, we
performed simulations for δ0

p = 2π × 25 Hz and δ0
p = 2π ×

500 Hz. Using these two values for the pumping-induced light
shift to simulate the generated field for the two marked solu-
tions in Fig. 8(c), we achieve a stable solution in all four cases.
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For those cases, the variation of the number n of intracavity
photons is less than 1%, and the constant output frequency
shift 
out was also smaller than 2π × 50 mHz. This leads us
to the assumption that the pumping zone has a very small
influence on the performance of the superradiant laser.

We also estimate the minimum achievable linewidth for
such a system for two selected points corresponding to a
stable solution. For � = 4 × 106 s−1 and GB = 142 mG/cm
the estimated linewidth of the output radiation is on the
level of 2π × 120 µHz, and for � = 4 × 106 s−1 and GB =
−217 mG/cm, it is on the level of 2π × 50 µHz. The larger
values of the linewidth in comparison to the ones presented
in the previous section are due to the larger variations of the
position-dependent shift along the optical conveyor. In this
case, the collective nature of superradince again leads to a
suppression of the inhomogeneous broadening effects in our
system on the order of one million, resulting in a linewidth
comparable to the natural linewidth at this large bias magnetic
field.

For GB lying between approximately −230 mG/cm and
−210 mG/cm Fig. 8(b), we see that the output frequency is
more robust against variations in the atomic flux � than in the
case considered in Sec. V B. Five percent fluctuations of the
atom number around � = 4 × 106 s−1 lead to a broadening of
about 50 mHz, which corresponds roughly to broadening by a
factor of one thousand compared to the minimum achievable
linewidth. We can conclude that in our simulations, atom
number fluctuations remain the main source of instability for
the superradiant laser.

VI. OUTLOOK

In this paper, we have focused on the 88Sr isotope due to
its high natural abundance and its simple internal structure.
However, it requires a strong external magnetic field to par-
tially allow the 1S0 → 3P0 transition, which directly leads
to unavoidable position-dependent shifts due to imperfections
in the applied field. Additionally, the strong s-wave collisions
between bosonic atoms cause significant dephasing and shifts.
As we have seen, atom number fluctuations are the main
linewidth broadening mechanism in our system. Therefore
reducing these fluctuations would be the most straightforward
path to improving the frequency stability of the superradiant
laser. More accurate experimental measurements of dephasing
and loss coefficients in the ground and excited state, as well as
collisional-induced shifts could also improve our understand-
ing of the system and allow us a more quantitative numerical
optimization of parameters to minimise linewidth broadening
effects.

Our simulations also indicate that light shifts associated
with pumping have a very weak influence on the output
frequency because the atoms do not contribute to the cavity
field while being pumped due to strong dephasing. Therefore
we could include one more repumping zone in the optical
conveyor, with the purpose of repopulating the excited state,
to potentially increase the emitted power.

Alternatively, we could explore fermionic 87Sr on
the 1S0, F = 9/2, mF = ±9/2 → 3P0, F = 9/2, mF = ±9/2
transition in our system. The more complex internal structure,
which includes hyperfine and Zeeman splitting, would lead

to more complicated cooling and pumping schemes compared
with the ones presented above. However, the nonzero clock
transition rate and the resulting stronger coupling to the cavity,
even at zero magnetic field, leads to a lower collective atomic
number threshold for superradiant emission. Together with the
suppression of s-wave collisions due to the Pauli exclusion
principle, one could expect better robustness of the output
laser field against fluctuations of the magnetic field or the
atomic flux. This investigation is left to future theoretical and
experimental study.

VII. CONCLUSION

In this paper, we consider the design of a continuously
operating superradiant laser on the 1S0 → 3P0 transition in
88Sr. We discuss the mechanism by which we will continu-
ously load atoms from the dipole trap into a magic wavelength
optical conveyor lattice generated inside a bow-tie cavity. This
bow-tie cavity creates the strong collective coupling between
atoms that should enable superradiant emission. We have also
simulated highly efficient atom loading for a moving optical
lattice with a speed of a few cm per second. We showed that
up to 83% of atoms in the dipole trap get trapped and pumped
in the optical lattice with an average energy slightly above
16 µK.

Next, we numerically simulated the output of a continuous
superradiant laser, taking into account the inhomogeneity of
the magnetic field, collisional dephasing, shifts and losses, as
well as pumping-induced effects. For collisional decoherence,
we considered two models. In the first model, adapted from
[35], we supposed that ground state collisions are the main
source of decoherence. We show that with experimentally
realistic parameters, we can achieve superradiant lasing with
an output power of about 160 fW and a quantum fluctuation-
limited linewidth on the order of a few µHz. The main
limitation on the linewidth appears to be broadening due to
fluctuations of the atomic flux. This broadening is determined
by the collisional shift, as well as by the redistribution of
the atomic coherence over the emission zones. For the used
flux, a five percent atom number fluctuation would broaden
the linewidth to about 100 mHz. In the extended dephasing
model, we included the contribution of the excited state atom
collisions to dephasing. We showed that stable superradiant
lasing becomes possible, but with a higher magnetic field
of about 600 G, which leads to stronger variations of the
magnetic field and position-dependent shifts in the emission
zone. We have added an extra magnetic field gradient to shape
the magnetic field to partially compensate these variations.
The larger inhomogeneous broadening effects lead to a quan-
tum fluctuation-limited linewidth of about 100 µHz and an
output power of around 5–10 fW. As with the basic model,
the main broadening mechanism is fluctuations of the atomic
flux. Five percent fluctuation of the flux would lead to about
a 50 mHz broadened linewidth in the experiment. For both
models, we have shown that the effect of the light shift caused
by the pumping fields is nearly negligible for the generation
of superradiant emission because pumped atoms experience
strong dephasing, which destroys any correlations between
the ground and excited states, and the light shift protects the
cavity field from the interaction with these atoms.
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From this study, we can conclude that continuous super-
radince on the sub-mHz transition is possible and that such
a system should be competitive with today’s state-of-the-
art short-term references, even taking into account the main
broadening effects.
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APPENDIX A: POLARIZIBILITIES AND
DESIGN PARAMETERS

We have calculated the polarizibility using the following
expression:

αi = α
(0)
i + i(ε∗ × ε)z · m

F
· α

(1)
i

+ (3ε∗
z εz − 1)(3m2 − F (F + 1))

2F (2F − 1)
α

(2)
i . (A1)

The three components are scalar, vector, and tensor
polarizabilities:

α
(0)
i = β0

∑
ñ′F′

|〈ñF ||d̂||ñ′F ′〉|2 2ωñ′F ′,ñF

ω2
ñ′F ′,ñF − ω2

,

α
(1)
i = β1

∑
ñ′F′

|〈ñF ||d̂||ñ′F ′〉|2

× ω

ω2
ñ′F ′,ñF − ω2

(−1)F+F ′
{

1 1 1
F F F ′

}
,

α
(2)
i = β2

∑
ñ′F′

|〈ñF ||d̂||ñ′F ′〉|2

× ωñ′F ′,ñF

ω2
ñ′F ′,ñF − ω2

(−1)F+F ′
{

1 1 2
F F F ′

}
, (A2)

TABLE I. Parameters for potential beams.

Beam Type Dipole guide Reservoir Conveyor

Propagation along z axis in x-z plane 5◦ from z y axis
Polarization along x ∼85◦ from x ∼74◦ from x
U0(1S0), µk 166 50 30
U0(3P1, m = 0), µk 105.4 31.97 37.65
U0(3P1, m = 1), µk 129.62 38.93 30
Waist (µm) (200,200) (400,100) 140
Wavelength (nm) 1070 1070 813

with

β0 = 1

3h̄(2F + 1)
, β1 =

√
6F

h̄
√

(2F + 1)(F + 1)
,

β2 = 1

h̄

√
40F (2F − 1)

(2F + 3)(2F + 1)(F + 1)
. (A3)

Here the sums are taken over the atomic states (denoted
by the prime index) which have E1 coupling to the state i,
ñ = {n, S, J, L} represent the quantum numbers of the atomic
level: n is the atomic principal quantum number, S is the
electronic spin, L is the electronic orbital angular momentum,
J is the total angular momentum of electronic shells; F is
the total momentum of the atom, and ωñ′F ′,ñF = ωñ′F ′ − ωñF

is the transition frequency. Also, we use here the following
convention for the square of reduced matrix element:

|〈ñF ||d̂||ñ′F ′〉|2 = 3h̄c3γñ′F ′,ñF(2F up + 1)

4|ωñ′F ′,ñF|3 , (A4)

where γñ′F ′,ñF is the spontaneous transition rate between the
respective hyperfine sublevels (88Sr does not have a hyperfine
structure, therefore, F = J , and γñ′F ′,ñF = γñ′,ñ.

F up =
{

F ′, ωñ′F ′,ñF > 0,

F, ωñ′F ′,ñF < 0.
(A5)

For calculation of the polarizability we used the data presented
in Ref. [41].

In Table I, we present potentials and geometrical parame-
ters of potential beams, namely the dipole guide, the reservoir
beam, and the optical conveyor.

APPENDIX B: SEMICLASSICAL MONTE CARLO
SIMULATION METHOD FOR ATOMIC

COOLING AND PUMPING

To simulate deceleration and cooling of the atoms by the
molasses beams we employ a “semiclassical Monte Carlo”
model, where we suppose that an atom will not significantly
change its position during the typical internal state evolution
time. Therefore the internal state of an atom depends only on
its instantaneous position and velocity, not on the previous
history. The position-dependent scattering rate associated with
the molasses beams is given by the following equation:

�i(r, v) =
∑

k

(
γ3gsik (r, v)

2 + sik (r, v)

)(
1 +

∑
i, j

si j (r, v)

2 + si j (r, v)

)−1

,

(B1)
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TABLE II. Parameters of molasses beams. Here, � is the spontaneous rate of 3P1 → 1S0 transition, 
D(max)
2 = 2π × 1.262 MHz, 
D(max)

3 =
2π × 0.757 MHz, and 


R(max)
3 = 2π × 0.230 MHz are the maximal light shifts associated with dipole guide and reservoir beams respectively

[see expression (B3)], and 

D+R (max)
3 = 


D(max)
3 + 


R(max)
3 .

Molasses Beam M1 M2 M3

Intensity (total) 2 Isat Isat Isat


band/(2π ) 10 kHz 10 kHz 10 kHz
Nf 12 4 5
δc

i −45 �

2 + 

D(max)
2 −15 �

2 + 

D+R (max)
3 −15 �

2 + 

D+R (max)
3

Waist (µm) (200,200) (200,200) (200,200)
λ (nm) 689 689 689
center (mm) (0,0, −5) (0,0,0) (0,0,0)
Polarization in y-z plane in y-z plane along y
Propagation in y-z plane, 7◦ from z in y-z plane 7◦ from z along x

where i represents the substates 3P1, m = {−1, 0, 1}
corrsponding to i = {1, 2, 3} respectively, γ3g is the
spontaneous decay rate of the 3P1 → 1S0 transition, and
k is associated with different frequencies in the band. We are
specifically utilizing i = {1, 2} transitions. The associated
saturation parameter and detuning are given by

sik (r, v) = I i
k (r)

4I i
sat

(
1 +

(
2δik (r, v)

γ3g

)2)−1

,

δik (r, v) = δ′
ik − 
D

i (r) − 
R
i (r) + �kik · �v,

I i
sat = 2π2h̄cγ3g

3λ3
, δ′

ik = 
band(2k − Nf − 1)

2(Nf − 1)
+ δc

i .

(B2)


band is the bandwidth, δc
i is the central frequency and Nf

is the total number of frequency. For ith transition, the dif-
ferential light shifts associated with dipole guide beam (
D),
reservoir (
R), and optical lattice (
OL) are given by



{D,R}
i (r) = −1

h̄

(
α1S0

− αi

α1S0

)
U

1S0
{D,R}(r), (B3)


OL
i (r, t ) = −1

h̄

(
α1S0

− αi

α1S0

)
U

1S0
OL (r, t ). (B4)

We use the position-dependent scattering rate to generate
random numbers and artificially model the absorption and
emission of photons by evolving the scattering rate (B5) along
the trajectory of atoms. We perform the simulation by follow-
ing these steps.

(i) Starting with an initial state (�xi, �pi ) at time ti, we evolve
the equation of motion (�̇xi, �̇pi ) and the scattering rate �m(x, v)
till ti+1 = ti + dt .

(ii) Generate a vector �vs = (sin θ cos φ, sin θ sin φ, cos θ )
with θ and φ randomly generated numbers and a random num-
ber r1 in the interval [0, π ], [0, 2π ], and [0,1], respectively.

(iii) If r1 > e− ∫ ti+1
ti

�m (�xi,�vi )dt set �pi+1 = �pi − h̄�k + �vsh̄k
and regenerate {r1, θ, φ} or else without changing anything
take another step.

(iv) Repeat the above three steps until we reach the desired
evolution time.

Parameters of molasses beams used in simulations are
presented in Table II. In our system, we utilize a broad spec-
trum of frequencies to address a variety of velocities. The

maximum scattering rate is significantly lower than the spon-
taneous emission rate, allowing us to assume that an atom
quickly emits a photon spontaneously after absorbing it.

For the simulation of pumping, we employed the master
equation detailed in Appendix C. We identified a set of de-
tunings where the trapping of population into the dark states
doesn’t play a significant role. Leveraging this carefully se-
lected set of parameters, as described in Table III, we found
that the population probability of atoms in states 3P1, 3P2,
and 3S1 remain low. The light field intensity for the transition
|3〉 → |8〉 is chosen such that �P

38 
 �
decay
31 , thereby prevent-

ing excessive scattering events from the |1〉 ↔ |3〉 transition,
which would otherwise cause heating.

Under conditions of far-detuned lasers, the intensities given
in Table III, and the fact that the motion of these atoms does
not significantly change during the pumping cycle, we can
assume that only the effect of individual lasers acting on
two levels, at given point in time, needs to be considered.
To estimate the pumping efficiency and the heating of atoms
within the moving optical lattice, we apply the SCMC method
described earlier. The pumping rate associated with each indi-
vidual two-level system is calculated using:

�p
m(�r, �v) =

∑
j

γ3gsp
m j (�r,�v)

2+sp
m j (�r,�v)

1 + ∑
j

sp
m j (�r,�v)

2+sp
m j (�r,�v)

, (B5)

where

sp
m j (�r, �v) = Im

j (r)

4Im
sat

(
1 +

(
2δm j (�r, �v)

γ3g

)2)−1

. (B6)

The spontaneous decay from 3S1 is modeled by generating a
random number based on the relative decay rates for different
transitions. Momentum kicks are applied similarly to the mo-
lasses simulation. The decay rate from 3S1 is 100 times higher
than any other process. For the 3P1 state, which has a smaller
decay rate, the momentum kicks are modeled using Einstein’s
rate equation. Random numbers r1, r2, and r3 are generated in
the interval [0,1] and compared with the probabilities associ-
ated with different channels.

If the system is in state |1〉 and r1 > e− ∫ ti+1
ti

�
p
13(x,v)dt ,

the state is set to |3〉. Then, depending on whether r2 >

e− ∫ ti+1
ti

�
p
38(x,v)dt or r3 > e− ∫ ti+1

ti
�

decay
31 dt , the state is either
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TABLE III. Parameters of pumping beams. Here P-1 acts on the |1S0〉 → |3P1, m = −1〉 transition. Similarly, P-3 and P-4 acts on the
|1S0〉 → |3P1, m = ∓1〉 transitions, whereas P-5, P-6, and P-7 pump atoms from the |3P2, m = −1〉, |3P2, m = 0〉 and |3P2, m = 1〉-states to
the |3S1, m = 0〉- state, respectively. The partial decay rates � associated with the corresponding transitions are �total for P-1, 0.5 �total for
P-3,3, 0.3 �total for P-5,7, and 0.4 �total for P-6, respectively. The intensities mentioned in the table corresponds to the circular polarized field
component.

Pumping Beam P-1 P-{3,4} P-{5,6,7}

Intensity 0.32 Isat {0.5, 0.02} Isat 0.02 Isat

�total (μs−1) 4.69 × 10−2 27.0 42.0
Waist (µm) (250,250) (250,250) (250,250)
λ (nm) 689 688 707
center (mm) (0,2,0) (0,2,0) (0,2,0)
Polarization along x axis along x axis along {x, z, x} axis
Propagation along z axis along z axis along z axes

/(2π ) −1 kHz {0, −2} MHz {−19.9, 0.1, 20.1} MHz

changed to |8〉 or returned to |1〉, with corresponding momen-
tum kicks applied.

APPENDIX C: REDUCTION OF MULTILEVEL
REPUMPING SCHEME TO AN EFFECTIVE

2-LEVEL SCHEME

In this section, we specify parameters of the realistic mul-
tilevel pumping scheme and perform a mapping of this pump
scheme to an effective two-level incoherent pumping scheme,
following the method developed in Ref. [21]. Here we ne-
glect all the collision-induced processes, because the pumping
occurs in a very narrow zone (250 nm waist), and these
process will not significantly affect the internal state of the
atoms. Therefore we consider isolated atoms interacting with
pumping fields. The multilevel pumping scheme is presented
in Fig. 9. Here, we specify the notation for sublevels, matrix
elements and frequency detunings.

FIG. 9. Pumping scheme with relevant matrix elements � j and
frequency detunings 
 j . Laser-induced transitions are shown by
solid red, and spontaneous decays by dashed blue arrows. The levels
which do not participate in the repumping process are shown in pale
gray.

The Hamiltonian for such system in resonant approxima-
tion can be written as

Ĥ0

h̄
=

8∑
j=g

ω j σ̂ j j + �1

[
σ̂g3ei

(
ωL

3gt+φ1

)
+ σ̂3ge−i

(
ωL

3gt+φ1

)]

+
7∑

j=3

� j

[
σ̂ j8ei

(
ωL

8 j t+φ j

)
+ σ̂8 je

−i
(
ωL

8 j t+φ j

)]
. (C1)

Here σ̂i j = |i〉〈 j|, � j are transition matrix elements which can
be expressed via intensities I j of the respective laser fields,
saturation intensities I j

sat, and the respective spontaneous tran-
sition rates γk j as

� j =
√

I j

8I j
sat

γk j . (C2)

Therefore ωL
i j is the frequency of the laser acting on the | j〉 →

|i〉 transition, and φi is the time-dependent phase of a laser
applied to |g〉 → |3〉 transition at i = 1, as well as |i〉 → |8〉
transition at i = 3 to 7. Here we suppose that all the lasers
are independent, and their fluctuations corresponds to a white
frequency noise, namely,

〈φ̇i(t )φ̇ j (t
′)〉 = �L

i δi jδ(t − t ′), (C3)

where �L
i is the linewidth of the laser acting on the |i〉 → | j〉

transition.
As a next step we, following the approach used in [42]

and switch into a instantaneous rotating frame with the
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unitary transformation:

Û = exp
[

− i
(
σ̂gg ωgt + σ̂ee ωet + σ̂33

[(
ωg + ωL

3g

)
t + φ1

] + σ̂88
[(

ωg + ωL
3g + ωL

83

)
t + φ13 + φ3

]

+
7∑

i=4

σ̂ii
[(

ω1 + ωL
31 + ωL

83 − ωL
84

)
t + φ1 + φ3 − φi

])]
. (C4)

The new Hamiltonian

Ĥ = Û †Ĥ0Û − ih̄Û † ∂Û

∂t
= ĤD +

∑
j

ĤS
j φ̇ j (C5)

can be represented as a sum of deterministic part ĤD and a
series of stochastic parts ĤS

i φ̇i. The deterministic part can be
written as

ĤD

h̄
=

8∑
j=3


 j σ̂ j j + �1(σ̂g3 + σ̂3g) +
7∑

j=3

� j (σ̂ j8 + σ̂8 j ),

(C6)

where


3 = ω3 − ωg − ωL
3g,


4 = ω4 − ωg − ωL
3g − ωL

83 + ωL
84,


5 = ω5 − ωg − ωL
3g − ωL

83 + ωL
85,


6 = ω5 − ωg − ωL
3g − ωL

83 + ωL
86,


7 = ω5 − ωg − ωL
3g − ωL

83 + ωL
87,


8 = ω8 − ωg − ωL
3g − ωL

83. (C7)

In turn, stochastic parts has the form

ĤS
1

h̄
= −

8∑
j=3

σ̂ j j,
ĤS

3

h̄
= −

8∑
j=4

σ̂ j j,

ĤS
4

h̄
= σ̂44,

ĤS
5

h̄
= σ̂55,

ĤS
6

h̄
= σ̂66,

ĤS
7

h̄
= σ̂77. (C8)

Evolution of some system operator Ô can be described by
the Langevin-Heisenberg equation

(S)
dÔ

dt
= i

h̄
[ĤD, Ô] + ˆ̂Ldec[Ô] +

∑
j

i

h̄

[
ĤS

j , Ô
]
φ̇ j, (C9)

which needs to be interpreted as a Stratonovic stochastic

differential equation (indicated by (S)). Here ˆ̂Ldec[Ô] is a
Liouvillian term describing spontaneous transitions between
atomic levels

ˆ̂Ldec[Ô] =
∑
k,l

γkl

2
(2σ̂kl Ôσ̂lk − σ̂kkÔ − Ôσ̂kk ) (C10)

where γkl is the spontaneous transition rate |k〉 → |l〉.

Equation (C9) can be transformed into the Ito form [indi-
cated by (I)] as

(I)
dÔ

dt
= i

h̄
[ĤD, Ô] + ˆ̂Ldec[Ô] +

∑
j

i

h̄

[
ĤS

j , Ô
]
φ̇ j

+
∑

j

�L
j

2

(
2ĤS

j ÔĤS
j − ĤS

j Ô − ÔĤS
j

)
, (C11)

this approach has also been used in Ref. [42]. Here, we used
ĤS†

j = ĤS
j = ĤS2

j . By averaging this equation the stochastic
part vanishes, and we get

d

dt
〈Ô〉 = i

h̄
〈[ĤD, Ô]〉 + 〈 ˆ̂L[Ô]〉. (C12)

The dissipative processes are described by the Liouvillian part

ˆ̂L[Ô] = ˆ̂Ldec[Ô] +
∑

j

�L
j

2

(
2ĤS

j ÔĤS
j − ĤS

j Ô − ÔĤS
j

)
,

(C13)

which can be represented as

ˆ̂L[Ô] =
∑

j

R j

2
(2Ĵ†

j ÔĴ j − Ĵ†
j Ĵ j Ô − ÔĴ†

j Ĵ j ), (C14)

where Ĵ j are jump operators with corresponding rates Rj . The
list of jump operators and rates for the full eight-level system
is presented in Table IV.

In equivalent two-level system, an averaged value of the
operator Ô can be expressed in the equation as the following
form (C14), where the (deterministic) Hamiltonian is equal to

ĤD
2−level = h̄(δgσ̂gg + δeσ̂ee), (C15)

and the dissipative processes are listed in Table V.
The procedure of mapping of multilevel pumping scheme

to an equivalent two-level scheme with incoherent pumping
is described in detail in Ref. [21]. In brief, as a first step one
has to find the steady-state values of 〈σ̂ee〉 and 〈σ̂gg〉, solving
the master equation (C12). Then the equivalent incoherent
pumping rate is

w = γeg
〈σ̂ee〉
〈σ̂gg〉 . (C16)

Second, one has to diagonalise the effective non-Hermitian
Hamiltonian which is expressed here:

Ĥnh
eff = ĤD − ih̄

2

∑
j

R j Ĵ
+
j Ĵ j (C17)

to get the complex eigenvalues Eg and Ee, corresponding to
the eigenstates with the highest overlap with the unperturbed

013292-16



MODELING OF A CONTINUOUS SUPERRADIANT LASER … PHYSICAL REVIEW RESEARCH 7, 013292 (2025)

TABLE IV. Dissipative processes in the eight-level pumping scheme. Decay rates were calculated as γ|n′L′J ′m′〉→|nLJm〉 =
γ|n′L′J ′〉→|nLJ〉(CJ ′m′

Jm1m′−m )2, where the decay rates γ|n′L′J ′〉→|nLJ〉 between fine-structure levels |n′L′J ′〉 and |nLJ〉 were taken from [43], CJ ′m′
Jm1m′−m

are Clebsch-Gordan coefficients, and J ′, m′ (J, m) are the angular momentum and its projection associated with the upper (lower) state. The
value of γeg = γ depends on the applied bias magnetic field and does not affect other parameters of the equivalent two-level scheme.

j Ĵ j R j value (order of magnitude) description

1 σ̂58 γ85 1.26 × 107 s−1 decay from |8〉 to |5〉
2 σ̂68 γ86 1.68 × 107 s−1 decay from |8〉 to |6〉
3 σ̂68 γ87 1.26 × 107 s−1 decay from |8〉 to |6〉
4 σ̂48 γ84 1.35 × 107 s−1 decay from |8〉 to |4〉
5 σ̂38 γ83 1.35 × 107 s−1 decay from |8〉 to |3〉
6 σ̂e8 γ8e 8.9 × 106 s−1 decay from |8〉 to |e〉
7 σ̂g4 γ4g 4.69 × 107 s−1 decay from |4〉 to |g〉
8 σ̂g3 γ3g 4.69 × 107 s−1 decay from |3〉 to |g〉
9 σ̂ge γeg γ decay from |e〉 to |g〉
10

∑8
k=3 σ̂kk �L

1 about kHz Fluctuations of laser acting on |g〉 → |3〉 transition
11

∑8
k=4 σ̂kk �L

3 about MHz Fluctuations of laser acting on |3〉 → |8〉 transition
12 σ̂44 �L

4 about MHz Fluctuations of laser acting on |4〉 → |8〉 transition
13 σ̂55 �L

5 about MHz Fluctuations of laser acting on |5〉 → |8〉 transition
14 σ̂66 �L

6 about MHz Fluctuations of laser acting on |6〉 → |8〉 transition
15 σ̂77 �L

7 about MHz Fluctuations of laser acting on |7〉 → |8〉 transition

“clock” states |g〉 and |e〉. Then one can extract the effective
frequency shifts

δe,g = �(Ee,g) (C18)

and dephasing rates

νg = −2Im (Eg) − γeg; νe = −2Im (Ee) − w. (C19)

In Table VI, we present four examples of mapping the real-
istic eight-level pumping scheme into the effective two-level
scheme using incoherent pumping. For all four sets of param-
eters Appendix B, I = 0.32 Isat is the laser acting on |g〉 →
|3〉 transition that gives �1 = 9.38 × 103 s−1), I = 0.5 Isat

for laser acting on |3〉 → |8〉 transition, what gives �3 =
3.375 × 106 s−1 and I = 0.02 Isat for all other lasers, that
gives �3 = �4 = 6.75 × 105 s−1, �5 = �7 = 6.3 × 105 s−1,
�6 = 8.4 × 105 s−1, according to expression (C2).

Finally, let us evaluate the possible influence of the scat-
tered photons during the pumping process on the clock
transition inside the emission zone. We have estimated that
each atom scatters, on average, about 12 photons in total, and
about 2.76 of them are 689 nm photons. The 689 nm photons
are of most interesting because they can affect the 1S0 state
and so disturb the clock transition. Taking � = 107 1/s, we
can estimate the intensity Iscat of scattered photons is as about
Iscat ≈ 2 × 10−5Isat at a distance of 1 mm from the pumping
zone. The resulting light shift 
LS,scat for such a small inten-

TABLE V. Dissipative processes in the equivalent two-level
scheme with incoherent pumping.

j Ĵ j R j description

1 σ̂ge γ decay from |e〉 to |g〉
2 σ̂eg w incoherent pumping from |g〉 to |e〉
3 σ̂gg νg dephasing on |g〉
4 σ̂ee νe dephasing on |e〉

sity can be estimated as

|
LS,scat| = Iscatγ
2
3g|
3|

2Isat
(
γ 2

3g + 4
2
3

) <
Iscat

8Isat
γ3g, (C20)

which results in light shift of |
LS,scat| < 2π × 20 mHz.
Similarly, using expression (B5), we can estimate the

“rescattering rate” �rescat of the scattered photons on |g〉 →
|3〉 transition as �scat,2 < γ3gIscat/(8Isat ) ≈ 0.13 s−1. These
effects can be neglected because it even smaller than the
previous value. It need to be noted that the photons scattered
from the molasses beams produces a similar light shift but the
“rescattering rate” is two orders of magnitude smaller due to
differential light shift between reservoir and conveyor lattice.
On average every atoms scatters around 300 photons during
the cooling process in the reservoir but these photons are
detuned by about 2π × 1 MHz from the |g〉 → |3〉 transition
of the atom in emission zone, see Table II. Therefore both
light shifts caused by photons scattered during the cooling and
pumping processes, as well as dephasing due to rescattering,
are very small in comparison to the other considered effects
and can be neglected.

APPENDIX D: DETAILS OF SIMULATION OF
THE SUPERRADIANT LASER

Here, we present details of the atom number density calcu-
lation in the conveyor that we used for further calculations
of collision-induced losses and shifts in (8)–(12) and (15).
Also, it is used to determine the coupling strength g between
the atom and the field. Next, the periods of the atom radial
and axial motion in a single lattice site (of order of 0.01 s
and 10−5 s, respectively) are much shorter than the interaction
time between the atom and the field (around 1 s). Therefore we
can average position-dependent terms and spatial distribution
of the atoms in the lattice site. To perform this averaging,
we used a harmonic oscillator approximation for the dipole
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TABLE VI. The pumping parameters of the realistic eight-level scheme and equivalent two-level scheme. Here we introduced 
ωkl =
ωL

kl − ωk + ωl and supposed that all the lasers except the one acting on |g〉 → |e〉 transition have the same linewidth. Here ν = νg + νe and
δp = δe − δg.

Parameters Values: first set Values: secondset Values: third set Values: fourth set

eight-level scheme 
ω3g/(2π ) 20 Hz −100 Hz 50 Hz 500 Hz

ω83/(2π ) −1 MHz −2.0 MHz 0 0

ω84/(2π ) 1 MHz 0 2 MHz 2 MHz

ω85/(2π ) −20 MHz −19.9 MHz −20 MHz −17 MHz

ω86/(2π ) 0 −100 kHz 0 −3 MHz

ω87/(2π ) 20 MHz 20.1 MHz 20 MHz −23 MHz
�L

1 /(2π ) 1 kHz 1 kHz 1 kHz 2 kHz
�L

j /(2π ), j = 3 to 8 3 MHz 3 MHz 1 MHz 1 MHz
two-level w 272.6 s−1 272.8 s−1 248.0 s−1 246 s−1

ν = νg + νe 401 s−1 404 s−1 346 s−1 341 s−1

δp/(2π ) 6.26 Hz 12.4 Hz 0.02 Hz 0.42 Hz

potential of the lattice site and a Maxwell-Boltzmann spatial
distribution of the atoms:

p(x′, y′, z′) = 23/2

π3/2W 2
r Wy

exp

(
−2

x′2 + z′2

W 2
r

− 2
y′2

W 2
y

)
,

(D1)

where x′, y′, and z′ are distances from the center of the lattice
site. The 1/e2 radii Wr and Wy of the atomic cloud in the radial
and axial directions are calculated as

Wr = Wconv

√
T/Uconv, (D2)

Wy = 1

k

√
2

(T θ + (UconvER)θ/2)1/θ

Uconv
, (D3)

where T is the temperature of the atomic ensemble set to
T = 10 µK. Next, Uconv = 30 µK is the depth, and ER =
k2 h̄2/(2mSrkB) ≈ 0.165 µK is the recoil energy of the moving
optical lattice potential in units of temperature. The phe-
nomenological parameter θ = 2.5 is chosen such that Eq. (14)
well reproduces the probability density of the atom in the
harmonic potential in the cross-over between the “classical
thermal” limit (kBT 
 h̄ωy = 2

√
ERUconv) and the “frozen

quantum” limit (kBT � h̄ ωy). Here we consider the possi-
bility that higher vibrational states along the y axis can be
occupied. The number density n j averaged over the atomic

motion can be represented as

n j = N
∫

p2(x′, y′, z′)dx′dy′dz′ = Nlc

Veff
, (D4)

where Nlc = N jλconv/(2�c) is the number of atoms in a single
lattice site, and

Veff = W 2
r Wyπ

3/2 (D5)

is the effective volume of a single lattice site.
The atom-cavity coupling coefficient is then

g =
exp

(−k2W 2
y

8

)
1 + W 2

r

2W 2
0

√
3c3γ

�cavω2W 2
0

, (D6)

where the prefactor before the square root describes the av-
eraging over the spatial distribution of the atoms in a single
lattice site, and k = 2π/λconv is the wave number of the con-
veyor lattice.

Finally, a short description for the shift coefficients μ and
ε. In Ref. [35], the collision shift coefficient was measured
as (7.2 ± 2.0) × 10−17 Hz × m3 for 35% of excited atom in
the end of the Rabi pulse, that averages to about 31.75% of
excited atoms per pulse. To calculate μ and ε, we converted
percentage of excited atoms after the pulse into percentage of
excited atoms averaged over the pulse.
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