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Abstract

This thesis investigates the application of geophysical methods, particularly (spectral)
induced polarization (SIP) and electromagnetic induction (EMI), for characterizing
landslides and estimating soil and hydraulic properties at various scales. The research
objectives include the development of robust field procedures for high-quality SIP data
collection, the evaluation of field-scale SIP and EMI imaging for landslide characteri-
zation, and the assessment of various approaches to obtain hydraulic properties from
geophysical data using petrophysical relationships and pedotransfer functions (PTFs),
along with exploring deep learning techniques for geophysical data inversion.

The first part of this thesis deals with improvements in the procedures for the col-
lection of SIP data at the field scale, along with an analysis of their uncertainty. It
presents SIP data collected with standard multicore and novel coaxial cables, and ex-
amines how electromagnetic (EM) coupling interferes with the data. While commonly
assumed to only affect higher frequencies, the analysis reveals that EM coupling cannot
be neglected for frequencies below 10 Hz. It is demonstrated that it is essential to use
cables with takeout lengths identical to the selected electrode separation. Moreover,
the deployment of coaxial cables permits to collect significantly improved data across
all observed frequencies while maintaining the identical simple field procedures.

The evaluation of an integrated approach combining field-scale SIP, EMI, and other
geophysical methods for an effective characterization of landslides is presented in the
second part of this thesis. A particular focus was laid on delineating subsurface wa-
ter flow and infiltration pathways as well as possible sliding and stable units. Such
knowledge is essential for understanding the internal processes within landslides associ-
ated with their mobilization mechanisms. The initial implementation of this approach
at a well-equipped Austrian landslide site revealed significant qualitative correlations
between geotechnical parameters, such as dynamic probing and inclinometer data,
and frequency-dependent electrical properties obtained from field-scale SIP. Building
on these findings and testing their transferability, a multi-methodical approach was
developed to characterize 3D soil textural and hydraulic subsurface properties and
applied to another hillslope affected by subsidence. This approach integrated dense
induced polarization (IP) mapping with transient electromagnetic soundings (TEM),
refraction seismic tomography (RST), borehole soil-textural information, and subsur-
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Abstract

face displacement rates obtained from inclinometer measurements. By incorporating
TEM-derived structural information into the IP data inversion, quantitative correla-
tions between the induced polarization response and soil volume fractions were es-
tablished and validated. Subsequently, a pedotransfer function (PTF) was applied to
the predicted soil-textural information, enabling the delineation of a three-dimensional
hydrogeophysical model parameterized in terms of subsurface hydraulic conductivity,
aquiclude geometry, and preferential flow paths.

The third part of this thesis investigates the application of deep learning in conjunc-
tion with EMI mapping to predict soil properties at the catchment scale, and presents
a novel deep learning network for EMI data inversion. Soil textural information from
an extensive soil survey enabled the development of petrophysical relationships linking
inverted electrical conductivity at different depths to soil volume fractions. Moreover,
the recalibration of a field-scale PTF with predicted soil-textural information allowed
for catchment-scale subsurface hydraulic conductivity prediction for depths down to
1.5 m, essential for calibrating hydrological run-off models. This thesis further dis-
cusses and develops a hydrogeophysical representation of the research catchment using
an extensive IP mapping dataset collected over a decade, extending soil-textural and
hydraulic information to depths of 40 m. Potential conceptual hydrogeophysical mod-
els were examined based on borehole information, with one model parameterized using
three-dimensional hydraulic conductivity distributions and confining layer topography
based on the geophysical dataset.

The comprehensive approach presented in this thesis demonstrates the potential of
integrating geophysical methods, deep learning, and pedotransfer functions for an en-
hanced characterization of subsurface properties at various scales and environments,
including clay-rich landslides and catchments, with implications for enhancing hydro-
geological modeling and understanding of surface-groundwater interactions.
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Kurzfassung

Diese Dissertation untersucht die Anwendung geophysikalischer Methoden, insbeson-
dere der Bildgebungsmethoden mittels (spektral) induzierter Polarisation (SIP) und
elektromagnetischer Induktion (EMI), zur Charakterisierung von Erdrutschen sowie
zur Abschätzung bodenphysikalischer und hydraulischer Untergrundeigenschaften auf
verschiedenen Größenskalen. Die Forschungziele umfassen die Entwicklung robuster
Feldverfahren zur Erfassung von qualitativ hochwertigen SIP-Daten, die Evaluierung
von SIP- und EMI-Bildgebung auf der Feldskala zur Charakterisierung von Erdrut-
schen sowie die Analyse verschiedener Ansätze zur Ermittlung hydraulischer Eigen-
schaften aus geophysikalischen Daten unter Verwendung petrophysikalischer Bezie-
hungen und Pedotransferfunktionen (PTFs). Zudem wird die Anwendung von Deep-
Learning-Techniken zur Inversion geophysikalischer Daten untersucht.

Der erste Teil dieser Arbeit befasst sich mit der Verbesserung von Messverfahren
zur Erfassung von feldskaligen SIP-Datensätzen und der Analyse ihrer Unsicherheiten.
Durch den Vergleich von SIP-Daten, die mit Standard-Multicore- und neu konstru-
ierten Koaxialkabeln gesammelt wurden, wird gezeigt, wie elektromagnetische (EM)
Kopplungseffekte die Daten beeinflussen. Entgegen der weitläufigen Annahme, dass die
EM Kopplungseffekte erst bei höheren Frequenzen einen signifikanten Einfluss haben,
zeigt die Analyse, dass diese bereits bei niedrigen Frequenzen unter 10 Hz berück-
sichtigt werden müssen. Falls keine Koaxialkabel verfügbar sind, zeigt sich, dass es
unerlässlich ist, Kabel mit einer Länge zwischen den Elektrodenbereichen zu verwen-
den, die dem gewählten Elektrodenabstand entspricht. Grundsätzlich konnte durch
den Einsatz von Koaxialkabeln eine Verbesserung der Datenqualität im gesamten Fre-
quenzbereich beobachtet werden, ohne den Aufwand für die Feldmessungen durch
komplizierte Feldverfahren zu erschweren. Mit gleichem Aufwand können daher durch
den Einsatz von Koaxialkabeln im Vergleich zu Standard-Multicore-Kabeln signifikant
bessere Daten erfasst werden.

Der zweite Teil dieser Arbeit präsentiert die Evaluierung einer integrierten Anwen-
dung von SIP, EMI und anderen geophysikalischen Methoden zur effektiven Charak-
terisierung von Erdrutschen auf der Feldskala. Dabei wurde besonderer Fokus auf die
Bestimmung des unterirdischen Wasserflusses und Infiltrationswegen sowie die Bestim-
mung von stabilen/instabilen Einheiten und möglicher Rutschhorizonte gelegt. Diese
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Kurzfassung

Information ist für das Verständnis von, in der Hangrutschung stattfindenden Was-
serbewegungen, die ihrerseits zur einer möglichen Mobilisierung der Hangrutschung
beitragen, essentiell. Erste Anwendungen feldskaliger SIP-Messungen an einer tech-
nisch gut ausgestatteten Hangrutschung ergaben eine signifikante qualitative Korrela-
tion zwischen geotechnischen Parametern (Rammsondierungs- und Inklinometerdaten)
und den frequenzabhängigen elektrischen Leitfähigkeiten. Aufbauend auf diesen Er-
kenntnissen wurde ein umfassender multimethodischer Ansatz zur Charakterisierung
der 3D-Bodentextur und der hydraulischen Eigenschaften des Untergrunds entwickelt
und auf einer zweiten Hangrutschung angewandt. Dieser Ansatz kombinierte die Kar-
tierung der unterirdischen elektrischen Eigenschaften durch dicht gemessene Profile
mittels induzierter Polarisation (IP), transienten elektromagnetischen Sondierungen
(TEM), refraktionsseismischer Tomographie (RST), Bohrlochinformation (Korngrö-
ßen und Bodentyp) sowie aus Inklinometermessungen gewonnene Verschiebungsraten.
Durch die Einbeziehung, der aus TEM abgeleiteten Strukturinformationen, in die In-
version der IP-Daten konnten quantitative Korrelationen zwischen den Polarisationsei-
genschaften und der Korngrößenverteilung im Boden hergestellt und validiert werden.
Die dicht gemessenen IP-Profile ermöglichten die Abschätzung der Korngrößenvertei-
lung im Untergrund. Durch die Anwendung einer Pedotransferfunktion (PTF) konnte
ein dreidimensionales hydrogeophysikalisches Modell erstellt werden, das die hydrauli-
sche Leitfähigkeit des Untergrunds, die Oberkante des Grundwasserleiters und bevor-
zugte Fließwege parameterisiert.

Der dritte Teil dieser Arbeit untersucht die Anwendung von Deep Learning in Ver-
bindung mit flächiger EMI-Kartierung zur Abschätzung bodenphysikalischer Eigen-
schaften in einem kleinen Einzugsgebiet. Hiefür wurde ein neuartiger Deep Learning-
Ansatz entwickelt, der die Inversion von EMI-Daten erlaubt. Informationen zur Korn-
größenverteilung im Boden, die im Rahmen einer umfassenden Kartierungskampagne
erfasst wurden, bildeten die Grundlage für die Entwicklung petrophysikalischer Be-
ziehungen, die die in verschiedenen Tiefen ermittelte elektrische Leitfähigkeit aus den
EMI-Daten mit der Korngrößenverteilung verknüpfen. Darüber hinaus ermöglichte
die Rekalibrierung einer feldskaligen PTF auf Basis der vorhergesagten Korngrößen
die Abschätzung der hydraulischen Leitfähigkeit im gesamten Einzugsgebiet bis zu
einer Tiefe von 1,5 m. Diese Information ist für die Kalibrierung hydrologischer Ab-
flussmodelle unerlässlich und stellt eine deutliche Verbesserung gegenüber bestehenden
Ansätzen zur Bestimmung der hydraulischen Leitfähigkeit im Untergrund dar. Zusätz-
lich wird in dieser Arbeit eine hydrogeophysikalische Modellierung des Einzugsgebiets,
unter Verwendung eines umfangreichen IP-Kartierungsdatensatzes, vorgestellt. Dabei
wurde die Abschätzung der Korngrößenverteilung sowie der hydraulischen Leitfähig-
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keit auf Tiefen von bis zu 40 m erweitert. Mögliche konzeptionelle hydrogeophysika-
lische Modelle wurden auf der Grundlage von Bohrlochinformationen entwickelt und
untersucht. Schließlich wurde ein Modell erstellt, das auf den dreidimensionalen Ver-
teilungen der hydraulischen Leitfähigkeit sowie der abgeschätzten Oberkante eines
Grundwasserstauers basiert und dieses parameterisiert.

Der in dieser Arbeit vorgestellte umfassende Ansatz, der die Integration verschiede-
ner geophysikalischer Methoden, Deep Learning und Pedotransferfunktionen umfasst,
zeigt erhebliches Potenzial für die verbesserte Charakterisierung bodenphysikalischer
und hydraulischer Untergrundeigenschaften in verschiedenen Maßstäben und Umge-
bungen. Dies schließt tonreiche Hangrutschungen und kleine Einzugsgebiete ein und
trägt zur Verbesserung von hydrologischen und hydrogeologischen Modellierung sowie
zum Verständnis der Wechselwirkungen zwischen Oberflächen- und Grundwasser bei.
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1 Introduction

1.1 Scientific background and state of research

Climate change is a pressing global issue with far-reaching consequences, causing a
range of extreme weather events such as heatwaves, droughts, floods and wildfires that
significantly impact communities and ecosystems worldwide (Jentsch and Beierkuhn-
lein, 2008; Cook et al., 2018; Dunn et al., 2020; Balting et al., 2021). Although its
implications have been predicted decades ago, stakeholders, governments and com-
panies are only now slowly starting to recognize its imminent consequences. Despite
international efforts to reduce global CO2 emissions, it is becoming increasingly clear
that worldwide reduction goals are unlikely to be met (Lui et al., 2021; Boubaker
et al., 2024). This reality necessitates a shift in focus towards mitigation strategies to
manage the impacts of climate change (Beermann, 2011; Adekola and Lamond, 2022).

Among the before mentioned hazards, climate change is having a significant im-
pact on landslide development and the challenges associated with it. The increasing
frequency and severity of extreme weather events (Dunn et al., 2020), such as heavy
rainfall and flooding (Ban et al., 2015; Papalexiou and Montanari, 2019), are leading
to an increase in the number of landslides (Sobie, 2020; Picarelli et al., 2021; Lin et
al., 2020; Lin et al., 2022). Additionally, rising temperatures and changes in precipita-
tion patterns in conjunction with deforestation are causing changes in the stability of
slopes, making them more susceptible to landslides (Ren et al., 2012; Lehmann et al.,
2019; Manchado et al., 2022).

One of the main challenges associated with climate change and landslides is the dif-
ficulty in accurately predicting and mitigating the effects of these events. This is due
to the complex nature of the internal landslide structure and their associated mobiliza-
tion processes, as well as the limited understanding of the underlying geological and
hydrological processes (Van Asch et al., 1999; Bogaard and Greco, 2016; Greco et al.,
2023). In particular, Greco et al., 2023 argue that there is still a conceptual mismatch
of soil mechanics and hydrological models that is poorly understood and underinves-
tigated. Additionally, the impact of landslides on communities and infrastructure can
be severe, leading to loss of life, property damage, and economic disruption (Petley,
2010; Haque et al., 2019). This requires a multi-disciplinary approach that integrates
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1 Introduction

knowledge from fields such as geology, hydrology, engineering, and social sciences for
effective landslide management strategies (Federici et al., 2007; Ausilio and Zimmaro,
2017; Bhandari and Dhakal, 2021). Effective management strategies must also con-
sider the needs and perspectives of local communities and stakeholders.

In this context, geophysics emerges as a crucial tool for providing detailed subsur-
face information, which is essential for understanding and addressing climate change-
related challenges, in particular in the context of landslides and mass movements.
Near-surface geophysics, focusing on the earth’s subsurface up to depths of a few hun-
dred meters, offers valuable insights into the physical properties of the ground (Everett,
2013). By providing subsurface properties such as electrical conductivity or seismic
velocity, it permits to obtain detailed 2D and 3D models of the subsurface. Given
adequate petrophysical relationships such geophysical models can be transformed to
soil-physical and hydrological models (Binley et al., 2015). This information is partic-
ularly valuable in understanding landslides and mass movements, as it reveals crucial
details about subsurface structure, moisture dynamics and mobilization mechanisms
(Whiteley et al., 2019; Pazzi et al., 2019). Such landslide knowledge is instrumental
in developing effective strategies to mitigate the risks associated with these climate
change-induced geological hazards, ultimately contributing to more resilient and adap-
tive communities in the face of ongoing environmental challenges.

Traditionally, geophysical landslide investigations relied heavily on electrical resis-
tivity tomography (ERT), which permits to solve for 2D and 3D models of the subsur-
face electrical resistivity, or its inverse electrical conductivity. Due to the sensitivity
of the obtained electrical resistivity to soil moisture and lithological variations, both
of which are crucial in understanding landslide dynamics, ERT has been extensively
applied to characterize landslides (e.g., Perrone et al., 2014, and references therein).
However, the limitations of using a single method, along with the impossibility of
the ERT method to discriminate between clay-rich and water-saturated zones, both
characterized by low electrical resistivity, have become apparent, leading to the recog-
nition of the need for multidisciplinary approaches (Bichler et al., 2004; Jongmans and
Garambois, 2007; Hibert et al., 2012). Consequently, most contemporary publications
in this field employ a combination of geophysical techniques, such as electrical, seismic
and electromagnetic methods, alongside geotechnical methods and ground-truthing
through soil-physical sampling (e.g., Soto et al., 2017; Pazzi et al., 2019; Di Maio et
al., 2020; Perrone et al., 2021; Marciniak et al., 2021). This integrated approach helps
to constrain the uncertainty in landslide models and provides a more comprehensive
understanding of the subsurface conditions.

In recent years, induced polarization (IP) has emerged as a promising technique for
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environmental applications (Kemna et al., 2012). Among more recent applications
are the assessment of permafrost dynamics (Steiner et al., 2021; Maierhofer et al.,
2022; Maierhofer et al., 2024), the monitoring of bioremediation processes and mi-
croscale particle injections (Flores Orozco et al., 2011; Flores Orozco et al., 2013;
Flores Orozco et al., 2015; Flores Orozco et al., 2019c), the quantification of critical
raw material contents (Katona et al., 2024) or the quantification of biogeochemical
carbon turnover hotspots (Katona et al., 2021) just to name a few examples. As an
extension of ERT, IP not only permits to delineate the electrical resistivity but also
the quantification of the capacitive properties of subsurface materials. This additional
information about the capacitive behavior of subsurface materials allows for better
discrimination between different lithological, hydrological or even geochemical units
within the subsurface (Kemna et al., 2012), potentially opening up new possibilities for
characterizing clay-rich landslides. At the outset of this dissertation, the contribution
of IP to landslide research was limited with only a handful of published manuscripts
(Marescot et al., 2008; Taboga, 2011; Sastry et al., 2012; Dahlin et al., 2013; Sirles
et al., 2013). Apparently, there was a notable lack of field-scale studies investigating
the potential of IP in landslide characterization, particularly in the realm of spec-
tral IP (SIP). SIP measurements are performed at different excitation frequencies to
characterize the frequency-dependent behavior of the subsurface electrical properties,
which has been linked to soil textural (Weller et al., 2010; Revil et al., 2012c) and
subsequently soil hydraulic parameters (Slater, 2007; Weller et al., 2015). This gap
in the literature highlighted the need for comprehensive field-scale investigations to
explore the full potential of the IP method in enhancing our understanding of (1) the
internal structure of landslides along with their soil textural and hydraulic parameters
and (2) the processes associated with triggering mechanisms.

Among the less commonly used geophysical imaging techniques in landslide research
is the electromagnetic induction (EMI) imaging method. EMI is a frequency-domain
electromagnetic method that permits the mapping of variations in the apparent electri-
cal conductivity (ECa), and, in the case of inverted data, can provide 3D information
about the electrical conductivity in the subsurface. The application of EMI imaging in
soil science has been manifold (Doolittle and Brevik, 2014a; Boaga, 2017), including
the monitoring of soil moisture (Shanahan et al., 2015; Martini et al., 2017a) and
soil salinity variations (Akramkhanov et al., 2014; Yao et al., 2016), delineation of
soil compaction (Schmäck et al., 2022), texture variations (Abdu et al., 2008; Zhao
et al., 2019), and prediction of hydraulic properties (Brosten et al., 2011; Uhlemann
et al., 2022). Although apparent electrical conductivity (ECa) maps have been the
traditional approach, with the advent of computationally efficient inversion algorithms
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(Triantafilis and Monteiro Santos, 2013; McLachlan et al., 2021a; Klose et al., 2022)
and multi-coil/multi- configuration sensor systems, the field has progressed to the
use of inverted 2D and 3D electrical conductivity (EC) models, that provide valuable
depth-specific information.

Given the simple field procedures and ease of implementation in challenging terrain
conditions, the sensitivity of EC to soil textural and even hydraulic properties, along
with the rapid acquisition times, the EMI method appears to be a well-suited to tool
for investigating complex soil structures typically associated with landslide-prone or
already landslide-affected areas. However, to date, the application of EMI in slope
stability studies remains relatively unexplored (Mauritsch et al., 2000; Grandjean et
al., 2011; Altdorff and Dietrich, 2014; Kušnirák et al., 2016), underscoring the need
for further research to fully realize the potential of the EMI method for an enhanced
characterization of landslides as well as the associated processes.

As previously implied, the understanding of infiltration and subsurface water flow
patterns holds significant importance in addressing the complex hydrological processes
within landslides (Greco et al., 2023). However, when considering a larger scale, the
detailed characterization of subsurface water flow is also critical for the understanding
of groundwater recharge and its availability, which, due to climate change is projected
to undergo significant shifts with substantial regional variations (Amanambu et al.,
2020; Al Atawneh et al., 2021; Reinecke et al., 2021). This highlights the urgent need
for innovative approaches in hydrogeology, which has promoted extensive research into
the application of geophysics for hydrological and hydrogeological purposes along with
the development of the field of hydrogeophysics (e.g., Binley et al., 2015; Boaga, 2017;
Lubczynski et al., 2024, and references therein). Several studies conducted on labora-
tory samples observed a link between the frequency-dependent characteristics of the
induced polarization response and grain size related properties, such as a referential
grain size, grain size distribution, and pore length (e.g., Titov et al., 2002; Koch et al.,
2011; Revil et al., 2012c), and further experiments targeted the potential relationship
between spectral parameters and soil hydraulic properties (Titov et al., 2010; Revil
and Florsch, 2010; Weller et al., 2015; Weller and Slater, 2019), which promoted confi-
dence in the SIP method as a suitable tool for field-scale hydrogeological applications.
However, the upscaling of laboratory-derived relationships, measured in well-controlled
conditions, to field-scale applications presents significant challenges (e.g., Kemna et
al., 2012). In particular, in the case of multi-frequency data, electromagnetic inter-
ference occurring at higher frequencies often impedes meaningful interpretation of
the observed induced polarization response (Zimmermann et al., 2008). Moreover, the
controlled settings in laboratory experiments are difficult to replicate under field condi-
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tions, especially when considering the complexities introduced by frequency-dependent
measurements. Factors such as subsurface heterogeneity, anisotropy, varying soil mois-
ture, and scale-dependent processes introduce complexities that are not fully captured
in laboratory studies or are intentionally excluded. As a result, the direct application
of laboratory-derived relationships to field-scale scenarios often leads to inaccurate
estimations of hydraulic parameters because specific fitting parameters in the rela-
tionships are unknown or need to be approximated using proxy solutions (Hördt et
al., 2009; Flores Orozco et al., 2022).

While laboratory experiments provide valuable insights into the fundamental re-
lationships between the frequency-dependent IP response and hydraulic properties,
field-scale studies are crucial for refining these relationships and advancing the appli-
cability of the method. Unfortunately, there is a notable lack of comprehensive field-
scale studies in this area, particularly those addressing the challenges of interpreting
SIP data (Hördt et al., 2009; Attwa and Günther, 2013; Revil et al., 2021; Flores
Orozco et al., 2022). This research gap hinders the development of robust upscaling
methodologies and limits the practical application of SIP for hydraulic parameter es-
timation in real-world scenarios. The complexity of interpreting frequency-dependent
IP responses under heterogeneous field conditions further exacerbates this challenge.
Hence, alternative approaches that permit the quantification of hydraulic properties
without the need to upscale complex laboratory relationships are required.

Pedotransfer functions (PTFs) enable the prediction of complex soil-hydraulic prop-
erties, such as saturated hydraulic conductivity, utilizing readily measurable soil phys-
ical data including sand, silt, and clay fractions, bulk density, and soil organic matter
content (e.g., Patil and Singh, 2016; Van Looy et al., 2017a) . PTF implementations
range from relatively simple regression models to sophisticated artificial intelligence-
assisted prediction models (Zhang and Schaap, 2019) and PTFs that predict hydraulic
conductivity are commonly developed for extensive databases of point-scale infiltra-
tion measurements, aiming at generalized formulations that can provide predictions at
the local scale for diverse soil-textural settings. Thus, the use of PTFs in conjunction
with geophysical methods could bridge the gap between laboratory-derived relation-
ships and field-scale applications, provided it is possible to establish a link between
the geophysical properties, for instance electrical conductivity, and the soil-physical
parameters necessary for PTF application. Therefore, the implementation of PTFs
could be considered an intermediate solution as well as a tool to evaluate the pre-
diction performance of upscaled laboratory relationships (Hadzick et al., 2011; van
Leeuwen et al., 2024).

This thesis focuses on advancing beyond the measurement of geophysical properties
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to the quantification of parameters that can be directly utilized by other disciplines
and stakeholders and investigates the use of PTFs in geophysical frameworks. By
developing approaches that provide quantitative, actionable information at the field
scale, geophysical techniques such as SIP and EMI can become increasingly valuable
tools for understanding and characterizing subsurface properties.

1.2 Research hypotheses and objectives

The hypotheses and derived objectives presented here emerged from the evolving land-
scape of geophysical methods and its current state of research. They reflect the ongoing
efforts to enhance the understanding of complex subsurface systems and improve the
accuracy and reliability of field-scale predictions and focus on advancing geophysical
methods for subsurface landslide and catchment characterization, with a particular
emphasis on improving the prediction of hydraulic properties. Specifically, the key
research hypotheses and derived objectives are:

Hypothesis 1: EM coupling affects frequency-dependent IP data at frequencies as low
as 1 Hz and the use of optimized field procedures and cables can improve the
quality of field-scale IP data.

Objective: Development of robust field procedures for the collection of high-quality
frequency-dependent IP data with a particular focus on data collected at the
higher frequencies, subject to EM coupling.

Hypothesis 2: SIP can provide a more detailed characterization of clay-rich landslides
compared to traditional ERT alone, such that it permits to distinguish between
water-saturated and clay-rich zones. In conjunction with EMI imaging, the un-
derstanding of the internal landslide structure and processes can be significantly
improved.

Objective: Application and evaluation of field-scale (S)IP and EMI imaging in the
scope of landslide characterization, particularly for clay-rich sites.

Hypothesis 3: PTFs used in conjunction with geophysical measurements can improve
field-scale predictions of hydraulic properties compared to direct upscaling of lab-
oratory relationships.
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Objective: Evaluation of approaches that permit to obtain hydraulic properties
from geophysical data: using experimental petrophysical relationships and pe-
dotransfer functions or through upscaling of laboratory-derived relationships.

Hypothesis 4: Deep learning techniques can provide an effective alternative to deter-
ministic inversion for processing and interpreting of EMI imaging data.

Objective: Investigation of using deep learning techniques as an alternative to de-
terministic inversion of geophysical data.

1.3 Structure of the thesis

This thesis consists of eight chapters, with Chapters 3-6 drawing from material sub-
mitted to or published in peer-reviewed journals. The structure is as follows:

Chapter 2 provides a commentary on the predominating relationships of the electrical
subsurface properties to soil-physical, chemical and hydraulic parameters. This
is followed by an introduction and discussion of PTFs that permit to predict
hydraulic parameters from easy-to-measure soil-physical properties such as the
soil volume fractions or bulk density.

Chapter 3 addresses the implementation of adequate and robust field procedures for
the collection of high-quality SIP data. Specifically, it presents a comparison of
data collected with standard multicore and novel coaxial cables and examines
how EM coupling interferes with the data. It is demonstrated that, contrary to
the common assumption of EM coupling only arising at higher frequencies, EM
coupling can be observed at frequencies below 10 Hz. Furthermore, this chapter
emphasizes the necessity of using cables with takeout lengths (i.e., the length be-
tween each electrode connection) identical, or preferably not significantly larger
than, to the chosen electrode separation, if the objective is to minimize the ef-
fects of EM coupling. Overall, this chapter clearly demonstrates that the use of
coaxial cables provides superior data over the entire frequency range observed
when compared to standard multicore cables, while maintaining the same simple
field procedures.

Chapter 4 presents the first publication that implemented field-scale SIP and EMI
imaging for a small, well-equipped landslide in Austria. The application of mul-
tiple mapping IP profiles and SIP along one profile, in conjunction with an
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extensive geotechnical and soil-physical database, facilitated a comprehensive
evaluation of the SIP method’s potential in landslide research. A significant
qualitative correlation between geotechnical parameters and the frequency de-
pendent behavior of the subsurface electrical properties was observed, which
permitted an enhanced interpretation of subsurface water flow and infiltration
pathways within the landslide.

Chapter 5 builds upon the findings of Chapter 4 and presents a multi-methodical
approach to characterized 3D soil textural and hydraulic subsurface properties
of a hillslope affected by mass movements. The approach integrates dense IP
mapping in conjunction with TEM, RST, and soil-textural information collected
from five boreholes. Following the integration of structural information regarding
the distribution of subsurface electrical conductivity provided by TEM into the
inversion of the IP data, a quantitative correlation of the complex conductivity
response with the soil volume fractions of sand, silt and clay was established and
these relationships were evaluated using borehole information not used in the
correlation process. Subsequently, the application of a PTF using the predicted
soil-textural information permitted the delineation of a 3D hydrogeophysical
model, parameterized in terms of the subsurface hydraulic conductivity, and the
geometry of an aquiclude along with preferential flow paths.

Chapter 6 investigates emerging techniques and presents a multi-step framework that
combines deep learning and EMI mapping to predict soil-textural and hydraulic
properties at the catchment scale (66 ha). A novel deep learning network to "in-
vert" EMI data is outlined and its performance is evaluated through comparison
with the standard deterministic inversion approach. Soil textural information,
obtained from an extensive soil survey conducted in the catchment, permitted
the development of experimental petrophysical relationships linking the inverted
electrical conductivity to the soil volume fraction of sand, silt and clay. Re-
calibrating a field-scale PTF available for the catchment using the predicted
soil-textural information enabled the prediction of subsurface hydraulic conduc-
tivity at the catchment scale, the knowledge of which is essential to calibrate
hydrogeological models to enhance the understanding of surface-groundwater
interactions and runoff processes.

Chapter 7 extends the research presented in Chapter 6 towards developing a hy-
drogeophysical representation of the research catchment by using an extensive
dataset of IP mapping profiles collected throughout the catchment over the past
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decade. Such dataset, in conjunction with ground-truth information from bore-
holes, permitted to extend the soil-textural and hydraulic information to depths
of up to 40 m. Based on the available borehole information, the chapter exam-
ines potential conceptual hydrogeophysical models, with one model subsequently
being parameterized by means of three-dimensional hydraulic conductivity dis-
tributions and the topography of confining layers.

Chapter 8 concludes this dissertation and summarizes the key findings from all pre-
vious chapters. Moreover, this chapter provides an outlook for future research
that could extend on the results presented herein.
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2 Material and methods

2.1 Electrical properties and their relation to soil-physical,

chemical, and hydraulic properties

2.1.1 Conduction and polarization mechanisms in porous media

Three processes govern the conduction in earth materials (Figure 2.1): ionic trans-
portation of charge through (1) conduction via ions dissolved within the pore fluid
filling the pore space (σf ), (2) conduction via ions in the electrical double layer (EDL),
forming at the grain-fluid interface in the so-called surface conduction (σs), and, in
the presence of metallic minerals and semiconductors, (3) transportation of charge
via mobile electrons in the electron conduction (σm) (Binley and Slater, 2020). In
general, the conductivity (σ) of a material depends on the mobility and number of
charges available. Considering a single charge carrier i, the conductivity is given by
(Binley and Slater, 2020)

σi = n̂iẐieβi (2.1)

where Ẑi is the valence of charge carrier, n̂i is the charge carrier density, e is the
elementary charge (1.6022 × 10−19C) and βi is the mobility of the charge carrier (in
m2s−1V−1).

Provided the presence of water, ionic conduction is the dominant charge trans-
portation process for earth materials without metallic minerals and semiconductors.
In such, the mobility of the ions β substantially defines the fluid’s conductivity. βi is
given by

βi =
ẐieDi

kbT
(2.2)

where Di is the diffusion coefficient of the charged species (in m2s−1), T is the tem-
perature in Kelvin (K), and kb is Boltzmann’s constant (1.3806× 10−23m2kgs−1K−1).
Since the diffusion coefficient itself is also directly proportional to the temperature
(Jost, 1952), the inverse relationship of βi with temperature, as stated in equation 2.2
is only apparent. In fact, for low temperatures (< 250◦C), the conductivity σi increase
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with temperature (Glover, 2015; Binley and Slater, 2020). βi can also be parameter-
ized using the viscosity (η in Pa s) of the fluid and the radius ri of the hydrated ion

βi =
Ẑie

6πηri
. (2.3)

Inserting equation 2.3 into equation 2.1 yields an alternative expression (Glover, 2015):

σi =
n̂iẐ

2
i e

2

6πηri
. (2.4)

which highlights that the conductivity of a solution is proportional to the charge con-
centration, the square of the charge carried (Ẑ2

i e
2), and indirectly proportional to the

fluid viscosity and radius of the hydrated ion (Glover, 2015). Considering that cations
and anions have different hydrated radii, equation 2.4 lays the foundation for different
conductivity contributions from cations and anions (Glover, 2015). Moreover, since
viscosity decreases with temperature, σi will increase, given the inverse proportionality
in equation 2.4.

The EDL forms at the interface between a charged solid surface (such as mineral
grains) and a pore fluid (Figure 2.1). It consists of two distinct layers: the first
layer, known as the Stern layer is composed of ions that are strongly adsorbed onto
the surface of the solid due to electrostatic attraction and these ions are typically
counterions that neutralize the surface charge of the mineral (Revil, 2012; Glover, 2015;
Binley and Slater, 2020). Since the surface charge of the mineral cannot be balanced
entirely (Glover, 2015), a diffuse layer develops beyond the Stern layer, where ions
are more loosely associated with the surface trying to balance the remaining charge
of the mineral grain (negative charge in Figure 2.1). In this region, the concentration
of ions decreases exponentially with the distance from the surface (Binley and Slater,
2020). The overall effect of the EDL is the creation of a potential difference across the
interface, which can influence the movement of ions in the pore fluid and affect the
electrical conductivity of the material through surface conduction along the EDL (σs

in Figure 2.1).

The EDL is particularly significant in fine-grained soils and clays, where the large
surface area relative to volume enhances its impact on charge transport processes
(Leroy and Revil, 2004; Revil, 2012). The effective width of the diffuse layer is assumed
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to be twice the Debye screening length (χd), given by (Revil and Glover, 1997):

χd =

�
εkbT

2NAe2I0
. (2.5)

ε is the dielectric permittivity, NA is the Avogardo constant (6.022× 1023mol−1) and
I0 is the ionic strength (in mol m−3) given by (Revil and Glover, 1997)

I0 = 0.5
n�
i

Ẑ2
i C(c)i (2.6)

where C(c)i is the concentration (in mol m−3) of each ionic species (i) in the fluid.
Hence, due to the lower number of cations in low-salinity fluids compared to high-
salinity fluids, the diffuse layer is thicker at low salinities and is always significantly
thicker than the Stern layer (Glover, 2015).

In absence of metallic minerals and semiconductors, the bulk conductivity (σ) of a
porous medium is composed of the contributions of electrolytic conduction within the
fluid (σf ) and surface conduction (σs) along the mineral-grain interface in the EDL:

σ = σf + σs (2.7)

whereas both conduction mechanisms are assumed to add in parallel (Waxman and
Smits, 1968). Archie’s law is an empirical relationship (Archie, 1942) that, for a fully
saturated medium, relates the bulk conductivity (σ[s]) to a conducting phase (σw) and
a formation factor F , that accounts for the volume and connectivity of the conducting
phase (Binley and Slater, 2020). This model can be readily extended to incorporate
surface conduction, as follows

σ[s] = σf [s] + σs[s] =
1

F
σw +

1

Fs

σEDL (2.8)

where

F = φ−m (2.9)

in which φ is the interconnected porosity and m is called the cementation factor, ac-
counting for the reduction of connectivity and tortuosity of the pore space (Archie,
1942). Fs ̸= F because the interconnected pores may not equally contribute to elec-
trolytic and EDL conduction, as evidenced by situations where the EDL maintains
connectivity between closely spaced minerals that do not facilitate electrolytic con-
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Figure 2.1: Conduction and polarization mechanisms for nonconducting particles
(white spheres) and electron conducting particles (grey spheres) when an external
field (E) is applied indicating the redistribution of ions for the different particles. The
bottom plot illustrates the electrical double layer and the distribution of ions within
it (modified after Glover, 2015; Binley and Slater, 2020).
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duction (Binley and Slater, 2020). Equations 2.5 and 2.6 show that σEDL is related
to the electrochemical properties of the charge carriers. However, it has been found
that σEDL is in fact related to both the electrochemical properties and the interfacial
geometry, which can be quantified by a characteristic length scale (Λ) (Johnson et al.,
1986). σEDL can now be given as

σEDL =
2Σ

Λ
(2.10)

where Σ denotes the surface conductance (in S). Σ can, for a single ion in the EDL,
be approximated using equation 2.1, and, is thus, a function of ion mobility, charge
density, and valence. Inserting equation 2.10 into equation 2.8 under the assumption
that Fs = F ̸= φ−m, yields

σ[s] =
1

F
(σw +

2Σ

Λ
) (2.11)

Alternatively, σEDL can be related to the pore volume normalized surface area (Spor),
the thickness of the EDL (δ) and the intrinsic conductivity (σdiff ) of the diffuse layer
as follows

σEDL = Sporδσdiff . (2.12)

For a capillary bundle (Weller and Slater, 2012), Λ = 2/Spor, and, thus

σEDL =
2Σ

Λ
∼= SporΣ (2.13)

which further simplifies equation 2.11 to

σ[s] =
1

F
(σw +

2Σ

Λ
) ∼= 1

F
(σw + SporΣ). (2.14)

Assuming that both σw and σEDL are a function of saturation Sw, equation 2.14 can
be modified for partially saturated conditions as such (Binley and Slater, 2020)

σ[ps] =
1

F
(σwS

n
w +

2Σ

Λ
Sp
w)

∼= 1

F
(σwS

n
w + SporΣS

p
w). (2.15)

where n and p are the saturation coefficients of the electrolytic and surface conductiv-
ity, respectively.

Having explored the electrical conduction mechanisms in porous media, it is impor-
tant to consider the polarization mechanisms that contribute to their complex electri-
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cal behavior. In absence of electron conducting particles, these polarization processes
are intimately linked to the EDL and the measured electrical conductivity effectively
represents a complex property (σ∗), where the real part (σ ′) refers to energy loss (con-
duction) and the imaginary part (σ ′′) to temporary energy storage (polarization) with
σ∗ = σ ′+ iσ ′′. Moreover, the complex conductivity is a frequency dependent property
and different polarization mechanisms can be observed in the investigated frequency
range, and thus

σ∗(ω) = σ ′(ω) + iσ ′′(ω) (2.16)

where ω is the angular frequency. Hence, the frequency dependent complex bulk con-
ductivity (σ∗(ω)) is now given as the parallel addition of a real valued electrolytic
conductivity (σf ) assumed to be non-polarizable and a complex valued surface con-
ductivity (σ∗

s). Equation 2.16 can now be rewritten as (Vinegar and Waxman, 1984;
Lesmes and Frye, 2001)

σ∗(ω) = σf + σ∗
s = σf + σ ′

s(ω) + iσ ′′
s(ω). (2.17)

Therefore, the measured complex conductivity is related to the electrolytic and surface
conductivity as

σ ′(ω) = σf + σ ′(ω) (2.18)

σ ′′(ω) = σ ′′
s(ω) (2.19)

The relevance of equations 2.18 and 2.19 is that while the real part of the complex
conductivity depends on the combination of the electrolytic and surface conductivity
pathways, the imaginary part only detects the surface conduction pathway (Binley
and Slater, 2020). This fact potentially permits to solve the ambiguities regularly
observed in the interpretation of conductivity alone (as obtained from direct current
(DC) resistivity measurements), where the relative contributions of σf and σ ′

s are
unknown and highlights the added value of considering the polarization effect.

Kemna et al., 2012 identified five main polarization mechanisms that dominate at
frequencies below 1 MHz:

1. Maxwell-Wagner polarization arises due to discontinuities in the electrical con-
ductivity at interfaces between different phases (solid, liquid, gas) and is not
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related to the surface conductivity (Binley and Slater, 2020). When an elec-
tric field is applied, free charge distributions form near the interfaces between
different phases, leading to the accumulation of charges and the creation of an
polarization effect at frequencies higher than 100 Hz (Chen and Or, 2006; Lesmes
and Morgan, 2001; Binley and Slater, 2020).

2. Stern layer polarization at the inner part of the EDL related to tangential dis-
placement of counterions in the Stern layer (Revil, 2012; Bücker et al., 2019a).

3. Diffuse layer polarization at the outer part of the EDL related to both radial and
tangential fluxes of counterions in the diffuse layer (Revil, 2012; Bücker et al.,
2019a; Niu, 2023).

4. Membrane polarization occurring at the EDL due to the formation of ion-
selective zones resulting ion concentration gradients in the interconnected pore
space (Marshall and Madden, 1959; Titov et al., 2002; Binley and Slater, 2020).

5. Electrode polarization, taking place in presence of electron conducting particles
and can be typically observed at lower frequencies. To cancel out an external
applied electric field, the mobile charges of the electron conducting particle re-
distribute along its surface. As a response, the induced surface charge attracts
counterions and charges the electrolyte around the poles of the particle (Figure
2.1). Hence, electrode polarization also takes place at the EDL, but the main
difference is that the particle itself polarizes (Wong, 1979; Bücker et al., 2018;
Bücker et al., 2019b).

As stated by Kemna et al., 2012, and others, the current conceptualization of the
Stern, diffuse and membrane polarization, all affected by characteristics of the EDL,
are closely related. The driving factors for EDL polarization mechanisms include the
pore geometry, i.e., the ratio of narrow to wide pores and pore throat sizes (Bücker and
Hördt, 2013; Kreith et al., 2024), the surface charge affecting the ion distribution and
transport in both Stern and diffuse layers (Bücker et al., 2019a; Kreith et al., 2024),
characteristics of the electrolyte, such as salinity and temperature (Revil, 2012), and
the specific surface area (c.f. equation 2.13) among other factors. While mechanistic,
analytic, and semi-analytic models are being actively developed to understand the
EDL polarization mechanisms and their frequency behavior (Schwarz, 1962; Leroy and
Revil, 2009; Bücker et al., 2019a; Kreith et al., 2024), previous efforts were based on
phenomenological models without physical foundations. Such dispersion models aim
to describe the shape of the frequency response and permit to obtain a characteristic
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relaxation time (τ0), defining the dominant length-scale of the polarization process
Binley and Slater, 2020. One commonly used model, among others (Börner et al.,
1996a; Weigand and Kemna, 2016), is the one proposed by Cole and Cole, 1941 which
can be rewritten for complex conductivity as

σ∗(ω) = σ∞ − σ∞ − σ0

1 + (iωτ0)c
(2.20)

where σ0 and σ∞ are the low and high frequency asymptotes, c describes the steepness
of the curve and τ0 is the characteristic relaxation time (i.e., the frequency where the
model has its peak). The term σ∞ − σ0 is called normalized chargeability (mn) and
is a measure of overall polarization strength, thus, related to σs. τ0 is of significant
relevance given its correlation with grain or pore size (Pelton et al., 1978; Revil et al.,
2012c) which has promoted extensive research into establishing relationships linking
the polarization response to hydraulic properties (Revil and Florsch, 2010; Koch et al.,
2011; Weller et al., 2015; Weller and Slater, 2019; Herold et al., 2024).

2.1.2 Predicting hydraulic properties from electrical properties

The concept of hydraulic conductivity is closely tied to Darcy’s law, which describes
fluid flow through porous media. Assuming a homogeneous, isotropic material, the
fluid flux q (in m/s) and the gradient of the hydraulic head (h) are linked via the
hydraulic conductivity K (in m/s)

q = −K∇h (2.21)

with the negative sign indicating the direction of the flow opposite to the increas-
ing hydraulic head. The permeability k, describing the geometrical properties of the
porous medium, and K, are related by the fluid properties, namely the fluid density ρ

(kg m3) and dynamic viscosity η (N s/m2) together with the gravitational acceleration
g (m s−2) as follows

K =
kρg

η
. (2.22)

Geometrical models to determine k define an effective hydraulic radius reff representa-
tive of the pore size controlling fluid flow (Carman, 1939; Robinson et al., 2018). Such
models were based on fluid flow through a network of capillary tubes (Carman, 1939)
or based on percolation theory applied to a broad distribution of pore sizes (Katz and
Thompson, 1987). Pape et al., 1987, for instance, related reff to Spor (µm), which
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yields the well-known PaRiS equation

kPaRiS =
475

FS3.1
por

. (2.23)

Similarly, Katz and Thompson, 1987 showed that reff approximately relates to a
characteristic length scale Λ (µm), here the dynamically interconnected pore radius,
as derived from mercury injection capillary pressure method (MICP). Their model
writes as

kKT =
Λ2

F8
. (2.24)

Both models require properties defining a geometrical length scale (Λ, Spor) that cannot
be directly measured and require intricate and costly laboratory testing. Moreover, F
has to be known to apply the relationships, which is also difficult to estimate without
knowledge of the fluid conductivity. Hence, extensive research focused on finding
an equivalent geophysical length scale that can replace the geometrical length scale,
while also investigating approaches to estimate F (Börner et al., 1996b; Robinson
et al., 2018; Binley and Slater, 2020). In general, geophysical k-models will take the
form

kg =
a

F b(Υ)d
. (2.25)

where Υ is the geophysical length scale and a, b, and d are fitting parameters (Börner
et al., 1996a; Weller et al., 2015). Possible substitutes for Υ are single frequency σ ′′

given the strong empirical correlation to Spor (Weller et al., 2010; Weller et al., 2015),
or in case of frequency-dependent polarization behavior the normalized chargeability
mn (Weller et al., 2015) or a characteristic relaxation time τ (Revil et al., 2015a;
Robinson et al., 2018). The estimation of F for field-scale applications is still related
to considerable uncertainty, requiring an estimate of both the fluid conductivity and
an appropriate value of the linear coefficient l relating the real part of the surface
conductivity σ ′

s to σ,′′ so that F can be calculated as (Börner et al., 1996a)

F ∼= σf

σ ′′ − σ ′′
l

(2.26)

Börner et al., 1996a suggested values for l in the range between 0.01 and 0.15, whereas
other studies reported values of l = 0.042 (Weller et al., 2013) and l = 0.037 (Revil
et al., 2015b).
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2.2 Predicting hydraulic properties from non-geophysical data:

pedotransfer functions

PTFs are empirical relationships that allow the estimation of difficult-to-measure soil
properties from more easily obtainable soil data (Bouma, 1988). These functions serve
as valuable tools in earth system sciences (Van Looy et al., 2017b) by providing a cost-
effective means to predict complex soil attributes to model hydrological (Weber et al.,
2024), climatological (Ya et al., 2024) and environmental processes (Neira-Albornoz
et al., 2024) within the scope of land surface modeling (Overgaard et al., 2006; Blyth
et al., 2021). PTFs typically utilize readily available soil information, such as texture,
bulk density, and organic matter content, along with morphological properties and
structural information, to estimate properties such as hydraulic and water retention
characteristics (Minasny et al., 1999; Jana et al., 2007; Zhang and Schaap, 2019; Sz-
abó et al., 2021), solute transport parameters (Minasny and Perfect, 2004) and more
recently thermal conductivity (Markert et al., 2017; Tarnawski et al., 2020; Peng et
al., 2024). The development and application of PTFs have significantly enhanced our
ability to understand and model soil processes across various spatial and temporal
scales (Nemes et al., 2003; Pringle et al., 2007; Weber et al., 2024), bridging the
gap between easily measurable soil properties and those that are more challenging or
expensive to determine directly, such as hydraulic conductivity functions and water re-
tention characteristics (Vereecken et al., 1992; Van Looy et al., 2017b). In agriculture,
PTFs permit to optimize irrigation schedules (Georgousis et al., 2009; Nemes et al.,
2010), predict crop yields (Grassini et al., 2015), and to assess soil quality (Wösten,
1997); while hydrologists and environmental researchers use PTFs to estimate soil hy-
draulic properties (Zhang and Schaap, 2019; Weber et al., 2024) crucial to understand
rainfall-runoff and water retention processes (Minasny et al., 1999; Sobieraj et al.,
2001; Picciafuoco et al., 2019b), as well as processes related to contaminant and solute
transport (Moeys et al., 2012; Achat et al., 2016). The significance and concurrent
challenge of PTFs lie in their ability to leverage existing soil databases and surveys
to generate valuable information about soil properties that would otherwise be im-
practical or infeasible to measure directly at large scales (Gutmann and Small, 2007;
Shen et al., 2014). This capability has become increasingly crucial as the demand for
high-resolution soil data grows in response to global challenges, such as water resource
management and climate change adaptation (Gómez et al., 2023; Ya et al., 2024;
Do et al., 2024). For conciseness, this introduction focuses on PTFs that permit the
prediction of hydraulic conductivity.
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2.2.1 Development of pedotransfer functions

To develop PTFs for predicting hydraulic conductivity K two approaches have to be
considered: (a) point and (b) parametric PTFs (Zhang and Schaap, 2017; Szabó et al.,
2021). Point PTFs relate the K values from field or laboratory measurements directly
to the predictors (soil volume fractions, bulk density, organic matter content, etc.),
while parametric PTFs use an adequate hydraulic model that describes the measured
parameters (K and water retention parameters) in a closed-form equation and em-
ploy the predictors to develop empirical functions to estimate the parameters of the
hydraulic model. As approach (b) can provide mathematical functions for the mois-
ture retention and hydraulic conductivity curves used in mathematical models and
modeling frameworks, it has been the preferred approach in the past three decades
(Vereecken et al., 2010; Weber et al., 2024). Typical hydraulic models include the
Brooks-Corey and Mualem-van-Genuchten models (Brooks and Corey, 1966; Mualem,
1976; van Genuchten, 1980), with the latter being widely employed but facing criticism
due to its underlying assumption of a unimodal pore size distribution, which is rarely
observed in natural soils (Vereecken et al., 2010). Approach (a) is typically applied for
smaller catchments with soil characteristics not captured in the more generalized mod-
els such as (b), and, thus, are often site-specific (Picciafuoco et al., 2019b; Picciafuoco
et al., 2019a) providing limited scalability.

The statistical methods to establish PTFs are manifold and are predominantly em-
pirical in nature (Van Looy et al., 2017b). While approach (a) is typically developed
for large databases, encompassing a wide range of soil types, climatic conditions and
land use patterns in an effort towards generalizability (Rawls et al., 1982; Zhang and
Schaap, 2017; Szabó et al., 2021), approach (b) is often targeted at specific use cases,
such as catchments characterized by heavy soils (Picciafuoco et al., 2019b; Picciafuoco
et al., 2019a), tropical regions (Gebauer et al., 2020; Gupta et al., 2021), or forest sys-
tems (Puhlmann and Wilpert, 2012; Lim et al., 2020), where the effect of roots control
the pore structure. Due to their simplicity, the earliest approaches to develop PTFs
were based on regression analysis using multiple linear and nonlinear regression (Gupta
and Larson, 1979; Cosby et al., 1984), offering the advantage of being straightforward
to implement and apply. However, regressions techniques may lack flexibility and tend
to underfit, particularly when different predictors reveal different relationships to the
soil properties within the database (Van Looy et al., 2017b). Consequently, machine
learning techniques have gained prominence as they "can deal with non-linearities at
the price of being susceptible to overfitting" (Weber et al., 2024, p. 3393). Many
different approaches have been explored including artificial neural networks (Minasny
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and Perfect, 2004; Zhang and Schaap, 2017), support vector algorithms (Twarakavi
et al., 2009), k-nearest neighbor methods (Nemes et al., 2006), decision or regression
trees (Lilly et al., 2008; Jorda et al., 2015), random forests (Gupta et al., 2021; Jian et
al., 2021; Darmann et al., 2024), and combinations of the aforementioned approaches
in ensemble methods (Singh et al., 2022; Li et al., 2024b).

Evaluation of the established relationships typically involves two components: split-
ting of the dataset into calibration and validation subsets, and statistical analysis using
metrics such as the root mean square error (RMSE), the coefficient of determination
(R2), the mean relative error (MRE) and the Akaike information critierion (AIC).
Additionally, a functional evaluation can be conducted, where the applicability of the
PTF is assessed by using the PTF as "input information in Earth system models and
evaluating the Earth system model performance rather than just PTF performance"
(Van Looy et al., 2017b, p. 1210), as, for instance, performed by Vereecken et al.,
1992; Nemes et al., 2003; Chirico et al., 2010, among others.

2.2.2 About scales of pedotransfer functions

PTFs are applied at various scales, specifically: (i) local and field scale, (ii) regional
scale, and (iii) coarse or large scale. Local- and field-scale PTFs, as their names imply,
are typically derived based on laboratory (flow cell and constant head tests) and field
measurements (infiltration and pumping tests) of K and represent the smallest scale
at which PTFs are developed (Picciafuoco et al., 2019b; Weber et al., 2024). They are
usually point PTFs developed for small soil and hydraulic datasets and often address
specific use cases, where accuracy takes precedence over scalability. For scalability,
regional scale PTFs are preferred, being developed for substantially larger databases,
thus permitting to provide estimates for extensive areas and diverse soil conditions
(Tóth et al., 2015; Nasta et al., 2021; Szabó et al., 2021). The largest application
scale for PTFs is the coarse scale typically applied in land-surface models (Van Looy
et al., 2017b). At this scale, the desired hydraulic properties cannot be directly mea-
sured (Weber et al., 2024) and sophisticated upscaling approaches are needed, which
represents a significant challenge in developing coarse-scale PTFs (Imhoff et al., 2020;
Li et al., 2024a).

2.2.3 Challenges associated with pedotransfer functions

In their extensive reviews Van Looy et al., 2017b and Weber et al., 2024 identified two
major challenges with PTFs: extrapolation and scaling.

Extrapolation The applicability of PTFs is limited by the representativeness of the
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training data and extrapolating PTFs beyond their developed context may lead
to poor results (McBratney et al., 2002; Nemes, 2015). Hence, providing meta-
data about the training data and the conditions under which the PTFs were
developed is crucial for assessing their suitability (McBratney et al., 2011; Wey-
nants et al., 2013); whereas uncertainty in their predictions should be quantified
and propagated through subsequent models (Van Looy et al., 2017b). Efforts
have been made to use published PTFs more efficiently through ensemble mod-
eling and soil inference systems (McBratney et al., 2002; Guber et al., 2009; Li
et al., 2024b). However, there remains a knowledge gap for specific, underrepre-
sented soil systems, such as tropical regions (Gebauer et al., 2020; Gupta et al.,
2021), or forest systems (Puhlmann and Wilpert, 2012; Lim et al., 2020).

Scaling Most PTFs are calibrated from point source data and assume no spatial cor-
relation (Van Looy et al., 2017b), which poses difficulties when applying them
to spatially distributed scenarios. Following the notion of Pringle et al., 2007,
the evaluation of spatially distributed PTFs requires consideration of the correla-
tion between observed and predicted quantities and the reproduction of observed
variance across different scales, as well as the the analysis of the spatial pattern
of model error (Van Looy et al., 2017b). While it is evident that PTFs can
reproduce general spatial patterns, they often underestimate the magnitude of
observed variance (Pringle et al., 2007). Moreover, upscaling of PTFs to provide
information for coarse-scale modeling, presents additional challenges as soil and
hydraulic parameters in these models cannot be directly measured (Van Looy
et al., 2017b; Weber et al., 2024). While the scale dependence of PTFs has been
recognized early (Pachepsky and Rawls, 2003; Pachepsky et al., 2006; Pringle et
al., 2007), scaling still represents a field of extensive research, and sophisticated
upscaling approaches using machine learning and data assimilation techniques
are being actively developed (e.g., Imhoff et al., 2020; Li et al., 2024a, among
others) in an effort towards PTFs that permit the prediction of hydraulic pa-
rameters across different scales.
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3 Investigation of cable effects in spectral induced

polarization imaging at the field scale using

multicore and coaxial cables
1

3.1 Introduction

Induced polarization (IP) is an extension of the DC-resistivity method, which pro-
vides information about the conductive and capacitive properties of the subsurface.
The measurements can be collected at different frequencies, in the so-called spectral
IP (SIP) method, to gain information about the frequency dependence of the elec-
trical properties, commonly in the frequency range between 0.06 and 1000 Hz (e.g.,
Kemna et al., 2012; Flores Orozco et al., 2018b). Traditionally, SIP measurements are
performed in the frequency-domain (FD), with imaging measurements deploying tens
to hundreds of electrodes to perform thousands of readings based on four-electrode
arrays (for further details on the method, see Binley and Kemna, 2005; Kemna et al.,
2012). Taking into account the strong IP effect (hereafter referred to as polariza-
tion) of metallic minerals under the application of an external electrical field, SIP is
a method commonly used for the prospection of mineral ores, among other mining
applications (Pelton et al., 1978; Seigel et al., 2007). Developments in the accuracy
of the measuring instruments (e.g., Zimmermann et al., 2008) and in the modeling
algorithms (e.g., Binley and Kemna, 2005; Kemna et al., 2012; Günther and Martin,
2016) have permitted extension of the application of the SIP method to investigate
processes and materials associated with much weaker polarization responses. To date,
the SIP method has been applied in a variety of engineering, hydrogeologic, and envi-
ronmental investigations (Kemna et al., 2012; Revil et al., 2012b; Binley et al., 2015;
Flores Orozco et al., 2018b; Gallistl et al., 2018). In particular, within the past two
decades, extensive laboratory studies have demonstrated a strong link between the
SIP parameters and soil properties controlling water flow, therefore permitting the
quantification of hydraulic conductivity (e.g., Börner et al., 1996a; Revil and Florsch,
2010; Weller et al., 2010; Binley et al., 2016). In addition, laboratory experiments have

1This chapter is based on: Flores Orozco, A., L. Aigner, and J. Gallistl (2021). “Investigation of
cable effects in spectral induced polarization imaging at the field scale using multicore and coaxial
cables”. In: Geophysics 86.1, E59–E75. doi: 10.1190/geo2019-0552.1
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demonstrated the sensitivity of the SIP measurements to parameters of relevance ac-
companying different biological and geochemical processes in the emerging discipline
of biogeophysics (Atekwana and Slater, 2009, for further references). Among these
processes are the stimulation of microbial activity (e.g., Ntarlagiannis et al., 2005;
Williams et al., 2005; Williams et al., 2009; Slater et al., 2007), the accumulation of
biofilms (Aal et al., 2006; Revil et al., 2012a), and more recently, the geometry and
growth of root systems (e.g., Corona-Lopez et al., 2019; Weigand and Kemna, 2019)

However, to date, SIP field applications are still rare. The necessity to collect
data at different frequencies leads to significantly longer acquisition time for FD SIP
imaging surveys than for standard electrical resistivity tomography (ERT), especially
for data collected at low frequencies (< 1 Hz). Long acquisition times may hinder the
collection of broadband SIP data in surveys performed under time constraints. Hence,
some studies have reported field IP data collected only at a single frequency — or a
few frequencies, for instance, for the monitoring of groundwater remediation by means
of nanoparticle injections (Flores Orozco et al., 2015; Flores Orozco et al., 2019a), or
for the investigation of bioremediation techniques (e.g., Williams et al., 2009; Flores
Orozco et al., 2011). To date, broadband FD SIP imaging at the field scale has
been reported for the estimation of hydraulic conductivity (Hördt et al., 2007), the
monitoring of microbial activity during the immobilization of radionuclides (Flores
Orozco et al., 2013), the delineation of hydrocarbon- impacted sites (Flores Orozco et
al., 2012a), the investigation of landslides (Flores Orozco et al., 2018b; Gallistl et al.,
2018), and — at smaller spatial scales — to detect fungi infection in trees (Martin
and Günther, 2013). Recent studies have demonstrated that parameters describing
the frequency dependence of the IP effect can also be retrieved from time-domain
IP (TDIP) data, if the measurements record the full waveform and the inversion is
performed with modern algorithms, opening the technique to new possibilities (e.g.,
Fiandaca et al., 2018; Olsson et al., 2019). Still, long pulse lengths (i.e., acquisition
time) are required to gain information at low frequencies associated to slow polarization
processes.

SIP surveys at high frequencies (i.e., above 1 Hz) are related to short acquisition
times; yet they are subject to contamination of the data due to parasitic electromag-
netic (EM) fields, commonly referred to as EM coupling (e.g., Pelton et al., 1978). EM
coupling increases proportionally with the acquisition frequencies, and it is expected
to contaminate measurements collected above 10 Hz (Wait and Gruszka, 1986; Binley
et al., 2005; Kemna et al., 2012). Nonetheless, some studies have already observed
that EM coupling dominates the SIP response at frequencies at approximately 5 Hz
(e.g., Kemna et al., 2000; Gasperikova and Morrison, 2001; Williams et al., 2009;
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Flores Orozco et al., 2011).

EM coupling is caused by either inductive or capacitive sources (e.g., Zimmermann et
al., 2008; Zimmermann et al., 2019). Capacitive coupling (i.e., involving displacement
currents) results from differences in the contact impedances between the electrodes
and the subsurface or between the conductive shield of the cables and the surface,
resulting in leakage currents (e.g., Zimmermann et al., 2008; Zimmermann et al.,
2019; Zhao et al., 2013; Zhao et al., 2014). Capacitive EM coupling can also arise
due to voltage differences between the cables used for voltage measurements and those
used for current injection. The capacitive EM coupling (EMcc) between parallel cables
(of an infinite length) and an electrical field can be calculated (Charnock, 2005) as

EMcc ≈ πε0
ln(D/a)

, (3.1)

where D is the distance between the cables, a is the cable radius, and ε0 is the electrical
permittivity of free space.

Inductive coupling is related to temporal variations in the current flow (i.e., that
produced by a magnetic field) along the wires connecting the electrodes and the mea-
suring device, which result in the induction of parasitic fields in conductive materials
(e.g., conductive soils, metallic wires in multicore cables). The inductive coupling is
known to be proportional to the conductivity of the subsurface, the acquisition fre-
quency, and the square of the cable length (e.g., Hallof, 1974; Pelton et al., 1978).
Hence, many approaches have been suggested for the decoupling of SIP readings by
removing the influence in the data of inductive fields associated with layered media
and the cable geometry (e.g., Hallof, 1974; Coggon, 1984; Wait and Gruszka, 1986;
Routh and Oldenburg, 2001; Zhao et al., 2013). Yet, inductive coupling can also take
place within the cable bundle used in SIP field surveys. Assuming parallel cables with
an infinite length and without considering coupling with the subsurface, the inductive
coupling (EMic) can be calculated by

EMic ≈ 0.1 ln(1 + (
2h

D
)2), (3.2)

where h refers to the height of the conductors relative to the earth plane. EM coupling
between the cables represents an inherent problem in SIP imaging applications, which
to date still relies on the deployment of tens to hundreds of cable cores (i.e., one for
each electrode), with the cable length increasing for deeper investigations.

To facilitate data collection at the field scale, the use of multicore cables is a common
practice because these are easier to handle than separate wires and are low mainte-
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nance, permitting the collection of data in practically all environments from frozen
rocks to landslides (e.g., Doetsch et al., 2015; Gallistl et al., 2018). However, the
isolation between the independent wires might not provide enough separation to avoid
coupling within the multicore cable. Some alternatives have been proposed, for in-
stance, to digitize the response directly at the electrode using so-called remote units
minimizing crosstalking between the transmitter and the receiver, or between the ca-
bles (Radic, 2016). However, commercially available instruments lack the robustness
and flexibility of multicore cables, involve complicated field procedures, and limit the
application of the method in rough terrains and for the mapping of extensive areas.
The use of separate cables for current injection and potential readings (Dahlin et al.,
2002) reduces the contamination of the data due to coupling within the cables by
increasing their separation. However, such practice either reduces the depth of inves-
tigation or the resolution of the measurements. In the case that each electrode position
requires two cables to separate current and voltage dipoles, the length of the profile
is reduced by half and, thus, so is the nominal depth of investigation. Alternatively,
it is possible to double the separation between electrodes in the multicore cables and
alternate each cable and position with one potential and one current electrode to keep
the length of the profile and still permit the use of two separate cables. However, this
procedure increases the dipole length and consequently reduces the resolution of the
imaging data set. Moreover, the separation between the separate cables needs to be
large enough to minimize crosstalk (Telford et al., 1990). Alternatively, the use of
shielded cables has been suggested to minimize capacitive crosstalking and inductive
coupling between wires (Telford et al., 1990), which to date are deployed in some labo-
ratory instruments. However, besides rare examples (e.g., Flores Orozco et al., 2013),
such a practice has not been widely implemented in field investigations. Recent inves-
tigations (e.g., Zhao et al., 2013; Zhao et al., 2014; Huisman et al., 2016; Zimmermann
et al., 2019) have proposed different techniques to model the EM response and correct
SIP data at high frequencies; however, such methods require detailed knowledge on
the geometric wire layout, which may hinder its application for large-scale surveys.
Moreover, correction of the data does not substitute for proper field procedures.

Although the quality of the SIP readings over a broad frequency range is critical
to extend the observations from the laboratory to the field scale, to date, few studies
have addressed in detail the field procedures to enhance data quality in field FD
SIP readings (see Dahlin et al., 2002; Flores Orozco et al., 2013; Huisman et al.,
2016; Zimmermann et al., 2019). In this regard, there is a considerable gap between
laboratory and field-scale studies addressing the methodologies for the collection of
SIP data with high quality. In particular, the use of coaxial cables for the collection
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of field-scale SIP imaging data sets has not been evaluated in detail, even if this is
a common practice for laboratory studies (e.g., Zimmermann et al., 2008; Huisman
et al., 2016). Hence, in this study, we compare SIP imaging measurements performed
with coaxial and standard multicore cables aiming at proposing a simplification of
the field procedures for the collection of field SIP imaging with high quality. To
better investigate cable effects, we compare measurements collected with a variety of
multicore cables (covering different lengths and manufacturers) using a single layout
and separate cables for current and potential dipoles.

The general expectation in our experimental setup is that SIP measurements col-
lected with the same measuring device, under the same field conditions, and using
the same electrodes, should result in nearly identical imaging data sets, even if the
multicore cables are produced by different manufacturers. Likewise, we also assume
that the EM coupling between the cables and the ground is the same. Such an expec-
tation should be valid at least for data collected below 10 Hz, in which EM coupling is
commonly assumed to be negligible. Consequently, distortions in the data can be only
attributed to cable effects (i.e., inductive and capacitive coupling within the cables).
Imaging data sets are compared with those collected with coaxial cables to investi-
gate their benefits in field SIP imaging surveys. For completeness, we also investigate
possible cable effects by deploying coaxial and different multicore cables (and setups)
for the collection of TDIP measurements. We also present an analysis of the nor-
mal and reciprocal misfit for readings collected with multicore and coaxial cables to
quantitatively compare variations in data error associated to the different cables.

3.2 Material and methods

We compare here the readings collected with three multicore cables purchased from
different companies: Iris Instruments, Multi-Phase Technologies (MPT), and Pro-
Seismic Services, which are hereafter referred to as MCX, MCY, and MCZ. For our
measurements, we considered cables with 32 takeouts (i.e., electrodes) and mainly
two different spacings between them: 5 and 1 m, referred to as the long and short
cables, respectively. Accordingly, we refer to the different multicore cables as MCX5,
MCY5, MCZ5, MCX1, and MCZ1, corresponding to the different manufacturers and
the separation between takeouts. To extend the comparison, TDIP measurements
were also collected using coaxial and different multicore cables. Table 3.1 presents a
summary of the different cables deployed and the corresponding names.

The coaxial cable used in this study was constructed at the Technical University
of Vienna (TU-Wien) using 32 independent wires with lengths between 5 and 155 m,
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Table 3.1: Summary of the geometric characteristics and physical properties of the
different multicore (MC) and coaxial (COAX) cables used in this study.
Cable ID Total length (m) Takeout spacing (m) Resistance (Ω) Capacitance (F)
MCX5 183.3 5 13.8 15.4
MCX1 38.3 1 2.9 3.9
MCY5 159.8 5 8.2 9.7
MCZ10 320 10 67.5 19.7
MCZ5 170 5 36 7.4
MCZ1 40.5 1 9.8 2.2
COAX2 64 2 0.3 Ω/m 0.1 nF/m
COAX5 157 5 0.3 Ω/m 0.1 nF/m
COAX10 315 10 0.3 Ω/m 0.1 nF/m

yielding 32 takeouts at 5 m separation between them, hereafter referred to as COAX5.
The coaxial cables were twisted together and taped with thermal adhesive tape to
form a single bundle and permit easy handling. In this way, the coaxial cable can be
rolled into a cable reel and be used in the field in the same way as a multicore cable
(see Figure 3.1). To investigate the effect in the data by deploying coaxial cables with
different lengths, two additional coaxial cables were manufactured with separations of
2 and 10 m between takeouts (COAX2 and COAX10), for total lengths of 62 and 310
m, respectively. During the construction of each coaxial bundle, particular care was
taken to connect the shield of each coaxial cable to the metallic plug to be connected
with a measuring device, which has a ground connection through an external electrode
(see Figure 3.1). Accordingly, the shields of the cables have the same voltage at the
connection point to reduce EM coupling. The coaxial cable deployed here is a coaxial
RG-174 A/U, with a characteristic impedance of 50±2 Ω, a capacitance of 101 pF/m,
a propagation rate of 66%, and attenuation of 40 dB/ 100 m at 200 MHz. The outside
diameter of the conductor is 0.48 mm, the internal diameter of the shield is 1.95 mm,
and the entire cable has a diameter of 2.7 mm. The dielectric insulator is polyethylene,
with a dielectric constant of 2.4±0.1 and a relative magnetic permeability of 1±0.05.
The cable has a copper index of 5.4 kg/km and a weight of 12 kg/km.

For the collection of IP readings, we deployed a data acquisition system (DAS-1)
instrument from MPT, which performs the TDIP and FDIP measurements. Conse-
quently, we can investigate the influence of the cable effects on the data quality for
both measuring techniques based on the same instrument. Our measurements were
collected along two profiles, each with 32 stainless steel electrodes: profile P1, with a
separation of 5 m between electrodes and roughly oriented north to south and profile
P2, perpendicular to P1, with a separation of 1 m between electrodes. SIP data were
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Figure 3.1: Coaxial cable (COAX2) used in this study, with the picture presenting
(a) the twisting and tightening of the cable to make a single bundle, (b) the pins in the
end connector referred to in the laboratory measurements, and (c) the attachment of
the shields of the independent cables into the end connector to permit their grounding
through an external electrode and, thus, leveling the voltages of the individual cable
shields at the end connector.

collected in the frequency range between 0.5 and 225 Hz, whereas IP data in the time
domain were collected with 0.5 s pulse length. This pulse length was selected because
the EM coupling is expected to affect readings at frequencies above 1 Hz, i.e., in the
early times. Hence, a pulse length of 0.5 s permits us to use the 35 sampling gates
available in the DAS-1 device to capture the voltage decay at early times (i.e., just 20
ms after shutting the current off), which are the most affected by EM cable effects.
Measurements were acquired with a dipole-dipole (DD) skip-0 configuration, meaning
that the length of the current and potential dipoles is equal to the electrode spacing
(as illustrated in Figure 3.2). Electrodes used for voltage measurements were always
located ahead of the current dipole to avoid contamination of the IP readings due to
polarization of the electrodes (e.g., Slater et al., 2000; Flores Orozco et al., 2018a).
Our configuration contains a total of 435 quadrupoles covering between 1 and 29 levels,
with the levels referring to the number of electrodes separating current and potential
dipoles (as illustrated in Figure 3.2). This configuration was selected to record data
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with a large range in the transfer resistances aiming at capturing a large dynamic
range in the S/N in our measurements. In this study, we do not discuss electrode
configurations characterized by higher S/N, for instance, with a larger dipole length
(DD skip > 0) because they do not provide further insights into the cable effects in the
data. Moreover, the comparison of different electrode configurations in SIP imaging
has been addressed in previous studies (e.g., Flores Orozco et al., 2018a).

Figure 3.2: Representation of the dipole-dipole skip-0 configuration used in this study
considering 32 electrodes, with all possible voltage measurements (indicated as V) for
a given current dipole (indicated as I) and the levels representing the distance (given
in terms of the electrode spacing) between the current and potential dipole.

We collected the measurements presented here at the Hydrological Open Air Labora-
tory (HOAL) located in Lower Austria (Austria). The HOAL site is a small catchment
(66 ha), where different investigations are being conducted to understand runoff gen-
eration (Blöschl et al., 2016). The SIP data sets presented in this study were acquired
in a forest-covered area characterized by heavy soils (clay and silt content above 70%).
Due to the high content of fine particles, the electrical properties at the low frequencies
(< 100 Hz) are expected to be dominated by conduction (i.e., the real component of
the surface conductivity) over polarization (i.e., the imaginary component of the sur-
face conductivity) due to the contribution of ionic and surface conduction mechanisms.
However, at the selected location, previous measurements have revealed relatively high
phase-lag readings (ϕ > 10 mrad) attributed to a biogeochemically active zone, which
has been validated through analysis in the laboratory of recovered sediments after
drilling (see Figure 3.3). Hence, the study area offers an excellent opportunity to in-
vestigate cable effects in SIP imaging measurements. On the one hand, conductive
soils are commonly related to high coupling effects (e.g., Hallof, 1974). On the other
hand, changes in subsurface properties lead to a polarizable anomaly, thus enhancing
the S/N. A detailed interpretation of the electrical response of the subsurface is beyond
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the scope of this study.

Figure 3.3: Numerical model to validate the assumption of smooth pseudosections.
The assumed electrical units expressed in terms of the phase of the complex resistivity
(top) and the pseudosections (bottom) for the modeled response, expressed in terms
of the phase lag of the electrical impedance. Borehole information at the study area
is imposed in the electrical model and is used to define the variations of the complex
conductivity values in the subsurface.

For the investigation of cable effects, we want to avoid the inherent uncertainty
associated to the inversion of the data. Hence, our study is based solely on the com-
parison of the measured phase lag (ϕ), hereafter referred to as phase for simplicity,
for readings collected with different cables. We do not present plots of the apparent
resistivity because all of the data collected with different cables revealed negligible
differences. To present the raw data, we use a slightly modified version of the classic
pseudosections, with the only difference being that the pseudosections presented here
plot the actual measured phase values (ϕ) without interpolation. We believe that the
pseudosections offer the best way to compare the data collected with different cables,
permitting visualization of the distribution of the measurements and their spatial con-
sistency. The expectation for “clean” data sets (e.g., without cable effects) is that the
measurements should be distributed in a reduced range of values, with smooth varia-
tions along the pseudosection plane due to the (spatial) correlation between adjacent
measurements (e.g., Flores Orozco et al., 2018a). Accordingly, “noisy” measurements
are those in which the pseudosection shows large variability between the values in
nearby measurements. We then quantify the variability in the readings by means of
the standard deviation (s) of the ϕ values in the imaging data set collected for each
cable and frequency after removal of erroneous measurements and outliers.
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3 Cable effects in SIP imaging

To support our expectation of smooth pseudosections independently of the complex-
ity in subsurface architecture, we present in Figure 3.3 the pseudosections obtained
for synthetic models with different degrees of complexity. The synthetic models are
based on the expected geologic setting at the site, as resolved from wellbore data. The
shape of the polarizable anomaly was modeled for the smooth and irregular geome-
tries to investigate the resulting variations in the smoothness of the pseudosections.
Our numerical investigation (see Figure 3.3) supports two assumptions in our study:
(1) Subsurface structures with irregular shapes still result in smooth pseudosections,
and (2) positive phase-lag readings (ϕ) in our measurements cannot be explained by
changes in the sensitivity of the measurements and the distribution of the polarizable
anomalies.

Measurements associated with a negative apparent resistivity were deleted as er-
roneous measurements. Similarly, positive ϕ values might be regarded as erroneous
measurements, considering that those can only be explained by negative currents in
a typical resistor-capacitor circuit. However, in our study, we filtered only ϕ values
above 20 mrad, to take into account possible negative IP effects (for further details,
refer to Dahlin and Loke, 2015; Flores Orozco et al., 2018a) and systematic patterns
associated to cable effects. In addition, phase measurements below −100 mrads were
also defined as outliers. This threshold value is based on a first inspection of the data
collected with all the cables at P1, which revealed most of the ϕ readings in the range
between −20 and 0 mrad, with a mean value of less than −7 mrads (Figure 3.4).
Hence, the threshold value of −100 mrads was selected as a soft filter considering a
potential increase in the polarization response for measurements at higher frequencies.

3.3 Results

FDIP data with 5 m separation between electrodes: Comparison between
long multicore and coaxial cables using a single layout and separate cables

Figure 3.5 shows the pseudosections after removal of outliers for data collected with
the long cables along P1, i.e., for spacing of 5 m between electrodes and takeouts
in the cables. Besides the pseudosections obtained for measurements with different
single multicore cables, we also present the pseudosections for data collected using
a single coaxial cable (COAX5 and COAX10), and a separate cable layout. In the
case of separate cables, we present two scenarios: (1) using two multicore cables for
current (MCY5) and potential (MCZ5) readings and (2) using the combination of
coaxial for current injection and multicore cables (MCY5) for potential readings. In
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Figure 3.4: Histograms of the phase-lag readings in SIP measurements collected
along profile P1 (5 m electrode spacing) with the long multicore and coaxial cables (5
m between takeouts). The median (m) and standard deviation (s, in mrad) for each
imaging data set are indicated in each plot.

general, Figure 3.5 shows smooth pseudosections for measurements collected at the
lowest frequency (0.5 Hz) within the first eight levels (pseudodepth ≤ 10 m) in which
most of the phase readings are found in the range of values between −20 and 0 mrad.
A similar distribution is also observed for readings collected at 1 Hz, yet the single
multicore data sets reveal an increase in the variability of the readings (s increasing
from approximately 18 to 22) and a larger number of spatially inconsistent measure-
ments (i.e., noise) even within the first eight levels. The lack of spatially consistent
deeper measurements (e.g., > 10 m in the pseudosection) corresponds to quadrupoles
associated with a poor S/N. However, measurements collected with the coaxial cables
— and to some extent with separate cables — show a clean (i.e., smooth) pseudo-
section even for a pseudodepth of 20 m, still evidencing a good S/N. Furthermore,
measurements at 1 Hz collected with a single coaxial — and to lesser extent with
separate cables — still evidence a high S/N and consistent readings up to 18 levels (a
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3 Cable effects in SIP imaging

maximum pseudodepth of approximately 20 m). These observations make it clear that
cable effects dominate 1 Hz measurements conducted with single multicore cables and
separations larger than 35 m between current and potential dipoles (corresponding to
seven times the electrode spacing).

The high number of measurements removed as outliers for data collected with mul-
ticore cables (between 40% and 45%) at the low frequencies points to clear systematic
errors related to the cables, considering that at such low frequencies induction effects
in the shallow soils might be negligible. This is particularly evidenced by the high
quality revealed by the data collected with coaxial cables (and to a certain extent
with separate cables), in which less than 25% of the readings are removed as outliers,
with consistent readings still visible for the larger separations between current and
potential dipoles. Moreover, data collected with a coaxial cable two times larger than
the actual length of the profile (10 m separation between takeouts) reveal smoother
pseudosections (with a lower standard deviation in the readings) and a lower number
of filtered outliers than measurements collected with single multicore cables.

At 7.5 Hz, the coaxial cable still acquires data characterized by clean pseudosections
for the first eight levels (e.g., a pseudodepth of 10 m), which are comparable only to
the readings collected with separate cables. For measurements collected at 15 Hz,
the pseudosection for the coaxial cables still shows many measurements within the
first eight levels (i.e., the first 10 m of pseudodepth) with a high spatial consistency
(i.e., smooth pseudosection), whereas most of the deeper measurements are removed as
outliers. At 15 Hz, all multicore cables show poor performance, with more than 75% of
the readings removed, and the remaining readings revealing a poor spatial consistency,
with noisy pseudosections. The MCZ5 cables perform the best among the multicore
cables, yet they reveal much more scattered readings and a higher number of removed
outliers compared with the data set collected with the coaxial cables. Clearly, cable
effects are the main reason underlying the poor quality in data collected at 1 Hz with
single multicores, with a larger decrease in the quality and spatial consistency of ϕ
readings at higher frequencies.

Surprisingly, SIP readings collected with two separate multicore cables reveal nois-
ier pseudosections than those collected with a single coaxial one. This is unexpected,
considering that EM coupling between wires decreases with increasing the separation
between them (see equations 3.1 and 3.2) and both multicores were laid with a rel-
atively large separation (approximately 50 cm). This observation may suggest that
inductive coupling in conductive soils (such as those in the HOAL) plays a dominant
role in the distortion of SIP readings collected with common multicore cables, even
if different cables are used for current and potential dipoles. Accordingly, Figure 3.5
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shows that the use of coaxial cables significantly improves the quality of SIP imag-
ing readings over those collected with multicore cables. Measurements with separate
cables can be improved using a coaxial cable. However, measurements at 7.5 and 15
Hz reveal relatively similar data quality within the first eight levels (i.e., up to 10
m depth in the pseudosection) when performed with a single coaxial cable and the
combinations of the MCY5 coaxial. Nonetheless, at 0.5 and 1 Hz, only the measure-
ments with a single coaxial cable provide clean pseudosections (including the deepest
measurements).

Plots in Figure 3.5 reveal that SIP field surveys conducted with long multicore cables
and electrode spacing (i.e., 5 m) might be limited in their depth of investigation due to
the occurrence of cable effects in readings with a relatively large separation between
the current and potential dipoles. Contrary to this, measurements collected with
single coaxial cables are less affected by EM coupling. Moreover, the pseudosections
presented in Figure 3.5 suggest that MCY5 cables might not be suited for collection
of SIP data.

FDIP data with 1 m separation between electrodes: Comparison between
long multicore and coaxial cables using single layout and separate cables

Figure 3.6 presents the pseudosections for measurements collected with the long ca-
bles (5 m spacing between the takeouts), but for an electrode separation of 1 m in
P2. A shorter separation between electrodes favors a higher S/N and may help to
reduce the contamination of the data due to EM coupling with the conductive soils.
However, the long cables cannot be fully extended; thus, the exceeding cable was laid
as perpendicular as possible to the profile.

As expected, the small separation between electrodes resulted in higher voltage
readings, ranging between 0.5 mV and 1 V (data not shown), which are two orders of
magnitude higher than those observed for measurements collected with 5 m separation
between electrodes (data not shown). Given the enhanced S/N, Figure 3.6 reveals only
minimal readings removed as outliers in the lower frequencies (0.5 and 1.0 Hz) for
single multicore measurements (< 30%). Moreover, pseudosections for data collected
at 7.5 Hz show more than 50% valid readings for all multicore cables deployed, with
the exception of MCY5. However, coaxial cables still perform the best, with less
than 15% of the outliers removed at low frequencies (0.5 and 1.0 Hz). At higher
frequencies, COAX5 measurements still reveal relatively clean pseudosections up to
7.5 Hz within the first 8–12 levels (pseudodepth < 3 m). At such frequencies, MCX5
and MCY5 exhibit noisy measurements with almost 60% of the readings removed as
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3 Cable effects in SIP imaging

Figure 3.5: Pseudosections for SIP data collected at the HOAL site using 32 elec-
trodes deployed with a separation of 5 m. SIP measurements were conducted using
long multicore (MCX5, MCY5, and MCZ5) and coaxial cables (a total length of 155
m). Labels inserted show the percentage of remaining measurements after removal of
outliers and the standard deviation (s) in the phase readings.

outliers and a standard deviation of approximately 8 mrad larger than for COAX5
readings. Only measurements collected with MCZ5 show some consistency with the
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COAX5, suggesting the better performance of these multicore cables.

At 15 Hz, measurements collected with single MCX5 and MCY5 are scattered over
a larger range (s ∼ 28 mrad), yielding noisy pseudosections with a large number
of removed measurements (> 60%), indicating poor quality in the phase readings,
whereas MCZ5 and coaxial cables show clean pseudosections within the first eight
levels (depth < 2 m in the pseudosection) and relatively consistent distribution within
the readings (s ∼ 21 mrad). Clearly, the long cables enhance EM coupling (within the
cables and the conductive soils) at 15 Hz, even if the separation between electrodes
is small. Nonetheless, measurements collected with coaxial cables at 15 Hz still show
a clean pseudosection with only a few outliers removed within the first eight levels,
suggesting that such effects might be reduced through the deployment of shielded
cables, albeit the long cable length.

In the case of measurements collected with separate cables, one being coaxial, Fig-
ure 3.6 reveals that the combination MCY5-COAX5 performs better than COAX5-
MCY5. Hence, the use of the coaxial cable for current injection results in data sets
with a standard deviation of approximately 3 mrad smaller and approximately 3%
fewer measurements removed as outliers in comparison to those when the coaxial ca-
ble is used to connect the potential electrodes. Such an observation might be explained
as a higher EM coupling between the conductive soils and the shield of the coaxial
cables (in the voltage dipoles) than the coupling between the conductive soils and
the multicore cables. Nonetheless, Figure 3.6 shows that measurements with a single
coaxial cable are comparable to those collected with separate cables. Moreover, Figure
3.6 demonstrates that measurements collected with a coaxial cable much longer than
the actual separation between electrodes (five times longer in the case of our mea-
surements) still provide comparable quality to measurements collected with separate
cables.

FDIP data with 1 m separation between electrodes: Comparison between
short multicore cables and long coaxial cables using a single layout and
separate cables

Pseudosections presented in Figure 3.7 show the data quality in measurements col-
lected with a short electrode separation and short multicore cables (1 m for a total
profile length of 31 m), in comparison with single long coaxial cables (COAX5, with
5 m spacing between takeouts), as well as separate short multicore cables. Measure-
ments with MCY1 were not conducted. In general, Figure 3.7 shows that the data
quality is significantly improved by reducing the length of the multicore cables to the
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3 Cable effects in SIP imaging

Figure 3.6: Pseudosections for SIP data collected at the HOAL site using 32 elec-
trodes deployed with a separation of 1 m. SIP readings were collected using long
multicore (MCX5, MCY5, and MCZ5) and coaxial cables (a total length of 155 m
each). The inserted labels show the percentage of remaining measurements after re-
moval of outliers and the standard deviation (s) in the phase readings.

exact size of the separation between electrodes.

In general, all measurements presented in Figure 3.7 show smooth pseudosections
for all cables in the low frequencies (0.5 and 1.0 Hz), with fewer than 10% of mea-
surements removed as outliers for multicore cables. Moreover, pseudosections reveal
consistent phase readings for 16 levels (pseudodepth < 5 m) for measurements col-

40



3.3 Results

lected at low frequencies, as well as within the first 8 and 10 levels (for maximum
depth of 2.5 m in the pseudosections) at high frequencies (7.5 and 15 Hz). Unavoid-
ably, the data quality decreases with increasing the acquisition frequency for larger
separations between current and potential dipoles (i.e., pseudodepth), yet in the case
of short multicore cables, data collected at 15 Hz still reveal clean pseudosections only
within the first eight levels (a depth of 2 m). Consistent with previous observations,
the MCZ cables outperform the MCX cables.

Clearly, the short cables minimize EM coupling within the cables and possible in-
ductive coupling with the conductive soils, permitting collection of SIP phase readings
with a higher quality, even with a single multicore cable. Thus, field procedures deploy-
ing the smallest possible multicore cables are recommended to significantly improve
the quality of SIP data. Contrary to this observation, data collected with a single long
coaxial cable reveal still comparable pseudosections at the different frequencies, with
a similar variability in the data (s varying at different frequencies between 15 and 20
mrad) and the number of removed readings as outliers. Hence, Figure 3.7 demon-
strates that the quality of SIP measurements collected with single coaxial cables is
less sensitive to the length of the cable.

Pseudosections for data collected at 0.5 and 1.0 Hz using separate short multicore
cables (MCX1-MCZ1) reveal high spatial consistency between the readings (s ∼ 10
mrad) and a minimal number of outliers (less than 5% of the readings removed). At
7.5 Hz, separate short cables still result in smooth pseudosections in almost 15 levels
(i.e., a depth of 3 m in the pseudosections) and with still less than 20% of the outliers
removed. In the case of data collected at 15 Hz, the use of short separate cables
results in approximately 3% fewer measurements removed as outliers and a standard
deviation of approximately 3 mrads smaller in comparison with the measurements
with a single multicore cable. The comparison of pseudosections presented in Figures
3.6 and 3.7 shows that the deployment of multicore cables longer than the actual
separation between electrodes significantly reduces the quality of SIP readings, even
at low frequencies, as observed for 0.5 Hz readings with MCX5 and MCY5.

Comparison of coaxial, multicore, and separate cables for TD
measurements

Regarding EM coupling, TDIP measurements offer the advantage that potential read-
ings are collected with a delay after the current injection is switched off, which permits
minimization of EM inferences in the data. However, for completeness, here we in-
vestigate variations in the quality of the TDIP measurements collected with different
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Figure 3.7: Pseudosections for SIP data collected at the HOAL site using 32 elec-
trodes deployed with a separation of 1 m. SIP readings were collected using short
multicore (MCX1 and MCZ1 — a total length of 31 m each) and long coaxial cables
(a total length of 115 m). The inserted labels show the percentage of the remaining
measurements after removal of outliers and the standard deviation (s) in the phase
readings.

cables. TDIP measurements were acquired for pulse lengths of 500 ms, using a square
wave, with a 50% duty cycle. After current switch-off, the decay curve was sampled
after an initial delay of 10 ms using 24 windows, with a constant width of 20 ms.

For our analysis, we present the pseudosections for chargeability measurements at
three different sampling windows (2, 10, and 20 for a 500 ms pulse length), analogous
to the high, intermediate, and low frequencies in FDIP. We also present pseudosec-
tions for the integral chargeability (Mtot), which is a quantity commonly used for the
interpretation of TDIP surveys (more details can be found, for instance in Binley and
Kemna, 2005). Similar to the FDIP data, the apparent resistivity pseudosections are
consistent for measurements with different cables and are not discussed here. We define
and remove as outliers those measurements for which the corresponding chargeability
exceeds the limits of −20 to 100 mV/V, with the broad range selected to permit the
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visualization of possible negative chargeability values (e.g., Dahlin and Loke, 2015) or
contamination in the data due to EM coupling.

In general, Figure 3.8 shows clean pseudosections, at least to a depth of 4 m (at least
14 levels), and with less than 5% of the data removed as outliers (for the Mtot plots),
clearly evidencing the good quality of the TDIP readings. As expected, the nois-
ier pseudosections are those related to measurements collected with the long MCZ10
cables (10 m separation between takeouts for a total cable length of 310 m), which
reveals the poor spatial consistency between the readings collected below 10 levels
(i.e., 10 electrodes separating the current and potential electrodes). Such poor data
quality might be related to cable effects or inductive coupling with the conductive soils
dominating over the low voltage measurements (i.e., lower S/N). The data quality im-
proves significantly for data collected with shorter multicore cables (from the same
manufacturer), as evidenced by pseudosections for MCZ1 data. These readings show
smooth pseudosections, with some noisy measurements only for the deepest measure-
ments (below 5 m pseudodepth), TDIP measurements collected with the single coaxial
cable show the smoothest pseudosections and the lowest amount of removed outliers
(< 1% for the Mtot), for all data sets collected with a single cable. However, TDIP
pseudosections show in general high spatial consistency and indicate fewer outliers
than the FDIP pseudosections. This is expected considering that the voltage readings
are collected after the current in the transmitter is switched off, and, thus, are less
affected by EM coupling, namely, by crosstalking between cables, between the trans-
mitter and receiver in the DAS-1, and induction effects between the cables and the
ground.

As expected, early IP windows (i.e., M2 and M10), reveal the largest number of
filtered data (15% and 5% for long and short multicore cables, respectively, and 10%
for coaxial cables), and noisy pseudosections for the readings with large levels (> 4
m pseudodepth). EM coupling effects are expected in the early times (analogously to
high frequencies in FDIP) and clearly affect the quality of the measurements with a
weak S/N associated to a large separation between current and potential dipoles (i.e.,
a large pseudodepth). Such data contamination is only visible for the longest cables
(MCZ10) in the integral chargeability plots, but it is almost negligible for the coaxial
cable and the short multicore cable.

In Figure 3.8, we also present data collected with a single coaxial, two separate
coaxials, two separate multicores, and separate multicore and coaxial cables, with all
of these combinations revealing practically similar pseudosections (less than 3% of the
data removed as outliers) with high spatial consistency (s < 10 mV/V) for integral
chargeability values (Mtot). Our data show larger discrepancies in early time readings
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for deep measurements (pseudodepth > 4 m), which are related to large separations
between the current and potential dipoles, as mentioned above. EM coupling plays
a more dominant role in readings at early times (i.e., M2), analogously to the high
frequencies. Accordingly, we observe a larger variation in the readings in M2 (s ∼ 19
mV/V) than in, e.g., M20 (s ∼ 13 mV/V), as well as a larger number of measurements
removed as outliers. Hence, pseudosections for M2 provide the best overview regarding
cable effects in TDIP. In such case, Figure 3.8 reveals that measurements collected with
MCZ1 as a single cable provided the best quality, followed by readings collected with
a single coaxial. Although not discussed here, further improvements in data quality
could also be expected through the deploying of shorter coaxial cables, for instance,
to the exact separation between electrodes.

Figure 3.8 also shows that coupling effects cannot be neglected in TDIP measure-
ments, at least in early times, for instance, in the pseudosections for M2, even if two
coaxial cables are used to separate the current and potential dipoles. It might be
argued that such distortions are only visible for the deep measurements, in which the
lowest S/Ns are expected. However, the pseudosections (e.g., M20) corresponding to
later times are clean even if associated to lower chargeability values. The cable ef-
fects at early times might be relevant for the case of TDIP measurements of the full
waveform, or using a 100% duty cycle, yet such discussion is beyond the scope of this
study. Nonetheless, Figure 3.8 suggests that the use of a single short coaxial cable
might also permit enhancement of the quality of the TDIP data.

3.4 Discussion

Analysis of normal and reciprocal misfit

The analysis of the raw data clearly demonstrates a significant improvement in SIP
readings for measurements collected with coaxial cables when compared with those
acquired using multicore cables. Already for measurements at 1 Hz, imaging data sets
collected with a single multicore cable result in a larger number of filtered data and
a broader variance than those collected with a single coaxial cable. Moreover, it has
been observed that the length of the multicore cables plays a critical role in the quality
of the SIP readings, whereas this may be not relevant for measurements performed
with coaxial cables. To quantitatively evaluate the data uncertainty associated to the
different cables, we present in Figure 3.9 the analysis of misfit between normal and
reciprocal phase readings (Δϕ) collected along profiles P1 and P2. Reciprocal read-
ings refer to the recollection of a given quadrupole (i.e., normal measurements) after
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interchanging the electrodes used for the current and potential dipoles (LaBrecque
et al., 1996). Statistical analysis of normal-reciprocal misfit (Δϕ) is a well-established
method to quantify data error in electrical imaging (e.g., LaBrecque et al., 1996; Slater
et al., 2006; Flores Orozco et al., 2012b; Flores Orozco et al., 2018b; Flores Orozco
et al., 2018a); thus, it can be used here as a tool to quantitatively compare the data
collected with different cables. For the sake of consistency, in Figure 3.9, we compare
only the Δϕ for data collected with MCX5 and COAX10 cables along P1 (5 m spacing
between electrodes), whereas MCX1 and COAX2 are compared for measurements col-
lected along P2 (1 m separation between electrodes). In the case of multicore cables,
we present measurements collected with cables having the same length as the profile
(i.e., the separation between electrodes and cable takeouts being the same), whereas
coaxial cables used for this analysis are always two times longer than the profile length.

During the analysis of the Δϕ, the only filtering in the data refers to the removal
of erroneous measurements (readings associated with a negative apparent resistivity)
and outliers (i.e., −100 mrad < ϕ < 20 mrad), independent of the resulting misfit
between the normal and reciprocal readings. Figure 3.9 shows that data sets collected
with coaxial cables result in a larger number of normal-reciprocal pairs (N) than
measurements collected with multicore cables, along P1 and P2, and for all frequencies.
At low frequencies (0.5 and 1.0 Hz), the data collected with multicore cables result
in approximately 3% fewer measurements than those data sets collected with coaxial
cables. Nonetheless, MCX5 and COAX10 yield similar values of the standard deviation
of the reciprocal misfit (s(Δϕ)) at low frequencies (variations < 1 mrad).

Measurements collected with multicore and coaxial cables at 7.5 and 15 Hz reveal
consistent values in the s(Δϕ) only for data sets collected along P2, which refers
to the 1 m spacing between electrodes. However, measurements collected with the
multicore cable MCX5 at P1 reveal a poor reciprocity at 7.5 and 15 Hz, with less than
30 normal-reciprocal pairs and a larger s(Δϕ) than the data sets collected with the
COAX10 cable. Moreover, such measurements exhibit a normal distribution of the
Δϕ, as expected for measurements contaminated by random noise (e.g., LaBrecque
et al., 1996; Slater et al., 2006). Such a normal distribution in the Δϕ is also observed
for all measurements collected in P2 and at low frequencies in P1. Accordingly, Figure
3.9 demonstrates the possibility to collect high-quality SIP imaging data with a single
coaxial cable, even if this is much longer than the actual length of the profile.
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Comparison between coaxial and multicore cables: Implication for field
surveys

Results presented in Figures 3.5-3.9 demonstrate that the use of multicore cables in
SIP imaging surveys results in large distortions in the data already at 1 Hz. Moreover,
measurements collected with long multicore cables reveal a poor reciprocity for read-
ings collected at 7.5 and 15 Hz, and a larger reciprocal misfit (Δϕ) for measurements
collected at 1.0 Hz in comparison to measurements collected with the coaxial cables.
Distortions in the imaging data sets vary in their amplitude and distribution unsys-
tematically for the different multicore cables deployed. Hence, removing such cable
effects during the processing of the data might be impossible. Accordingly, we do not
recommend the use of traditional multicore cables as a single layout for the collection
of FDIP imaging data, even at 1 Hz. We believe this is an important observation,
considering that 1 Hz has been suggested as the best compromise between relatively
low acquisition times and negligible EM coupling.

The distortions in measurements at 1.0 Hz when using multicore cables increase
with increasing the cable length, even if the cables are fully extended. We observed
that the deployment of multicore cables longer than the actual separation between
electrodes significantly reduces the quality of SIP readings even at low frequencies
such as 0.5 Hz, independently of whether the multicore cable is used in a single layout
or using two cables to separate the current and potential dipoles. Thus, the collection
of reliable SIP imaging field surveys demands the use of shortest possible cables, if
only multicore cables are available.

TDIP readings collected using a 50% duty cycle and multicore cables revealed the
same data quality than those collected with the coaxial cables with only a minimal
improvement when readings were collected with separate cables. Such measurements
benefit from sampling the decay curve only after the current injection is switched off,
thus minimizing the influence of parasitic EM fields. Accordingly, TDIP measurements
favor the use of multicore cables. Nevertheless, chargeability measurements collected
at early times revealed larger inferences (i.e., outliers) when collected with single cables
than using two cables to separate the current and potential dipoles, likely indicating
distortions due to coupling effects.

SIP imaging data sets collected with coaxial cables revealed an improved data qual-
ity, especially at low frequencies (0.5 and 1.0 Hz). Moreover, we observed good data
quality using coaxial cables much longer than the actual profile length. Even for mea-
surements collected with COAX10, readings revealed a significant improvement in the
normal-reciprocal misfit (Δϕ) in comparison with data collected with shorter multi-
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core cables. Moreover, measurements conducted with a single coaxial cable revealed
at least the same quality as those using two multicore cables to separate the current
and potential dipoles. Hence, the use of coaxial cables may represent the best alter-
native for field surveys, permitting use of the same cable for collection of data with
different electrode spacing, as well as to double the resolution or maximum depth of
investigation by avoiding the necessity to lay two different cables to separate potential
and current dipoles.

The poor quality of SIP readings at frequencies greater than 15 Hz might be related
to sources of contamination beyond the cable effects, such as low-frequency electrical
fields associated to fluctuating telluric currents in conductive soils (Serson, 1973).
Moreover, further sources of capacitive coupling can be related to variations in the
contact resistances between electrodes and the soil or between electrodes and cables
(Zimmermann et al., 2008; Zimmermann et al., 2019). In addition, conductive soils
enhance inductive coupling (e.g., Wait and Gruszka, 1986; Routh and Oldenburg,
2001).

To investigate EM coupling in multicore and coaxial cables without the interactions
with subsurface materials, we performed a laboratory test. This test was conducted
with each multicore cable used on the field, with the exception of the MCZ1, which
is used for measurements in boreholes and the end connector is sealed. As illustrated
in the schematic diagram presented in Figure 3.10a, we injected a sinusoidal current
across one of the wires of the multicore cable with an effective input voltage (Vi) of 1 V,
corresponding to a current of approximately 0.2 mA. During the current injection, we
used an oscilloscope to measure the output voltage (Vo) in each one of the remaining
31 wires (against the mass of the oscilloscope). To avoid overloading the measuring
channels, we connected a 50±1 Ω resistance in series between the signal generator and
the pins used for current injection, as illustrated in Figure 3.10a. For verification,
readings of the Vo were collected in both end connectors, illustrated as NEXT and
FEXT in Figure 3.10a, with the measurements in each connector corresponding to the
average value of nine waveforms (commonly exhibiting fluctuations of approximately 4
mV). The experiment was repeated for all multicore cables at two different frequencies:
1 Hz and 2 kHz. Similar measurements were also conducted between the two longest
wires of the COAX2 cable, yet we did not collect measurements for all wires, due to
their different lengths. EM coupling in the cables is exhibited by the observed Vo in
the wires of the multicore cables during the current injection, which is presented in
terms of the noise at low (Figure 3.10b) and high (Figure 3.10c) frequencies.

Figure 3.10b and 3.10c shows the highest coupling for readings collected in the pin
(i.e., wire) closest to the current injection, yet the distortions show erratic behavior for
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different wires. Nonetheless, consistent patterns can be observed for cables built by the
same manufacturer, thus suggesting that such variations in the EM coupling within
the multicore cables are related to the twisting of the independent wires. Similar
to the field results, the shortest cable, i.e., MCX1, reveals the lowest EM coupling,
whereas MCY5 exhibits the highest coupling. The longest cable tested (MCZ10)
reveals intermediate coupling values, which can be explained by the high electrical
resistance measured in the wires (Table 3.1). As expected, coupling is approximately
two orders of magnitude higher for current injections at 2 kHz than at 1 Hz. Moreover,
coupling in the coaxial cables is at least one order of magnitude smaller than the one
observed in the MCX1. Hence, the results presented in Figure 3.10b support our field
observations and demonstrate that multicore cables can result in EM coupling even
at low frequencies, causing important distortions in SIP readings.

Besides the EM coupling between cables at 1 Hz evidenced in Figure 3.10b, the
decrease in the data quality for our SIP field measurements might point out pos-
sible coupling effects within the measuring device (i.e., within the transmitter and
receiver). Such a limitation needs to be addressed in the next generation of field-scale
SIP instruments. In this regard, the Multi-Source instrument (from MPT LLC) or the
V-FullWaver (from Iris Instruments) may provide an improvement in the data quality
for IP field surveys because they permit remotely synchronization of the transmitter
and the receiver. However, the Multi-Source instrument is still under development
and the V-FullWaver does not permit collection of SIP data in the FD.

Different correction methods taking into account the geometry of the cables (e.g.,
Zhao et al., 2013; Zhao et al., 2014) can still be performed to further improve the
quality of the phase measurements at higher frequencies, yet their application is beyond
the scope of the present study. Likewise, the collection of IP data deploying other
configurations characterized by higher S/N, such as Wenner or multiple gradient, are
also not addressed within this study because they do not provide new insights into the
discussion.

3.5 Conclusion

Our results demonstrate that SIP measurements conducted in the FD with multicore
cables result in significant distortions in the phase readings even at low frequencies
such as 0.5 and 1.0 Hz. Consistent to previous studies, the use of separate multicore
cables for current and voltage readings revealed an improved data quality in compar-
ison to single cables. However, the data quality is still dependent on the construction
and length of the multicore cables deployed, with cleaner pseudosections observed only
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for data collected with short cables (1 m spacing in the takeouts). Contrary to those
observations, data collected with a single coaxial cable revealed high data quality, even
if the cable is five times longer than the actual separation between electrodes. The im-
proved quality in SIP imaging data sets collected with coaxial cables was demonstrated
through the analysis of normal and reciprocal measurements. Our study demonstrated
that the use of single multicore cables with 5 m separation between electrodes resulted
in less than 10% of valid normal and reciprocal measurements at 7.5 Hz, whereas more
than 50% of the measurements still show reciprocity when collected with a single coax-
ial cable. Accordingly, the deployment of coaxial cables removes the necessity of using
separate cables, consequently increasing the depth of investigations or resolution of
SIP imaging surveys. Moreover, the use of coaxial cables permits to deploy the same
field procedures for the collection of SIP data as used for ERT surveys. The simplifica-
tion of field procedures represents an important step forward to make the SIP imaging
an attractive method for applications beyond academia.
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Figure 3.8: Pseudosections for TDIP data collected at the HOAL site using 32 elec-
trodes with a separation of 5 m between them. TDIP readings were collected using
(1) current injections and potential readings in a multicore cable (the plots in the first
row) followed by (2) current injections in the multicore cable and potential readings
in the coaxial (the plots in the second row). For comparison, pseudosections are also
presented for data collected with a single coaxial cable (the third row). The inserted
labels indicate the total of the remaining measurements after the removal of outliers
and the standard deviation (s) in the phase readings.
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Figure 3.9: Analysis of the misfit between normal and reciprocal phase readings (Δϕ)
for imaging data sets collected along P1 with the long multicore MCX5 and coaxial
COAX10 cables, as well as along P2 with the short multicore MCX1 and COAX2
cables. In each subplot, we include the standard deviation of the normal reciprocal
misfit (s(Δϕ)) and the total number of normal-reciprocal pairs (N). Filtering of the
data was performed only before the analysis of Δϕ, corresponding only to the removal
of erroneous measurements and outliers.
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Figure 3.10: Experimental set-up and results for laboratory measurements, where
a sinusoidal voltage (Vi) was established across one wire (i.e., core) of a multicore
cable, and measurements of the observed voltages (Vo) were collected to assess EM
coupling within the cables. (a) Presents the schematic diagram of the measurements
with NEXT and FEXT represent the end connectors of multicore cables (i.e., DUT),
with symbols within each connector representing the pins related to each independent
wire of the multicore cable. Plots of the EM coupling observed in each of the pins for
the different multicore cables associated to current injections at 1 Hz (b) and 2 kHz
(c), while the values observed in the COAX2 cable are indicated by the dashed lines.
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4 Delineation of subsurface variability in clay-rich

landslides through spectral induced polarization

and electromagnetic methods
1

4.1 Introduction

Landslides in urban settlements are global socio-economic geohazards, particularly
those developed in clay-rich formations due to their hardly predictable accerlation
and liquefaction phases as well as high sediment volumes (Malet et al., 2005). Land-
slide mobilization typically occurs as a result of intense and long-lasting precipitation
which can lead to a built-up of positive pore-pressure and an associated reduction of
shear strength, particularly for clayey and silty textures (Campbell, 1975; Rogers and
Selby, 1980). Hence, knowledge of the internal structure and textural composition
of landslides is an important prerequisite for hydrogeologic and hydraulic modelling
(e.g. the deduction of water-circulation within the landslide body), which is further
needed for the understanding of internal processes associated with triggering mecha-
nisms (Merritt et al., 2014). Traditionally, direct ground-based hydrogeological and
geotechnical measurements, using piezometers, inclinometers, dynamic probing and
laboratory textural analysis from soil samples have been used to provide informa-
tion on the subsurface properties of landslides (Glade and Dikau, 2001; Petley et al.,
2005; Perrone et al., 2014). However, such investigation techniques are spatially con-
strained to specific point locations and require spatial up-scaling, which, particularly
for heterogeneous areas, is associated with an undesirable increase in data uncertainty
(Binley et al., 2015; Wainwright et al., 2016). This lack of spatial resolution may
be mitigated by the use of geophysical techniques (e.g., Jongmans and Garambois,
2007)), which permit to gain quasi-continuous information about subsurface physical
properties, which in turn are linked to hydrogeological (e.g., Binley et al., 2005; Weller
et al., 2015)), lithological (e.g., Hack, 2000; Bell et al., 2006)) and geotechnical pa-
rameters (e.g., Cosenza et al., 2006; Sass et al., 2008; Fressard et al., 2016)). Of such

1This chapter is based on: Gallistl, J., M. Weigand, M. Stumvoll, D. Ottowitz, T. Glade, and
A. F. Orozco (2018). “Delineation of subsurface variability in clay-rich landslides through spec-
tral induced polarization imaging and electromagnetic methods”. In: Engineering Geology 245,
pp. 292–308. doi: 10.1016/j.enggeo.2018.09.001
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geophysical methods, electromagnetic induction (EMI) and induced polarization (IP)
imaging appear as promising techniques for the investigation of clay-rich landslides,
considering their ability to solve for the subsurface distribution of the electrical prop-
erties, which are strongly linked to clay and water content and can be used to derive
hydrogeological information (e.g., Grandjean et al., 2011; Sirles et al., 2013; Merritt
et al., 2014; Altdorff and Dietrich, 2014)).

The EMI method has relatively low application costs and, more importantly, is
a contactless technique well-suited to map large areas in relatively short acquisition
times (e.g., Everett, 2012; Doolittle and Brevik, 2014a; Binley et al., 2015)). EMI mea-
surements provide depth-integrated values of the in-phase and quadrature components
of the secondary EM field, which in turn can be transformed into apparent electrical
conductivity σa (ECa) given a low-induction number assumption. The resulting bulk
ECa can then be interpreted in terms of clay-content, porosity, temperature changes,
electrolyte salinity and water saturation given a calibrated petrophysical relationship
(Brevik et al., 2006). EMI methods are widely used in soil studies (Doolittle and Bre-
vik, 2014a), and monitoring measurements can be applied for the quantification of soil
moisture changes (Robinson et al., 2012; Shanahan et al., 2015). It has been suggested
that in the scope of slope instability studies, maps of σa permit the identification of
zones with different soil properties relevant for the characterization of infiltration and
surface run-off regimes (e.g., Kušnirák et al., 2016). Hence, a few studies have referred
to the application of EMI techniques for the characterization of landslides (e.g., Mau-
ritsch et al., 2000; Grandjean et al., 2011; Altdorff and Dietrich, 2014; Kušnirák et
al., 2016). Moreover, the application of airborne electromagnetics (AEM) has drawn
attention as a suited technique to investigate areas a the large scale (Nakazato and
Konishi, 2005; Lysdahl et al., 2017).

However, typical geophysical investigations of landslides target the delineation of
both the vertical and lateral distribution of physical properties, as needed, e.g., for
the delination of the sliding plane or the estimation of mobilized volumes. On that
account, electrical resistivity tomography (ERT) is a method which permits to solve
for the subsurface distribution of electrical resistivity (or its inverse electrical con-
ductivity) in 2D and 3D models and it has been extensively applied in the last 20
years for the characterization of landslides (see Perrone et al., 2014, for an overview).
Resistivity images can be explored for resistivity contrasts, which can be indicative
for lithological changes and thus, the sliding materials and the stable unit and the
geometry of the sliding plane (Lapenna et al., 2003; Bell et al., 2013), as well as the
areas of the landslide characterized by higher water content (e.g., Lebourg et al., 2005;
Sass et al., 2008; Lehmann et al., 2013). However, clay-rich sediments are also related
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to low electrical resistivity values due to conduction mechanisms taking place at the
negatively-charged surface of clay minerals (e.g., Revil and Glover, 1998). Hence, the
quantitative interpretation of the ERT results may be challenging, taking into account
the impossibility to discriminate whether the electrical conductivity models are con-
trolled by variability in water or clay content. Hence, some authors have referred to the
application of the Induced Polarization (IP) method for the structural characterization
of landslides (Marescot et al., 2008; Perrone et al., 2014). The IP method is an exten-
sion of the ERT technique, which provides information about the electrical conduction
and capactive (polarization) properties of the subsurface (e.g., Kemna et al., 2012, and
references therein). Initially, the IP method was developed for mining applications due
to the strong polarization response observed in the presence of iron sulphides (e.g.,
Pelton et al., 1978). However, in recent years it has emerged as a promising technique
for hydrogeological and environmental applications (e.g., Kemna et al., 2012). Studies
demonstrate the successful application of the IP method for an improved litholog-
ical discrimination (Kemna et al., 2004), the assessment of permafrost degradation
(Doetsch et al., 2015), the monitoring of bioremediation processes (Flores Orozco et
al., 2011; Flores Orozco et al., 2013), the mapping and characterization of contaminant
plumes (Flores Orozco et al., 2012b; Ntarlagiannis et al., 2016), and the monitoring of
microscale particle injections (Flores Orozco et al., 2015). Furthermore, IP laboratory
measurements performed at different frequencies, in the so-called spectral IP (SIP),
have shown a characteristic frequency dependence of the IP effect linked to textural
parameters of soil (e.g., Binley et al., 2005; Weller et al., 2010; Revil, 2012). Based on
such findings, there is an extensive research into the application of the SIP method to
characterize the hydraulic conductivity (Slater, 2007; Weller et al., 2015). Neverthe-
less, the mechanisms underlying the IP response are still not fully understood (e.g.,
Kemna et al., 2012); thus correlation with ground-truth information is required for an
adequate interpretation of the IP imaging results.

To date, only a limited number of studies report the application of the IP method for
the characterization of landslides (Marescot et al., 2008; Taboga, 2011; Sastry et al.,
2012; Dahlin et al., 2013; Sirles et al., 2013). However, in such studies the evaluation
of the IP images is mostly based on cross-validation with other geophysical data or
limited lithological information provided by core drillings. Geotechnical testing such as
penetration tests or textural analysis of recovered sediments have not been considered
for a quantitative interpretation of the IP imaging results. Furthermore, and to the
best of our knowledge, no studies have yet reported the application of SIP imaging
for the characterization of landslides. Hence, we believe that a case study presenting
extensive (S)IP imaging results and their evaluation through geomorphological and
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geotechnical data is required to better assess the applicability of this technique for an
improved investigation of landslides.

To fill this gap, we present here a case study for the characterization of a landslide in
Lower Austria through a combined investigation of EMI and IP mapping and geotech-
nical data. The landslide is characterized by high fractions of clay-rich sediments of
the Flysch and Klippen Zone (Wessely et al., 2006), which imposes some limitations
on the interpretation based solely on ERT results. Through extensive geotechnical
information available at the study area, we evaluate the geophysical results and their
applicability to determine relevant landslide characteristics such as the accumulation
and infiltration zones, the sliding plane, and ground water flow paths. Available in-
formation about textural soil parameters allows us to discuss the value of the added
information gained from the capacitive properties of the subsurface provided by the IP
method. Furthermore, we present SIP imaging results to investigate the frequency de-
pendence of the subsurface electrical properties and their correlation with geotechnical
and textural parameters. In the next section, we provide a description of the study
area as well as the geophysical and non-geophysical data, followed by the presentation
and discussion of EMI maps. Then we present and discuss the IP imaging results and
the SIP data, as well as their correlation with ground-truth data, followed by the final
interpretation of the geophysical investigation and the conclusions.

4.2 Site description

The study area is located in the southwestern part of Lower Austria, Austria (Figure
4.2). Several investigations have been carried out at the study area by the local au-
thorities, thereby gathering extensive information about the surface deformation by
means of geomorphological mapping, geodetic monitoring techniques and terrestrial
laser scanning. Further subsurface investigations have been conducted through direct
methods, namely dynamic probing heavy, percussion drilling and inclinometer mea-
surements. Variations in the groundwater level and soil moisture have been measured
using a piezometric network and time-domain reflectrometry (TDR) respectively. Pre-
vious geotechnical investigations at the study area have suggested the existence of a
shallow sliding plane in approximately 2 to 3m depth (for further details refer to
Stumvoll et al., 2020).

Based on geomorphological mapping the extension of the active landslide area has
been estimated to cover approx. 4000m2. The inclination of the slope ranges between
5◦ and 15◦, with steeper part up to 20◦ in the bulged areas, which are related to the
recently most active sections. The geological setting of the study area is character-
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ized by three different tectonic units: (i) the Penninic (Rhenodanubian) Flysch Zone
(FZ) in the north, (ii) the (Upper) Austroalpine Norther Calcareous Alps (NCA) in
the south, (iii) and the Helvetic unit of the Gresten Klippen Zone (GKZ) in between.
Such compound settings result in diverse lithological contacts, which promote land-
slide occurrence in the region (e.g., Ruttner and Schnabel, 1988; Schnabel et al., 2002).
From 1100 landslides reported in Lower Austria between 1965 and 2006, 62% of them
occurred in the Flysch and Klippen Zones (42% Flysch and 20% Klippen Zone (e.g.,
Gottschling, 2006; Petschko et al., 2014). The GKZ and FZ units are intricate re-
garding their stratigraphy, lithology and facies, with both units mainly characterized
by marine sandstones, clays, clayey shales, marly shales and marly limestones, yet
conglomerates and breccia have been reported in the GKZ (for more details see, e.g.,
Ruttner and Schnabel, 1988; Wessely et al., 2006).

The first slope movement in the area was reported in 1975, and it has been suggested
its triggering was related to heavy precipitation events occurring between June 29th
and July 3rd. The landslide was reactivated in 1978 after heavy precipitation on
Mai 31th, with further displacements reported in 2006. Between 2007 and 2012,
displacements were monitored via tachymetric surveys, which have been stopped after
2012 due to only minimal displacements observed (e.g., max. 20 cm in 2009). Since the
first displacements occurred in 1975, remediation techniques at the site have included
the removal of displaced material, filling of tension cracks and depletion zones (1975
and 1978), leveling of the upper area and the installation of a drainage system in the
eastern part of the study area in 2009.

4.3 Material and methods

4.3.1 Low induction number electromagnetic imaging

Electromagnetic induction (EMI) imaging results presented in this study were per-
formed with the so-called terrain conductivity meters, or more precisely, low induction
number electromagnetic methods (e.g., McNeill, 1980b; Everett, 2005). EMI exploits
the principle of electromagnetic induction by making use of a sensor system that gen-
erates a primary magnetic field by applying an alternating current at a fixed frequency
which passes through a transmitter coil. Due to the time-varying character of the mag-
netic field, eddy currents are induced in a conductive subsurface, which subsequently
generate a secondary magnetic field sensed by the receiver coil. The induction number
(b) for a given system is a function of the angular frequency of the primary field (ω),
the separation between the transmitter and receiver coils (l), the magnetic permeabil-

57



4 Delineation of subsurface variablitiy with SIP and EMI

Figure 4.1: Location of the study area in the geological unit of the (Rhenodanubian)
Flysch Zone in the western part of Lower Austria, Austria (Figure 4.1a). Geological
setting of the study area (Figure 4.1b). Geological maps modified after Weber (1997)
and Schnabel et al. (2002)
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ity (µ) and the bulk electrical conductivity (σ) of the earth, and can be written (e.g.,
McNeill, 1980a) as:

b = µσωl2 (4.1)

Terrain conductivity meters are instruments where l and ω are designed to work at
low induction number (b < 1), at which the response is dominated by the ratio between
secondary and primary magnetic field. Assuming that µ in subsurface materials is close
to one as in vacuum, the measured response is then only controlled by the electrical
properties, thus permitting to obtain the apparent electrical conductivity σa in the
subsurface quasi in real time (Keller and Frischknecht, 1966; Ward and Hohmann,
1988). As a contactless techniques EMI permits to map large areas in reasonably low
acquisition times (up to 5000m2/h depending on the study site).

Values of σa represent a nonlinear average of the electrical conductivity values of the
examined (sensitive) volume across a depth range that depends on the coil separation
and orientation (McNeill, 1980b). The transmitter and receiver coils can be orientated
horizontally (horizontal coplanar, HCP) or vertically (vertical coplanar, VCP) with
respect to the ground surface. Increasing l in combination with VCP loops increases
the depth range for the σa measurement (e.g., McNeill, 1980b; Callegary et al., 2007).
Modern commercial instruments typically provide more than one transmitter/receiver
pair and therefore can provide σa for different depth ranges. Vertical profiles of the
electrical conductivity (σ) of the examined volumes can be obtained from inverse
modelling (e.g., Mester et al., 2011; Hebel et al., 2014) of σa data sets measured for
different depths of investigations (i.e., varying coil separation, coil orientation).

4.3.2 EMI mapping

In this study we applied EMI measurements to map lateral changes in the subsur-
face electrical properties using the CMD-Explorer (by GF Instruments), which uses
three receiver coils with separation of 1.48m, 2.82m, and 4.49m to the transmitter
coil simultaneously, at an operating frequency of 10 kHz. All measurements on the
landslide were performed in VCP mode for effective depth ranges of 2.2m, 4.2m and
6.7m. The sampling frequency was 1Hz, hence at an average walking speed σa values
were collected approximately every 0.7m along the walking tracks presented in Figure
4.2. The measured conductivity values were geo-referenced by means of differential
GPS measurements. In total, the data set consists of approximately 30.000 σa values
with survey performed within 3 h. EMI measurements were planned to map the entire
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Figure 4.2: Experimental set-up at the study area showing the transects for the
collection of the EMI mapping data (indicated by the black dots in Figure 4.2a), the
orientation of the IP profiles (position of the electrodes indicated by the black, blue,
and red symbols in Figure 4.2b), and the location of the measuring points of direct
methods, as well as field installations (Figure 4.2c).

extension of the recently active landslide area and delineate lateral variations in the
electrical conductivity. In this study, we do not discuss the inversion of EMI data and
associated uncertainties, which is required to solve for vertical variations in σa. In-
stead, we present maps of the σa directly recovered from measurements recorded with
different coil separation. The maps were obtained by spatially interpolating all posi-
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tive measured σa values (negative values were removed) using the kriging method. For
the interpolation we used a linear variogram and an elleptical search space stretching
into the direction of the landslide movement (axis ratio 1:2).

4.3.3 Complex conductivity imaging

Similar to ERT, the induced polarization (IP) method is based on four-electrode config-
urations, where two of them are used for current injection and the other two to record
the resulting voltage. In case of frequency-domain, current injection is performed us-
ing a sinusoidal waveform and data collection includes the measurement of the ratio
between the measured voltage and current, as well as the time delay between both,
resulting in a complex-valued electrical transfer impedance. Measurements can be
repeated at different frequencies to gain information about the frequency dependence
of the electrical properties, in the so-called spectral IP (SIP). SIP measurements are
commonly conducted at the low frequencies (between 10mHz and 1 kHz), with lower
frequencies (< 1Hz) associated to long acquisition times, whereas high frequencies (>
10Hz) bear the risk of contamination of the data due to electromagnetic effects (Flo-
res Orozco et al., 2013). In case of time-domain surveys, IP measurements record the
remnant voltage after current injection is switched off (e.g., Binley and Kemna, 2005).
Both frequency and time-domain measurements are theoretically equivalent, coupled
by a Laplace transformation, and can both be used to investigate the distribution of
complex electrical conductivity in subsurface materials (Flores Orozco et al., 2012b).
A detailed review of the IP method can be found Ward (1990), Binley and Kemna
(2005), and Kemna et al. (2012).

The low frequency electrical properties of the subsurface are commonly expressed
in terms of the complex electrical conductivity σ∗(ω) (with ω denoting the angular
excitation frequency), which can be parameterized by means of its real,σ′(ω), and
imaginary, σ′′(ω) components, or by its magnitude |σ∗(ω| and phase-shift ϕ(ω), such
that:

σ∗(ω) = |σ∗(ω)|eiϕ = σ′(ω) + iσ′′(ω) (4.2)

with i =
√−1, and

ϕ = arctan
σ′′(ω)
σ′(ω)

. (4.3)

The real part of the complex conductivity accounts for energy loss (ohmic conduc-
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tion) and, for sediments without metallic minerals, is mainly controlled by the porosity,
connectivity of the pore space, saturation, and the fluid electrical conductivity of the
pore-filling electrolyte (e.g., Revil and Glover, 1998; Lesmes and Morgan, 2001). The
imaginary component is related to energy storage (polarization), which, in absence of
metallic minerals, ig given by: (1) the occurrence of clay minerals that can act as ion
selective membranes, in the so-called membrane polarization (e.g., Titov et al., 2010;
Bücker and Hördt, 2013; Hördt et al., 2017), and (2) electro-chemical polarization
taking place at the electrical double layer (EDL), which is formed at the grain-fluid
contact (e.g., Leroy et al., 2008; Leroy and Revil, 2009). In case of the membrane po-
larization the magnitude of the polarization effect is mainly a function of pore-space
geometry (i.e, the sequence of wide and narrow pores and their lengths and radii), and
for further details we refer to the studies of Bücker and Hördt (2013), Hördt et al.
(2016), Chuprinko and Titov (2017), and Hördt et al. (2017).

4.3.4 Inversion of IP imaging data sets

Inversion techniques are used to reconstruct the spatial distribution of complex con-
ductivity from measured data. In this study, inversion of the IP data was performed
using CRTomo, a complex resistivity inversion algorithm (Kemna, 2000), using the
sensitivity-controlled focusing (SCF) regularization scheme presented in Blaschek et
al. (2008). This regularization scheme is based on the minimum gradient support
(MGS) described in Portniaguine and Zhdanov (1999) and permits to solve for images
with sharp contrasts between structures characterized by different electrical proper-
ties, yet allowing smooth parameter changes within them (Blaschek et al., 2008). This
is particularly important, as landslides are typically complex systems which cannot
be explained by simple two layer cases without variations in the electrical properties
within the layers. We opted for this regularization scheme, over the commonly used
smooth-regularization, to properly solve for the interface between the sliding material
and the bedrock, which is expected to form a sharp contrast between materials with
contrasting electrical properties (e.g., Lapenna et al., 2003). Although CRTomo per-
mits the definition of error models to fit the data to a confidence inteval within the
inversion (Kemna, 2000; Flores Orozco et al., 2012a), in case of data sets presented
here we used a robust inversion schemes based on an iterative re-weighting of poorly
fitted data points (referred to as IRLS, e.g., LaBrecque and Ward, 1990; Kemna, 2000),
which are less sensitive to incorrect estimates of the random data error, as discussed in
Morelli and LaBrecque (1996). Model appraisal was performed based on the analysis
of cumulated sensitivity (e.g., the sum of absolute, data-error weighted sensitivities of
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all considered measurements), as performed in previous studies (Kemna et al., 2002;
Weigand et al., 2017). Accordingly, we masked pixels in the imaging results associated
to poor sensitivity, i.e., those pixels associated to log10 cumulated sensitivities 2 orders
of magnitude smaller than the highest cumulated sensitivity.

4.3.5 Single frequency IP mapping and SIP imaging

In this study, single frequency (1Hz) IP imaging measurements were collected along
15 profiles distributed over the active landslide area: ten profiles orientated parallel
to the landslide axis (west-east, WE), and five profiles perpendicular to it (north-
south, NS), as depicted in Figure 4.2. Profiles collected in WE direction had an
average distance of 10m between them, using 64 electrodes in each profile with 2m

separation between electrodes. The profiles at the boundaries of landslide (gr1, gr9,
gr10) were collected with 1.5m spacing between electrodes to avoid placing electrodes
close to anthropogenic structures, commonly related to the contamination of IP data
by cultural noise (e.g., Flores Orozco et al., 2012b). The separation between the
NS profiles ranges between 20m to 40m (Figure 4.2), with measurements collected
with 64 electrodes and a separation of 1m between electrodes in each profile. Aiming
for a depth of investigation of 15m, IP measurements were conducted with a dipole-
dipole configuration combining skip-0, skip-1 and skip-2 protocols. The skip refers
to the dipole length, defined by the number of electrodes skipped between the two
current electrodes, as well as between the two potential electrodes (Slater et al., 2000).
Such configuration permitted an acquisition time of 45min (at 1Hz), aiming for the
collection of the 15 mapping IP profiles within 2.5 days from May 10th to 12th to
warrant similar meteorological and subsurface conditions. Particular care was taken
to avoid potential readings with electrodes previously used for current injection and
the contamination of the data due to polarization of the electrodes (e.g., LaBrecque
and Daily, 2008; Flores Orozco et al., 2012a).

To investigate the spectral behavior of the subsurface materials in the landslide,
SIP data were collected along one profile in WE direction (gr16 in Figure 4.2) with 64

electrodes and 2m separation between electrodes. Here, 12 frequencies in the range
between 0.5Hz to 225Hz Hz were used with the same dipole-dipole configuration
previously applied in the single-frequency surveys. All measurements were collected
using a DAS-1 instrument (from MultiPhase Technologies), with the instrument placed
at the center of the profile (between electrode 32 and 33). A control of the contact
resistances between adjacent electrodes was performed before data collection, with the
re-installation of electrodes performed in case of high values (> 1 kΩ), to ensure a good
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contact between electrodes and the ground, aiming for current injections in the range
between 100mA to 400mA.

To illustrate the quality of the measured data, in Figure 4.3 we present the pseudo-
section of the IP measurements in terms of the apparent resistivity (ρa) and apparent
phase-shift (ϕa), for data collected along profile gr5, as well as their corresponding
histograms. This particular profile was selected as it is expected to be representative
for the study area and it is close to most of the geotechnical measurements, permit-
ting a direct comparison with ground-truth information (c.f., Figure 4.2). Due to the
nature of IP imaging measurements, pseudosections are expected to reveal smooth
variations of ρa and ϕa, and abrupt changes may be indicative of a data set containing
systematic errors, i.e., outliers, which need to be removed before the inversion. Plots
in Figure 4.3 reveal smooth variations in the pseudosection of ρa, with values ranging
between 10Ωm to 80Ωm, without any observable outlier. In case of the ϕa readings,
the pseudosection reveals mainly values between 0mrads to −10mrads for short dipole
lengths (located at the shallow levels of the pseudosection). Measurements located at
larger pseudodepths reveal poor spatial consistency with larger variations between ad-
jacent readings, suggesting readings with a poor signal-to-noise ratio (S/N). In order
to remove outliers, we adapted the filtering approach proposed by Flores Orozco et al.
(2018b). The automatized data processing consists of a four step procedure: 1) the
data set is partitioned into subsets defined by potential readings collected by the same
current dipole, 2) the median ϕa for each subset is computed, as well as 3) the devi-
ations to such median value (Δϕ) from each reading in the subset, 4) removal of all
readings associated with an absolute deviation |Δϕ| exceeding two times the standard
deviation of Δϕ of the entire data set. Furthermore, we analyse the distribution of
the measurements. To this end, the remaining measurements are binned using the
rule proposed by Sturges (1926) and Larson (1975), and further outliers are defined
as those measurements located in bins separated from the main distribution. As dis-
cussed in Flores Orozco et al. (2018b), the presence of gaps in the histogram indicates
measurements without spatial correlation within the data set. Figure 4.3b presents the
pseudosections for ρa and ϕa, as well as the corresponding histograms, after following
the steps defined above. Such plots show pseudosections less affected by outliers, with
ϕa values ranging between −10mrads to 0mrads, with consistent results observed for
the rest of the IP profiles (data not shown).
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Figure 4.3: Raw data analysis: Plots present the measured values in terms of the
apparent resistivity (first row), and the apparent phase-shift (second row) for data
collected along profile gr5 (Figure 4.2b). Plots show the pseudosections and histograms
for the raw data (Figure 4.3a) and after the removal of outliers (Figure 4.3b).

4.3.6 Complementary geotechnical and hydrogeological methods

At the landslide, dynamic probing heavy (DPH) was performed with a pneumatic
heavy dynamic penetrometer (SRS-15), using a drop weight of 50 kg, a cone diameter
of 43.7 cm and a drop height of 0.5m, with the results presenting the blow counts
needed to insert the probe for a 10 cm increment. In this study we present data
collected along thirteen DPH soundings performed along the landslide axis, as depicted
in Figure 4.2c. Additional six core drillings (only four presented in this study) were
retrieved from perforations with a maximum depth of ∼9m in the vicinity of the DPH
locations, as presented in Figure 4.2c. Soil samples taken from the core drillings were
analysed in the laboratory to gain the particle size distribution using sieving (based
on ÖNORM L1061–1/ DIN-ISO 3310/1) and sedimentation analysis (with reference
to ÖNORM L 1061–2).

For the monitoring of subsurface displacement and the delineation of possible shear
zones, one automatic chain inclinometer with an installation depth of 13m, and two
manual inclinometers with installation depths of 6.5m, are operated at the study site,
as presented in Figure 4.2c. Measurements were taken for the sequential segments of
1m for the 13m inclinometer, whereas segments of 0.5m were used for the 6.5m incli-
nometers. Furthermore, variations in the groundwater levels are monitored by means
of a piezometric network, with sensors installed to a depth of 7 and 8 m respectively
(Figure 4.2c). For more details on the geotechnical investigations at the study site we
refer to Stumvoll et al. (2020).
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4.4 Results and discussion

4.4.1 EMI mapping

Figure 4.4 presents the interpolated maps of the apparent conductivity values for
the three collected depth ranges (i.e., 2.2, 4.2, 6.7 m), in the following referred to
as σ2.2, σ4.2 and σ6.7. We note here, that anomalously high σa values (> 40mS/m)
are associated with the response of metal from anthropogenic structures and other
measuring instruments (e.g., fences, inclinometers, and the weather station; c.f. Figure
4.2c) and will not be further addressed.

In general maps for σ2.2 and σ4.2 reveal consistent patterns and σa values, permitting
the identification of two main regions: (i) an area of elevated σa (> 25mS/m) in the
central region of the landslide, as well as (ii) areas characterized by low σa values (<
20mS/m), located at the western and north-eastern regions of the site, correspond-
ing to the highest (> 455 m above sea level, asl) and lowest topography levels (<
440 m asl) respectively, as observed in Figure 4.4f. To evaluate the similitudes for
the different depth ranges, in Figure 4.4d and 4.4e we present difference images for
consecutive depth ranges. Considering the minor differences between the maps ofσ2.2

and σ4.2 (Figure 4.4d), characterized by an only modest variation in σa (∼ 2mS/m),
we can interpret only minimal vertical variations in shallow subsurface materials (be-
tween 0.5m to 4m depth). Nevertheless, the map for σ6.7 reveals visible variations, in
comparison with shallower maps, with a broader range in the measured σa values, as
also evidenced in Figure 4.4e.

Comparison of the shallow maps (σ2.2, σ4.2) and the σ6.7 map reveal two major
differences: (i) a significant increase in the σa values for the central area of the land-
slide, suggesting an increase in saturation or clay content at depth in that area; as
well as (ii) an increase in the variability of σa in the western part of the landslide,
where higher σa values can be observed. Given the higher variability in σa observed in
the deeper EMI measurements (Figure 4.4c), we classify the σ6.7 maps into four main
regions arranged in west-east direction: (1) a low conductivity region (< 20mS/m)
related to topographical highest areas (> 455 m asl), (2) a region of intermediate
conductivity values (∼ 26mS/m), (3) a region of elevated conductivity values (30-38
mS/m) associated to topography values between 444 and 455 m asl, and (4) low to
intermediate conductivity values (18–26 mS/m) located at the foot of the landslide (∼
440 m asl). A color-coded map using such classification is presented in Figure 4.4g,
which reveals consistent features to surface topographical discontinuities, as observed
in the hillshade model of the DEM (Figure 4.4f).
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4.4.2 Interpretation of the EMI mapping in combination with
geomorphological data

The correlation between the changes in topography and the σa features suggests a link
between the EMI maps and geomorphological patterns. To better investigate this,
we overlapped the EMI maps with geomorphological features, namely, the limits of
the landslide scarps, waterlogged areas and the accumulation zone as obtained from
geomorphological mapping (Figure 4.4a, b, c). Plots in Figure 4.4 show in general that
the three σa depth ranges solve consistently for high σa values in waterlogged areas,
with an observed increase in σa with increasing the depth range (e.g., an increase
from 30 to 40 mS/m for the waterlogged area in the center of the study site for the
σ6.7 map). For waterlogged areas, which can be expected to be fully saturated, such
increase in the electrical conductivity suggests an increase in clay content and thus, the
possible contact between units with different hydrogeological properties, a common
factor associated to the accumulation of pore-water pressure and the triggering of
landslides (e.g., Samyn et al., 2012). In particular, the observed change between the
shallow-to-intermediate and the deep maps might be related to the contact to the
shallow sliding plane delineated in a previous study located in approximately 2–3 m
depth (Stumvoll et al., 2020).

Yet, to interpret EMI maps at different depths, it is necessary to take into account
the sensitivity at depth associated with the geometry of the instrument. The normal-
ized sensitivity function Φ for EMI measurements in the VCP mode can be computed
using the well-known equation (McNeill, 1980b):

Φ =
4D

l

[4D
l

2
+ 1]

3
2

(4.4)

in which D represents the depth as continuous variable. Plots for the instrument
used in our study (Figure 4.4h) reveal the highest sensitivity for σ2.2 and σ4.2 maps
between ∼ 0.25 and 3 m depth, clearly demonstrating the influence of sliding materials,
and shallow waterlogged areas, on the σa values. Whereas, deepest EMI measurements
(σ6.7) are sensitive to depths between 0.5 and 4 m (Figure 4.4h). Hence, the increase
in σa values at depth for the central area of the landslide (c.f. Figure 4.4e) seems to
be related to the contribution of both the sliding materials and the stable unit.

The different landslide scarps show a spatial correlation with lateral variations in
the σa values in all EMI maps. Furthermore, σa patterns observed also in all EMI
maps are consistent with the location of the accumulation zone, which in the case of
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σ6.7 is characterized by a transition from high (∼ 36 mS/m) to intermediate (∼ 28
mS/m) conductivity values. The slightly lower conductivity values of the materials
in the accumulation zone could be explained by the higher degree of compaction as a
result of the accumulating pressure from sliding downhill.

4.4.3 Interpretation of IP imaging in combination with soil-physical and
geotechnical data

4.4.3.1 Single frequency IP

For completeness, the evaluation of the resolved complex conductivity variations at
depth for a given point and its correlation with ground-truth data is assessed prior
to the presentation of the IP imaging results. Figure 4.5 presents relevant textural
and geotechnical parameters, namely, the soil type (Figure 4.5a, e) and particle size
distribution (Figure 4.5b, f) as obtained from the analysis of core drillings, as well
as the blow counts from co-located DPH surveys (Figure 4.5c, g) for the wells B3
(Figure 4.5a-4.5c) and B4 (Figure 4.5e-4.5g), as well as the electrical model parameters
expressed in terms of σ′ and σ′′ (Figure 4.5d, h) extracted from IP imaging results (at
1Hz in the vicinity of wells B3 and B4.

The comparison of particle size distribution and the electrical properties shows the
sensitivity of σ′′ to variations in the textural composition. In particular for B3, Figure
4.5 shows that an increase in clay content (> 40%) is related to a significant decrease
in the polarization effect (from 50 to 25 µS/m), as observed at depths between 2 and
4 m. For lower clay fractions (< 20%) and increasing the content of gravel and coarse
sands (e.g., between 4 and 9 m depth), σ′′ increases, whereas the increase appears
to be correlated with the silt fractions that reveal an increase over the same depth
range. Below 9 m depth, where no textural information is available, σ′′ continues to
increase and reaches its maximum value (∼ 500 µS/m) at 12 m depth. Such maximum
correlates with high blow counts (> 79 blows) and likely indicates the transition to
un-weathered bedrock.

The σ′ profile reveals only minor changes down to 9 m. There is a decrease in con-
ductivity values from ∼ 25 mS/m between 1 and 3 m depth to ∼ 10 mS/m between
3 and 10 m, clearly indicating a poor sensitivity to textural variations. Nevertheless,
the profile shows an increase in σ′ values to the maximum value of 60 mS/m (Figure
4.5d) at 12 m depth, which is in agreement with the increase in blow counts as pre-
viously discussed. Furthermore, Figure 4.5 clearly reveals no correlation between the
blow counts and the changes in the textural parameters in this core. For instance,
the shallow soil samples (between 1 and 4 m depth) associated with the highest clay
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content (> 40%), and the deeper recovered materials (between 4 and 9 m depth) as-
sociated with coarser materials (gravels > 20% and ∼ 12.5% clays), do not reveal any
significant changes in the number of blow counts in DPH. This might be related to an
unevenly distributed soil moisture in depth and needs further investigations.

The variations in σ′′ and textural parameters observed in well B4 (Figure 4.5f, h)
are consistent to those described above for B3: a decrease in the polarization effect for
soils dominated by clay (e.g. from 60 to 15 µS/m between 3 and ≈ 4 m depth) and an
increase in σ′′ with increasing the gravel, sand and silt content. The observed increase
in the polarization effect with increasing the content of coarse sediment is consis-
tent with the recent developments in the understanding of the membrane polarization
mechanism (e.g., Bücker and Hördt, 2013; Hördt et al., 2017). Such studies have
demonstrated that an important parameter controlling the membrane polarization for
a homogenous mineral composition is the contact between micro- and macropores, as
well as the ratio between the pore-radii and pore-lengths. Furthermore, Chuprinko
and Titov (2017) recently demonstrated that variations in the mineral composition of
the different pores can also result in a polarization effect superimposing the polariza-
tion effect due to the pore-space geometry. Thus, we hypothesize that the observed
increase in σ′′ is consistent with the contact of macropores in the coarse materials,
and the micropores due to the fine grains. Accordingly, the σ′′ decreases in horizons
dominated by fine silts and clays, where micropores dominate, and most of the energy
is conducted along the mineral surface, thus, also explaining the relative high σ′ values
in the landslide.

The observed correlation between the textural, geotechnical and electrical parame-
ters demonstrates that variations in σ′ and σ′′ (at 1 Hz) can be used to delineate areas
rich in fine-grained minerals (associated to low σ′′ at 1 Hz), which may also act as low
hydraulic permeable layer hindering the infiltration of surface water. Consequently,
high σ′′ values may indicate soils with variations of fine and coarse grains which may
facilitate groundwater flow and act as drainage systems in the landslide.

4.4.3.2 SIP imaging

We present in Figure 4.5a the SIP imaging results for data collected along gr16 at
three representative frequencies to investigate the frequency dependence of the elec-
trical properties and its correlation with ground-truth data. As observed in Figure
4.5a, the electrical conductivity (σ′) reveals a negligible frequency dependence (in the
frequency bandwidth analysed in this study) and will not be further addressed here.
Textural analyses of sediments recovered after the drilling in B1 (Figure 4.5b) and B2
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(Figure 4.5e) are shown to better investigate the control of the spectral response (i.e.,
the frequency dependence) of σ′′. Moreover, Figure 4.5 shows the DPH soundings con-
ducted in the vicinity of the wells B1 (Figure 4.5c) and B2 (Figure 4.5f). Figure 4.5d
and g presents the spectral amplitude, i.e. σ′′, as a function of depth and frequency.
The σ′′ values were extracted from the electrical images after independent inversion of
data collected at each frequency. In general the analysis of soil samples revealed high
fractions of fine-grained minerals: clay (20–50%) and silt (10–25%) and low contents
of coarser grains (sand and gravel roughly < 10%). The abundance of fine grains is
consistent with the relatively modest σ′′ response in the low frequencies (< 15 Hz);
yet a linear increase in the σ′′ values can be observed with increasing the frequency.
Such increase in the polarization effect with increasing the frequency is related to the
fastest polarization processes in fine grains, where the ions move along shorter tra-
jectories, as observed previously in laboratory studies conducted in clay-rich samples
(e.g., Slater and Lesmes, 2002b; Slater et al., 2006; Jougnot et al., 2010). The increase
at high frequencies is nevertheless only visible in the saturated materials (below 2 m
depth), as pore water is necessary for the development of the electrical double layer
where the polarization takes place. The increased σ′′ response for B2 between 0 and
1.5 m might be a result of a separated fully saturated patch, as for instance expected
for the waterlogged areas. The unsaturated zone is also interpreted as weak materials
following the DPH (< 5 blows), with an increase in the DPH counts also observed
below 2 m depth.

We observe a noticeable change of σ′′ below 6 m depth for B1 and below 9 m depth
for B2, at depths where no textural information is available. In particular, plots in
Figure 4.5d reveal (i) an overall increase in σ′′ for frequencies >> ∼ 1.66 Hz and (ii)
a noticeable peak for σ′′ with values well above 700 µS/m. Such peak is situated in
the frequency range of 7.5–15 Hz and appears to shift towards lower frequencies with
increasing depth, indicating a change in the dominating length scale towards coarser
grains (medium to coarse silts), i.e., and slower polarization processes. The DPH
also reveals an increase in the material strength below 6 m depth for B1 and below
9 m depth for B2 (> 40 blows). Furthermore, the shift of the σ′′ peak to even lower
frequencies at 9 m depth for B1 and 11 m depth for B2 is also accompanied by a
transition to blow counts above 79 and likely indicates the contact to un-weathered
bedrock and larger length-scales dominating the polarization response. Hence, it ap-
pears that analysis of the frequency dependence of the polarization effect could be
used to distinguish contacts between materials with different mechanical properties.

Nevertheless, analysis of high frequency IP data for field measurements needs to
be performed with caution, considering that increasing the frequency (> 10 Hz) also
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leads to the induction of parasitic electromagnetic fields that contaminate the SIP data
(Flores Orozco et al., 2013). Commonly referred to as electromagnetic coupling (EM-
coupling), it arises due to current flow along the cables connecting the instrument and
the electrodes, due to differences in the contact between electrodes and the ground,
and due to self-induction effects between the cables (e.g., Zimmermann et al., 2008;
Flores Orozco et al., 2013). It is proportional to the σ′ and the square of the excitation
frequency (Dey and Morrison, 1973). In case of clay-rich minerals, EM-coupling might
superimpose the actual response from the subsurface; thus, in Figure4.5f we do not
present data collected at higher frequencies (> 100 Hz), as such data revealed EM-
coupling.

4.4.4 IP mapping

Figure 4.7 presents the IP imaging results for the profile gr5 expressed in terms of
σ′ and σ′′, with the related geomorphological features, groundwater levels and blow
counts measured by DPH superimposed over the electrical images. The imaging results
reveal two main units: (i) a top layer characterized by low σ′ (< 30 mS/m) and σ′′ (<
150 µS/m) values, with a varying thickness along the profile, and (ii) a deeper unit
associated to high spatial variability and a broader range in the σ′ and σ′′ values. We
observe a significant decrease in thickness of the σ′ top layer from 12 m to ∼ 4 m at the
location of the top-scarp. From the position of the top-scarp (∼ 48 m), the vertical
contact observed in the σ′ image from low to intermediate (> 30 mS/m) σ′ values
is consistent to the vertical contact interpreted from DPH (Stumvoll et al., 2020),
interpreted as the location of the sliding plane, as depicted in Figure 4.7. Moreover,
the σ′ contact observed at larger depth (> 12 m below ground surface), associated to
a transition to the highest σ′ values (> 70 mS/m), is in agreement with highest blow
counts (> 79 blows) in the DPH and likely suggest the contact to bedrock consisting of
sedimentary rocks (mottled marls or Flysch materials, e.g., sandstone). Furthermore,
only a poor correlation of variations in σ′ with the groundwater levels can be observed,
which indicates that surface conduction mechanisms (due to overall high clay content)
dominate over ionic conduction (through water-filled pores).

Imaging results for the polarization effect (σ′′) reveal higher spatial variability than
those for σ′, in particular for the unit below the sliding plane (as interpreted from
the σ′ image). In the stable material, lateral variations in σ′′ values range between
150 and 550 µS/m suggesting differences in soil properties. In particular, in Figure
4.7, we observe an anomaly in the highly polarizable layer (> 500 µS/m) at ∼ 12 m
depth, between 45 and 65 m along the profile, which roughly corresponds with the
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position of the top and central-scarp. We interpret this discontinuity as a transition
from marlstone or sandstones (σ′ < 60 mS/m, σ′′ > 400 µS/m) to fractured marlstone
(σ′ > 60 mS/m, σ′′ ∼ 300 µS/m). However, the lack of deep core-drillings impedes
a quantitative interpretation of the electrical properties at depth. Subsurface mate-
rials between the sliding plane and the layer at depth can be interpreted as variably
weathered marlstones or Flysch materials. Considering the high variability in σ′ and
σ′′ values, areas associated to different stages of weathering can be outlined.

As discussed earlier, variations in σ′′ values are associated with changes in clay con-
tent and not compaction, therefore variations in σ′′ values do not necessarily need
to trace the increase in blow counts observed in the DPH data. The assessment of
clay-rich zones in landslides is of high relevance, as those may represent important
variations in the subsurface hydraulic properties, with such clays commonly related
to zones of low hydraulic permeability (e.g., Slater and Lesmes, 2002b). Thus, spatial
characterization of clay-rich zones is critical for the delineation of interflow or ground-
water flow paths and, thus, a better understanding of possible triggering mechanisms.
Based on the interpretation of single-frequency and SIP signatures discussed above,
imaging results presented in Figure 4.7 reveal a zone of low hydraulic conductivity,
characterized by low σ′′ (< 200 µS/m) and intermediate σ′ (∼ 40 mS/m) values,
between 45 and 55 m along profile direction. Consistently, this particular area corre-
sponds with the location of the topscarp and the start of the shallow sliding plane,
defined by geomorphological surveying and geotechnical data. Hence, it is possible to
suggest that such area may act as a hydraulic barrier retaining groundwater and pro-
moting the built-up of positive pore-water pressure, thus, facilitating the mobilization
of the materials due to the reduction of shear strength. In a similar way, the shallow σ′′

anomaly observed between 75 and 85m (along profile direction) may also indicate an
area of low hydraulic conductivity, hindering the percolation of surface water; thus, re-
sulting in the waterlogged zone defined during the geomorphological mapping. Hence,
variability in σ′′ solved in the imaging results seems to be well correlated with changes
in the hydraulic properties of the subsurface, as evidenced by the geomorphological
features of the landslide.

Furthermore, Figure 4.8 presents the imaging results for three WE profiles which are
representative for the northern (gr3), the central (gr5) and the southern (gr9) regions of
the landslide. Consistently to gr5, IP imaging results reveal the existence of two main
units: a top layer characterized by low σ′ (< 30 mS/m) and σ′′ (< 150 µS/m) values,
on top of a more conductive unit (> 45 mS/m) associated to high spatial variability
in σ′′ . The observed decrease in the σ′ top layer at the location of the top-scarp
for gr5 is consistently resolved for all profiles and again indicates the transition to the
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active landslide body. Consistently, the deep σ′′ anomaly, located between the top and
central-scarp, can also be observed in plots for gr3 and gr6, and to certain extent also
gr9. Such anomaly, as discussed before, is most probably related to different stages
of weathering and therefore zones of contrasting hydraulic properties; thus, of high
relevance for the understanding of water flow within the landslide.

4.4.5 Interpretation of the landslide

Maps of the σa obtained from EMI mapping reveal clear units consistent with geomor-
phological characteristics of the landslide, namely, the top and central-scarp, as well
as with the accumulation zone and the waterlogged areas. However, due to the na-
ture of the EMI measurements representing a non-linear average over a specific depth
range, no information on the depths of the delineated structures can be provided. Yet,
the discussion of the IP imaging results presented earlier has demonstrated that the
changes in the electrical properties are well correlated with the different ground-truth
data (e.g., grain size analysis, DPH). Therefore, we present in Figure 4.9 interpolated
maps of the σ′ and σ′′ for different depths (1–1.5 m, 2.5–3m, 5–5.5 m, 8.5–9 m, 10.5–11
m) as obtained from the inversion of the entire data sets (gr1 to gr16) at 1 Hz, super-
imposing the geomorphological information (landslide scarps and accumulation zone).
High σ′ and σ′′ (> 60 mS/m, > 500 µS/m) values observed at the northern part of
the landslide are the effect of anthropogenic structures (e.g., power line cables) and
will not be further discussed here.

Plots presented in Figure 4.9a reveal that for shallow depths the highest σ′ values
are located mainly at the foot of the landslide (i.e., to the east of the accumulation
zone). With depth, an increase in σ′ (from ∼ 20 to 70 mS/m) values can be observed
for the eastern region of the landslide, which is accompanied by a transition of the
conductive anomaly towards the center of the study site (Figure 4.9b-4.9i). Images
of the polarization effect (Figure 4.9b-4.9j) show similitudes to those obtained for σ′,
yet maps of the polarization effect are characterized by a higher spatial variability
(e.g., Figure 4.9j). The top-scarp (located at the topographical highest area of the
landslide) shows a stronger correlation with the contacts in the electrical properties
for deep maps (Figure 4.9g-4.9j). In the case of the central-scarp, its geomorphological
features appear to be better resolved for σ′ maps constructed at intermediate depths
(Figure 4.9c-4.9f) and for σ′′ maps for intermediate and large depths (Figure 4.9f, 4.9h,
4.9j), demonstrating that σ′′ patterns do not necessarily mirror the patterns observed
for σ′.

Maps of the electrical properties further reveal that areas located above the top-
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scarp are characterized by the lowest σ′ and σ′′ (< 10 mS/m, < 100 µS/m) values, and
therefore can be associated to clay-rich zones. Such low permeable zones reduce the
infiltration of surface water and foster surface run-off towards the active transporta-
tion zone (below the top-scarp). The excess of surface water in the respective area will
lead to more water in the lower reaches, where it can infiltrate in the soil and further
increase the soil moisture of the already weakened sliding material. The increase in
soil moisture is a well-known triggering mechanism for shallow landslides and has been
often investigated (e.g., Van Asch et al., 1999). Furthermore, the topographical bulge
at the accumulation zone leads to the development of a surface pan, additionally accu-
mulating the surface water and enhancing its infiltration into the ground. In a similar
way, interflow and groundwater flowing down-gradient from the hilltop will reach a
poorly permeable subsurface zone between the top and central scarp characterized by
low σ′′ (< 100 µS/m) values as discussed in a previous section (e.g. Figure 4.9b, 4.9d,
4.9f). In this respective area, groundwater and soil water retention will occur, which
in turn can promote a built-up of positive pore-water pressure and the reduction in
shear-strength. Hence, possible remediation actions might include the removal of the
flat surface pan and the installation of a drainage system.

Plots presented in Figure 4.9 also demonstrate that there seems to be no significant
change in the conductivity and polarization patterns explaining the accumulation zone.
This might be a result of the spatial dimension of such zone, with a west-east extension
in the order of magnitude of the electrode spacing (2 m). Hence, the accumulation
zone might not be resolved with the conducted IP surveys; yet it is properly delineated
through the EMI mapping. When comparing the σ6.7 maps (c.f. Figure 4.4c) with
the shallow interpolated σ′ maps (Figure 4.9a, 4.9c), we observe a close similarity
in the patterns of σa and σ′. Moreover, such depth between 1 and 3 m represents
the expected location of the sliding plane as obtained from geotechnical investigations
(Stumvoll et al., 2020). Thus, the changes observed in the conductivity patterns in
Figure 4.9a and c, i.e. an increase in σ′ (from 25 to 50 mS/m) values particularly for
the area below the central scarp, validates the interpretation made earlier for the EMI
maps regarding the contact to the sliding plane.

Figure 4.10 shows the conceptual model of the landslide as derived from a joint in-
terpretation of geophysical, hydrogeological, geomorphological and geotechnical data.
The plot presents the different interpreted soil types and hydrogeological units and
their geophysical indicators (σ′, σ′′), the location of the sliding plane, as well as the
corresponding groundwater flow paths. In particular, four types of run-off were inter-
preted: 1) groundwater flow through strongly weathered sedimentary materials above
the top-scarp (black arrows in Figure 4.10), 2) seepage and retarded groundwater flow

74



4.5 Conclusion

through variably weathered marlstone as delineated by spatial variations in σ′ and σ′′

below the sliding plane (red arrows in Figure 4.10), 3) interflow within the mobilized
material and along the sliding plane, and 4) surface run-off due to high clay content.
Figure 4.10 clearly demonstrates the benefit of using multiple geophysical, hydrogeo-
logical, geomorphological and geotechnical methods for landslide characterization.

4.5 Conclusion

In this study, we have presented the joint application of the EMI and IP methods,
and the corresponding interpretation of the mapping data for the characterization of
a shallow, clay-rich landslide. Extensive geotechnical, geomorphological and hydroge-
ological data available at the study area allowed to evaluate the geophysical response
and formulate a conclusive interpretation of the imaging results. Based on the EMI
maps lateral changes in the electrical conductivity could be identified. The main pat-
terns correlate well with geomorphological features, namely, with the main scarps, the
accumulation zone and waterlogged areas, as well as preferential areas for the infil-
tration of surface water. The latter represents relevant information for the potential
design of drainage systems. Moreover, IP imaging results were used to delineate the
geometry of the sliding plane and the different soil types and hydrogeological units,
which, in combination with the available information from a piezometric network, dy-
namic probing and grain size analyses in recovered drilling cores, permitted to delineate
groundwater flow patterns. Additionally, information about the subsurface capacitive
properties provided by the images of the polarization effect allowed to discriminate
between materials of different textural composition. Furthermore, our SIP imaging
results clearly revealed changes in the frequency dependence of the polarization effect
associated to changes in the grain size. Such findings again correlate with geotechnical
and soil textural data. The validation of our results using extensive ground-truth data
clearly shows the suitability of combined EMI mapping and IP imaging methods for
a better characterization and understanding of clay-rich landslides.
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Figure 4.4: EMI maps of the apparent electrical conductivity corresponding to the
depth ranges of 2.2, 4.2, 6.7 m (Figure 4.4a, 4.4b, 4.4c respectively), with the geomor-
phological features superimposed over the σa maps. Difference images for the σa maps
for the depth ranges 2.2 and 4.2 m (4.4d) and 4.2 and 6.7 m (4.4e) are also presented
to evaluate changes at different depth. The DEM (4.4f) of the landslide and the main
regions interpreted from σa maps (4.4g) are presented for comparison. Plots of the
normalized sensitivity function for the three depth ranges (4.4h).
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Figure 4.5: Comparison of ground-truth and geophysical data: soil type (4.5a, 4.5e)
and particle size distribution (4.5b, 4.5f) as obtained from the analysis of core drilling
in B3 (4.5a, 4.5b) and B4 (4.5e, 4.5f); blow counts obtained from dynamic probing
heavy (DPH) in the vicinity of B3 and B4 given in 10 cm increments (4.5c, 4.5g) and
electrical parameters (σ′ and σ′′) representing the median value from model parameters
extracted from inverted profiles next to the wells (4.5d, 4.5h).
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Figure 4.6: Comparison of ground-truth and geophysical data. SIP imaging results
(σ′, σ′′) for the frequencies of 0.5, 2.5, and 7.5 Hz to investigate the frequency depen-
dence of the polarization effect (4.6a). Particle size distribution as obtained from the
analysis of core drilling at B1 (4.6b) and B2 (4.6e) and blow counts from dynamic
probing heavy (DPH) in the vicinity of B1 (4.6c) and B2 (4.6f) given in 10 cm incre-
ments. Spectral amplitudes (σ′′) as a function of depth and frequency as extracted
from the imaging results of gr16 (4.6d, 4.6g).
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Figure 4.7: Imaging results expressed in terms of the real (top) and imaginary (bot-
tom) components of the complex electrical conductivity. The blow counts measured
by DPH, the groundwater levels, as well as geomorphological features, namely the
landslide scarps, the accumulation zone and active transportation zone are superim-
posed over the electrical images.

Figure 4.8: Imaging results for three WE profiles in terms of the real (4.8a) and imag-
inary (4.8b) components of the complex electrical conductivity. The geomorphological
features (top-scarp, central-scarp and accumulation zone) are indicated by surface ar-
rows.
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Figure 4.9: Maps constructed for different depths based on the IP imaging results in
terms of the real (σ′ – 4.9a, 4.9c, 4.9e, 4.9g, 4.9i) and imaginary (σ′′ – 4.9b, 4.9d, 4.9f,
4.9h, 4.9j) components of the complex electrical conductivity.
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Figure 4.10: Conceptual model of the landslide indicating the different soil types and
hydrogeological units as derived from the joint interpretation of geophysical, hydroge-
ological, geomorphological and geotechnical data.
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5 Quantification of soil textural and hydraulic

properties in a complex conductivity imaging

framework: Results from the Wolfsegg slope
1

5.1 Introduction

Current forecasts assume that the trend towards rising temperatures and precipitation
extremes (Dunn et al., 2020) will continue and that the occurrence of droughts (e.g.,
Cook et al., 2018; Balting et al., 2021) and heavy rainfall (Ban et al., 2015; Papalexiou
and Montanari, 2019) will increase in the next years. Such meteorological changes af-
fect ecosystems (e.g., Weiskopf et al., 2020), land use (Searchinger et al., 2018), water
availability (Konapala et al., 2020), but also natural disasters such as floods (Tabari,
2020) and mass movements (Alvioli et al., 2018; Lin et al., 2020). In this context,
a comprehensive understanding of the hillslope hydrology is of fundamental impor-
tance, to predict runoff responses (Blume and Van Meerveld, 2015), but also in the
understanding of the hydraulic properties of the subsurface triggering landslide pro-
cesses (Bogaard and Greco, 2016). The complex sedimentary structures in hillslopes,
as a result of geological disposition and local geomorphodynamics, make prediction of
hydrological processes immensely difficult (Sidle et al., 2019). Small-scale variations
in sediment characteristics and the associated hydraulic properties affect infiltration,
percolation, but also evaporation (Lehmann et al., 2018) as well as water storage (Berg
et al., 2017) and affects hydrologic connectivity via surface runoff and subsurface flow.
As a consequence, slope architecture may be related to areas of waterlogging, small-
scale slumping or subsidence as well as major mass movements. Moreover, Blume and
Van Meerveld (2015) conclude, that the subsurface hillslope-stream connectivity is dif-
ficult to observe and quantify, and, due to the high variability in hillslope responses,
results are hard to extrapolate to other hillslopes. Blume and Van Meerveld (2015)
also point out, that multimethod approaches might be useful, as they strengthen the
interpretation of individual measurements.

While the description of hillslope properties is often based on point data from core
1This chapter is based on: Gallistl, J., D. Schwindt, J. Birgit, L. Aigner, M. Peresson, and A. Flores

Orozco (2022). “Quantification of soil textural and hydraulic properties in a complex conductivity
imaging framework: Results from the Wolfsegg slope”. In: Frontiers in Earth Science 10

83



5 Quantification of soil textural and hydraulic properties

soundings, a spatial approach is needed to deal with the complexity of the slope
sediments and the associated hydrology. In recent years, geophysical methods have
been increasingly used to spatially characterize the shallow subsurface (Flores Orozco
et al., 2018a; Gallistl et al., 2018; Watlet et al., 2018; Huntley et al., 2019; Holmes
et al., 2020). Furthermore, approaches to use geophysical imaging as landslide early
warning systems, by monitoring short- and longterm moisture dynamics are developed
(Whiteley et al., 2021).

Geophysical methods commonly applied in hillslope characterization include the
Electrical Resistivity Tomography (ERT) (Perrone et al., 2014), Refraction Seismic
Tomography (RST) (Samyn et al., 2012; Uhlemann et al., 2016), and, to a lesser
extent Electromagnetic Induction at low induction number (EMI) (Grandjean et al.,
2011; Kušnirák et al., 2016), Transient Electromagnetic Sounding (TEM) (Godio and
Bottino, 2001; Li et al., 2020b) and Induced Polarization Imaging (IP) (Flores Orozco
et al., 2018b; Gallistl et al., 2018; Revil et al., 2020).

IP, also referred to as Complex Conductivity Imaging (CCI), is an extension of the
ERT method and provides information about the electrical conductivity and capacitive
(polarization) properties of the subsurface (Kemna et al., 2012). The IP method was
developed for the prospection of metallic mineral ores given the strong IP response in
the presence of iron sulphides (Pelton et al., 1978). In recent years, IP has emerged
as a promising method for various environmental and hydrogeological applications in-
cluding the mapping of geochemical active zones (Flores Orozco et al., 2020; Katona
et al., 2021), the monitoring of changes in pore-space geometry accompanying biore-
mediation processes (Flores Orozco et al., 2011; Flores Orozco et al., 2019b) and the
assessment of permafrost degradation (Doetsch et al., 2015; Maierhofer et al., 2022),
just to name a few. In the context of characterizing hillslopes affected by landslides, IP
has revealed promising results (Flores Orozco et al., 2018b; Gallistl et al., 2018; Revil
et al., 2020), as numerous laboratory studies reported a sensitivity of the IP method
to soil-textural properties of the subsurface (Slater and Glaser, 2003; Tarasov and
Titov, 2007; Revil and Florsch, 2010) and, thus, the improved estimation of hydraulic
conductivity (Slater et al., 2014; Weller et al., 2015; Weller and Slater, 2019). Since
landslides are frequently triggered by heavy precipitation events, resolving changes in
textural properties of hillslopes is of great interest as they will determine areas of low
hydraulic conductivity (i.e., with a poor drainage) where pore-pressure may accumu-
late resulting in the triggering of mass movements (Campbell, 1975; Rogers and Selby,
1980). Thus, IP could permit to directly provide estimates of hydraulic conductivity
without the need of direct in-situ testing not possible in landslides. Unfortunately,
the upscaling and transferring of laboratory findings to field-scale measurements has
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proven difficult so far (Binley et al., 2015).

Over the last few decades, a multitude of pedotransfer functions (PTFs) have been
developed that permit the prediction of soil-hydraulic properties based on commonly
available soil information such as soil texture, bulk density and grain size without
the need of labor intensive and timeconsuming direct measurements (Van Looy et al.,
2017a; Zhang and Schaap, 2019). Such PTFs provide a viable alternative, if it is
possible to define site-specific equations relating the IP effect to soil texture (i.e., the
soil volume fractions of sand, silt, clay and gravel) for a quantitative interpretation of
IP imaging results in a hydrogeological context. The predictors in PTFs range from
relatively simple power model relations (Cosby et al., 1984) to more complex artificial
neural networks (Schaap et al., 2001), support vector machines algorithms (Twarakavi
et al., 2009), k-nearest neighbor methods (Nemes et al., 2006) and decision/regression
trees (Jorda et al., 2015). Rosetta (Schaap et al., 2001), is one of many PTFs that is
based on an artificial neural network and uses a hierarchical approach to predict satu-
rated hydraulic conductivity Ks and van Genuchten (VG) water retention parameters
(van Genuchten, 1980). The model input parameters may be given in terms of textu-
ral classes, the soil volume fractions of sand, silt and clay (SSC), or as a combination
of SSC, bulk density and a referential grain size. As discussed in Zhang and Schaap
(2017) the initial version of Rosetta had several deficiencies, which lead to a weighted
re-calibration of Rosetta in order to improve the predicted soil-hydraulic properties
and reduce uncertainties in their prediction.

The objective of this work is to investigate the spatial prediction of soil-hydraulic
properties at the slope scale, based on derivation of soil texture from complex conduc-
tivity information and subsequent use of a pedotransfer function (Rosetta). To the
best of our knowledge such approach has not been tested for the interpretation of IP
imaging data at the field scale. To reduce the uncertainty in IP inversion results, we
also present the incorporation of a priori information about electrical units obtained
from TEM data; additionally, we include refraction seismic tomography as well as
soil textural information in boreholes. Using this information, we derive relationships
between the complex conductivity and the different soil volume fractions and charac-
terize the main geological units of the study area. To permit a thorough evaluation of
our results in a later step, we exclude the information from one borehole. With the
obtained prediction functions, we first predict and discuss the soil fractions for a given
CCI profile and then use Rosetta to predict Ks. This is followed by a discussion of the
implications on water-flow within the slope. We evaluate the performance of our ap-
proach based on independent borehole data and discuss our results compared to those
obtained by upscaling of laboratory-derived relationships between the IP response and
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directly measured Ks values.

5.2 Site description

The study area is located in the municipality of Wolfsegg am Hausruck in Upper
Austria, Austria ( 48◦6′34.3′′N, 13◦40′9.6′′) and comprises an agriculturally used west-
east tilted hillside with average slopes of 5–10◦ and descents with maximum slopes
of up to 35◦. The area under investigation is limited by a street and settlements to
the eastern, and a small stream to the western boundary. The total mean annual
precipitation (for the last 23 years) is about 910 mm and the largest precipitation
events typically occur between May and August.

The geological frame is given by the Molasse zone that embodies a large Foreland
basin from Switzerland in the west across Germany and Austria into the Carpathian
Foredeep in the east. The basin fill comprises a section of mainly clastic sediments from
the Late Eocene to Late Miocene due to uplift and erosion of the Alpine Orogen (e.g.,
Rögl, 1997; Hinsch, 2008; Grunert et al., 2010). Stratigraphically, the study area
encompasses three main units, which can be listed from top to bottom (Krenmayr
and Schnabel, 2006; Rupp et al., 2011) as: the 1) Hausruck, 2) Ampflang, and 3)
Ottnang formation, which are partly overlain by quarternary deposits consisting of
gravels, sands and silts (see Figure 5.1). The predominant unit in the area is the
Hausruck formation and comprises fluvial, sandy, and fine to coarse gravels. The
Ottnang formation, which constitutes the basal layer of the study area, mostly consists
of shallow marine clay silts and marls. Sporadic layers of the Ampflwang formation
can be found intercalated within the Hausruck and Ottnang units (Figure 5.1). The
Ampflwang formation consists of clay-bearing coal (from limnic and fluvial deposits)
with different maturity, which has been exploited sporadically (Rupp et al., 2011).
Weathering of the materials of the Hausruck formation resulted in the development of
weathered loam, which, in combination with the confining characteristics of the clays
in the Ampflwang formation, constitute an ideal setting for landslides (Supper et al.,
2014).

Baumann et al. (2018) show that landslides are a primary controlling factor for
landscape morphology in the Hausruck area. Thus, mass movements have also shaped
the slope on which the study area is located. Both, the settlement area on the upper
slope, as well as the agricultural areas on the mid- and footslope have been subjected to
continuous subsidence over the last 25 years and have called for numerous geotechnical
investigations and remediation measures (personal communication with leaseholder of
slope). However, even though the slope of the study area was clearly formed by mass
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movements, anthropogenic overshaping by construction, tillage and drainage works has
severely compromised a precise geomorphological site analysis. Based on the analysis
of shaded digital terrain models (based on Airborn Laserscanning data at a resolution
of 0.5 m, Datasource: Land Oberösterreich - data.ooe.gv.at) in combination with field-
based mapping, four morphological zones (c.f. Figure 5.1B,C) can be identified and
adopted to the landslide classification according to Cruden (1996).

Regarding the four morphological zones, the zone I corresponds to the main scarp,
with a height of 30 m and the crown at an elevation of 672 m. A slight flattening at
the base of the scarp suggests deposits from rockfall or minor secondary landslide pro-
cesses. Zone II corresponds to the main landslide body, which extends for about 250 m
horizontal distance and an elevation ranging from 600 to 642 m. Due to construction,
zone II exhibits the most severe reshaping. Hence, a too detailed description of its
morphology does not seem useful. Nevertheless, two landslide blocks, can be differen-
tiated in this area. A slight dip of the upper block in the direction of the incipient
crack indicates a rotational slide (c.f. Figure 5.1). Zone III, which is adjacent below,
corresponds to the foot of the landslide. Despite the severe anthropogenic overshap-
ing, tongue-like structures suggests that this area was formed by a mudflow during the
landslide process. Zone IV, which adjoins below zone III, is characterized by undu-
lating relief and is interpreted as landslide foreland. The relief formation in this zone
is due to deformation of the slope sediments by the surcharge of the landslide masses
deposited upslope. Small steps at cropland boundaries indicate prolonged tillage. In
the boundary between the landslide toe and zone IV, a morphological hollow form is
found that has been interpreted as a former source or waterlogged area (c.f. Figures
5.1B,C). This area has been drained in the last years (c.f. Figure 5.2D). Below the
formerly waterlogged area, erosional structures are found in the shaded terrain model
that indicate intermittent surface runoff. At 574 m above sea level (a.s.l.), the toeslope
is bordered by a small creek in the West of the study site.

In Figure 5.1C, we present our geomorphologic analysis of the site using the de-
scription of rotational slides proposed by Cruden (1996). We assume that the sliding
process was initiated on the clay silts of the Ottnag formation. Accordingly, the ro-
tated blocks of the main landslide body in zone II consist of the morphologically hard
material of the Hausruck formation (rounded gravels in sandy matrix). The partially
tongue-shaped mudflow deposits of zone III are predominantly built up by the ma-
terials of the Ampflwang formation (coal-bearing clays and sands). Our conceptual
model assumes that a partial mixing of sediments of the Ampflwang formation with
materials of the Hausruck formation and slope sediments occurred during the flow
process. The shallow subsurface of zone IV, the foreland of the landslide, is built up
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by old slope sediments. These are most likely composed of a mixture of weathering
products of the Ottnang formation intermixed with deposits of the Ampflwang and
Hausruck formations. According to our subsurface model, the mudflow on the mids-
lope has overlain old slope sediments, some of which have been incorporated into the
mudflow. The uplift pressure of the landslide deposits has caused deformation of the
plastic-reacting slope sediments, resulting in the undulating relief at the footslope in
zone IV.

5.3 Material and methods

5.3.1 Complex conductivity imaging

The induced polarization (IP)–also known as complex conductivity (CC) or complex
resistivity (CR) imaging, is an electrical method that permits to recover information
on the subsurface distribution of the resistive (or conductive) and capacitive (or polar-
ization) electrical properties of the subsurface (Ward, 1988; Binley and Kemna, 2005).
IP measurements, which can be performed in both time and frequency domain (e.g.,
Martin et al., 2020), use four electrode configurations–two of them are used for current
injection and the other two to record the corresponding voltage. For measurements
performed in the frequency domain, a sinusoidal current waveform is used and data col-
lection comprises the measurement of the voltage-to-current ratio and the time delay of
the voltage, and therefore, the measurement of a complex-valued electrical impedance
(Binley and Kemna, 2005). The collection of such data with different frequencies (10
mHz to 1 kHz), in the so-called spectral IP (SIP), can provide additional informa-
tion regarding the frequency dependence of electrical properties. IP imaging data sets
typically deploy up to hundreds of electrodes for the collection of thousands of four
electrode measurements are used in conjunction with inversion algorithms to recover
spatially quasi-continuous subsurface models of the electrical properties (Oldenburg
and Li, 1994; Kemna et al., 2000; Binley and Kemna, 2005; Loke et al., 2006).

Inversion results can be given in terms of the complex electrical conductivity σ∗(ω)

(where ω = 2πf and f is the excitation frequency), or its inverse, the complex electrical
resistivity ρ∗ (with ρ∗ = 1/σ∗). The complex conductivity can be expressed by means
of its real σ′(ω), and imaginary σ′′(ω) components, or by its magnitude σ∗(ω) and
phase-shift (ϕ(ω)), such as:

σ∗(ω) = |σ∗(ω)|eiϕ = σ′(ω) + iσ′′(ω) (5.1)
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Figure 5.1: Details on the study site Wolfsegg with (a) geological overview of the
south-eastern parts of the Hausruck mountain range in Austria (Krenmayr and Schn-
abel, 2006), (b) shaded digital terrain model with interpreted morphological zones
(I-IV) and (c) 3D-scene of the study site with interpreted morphological zones, geol-
ogy as well as a subsurface model of the slope and landslide body. The reconstruction
of the subsurface characteristics is based on the geomorphology of the study site and
adopts to the classification of rotational slides by Cruden (1996). Elevation data for
Figures a–c are based on airborne laserscanning data, resolution 0.5 m, April 2015
(Datasource: Land Oberösterreich—data.ooe.gv.at)
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with i =
√−1, and further:

ϕ = arctan
σ′′(ω)
σ′(ω)

. (5.2)

The real (or in-phase) component of the complex conductivity represents the conduc-
tion (energy loss) properties, while the imaginary (or quadrature) component repre-
sents the polarization/capacitive properties (energy storage) of the subsurface. For a
detailed review of the IP method we refer to (Ward, 1988; Binley and Kemna, 2005;
Binley and Slater, 2020).

The low-frequency (< 100 kHz) complex conductivity σ∗(ω) of soils and rocks can be
written as a function of a real-valued bulk conductivity, and a complex-valued surface
conductivity, such as:

σ∗(ω) = σbulk + σ′
S(ω) + iσ′′

S(ω). (5.3)

Equation 5.3 shows that σ∗(ω) consists of a real component that contains contribu-
tions from the bulk conductivity σbulk and a frequency dependent surface conductivity
σ′
S(ω), while the imaginary component of σ∗(ω) is only defined by the frequency depen-

dent imaginary surface conductivity σ′′
S(ω). The bulk conductivity for an unsaturated

sample is given by Mualem and Friedman (1991)

σbulk = σf + ΦmSn (5.4)

in which Φ is the porosity, S the saturation of the pores, σf is the conductivity of the
fluid and m, n are empirical coefficients that represent the connectivity between the
pores (m) and the saturation degree (n). In case of soils and rocks with clay, organic
matter and other minerals with high surface charge and surface area the influences
of σbulk and σ∗

S(ω) and particularly the frequency dependence of the latter cannot be
neglected. Therefore, the estimation of quantitative petrophysical relationships might
be hindered when the surface conductivity is ignored, resulting in poor estimations of
hydrogeological parameters, such as hydraulic conductivity or water content. Surface
conductivity plays a critical role in presence of grains with a high surface area, and
high surface charge (e.g., Waxman and Smits, 1968; Revil et al., 2017). Accordingly,
clay minerals are linked to dominating surface conduction mechanisms, and commonly
exhibit a high cation exchange capacity (CEC) and electrical conductivity (Revil et al.,
2017). Furthermore, Revil et al. (2014) have shown that even for sandstones without
clay content the surface conduction might dominate over electrolytic conduction (σf ).
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Hence, the knowledge of the contribution of the surface conductivity to the complex
conductivity is critical for an adequate interpretation. The imaginary surface conduc-
tivity σ′′

S(ω) is only related to the imaginary component of the complex conductivity
σ′′(ω) obtained with IP, such as

σ′′
S(ω) = σ′′(ω). (5.5)

The IP response of soil arises due to polarization processes taking place at the grain-
fluid interface, in the so-called electrical double layer (EDL). The polarization of the
EDL is caused by the transport and accumulation of electrical charge carriers when
subject to an external electrical field during the current injection (Kemna et al., 2012).
Electrochemical polarization occurring at the EDL, which includes polarization of the
Stern layer (Leroy and Revil, 2009; Revil, 2012) and the diffuse layer (Revil et al.,
2017; Bücker et al., 2019a) depends on the electrochemical properties at the grain-fluid
interface, i.e., the surface charge of the grain, the specific surface area and salinity of
the surrounding electrolyte, as well as the pore-space geometry. For the case of metallic
grains, charge carriers inside of the particle also polarize, which further enhances the
IP response in the so-called electrode polarization (Revil et al., 2015b; Bücker et al.,
2018; Bücker et al., 2019b).

5.3.2 Data collection and processing

To map the complex conductivity response throughout the study area, single frequency
(1 Hz) IP imaging data were collected between 12th and 21st June in 2017, along 24
profiles with an orientation west-east deploying in each 64 electrodes with a 2.5 m
spacing between the electrodes. 1 Hz as the excitation frequency was chosen as it
offered the best compromise between data quality and acquisition time, as higher fre-
quency measurements with reduced acquisition times are highly likely to be distorted
by sources of electromagnetic noise (Flores Orozco et al., 2021). We used a DAS-1
instrument (from MultiPhase Technologies, United States) for the collection of the
data, always ensuring contact resistances below 5 kΩ resulting in injected currents
ranging between 50 and 200 mA. The data were collected using two different electrode
configurations: 1) dipole-dipole (DD) combining different skip protocols, where the
skip refers to the numbers of electrodes “skipped” in each dipole in order to increase
the dipole length (e.g., Flores Orozco et al., 2018b) and 2) multiple-gradient (MG)
after Dahlin and Zhou (2006). The characteristics of both configurations can be found
in Table 5.1. Both configurations were designed for an approximate depth of investi-
gation of 30 m and in such a way, that the data cannot be affected by the polarization
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of the electrodes themselves, i.e., no voltage measurements were performed with elec-
trodes previously used for current injection (Flores Orozco et al., 2018b). To provide
a dense distribution of profiles in the area of interest (see Figure 5.2A), the profile
separation was set to 5 m (i.e., twice the electrode spacing). All electrode positions
were determined with an RTK-GNSS.

Processing of the data (i.e., outlier removal) is based on the methodology outlined
by Gallistl et al. (2018), that originates from the time-domain IP processing scheme
proposed by Flores Orozco et al. (2018a). The fundamental idea is that pseudosections
(i.e., a representation of the measured raw data), due to the nature of IP imaging data
sets, should reveal spatial consistent patterns, i.e., “smooth” changes in the measured
phase-shift ϕ without the occurrence of large discrepancies or abrupt changes. Those
measurements with poor spatial consistency can be considered outliers and should be
removed prior to inversion. The processing scheme presented in Gallistl et al. (2018)
quantifies this spatial consistency in the phase-shift data by grouping measurements
collected with the same current dipole, a subsequent computation of a median phase
value for measurements in the corresponding group and the computation of a deviation
value Δϕ for each measurement in the group to the median value. Spatial consistent
measurements are then defined as those with a small deviation, whereas measurements
related to large deviations are considered outliers and are removed.

Inversions of the imaging data sets were performed with CRTomo (Kemna, 2000),
using a robust inversion scheme. Such an approach permits to improve the conver-
gence of the inversion and it is less sensitive to wrong estimates of the data error
(LaBrecque and Ward, 1990; Morelli and LaBrecque, 1996; Kemna, 2000). All in-
versions converged to a root-means-square error close to 1 and a slightly preferential
smoothing in horizontal to vertical direction (10:1) was used. We selected this smooth-
ing factor based on the assumption that deformation of the old slope materials in Zone
IV (c.f. Figure 5.1) will follow the uplift pressure of the landslide deposits, resulting
in an undulating relief and likely only minor deviations from a horizontal layering.
For materials associated to the mudflow in Zone III, intermixing of materials of the
Ampflwang, Hausruck and old slope sediments is likely to have occurred. However, we
do not believe that the individual layers will deviate much from a horizontal position
and a slight smoothing in horizontal direction is justified.
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Table 5.1: Characteristics of the used electrode configurations, namely, dipole-dipole
combining different dipole lengths and multiple-gradient. For the latter, the dipole
lengths refer to the size of potential dipoles nested inside the current dipole.
Protocol Number of quadrupoles Dipole lengths [m]
Dipole-dipole 2095 2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, 22.5, 25
Multiple-gradient 1791 2.5, 5, 7.5, 10, 12.5, 22.5, 27.5, 32.5

Figure 5.2: Overview of geophysical and geotechnical surveys as well as known in-
frastructure. The colored dots in (A–C) represent the location of the (A) electrodes
and (C) geophones in each profile as well as the location of the (B) individual TEM
soundings.
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5.3.3 Complementary geophysical data: Transient electromagnetic and
seismic methods

5.3.3.1 Transient electromagnetic soundings

Transient electromagnetic (TEM) soundings were used to gain information about ver-
tical variations of the electrical properties across the study area. Measurements were
conducted using a single-loop geometry, where the same cable is used as transmitter
and receiver, typically in a closed square or circular geometry. The method is based on
the circulation of a direct current in the transmitter loop, which generates a primary
magnetic field. The abrupt switch-off of the direct current induces eddy currents into
the subsurface. This system of eddy currents decays over time and generates the sec-
ondary magnetic field (Ward and Hohmann, 1988). The temporal variations of this
secondary magnetic field are measured in the receiver loop in terms of a voltage that
is sampled along logarithmically distributed time windows. Since the measured decay
of the secondary magnetic field depends on the subsurface electrical resistivity, inverse
modelling can be used to reconstruct resistivity changes at depth along 1D profiles
below the sounding position (e.g., Christiansen et al., 2006).

Single-loop TEM data was collected along 16 profiles for a total of 517 soundings
between the 1st and 4th June in 2018 using a TEM-FAST 48 manufactured by AEMR
(Applied Electromagnetic Research). We used a circular loop with a radius of approx.
4 m for a cable length of 25 m (i.e., transferring to a square loop of 6.25 m side length)
and a 12 V power source with a 1 A direct current, corresponding to a magnetic
momentum of 39 Am2, to collect the data. The voltage decay was sampled along 24
time windows up to 256 µs after current shut-off and we used a total stacking of 9,984
transients to increase the signal to noise ratio. The average sounding spacing was about
8 m except for the southern part of the study area where overlapping measurements
were performed (i.e., a loop center separation of 4 m; c.f. Table 5.2 and Figure 5.2B).
The location of each sounding was determined with an RTK-GNSS.

Preprocessing of the TEM data consisted of a visual inspection of the TEM sound-
ings and a manual removal of erroneous voltage readings, i.e., readings that deviate
from the expected smooth decay or negative voltage readings. Early-time readings
up to 25 µs were particularly affected by noise likely related to an enhanced turn-off
ramp effect caused by a highly conductive (< 0.5 Ω) loop cable (Aigner et al., 2021).
Therefore, the first 10 time gates of each sounding were removed from the entire data
set. Furthermore, we filtered additional readings in the late-times depending on the
observed curve smoothness and the presence of negative voltage readings. 1D sections
of the vertical changes of electrical resistivity were obtained by inverting the data with
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Table 5.2: Number of TEM soundings in each profile (with profile 1 starting in the
south) and indication if overlapping measurements were performed (i.e., subsequent
TEM loops overlap).
Profile Number of soundings Overlap
1 51 complete profile
2 63 complete profile
3 55 partly overlapping
4 37 partly overlapping
5 29 -
6 27 -
7 25 -
8 24 -
9 25 -
10 29 partly overlapping
11 31 partly overlapping
12 24 -
13 25 -
14 24 -
15 23 -
16 23 -

ZondTEM1D (Kaminsky, 2001) using a smoothness-constraint regularization. To per-
mit a fair discretization over the entire model depth, a model with16 layers with fixed
thickness was chosen. Using a number of layers in the model much larger than the
actual number of lithological layers observed in the boreholes permits a fair discretiza-
tion in the inversion. We then evaluated the data fit and removed additional voltage
readings where the measured data was not fitted by the inverted model.

5.3.3.2 Refraction seismic tomography

The refraction seismic method (RST) is based on the propagation and refraction of
artificially generated seismic waves in the subsurface and the measurement of ground
motion in order to measure travel times of the refracted waves between the shot point
and geophone locations. Such travel times can then be inverted to construct a contin-
uous model of the subsurface velocity of P-waves, which depends on the density and
the elastic properties of the material (Lankston, 1990). Contrasts in P-wave velocity
can be used to infer the contact between unconsolidated sediments and the bedrock
(Leucci et al., 2007; Parasnis, 2012).

To support the interpretation of the electrical results, 10 RST profiles (Figure 5.2C)
were measured between 12th to 16th June in 2017 and between 23rd to 26th April in
2019. Summit seismic recorders (by DMT, Germany) with 24 channels were used to
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Table 5.3: Number of deployed geophones, the geophone spacing, the orientation and
year of collection of the seismic profile.
Profile Number of geophones Geophone spacing [m] Orientation Year collected
1 96 2.5 E-W 2019
2 72 3 E-W 2019
3 72 3 E-W 2019
4 72 3 N-S 2019
5 72 2.25 N-S 2019
6 48 1.2 N-S 2019
7 48 3 E-W 2017
8 48 3 E-W 2017
9 48 3 E-W 2017
10 72 2.5 N-S 2017

record the seismic wave-field. For our surveys we deployed 30 Hz vertical geophones
and collected 1,024 ms traces with a sampling of 1/4 ms. A 5 kg sledgehammer was
used as a seismic source and a stack of three shots was made at each geophone location.
Table 5.3 presents the orientation of each profile, as well as the corresponding number
of geophones and geophone spacing. The signal processing, consisting of a low-pass
filter and an amplitude amplification, and the first break picking were performed with
formikoj (Steiner and Orozco, 2023). The refraction module of pyGIMLi (Rücker et
al., 2017) was subsequently used to invert the travel times to recover 2D sections of
seismic velocity using a smoothness-constraint inversion scheme.

5.3.4 Borehole data

In April of 2017, five boreholes were drilled across the study area (Figure 5.2D) in
depths varying between 16 and 30 m (c.f. Table 5.4). For each borehole, coring was
performed with a diameter of 180 mm and the retrieved sediments were stored for sub-
sequent laboratory analysis and geological description. The lithological composition
of the boreholes was similar and featured sediments of the Hausruck, Ampflwang and
Ottnang formation and materials of the first two formations were found to be variably
disturbed and mixed due to past landslide processes.

After the drilling of the boreholes, electromagnetic well-log measurements were con-
ducted at each location using a Dual Induction Probe (by Robertson Geologging Ltd.,
UK), including continuous logs of the natural gamma radiation and apparent con-
ductivity (Spies, 1996). Gamma logging is a widely used methodology to investigate
formations (Schnyder et al., 2006) as specific minerals and sediments, such as feldspar,
clays and shales host a larger number of radionuclides (Thorium, Potassium and Ura-
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Table 5.4: Drilled depth, performed laboratory investigations and associated number
of samples in each borehole. The mineralogical investigations included both bulk rock
and clay mineralogy.

Number of samples

Borehole Grain size distribution
and mineralogy

Cation
exchange capacity Plasticity Drilled

depth in m
WUR01 11 4 - 30
WUR02 6 2 4 16
WUR03 9 4 - 20
WUR04 7 3 - 20
WUR05 10 6 7 22

nium) that emit gamma rays. Hence, gamma logs were used here to aid in the in-
terpretation of clay-rich layers. Yet, the occurrence of organic matter might impose
limitations on its interpretation (Myers and Wignall, 1987).

In total, 43 samples of the predominant layers within the core were probed and
analyzed at the Geological Survey of Austria. The analysis included: 1) bulk rock
mineralogy and clay mineralogy (< 2 µm fraction) determined by XRD (PANalytical
X’Pert Pro Powder), 2) grain size distribution based on a combined analysis of wet
sieving and Sedigraph (< 0.032 mm), and 3) cation exchange capacity (CEC) together
with a chemical analysis of major and trace elements. CEC was determined with the
barium chloride method (ÖNORM L 1086–1). Moreover, 11 samples were tested on
their liquid and plastic limits at a certified testing laboratory (TPA, Vienna). Table
5.4 presents the number of samples and their distribution for each borehole.

5.4 Results

5.4.1 Improving electrical imaging results by incorporating a TEM based
reference model

Figure 5.3A presents the CC imaging results for the profile WD2 (c.f. Figure 5.2A)
expressed in terms of the real σ′ and imaginary σ′′ components of the complex con-
ductivity σ∗ as well as the phase-shift ϕ of the complex conductivity. Both the real
and imaginary component reveal three main features, which can be described, from
shallow to depth, as: 1) a shallow anomaly characterized by low conductivity (σ′ > 15
mS/m) and polarization (σ′′ < 30 µS/m) values between 40 and 100 m with a thickness
varying between 5 and 10 m, 2) a spatially limited anomaly between 100 and 120 m
characterized by increased σ′ values above 40 mS/m and σ′′ values above 100 µS/m,
and 3) a conductive and polarizable (σ′ > 40 mS/m, σ′′ > 100 µS/m) unit below 1)
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and 2). The electrical images in Figure 5.3A reveal electrical units that are roughly
horizontal, yet lateral variations are observed, which cannot be easily explained from
the geological background of the site but are assumed to be related to slope processes
and resulting redistribution and deformation of slope sediments.

Figure 5.4B presents the inverted TEM models collected along the same profile.
The TEM models indicate practically only two layers: a shallow one with resistivity
values larger than 20 Ωm and a thickness of 5–10 m, whereas a low resistivity layer
(ρTEM < 8 Ωm) can be found below it. Compared to the CCI images, the TEM results
provide an increased contrast at depths larger than 12 m and at the edges of the CCI
profile. The contact to materials with high electrical conductivity (and therefore low
resistivity) cannot be resolved with a standard inversion of the CCI data, which favors
smooth variations in both lateral and vertical direction.

TEM inversion results have been used to support the interpretation of ERT and to
a lesser extent CCI, for instance to delineate regional aquifer geometry (Meier et al.,
2014), to trace saline contamination due to coastal salt water intrusion (Balia and
Viezzoli, 2015; Ardali et al., 2018) and to investigate karst lakes (Bücker et al., 2021).
Caterina et al. (2014) have shown that the incorporation of prior information in the
inversion can help to obtain a more geologically plausible subsurface model. This
can be achieved by modifying the regularization operator to account for a reference
model (e.g., Oldenburg and Li, 1994) and was done for example by Catt et al. (2009)
using EM data from a ground conductivity meter. Hence, we use the inverted TEM
model as a reference model for the inversion of the CCI data in order to enhance the
horizontal layering and to improve the vertical contrast between the electrical units.
Other studies have proposed a joint inversion, where ERT and TEM data are solved
simultaneously for the same resistivity model (e.g., Martínez-Moreno et al., 2017;
Christensen, 2022). However, the inclusion of CCI data in such scheme is beyond the
scope of this manuscript.

For the construction of the TEM reference model, in a first step, we selected those
TEM soundings that are located along to the CCI profiles. We note here that the
inverted 1D TEM resistivity models are always considered to be perpendicular to
ground surface; thus, these are tilted to account for the topography changes and
mapped to the inversion mesh using nearest neighbor interpolation. Yet, due to the
nature of the nearest neighbor interpolation, the so obtained models are not smooth
(Figure 5.4C) and would likely lead to implausible inversion results. Hence, we perform
a topography constrained bounding box smoothing filter to smooth the TEM models.
Accordingly, for each model cell, we define a rectangular bounding box with given x-
and z-axis lengths (32 and 12 m; i.e., 2.6:1 smoothing) which is then rotated based on
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the slope of the topography. After that, the median value of all model cells inside the
bounding box is computed and reassigned to a second mesh. We use a second mesh
for the reassignment to avoid mutual dependencies of the smoothing outcome due to
the sequence of model cells selected. Figure 5.4D presents the final reference model
after mapping of the TEM values and the smoothing procedure revealing a “smooth”
resistivity model.

The resistivity models from CCI and TEM are consistent, as observed in Figure 5.4A
and Figure 5.4B, thus permitting to incorporate the electrical layer distribution com-
puted for the TEM data (Figure 5.4C) as described above. Following this approach,
we obtain the model presented in Figure 5.4D. The comparison of the models in Fig-
ure 5.4A and Figure 5.4D shows consistent models with variations in the magnitude
of the electrical resistivity values. Such discrepancy is related to the different volumes
for each measurement (i.e., quadrupoles with an electrode separation of 2.5 m when
compared with a transmitter loop with an area of 39 m2, (e.g., Auken et al., 2006).
To overcome this, we scaled the resistivity values retrieved from the inversion of TEM
data by the computation of a transfer function. In detail, we extracted the |ρ∗| values
from the inverted CC imaging section at the location of the tilted TEM soundings, and
computed a linear regression as presented in Figure 5.5. We used individual transfer
functions for each electrical profile. Furthermore, we investigated the use of the refer-
ence model without a rescaling of the resistivity values, which revealed only minimal
changes in the solved images compared to the rescaled ones, as expected, considering
that during the inversion the actual resistivity values are fitted to the measured data
and the reference model only aids within the regularization (Caterina et al., 2014).
Hereafter, we refer only to CCI results obtained using a reference model in the inver-
sion based on the rescaled TEM model.We note here that we used a homogeneous half
space with ϕ = 0 for the impedance phase of the reference model. In Figure 5.3B, we
present the CCI images for the profile WD2 after inversion with the TEM reference
model. As it can be seen in Figure 5.3B (bottom row), the use of a homogeneous
reference model for the phase-shift has only minor effects on the obtained phase-shift
image. A comparison with Figure 5.3A also shows that small scale lateral changes in
shallow depths (e.g., the polarizable anomaly, with σ′′ > 100 µS/m, at 110 m along the
profile) are preserved while solving for a continuous layer with an increased contrast
at depth.
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Figure 5.3: Complex conductivity imaging results for the profile WD2 expressed in
terms of the real σ′ and imaginary σ′′ component of the complex conductivity σ∗ as
well as the phase-shift ϕ for (A) “standard” inversions without the incorporation of
complementary information and (B) for inversions performed with a reference model
based on TEM data collected along WD2.

Figure 5.4: (A) Electrical imaging results for the profile WD2 expressed in terms of
the magnitude |ρ∗| of the complex resistivity ρ∗ = 1/σ∗, as well as (B) the inverted
TEM data collected along the same profile. (C) shows TEM resistivity values ρTEM

mapped to the inversion grid of WD2 using nearest neighbor interpolation and (D)
the same section after applying a smoothing filter.
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Figure 5.5: Linear transfer function used to scale ρTEM to fit the order of magnitude
of |ρ∗| observed in the electrical imaging.

5.4.2 Using CC imaging and RST to delineate subsurface architecture

We present in Figure 5.6 the seismic P-wave velocity and improved CC imaging results
for profiles located at the southern border, in the center and at the northern border of
the study area (Figure 5.2). Moreover, to evaluate the seismic and electrical response
in comparison to actual soil-physical properties, we present lithological logs overlap-
ping the seismic and CC imaging results. The lithological logs correspond to the soil
textural analysis of subsurface materials recovered during the drilling of the boreholes
WUR02 and WUR03 collocated to the profile WD13 and borehole WUR04 collocated
to profile WD2.

Images of the real conductivity σ′ presented in Figure 5.6A, in general, reveal two
electrical units consisting of a conductive layer in the bottom (σ′ > 30 mS/m) and a
less conductive layer on the top (5 > σ′ < 30 mS/m). The interface between the two
layers lies at a depth of 15–20 m, with lateral variations not necessarily following the
changes of the surface topography, as evidenced, for instance, in the abrupt change
observed in WD13 between 140 and 180 m along the profile direction. The top layer
generally reveals σ′ values between 5 and 30 mS/m and is characterized by small-scale
lateral σ′ changes in shallow depths that can be observed between 150 and 180 m in
WD2 and between 90 and 110 m in WD13. Images of the imaginary conductivity σ′′,
as presented in Figure 5.6B, reveal similar features, namely a two-layer model with
a polarizable bottom layer (σ′′ > 100 µS/m) and low polarizable top layer (σ′′ < 70
µS/m). Low polarization in the top layer could be linked to previously mobilized
materials, as for instance, reported by Flores Orozco et al. (2018b). In such study, the
authors argue that low compaction and low saturation in sliding materials leads to a
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low polarization response. Yet, σ′′ imaging results for WD13, when compared to σ′,
reveal spatially limited polarizable anomalies in shallow depths, particularly visible
from 135 m on. Moreover, the σ′′ bottom layer in WD2 shows a distinct anomaly
between 120 and 150 m that is not visible in the corresponding σ′ image.

To facilitate the comparison between the CCI and RST results, the interface between
the two electrical units in the σ′ images, as described above, is superimposed in RST
images. These RST images reveal consistent features to those observed in the σ′

images, i.e., a two-layer model comprised of a bottom layer with velocities larger
than 2,200 m/s, likely associated to consolidated sediments; whereas the top layer
reveals velocities between 700 and 1,500 m/s, likely associated to previously mobilized
materials. In general, the depth and topography of the bottom layer resolved by the
RST is in agreement with the electrical images. However, particularly to the end of the
seismic profiles (e.g., from 160 m on for WS1 and from 140 m on for WS2) differences
in the seismic and electrical images can be observed. The convex anomaly in the σ′

images is not resolved in the seismic sections, which indicate a more concave structure.
We explain such differences by changes in the composition of the bottom layer, which
does not necessarily provide the same response in seismic and electrical measurements.
For instance, we interpret such differences as an increase in clay content, a factor that
does not necessarily represent an increase in seismic velocity, which is more sensitive
to changes in compaction/consolidation. Furthermore, shallow anomalies within the
top layer that reveal high seismic velocity (> 1,500 m/s), as for example visible in
WS2 between 100 and 140 m, are also consistent with anomalies observed in the σ′′

images (σ′′ > 100 µS/m). Such anomalies reveal an existing heterogeneity in the
shallow subsurface properties, possibly related to lenses with compacted materials,
which again, could point to previous landslide events and corresponding dislocation of
lithological formations. Alternatively, such heterogeneities could indicate the start of
undisturbed slope sediments in the foreland of the landslide (c.f. Figure 5.1C).

The layered model interpreted from both the σ′ and σ′′ images can be fairly tied
to the borehole information (c.f. Figure 5.6), yet the polarization image (σ′′) yields a
better agreement with the borehole data. Here, the conductive and polarizable bottom
layer can be related to fine-grained sediments (clay, silt loam and loam), whereas the
sandy gravels are represented by a low polarization response and low conductivity
values (σ′′ < 70 µS/m and σ′ < 20 mS/m). Moreover, the shallow polarizable units
(σ′′ > 100 µS/m) observed between 110 and 170 m along WD13 are in agreement
with peat as observed in WUR02, which is a material known for its high polarization
response (Slater and Reeve, 2002; Comas and Slater, 2004; Katona et al., 2021).
Differences in the lateral changes of the interface between the top and bottom layer,
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as retrieved from seismic and electric methods for WD13 and WS2 between 140 and
200 m along the profile can now be explained by a change in texture from loam to silt
loam, and the likely associated change in soil moisture, both factors that will probably
not affect the seismic velocity as significantly as it does the complex conductivity.

Figure 5.6: (A,B) Complex conductivity imaging results expressed in terms of the
real σ′ and imaginary σ′′ components of the complex conductivity for electrical profiles
collected at the southern border (WD2), in the center (WD13) and the norther border
of the study area (WD20). (C) presents the corresponding seismic P-wave velocity
images as obtained from RST for data collected along the electric profiles (c.f. Figure
5.2). The dashed black line indicates the depth and topography of the bottom layer
as delineated from the σ′ imaging results.

5.4.3 Site-specific correlations between soil-physical parameters and
imaginary conductivity: A potential for upscaling to spatial
continuous information

We observe a fair qualitative agreement between borehole information and the inverted
electrical data. Hence, in a first step, we extracted the model parameters from the
electrical images at the depth and location of the boreholes. The extracted model
parameters are computed as the median value of a k-nearest neighbor search (with k
being five elements of the electrical model) and the starting point for the search being
the depth and location of the borehole relative to the profile. In a second step, we
correlated the available soil-physical and extracted electrical model parameters. For
this analysis, we only used borehole data from the wells WUR01, WUR02, WUR03
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and WUR05, while the information corresponding to well WUR04 will be used in a
later step to evaluate the retrieved petrophysical models. For the sake of brevity,
we only present the most significant correlations that are later on discussed in the
upscaling approach.

Our analysis revealed that the most significant correlations were observed between
the grain size distribution (i.e., the different soil volume fractions of gravel fg, sand fsa,
silt fsi and clay fc) and the polarization response expressed in terms of the imaginary
component σ′′ of the complex conductivity. Accordingly, in Figure 5.7 we present
the imaginary conductivity σ′′ plotted against fg, fsi and fc, as well as the adjusted
regression functions and their confidence bounds. The σ′′-fg scatter plot reveals a
negative correlation, more precisely, an approximately linear decrease in gravel fraction
in the polarization range between 1 and 175 µS/m (σ′′), from which on the gravel
fraction remains constant at 1–3%, and hence, independent of σ′′. We model this
nonlinear relationship with a high degree polynomial function that writes

fg = −4.069×10−8(σ ′′)4+2.661×10−5(σ ′′)3−4.615×10−3(σ ′′)2−0.125 σ ′′+64.21 (5.6)

and fits our data to a reasonable R2 score of 0.71. The σ′′-fsi scatter plot reveals a
more complex relationship, that is, a nonlinear increase in silt fraction in the range
between 1 and 150 µs/m (σ′′), where the silt fraction reaches its maximum of about
70%, and, a moderate decrease in silt fraction for σ′′ values larger than 150 µS/m. We
found that a cubic function captures the characteristics of the described relationship
fairly well with a R2 score of 0.87 and the obtained function writes as:

fsi = 9.458× 10−6(σ ′′)3 − 6.165× 10−3(σ ′′)2 + 1.186 σ ′′ − 9.614 . (5.7)

Finally, σ′′ plotted against the log-converted fraction of clay fc indicates two regimes.
On the one hand, 1) a narrow band of clay fractions above 70% corresponding to σ′′

between 120 and 170 µS/m; while on the second hand 2) a step response for clay
fractions below 30% that is characterized by low contents of clay (< 7%) for σ′′ below
120 µS/m, and moderately increased clay content up to 20–25% for σ′′ values above
170 µS/m. The analysis of the clay mineralogy revealed clear differences in the fraction
of kaolinite, smectite and illite, with an abundance of kaolinite for regime 1) and a
combined percentage over 70% of smectite and illite for regime 2). As previously
discussed by (e.g., Leroy and Revil, 2009; Okay et al., 2014; Lévy et al., 2018), there is
a dependence of the polarization response on the type of dominant clay mineral. Hence,
we explain the observed changes in σ′′ for the clay fraction associated to variations in
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clay mineralogy. Since only 4 out of 36 samples were associated to kaolinite we decided
to omit them and only model the response for regime 2) with a logistic function that
adjusts the data to a R2 score of 0.81. Hence, the σ′′-fc function can be written as:

fc = 14.5 (1 + e−0.07σ ′′+12.5)−1 + 4.6. (5.8)

The correlation of σ′′-fsa did not reveal any clear relationship. Hence, we determine
the missing sand fraction fsa as a loss function, knowing that all fractions combined
should add up to 100

fsa = 100− (fg + fsi + fc) (5.9)

Implicitly, this approach also ensures that the total fraction is always capped at 100%.
Figure 5.8 presents the shape of the prediction functions for fg, fsi, fc as well as fsa as
a loss function. In general, we predict coarser textures (sand and gravel) for σ′′ below
75 µS/m, mostly silt for the middle range (75 > σ′′ < 200 µS/m) and a mixture of
sand, silt and clay for σ′′ larger than 200 µS/m.

5.4.4 Quantification of soil-textural and hydraulic properties in a complex
conductivity framework

Given the relationships that link the imaginary conductivity to soil fractions, we now
have a practical tool to upscale from borehole information (i.e., retrieved samples from
drilling) to spatially continuous information over the entire study area. In Figure 5.9,
we use the Equations (5.6)-(5.9) for the estimation of gravel, silt, clay and sand from
the electrical imaging results from profile WD13 across the entire imaging plane. Based
on the soil classification system (NRCS, 1993 - from the United States Department of
Agriculture, USDA), we include a classification of soil texture in Figure 5.9, as well
as the soil texture reported from the core analysis of the boreholes WUR02, WUR03
and WUR05.

The comparison of borehole and electrical data reveals a good agreement between
the predicted and reported soil textures, with exception of the deep fine-grained units
in WUR03. For the hydrogeological interpretation of our results, we now define two
main units. A top layer, from the surface to a depth varying between 12 and 18 m,
which consists of sandy gravels intercalated by peat, loam and silt loam. Below there
is a bottom layer, characterized mostly by fine-grained sediments. Such bottom layer
consists of a thin clay unit on top of loam and silt loam. In terms of the stratigraphy,
the top layer can be related to the Hausruck formation, whereas the bottom layer
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Figure 5.7: Scatter plots of the imaginary conductivity σ′′ (white circles) and volume
fraction of gravel (top) and silt (center) and clay (bottom) reveal well-determined
relationships, with the adjusted regression functions (black line) reaching R2 scores >
0.7. The black dashed line indicates the confidence bounds computed for two times
the standard deviation of the corresponding regression function.

corresponds to the Ampflwang and Ottnang formation respectively. Albeit mixtures
of different formations, due to past landslide events, can be expected in both layers.

Soil hydraulic properties are preferred over soil texture alone as it provides direct
information about water flow. Hence, in a second step, we investigate the possibility
to retrieve hydraulic conductivity estimates in an imaging framework built on the
quantitative correlation of geophysical and borehole data. We used the recent adaption
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Figure 5.8: Shape of the modelled functions used to predict the different soil fractions
for gravel fg, sand fsa, silt fsi and clay fc based on their dependence on σ′′.

of Rosetta (Zhang and Schaap, 2017) to estimate Ks (along with the VG parameters)
from our predicted soil fractions. As Rosetta uses the volume fractions of sand, silt
and clay as input with the requirement that the fractions sum up to 100% soil volume,
we had to modify our sand prediction function. Accordingly, our sand prediction (fsa)
accounts for both sand and gravels, such as:

fsa = 100− (fsi + fc) (5.10)

In particular, Equation 5.10 predicts larger fractions of sand for σ′′ < 150 µS/m (c.f.
Figure 5.8). We argue that this could be used as a first proxy for the missing gravel
fraction, i.e., increasing the fraction of the next smallest grain size class.

Figure 5.10 presents the resulting Ks distribution for WD13 applying Rosetta to our
data. For completeness, the VG parameters as well as the soil texture classification
when using the adapted sand computation are presented in the (Figure 5.14). In
general, the predicted Ks values are roughly distributed over two orders of magnitude
(4× 10−6 to 1× 10−5m/s) with largest values observed for gravelly textures in the top
layer, e.g., at the location of WUR02 and WUR05. At depth, the model predicts the
lowest Ks values (Ks < 4× 10−6m/s) that seem to trace the layers of clay, loam and
silt loam in WUR02 and WUR05.

WUR03 shows only moderate Ks values (6 × 10−6m/s). As depicted in Figure
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5.14, the overall texture in WD13 is dominated by loamy components (silt loam and
sandy loam), which is also reflected in the predicted homogeneous Ks values. In this
context, both lateral and vertical variations, e.g., at WUR02, can be explained by
either a higher portion of sand that leads to an increase of Ks > 8 × 10−6m/s, or
larger fractions of silt corresponding to a decrease in Ks < 7× 10−6m/s.

Considering the implications of the Ks prediction on the slope hydrogeology, the
bottom layer with Ks values below 4×10−6m/s is expected to act as hydraulic barrier
for interflow, whereas the top layer can be considered as an unconfined aquifer that
permits infiltration of surface water. This interpretation is supported by water tables
reported during drilling, which were found at the depth of the clay layer or slightly
above it (as depicted in Figure 5.10). Interflow along the interface between bottom
and top layer will likely result in weathering of slope materials (i.e., the dissolution
and accumulation of fine grains) and, therefore, development of weathered loam.

Figure 5.9: Predicted fractions of (A) gravel (fg), (B) sand (fsa), (C) silt (fsi) and (D)
clay (fc) for the profile WD13 and (E) the corresponding predicted soil texture with
ground-truth information from boreholes WUR02, WUR03 and WUR05 superimposed
over each section.
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Figure 5.10: Predicted saturated hydraulic conductivity Ks for the profile WD13
using the Rosetta PTF (Zhang and Schaap, 2017), which uses the volume fractions of
sand, silt and clay as input parameters. To aid the interpretation of the Ks patterns,
the soil texture observed in the boreholes WUR02, WUR03 and WUR05 is also pre-
sented. The reversed black triangles indicate the water tables reported during drilling.

5.4.5 Preferential water-flow paths and their implication on slope
morphology

We have shown that for WD13 the hydrogeological system is governed by practically
two layers: an unconfined aquifer with a thickness of 12–18 m on top of a unit with
low hydraulic conductivity. Hence, in a next step we investigated how the interface
topography changes for the entire study area, as well as the possibility to delineate pos-
sible preferential water-flow paths based on a combined interpretation of the interface
topography and the geomorphological surface features.

The comparison of Figure 5.6 and Figure 5.10 clearly shows that the transition from
low to high σ′′ values at depth (from 40 to > 90 µS/m) also marks the transition to
the lowest Ks values (< 4 × 10−6m/s). Thus, we compute the interface geometry
for the entire study area. To achieve this, we manually extracted the interface in the
σ′′ images in all profiles. For those profiles that resolved a discontinuous interface in
the CC, we included the analysis of the transition from P-wave velocity from 1,500 to
2,200 m/s for the location of the discontinuity. The obtained interfaces were converted
from 2D coordinates to their respective 3D coordinates using an affine transformation,
with a subsequent interpolation to a uniform 3.6 m grid using the kriging method to
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obtain a quasi-continuous model.

Figure 5.11 shows the so obtained aquiclude interface for the entire study area as
well as the DEM hillshade with a color-coded surface elevation overlay. Furthermore,
to aid the interpretation of the topographical changes of the aquiclude interface, the
gradient vector magnitude in each grid cell is also presented. In general, the interface
reveals a decrease in the elevation from east to west consistent to the surface elevation.
However, clear differences can be observed in the eastern part of the study area (X >

25,050 m) where the interface reveals a much steeper dipping (i.e., densely grouped
isolines) compared to surface topography.

In a similar manner, the surface topography shows a bulge north-west of WUR03;
whereas the interface topography indicates a depression. Based on the isolines and
gradient magnitudes of the interface layer, we propose two possible preferential water-
flow paths, as depicted in Figure 5.11. In particular, Figure 5.11 shows 1) a channel
starting in the north-eastern part of the study area and continuing north of WUR03
to the south-western part of the study area; and, 2) a roughly direct channel from the
south-eastern to the south-western part of the study area. The pathway 1) can clearly
be traced by the form of the isolines and gradient vector magnitudes which indicate
a depression and likely channeling of interflow, while for pathway 2) a small bulge for
the eastern part (X > 25,060 m) and a more pronounced depression of the western
part (X < 25,040 m) can be observed. Both 1) and 2) seem to merge in a common
location (roughly at X=24,990 m, Y=330,165 m).

Figure 5.11 indicates that the largest surface topographical changes are associated
to those locations where the topography of the interface exhibits the largest gradient
vector magnitudes, particularly visible in the eastern part of the study area. We argue
that the channeling of interflow through preferential flow paths will likely accelerate
weathering or changes in pore-pressure and, therefore, could promote subsidence in
those particular areas. Following this argumentation, the bulge in the surface to-
pography northwest of WUR 03 is interpreted as deformation of the plastic-reacting
slope sediments or materials of a former mudflow as a reaction of the uplift pressure
of the main landslide (c.f. Figure 5.1C). To attenuate this effect, a possible coun-
termeasure could include extending the drainage system downslope below the former
source/waterlogged area. This could mitigate the channeling of subsurface water-flow
along the interface topography.
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Figure 5.11: Aquiclude interface derived from combination of CCI (using the TEM
reference model) and RST in (A) 3D representation (grey shading indicates the DEM)
and (B) as map with the corresponding gradient vector magnitudes (small regu-
larly distributed and color-coded arrows) and interpreted preferential water-flow paths
(black arrows) superimposed on it. (C) and (D) present the corresponding 3D view
and map of the color-coded surface topography, again superimposing both the gradi-
ent vectors magnitudes and preferential flow paths from the aquiclude map.

5.5 Discussion

Figure 5.10 and Figure 5.11 demonstrate the ability of the geophysical data to recover
subsurface heterogeneity regarding the variations in textural parameters. We propose
the combination of geophysical data with Rosetta for the estimation of subsurface
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hydraulic conductivity in an imaging framework. However, to properly evaluate the
accuracy of our approach, it is necessary to compare the estimated values with inde-
pendent data. To this end, we evaluate here the textural parameters estimated at the
position of the borehole WUR04, where ground-truth data is available but was not
used for the calibration of petrophysical parameters conducted above.

Figure 5.12 shows the complex conductivity and seismic velocity extracted from the
inversion results (obtained for WD4 and WS1) and the predicted soil fractions at the
location of WUR04 as well as borehole data (grain size of recovered samples, natural
gamma radiation and conductivity logging). The geophysical data was obtained from
an extraction box with a width of 1.5 m. For the prediction of textural parameters,
we computed the moving average of the quadrature 1D profile (σ′′). This is due to the
higher amount of data points in the extraction box near to the surface scattering over
a larger range than values at depth. The higher amount is stemming from the denser
discretization of the inversion grid in the vicinity of the electrode locations.

For the predicted soil fractions, we observe a good agreement for the gravels, espe-
cially at the depth of 7.5 m, where both the predicted and the measured grain size
indicate a fraction of gravel of 50%, with the content of coarse materials decreasing at
12.5 m depth, and becomes negligible at a depth of 16 m. The predicted fraction of silt
below 12.5 m depth is in line with the measured values in soil samples; however, our
model appears to slightly overestimate the silt content (approx. 10%) for the sandy
gravels at 7.5 m depth. Accordingly, our model predicts ca. 10% less sand content for
the layer at 7.5 m depth. The prediction of clay content reveals a constant value of
5% from the surface to a depth of ∼13 m, where it increases to a value of 20%, which
is in agreement with the values reported from the analysis of samples. However, the
clay-rich layer (clay > 85%) at 4.5 m is not resolved in our prediction. As previously
mentioned, in our correlation function (Equation 5.8) we decided to exclude large clay
fractions related to kaolinite, as they seem to be clustered in a single location. Accord-
ingly, our approach is not able to predict clay fractions larger than 20%. Considering
that such high clay contents are only rarely observed, the approach proposed repre-
sents the best compromise to simplify our model linking the polarization response (σ′′)
and the textural parameters.

The predicted Ks profile presented in Figure 5.12 shows intermediate values (Ks

∼ 5 × 10−6m/s) between (roughly) 0.5 and 4 m depth, where the seismic velocity
data shows maximum values around 700 m/s corresponding to a coalbearing clay
layer occurring at this depth. The velocity maximum likely indicates a higher degree
of compaction for the clay layer, in turn explaining the low hydraulic conductivity
values resolved. Below 4 m depth, our prediction shows the largest values (Ks >
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5× 10−6m/s) associated to sandy gravels (gravel fraction 50%) down to a depth of 12
m and a smooth transition to slightly lower values (Ks < 2×10−6m/s) for the silt layer
(with a combined clay and silt content above 75%) below 12 m depth. Moreover, below
12 m depth the seismic velocity increases from 600 m/s to 1,000 m/s, which indicates
an increase in compaction, in agreement with the estimated Ks values. Between 10
and 12.5 m depth, the estimated Ks indicates a slight decrease that could be related
to a clay-rich lens. Although no analysis was conducted on samples of this particular
location, the natural gamma indicates a significant spike at this depth, similar to the
one associated to the coalbearing clay layer mentioned above, therefore sustaining the
resolved change in the Ks values.

Besides the evaluation of our estimations with independent data from borehole
WUR04, we also compare our estimated Ks prediction with hydraulic conductivity
values computed using existing σ′′−Ks relationships. Such relationships have been ob-
tained from laboratory studies where both the complex conductivity and the hydraulic
conductivity have been measured in small samples, yet in fully saturated conditions.
In particular, we compare our Ks values to those computed with the model by Slater
and Lesmes (2002a) and the one proposed by Weller et al. (2015). The former is based
on a Hazen-type equation (Price et al., 1911), and can be written as:

Ks,SL ≈ 0.0002 σ ′′−1.1. (5.11)

In their study, Weller et al. (2015) investigated 38 unconsolidated soil samples, demon-
strating an inversely linear correlation between σ′′ and the permeability k for data
collected at 1 Hz. Such model can be written as (Weller et al., 2015):

k∗
W ≈ 2.14× 10−14

σ ′′2.04 . (5.12)

In this study we used a dynamic viscosity (µ = 0.0010518) and density (ρ = 998.59)
for water at 18◦C and an acceleration due to gravity (g = 9.8073) to transform the
permeability values k∗ to hydraulic conductivity values Ks,W . For the sake of com-
pleteness, we also computed the hydraulic conductivity values using the model by
Revil and Florsch (2010), which also links the imaginary component σ′′ to hydraulic
conductivity, based on the relationship written as:

Ks,RF ≈ ρwg (C
S)2σ ′′−2

µ 4.5F 3
. (5.13)

in which CS is the specific conductance of the Stern layer assumed equal to 4×10−9 and
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F the electrical formation factor describing the ratio between tortuosity and porosity
(Katz and Thompson, 1987). Following the approach by Weller et al. (2010), we used
a first order approximation for the computation of F based on the ratio of the bulk
conductivity (σ0) to fluid conductivity (σw), such as

F =
σw

σ0

. (5.14)

In our case, σ0 was given by the real component of the complex conductivity (σ′)
and σw to three different values equal to 19, 35 and 60 mS/m, corresponding to values
observed in monitoring stations around the study site. The comparison of the different
Ks predictions is presented in Figure 5.13.

Ks,SL estimates are consistent to those predicted by our approach; however, Ks,SL

values fluctuate around 1×10−6m/s, representing one order of magnitude smaller than
our predictions. Actually, vertical variations of the Ks,SL values are identical down to
a depth of 10 m, for the unconsolidated materials with coarse grains. At this depth
Ks,SL monotonously decreases with depth; whereas our prediction shows two peaks,
one related to high hydraulic conductivity values (between ∼12 and 14 m depth) and
the lowest values resolved between 16 and 17.5 m depth corresponding to the clayey
silt layer. Since the Ks,SL estimation is a direct function of σ′′, it can only capture
the dynamics resolved in the σ′′ distribution. In this regard, the mismatch between
the two estimates below 10 m depth is due to the two-step approach proposed, where
the polarization values (σ′′) are used first to estimate the soil fractions, which are
subsequently included in Rosetta for the Ks predictions. On the opposite, the Ks,SL

model uses a single-step approach, where the polarization is inversely related to the
hydraulic conductivity as presented in Equation 5.11. Binley et al. (2016) also noted
that sites with relatively low contrast in K are expected to exhibit low structural
resolution of the complex conductivity distribution. In this regard, our approach
permits to resolve for a larger dynamic in the predicted hydraulic conductivity values as
these are estimated from the soil fractions and not directly from the inverted complex
conductivity.

The use of the model proposed by Weller et al. (2015) shows a larger range of
hydraulic conductivity values (between 2.2 × 10−6 and 6 × 10−4m/s). However, such
variability cannot easily be understood in the study area, where high contents of fine
grains are also observed in the top layer. Moreover, the Ks,W cannot resolve for the
increase in the hydraulic conductivity resolved at the contact between the silt sand
and the silt (ca. 13 m depth). Similar to the approach by Slater and Lesmes (2002a),
the model by Weller et al. (2015) is only related to the changes in the polarization
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(σ′′); thus, it is not sensitive to changes in the grain size underlying our approach.
We believe that discrepancies in the values obtained between the Ks,SL, Ks,W and our
approach are mainly due to the use of fitting parameters that cannot be extrapolated
from laboratory to field scale, where large heterogeneities dominate, in contrast to
well-sorted laboratory samples. In this case, our approach offers the possibility to
experimentally fit the hydraulic conductivity to the polarization response through
Rosetta and, thus, consider subsurface variations and existing ground truth. Moreover,
it needs to be taken into account that the models by Slater and Lesmes (2002a) and
Weller et al. (2015) are based on measurements in fully saturated samples, whereas our
measurements are conducted in materials with varying water content. In this regard,
the applicability of the Ks,SL and Ks,W models may be hindered for field investigations
in slopes characterized by clay rich sediments, where water flow rather occurs along
preferential water flow paths. We also note here that laboratory measurements of
the CC are commonly conducted on small soil samples; thus, unable to capture the
response due to the presence of coarse sediments as those observed in our study area.

Albeit the discrepancies observed in Figure 5.13, the three methods (Slater and
Lesmes, 2002a; Weller et al., 2015) and our approach) solve for the same maximum
between 7.5 and 10 m depth, which corresponds to the gravels and the low polarization
response. For the sake of completeness, we also present estimated values using the
model proposed by Revil and Florsch (2010) based on the polarization of the Stern
layer. Such model results in hydraulic conductivity values much lower than the rest
of the predictions. Such discrepancy may be explained by the rough estimation of
the formation factor due to the lack of more detailed information. It seems that the
crude approximation, based on the ratio of the fluid-to-bulk conductivity (Equation
5.14), fails to solve for adequate F values, resulting in inaccurate estimations of the
hydraulic conductivity. In this regard, the use of equations with less parameters (e.g.,
the one by Slater and Lesmes (2002a) provides clear advantages for field investigations.
Accordingly, our approach permits to estimate hydraulic conductivity based solely on
geophysical data and grain size analysis, which is one of the common measurements
in landslide investigations. Further methods requiring measurements of the formation
factor, or other parameters may be limited to areas where such information is available.

As previously stated, Rosetta can only be applied to SSC data and therefore the
initial set-up did no incorporate training data containing gravel fractions. Further
studies may investigate the use of more complex PTFs that permit the incorporation
of the gravel fraction. However, originating from soil science, most readily available
PTFs are restricted to SSC only (Van Looy et al., 2017a). Hence, we believe that our
approach offers a flexible tool able to quantify hydraulic conductivity variations at the
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field-scale based on complex conductivity imaging results. It is important to note that
the use of the complex conductivity permits to explicitly take the surface conductivity
into account, which may explain high conductivity values in clayey areas. Hydraulic
estimations based only on real-valued electrical resistivity, may fail to account for
surface conductivity, misinterpreting clay rich formations as areas with high water
content. The application of the two-step approach proposed here (first the soil fraction
and only then the Ks values) seems to account for existing ground truth data, for
subsurface heterogeneity as well as variations in the geophysical properties (complex
conductivity and to certain extent seismic velocities). Therefore, our approach may
represent a step forward in the upscaling of the relationship between σ′′ and K that
has been observed in different investigations (see Kemna et al., 2012).

Figure 5.12: Comparison of ground-truth information, complex conductivity response
and predicted parameters: (A) complex conductivity response in terms of real σ′

and imaginary component σ′′, (B) seismic p-wave velocity and (C) the predicted soil
fractions (gravel, sand, silt and clay). (D) presents the natural gamma radiation and
apparent conductivity σa measured with a Dual induction probe inside the borehole
WUR04 and (E) grain size distribution, and (F) soil description for samples retrieved
from sediments during drilling in WUR04.
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Figure 5.13: Predicted hydraulic conductivity Ks using our approach (cyan) and the
relationships by Slater and Lesmes (2002b) (blue), Weller et al. (2015) (dark blue)
and Revil and Florsch (2010). The dotted, dashed and solid line refer to formation
factors computed for fluid conductivity values of 19, 35, and 60 mS/m. The color-
coded backgrounds indicate the textural units.

5.6 Conclusion

We have shown that complex conductivity imaging permits to solve for changes in
electrical properties consistent with lithological contacts recovered from boreholes.
The lithological units resolved in our study correspond to, from top to bottom: a layer
with moderate conductivity values (5 > σ′ < 30 mS/m) and an average thickness of
15 m on top of a conductive bottom layer (σ′ > 30 mS/m). This model is supported
by information about electrical units, as obtained from TEM soundings, and RST
imaging results. The extensive complex resistivity data permitted to construct a 3D
subsurface model, which is then used to delineate the geometry of an aquiclude as
well as preferential water-flow paths within the slope. Based on the spatial variations
of the hydraulic conductivity (Ks) solved, we can also identify a spatial correlation
between the aquiclude interface and the morphological features. In this regard, our
hydrogeophysical model offers a possibility to design adequate measures to attenuate
build-up of pore-pressure along preferential flow paths that may trigger landslides.

We present a quantitative interpretation of the complex conductivity images, using
both soil-textural data and well-logging information. Within this study we derive
site-specific petrophysical relationships that link the imaginary complex conductivity
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to the fractions of gravel, silt and clay. These well-determined relationships – with
R2 scores of 0.71 for gravel, 0.87 for silt and 0.81 for clay – permitted to estimate
the textural properties of the resolved geophysical units, which were found consistent
to grain size distribution measured in soil samples recovered from core drilling. The
textural information was used in the Rosetta pedotransfer function to predict Ks

from the complex conductivity imaging results. Hence, an estimation of hydraulic
conductivity values was obtained for the entire study area.

The application of the two-step approach proposed here (i.e., first the soil fraction
and then the Ks values) provides comparable values to those computed using existing
petrophysical equations developed from laboratory investigations. Such petrophysical
equations consider the polarization response at 1 Hz yet are based on measurements
typically performed on small, well sorted samples under fully saturated conditions.
Therefore, those equations may be limited in field applications, associated to large de-
grees of heterogeneity and variations in water content. Hence, the approach proposed
here permits to derive Ks based solely on available data, namely complex conductiv-
ity and grain size distributions, without the need to upscale petrophysical equations
resolved in the laboratory.

Appendix

Additionally to the saturated hydraulic conductivity Ks the Rosetta PTF (Schaap
et al., 2001; Zhang and Schaap, 2017) predicts the parameters of the van Genuchten
water retention function (van Genuchten, 1980):

θ(ψ) = θr +
θs − θr

[1 + (α|ψ|)n]1−1/n
(5.15)

in which θ(ψ) is the water retention curve in cm3cm−3 as a function of soil water
pressure ψ, θr and θs are the residual and saturated water contents in cm3cm−3 and
n (dimensionless) and α (1/cm) are curve shape parameters. Figure 5.14 shows the
predicted van Genuchten parameters for the profile WD13 and the soil texture that
was used as input for Rosetta.
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Figure 5.14: Van Genuchten water retention parameters for the profile WD13 as
predicted with Rosetta (Zhang and Schaap, 2017) using the soil texture presented in
the bottom subplot. Each subplot further contains the soil texture observed in the
boreholes WUR02, WUR03 and WUR05
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6 From electrical conductivity to hydraulic

conductivity: a multi-step framework using

electromagnetic induction imaging and deep

learning
1

6.1 Introduction

Frequency-domain electromagnetic induction (FDEM) methods are currently applied
in the field of hydrogeophysics (e.g., Binley et al., 2015, and references within), as they
can provide a cost-effective investigation of subsurface properties controlling water-flow
dynamics, such as pore structure and water content (e.g., Boaga, 2017, and references
within). Initially, FDEM methods were mainly used to obtain dense maps of appar-
ent electrical conductivity (ECa) (e.g., Lesch et al., 1995)), which were interpreted as
lateral variations in soil properties (for example Robinson et al., 2009; Martinez et al.,
2010; Doolittle and Brevik, 2014b, and references within). With the development of
multi-configuration FDEM instruments (i.e., multicoil and multifrequency tools), sim-
ple field procedures allow simultaneous collection of data with sensitivity at different
depths. Together with modern inversion strategies, it is possible to compute electrical
conductivity (EC) maps at different depths (e.g., Auken et al., 2015; Heagy et al.,
2017; McLachlan et al., 2021a).

Most of the current inversion strategies adopt either linear (McNeill, 1980b) or
nonlinear Maxwell-based forward models (e.g., Hendrickx et al., 2002; Schultz and
Ruppel, 2005; Brosten et al., 2011; Deidda et al., 2020). Deterministic inversion
algorithms have been proposed (Deidda et al., 2020; Klose et al., 2022) aiming to
solve the inherent ill-posed inverse problem, characterized by the non-uniqueness of
the obtained conductivity model (Zhdanov, 2023). To stabilize the solution, such
inversion algorithms commonly rely on smoothness-constraint regularization, where
overfitting the data is minimized by searching for a solution with smooth changes in
space. Alternatively, probabilistic approaches (e.g., Minsley, 2011; Moghadas et al.,

1This chapter is based on: Gallistl, J., Roser, N., Strauss, P., Blöschl, G. and A. Flores-Orozco.
"From electrical conductivity to hydraulic conductivity: A multi-step framework using electro-
magnetic induction imaging and deep learning". Submitted to: Water Resources Research.
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2017)) have also been suggested to estimate the distribution of EC values without
relying on smooth-constraint approaches and compute the associated uncertainty of
the final model. A novel deep learning (DL) inversion strategy based on convolutional
neural networks (CNN) was proposed by Moghadas, 2020. The DL approach allows
for rapid estimations of subsurface conductivity and is more computationally efficient
than the classical (deterministic, probabilistic) inversion approaches. Moreover, the
suggested DL approach is not subject to the non-uniqueness of classical inversion
frameworks (Moghadas, 2020). Building upon these advancements in FDEM inversion
methods, researchers have explored various applications in hydrogeophysics, including
the investigation of pore water and salt dynamics in different environments (Robinson
et al., 2009; Martinez et al., 2010; Jiang et al., 2016; Martini et al., 2017b), soil texture
(Abdu et al., 2008; Triantafilis and Lesch, 2005), and peat thickness (Boaga et al.,
2020; Beucher et al., 2020). Moreover, Brosten et al., 2011 reported a correlation
between co-located hydraulic conductivity K measurements and inverted EC values
obtained from FDEM data. Their empirical relationship was then used to produce
a dense K map for their study area. Similarly, Uhlemann et al., 2022 established a
relationship between measured saturated K (Ks) values and EC, which they used to
identify ground water recharge and flow in a managed aquifer system. While significant
developments have been made in the instrumentation (Heil and Schmidhalter, 2015;
Wolf and Flores Orozco, 2024; Blanchy et al., 2024), field procedures (Christiansen
et al., 2016; De Smedt et al., 2016; Tazifor et al., 2022) and inversion of FDEM data
(Deidda et al., 2020; Klose et al., 2022), there is still a gap regarding the quantification
of hydraulic properties from inverted EC maps at different depths.

To address this research gap, we present extensive FDEM data collected across
66 ha of the Hydrological Open Air Laboratory (HOAL). The objective of the sur-
vey was to quantify spatial changes in the hydraulic properties of the soil controlling
surface-groundwater interactions. The proposed approach is based on three steps: (1)
the inversion of FDEM data to obtain continuous EC maps at different depths, (2)
correlation of EC and soil-textural information in terms of the soil volume fractions
of sand, silt and clay; followed by the (3) quantification of hydraulic conductivity K

using a pedotransfer function (PTF). We recalibrate the field-scale PTF proposed by
Picciafuoco et al., 2019a, which is based on double-ring infiltration measurements and
incorporate the soil-textural predictions obtained in step (2). For the inversion of the
FDEM data, we investigate the potential of a deep learning network for the prediction
of 1D EC depth models. Large-scale, detailed information about soil-textural prop-
erties is essential for the vulnerability assessment of groundwater from fertilizer and
pesticide application as well as yield and erosion estimation, whereas detailed knowl-
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edge about the hydraulic conductivity is prerequisite for enhancing our understand-
ing of the mechanisms controlling rainfall-runoff processes and groundwater recharge.
Given the simplicity and scalability of the proposed approach, it presents a significant
advancement towards understanding catchments such as the HOAL.

6.2 Material and methods

6.2.1 Study area

All experiments were conducted in the Hydrological Open Air Laboratory (HOAL),
which is a 66 ha research catchment located in Petzenkirchen, Lower Austria (48◦ 9′

N, 15◦ 9′ E). Designed for advanced hydrological studies and experiments, it serves as
an observatory for understanding water-related flow, runoff generation, and transport
processes involving sediments, nutrients, and microbes and fosters interdisciplinary
research (Blöschl et al., 2016). It is characterized by gentle slopes with elevations
between 268 to 323 m asl, and a mean slope of 8%. The majority of the land is
used for agriculture (87%), with the remainder being made up of woods (6%), pasture
(5%), and paved areas (2%). A high-voltage power line, many electricity lines linking
farmhouses, and a gas pipeline all traverse the catchment, as presented in Figure 6.1.

The soil textural composition of the catchment was mapped during a comprehensive
soil survey that included sampling at 300 locations, distributed on a 50 by 50 m grid
(Picciafuoco et al., 2019a). Samples were taken at each location at varying depth
ranges (2–3), with a maximum depth of 0.7 m and provided information about volume
fractions of organic matter (fOM), clay (fc), silt (fsi), and sand (fsa). The soil survey
revealed that the catchment is characterized by heavy soils with silty loam (75%)
predominating, followed by silty clay loam (20%) and silt (5%). In addition to the soil
survey, the textural composition can be found, where a piezometer station was drilled
(P21 in Figure 6.1).

6.2.2 Frequency-domain electromagnetic methods (FDEM)

Electromagnetic induction imaging (EMI) at the low induction number is a FDEM
method that uses a sensor system to generate a primary magnetic field by applying an
alternating current to a transmitter coil with a fixed frequency. This generates eddy
currents in a conductive subsurface, which then generate a secondary magnetic field
sensed by the receiver coil. The separation between transmitter and receiver, as well as
the excitation frequency are fixed in the instrument to permit an operation at the low
induction number (LIN) (β ≪ 1), at which the measured response is only controlled
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Figure 6.1: General overview of the catchment, installations on site, areas mapped
with electromagnetic induction imaging (EMI), and location of complex conductivity
imaging (CCI) profiles used to generate the training data (see Appendix 6.5). More-
over the location of extracted soil profiles, as well as EMI transects later used in the
evaluation of the presented approach are shown.

by the electrical properties and EC can directly be computed from the ratio between
the secondary and primary magnetic field (McNeill, 1980b). In case of heterogeneous
materials, i.e., field measurements, the data recorded is then the apparent electrical
conductivity (ECa). The induction number for a given system is defined by (McNeill,
1980b):

β =
r�
2

ωµσ

(6.1)

in which ω is the angular frequency of the primary field, r is the separation between
the transmitter and receiver coils, µ is the magnetic permeability, and σ is the bulk
electrical conductivity of the earth. The transmitter and receiver coils can be oriented
horizontally (horizontal coplanar, HCP) or vertically (vertical coplanar, VCP) with
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respect to the ground surface, and modern commercial instruments typically provide
ECa for different depth ranges (i.e. multicoil systems).

Electromagnetic induction measurements were conducted using a CMD-MiniExplorer
(GF Instruments), which employs three receiver coils with distances of 0.32, 0.71, and
1.18 m from the transmitter coil simultaneously at an operating frequency of 30 kHz.
The VCP mode was utilized for all measurements, providing nominal depth of inves-
tigations of 0.5, 1, and 1.8 m. The sensor was positioned as close to the ground as
possible, oriented parallel to the direction of walking (approximately between 0.1-0.25
meters). The sampling frequency was 1 Hz, resulting in ECa values being collected
approximately every 0.25 meters along the walking tracks. The measured apparent
conductivity values were georeferenced using a RTK-GNSS and the mapped areas are
presented in Figure 6.1. The dataset comprises approximately 103,600 ECa readings
and was completed within three days. At least 10 minutes prior to data collection
the sensor system was assembled and turned on to equilibrate the system. Prepro-
cessing of the dataset included (1) the removal of negative ECa values and (2) the
removal of obvious outliers. The outliers were defined as ECa readings that either
exceeded the mean ECa plus three times the standard deviation of the dataset or were
smaller than the mean ECa minus three times the standard deviation of the dataset.
Both processing steps were performed for each of the three available VCP readings
separately.

6.3 Deep learning (DL) for 1D EMI inversion

Deep learning (DL) networks are foundational to the field of artificial intelligence,
providing the means to solve complex tasks such as classification and regression (Li
et al., 2019; Shrestha and Mahmood, 2019; Mohammadi Foumani et al., 2024). These
networks consist of a series of different layers, including an input layer, one or multiple
hidden layers, and an output layer. Each layer features a number of predefined neu-
rons and each neuron in one layer can be connected to all neurons in the subsequent
layer. For a DL network to be able to learn intricate patterns, non-linearity has to be
introduced in the form of non-linear activation functions that can be specified for each
neuron in each layer individually. Given an adequate choice of the activation function,
the hidden layers are able to perform the majority of the computational processing
through a series of transformations. The term hidden layer stems from the fact that
their output is typically not visible to the user. Finally, the output layer provides the
final predictions or classifications (Li et al., 2019; Mohammadi Foumani et al., 2024;
Ismail Fawaz et al., 2019).
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6.3.1 DL network structure

The objective is to design a DL network that enables the prediction of 1D EC depth
models from multi-configuration ECa, in this particular case, only from VCP readings
similar to the implementation by Moghadas, 2020. The input of such a network is then
a [3 × 1] vector, or more correctly, a tensor (I = [ECaV CP, 1, ECaV CP, 2, ECaV CP, 3])
and the output is an [n×1] tensor (X = [ECD1 , ECD2 , ..., ECDn), where n denotes the
number of specified depth layers. The network presented here consists of three subnets
(termed Subnets 1 to 3 in Figure 6.2) that are linked by a forward computation. The
forward computation involves calculating the VCP and HCP responses for the given
outputs, that is, the EC depth model, of the previous subnet. Hence, the input of
the following subnet is the forward-modelled output of its predecessor. We use the
linear cumulative sensitivity forward model with LIN approximation (McNeill, 1980b),
as presented in Appendix 6.5. Figure 6.2 shows that subnets 1 to 3 consist of two
fully connected hidden layers (denoted as Dense 1 to 3) with six neurons each. To
introduce the required non-linearity, each neuron in the hidden layer uses a rectified
linear unit (ReLU) layer as activation function (Puzyrev, 2019; Banerjee et al., 2019).
The output layers in each subnet are also fully connected dense layers; however, they
do not incorporate activation functions. What changes in each subnet are the size of
the input and output tensors, for instance, for subnet 1, we have an input of [3 × 1]

and an output of [4 × 1], meaning that three VCP readings predict a 4-layered EC
model, whereas in subnets 2 and 3, the sizes of both the input and output tensor
increase. As shown in Figure 6.2 the inputs for subnets 2 and 3 increase to [6 × 1]

tensors consisting of the forward modelled VCP and HCP responses of the previous
subnet. Furthermore, subnets 2 and 3 increased their output tensors to EC depth
models with six and 12 layers, respectively. The final output of the DL network is
an EC depth model comprising 12 layers. Moreover, intermediate output results, that
is, the EC depth models with 4, 6, and 12 layers, referring to subnets 1 to 3, can be
obtained. The network was implemented in Python using the open-source libraries
Tensorflow (Martín Abadi et al., 2015; Abadi et al., 2016) and Keras (Chollet et al.,
2015) and is available on GitHub (https://github.com/TUW-GEO/emiAI).

6.3.2 Generation of training datasets

For any neural network to work properly the selection of adequate training datasets,
describing the problem or characteristics of the objective at hand, is essential. In this
regard, utmost care was taken in the design of the generation workflow for the training
datasets. We refrained from generating completely random datasets with specified
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6.3 Deep learning (DL) for 1D EMI inversion

Figure 6.2: Structure of the deep neural network consisting of three subnets. The
network permits the prediction of 12-layer EC model from the three VCP ECa values
typically measured in the field.

upper and lower EC limits as proposed by Moghadas, 2020 and others. Instead we
used selected inverted conductivity sections from electrical profiles collected using
complex conductivity imaging (CCI) to guide the generation process. All details on
the CCI data collection, processing and inversion are presented in Appendix 6.5. In
the following, we discuss the different steps of the workflow, namely: (1) sampling of
the conductivity sections at random locations for a given depth and width (cf. different
depth models in Table 1), (2) binning of the extracted EC values for a given depth
model (e.g., 12 layers), (3) pseudo-random generation of EC depth models based on
the binning results, and (4) forward modeling to obtain the VCP and HCP readings.

The major assumption of this workflow is that the EC sections obtained from the
inversion of the CCI data properly describe the characteristics of the near-surface EC
distribution in such a manner that it can be used as a guide in the generation process.
Although the spatial scale might be different, we assumed that a data-driven starting
point in the generation process is better suited than generating completely random
models without any relation to the study area. Following this notion, for each of
the available EC sections, we randomly selected 5-10 locations, where the EC was
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6 Predicting hydraulic conductivity from electromagnetic induction imaging data

Table 6.1: Layer thicknesses of the three different EC depth models with 12, 6 and 4
layers used in the DL network.

Number of layers 12 6 4
Layer From [m] To [m] From [m] To [m] From [m] To [m]

D1 0.00 0.12 0.00 0.25 0.00 0.37
D2 0.12 0.24 0.25 0.50 0.37 0.75
D3 0.24 0.36 0.50 0.75 0.75 1.12
D4 0.36 0.48 0.75 1.00 1.12 1.50
D5 0.48 0.60 1.00 1.25
D6 0.60 0.72 1.25 1.50
D7 0.72 0.84
D8 0.84 0.96
D9 0.96 1.08
D10 1.08 1.20
D11 1.20 1.32
D12 1.32 1.50

extracted at a specified depth and extraction width (Figure 6.3a). The latter was
selected as 1.5 times the mean electrode spacing (∼ 1.5 m), which was found to be a
width large enough to provide sufficient samples for the binning process. The random
location sampling integrated a check that the extraction boxes did not overlap over
half of their size. Furthermore, low-sensitivity areas at the model boundaries were
excluded from the selection process.

Given one of the specified depth models, the EC values were binned, where binning
comprised the computation of the mean EC and the corresponding standard deviation
in each bin. The grey bounding boxes in Figure 6.3b illustrate the bounds defined by
two times the standard deviation in each bin. The obtained binned model (Figure 6.3c)
is now the starting point for the generation of pseudo-random models. This generation
is termed pseudo-random, because it implements some design choices, as discussed
below. Gap filling of the standard deviations and EC model values is performed,
that is, for the case where no values are inside the bin, the median value of all bins is
computed and assigned. This applies to both EC and standard deviation. To provide a
smooth model without spikes and sharp edges, the model is then smoothed by applying
a moving average filter with a smoothing window of three bins. This applies only to
the EC values. Commonly, the first bin often has a much larger standard deviation
than the other bins, due to larger model variations adjacent to the electrode locations.
To restrict this large variation in the top layer, the standard deviation is downscaled
by a factor of 0.35. The same applies to the deepest layer, where we downscale the
standard deviation by a factor of 0.1 to restrict large variations in the deepest layer.
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6.3 Deep learning (DL) for 1D EMI inversion

By computing the difference between adjacent values we determines the direction in
which the new model is allowed to change. If there is a sign change, the direction
reverses. The last layer is not allowed to change direction and follows the direction of
the layer above it. The so computed direction refers to forward direction. To increase
the number of possible models and freedom in the training datasets, new models are
computed in reverse direction, which is specified by inverting the sign changes in
the forward direction (Figure 6.3d). To allow more freedom in the generation of the
models, we specify an exaggeration factor that scales all standard deviations (in both
directions) by a factor of seven to increase the bounds in which the model can vary.

For each bin, sampling from a truncated normal distribution, centered around the
median value in the bin and truncated by the exaggerated standard deviations is
performed in the forward and reverse directions for a specified number of models. To
handle values outside the sensible range, we introduce some hard boundaries (0.1 >

EC < 1000 mS/m) and restrict the values for which the sampled value would exceed
such limits to stay within the chosen boundary values. Each new model is smoothed
with the same smoothing operator, as described previously. As all required depth
models with 12, 6 and 4 layers should represent identical sampled volumes of the CCI
sections, the depth models with 6 and 4 layers were down-sampled from the 12 layer
models (c.f. Table 6.1).

In total 102 locations along the 13 EC sections were sampled during the pseudo-
random generation process. Combined with generating 281 new models (the binned
model and 140 in each forward and reverse direction) at each sampled location, a total
number of 28662 training models were obtained. The VCP readings, representing
the DL input, were obtained from forward modeling using the cumulative sensitivity
forward model with LIN approximation (McNeill, 1980b). All details on the forward
model are presented in Appendix 6.5. During the forward modeling process, no noise
was added and the layer depths for 12 layer depth model (c.f. Table 6.1) were used.

6.3.3 DL network training

Prior to training, the input and output datasets are normalized to the range between
0 and 1 and subsequently divided into three subsets: 70% for training, 15% for valida-
tion, and 15% for testing. The training subset is used to train the network, whereas
the validation subset is employed to provide an unbiased evaluation of the model fit
on the training dataset and can help prevent overfitting, which occurs when a model
learns the training data too well, including noise and outliers, and performs poorly
on unseen data (Shrestha and Mahmood, 2019). Conversely, underfitting occurs when
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6 Predicting hydraulic conductivity from electromagnetic induction imaging data

Figure 6.3: Workflow for the generation of training datasets: a) random sampling
of an EC section obtained from the CC profile for a given depth, b)-c) binning of the
EC values for the specified depth model, d) pseudo-random generation of EC depth
models based on the binned model, and forward modeling to obtain the corresponding
VCP readings (not shown).

a model is too regularized and fails to describe the underlying relationship in the
dataset. The testing data, which is kept separate, is only employed after the training
and validation phases are complete and permits an unbiased evaluation of the model’s
performance.

The networks presented herein employ RMSProp as the optimization algorithm
during training (Tieleman and Hinton, 2012), utilizing a learning rate of 0.0001 and
512 epochs (iterations) and mean squared error (MSE) as the loss function which

130



6.4 Results and discussion

writes as:

MSE =
1

n

n�
i=1

(Xt −Xp)
2. (6.2)

n is the number of training models, Xt are the training models (Xt = [ECD1 , ECD2 ,
..., ECDn) and Xp are the predicted models. To mitigate the risk of overfitting the
training data, early stopping is implemented. In the absence of early stopping, the
model trains for the entirety of the specified iterations, irrespective of improvements
in model fit. As outlined above, the different subnets of the DL network are coupled
by forward computation to obtain the VCP and HCP responses. Hence, the subnets
were trained sequentially. Training all networks together requires several minutes (<
10 minutes: AMD Ryzen 5 5600X 6-Core Processor 3.70 GHz; 32 GB RAM), and the
predictions are available instantaneously.

6.4 Results and discussion

6.4.1 Evaluating the DL network performance

The loss metrics for each subnet are presented in Table 6.2, which shows no signifi-
cant mismatch between the training and validation errors, thereby indicating that the
subnets did not overfit. Likewise, the testing error is within the same range of values,
which indicates that the performance of the network on unseen data is likely to be
similar to that observed for the training and validation sets and the network is likely to
generalize well to new data. Table 6.2 shows that the loss first increases when moving
from subnets 1 to 2 with an increase in the MSE from ca. 0.00079 to 0.00173 for the
training set and then decreases again when moving to subnet 3 (here, the MSE for the
training set is 0.00132). As the network dimensions, are identical for subnets 2 and
3, except for the output layer, this change in the loss value cannot be explained by
changes in the network dimensions.

We opted for this sequence of individual subnets, as described above, as this architec-
ture showed the most promising results in a synthetic forward modeling study (results
not shown), when compared to other architectures consisting of single networks with a
greater number of neurons in the hidden layers, or an increased number of hidden lay-
ers. Furthermore, convolutional neural networks (CNN), such as the implementation
by Moghadas, 2020 were explored, but were not able to reach the performance of the
network presented here. We note here, that more sophisticated network architectures,
such as Auto-encoders (Li et al., 2020a; Wu et al., 2022b), recurrent neural networks
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(Wu et al., 2022a; Gan et al., 2024) or physics-driven deep learning (Guo et al., 2023;
Wu et al., 2024) exist and are being actively investigated in the scope of airborne EM.
However, we did not explore their potential in this manuscript.

Figure 6.4 shows the EC sections obtained from the prediction with the DL network
(top) and deterministic inversion with EMagPy (McLachlan et al., 2021a) (bottom)
for three sections distributed in the study area. Details on the deterministic inver-
sion approach are presented in Appendix 6.5. Generally, both approaches solve for
consistent EC models, and only minor differences can be observed for larger depths,
particularly in section A-A’, where the predicted section shows more conductive values
(> 30 mS/m) below 1 m depth. Furthermore, compared to the predicted EC sections,
the inverted sections seem to show a slightly increased contrast between shallower
layers, for example in sections B-B’ and C-C’.

When we compare the results for the entire catchment, as presented in Figure 6.5,
which shows cross-plots of the predicted (x-axis) and inverted EC (y-axis) for each
of the 12 available depth layers separately, it can be observed that the deterministic
inversion tends to overfit the data, resulting in negative EC values. Conversely, the
DL network is much more robust in this regard. Figure 6.5 also shows that the largest
differences between the approaches can be observed for the shallowest depths up to
D4. This observation also applies to the range of EC values, wherein the prediction
appears to be constrained to values between approximately 0 and 50 mS/m, while the
inversion resolves for a range between -10 and 100 mS/m.

The proposed DL network is not constrained to the use of a linear forward model
or a forward model that adheres to the LIN approximation. In fact, the DL net-
work was trained and evaluated using a Maxwell-based forward model without LIN
approximation, yielding results consistent with those presented herein, with only mi-
nor deviations observed, mostly limited to small absolute changes in the observed EC
values. Consequently, the linear forward model was selected due to its reduced com-
putational time compared to the nonlinear Maxwell-based approaches. Given that the
DL network involves two forward computations, a computationally intensive model
would constitute a serious bottleneck during training and prediction, particularly for
large datasets. Furthermore, the current forward model can be easily substituted, per-
mitting the use of a forward model that accounts for both the electrical conductivity
and magnetic permeability of the subsurface (Klose et al., 2018; Hanssens et al., 2019;
Deidda et al., 2020).
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Table 6.2: Loss (mean squared error) for the different subnets after training.
Mean squared error

Subnet Training set Validation set Testing set
Subnet 1 0.0007868 0.0007882 0.0008719
Subnet 2 0.0017339 0.0017244 0.0017935
Subnet 3 0.0013174 0.0012983 0.0014313

Figure 6.4: Evaluation of DL prediction performance based on the comparison with
EC sections obtained from deterministic inversion along three transects (c.f. Figure
6.1).

6.4.2 Electrical conductivity and soil texture maps and their spatial
correlation

We compared the predicted EC depth slices to maps of the mean soil volume fractions
of sand (fsa), silt (fsi), and clay (fc), in short SSC, as illustrated in Figure 6.6. The
mean soil volume fractions were computed at a mean depth of 32.5 cm, corresponding
to a depth section of 0-65 cm. Since the soil information from the soil survey is
available for 0-15 cm up to 70 cm depth, homogenization of the data, namely, inter-
and extrapolation of the available depth information for the aforementioned mean
depth of 32.5 cm was conducted. The obtained sand, silt, and clay fractions were then
spatially interpolated to a 2.5x2.5 m grid utilizing natural neighbor interpolation. A
linear variogram and a circular search space (i.e., no directional smoothing) were used.

The left panel of Figure 6.6 presents the mean soil volume fractions as color-coded
maps, whereas the right panel displays the predicted EC maps for depth layers D1, D4,
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Figure 6.5: Cross-plots of the EC values predicted with DL and from deterministic
inversion for the entire catchment and for each depth layer (D1, D2, ...; see Table 6.1).
The light grey rectangle is the convex hull of the scatter to indicate its boundaries.

and D6, corresponding to depth ranges of 0.00-0.12 m, 0.36-0.48 m and 0.60-0.72 m.
Due to the dense distribution of EMI measurements, no interpolation was performed
on the EC maps. Figure 6.6 demonstrates that the fraction of sand is generally low
(< 10%), with some areas of high concentration in the northeastern region as well as
adjacent to the stream, with values up to 20%. Figure 6.6 further shows, that there
is a predominance of silt in the catchment, with values reaching up to 80% in the
southern area. Conversely, areas characterized by lower values of silt (< 50%) were
associated with increased proportions of clay (> 25%). Generally, the maps of silt
and clay exhibit similar patterns and differ primarily in the magnitude of the observed
values. Nevertheless, both fractions reveal a channel-like feature along the west-east
direction, leading to the weather station and subsequently to the stream area (c.f.
Figure 6.1). This channel can be attributed to the former location of the stream prior
to its canalization.
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The channel is also clearly evident in the predicted EC maps, particularly for D4 and
D6, as areas characterized by EC values ∼ 10 mS/m. Generally, the EC maps exhibit
an increase in EC with depth, as evidenced by comparing D4 and D6. In contrast to the
deeper layers, D1 displays the lowest EC values (ranging between 1 and 15 mS/m) and
divergent features, which cannot be easily explained by changes in soil composition.
The low EC values could be attributed to the roughness of the topsoil, characterized
by large air pockets (i.e., high porosity) and low levels of soil moisture, both of which
lead to a decrease in EC. Moreover, the LIN approximation assumes that there is no
air column between the sensor and ground (i.e., zero elevation). Consequently, the
divergent features in D1 may also be explained by changes in sensor elevation due to
field crops or roughness of the topsoil due to plowing, resulting in anomalous readings
with decreased magnitude (Beamish, 2011).

As expected, an increase in EC values correlates with increasing the clay content,
due to the larger surface area and cation exchange capacity of the clay minerals and
thus a greater contribution of surface conductivity (e.g., Okay et al., 2014; Flores
Orozco et al., 2018b; Gallistl et al., 2022). This increase in both EC and clay content
can be observed in the central part of the catchment, with fc values between 30-40%
corresponding to elevated EC values larger than 40 mS/m.

6.4.3 Experimental petrophysical relationships to predict textural
properties from EC

The EC predictions were referenced to the soil data by calculating a radius of 3 m
around the sampling point and computing the mean value of all EC values inside
the radius. This approach can be thought of as a smoothing filter applied to the
EC values and aims to align the spatial scales between the soil and EC data. The
optimal agreement was observed using D6 as the EC input data. Despite a slight
depth discrepancy, specifically 32.5 cm for the soil and 66 cm for the EC data, we
argue that the range of EC values (10-100 mS/m) in D6 was sufficiently large to be a
reliable predictor. Furthermore, for the given EMI system, this depth is approximately
associated to the highest normalized sensitivity in the HCP configuration (Bonsall et
al., 2013; McLachlan et al., 2021a). Alternative approaches, such as utilizing a mean
EC value of a combination of different depth layers or exclusively using a single shallow
layer, have been explored; however, they have not yielded robust relationships.

The rows in Figure 6.7 illustrate the results of the correlation analysis for the three
fractions of interest: sand (fsa), silt (fsi), and clay (fc). The correlation was conducted
utilizing the split-sample validation (SSV) methodology, dividing the 203 samples
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Figure 6.6: Comparison of maps of the mean soil volume fraction of sand, silt and
clay and the predicted EC models for three different depths.

into calibration (80%, n=162) and validation (20%, n=41) sets, which facilitates the
evaluation of the performance and generalizability of the derived relationships (Snee,
1977; Kohavi, 1995). Columns 1 and 2 of Figure 6.7 present the scatterplots for the
calibration and validation sets and the fitted linear regression models for each fraction.
Columns 3 and 4 compare the measured and predicted fractions using the derived
regression model. The model performance is quantified by the root-mean-square error
(RMSE) computed as

RMSE =

���� 1

n

n�
i=1

(fm − fp)2 (6.3)

in which n is the number of observations and fm, fp are the measured (fm) and pre-
dicted (fp) soil volume fractions; whereas the fp is computed using the fitted regression
model.
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As anticipated, the fraction of sand exhibited no correlation with the EC data,
as can be observed in the scatterplots. In contrast, the regressions for silt and clay
demonstrate relatively well-defined relationships with R2 values of 0.4 for silt and 0.33
for clay. Although these values are comparatively low, the relationships, characterized
by a decrease in silt content with increasing EC, and conversely, an increase in clay
content with increasing EC, are also observable in the validation set. Regarding per-
formance, specifically the comparison of measured and predicted soil fractions, both
soil fractions exhibited RMSE of approximately 5% for the calibration and validation
sets. The positive correlation of EC with volumetric clay content has been observed
in previous studies (e.g., Scanlon et al., 1999; Weller et al., 2007; Cockx et al., 2009;
Harvey and Morgan, 2009; Zhao et al., 2019, and others). In contrast to that, the
relationship between EC and volumetric silt content appears to be under-investigated
(Heil and Schmidhalter, 2012; Heil and Schmidhalter, 2015). This could be partly
explained by the fact, that recent research efforts are directed at the quantification of
soil water content (Huang et al., 2017; Robinet et al., 2018; Visconti and Paz, 2021;
Mensah et al., 2023), hydrogeological properties (Brosten et al., 2011; McLachlan et
al., 2021b; Dragonetti et al., 2022), or soil salinity (Paz et al., 2020; Gu et al., 2023;
Paz et al., 2024), in which the volumetric clay content, due to its confining character-
istics, plays a more critical role than other textures. Nonetheless, for the silty loam
soils of the HOAL, with a dominance (> 75%) of silty textures, it is clear that the
geophysical parameters are strongly dependent on this texture; thus EMI data can be
used to assess variations of finer and coarser grains; which in turn are also strongly
linked to hydraulic properties.

Figure 6.8 depicts the prediction functions for sand, silt, and clay. As fsa did not
demonstrate any significant correlation with the predicted EC data, it was computed
as a loss function (Equation 6.4). This approach also ensures that the total fraction
is consistently limited to 100% (Gallistl et al., 2022).

fsa = 100− (fsi + fc) (6.4)

The derived relationships permit the prediction of soil textural characteristics for
all depth layers throughout the entire catchment up to a depth of 1.5 m. Figure 6.9
illustrates the results for three depth layers, specifically D3, D7 and D11, corresponding
to depth ranges of 0.24-0.36 m, 0.72-0.84 m and 1.20-1.32 m. The color-coded maps
of the predicted soil volume fractions for sand fsa (top row), silt fsi (middle row), and
clay fc (bottom row) are based on natural neighbor interpolation (using the parameters
presented above), with areas of no coverage and areas outside of catchment blanked.
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Figure 6.7: Correlation and split-sample validation of the predicted EC model values
and the different soil volume fractions of sand, silt and clay.

Moreover, such plots present the associated normalized histograms. Clear differences
in the range of the predicted values and their distributions can be observed for different
depths and soil volume fractions. In particular, fsa at the shallowest depth is relatively
low (below 6%), and the main histogram distribution is limited to the range of 5-7%.
As depth increases, both the magnitude of the observed values as well as the histogram
distribution change and a shift to higher percentages (although still relatively low with
values below 15%) can be observed. Moreover, the histograms broaden and have their
maximums at ∼ 7% for D7 and ∼ 8% for D11. Hence, a general trend towards an
increase in magnitude and a broader range of predicted values can be observed. When
compared to the mean soil volume fractions obtained from the soil survey (Figure 6.6),
it is evident that the absence of a relationship with the EC and the approximation of
the sand fraction as a loss function cannot represent specific details of the catchment.
Nevertheless, the general distribution and range of values (< 15% sand) is resolved by
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Figure 6.8: Functions to predict the different soil fractions of sand, silt and clay based
on their dependence on EC.

the prediction.

In general, and as observed for the sand fraction, the distribution of the predicted
silt fractions and their range for D3 is rather limited, with its maximum at ∼ 80%
and spanning between 75-85%. This pattern significantly changes for D7, where the
resolved silt fractions now range between 55-75% and the map depicted in Figure 6.9
resembles the one presented for the mean soil volume in Figure 6.6. For the deepest
layer, D11, a further shift in the histogram distribution (with a maximum of ∼ 65%)
and a spread between ∼ 50-75% can be observed. Hence, the predicted silt fractions
indicate both a decrease in the magnitude and broadening of the value range with an
increase in depth. Analogous observations can be made for the predicted clay fractions,
namely, an underestimation of the predicted values for D3, nearly indistinguishable
patterns and ranges between the predicted and measured values for D7 and a further
divergence with increasing depth.

The analysis of the predicted and mean soil volume fractions has demonstrated
promising results that promote confidence in the proposed approach and established
relationships. For further evaluation, in Figure 6.10, we present vertical profiles of
the soil fractions for the predicted and in the soil survey sampled values, as well as
soil data collected during the drilling of a piezometer station (P21 in Figure 6.1). It
should be noted that the soil information from the latter has not been used in the
development of the petrophysical models.
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The soil profiles presented in Figure 6.10 were selected to be representative of the soil
textural characteristics of the catchment, with the majority of the soil profiles situated
in agriculturally used areas and one in the stream area (i.e., woodland). Furthermore,
a range of different elevations is covered (c.f. Figure 6.1). The plots in Figure 6.10
clearly demonstrate that the predicted soil profiles are capable of following the general
trends in the catchment, as evidenced by the sampled soil profiles. An increase in
clay content with increasing depth can be observed; whereas the silt fraction exhibits
opposing behavior and generally decreases with depth. Minor discrepancies between
the predicted and measured values (ranging between 2-5%) can be observed for the
majority of the soil profiles, with bk6143 being an exception. In this case, the sampled
soil volume fraction for silt and clay depict the largest mismatches of values up to
15% at a depth of approximately 0.5 m. As illustrated in Figure 6.1, of all profiles
in consideration, this one is closest to a power line. The discrepancy observed could
be explained by the unintended influence of the power line’s electromagnetic field
on the measured ECa values and, consequently, the predicted EC and soil textural
information.

Regarding the soil profile where additional ground-truth information about the tex-
tural information for deeper layers is available (bk6042 and P21 in Figure 6.10), signif-
icant discrepancies of values up to 15% for the silt and clay fractions can be observed
at a depth of approximately 0.5 m. Nevertheless, the decrease in silt, and conversely
the increase in clay with increasing depth, is resolved in our prediction. However,
there might be a slight underestimation of the silt and clay fractions at depth when
using the approach presented here. Considering that the relationships obtained are
based on soil samples within the top 0.3 m and for silty loam soil they are associated
with a high porosity. Increasing the depth will reduce the porosity; however, the con-
tribution of surface conductivity remains largely unaltered, thus explaining the high
electrical conductivity and the underestimation in our model. Moreover, as illustrated
in Figure 6.1, P21 and bk6042 are not directly co-located with a distance of ∼ 25 m
between them, which could further explain this mismatch. Additionally, varying sam-
pling strategies and soil-textural analysis of the recovered materials could contribute
to the observed discrepancies. As evidenced in Figure 6.10, a notable difference in the
fractions of silt and clay of approximately 7% exists at roughly 0.5 m depth, when
comparing the ground truth data from the soil survey with that obtained from the
piezometer station drilling.
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Figure 6.9: Maps and associated normalized histograms of the predicted soil volume
fractions for three different depths indicate significant variations in the predicted values
for different depths.

Figure 6.10: Predicted soil profiles (thin lines) using the functions presented in Figure
6.8 in comparison to in-situ values (thick lines) obtained from sampling in the field.
bk6030-bk6386 refers to names of the sampling locations of the soil survey, whereas
P21 is the soil profile recovered from drilling of a piezometer (c.f. Figure 6.1).
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6.4.4 Predicting catchment-scale hydraulic conductivity

We opted to recalibrate an existing PTF for the catchment using the Ks dataset
initially presented by Picciafuoco et al., 2019b; Picciafuoco et al., 2019a and the
SSC prediction described herein, excluding the fraction of organic matter (fOM) as
a predictor variable. Our approach enables the prediction of Ks through SSC, slope
S, and elevation EL and given the established relationships, consequently, Ks can
basically be estimated from ECa (VCP) measurements. Prior to recalibration, the
soil physical dataset (i.e., the predicted SSC values) were prepared in accordance
with the methodology outlined in Picciafuoco et al., 2019b; Picciafuoco et al., 2019a,
wherein SSC values were computed for a mean depth between 0.00 to 0.36 m. The
radius search strategy discussed above, using a 3 m radius, was used to reference the
SSC values to Ks dataset. The parameters of the employed ridge regression model
were obtained through cross-validation; while model evaluation was performed using
split-sample validation with 66% reserved for the calibration, and the remaining 34%
for the validation set. Further details regarding the ridge regression model and the
cross-validation approach can be found in Appendix 6.5.

The SSV analysis of the recalibrated PTF, as depicted in Figure 6.11, indicates
that the ridge regression model is reasonably well-defined with a R2 score of 0.52 and
demonstrates comparable performance on the calibration and validation set (evidenced
by the similar RMSE values of 7.53 mm/h for the calibration and 6.11 mm/h for the
validation set). The model generally predicts Ks values consistent with the measured
data across the entire range of observed values, exhibiting only minor deviations from
the 1:1 line. However, for measured values in the range of 5 to 10 mm/h, the model
appears to overestimate and the predictions cluster around 15 mm/h. This can also
be observed in the predictions using the validation set. Moreover, the model slightly
underestimates for Ks > 30 mm/h. Similar behavior has been reported by Piccia-
fuoco et al., 2019b and could be attributed to the soil physical dataset defined by low
variation in the prediction variables. This factor, in conjunction with the use of ridge
regression, may constrain the model’s ability to generalize to a higher degree.

The performance of the PTF in predicting Ks from EMI data was evaluated through
visual inspection of the spatial prediction results for the different depth layers, as pre-
sented in Figure 6.12. Additionally, these plots present the associated normalized
histograms of Ks. Significant variations in the Ks patterns are observable for the
uppermost depth layers until approximately 0.5 m with the observed Ks values rang-
ing between 10 to 40 mm/h (D1, D2) and 8 to 30 mm/h (D4), indicating substantial
variability in soil hydraulic properties near the surface. Below this depth, the spa-
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tial patterns remain largely consistent with only localized changes observed. However
the histograms demonstrate a notable shift towards lower Ks values with increasing
depth, with the peak shifting from ∼ 24 (at D5) to ∼ 16 mm/h at the deepest layer.
Ks variations at depths down to 0.5 m can potentially be attributed to the influence
of agricultural practices, with soil compaction through heavy machinery and the de-
velopment of plough horizons likely driving Ks patterns and associated changes at
depth.

To the best of our knowledge, only three studies have reported the prediction of
hydraulic conductivity from inverted EMI data. Vervoort and Annen, 2006 used a
methodology similar to that used in this study. Specifically, they compared different
algorithms to invert the measured data and then linked the inverted EC to the soil
volume fractions of sand and clay, which permitted the estimation of SSC. Subse-
quently, the authors used the NEUROTHETA PTF (Minasny and McBratney, 2002),
which employs a neural network in conjunction with the van Genuchten model (van
Genuchten, 1980), to estimate Ks. Notably, despite a significantly larger fraction of
sand at their study site, with values between 20 to 60%, the authors reported pre-
dicted Ks values predominantly lower than those presented here, with values of 1 to
20 mm/h. This discrepancy is likely attributed to two factors: (1) the substantially
higher clay fraction, with reported values up 60%, and (2) the employed PTF, which
was calibrated for the national scale (Australia wide), rather than the required field
scale. Such models often fail to represent field-scale heterogeneity due to the inability
to quantify random variability sources (Picciafuoco et al., 2019a). In this regard, our
approach to recalibrate a field-scale PTF may be preferable, as catchments such as the
HOAL with its heavy soils will not be adequately resolved by regional- or national-
scale PTFs. Brosten et al., 2011 employed an alternative methodology that does not
rely on the application of a PTF. In their publication they derived a relationship di-
rectly linking the inverted EC to K obtained from slug tests at 10 wells distributed
across the study area. This approach permitted the prediction of K maps for 4-6 layers
down to a depth of 5 m. Given the distinctly different soil textural setting, specifically
an unconfined aquifer composed of sand, gravel, and cobbles, the predicted K values
are one to two orders of magnitude larger than our predictions. Nevertheless, and
consistent with our approach, the authors suggest that the EC response, and conse-
quently the Ks prediction, is primarily influenced by the clay content resulting in the
negative EC-K relationship, where an increase in clay is associated with increased EC
values, and conversely, due to its confining properties, with decreasing K. Moreover,
the survey by Brosten et al., 2011 addresses much greater depths, primarily due to
the instrument used and the spatial scale of K (∼ 1.5 m) obtained from the slug tests.
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6 Predicting hydraulic conductivity from electromagnetic induction imaging data

Our methodology is tailored for the CMD-MiniExplorer, however, the frameworks are
generalized, and the training datasets along with the DL network can be readily mod-
ified to accommodate other EMI sensors or multi-configuration datasets combining
VCP and HCP readings, potentially enabling much greater depths of investigation for
the Ks predictions. Similarly, Uhlemann et al., 2022 developed an empirical relation-
ship directly linking the inverted EC to Ks, which permitted to derivation of a 3D
hydraulic conductivity model below percolation ponds. As with Brosten et al., 2011,
the authors reported a negative EC-Ks relationship, strongly indicating that the EC
response was dominated by the clay content.

The original version of our recalibrated PTF, as presented in Picciafuoco et al.,
2019b; Picciafuoco et al., 2019a, necessitates estimates of the fraction of organic mat-
ter fOM for a successful prediction. Consequently, we investigated the correlation
between the predicted EC and fOM ; however, they were found to be uncorrelated
(R2 < 0.05). Furthermore, a sensitivity analysis using constant values for fOM , along
with the mean and standard deviation for fOM reported by Picciafuoco et al., 2019a
revealed unsatisfactory results (not shown). Alternatively, published petrophysical re-
lationships between EC and fOM could be used. One of the few studies that addressed
the quantitative relationship between soil organic matter and electrical conductivity
provided by EMI (e.g., Garcia-Tomillo et al., 2017) was performed in a study area
with a substantially different soil type (sandy-loam), only using ECa in conjunction
with a different instrument, thereby significantly limiting its applicability to our study
site. Given these challenges, we decided against using proxy solutions to estimate
organic matter content, as they would likely introduce additional uncertainty into our
predictions. This decision underscores the importance of site-specific calibration and
the need for caution when applying relationships derived from different environmental
contexts. Our approach prioritizes minimizing prediction uncertainty by avoiding po-
tentially unreliable proxy methods, emphasizing the need for direct measurements or
more robust estimation techniques tailored to the specific characteristics of our study
area.

6.5 Conclusions

This study demonstrates the potential of using EMI within a multi-step framework to
predict soil textural and hydraulic properties at the catchment scale. The key findings
and contributions include:

1. The development, evaluation, and application of a DL network that permits the
rapid and accurate prediction of 1D EC depth models from multicoil ECa VCP
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Figure 6.11: Split-sample validation for the recalibrated pedotransfer function to
predict saturated hydraulic conductivity Ks. The measured and predicted Ks values
refer to a depth range between between 0.00-0.36 m.

Figure 6.12: Predicted saturated hydraulic conductivity maps for the 12 depth layers.

measurements. Its performance was evaluated based on a comparison with a clas-
sic deterministic inversion approach, and only minor discrepancies were observed
between the EC models. Moreover, compared to deterministic approaches, the
DL network permits a significantly faster estimation of the EC models, which,
considering that EMI surveys have become increasingly motorized, could facili-
tate large-scale investigations and decision-making processes.

2. The establishment of site-specific petrophysical relationships linking the pre-
dicted EC to soil textural properties, specifically, the soil volume fractions of
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6 Predicting hydraulic conductivity from electromagnetic induction imaging data

sand, silt, and clay. These relationships were evaluated through split-sample
validation, and reasonably well-defined correlations for silt (R2=0.4) and clay
(R2=0.33) could be established, permitting the prediction of soil textural infor-
mation for the entire catchment. Consistent trends (with discrepancies of 2-5%)
between the predicted and measured soil properties, as evidenced in extracted
soil profiles, could be observed, promoting confidence in the proposed approach
and the established relationships.

3. The recalibration of an existing field-scale PTF available for the catchment to
predict Ks, using the predicted soil textural properties and topographic variables.
This permitted the generation of high-resolution maps (2.5x2.5 m) of the spatial
K variations for 12 depths down to 1.5 m, with predicted Ks values ranging
between 8-40 mm/h for the upper 0.5 m, whereas a constant decrease in Ks

values (< 24 mm/h) below that depth can be observed.

The proposed multi-step framework has significant potential to enhance hydrological
modeling and support water resource management in agricultural catchments, particu-
larly for catchments characterized by heavy soils such as the HOAL. The integration of
EMI measurements, DL techniques, and PTFs provides a comprehensive approach to
predicting soil properties at high spatial resolution. Further research is needed to test
the transferability of this method to other soil textural settings, deeper investigations
and other EMI sensor systems.

Appendix

Electromagnetic induction imaging: forward modeling and deterministic
inversion

All forward modeling throughout this manuscript is based on the linear cumulative
sensitivity (CS) forward model using the LIN approximation as provided by McNeill,
1980b. The cumulative sensitivity functions, which describe the relative contribution
of materials below a normalized depth z̃ = z/r can be written as follows

RV (z̃) =
√
4z̃2 + 1− 2z̃ (6.5)

RH(z̃) =
1√

4z̃2 + 1
(6.6)
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in which RV (z̃) and RH(z̃) are the functions for VCP and HCP configurations, respec-
tively. The use of the normalized depth z̃ was proposed by Callegary et al., 2007 to
account for different coil separations r. For a given 1D model, composed of N EC lay-
ers over an infinite half space with conductivity ECN+1, and assuming LIN conditions,
the forward response can be computed using Equations 6.5 and 6.6, as:

ECa =
N�
i=0

ECi+1[RV |H(z̃b,i)−RV |H(z̃b,i+1)] (6.7)

where z̃b,i is the depth of the bottom edge of layer i and z̃b,0 = 0, z̃b,n+1 = ∞. We used
the implementation of the forward algorithm provided by EMagPy (McLachlan et al.,
2021a).

As an ill-posed problem, deterministic inversion involves minimizing a regularized
misfit function, which is typically written as

Φ = Φd + αΦm (6.8)

in which Φd is the data misfit, Φm is the model misfit and α is the regularization
parameter. α governs the regularization strength, and consequently, the influence of
the model misfit on the total misfit. Using L2 regularization, the data misfit function
can be formulated as:

Φd =
1

N

N�
i=1

(di − fi)
2 (6.9)

where N denotes the number of measurements, di represents the measured value and
fi is the forward response. The model misfit function is defined as:

Φm =
1

M

M−1�
k=1

(ECk − ECk+1)
2. (6.10)

where M represents the number of layers of the 1D EC model and ECk is the conduc-
tivity of layer k.

Deterministic inversion results presented in this manuscript were obtained using the
implementation within EMagPy (McLachlan et al., 2021a) using the CS forward model
with LIN approximation for fi presented above and the L2 regularization outlined here.
The 12 layer depth model presented in Table 6.1 was used and no noise was specified
during inversion. Inversions were performed on selected sections in the catchment (c.f.
Figure 6.1) as well as for the entire dataset (∼ 30 minutes: AMD Ryzen 5 5600X
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6-Core Processor 3.70 GHz; 32 GB RAM).

Complementary geophysical data: complex conductivity imaging

Complex conductivity (CCI) or complex resistivity (CRI) imaging is an extension of
the electrical resistivity tomography (ERT) method that permits to obtain 2D or 3D
information of both the resistive (or conductive) and capacitive electrical properties
within the subsurface (Ward, 1990; Binley and Kemna, 2005). Analogous to the ERT
method, the measurements consist of four electrode configurations - two of which are
used for current injection and the other two to record the corresponding voltage. De-
pending on whether the measurements are performed in the time or frequency domain,
the determination of the so-called induced polarization (IP) effect (which describes the
capacitive response of the subsurface) consists of the measurement of the voltage decay
after current shut-off (time domain) or the measurement of the phase-shift between
the injected sinusoidal current and measured voltage signal (frequency domain). To
provide subsurface models of the electrical properties, inversion algorithms for mea-
surement performed in the time and frequency domain have been formulated (Kemna,
2000; Loke et al., 2006; Fiandaca et al., 2012; Madsen et al., 2020).

Inversion results can be given in terms of the complex electrical conductivity σ∗(ω)

(where ω is the angular excitation frequency). The complex conductivity can be
expressed by means of its real, σ′(ω), and imaginary, σ′′(ω) components, or by its
magnitude |σ∗(ω)| and phase-shift ϕ(ω). Both expressions are related:

σ∗(ω) = |σ∗(ω)|eiϕ = σ′(ω) + iσ′′(ω) (6.11)

with i =
√−1, and further:

ϕ = arctan
σ′′(ω)
σ′(ω)

. (6.12)

The conduction properties, which relate to energy loss, are represented by the real (or
in-phase) component, while the polarization/capacitive properties, associated with
energy storage, are represented by the imaginary (or quadrature) component of the
subsurface (Ward, 1990; Binley and Kemna, 2005).

CCI data were collected prior to the drilling of shallow boreholes (< 15 m depth)
in the catchment (Figure 6.1). The objective was to provide a-priori information
to be able to adjust the drilling depths or locations if needed. Where possible, the
profiles were aligned perpendicular to each other in an effort to characterize possible
anisotropy effects of the subsurface electrical properties and to permit the determi-
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nation of possible 3D geometries. The data were collected using a Syscal Pro (Iris
Instruments), deploying 72 electrodes with 1 m spacing. A multi-skip dipole-dipole
protocol was used as electrode configuration, combining different skip values, whereas
skip refers to the number of electrodes skipped in each dipole to adjust the dipole
length (Gallistl et al., 2018; Flores Orozco et al., 2018b). Due to the heavy soils, low
contact resistances (< 0.5 kOhm) were observed resulting in high injected currents
between 300-700 mA. A pulse length of 2000 ms was chosen to obtain information
on the IP effect. Data processing consisted of a removal of outliers by applying the
filter methodology outlined by Gallistl et al., 2018 and a subsequent inversion with
ResIPy (Blanchy et al., 2020). Although relatively large IP effects can be observed
in the catchment, hereafter we only present results expressed as the magnitude |σ∗|
of the complex conductivity, i.e. only the conductive properties of the subsurface are
described.

Ridge regression and cross validation approach

The PTF describes a linear regression model, comprised of the regressor matrix X

(n× p), the vector of dependent variables y (x× 1), the unknown parameter vector β
(p× 1), and an error vector ϵ (n× 1), and can be written in vector form as:

y = Xβ + ϵ. (6.13)

The regressor matrix X contains the standardized regressors, whereas the order of the
columns is fc, f 2

c , fsi, f 2
si, fsa, f 2

sa, S, EL, and each element xi,j is given by:

xi,j =
xi,j − µj

SDj

. (6.14)

µj and SDj are the mean and standard deviation of the jth elements of X. The linear
regression model can be solved provided that the columns of the regressor matrix are
linearly independent as follows:

β̃ = (XTX)−1XTy (6.15)

In the case of multicollinear columns, which is true for the predicted SSC data, the
linear model in Equation 6.15 tends to perform poorly as XTX might become singular.
Ridge regression (Hoerl and Kennard, 1970) aims to stabilize the model by imposing
a penalty parameter α (≥ 0) on the model, which helps to keep XTX invertible by
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adding positive elements to the diagonals:

β̃R = (XTX + αI)−1XTy (6.16)

where I denotes the identity matrix. For α = 0 the above model reduces to Equation
6.15. As for example discussed in Dorugade, 2014 the selection of an appropriate value
for α is critical and numerous approaches have been proposed. In this study, cross-
validation was used to determine the optimal value for α. The dataset was first divided
into a calibration (66%) and validation dataset (34%); with the former used for the
cross-validation parameter search, and the latter used for the split-sample validation
discussed above. Subsequently, the calibration dataset was divided into 15 shuffled
random folds, which were further split into training and testing datasets, with 66%
and 34% of the data reserved, respectively. For each fold, the ridge regression model
was fitted to the training data using 10,000 α values in the range between 0.001 and
250, and the R2 score for each associated testing dataset was computed. Consequently,
for each fold, an R2 curve for the testing dataset as a function of α values could be
derived, and using all 15 curves, a mean curve across all folds could be obtained. The
optimal α was selected as the value that maximizes the R2 score for the mean curve.
The calibration dataset was refitted using this α value. The so obtained PTF using
ridge regression writes as:

⟨Ks⟩ = 16.46 + X̃β̂ (6.17)

with β̂ being the vector of ridge coefficients

β̂T = [−0.82 − 0.88 0.67 0.65 − 0.76 − 0.79 − 3.74 − 0.30] (6.18)

and µ and SD are the mean and standard deviations to compute the regressor elements
of X̃:

µ = [17.91 328.13 75.39 5693.81 6.53 42.82 6.60 272.86] (6.19)

SD = [2.70 92.72 3.16 482.07 0.46 5.89 1.71 13.31]. (6.20)
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7 Developing a catchment-scale hydrogeophysical

model: insights from complex conductivity

imaging at the HOAL

7.1 Introduction

The previous chapter highlighted the critical role of soil-textural and hydraulic infor-
mation as a prerequisite in hydrogeological modeling (Slater, 2007; Zhang et al., 2007;
Enemark et al., 2019). While the results presented in Chapter 6 provided valuable
insights into near-surface textural and hydraulic properties, representing a significant
step towards an enhanced understanding of surface and near-surface run-off processes
(Carey et al., 2019; Fiener et al., 2011), deeper subsurface information about hydraulic
properties is required to conceptualize and understand the hydrogeological setting of
the research catchment under consideration and to address the modeling of ground-
water recharge and groundwater availability (Tanner and Hughes, 2015; Doble and
Crosbie, 2017; Waseem et al., 2020). Currently employed hydrogeological models in
the catchment (Pavlin et al., 2020) are oversimplified in terms of subsurface struc-
ture and rely on discrete borehole information and hydraulic conductivity predictions
without depth information, that is, relating to the uppermost subsurface layers (Pic-
ciafuoco et al., 2019b; Picciafuoco et al., 2019a). While the multi-step framework
outlined in Chapter 6 can potentially be adapted for sensors with greater investiga-
tion depths, complex conductivity imaging (CCI) offers an alternative and valuable
geophysical method for obtaining deeper subsurface information within the catchment.

Over 100 CCI profiles distributed throughout the catchment have been collected
with the objective of a hydrogeophysical characterization of the catchment. As previ-
ously discussed, CCI permits to quantify both the capacitive and conductive electrical
properties and, thus, is well-suited for application in a catchment rich in fine-grained
sediments (combined silt and clay > 90%), where electrical resistivity tomography
(ERT) might fail to discriminate between saturated and clay-rich zones (Flores Orozco
et al., 2018b; Gallistl et al., 2018; Gallistl et al., 2022). Various electrode spacings in
the CCI profiles were employed to obtain information about the subsurface electrical
properties at different resolution scales, from shallow (down to 10 m) to deep (down
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to 60 m) depths. Such dataset, together with extensive borehole information, should
permit the development of a hydrogeophysical model of the catchment, which can sub-
sequently be deployed for model calibration in hydrogeological modeling and represents
a significant advancement towards an enhanced understanding of the hydrogeological
environment of the catchment.

This chapter presents borehole information and discusses two potential conceptual
hydrogeological models of the catchment. CCI is then used to parameterize one of
the models in a two-step procedure: (1) delineating the topography of a confining
layer at depth, and (2) predicting catchment-scale hydraulic conductivity using the
pedotransfer function recalibrated in Chapter 6. Such an approach permits the first
realization of a three-dimensional hydrogeophysical model of the catchment, providing
valuable insights in the catchment’s subsurface hydraulic characteristics.

7.2 Material and Methods

7.2.1 Complex conductivity mapping for catchment characterization

Large-scale CCI data were collected along 76 profiles (c.f. Figure 7.1) in the Hydro-
logical Open Air Laboratory (HOAL) - a 66 ha well-instrumented research catchment
located in Petzenkirchen, Lower Austria, focusing on long-term scientific experiments
that investigate surface-groundwater interactions (Blöschl et al., 2016). For further
details on the study area revisit Chapter 6. The objective was the geophysical char-
acterization and subsequent development of conceptual hydrogeological model of the
catchment. The majority of the 76 profiles were collected as frequency-domain in-
duced polarization (IP) measurements at 1 Hz excitation frequency, applying a range
of electrodes spacings between 1-5 m and a multiple-gradient (MG) electrode configu-
ration (Dahlin and Zhou, 2006), targeting a depth of investigation between 15-60 m.
The data were collected using a DAS-1 instrument (from MultiPhase Technologies).
Most of the profiles in the stream area were collected as time-domain IP measurements
using smaller electrode spacings between 0.5-2 m and a dipole-dipole (DD) electrode
configuration combining different skip-values (Slater et al., 2000; Flores Orozco et al.,
2018b). Consequently, the targeted depth of investigation was shallower with a maxi-
mum of approximately 30 m depth. Data collection was performed with a Syscal Pro
(from Iris Instruments) using pulse lengths of 500-2000 ms to obtain information on
the IP effect.

Additional to the large-scale CCI mapping, 13 time-domain IP profiles were collected
to provide detailed information about the subsurface electrical properties down to 15 m
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depth, as required prior to planned drilling of eight boreholes in the catchment (Figure
7.1). A multi-skip DD electrode configuration along with 72 electrodes and 1 m spacing
was deployed and the data collection was performed using a Syscal Pro with a pulse
length of 2000 ms. Where applicable, perpendicular profiles were collected to obtain
information about possible 3D subsurface geometries. For all profiles in consideration
(mapping and boreholes profiles), low contact resistances (< 0.5 kΩ) were observed,
due to the fine-grained sediments typical for the HOAL, resulting in injected currents
between 300-700 mA.

Processing of the data consisted of (1) removal of outliers and (2) inversion of the
imaging datasets. In a first step, measurements characterized by negative transfer
resistances R = V/I (with V and I being the measured voltage and injected current,
respectively) were removed. Such measurements are related to low signal-to-noise
ratios, typical for excessively conductive or resistive environments, with the HOAL,
characterized by its heavy soils, representing a particularly conductive environment.
In a second step, different processing approaches were applied, depending on the type
of IP measurement (time or frequency domain). For time-domain IP measurements,
the decay-curve analysis (DCA) processing methodology (Flores Orozco et al., 2018a)
was employed to remove measurements associated to erroneous decay curves (i.e., the
voltage decay after current shut-off) by comparing each decay curve to an average
decay curve computed for a subset of the imaging dataset. For frequency-domain IP
data, the processing methodology outlined by Gallistl et al. (2018) was used, which
is a modification of the DCA scheme adapted to frequency-domain data and is based
on the same fundamental assumption that pseudosections (i.e., the representation of
measured raw data), should reveal spatial consistent patterns with gradual changes
in the measured IP effect. For further details on the approach, refer to Gallistl et al.
(2018). The inversion of the filtered imaging datasets was performed using ResIPy
(Blanchy et al., 2020), a smoothness constrained complex resistivity inversion scheme.
For this purpose the time-domain IP datasets were linearly converted to frequency
domain datasets assuming a constant-phase response (Van Voorhis et al., 1973; Flo-
res Orozco et al., 2012a). All inversions converged to a root-mean-square error of
approximately 1.

7.2.2 Complementary geophysical data: seismic imaging

To evaluate the CCI imaging result at the planned borehole locations, seismic imaging
in terms of refraction seismic tomography (RST) and multichannel analysis of surface
waves (MASW) was conducted (Lankston, 1990; Everett, 2013; Park et al., 1999).
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Figure 7.1: General overview of the catchment, location of the complex conductivity
imaging (CCI) and seismic imaging profiles and location of boreholes.

The locations of the profiles are identical to the CCI profiles (c.f. Figure 7.1) and the
data collection comprised profiles of 48 vertical 30 Hz geophones each, with a spacing
of 1 m between each geophone and employing a record length of 1024 ms with 0.5
ms sampling rate. The generation of the seismic wavefield was accomplished with a
5 kg sledgehammer, and shots outside of the receiver spread at -10, -8, -4, -2 and
50, 52, 54, 56 m along the profile and inline at every second geophone starting with
geophone 1 were performed with one shot at each location. This geometry facilitated
the processing of the data for both RST and MASW.

Processing of the RST data involved signal processing (band-pass filtering, ampli-
tude correction and removal of noisy traces) and the picking of first arrivals of the
refracted waves. Inversion was performed with RayfractTM (Intelligent Resources Inc)
to obtain a 2D P-wave velocity field. The surface waves processing entailed combining
all shots to generate a single dispersion curve, extraction the first mode of the dis-
perion curve in the dispersion image, and inverting the picked dispersion curve with
ParkSEIS (Park Seismic LLC) to obtain a 1D model of the seismic S-wave velocity in
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Table 7.1: Drilled depth in each borehole and number of samples analyzed in the
laboratory for grain size distribution, total organic carbon, pH and CaCO3.
Borehole Depth [m] Laboratory samples
B1 15 7
B2 15 9
B3 8 6
B4 15 8
B5 15 9
B6 15 10
B7 36 7
B8 15 9

the center of the profile.

7.2.3 Ground-truthing through borehole information

To gain information about the soil textural and possible hydrogeologcial situation in
the HOAL, eight boreholes (Figure 7.1) were drilled down to a depth of 15 m, with
boreholes B3 and B7 being exceptions reaching depths of 8 and 36 m, respectively.
Coring was performed in each borehole and the predominant units in the retrieved
sediments were sampled for a subsequent laboratory analysis which included grain
size distribution based on sieving and sedimentation analysis (ÖNORM L 1061-2)
to obtain the volume fractions of sand, silt and clay, and the quantification of total
organic carbon (TOC), pH and CaC03 (with reference to ÖNORM L 1080, ÖNORM
L 1083 and ÖNORM L 1084). The number of samples along with the drilled depths
are presented in Table 7.1.

7.3 Results and discussion

7.3.1 Boreholes reveal occurrence of artesian aquifer system within lignite
sequences

The recovered cores in boreholes B2, B3, B5, B7, and B8 revealed the presence of
layers of lignite (Figure 7.2), a low-rank brown coal that forms at the early stage in
coal formation. This discovery provides insight into the geological history of the area,
as lignite formation is part of a complex process that begins with the accumulation of
plant material in swampy areas. Over time, this organic matter partially decomposes
to form peat deposits, which are subsequently buried beneath marine sediments due to
rising sea levels or land subsidence. The weight of these overlying sediments compresses
the peat, and under high temperatures, it gradually transforms into coal, with lignite
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representing an intermediate stage in this transformation (Závodská and Lesn’y, 2006;
Keppeler, 2015).

The lignite unit observed in the boreholes consists of sequences of consolidated and
unconsolidated layers in different thicknesses (Figure 7.2). The consolidated layers
comprise dry, hard silty/clayey lignite with diminishing fractions of sand, while the
unconsolidated layers were highly saturated and featured a wide range of poorly sorted
grain sizes with pebbles up to 6 cm. The consolidated layers function as aquitards
due to the high clay content (up to 50%), whereas the unconsolidated layers can be
classified as aquifers, as evidenced by observed wetness during drilling. Moreover, at
borehole B2 one of the many unconsolidated lignite layers corresponds to an confined
aquifer, resulting in the formation of an artesian well in B2, with the groundwater
level significantly above surface level (∼ 1.3 m). This fact forced the reduction of the
maximum depth for the drilling of B3 to 8 m. Boreholes B1 and B6 did not reveal any
lignite, possibly due to its presence at depths below 15 m. To investigate this hypoth-
esis, borehole B7 was drilled to a substantially larger depth, albeit without continuous
core recovery. At approximately 36 m, unconsolidated, saturated, and brownish ma-
terials were recovered which were interpreted as one of the unconsolidated lignite
aquifers. The core in B4 revealed an earlier stage of lignite formation, characterized
by lower compaction and lighter coloration, without the presence of unconsolidated
and consolidated layers. The occurrence of lignite was unexpected as the geological
prior information indicated siltstones at depth. In general, lignite layers, respectively
brown coal have so far only been reported for the Styrian (Bechtel et al., 2002), Vi-
enna (Bechtel et al., 2007) and Alpine Foreland Basin in Upper Austria (Bechtel et al.,
2003). Lignite seams do not necessarily need to follow surface topography and their
thicknesses can reach from a few dm to tens of meters, thus can be relatively complex,
particularly when fracturing is expected (Bechtel et al., 2007; Widera, 2013; Widera,
2016).

To understand the hydrogeological setting in the HOAL, two scenarios could be
proposed: (1) the lignite is continuous throughout the catchment and functions as
a confining layer without fractures, with smaller aquifer systems within the lignite
sequence that are not connected to the overlying sediment system/unconfined aquifer
(Figure 7.3a), or (2) the lignite exists as several disconnected lignite seams with varying
thickness, potential fractures, and possible recharge through surface water, wherein
the lignite may not be continuous throughout the catchment (Figure 7.3b). Evidently,
(2) presents a more complex model than (1) and, therefore, as an initial approach to
understanding the hydrogeological situation in the HOAL, the conceptual model of
scenario (1) was employed for further investigations.

156



7.3 Results and discussion

Figure 7.2: Simplified lithological description of borehole B2 and recovered core.

7.3.2 Mapping lignite contact with geophysical imaging

The realization of the aforementioned conceptual model necessitates sufficient contrast
in the electrical properties at the depth of the contact to the lignite sequence. If such
contrast exists, the extensive CCI mapping could be used to create a map of the
lignite elevation and depth for the entire catchment. To evaluate the performance
of the applied geophysical imaging methods in this regard, Figure 7.4 presents the
imaging results of the CCI, RST, and MASW methods in comparison to the grain size
distribution (GSD) and TOC for two selected boreholes. CCI results in terms of the
real (σ ′) and imaginary (σ,′′) part of the complex conductivity σ∗ for B3 demonstrate
a gradual increase from roughly 2 to 6.5 m depth with σ ′ and σ,′′ values increasing
from 40-110 mS/m and 100-400 µS/m, respectively. Below the lignite contact, at 6.5
m depth, σ ′ remains constant and σ,′′ decreases slightly to values of ∼ 350 µS/m. The
change in textural composition for the first three meters, characterized by an increase
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Figure 7.3: Conceptual hydrogeological models for a west-east cross-section in the
HOAL (c.f. Figure 7.1) assuming a) a continuous and b) discontinuous lignite sequence.

in sand content (to 10%) and a decrease in clay (from 25 to 10 %), is resolved by both
electrical properties, whereas σ ′ appears to provide slightly more contrast. Similar
observations can be made for B5. However, the gradual increase up to the depth
of the lignite contact is much more pronounced in σ,′′ than σ ′, with σ ′′ revealing
an increase from 250-625 µS/m in the depth range between 2 and 7 m. In contrast
to B3, below the lignite contact (at 6.5 m depth), both electrical properties show a
decrease in values, again much more pronounced in σ ′′ which decreases to a value of
250 µS/m. Nevertheless, for both boreholes σ ′′ shows a maximum approximately at
the depth of the lignite contact, which corresponds to an increase in TOC to 1-2 %.
In general, TOC is expected to decrease with depth due diminishing organic input
from plant matter, roots exudates, bioturbation and microbial activity (Rumpel and
Kögel-Knabner, 2011; Yang et al., 2022). With lignite forming from carbon rich peat
layers, the observed increase in TOC can be easily explained and delineation of the
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Figure 7.4: Columns 1-4: Geophysical imaging results in terms of the real σ ′ and
imaginary σ ′′ part of the complex conductivity σ∗ and the P- (Vp) and S-wave (Vs)
velocity obtained from seismic imaging. Columns 4 and 5: Ground-truth information
as grain size distribution (i.e., the volume fractions of sand, silt and clay) and total
organic carbon (TOC). The grey box indicates the contact to the lignite sequence.

lignite contact could potentially be realized through mapping of increased TOC values
at depth. However, this would require robust petrophysical relationships.

Seismic imaging in terms of RST shows an increase in P-wave velocity down to the
lignite contact with Vp values increasing from ∼ 500 to 1500 m/s. A plateau (B5) and
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Figure 7.5: Map of the lignite elevation (top) and depth (bottom) based σ ′′ imag-
ing results for all available profiles in the catchment and incorporating the lignite
depth/elevation from borehole information.

maximum value (B2) in Vp can be observed at the approximate depth of the lignite
contact, which probably refers to the uppermost consolidated lignite layer, yielding a
higher seismic velocity due to compaction of the dry and hard clay. An alternative ex-
planation could be an increase in saturation, as observed in the unconsolidated layers
(Milkereit et al., 1986). Moreover, B3 shows a slight decrease in Vp directly below the
lignite contact, which, potentially could be correlated with an unconsolidated lignite
layer. However, as velocity decreases are notoriously difficult to resolve with RST
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(Kearey et al., 2002; Whiteley and Eccleston, 2006; Yari et al., 2021), the interpre-
tation of this anomaly as an unconsolidated layer may be speculative. Furthermore,
no such anomaly was observed in the RST results for any other borehole. The results
from MASW indicate an increase in S-wave velocity at the depth of the lignite contact
from approximately 125 to 400 m/s, consistent to the other discussed methods.

All geophysical methods presented in Figure 7.4 share the characteristic that only
the depth to the contact to the lignite can be resolved; however, not the different
sequences within it (i.e., consolidated and unconsolidated). Mapping of different layers
within the lignite would likely require borehole or borehole-surface measurements not
feasible if catchment-scale information is needed. Moreover, all methods show slight
discrepancies regarding the estimated depth of the lignite contact, with vertical offsets
of ± 1-1.5 m. However, for the realization of an initial hydrogeophysical model this
accuracy is sufficient and can be refined with detailed geophysical investigations if
necessary.

Given that σ ′′ revealed the most significant contrast at the lignite contact, this
information was used to map lignite depth and elevation throughout the catchment.
To achieve this, a semi-supervised approach was developed based on the calculation
first derivatives of the σ ′′ field (sections) to compute the inflection points and, thus,
the maxima in their distribution. The obtained depths were visually inspected and
reviewed for inconsistencies with neighboring profiles. Moreover, the known lignite
depths from boreholes were incorporated.

Maps of lignite depth and elevation, as presented in Figure 7.5, are based on kriging
interpolation without direction smoothing and circular searching space. Figure 7.5
demonstrates that, based on the geophysical delineation from the σ ′′ contrast, the
lignite appears to neither follow the surface topography, nor is strictly horizontal. In-
stead, it shows an undulating topography throughout the catchment, with topographi-
cally elevated areas in the western, southwestern and eastern parts, whereas the lowest
elevations can be observed in the area surrounding the stream. A significant depression
can be observed in the western part of the catchment with elevation gradients of up
to 40 m, which may explain why B6 did not reveal lignite in the retrieved cores. The
origin of this depression cannot be explained easily. As is refers to well-resolved areas
along the CCI profiles and is consistent with neighboring profiles, the possibility of it
being an inversion artifact was discounted. Moreover, due to the depth of the observed
σ ′′ anomaly, the likelihood of it being the polarization response due to anthropogenic
sources, such as power cables or buried metallic objects, is minimal. To sustain the
interpretation of the depression, an evaluation with other potentially deep-reaching
geophysical methods, such as transient electromagnetic soundings (TEMs) should be
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considered (Danielsen et al., 2003; Bücker et al., 2017).

7.3.3 Experimental petrophysical relationships for soil-textural prediction

With the topography of the confining consolidated lignite layer established, the next
step towards the realization of the hydrogeophysical model is the quantification of
hydraulic conductivity K for the sediments above the lignite layer. To achieve this,
either petrophysical relationships, that permit the prediction of K from geophysical
parameters or the two-step approach discussed in Chapter 6, which comprises first
linking the geophysical parameters to GSD first and then using a PTF to predict
K, is required. Given the availability of GSD data at eight boreholes, totaling 82
samples, it was determined that developing site-specific petrophysical relationships
would be more appropriate, thus opting for the aforementioned two-step approach
rather than rely on upscaling of laboratory-derived relationships, which may not be
representative of the soil-physical environment at the study area. To this end, values
of the real and imaginary part of the complex conductivity were extracted from the
CCI profiles at the depth and location of the borehole samples and correlation analysis
using split-sample validation (SSV) was performed. SSV ensures the generalizability
of the derived relationships by evaluating the prediction results on unseen data that
were not used in the developing of the correlation. For this purpose, the dataset was
divided into 80% calibration and 20% validation data. As previously discussed, σ ′

revealed the most significant sensitivity to soil-textural changes, and, consequently,
the following results are only show the correlations with σ ′. Similar correlations could
be obtained for σ ′′; however substantially lower R2 and RMSE values were observed,
thus rendering σ ′ the more suitable predictor variable.

Results of the SSV analysis are presented in Figure 7.6 with each row corresponding
to one soil fraction under consideration: column 1 shows linear model fitted to the
calibration set, while the validation set presented in column 2 can be used to evaluate
the validity of the fitted model. Columns 3 and 4 present the comparison of the
sampled and predicted soil fraction for the calibration and validation sets, respectively.
As no significant correlation between σ ′ and the sand fraction could be established,
R2 and RMSE scores are not indicated in Figure 7.6. The plotted linear model is
computed as follows:

fsa = 100− (fsi + fc). (7.1)

Figure 7.6 demonstrates distinct relationships between σ ′ and the silt and clay frac-
tion. For silt, a negative correlation (R2=0.46) can be observed, which is adequately
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replicated by the validation set. Regarding the prediction performance, comparable
RMSE scores (with 7 and 8.5%) can be reached, albeit with a slight overestimation of
the intermediate silt range (60-75%). In contrast, a positive relationship of the fraction
of clay with increasing σ ′ can be observed with a comparable R2 score of 0.45 and
similar performance on the validation set. However, for the clay fraction the predic-
tion performance is slightly inferior with RMSE scores of 7.9% for the calibration and
9.4% for the validation set. An increase of σ ′ with increasing clay content is expected,
as for soil textures with an abundance of clay the conduction mechanism shifts from
electrolytic conduction to surface conduction along the mineral grain, in the electrical
double layer, typically associated with an significant increase in σ ′ (Ghorbani et al.,
2009; Okay et al., 2014).

Figure 7.7 presents the prediction functions derived from the correlation analysis
for the different soil fractions, as well as the model parameters of the linear regression
models. A comparison with the prediction functions presented in Chapter 6 reveals a
similar prediction trends of the obtained relationships. The slopes of the linear models
presented in Chapter 6, based on the electrical conductivity (EC) from electromag-
netic induction imaging measurements rather than the real part σ ′ of the complex
conductivity, indicate a steeper increases and decreases in the silt and clay prediction,
approximately a factor 2 larger than the slopes presented here. Consequently, the
cross-over threshold, where the clay fraction exceeds the the silt fraction shifts from
approximately 65 mS/m to 120 mS/m. Moreover, this results in a different behavior
for the fraction of sand, which now decrease from values of approximately 10-5% for
the σ ′ range under consideration. Nevertheless, the general patterns remain consis-
tent, which permits the application of the recalibrated PTF presented in Chapter 6 to
predict saturated hydraulic conductivity.

7.3.4 Progressing towards a hydrogeophysical representation of the HOAL

Considering the decrease in resolution and increase in coarseness of the model dis-
cretization of CCI with depth, Ks prediction was performed for nine depth ranges
(Table 7.2); smaller depth ranges were used for the shallower depths, with increasingly
larger depth ranges for greater depths. The use of 2 m for the first three depth range
also represents the many different deployed electrode spacings in the CCI profiles and
can be considered as a spatial smoothing filter to average the shallow information from
profiles with different lateral resolution. To obtain spatially continuous information,
all predicted Ks values in the corresponding depth range were used for the natural
neighbor interpolation on a 15x15 m grid, disregarding different elevation values within
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Figure 7.6: Correlation and split-sample validation of the σ ′ and the different soil
volume fractions of sand, silt and clay.

the depth slice. Consequently, the interpolated Ks maps represent an average value
of the depth slice.

The Ks maps presented in Figure 7.8 reveal significant variations in the spatial
patterns and histograms for the depth ranges under consideration. While shallower
depths (between 0-8 m) are associated to Ks values in the range of approximately
10-18 mm/h, with increasing depth, a broadening and shift of the Ks distribution
in the histograms towards lower values in the range of 4-12 mm/h can be observed,
accompanied by distinct spatial changes. For instance, the hydraulically conductive
channels (> 12 mm/h) traversing in west-east direction in the central part of the
catchment are less pronounced at greater depths. At these depths, a shift towards
large areas of significantly low Ks values (< 4 mm/h) can be observed, particularly
for the northern and eastern regions. The comparison of the Ks maps in D1 and
the maps obtained from the EMI survey in Chapter 6, which approximately refer to

164



7.3 Results and discussion

Figure 7.7: Functions to predict the different soil fractions of sand, silt and clay based
on their dependence on σ ′.

the same depth of investigation, reveals consistent results for depths below 0.5 in the
EMI survey. Shallower Ks maps with increased Ks values larger than 30 mm/h in
the EMI survey are simply not resolved in the CCI mapping profiles, which are not
sensitive to small scale σ ′ and thus Ks variations in the uppermost subsurface layers.
Nevertheless, for depths below 0.5 m consistent spatial patterns and Ks ranges can be
observed for both approaches.

Provided the means to predict Ks down to the depth of the lignite sequence, the
conceptual model presented in Figure 7.3a can be reevaluated and parameterized. The
updated hydrogeophysical model, as illustrated in Figure 7.9, indicates distinct spatial

Table 7.2: Depth ranges used for the prediction of Ks and subsequent interpolation
of Ks maps.
Layer From [m] To [m]
D1 0 2
D2 2 4
D3 4 8
D4 8 12
D5 12 18
D6 18 24
D7 24 30
D8 30 36
D9 36 45
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Figure 7.8: Predicted saturated hydraulic conductivity Ks maps and the associated
normalized histograms for different depth ranges.

Ks variations along the cross-section characterized by hydraulically conductive areas
(Ks between 12-18 mm/h) and hydraulic barriers, where Ks is significantly below 8
mm/h. Notably, such barriers can be observed between boreholes B6 and B8, as well
as east of B3. However, further east of B3, there is a gap in both the Ks and lignite
contact information, due to the lack of CCI profiles in this particular area (c.f. Fig-
ure 7.1), hindering the interpretation of the further extend of such hydraulic barrier.
Moreover, Figure 7.9 reveals a minor discrepancy between the lignite contact depth
at borehole B2 as obtained from CCI and the borehole information. To investigate
this inconsistency, as well as the depression at 200 m along the cross-section, further
geophysical investigations are necessary, potentially employing other geophysical meth-
ods such as TEM and seismic imaging. The latter, in particular, has demonstrated
promising results in delineating the lignite contact, as previously discussed.

As of the present date, there are no comparable field-scale studies that have in-
vestigated the quantification of hydraulic conductivity for catchment characterization
based on CCI. While previous publications explored the potential of CCI to predict
Ks at the field-scale (Hördt et al., 2007; Attwa and Günther, 2013; Maurya et al.,
2018), such studies were limited to significantly smaller areas or even single profiles
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Figure 7.9: Updated hydrogeophysical cross-section incorporating the lignite contact
depth and Ks predictions from CCI.

and much smaller depths of investigation. Moreover, the Ks predictions presented in
such studies rely on upscaling of laboratory-derived petrophysical relationships, the
use of which present challenges such as fitting of specific model parameters or using
proxy values for parameters not readily available in field applications (Gallistl et al.,
2022; Flores Orozco et al., 2022). In contrast, the multi-step framework outlined herein
offers a straightforward and scalable approach to quantify Ks and represents a signifi-
cant advancement in establishing CCI as a readily applicable tool for hydrogeophysical
applications.

7.4 Conclusion

The comprehensive geophysical investigation of the HOAL catchment using large-
scale CCI, seismic imaging, along with borehole information has provided valuable
insights into the subsurface structure and hydrogeological characteristics of the catch-
ment. The unexpected discovery of lignite layers in the catchment revealed a com-
plex geological history and hydrogeological setting, leading to the development of two
conceptual models, whereas only one was considered for the development of a hy-
drogeophysical model. The conceptual model under consideration features a continu-
ous confining lignite layer with potential artesian aquifer systems. CCI, particularly
the imaginary part of complex conductivity, successfully mapped the lignite contact
throughout the catchment and seismic imaging was used to evaluated the approach.
Site-specific petrophysical relationships linking electrical properties to soil texture were
established, enabling catchment-scale prediction of soil textural parameters and con-
sequently spatially-distributed Ks values at various depths above the lignite layer.
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This multi-step approach has resulted in a detailed hydrogeophysical model of the
HOAL catchment, providing unprecedented insights into its subsurface structure and
hydraulic properties at greater depths, when compared to the existing approaches.
The methodology developed represents a significant advancement in using CCI for
catchment-scale characterization and quantification of hydraulic conductivity, which
is crucial for the understanding of run-off processes and the modeling of groundwater
recharge and its availability. While some uncertainties remain, particularly regarding
the exact depth of the lignite contact in certain areas and the nature of observed
depressions in the lignite topography, this study lays a strong foundation for future
hydrogeological investigations and modeling efforts in the HOAL catchment. Further
geophysical investigations, such as TEM and additional seismic imaging, could help
refine the model and address remaining uncertainties.
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8.1 Perspectives for future research activities

8.1.1 Extensions to the deep learning network

8.1.1.1 Incorporation of other geophysical forward models

While Chapter 6 explored the applicability of DL networks (DLNs) in the realm of
EMI, its potential extends beyond this specific geophysical method or the forward
models presented therein. A more comprehensive approach could involve using a full
solution of Maxwell’s equations to compute the primary HP and secondary magnetic
fields (HS) to account for both the in-phase and quadrature phase components (Ward
and Hohmann, 1988):

in-phase = Re(
HS

HP

) (8.1)

quadrature-phase = Im(
HS

HP

). (8.2)

The in-phase component is proportionally related to the subsurface magnetic suscep-
tibility χ (Won et al., 1998; Farquharson et al., 2003), while the quadrature-phase
component is linked to the subsurface electrical conductivity (McNeill, 1980a). To
implement this approach, the n-layered model for forward modeling would need to be
extended to include the information the χ and dielectric permittivity in each layer,
necessitating adaptations to the training data generation processes.

Recent research by Mendoza Veirana et al., 2024 has revealed a significant correla-
tion between the χ and the cation-exchange-capacity (CEC) and growing evidence sug-
gests that CEC can be estimated from IP measurements (Revil et al., 2021; McLach-
lan et al., 2024), indicating that IP data could be leveraged for generating training
datasets. Incorporating χ into the DLN could expand its applicability to archaeolog-
ical prospection (De Smedt et al., 2014; Simon et al., 2015; Delefortrie et al., 2018)
and potentially resolve interpretation ambiguities in areas where the EMI response is
governed by χ rather than the subsurface EC distribution, particularly in situations
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where the LIN approximation is not valid.

Further modifications to the forward model could include the integration a 3D for-
ward operator, enabling the investigation of subsurface structures with inherent 3D
characteristics (Cockett et al., 2015; Guillemoteau and Tronicke, 2016; Peng et al.,
2021). This modification would also require improved training data generation ap-
proaches to provide the required 3D information needed for the DLN to learn. A
potential solution could involve using at least two perpendicular IP profiles and a sub-
sequent interpolation to 3D volume. Alternatively, the use of pseudo-3D information,
where the 2D IP profile is extruded in perpendicular direction to build a "3D" model
could be investigated. As a final option, synthetic 3D models could be employed,
potentially tailored to the study site.

Other potential geophysical methods include the transient electromagnetic method
(Danielsen et al., 2003; Christiansen et al., 2006) and seismic imaging based on
Rayleigh wave dispersion in the form of multi-channel analysis of surface waves (Park
et al., 1999; Xia et al., 1999) or multi-offset phase analysis (Strobbia and Foti, 2006;
Barone et al., 2020; Barone et al., 2021). In the case of transient electromagnetic
method, the DLN could be adapted to handle time-domain data, learning to map the
temporal decay of electromagnetic fields to subsurface 1D EC models. Implement-
ing such an approach would require adequate generation procedures for the training
datasets, taking into account the subsurface model parameters (layer ECs and thick-
nesses) as well as transmitter and receiver characteristics (loop size and shape, current
amplitude, waveform and time range of measurements, among others). Such proce-
dures could rely on deep ERT surveys or synthetic models; whereas constructing a
training dataset based on field-data specific to the site is preferable. For the surface
waves methods, integrating the information from dispersion curves and potentially
waveforms could enable the DLN to learn to predict 1D shear-wave velocity models.
Considering that such approaches are based on Rayleigh-wave dispersion (Schwab and
Knopoff, 1972; Xia et al., 1999), the subsurface models need to be parametrized in
terms of the shear-wave velocity, the layer thicknesses and densities as well as Poisson’s
ratios or P-wave velocities. Moreover, source and receiver array characteristics must
be considered.

8.1.1.2 Uncertainty quantification

A major enhancement for the deep learning network (DLN) presented in Chapter 6
would be the quantification of uncertainty associated with it. To fully understand
how uncertainty can be represented in DLNs, it is necessary to consider the sources of
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uncertainty: aleatoric and epistemic uncertainty (Hora, 1996; Hüllermeier and Waege-
man, 2021). Aleatoric uncertainty, also referred to as statistical uncertainty, describes
the inherent randomness and, thus, the variability in the outcome due to inherently
random effects. It captures the uncertainty arising from the natural variability in
the input data and cannot be reduced by more observations or improving the model
(Kendall and Gal, 2017; Hüllermeier and Waegeman, 2021; Acharya et al., 2024). Con-
versely, epistemic, or systematic uncertainty, refers to the model’s uncertainty about
its own predictions and is caused by a lack of knowledge; therefore, it can be reduced
by a larger number of observations (Hüllermeier and Waegeman, 2021; Abdar et al.,
2021). As such, it represent the model’s confidence in its predictions based on the
training data it has seen (Kendall and Gal, 2017; Fellaji and Pennerath, 2024; Jürgens
et al., 2024). Hence, epistemic uncertainty refers to the uncertainty in model predic-
tions, when encountering data not seen in the training stage, requiring the model to
extrapolate beyond its learned knowledge.

As noted by Hüllermeier and Waegeman, 2021; Der Kiureghian and Ditlevsen, 2009
aleatoric and epistemic uncertainty may not be considered as absolute notions, and,
in fact, depend on the context and the model. Consequently, changing the context
might transform aleatoric into epistemic uncertainty and vice versa (Hüllermeier and
Waegeman, 2021). This notion is further supported by the substantial number of
publications (> 2500) regarding uncertainty quantification in artificial intelligence be-
tween the years 2010 and 2021, as reported in Abdar et al., 2021. As a highly dynamic
research field, there is still no consensus on best practices for addressing uncertainty
quantification, with various potential solutions being currently discussed including ad-
hoc approaches and approaches embedded in statistical or probabilistic frameworks.

Bayesian neural networks (BNNs) are an extension of standard deep neural networks
that incorporate probabilistic principles to capture uncertainty in model parameters
and predictions (Goan and Fookes, 2020; Jospin et al., 2022). Unlike traditional
neural networks that provide point estimates, BNNs offer probability distributions over
output predictions and model weights, enabling better uncertainty quantification both
in terms of aleatoric and epistemic uncertainty (Olivier et al., 2021; Jospin et al., 2022).
The fundamental concept underlying BNNs is the application of Bayesian inference
to neural network training, treating network weights as random variables with prior
distributions (Jospin et al., 2022; Charnock et al., 2022). This approach allows for the
quantification of epistemic uncertainty through the use of probability distributions
over the model parameters, which is particularly useful in scenarios where data is
limited or noisy (Woo, 2022; Linander et al., 2023). Aleatoric uncertainty, conversely,
can be accounted for quantifying probability distributions for the in- and output, for
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instance, in terms of normal distributions with a mean and variance (Olivier et al.,
2021; Caceres et al., 2021).

Notably, while BNNs appear promising due to sound probabilistic foundation and
their ability to quantify both aleatoric and epistemic uncertainty, they are also pre-
sented with significant challenges in terms of computational overhead and scalability,
which limit their applicability to smaller networks and often come with constraining
assumptions (Lampinen and Vehtari, 2001; Sharma and Jennings, 2021; Franchi et al.,
2024). Moreover, model selection, including determining the optimal number of nodes,
remains an open question for BNNs, as traditional methods for architecture selection
may not be directly applicable to BNNs due to their probabilistic nature (Ghosh et al.,
2019; Yin and Zhu, 2020).

Deep ensemble (DE) learning has been proposed as an alternative to BNNs offer-
ing better computational scalability (Egele et al., 2022; Ganaie et al., 2022), while
maintaining the potential to quantify both aleatoric and epistemic uncertainty. DEs
involve training multiple neural networks independently and aggregating their predic-
tions. Such ensembles can be constructed by applying different network structures
using the same input data, applying identical network structures and input data but
using a random initialization for each network in the training process, or by splitting
the input data into different subsamples and either training different or the identical
network structures and combing the predictions (Egele et al., 2022; Gawlikowski et al.,
2023; Mohammed and Kora, 2023). Aleatoric uncertainty can be quantified through
the variance in predictions across ensemble members for a given input, while epistemic
uncertainty is represented by the disagreement between ensemble members (Lakshmi-
narayanan et al., 2017; Mohammed and Kora, 2023). Other approaches include the
decomposition of the predictive variance of DEs to separate the two types of uncer-
tainties (Egele et al., 2022). While originally proposed as a non-Bayesian technique,
recent work has shown that DEs can be viewed as an approximate Bayesian method
under certain assumptions (Hüllermeier and Waegeman, 2021; Wild et al., 2024).

Both approaches, BNNs and DEs, could be easily implemented for the DLN pre-
sented in Chapter 6, as the used deep learning frameworks Tensorflow Martín Abadi
et al., 2015; Abadi et al., 2016 and Keras Chollet et al., 2015 provide functionality
for both approaches. While DEs are straight-forward to implement, the specific struc-
ture of the DLN with three coupled subnets could potentially impede the performance
during prediction, as large number of models (3 times the number of models in the
ensemble) must be maintained in memory due to the sequential nature of the imple-
mentation. Considering this, BNNs might be preferable, despite their challenges with
scalability. Since the network dimensions are relatively small compared to DLNs used
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in natural language processing or pattern recognition in images and videos, scalabil-
ity or memory limitations during training represent minor concerns. By modifying
the training data generation process, uncertainty estimates could be provided and
incorporated as prior information during training and prediction within the BNN. Al-
ternatively, ready to use frameworks for uncertainty quantification such as Fortuna
(Detommaso et al., 2023), that simplify benchmarking, could be explored.

8.2 Conclusions

All of the research objectives have been successfully addressed by the manuscripts in
Chapters 3-6 as well as extended by the study in Chapter 7. The primary findings
of the first study relate to significant improvements in data collection within the do-
main of SIP. The use of standard multicore cables caused substantial distortions in
phase readings, even at low frequencies, impeding their applicability for single fre-
quency applications. Conversely, coaxial cables demonstrated superior data quality,
even with longer cable lengths than the used electrode spacing. The deployment of
coaxial cables not only improved reciprocity in measurements but also simplified field
procedures, as approaches that relied on using separate cables for current injection and
voltage measurements are no longer necessary. These findings significantly enhanced
the applicability of SIP at the field-scale, by potentially facilitating more opportuni-
ties to upscale laboratory results to the field-scale without the risk of misinterpreting
ambiguous/noisy data.

Secondly, research in this thesis explored the application of EMI and (S)IP for land-
slide characterization. It was demonstrated that EMI mapping permitted to effectively
identified lateral changes in electrical conductivity correlated with geomorphological
features, while IP imaging successfully delineated the sliding plane geometry, soil types,
and hydrogeological units. Additionally, SIP imaging revealed frequency-dependent
polarization effects associated with grain size changes, critical for the understanding
of hydrogeological units within the landslide and possible mobilization mechanisms.
The combined application of EMI and IP was validated using extensive ground-truth
data, demonstrating its suitability for characterizing clay-rich landslides. To date, IP
imaging has become an increasingly established method in landslide research, and this
thesis has contributed to its advancement.

The third objective focused on obtaining hydraulic properties from geophysical data.
Site-specific petrophysical relationships were developed, linking imaginary complex
conductivity obtained from IP and the electrical conductivity obtained from EMI
to soil volume fractions of (gravel), sand, silt and clay. These relationships allowed
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for the estimation of textural properties consistent with soil sample measurements,
with great care taken to obtain robust and validated relationships. To that end,
where possible, split-sample validation analysis of the relationships was performed.
Subsequently, a two-step approach was proposed to derive hydraulic conductivity from
geophysical data using pedotransfer functions. This approach was validated through
a comparison with predictions using laboratory-derived petrophysical relationships,
wherein consistent predictions were obtained.

The fourth objective involved the investigation of deep learning techniques as an
alternative to standard deterministic inversion of geophysical data. To that end, a
deep learning network was developed, evaluated and applied, which permits the rapid
and accurate prediction of 1D electrical conductivity depth models from EMI measure-
ments. To emphasize the benefits of using such an approach, the 1D model predictions
were used to derive catchment-scale hydraulic conductivity using the aforementioned
two-step approach after recalibrating a pedotransfer function developed for the catch-
ment.

In conclusion, the research presented in this thesis has made significant strides in
advancing geophysical methods for soil-textural and hydraulic characterization. The
comprehensive approach applied in this thesis, combining improved data collection
techniques, innovative applications of EMI and IP for landslide analysis, along with
the development of site-specific petrophysical relationships, has yielded valuable in-
sights into complex hydrogeological systems. The proposed multi-step framework, in-
corporating deep learning and recalibrated pedotransfer functions, offers a promising
tool for rapid and accurate soil textural and hydraulic characterization. Furthermore,
the extensive geophysical investigation of the HOAL catchment has provided a deeper
understanding of subsurface structures and their implications for hydrological and hy-
drogeological processes. These findings not only address the initial research objectives
but also pave the way for future applications in non-academic settings, potentially
facilitating landslide risk assessment and catchment-scale hydrogeological modeling.
The integration of various geophysical methods and the development of robust petro-
physical relationships demonstrate the power of interdisciplinary approaches in unrav-
eling complex hydrogeological systems, ultimately contributing to more effective land
management and hazard mitigation strategies.
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Lists of Abbreviations and Acronyms

AIC

BNN

CC

CCI

CEC

CNN

CR

CRI

CS

DC

DCA

DD

DE

DEM

DL

DLN

DPH

ECa

EC

EDL

EM

EMI

ERT

FD

FDEM

FZ

IP

GSD

GKZ

HCP

HOAL

LIN

MASW

Akaike Information Criterion

Bayesian Neural Network

Apparent Electrical Conductivity

Complex Conductivity

Complex Conductivity Imaging

Cation Exchange Capacity

Convolutional Neural Network

Complex Resistivity

Complex Resistivity Imaging

Cumulative Sensitivity

Direct current

Decay Curve Analysis

Dipole-Dipole

Deep Ensemble

Digital Elevation Model

Deep Learning

Deep Learning Network

Dynamic Probing Heavy

Electrical Conductivity

Electrical Double Layer

Electromagnetic

Electromagnetic Induction

Electrical Resistivity Tomography

Frequency Domain

Frequency-Domain Electromagnetic Induction

Flysch Zone

Induced Polarization

Grain Size Distribution

Gresten Klippen Zone

Horizontal Coplanar

Hydrological Open Air Laboratory

Low Induction Number

Multichannel Analysis of Surface Waves
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MG

MGS

MICP

MRE

MSE

NCA

NRCS

PTF

ReLU

RST

RMSE

RTK-GNSS

SCF

SIP

SSC

SSV

TEM

TDIP

TDR

TOC

VCP

VG

Multiple Gradient

Minimum Gradient Support

Mercury Injection Capillary Pressure Method

Mean Relative Error

Mean Squared Error

Northern Calcareous Alps

Natural Resources Conservation Service

Pedotransfer Function

Rectified Linear Unit

Refraction Seismic Tomography

Root Mean Square Error

Real Time Kinematic Global Navigation Satellite System

Sensitivity-Controlled Focusing

Spectral Induced Polarization

Sand, Silt, and Clay Volume Fraction

Split Sample Validation

Transient Electromagnetic Soundings

Time-Domain Induced Polarization

Time-Domain Reflectrometry

Total Organic Carbon

Vertical Coplanar

Van Genuchten (Parameters)
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