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Kurzfassung

In den letzten zehn Jahren haben Knowledge Graphs (KGs) ein enormes Interesse seitens
der Industrie und Wissenschaft geweckt. Dabei gibt es drei große Forschungsbereiche, Ma-
chine Learning (ML), Database (DB) und Semantic Web (SW), die an der Repräsentation
und dem Management von KGs arbeiten. Jedoch bestehen große Diskrepanzen innerhalb
der Forschung an KGs, welche diese Arbeit folgend identifiziert und überwindet:

Inferenzproblem. KGs sind von Natur aus unvollständig. Aus diesem Grund wurden
ML-basierte Knowledge Graph Embedding Models (KGEs) erforscht, welche vielverspre-
chende Ergebnisse für die Vorhersage fehlender Beziehungen liefern. Weiters, werden im
DB- und SW-Bereich Eigenschaften von Daten mithilfe von logische Regeln modelliert.
Allerdings können grundlegende Regeln von bestehenden KGEs nicht erfasst werden,
d. h. Vorhersagen unter Einhaltung dieser Regeln treffen. Insbesondere das Erfassen
von (i) General-Composition- und (ii) Composition- und Hierarchy-Regeln sind zentrale
Hindernisse, die es zu bewältigen gilt. Diesen Herausforderungen entgegen stellen wir
unser ExpressivE-Modell, welches Entitätspaare als Punkte und Beziehungstypen als Hy-
perparallelogramme im virtuellen Tripelraum R2d darstellt. Dieses Modelldesign erlaubt
es ExpressivE, eine Vielzahl von logischen Regeln zu erfassen und bietet zugleich eine
intuitive und konsistente geometrische Interpretation der Parameter und erfassten Regeln
von ExpressivE.

Skalierbarkeitsproblem. Außerdem stellen die SW- und DB-Bereiche riesige KGs bereit,
die effiziente KGEs erfordern. Für gute Vorhersageergebnisse benötigen die meisten ML-
basierten KGEs jedoch hochdimensionale oder komplexe Vektorräume zur Abbildung
von KGs, wodurch ihr Speicher- und Rechenzeitbedarf drastisch ansteigt. Daher stellt die
Entwicklung effizienter KGEs ein weiteres zentrales Hindernis dar, welches die Felder ML,
DB und SW voneinander trennt. Angesichts dieser Herausforderung stellen wir SpeedE
vor, ein euklidisches KGE, das (i) über ausgeprägte Inferenzfähigkeiten verfügt, (ii) mit
KGEs auf dem Stand der Technik konkurrenzfähig ist und diese auf den Benchmarks
YAGO3-10 und WN18RR signifikant übertrifft, während (iii) es auf WN18RR bei
vergleichbarer Performance für die Vorhersage von fehlenden Beziehungen lediglich ein
Fünftel der Trainingszeit und ein Viertel der Parameter des ExpressivE Modells benötigt.

Datenverwaltungsproblem. Die klassische KG-Forschung wurde vor allem innerhalb
der DB- und SW-Bereichen vorangetrieben. Dennoch besteht eine gewisse Differenz
zwischen den Ansätzen aus diesen beiden Forschungsfeldern. Während beispielsweise
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Sprachen wie SQL oder Datalog im DB-Bereich weit verbreitet sind, werden im SW-
Bereich ganz andere Sprachen wie SPARQL und OWL verwendet. Dies erschwert jedoch
die Integration von KGs aus beiden Forschungsfeldern, weshalb die Kompatibilität
zwischen DB- und SW-Technologien eine dringende Herausforderung darstellt. Folglich
stellen wir das SparqLog-System vor, ein einheitliches und konsistentes KG-Management-
Framework, welches wichtige Anforderungen des SW- und des DB-Bereichs erfüllt.



Abstract

Over the past decade, Knowledge Graphs (KGs) have received enormous interest from
industry and academia. However, there are three key research communities, namely the
Machine Learning (ML), Database (DB), and Semantic Web (SW) communities, studying
KGs with major gaps between them. This dissertation is about bridging their divisions:

Reasoning Divide. KGs are inherently incomplete. Therefore, the ML community
has proposed Knowledge Graph Embedding Models (KGEs), achieving promising results
for predicting missing links. Key data properties in the DB and SW fields are typically
represented via logical rules. However, any current KGE cannot capture vital rules, i.e.,
infer missing links while adhering to such rules. Capturing (i) general composition and
(ii) composition and hierarchy rules jointly are crucial open problems. To bridge this
division, we introduce the ExpressivE model that embeds pairs of entities as points and
relations as hyper-parallelograms in the virtual triple space R2d. This model design
allows ExpressivE to capture a rich set of logical rules while offering an intuitive and
consistent geometric interpretation of ExpressivE embeddings and their captured rules.

Scalability Divide. Even more, the SW and DB communities provide massive KGs,
calling for efficient KGEs. However, most contemporary ML-based KGEs require high-
dimensional embeddings or complex embedding spaces for competitive prediction results,
drastically raising their space and time requirements. Thus, developing efficient KGEs
makes up another central open problem dividing the SW, DB, and ML fields. Facing this
challenge, we propose SpeedE, a Euclidean KGE that (i) has strong inference capabilities,
(ii) is competitive with state-of-the-art KGEs, significantly outperforming them on the
YAGO3-10 and WN18RR benchmarks, and (iii) dramatically increases their efficiency,
needing on WN18RR solely a fifth of the training time and a fourth of the parameters of
the best-performing model (ExpressivE) to reach the same link prediction performance.

Data Management Divide. Above all, the DB and SW communities have driven
classical KG research. However, there remains a divide between approaches from these
two fields. For instance, while languages such as SQL or Datalog are widely used in
the DB area, a vastly different set of languages, such as SPARQL and OWL, is used in
the SW area. This mismatch, however, makes blending KGs from both communities a
complex endeavor, rendering the interoperability between DB and SW technologies a
pressing open challenge. Thus, we present the SparqLog system, a uniform and consistent
KG management framework meeting essential requirements from the SW and DB fields.
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CHAPTER 1
Introduction

Since Google launched its first Knowledge Graph (KG), we have seen intensive work on
this topic from both industry and academia. For instance, KGs such as Freebase (Bollacker
et al., 2007) and WordNet (Miller, 1995) lie at the heart of numerous applications such as
recommendation (Cao et al., 2019), question answering (Zhang et al., 2018), information
retrieval (Dietz et al., 2018), and natural language processing (Chen and Zaniolo, 2017).

Figure 1.1: Gaps between KG research and derived research goals. The symbols for the
ML1, DB2, and SW3 communities are taken from the sources listed in the footnotes.
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1. Introduction

However, as visualized in Figure 1.1, three research communities are working on the
representation and management of KGs with major gaps between them, namely the
Machine Learning (ML), Database (DB), and Semantic Web (SW) communities. In
this dissertation, we study the vast landscape of KG research, finding that it is divided
along at least three dimensions, which we named the reasoning, scalability, and data
management divide. The goal of this work is to overcome these separating walls by
breaking down the identified divisions between these communities. Thus, the following
sections discuss each of the dimensions separating KG research, subsequently deriving
research goals that express favorable properties of potential solutions.

1.1 Reasoning Divide
One of the critical challenges of the intersection of the ML, DB, and SW communities is
to bring together machine learning models and – typically logic-based – data management
approaches. This challenge is especially apparent in the field of graph data management
since KGs are typically highly incomplete (West et al., 2014):

On the one hand, the ML community has directed substantial research toward approaches
for Knowledge Graph Completion (KGC) (Wang et al., 2017), i.e., predicting missing
links from the data stored in the KG. The introduction of Knowledge Graph Embedding
Models (KGEs) has yielded promising results for KGC by (i) representing entities and
relations of a KG as embeddings in the semantic vector space and (ii) computing scores
over these embeddings to quantify the plausibility of missing links (Wang et al., 2017). On
the other hand, the DB and SW communities typically represent major data properties
through constraints, axioms, or dependencies expressed as logical rules.

Logical Rule ExpressivE BoxE RotatE TransE DistMult ComplEx
Symmetry: r1(X, Y ) ⇒ r1(Y, X) ✓ ✓ ✓ ✗ ✓ ✓

Anti-symmetry: r1(X, Y ) ∧ r1(Y, X) ⇒ ⊥ ✓ ✓ ✓ ✓ ✗ ✓

Inversion: r1(X, Y ) ⇔ r2(Y, X) ✓ ✓ ✓ ✓ ✗ ✓

Comp. def.: r1(X, Y ) ∧ r2(Y, Z) ⇔ r3(X, Z) ✓ ✗ ✓ ✓ ✗ ✗

Gen. comp.: r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) ✓ ✗ ✗ ✗ ✗ ✗

Hierarchy: r1(X, Y ) ⇒ r2(X, Y ) ✓ ✓ ✗ ✗ ✓ ✓

Intersection: r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) ✓ ✓ ✓ ✓ ✗ ✗

Mutual exclusion: r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ ✓ ✓ ✓ ✓ ✓ ✓

Table 1.1: This table lists logical rules that several KGEs can capture, where ✓ represents
that the KGE can capture the rule and ✗ that it cannot capture the rule. We have
proposed the ExpressivE model in (Pavlović and Sallinger, 2023b).

However, there is a substantial challenge in this: Many KGEs cannot respect vital
logical rules – termed capturing rules – which describe a KGE’s ability to infer missing

1https://ml.studentorg.berkeley.edu/ (last visited 07/25/2024)
2https://www.dbai.tuwien.ac.at/ (last visited 07/25/2024)
3https://www.w3.org/2007/10/sw-logos.html (last visited 07/25/2024)
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triples while adhering to such logical rules. The composition of relations is a fundamental
constraint or dependency for data management – even more so in graph data management,
where it allows the description of paths. Recently, however, it was discovered that existing
KGEs only capture a fairly limited notion of composition (Zhang et al., 2019; Abboud
et al., 2020; Lu and Hu, 2020; Gao et al., 2020), solely capturing compositional definition,
not general composition (see Table 1.1 for the defining formulas). Even more, while
existing KGEs capture hierarchy (Yang et al., 2015a; Kazemi and Poole, 2018; Trouillon
et al., 2016; Abboud et al., 2020) and compositional definition (Bordes et al., 2013; Sun
et al., 2019; Zhang et al., 2019; Lu and Hu, 2020) individually, they cannot capture both
rules simultaneously (see Table 1.1).

While the extensive research on composition (Bordes et al., 2013; Sun et al., 2019; Zhang
et al., 2019; Lu and Hu, 2020) and hierarchy (Yang et al., 2015a; Trouillon et al., 2016;
Kazemi and Poole, 2018; Abboud et al., 2020) highlights their importance, any KGE
so far is incapable of (i) capturing general composition, (ii) capturing composition and
hierarchy jointly, and (iii) providing a geometric interpretation of captured rules.

[G1] Thus, a crucial open challenge for the ML, DB, and SW communities is to overcome
these limitations by introducing a KGE that captures a wide range of logical rules relevant
to both the DB and SW communities, specifically the core inference rules (shown in
Table 1.1 and discussed in Chapter 2).

1.2 Scalability Divide
The SW and DB communities provide massive KGs, containing millions of links (Mahdis-
oltani et al., 2015), which calls for scalable and efficient KGEs. However, most contem-
porary KGEs developed by the ML community suffer from efficiency problems.

On the one hand, contemporary KGEs explored increasingly more complex embedding
spaces to boost their KGC performance (Sun et al., 2019; Zhang et al., 2019; Cao et al.,
2021). However, more complex embedding spaces typically require more costly operations,
leading to a lower time efficiency than Euclidean KGEs (Wang et al., 2021).

On the other hand, most KGEs require high-dimensional embeddings to reach state-of-
the-art KGC performance, leading to increased time and space requirements (Chami
et al., 2020; Wang et al., 2021). Thus, the need for (i) complex embedding spaces
and (ii) high-dimensional embeddings lowers the efficiency of KGEs and, thus, limits
their scalability. In addition, these needs hinder the application of KGEs in resource-
constrained environments, especially in mobile smart devices (Sun et al., 2019; Zhang
et al., 2019; Wang et al., 2021).

Although there has been much work on scalable KGEs, any such work has focused
exclusively on either reducing the embedding dimensionality (Balazevic et al., 2019a;
Chami et al., 2020; Bai et al., 2021) or using simpler embedding spaces (Kazemi and
Poole, 2018; Zhang et al., 2020; Pavlović and Sallinger, 2023b), thus addressing only one
side of the efficiency problem.
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[G2] As considerable time and space requirements hinder the application of KGEs on
massive KGs with millions of links, another crucial open challenge for the ML, DB, and
SW communities is to overcome these limitations by designing a highly resource-efficient
KGE that reaches state-of-the-art performance under low embedding dimensionalities
while utilizing the Euclidean embedding space.

1.3 Data Management Divide
Above all, classical KG research has been driven by the DB community and the SW
community. However, there still remains a certain divide between the KG management
systems proposed by these two communities. For instance, while languages such as the
Structured Query Language (SQL) or Datalog are widely used in the DB area for modeling
and querying databases, a vastly different set of languages, such as the SPARQL Protocol
and RDF Query Language (SPARQL) and the Web Ontology Language (OWL), is used
in the SW area. This mismatch, however, makes blending KGs from both communities a
complex endeavor, rendering the interoperability between DB and SW technologies a
pressing open challenge. To tackle this challenge, we identified a set of criteria that the
DB and SW communities expect from a KG management system.

Of major importance to the SW community is the compliance with the standards of the
World Wide Web Consortium (W3C):

• (R1) SPARQL Feature Coverage. The query language SPARQL is one of the
major Semantic Web standards. Therefore, we require the support of the most
commonly used SPARQL features.

• (R2) Bag Semantics. SPARQL employs per default bag semantics (also referred
to as multiset semantics) unless specified otherwise in a query. We therefore require
the support of this.

• (R3) Ontological Reasoning. OWL 2 QL to support ontological reasoning is a
major Semantic Web standard. Technically, for rule-based languages, this means
that existential quantification (i.e., “object invention”) in the rule heads is required.

The DB community puts particular emphasis on the expressive power and efficient
evaluation of query languages. This leads us to the following additional requirement:

• (R4) Full Recursion. Full recursion is vital to provide the expressive power
needed to support complex querying in business applications and sciences (see, e.g.,
(Przymus et al., 2010)), and it is the main feature of the relational query language
Datalog (Vianu, 2021). Starting with SQL-99, recursion has also been integrated
into the SQL standard, and most relational database management systems have
meanwhile incorporated recursion capabilities to increase their expressive power.
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Finally, for an approach to be accepted and used in practice, we formulate the following
requirement for both communities:

• (R5) Implemented System. Both communities require an implemented system.
This makes it possible to verify if the theoretical results are applicable in practice
and to evaluate the usefulness of the approach in real-world settings.

The above-listed requirements explain why there exists a certain gap between the SW
and DB communities. As seen in Table 1.2 and discussed in detail in Chapter 3, several
attempts have been made to close this gap. However, no approach has fulfilled both
sides’ requirements so far. Indeed, while existing solutions individually satisfy some of
the requirements listed above, all of them fail to meet other central requirements.

Requirement SPARQL
(R1)

Bag Semantics
(R2)

OWL 2 QL
(R3)

Full Recursion
(R4)

Implementation
(R5)

DLVhex-SPARQL Plugin
(Polleres and Schindlauer, 2007) ✗ ✓ ✗ ✓ ✓

Translation of SPARQL 1.1 to DLV
(Polleres and Wallner, 2013) ✓ ✓ ✗ ✓ ✗

Analysis of SPARQL Bag Semantics
(Angles and Gutierrez, 2016a) ✗ ✓ ✗ ✓ ✗

Vadalog System
(Bellomarini et al., 2018) ✗ ✗ ✓ ✓ ✓

Warded Datalog± with Bag Semantics
(Bertossi et al., 2019) ✗ ✓ ✓ ✓ ✗

SparqLog System
(Angles et al., 2023b,a) ✓ ✓ ✓ ✓ ✓

Table 1.2: As in (Pavlović, 2020), this table lists the requirements that several relevant
KG management systems satisfy, where ✓ depicts that the requirement is satisfied and ✗

that it is not satisfied. We have proposed the SparqLog system in (Angles et al., 2023a,b).

[G3] Thus, a pressing open challenge for the DB and SW communities is to develop one
uniform and consistent KG management system that satisfies the requirements of both
communities (R1–R5).

1.4 Methodology
This dissertation employs a very diverse set of methodologies, sampling appropriate
methods from various areas of Computer Science. In particular, each of the Chapters
starts by (i) using formal methods to introduce a theoretical model and prove interesting
properties, (ii) implementing a system (and optimizing it), bridging theory and practice,
and (iii) designing experiments for empirically evaluating the implemented system. We
will consider each of these methodologies in more detail in the following paragraphs.

Formal Methods. We use formal methods to study and, subsequently, show the
properties of ML models and DB/SW systems. In particular, we employ formal methods
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to (i) design theoretical concepts for these models/systems. Subsequently, we use these
theoretical concepts to prove interesting properties. In the case of our proposed KGEs,
we study properties such as (ii) which types of graphs a given KGE can represent, (iii)
which logical rules a KGE can capture, and (iv) a KGE’s space requirements and number
of computational steps necessary for predicting new links during inference. In the case of
our proposed KG management system, we design a translation from SPARQL — the
standard querying language of the SW — to a Datalog dialect — an important language
family for the DB community — and prove (v) the correctness of this translation.

Implementation. Based on the theoretical concepts introduced and their proven
properties, we implement our solutions for further evaluation. For this, we have to
overcome obstacles separating theory and practice. For instance, in the case of our
proposed KGEs, we need to (i) parameterize the models in a memory-efficient way and
(ii) design loss functions that are suitable for the considered optimization task. In the
case of our proposed KG management system, we need to consider (iii) technical details
for correctly answering SPARQL queries in practice, such as the different reasoning modes
of the chosen Datalog-based system that we translate SPARQL to. Furthermore, we
make our implemented KGEs and KG management system publicly available on GitHub
to allow for their comfortable reuse.

Empirical Analyzes. Finally, we empirically investigate the practical behavior of our
implemented KGEs and KG management system. In particular, we (i) review state-
of-the-art approaches and standard benchmarks for various tasks such as KGC and
query answering, (ii) benchmark our implementations to compare their performance
to state-of-the-art systems, and (iii) study further properties empirically, such as their
space and time efficiency. In the case of our proposed KGEs, we (iv) design experiments
to test hypotheses, providing further explanations for the performance boosts of our
KGEs. For instance, we study the importance of different components of our KGEs by
conducting ablation studies. In the case of our proposed KG management system, we
additionally (v) investigate the compliance of the system’s query results to the SPARQL
standard, providing empirical evidence that our KG management system also answers
queries correctly in practice.

1.5 Publications
This dissertation is based on our following papers:

• Expressive: A Spatio-Functional Embedding for Knowledge Graph Completion.
Aleksandar Pavlović and Emanuel Sallinger.
ICLR 2023.

• SpeedE: Euclidean Geometric Knowledge Graph Embedding Strikes Back.
Aleksandar Pavlović and Emanuel Sallinger.
NAACL 2024.
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• SparqLog: A System For Efficient Evaluation of SPARQL 1.1 Queries via Datalog.
Renzo Angles, Georg Gottlob, Aleksandar Pavlović, Reinhard Pichler, and Emanuel
Sallinger.
VLDB 2024.
and the full version of this paper (including its appendix) is available at
SparqLog: A System for Efficient Evaluation of SPARQL 1.1 Queries via Datalog
[Experiment, Analysis and Benchmark].
Renzo Angles, Georg Gottlob, Aleksandar Pavlović, Reinhard Pichler, and Emanuel
Sallinger.
CoRR, 2023.

• Raising the Efficiency of Knowledge Graph Embeddings While Respecting Logical
Rules (Short Paper).
Aleksandar Pavlović and Emanuel Sallinger.
AMW 2024.

• Expressive and Geometrically Interpretable Knowledge Graph Embedding (Ex-
tended Abstract).
Aleksandar Pavlović and Emanuel Sallinger.
AIROV 2024.

• Building Bridges: Knowledge Graph Embeddings Respecting Logical Rules (Short
Paper).
Aleksandar Pavlović and Emanuel Sallinger.
AMW 2023.

This dissertation directly incorporates content from these papers, such as tables, figures,
definitions, theorems, proofs, and text. Specifically, this chapter reuses content from
each of the listed publications (Angles et al., 2023a,b; Pavlović and Sallinger, 2023a,b,
2024a,b,c). Also, Section 1.3, the preliminaries introduced in Chapter 2, the related work
reviewed in Chapter 3, and for completeness also Chapter 6 directly reuse content from
my Bachelor’s (Pavlović, 2019) and Master’s theses (Pavlović, 2020) without rewriting
it for consistency. Section 6.1 explicitly discusses which parts of Chapter 6 are from
my Bachelor’s and Master’s theses and which are novel to state the contributions of
this dissertation clearly. Furthermore, at the start of each of the following chapters, I
highlight the specific papers from which material is incorporated.

1.6 Use Case
Let us now consider a use case in the domain of financial KGs, where all three research
goals G1–G3 come together. One particularly interesting challenge for central banks lies
in the estimation of the collateral eligibility of companies, known in the literature also as
the asset eligibility or close link problem (Atzeni et al., 2020). Basically, this problem
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is concerned with estimating the risk of giving a certain loan to a company x secured
by collateral supplied by another company y. Regulations from the European Central
Bank1 state that a company y cannot be the guarantor for a company x if it is too closely
connected to it with regard to ownership structure. The regulation defines a pair of
closely linked entities in detail, including, for instance, the case that the counterpart x
and its guarantor company y cannot be owned by a single third party entity that owns
20% or more of the shares of both of them. In addition to ownership structures, family
links play an essential role in close link detection, as family businesses often act as a
single center of interest and should be treated as such (Atzeni et al., 2020). Thus, Atzeni
et al. (2020) extend the briefly mentioned close link definition of the European Central
Bank based on family links by considering that, given two family members z1 and z2, z1
cannot own 20% or more of the shares of the counterpart x when z2 already owns 20%
or more of the shares of its guarantor company y and vice versa. We will discuss Atzeni
et al. (2020)’s close link definition later in greater detail.

Challenges in Close Link Detection. The Central Bank of Italy curates a large
financial KG for many regulatory purposes, including the detection of close links (Atzeni
et al., 2020; Baldazzi et al., 2022). There are many challenges that central banks have to
face in order to identify these links, as (i) they are often hidden inside intricate structures
of company ownership relations, requiring complex recursive rules to reason about the
KG’s data (Baldazzi et al., 2022); (ii) family relations may also play a vital role in close
link detection (Atzeni et al., 2020), whose information is not readily available to the
central bank but needs to be retrieved and incorporated from other sources such as the
SW; (iii) the information on family relations is highly incomplete, thus missing links need
to be predicted; and (iv) the financial KG is very large, requiring efficient systems for
predicting missing links, querying, and reasoning over KGs. In the following paragraphs,
we will see how this dissertation’s contributions interplay to address these challenges.
First, we will discuss some critical financial notions that form the foundation of this use
case.

Direct Ownership. As briefly mentioned, the financial KG from the Central Bank of
Italy contains, among other data, ownership relations between shareholders and companies
(Atzeni et al., 2020). An example of such a graph is depicted in Figure 1.2, where P1
and P2 represent shareholders and C1–C5 companies. The labels of links denoted with
black solid arrows represent the percentage of a company’s shares directly owned by an
entity. For instance, Figure 1.2’s graph displays a scenario in which P1 directly owns
30% of company C1 and 40% of company C3.

Total Ownership. Next to direct ownership, Atzeni et al. (2020) define the total
ownership of a company y held by an entity x as follows. Let px,y depict all m simple
paths over ownership links from x to y, where a simple path between x and y is
denoted as pi

x,y with 1 ≤ i ≤ m and i ∈ N. Furthermore, let Ω be the set of direct
ownership links and fs : Ω → (0, 1] be the function that maps a link to its corresponding

1https://www.ecb.europa.eu/ecb/legal/pdf/l_33120111214en000100951.pdf (last visited 01/11/2024)
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weight. Then the total ownership of a company y held by an entity x is defined as
Owntotal(x, y) := �

pi
x,y∈px,y

�
ω∈pi

x,y
fs(ω). For instance, in Figure 1.2, we can see that C1

owns 10% of C2 directly and 15% of C2 over the path C1 → C4 → C2 indirectly. Thus,
C1 owns 25% of C2 in total.

P1

P2 P3

C1

C2

C3

C4 C5

0.3

0.1

0.4

0.3 0.1 0.70.5

0.3

Figure 1.2: Financial KG containing ownership links (black solid arrows), which is
extended with family links (blue dotted arrow) through embedding-based predictions
and close links (red dashed arrows) through rule-based reasoning. This figure is based on
Atzeni et al. (2020)’s examples of financial KGs.

Close Links. Based on total ownership and family relations, Baldazzi et al. (2022);
Atzeni et al. (2020) define a close link between two entities x and y as follows. Two
entities x and y are in a close link relationship if: (1) the total ownership of y held by x
is at least 20% of the equity of y or respectively if the total ownership of x held by y is
at least 20% of the equity of x; or (2) a third entity z exists that owns in total at least
20% of the equity of both x and y; or (3) two entities z1 and z2 with z1 ̸= z2 exist that
are in a family relationship, where z1 (respectively z2) owns in total at least 20% of x’s
equity and z2 (respectively z1) owns in total at least 20% of y’s equity. For example, in
Figure 1.2, (i) C1 and C2 have a close link relationship by Point 1, as C1 holds in total
more than 20% of direct and indirect shares of C2; (ii) C1 and C3 are in a close link
relationship by Point 2 as P 1 holds more than 20% of the shares of C1 and C3; and (iii)
assume that P 2 and P 3 are in a family relation (e.g., they are siblings) then C4 and C5
are in a close link relationship by Point 3, as P2 holds more than 20% of C4’s equity
and P2’s family member P3 holds more than 20% of the shares of C5.

Data Management. With all these definitions in place, we can now examine how
the combination of this dissertation’s contributions tackles the challenges of this use
case. On the one hand, representing the total ownership relation with an ontology
requires complex recursive rules together with aggregation, demanding for the power
of Datalog-based KG management solutions, in particular, their capability to express
full recursion (Baldazzi et al., 2022). On the other hand, family links are typically not
contained in financial KGs of central banks (Atzeni et al., 2020). Thus, the integration of
other data sources is necessary. Large KGs from the SW, such as DBpedia (Auer et al.,
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2007) and Wikidata (Vrandecic and Krötzsch, 2014), hold massive amounts of publicly
available knowledge, such as family connections of famous entrepreneurs. Even more,
they provide ontologies over family relations that allow to reason and extend the already
provided data. Furthermore, the SW community defines a standard querying language
for KGs (SPARQL) that is widely accepted and quite expressive, allowing the retrieval of
information about recursive scenarios in KGs with concise queries. For these reasons, this
use case demands naturally a KG management system that blends ontological querying in
SPARQL with the rule-based inference capabilities of Datalog-based engines (in particular
full recursion), such as our SparqLog system (see Chapter 6). Even more, SparqLog is
highly competitive in terms of efficiency to state-of-the-art SW querying and reasoning
systems while not being solely a SPARQL engine but a uniform and consistent framework
for querying and reasoning over KGs of the DB and SW world. We will discuss the
SparqLog system and its capabilities in greater detail in Chapter 6.

Predicting Missing Family Links. Now that we have seen how SparqLog solves
the problem of representing, querying, and reasoning over close links, we are still left
with another problem. In particular, while we can retrieve some family relations for
famous entrepreneurs from public data sources, most family relations remain hidden.
This challenge calls for KGEs to predict missing family relations based on the known ones
and ownership structures. However, contemporary KGEs are not suitable for this task,
as they cannot learn vital logical rules jointly. In particular, many properties of family
relations can be naturally described by the core inference rules, requiring specifically
both hierarchy and general composition rules. For instance, a KGE for predicting
missing family links should be able to learn to infer links based on the hierarchy rule
mother_of (X, Y ) ⇒ parent_of (X, Y ), expressing that a mother is also a parent; and the
general composition rule mother_of (X, Y ) ∧ parent_of (Y, Z) ⇒ grandparent_of (X, Z),
stating that the mother of a parent is a grandparent. We closed this gap by developing
ExpressivE, the first KGE that captures all core inference rules, allowing it to capture
many key properties of family relations (Chapter 4). Finally, since the financial graph of
the Central Bank of Italy is very large, scalable solutions for predicting missing links are
required. As most KGEs suffer from at least one efficiency problem (see Section 1.2),
limiting their scalability, new frontiers of resource-efficient KGE research are required.
We solved this scalability issue by proposing the highly efficient SpeedE model that lowers
the training and inference time of state-of-the-art KGEs dramatically while preserving
ExpressivE’s capabilities to capture the core inference rules (Chapter 5), which are vital
for representing the family relation properties of this use case.

Final Discussion. As we have seen, each of our three core contributions is vital to
addressing the intricacies of this use case. On the one hand, to predict missing family
links, this use case calls for KGEs that should be expressive enough (e.g., ExpressivE
introduced in Chapter 4) to support vital inference rules of the family domain, including
hierarchy and general composition while being efficient enough (e.g., SpeedE introduced
in Chapter 5) to handle large KGs such as the one provided by the Central Bank of
Italy. On the other hand, this use case demands the support of ontological querying
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over financial KGs with SPARQL and the power of Datalog-based inference, such as full
recursion, to query and reason over close links. Thus, naturally, KG management solutions
that combine the benefits of both the SW and DB world (e.g., SparqLog introduced
in Chapter 6) are required. In total, this use case demonstrates how KG management
systems and KGEs benefit from each other, (i) exploiting the ability to query and reason
over highly complex scenarios via rule-based knowledge while (ii) enriching the factual,
and possibly even ontological information, via embedding-based plausibility estimations.

1.7 Overall Goal and Organization
The aim of this dissertation is to bridge the reasoning, scalability, and data management
divides between the KG research of the ML, DB, and SW communities. In particular, to
address the problems raised by these gaps, we first introduce some formal background in
Chapter 2. Building on these notions, we discuss the current state of the art in Chapter 3.
Next, we address each of the divides in Chapters 4 to 6 and discuss how we achieved
the corresponding research goals G1–G3. Finally, we summarize the key results of this
dissertation and outline future work in Chapter 7.
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CHAPTER 2
Background

As discussed in Chapter 1, the KG research of the Machine Learning (ML), Database (DB),
and Semantic Web (SW) communities is divided along various dimensions. These divisions
lead to different lenses that the communities use when looking at the representation
and management of KGs, manifesting in the development of different technologies that
suit the requirements visible through the respective lens. Each of the following sections
discusses the views offered by the community-dependent lenses on the representation
and management of KGs. We first consider the ML view in Section 2.1, then the SW
view in Section 2.2, and finally, the DB view in Section 2.3. Note that the preliminaries
discussed in Section 2.1 incorporate material from (Pavlović and Sallinger, 2023a,b,
2024a,b,c), and the preliminaries discussed in Sections 2.2 and 2.3 incorporate material
from (Angles et al., 2023a,b). Furthermore, Sections 2.2 and 2.3 are partially taken from
my Bachelor’s (Pavlović, 2019) and Master’s theses (Pavlović, 2020) and left unchanged
here for consistency and readability.

2.1 ML View: Knowledge Graph Embeddings
This section introduces a typical view of the ML community on the representation of KGs.
Specifically, it first introduces an ML-centered definition of KGs and follows by defining
KGEs, the KGC problem, and evaluation methods (Abboud et al., 2020; Pavlović and
Sallinger, 2023b, 2024c). In the context of the SW and DB communities, the following
ML-centered KG definition roughly corresponds to the way that the (i) SW community
sees RDF and (ii) DB community sees databases containing binary relations.

ML-centered KG Definition. Let us first introduce the triple vocabulary T , consisting
of a finite set of entities E and relations R. We call an expression of the form ri(eh, et)
a triple, where ri ∈ R and eh, et ∈ E. Furthermore, we call eh the head entity and et the
tail entity of the triple. Now, a KG G is a finite set of triples over T , and KGC is the
problem of predicting missing triples.

13



2. Background

Knowledge Graph Embedding Models (KGEs) represent KGs as mathematical
objects in latent vector spaces by assigning vectors (referred to as embeddings) to the
entities and relations of a KG. KGEs define scoring functions s : E × R × E → R
to quantify the plausibility of missing triples based on the learned embeddings. An
embedding instance Θ represents a concrete set of parameter values instantiating a KGE’s
embeddings and, thus, its scoring function sΘ. Knowledge Graph Completion (KGC) is
the problem of predicting missing triples from the known triples of a KG. Although there
are different flavors of KGC, the most common one is link prediction (Shen et al., 2022),
which we shall define next. In particular, expressions of the form ri(eh, ?) are called
tail queries, and of the form ri(?, et) are called head queries with ri ∈ R and eh, et ∈ E.
Now, given a set of head and tail queries Q, link prediction is the task of predicting
the missing head or tail entity of each query in Q. This corresponds approximately to
answering queries over incomplete KGs, specifically atomic queries over binary relations
in the DB world; and queries solely containing a single triple pattern in the SW world.
For a complete correspondence to link prediction, the DB and SW queries need to be
restricted to contain solely a single variable representing the possible head or tail entities.
Following the literature (Balazevic et al., 2019b; Abboud et al., 2020; Charpenay and
Schockaert, 2024), we will use the terms (i) link prediction and (ii) KGC interchangeably.
KGEs have achieved promising performance on KGC and knowledge-driven applications
(Wang et al., 2017; Broscheit et al., 2020).

Geometric Knowledge Graph Embedding Models (gKGEs) are special types of
KGEs that represent entities and relations of a KG as geometric shapes in the semantic
vector space, allowing for an intuitive geometric interpretation of their captured rules
(Pavlović and Sallinger, 2023a,b, 2024a,b,c). Henceforth, we will focus on gKGEs as they
typically offer more interpretability than other types of KGEs. Generally, KGEs can
be evaluated by means of an (i) experimental evaluation on benchmark datasets, (ii)
analysis of the model’s expressiveness, and (iii) analysis of the inference rules that the
model can capture. We will discuss each of these points next.

Experimental Evaluation. The experimental evaluation of KGEs requires a set of
true and corrupted triples. True triples ri(eh, et) ∈ G are corrupted by replacing either
eh or et with any ec ∈ E such that the corrupted triple does not occur in G. KGEs
define scores over triples and are optimized to score true triples higher than corrupted
ones, thereby estimating a given triple’s truth. More details on the standard benchmarks,
evaluation protocol, and metrics for KGC are discussed in Section 2.1.1.

Expressiveness. A KGE is fully expressive if, for any finite set of disjoint true and false
triples, a parameter set can be found such that the model classifies the triples of the set
correctly. Intuitively, a fully expressive model can represent any given graph. However,
this is not necessarily correlated with its inference capabilities (Abboud et al., 2020). For
instance, while a fully expressive model may express the entire training set, it may have
poor generalization capabilities (Abboud et al., 2020). Conversely, a model that is not
fully expressive may underfit the training data severely (Abboud et al., 2020). Hence,
KGEs should be both fully expressive and support important inference rules.
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Inference Rules. The generalization capabilities of KGEs are commonly analyzed using
inference rules (short: rules). An inference rule is a logical rule φ ⇒ ψ, where φ is called
its body and ψ its head. The following needs to hold for a rule φ ⇒ ψ to be satisfied
over a graph G: if the rule’s body is satisfied in G, then its head ψ must also be satisfied
in G. Moreover, a rule of the form φ ⇒ ⊥ states that the rule φ is never satisfied in
G. For instance, r1(X, Y ) ∧ r1(Y, X) ⇒ ⊥ represents that there is no pair of entities
X, Y ∈ E, such that both r1(X, Y ) ∈ G and r1(Y, X) ∈ G. Analyzing the rules that
a KGE captures helps estimate its inference capabilities (Abboud et al., 2020). The
captured inference rules of KGEs roughly correspond to the way in which (i) the SW
community sees axioms and (ii) the DB community sees dependencies and constraints.

Intuition of Capturing. Following (Sun et al., 2019; Abboud et al., 2020; Pavlović and
Sallinger, 2023b), a KGE captures an inference rule if there is an embedding instance
such that the rule is captured (i) exactly and (ii) exclusively, as formalized for our KGEs
in Sections 4.2.3 and 5.1.3. Capturing a rule means, at an intuitive level, that there is
an embedding instance such that (i) if the instance satisfies the rule’s body, then it also
satisfies its head, and (ii) the instance does not capture any unwanted inference rule.

Core Inference Rules. Next, we briefly list logical rules that are vital for the DB and
SW communities and commonly studied in the KGE literature (Sun et al., 2019; Abboud
et al., 2020; Pavlović and Sallinger, 2023b, 2024c): (i) symmetry r1(X, Y ) ⇒ r1(Y, X),
(ii) anti-symmetry r1(X, Y ) ∧ r1(Y, X) ⇒ ⊥, (iii) inversion r1(X, Y ) ⇔ r2(Y, X), (iv)
general composition r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z), (v) hierarchy r1(X, Y ) ⇒ r2(X, Y ),
(vi) intersection r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ), and (vii) mutual exclusion r1(X, Y ) ∧
r2(X, Y ) ⇒ ⊥. Henceforth, we shall call these seven types of rules core inference rules.

2.1.1 KGC Benchmarks and Evaluation Protocol
This section briefly discusses benchmarks, the evaluation protocol, and metrics for KGC.

Traditional Benchmarks. Traditionally, KGC approaches were evaluated on the
benchmarks FB15k and WN18 (Bordes et al., 2013), which contained many inverse
relations, dramatically simplifying the KGC task (Toutanova and Chen, 2015). In
particular, for a large portion of the test triples, their inverse triple would be directly
contained in the training set, reducing the KGC task to learning to invert triples (Dettmers
et al., 2018). To make the prediction task harder and more realistic, enhanced versions
of these benchmarks — namely FB15k-237 (Toutanova and Chen, 2015) and WN18RR
(Dettmers et al., 2018) — were derived by removing inverse relations. Following the
literature (Sun et al., 2019; Abboud et al., 2020; Chami et al., 2020), we evaluated our
models on these enhanced benchmark versions.

Rules in Standard Benchmarks. Several works examined the inference rules covered
in these two enhanced benchmarks. The WN18RR benchmark retained most inference
rules after its modification from WN18, including symmetry, anti-symmetry, hierarchy,
and composition (Sun et al., 2019; Abboud et al., 2020; Song et al., 2021), making it an
ideal candidate to evaluate whether KGEs can capture multiple inference rules jointly.
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In contrast, FB15k-237 retained mostly composition rules (Sun et al., 2019; Abboud
et al., 2020; Pavlović and Sallinger, 2023b), rendering it suitable to evaluate whether
KGEs can capture (general) composition. Additionally, more recent works considered
the YAGO3-10 (Mahdisoltani et al., 2015) benchmark, as it is the largest of the three
datasets and, thus, the most interesting for evaluating the performance and scalability of
KGEs (Abboud et al., 2020; Song et al., 2021). It contains a very challenging combination
of almost all common inference rules (Abboud et al., 2020; Song et al., 2021).
Benchmark Domains. In terms of diversity, the domains of all three benchmarks are
very different. Specifically, WN18RR is extracted from the WordNet database (Miller,
1995), representing lexical relations between English words, thus naturally containing
many hierarchical relations (e.g., hypernym-of) (Chami et al., 2020). FB15k-237 is a
subset of a collaborative database consisting of general knowledge (in English) called
Freebase (Bollacker et al., 2007), which contains both hierarchical relations (e.g., part-of)
and non-hierarchical ones (e.g., nationality) (Chami et al., 2020). YAGO3-10 is a subset of
YAGO3, a KG describing people that, similarly to FB15k-237, contains both hierarchical
relations (e.g., actedIn) and non-hierarchical relations (e.g., isMarriedTo).
Characteristics and Licenses. WN18RR, FB15k-237, and YAGO3-10 (Mahdisoltani
et al., 2015) already provide a split into a training, validation, and testing set, which we
directly adopted in any reported experiments. Table 2.1 lists some characteristics of these
splits, precisely the number of training, validation, and testing triples. Furthermore, the
table lists the number of entities and relations of each benchmark. Finally, concerning
licensing, we did not find a license for WN18RR nor its superset WN18 (Bordes et al.,
2013). Also, we did not find a license for FB15k-237, but we found that its superset
FB15k (Bordes et al., 2013) uses the CC BY 2.5 license. For YAGO3-10, we also did not
find a license, but we found that its superset, YAGO3 (Mahdisoltani et al., 2015), uses
the CC BY 3.0 license.

Dataset |E| |R| #training triples #validation triples #testing triples
FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,134
YAGO3-10 123,143 37 1,079,040 4,978 4,982

Table 2.1: Benchmark split characteristics: Number of entities, relations, and training,
validation, and testing triples.

Evaluation Protocol and Metrics. In the standard KGC evaluation protocol as
described by Sun et al. (2019); Balazevic et al. (2019b); Chami et al. (2020); Pavlović
and Sallinger (2023b), the performance of KGEs is evaluated by measuring the ranking
quality of each test set triple ri(eh, et) over all possible heads e′

h and tails e′
t: ri(e′

h, et)
for all e′

h ∈ E and ri(eh, e′
t) for all e′

t ∈ E. The typical metrics for measuring the
KGC performance are the mean reciprocal rank (MRR) and H@k (Bordes et al., 2013).
In particular, the filtered versions (Bordes et al., 2013) of these metrics are typically
presented, i.e., all triples occurring in the training, validation, and testing set are deleted
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from the ranking (apart from the test triple that must be ranked), as scoring these triples
highly, does not indicate a wrong inference. The most used metrics for assessing KGEs
are the filtered MRR, H@1, H@3, and H@10 (Sun et al., 2019; Trouillon et al., 2016;
Balazevic et al., 2019b; Abboud et al., 2020). Finally, we briefly review how these metrics
are defined: The proportion of true triples among the predicted triples whose rank is
at maximum k is represented by H@k, whereas the MRR reflects the average of inverse
ranks (1/rank).

2.2 SW View: RDF and SPARQL
This section introduces a typical view of the SW community on KGs. Specifically, the
SW community employs the following standard frameworks for managing KGs: (i) The
Resource Description Framework (RDF) (Cyganiak et al., 2014) specifies a KG’s graph
component, representing links of a KG in the form of (subject, predicate, object) triples;
(ii) the RDF Schema (RDFS) (Brickley and Guha., 2014) and Web Ontology Language
(OWL) (Motik et al., 2012c,a) specify a KG’s knowledge component, allowing to infer new
triples from the ones defined in RDF, by employing vocabularies with explicit semantics;
(iii) The SPARQL Protocol and RDF Query Language (SPARQL) (Prud’hommeaux and
Seaborne, 2008; Harris and Seaborne, 2013) specifies a language for querying a KG’s
stored information. In the following, we briefly discuss notions of these frameworks that
are relevant to this work. As the full formal syntax and model-theoretic semantics of these
frameworks are not required here, we refer the interested reader for RDF to (Cyganiak
et al., 2014; Hayes and Patel-Schneider, 2014), RDFS to (Brickley and Guha., 2014),
OWL to (Motik et al., 2012c,b; Schneider, 2012), SPARQL to (Harris and Seaborne,
2013; Glimm and Ogbuji, 2013).

RDF (Cyganiak et al., 2014) is a W3C standard that defines a graph data model
for describing Web resources. The RDF data model assumes three data domains:
Internationalized Resource Identifiers (IRIs)) that identify Web resources, literals that
represent simple values, and blank nodes that identify anonymous resources. An RDF
triple is a tuple (s, p, o), where s is the subject, p is the predicate, o is the object, all the
components can be IRIs, the subject and the object can alternatively be a blank node,
and the object can also be a literal. An RDF graph is a set of RDF triples. A named
graph is an RDF graph identified by an IRI. An RDF dataset is a structure formed by a
default graph and zero or more named graphs.

For example, consider that <http://ex.org/film.rdf> is an IRI that identifies an
RDF graph with the RDF triples of Figure 2.1. This graph describes information about
film crew members. Each line is an RDF triple, <http://ex.org/glucas> is an IRI,
"George" is a literal, and _:b1 is a blank node.

RDFS (Brickley and Guha., 2014) is a W3C standard, extending RDF with a vocabulary
that adds explicit semantics to Web resources. For instance, RDFS allows the description
of groups of related resources and predicates with triples that state the membership
of a resource to a class and, respectively, of a predicate to a property. Formally, if e
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<http://ex.org/glucas> <http://ex.org/name> "George"
<http://ex.org/glucas> <http://ex.org/lastname> "Lucas"
<http://ex.org/rwilliams> <http://ex.org/name> "Robin"
_:b1 <http://ex.org/name> "Robin"

Figure 2.1: Example of an RDF graph.

is a resource and C is a class, then e rdf:type C states that e is an instance of C.
Analogously, if p is a predicate and R is a property, then p rdf:type R states that p is
an instance of R. Furthermore, RDFS allows to state relationships between these classes
and properties. For example, A rdfs:subClassOf B states that a class A is a subset of
another class B. Analogously, R rdfs:subPropertyOf S states that a property R is a
subset of another property S. Such relationships between classes and properties allow us
to infer new information from a given RDF graph, as shown in the following example:

<http://ex.org/name> rdf:type rdf:Property
<http://ex.org/lastname> rdf:type rdf:Property
<http://ex.org/director> rdf:type rdfs:Class
<http://ex.org/crewMember> rdf:type rdfs:Class
<http://ex.org/director> rdfs:subClassOf <http://ex.org/crewMember>
<http://ex.org/actor> rdfs:subClassOf <http://ex.org/crewMember>
<http://ex.org/glucas> rdf:type <http://ex.org/director>
<http://ex.org/rwilliams> rdf:type <http://ex.org/actor>

rdfs:Class denotes the set of classes, analogously rdf:Property the set of properties.
The example states that <http://ex.org/name> and <http://ex.org/lastname>

are properties; and that <http://ex.org/actor>, <http://ex.org/director>, and
<http://ex.org/crewMember> are classes, where the classes <http://ex.org/actor>
and <http://ex.org/director> are subclasses of <http://ex.org/crewMember>.
Since (i) <http://ex.org/glucas> is an instance of <http://ex.org/director>

and (ii) <http://ex.org/director> is a subclass of <http://ex.org/crewMember>,
RDFS allows us to infer that <http://ex.org/glucas> is also an instance of the class
<http://ex.org/crewMember>. Analogously, the RDFS triples allow us to infer that
<http://ex.org/rwilliams> is also an instance of <http://ex.org/crewMember>.

OWL (Motik et al., 2012a,c) is a W3C recommendation for defining ontologies. In
particular, OWL 2 defines a more extensive vocabulary than RDFS, for instance, allowing
the formalization of characteristics of properties, such as that a property is symmetric,
asymmetric, inverse to another property, or disjoint with another property (cf., core
inference rules of the ML view in Section 2.1). Moreover, there are different profiles of
OWL 2 that essentially define subsets of OWL 2’s features for efficiency reasons. On
the one hand, OWL 2 Query Logic (OWL 2 QL) is a profile designed for efficient query
answering. Specifically, it can answer queries in LOGSPACE with regard to the size of
the KG’s triples while providing many fundamental features for modeling characteristics
of classes and properties, such as symmetric, asymmetric, inverse, and disjoint properties.
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On the other hand, OWL 2 Rules Logic (OWL 2 RL) is a profile designed for scalable
reasoning while aiming to keep most of OWL 2’s expressive power.

SPARQL (Prud’hommeaux and Seaborne, 2008; Harris and Seaborne, 2013) is the W3C-
recommended standard query language for RDF. The general structure of a SPARQL
query is shown in Figure 2.2, where the SELECT clause defines the output of the query,
the FROM clause defines the input of the query (i.e., an RDF dataset), and the WHERE

clause defines a graph pattern.

1 SELECT ?N ?L
2 FROM <http://ex.org/film.rdf>
3 WHERE { ?X <http://ex.org/name> ?N .
4 OPTIONAL { ?X <http://ex.org/lastname> ?L }}
5 ORDER BY ?N

Figure 2.2: Example of a SPARQL query.

The evaluation of a query begins with the construction of the RDF dataset to be queried,
whose graphs are defined by one or more dataset clauses. A dataset clause is either
an expression FROM u or FROM NAMED u, where u is an IRI that refers to an RDF
graph. The former clause merges a graph into the default graph of the dataset, and the
latter adds a named graph to the dataset.

The WHERE clause defines a graph pattern (GP). There are many types of GPs: triple
patterns (RDF triples extended with variables), basic GPs (a set of GPs), optional GPs,
alternative GPs (UNION), GPs on named graphs (GRAPH), negation of GPs (NOT
EXISTS and MINUS), GPs with constraints (FILTER), existential GPs (EXISTS), and
nesting of GPs (SubQueries). Moreover, a property path is a special GP that allows the
expression of different types of reachability queries.

SPARQL employs bag semantics, which means that the results of evaluated SPARQL
queries are not sets (set semantics) but multisets, preserving duplicate result entries. In
particular, the result of evaluating a graph pattern is a multiset of solution mappings. A
solution mapping is a set of variable-value assignments.

Next, we provide some intuition on the introduced concepts by evaluating the query
depicted in Figure 2.2. First, the default graph and named graphs of the dataset are
specified. Specifically, the query’s FROM clause merges the triples of the RDF graph
of Figure 2.1 into the dataset’s empty default graph. As there are no GRAPH patterns
in the WHERE clause, the specified GPs are executed over the default graph. The
evaluation of the patterns over the default graph returns three mappings {µ1, µ2, µ3},
with µ1(?N) = "George", µ1(?L) = "Lucas", and µ2(?N) = µ3(?N) = "Robin". Note
that the duplicates µ2 and µ3 are preserved in the query result, as SPARQL employs
bag semantics.

To clarify the difference between default and named graphs, consider the slightly modified
query of Figure 2.3. Since the query contains solely a FROM NAMED clause (and no
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FROM clause), the dataset’s default graph is empty. Instead, the FROM NAMED clause
adds the RDF graph of Figure 2.1 as the named graph <http://ex.org/film.rdf> to
the dataset. Since the triple pattern ?X <http://ex.org/name> ?N. is enclosed by a
GRAPH pattern, the triple pattern is evaluated over the specified named graph, which is
<http://ex.org/film.rdf>. Since the triple pattern within the OPTIONAL pattern
is not enclosed in a GRAPH pattern, it is evaluated over the empty default graph. Thus,
the evaluation of the query returns three mappings {µ1, µ2, µ3}, with µ1(?N) = "George"

and µ2(?N) = µ3(?N) = "Robin". Note that in contrast to the result of Figure 2.2’s
query, the mapping µ1(?L) = "Lucas" is missing in the solution multiset, as the triple
pattern ?X <http://ex.org/lastname> ?L is evaluated over the default graph, which
is empty in this case.

1 SELECT ?N ?L
2 FROM NAMED <http://ex.org/film.rdf>
3 WHERE { GRAPH <http://ex.org/film.rdf> { ?X <http://ex.org/name> ?N. }
4 OPTIONAL { ?X <http://ex.org/lastname> ?L }}
5 ORDER BY ?N

Figure 2.3: Example of a SPARQL query over a named graph.

The graph pattern matching step returns a multiset whose solution mappings are treated
as a sequence without a specific order. Such a sequence can be arranged by using solution
modifiers: ORDER BY allows to sort the solutions; DISTINCT eliminates duplicate
solutions; OFFSET allows to skip a given number of solutions; and LIMIT restricts the
number of output solutions.

Given the multiset of solution mappings, the final output is defined by a query form:
SELECT projects the variables of the solutions; ASK returns true if the multiset of
solutions is non-empty and false otherwise; CONSTRUCT returns an RDF graph whose
content is determined by a set of triple templates; and DESCRIBE returns an RDF
graph that describes the resources found.

Finally, observe that the semantics of SPARQL are defined based on matching subgraphs
over plain RDF graphs. For ontological querying over KGs, using ontologies specified with
RDFS and OWL, extensions of these basic GP matching semantics need to be found to
not solely consider explicit subgraph structures but also entailment relations. To satisfy
SPARQL’s conditions on the evaluation results of basic GP matching, simplifications are
necessary, limiting, for instance, the number of axiomatic triples that can contribute to a
query solution. As the full formal details on standard entailment regimes for SPARQL
are not required here, we refer the interested reader to (Glimm and Ogbuji, 2013).

2.3 DB View: Warded Datalog± and the Vadalog System
This section discusses a typical view of the DB community on KGs. In contrast to SW
frameworks, the DB community employs different languages to manage KGs. In particular,
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languages such as Datalog and its extensions are used for representing, reasoning, and
querying KGs. In the following, we discuss important notions of Datalog and some
relevant dialects. For the definition of Datalog, we mostly follow the book of Abiteboul
et al. (1995), adding some supplemental information from (Gottlob et al., 2012; Green
et al., 2013; Gottlob and Pieris, 2015).

Datalog. First, let us assume disjoint sets of predicate and constant symbols over a
domain Dom consisting of countably infinitely many constants. Furthermore, let us
assume a mapping that maps each predicate symbol to its arity, which is always greater
or equal to zero. Now, a term can be either a variable or a constant from Dom. Let P
be a predicate symbol and let s be an n-tuple of terms; then, we call P (s) an atom. The
Datalog language allows rules of the form:

P (x̄′) ← P1(x̄1), . . . , Pn(x̄n),

where x̄′ ⊆ �
i x̄i and where P (x̄′) and Pi(x̄i) with 1 ≤ i ≤ n are atoms. The atoms on

the left of the arrow (P1(x̄1), . . . , Pn(x̄n)) are called the body, and the atom on the right
(P (x̄′)) is called the head of the rule. A finite set of Datalog rules is called a Datalog
program Π. An expression without any variables is called a ground atom, ground rule,
or ground program, respectively. A database D is a finite set of ground atoms.

Intuition. At an intuitive level, Datalog rules state how to infer new knowledge from
the information encoded in databases. Let us consider a Datalog database D and rule
H ← B1, . . . , Bn. Now, we can infer the rule’s head atom H if all of the rule’s body
atoms (B1, . . . , Bn) (i) occur in D or (ii) can be inferred in multiple steps from D via
the rule. Analogously, given a Datalog database D and program Π, we can infer new
atoms from D if all body atoms of a rule of Π (i) occur in D or (ii) can be inferred in
multiple steps from D via rules from Π. Following common notation in first-order logic,
we denote that an atom P (x̄) can be inferred from D with Π as Π ∪ D |= P (x̄). For the
full formal details, including operational, model-theoretic, and proof-theoretic semantics
of Datalog, cf., e.g., (Abiteboul et al., 1995).

Example. To make these notions clear, let us consider the following example, consisting
of a Datalog program Π1 and a database D1:

Π1 = {SiblingOf (X, Y ) ← BrotherOf (X, Y )
SiblingOf (X, Y ) ← SisterOf (X, Y )
SiblingOf (Y, X) ← SiblingOf (X, Y )}

D1 = {SisterOf (ana, robin), BrotherOf (bob, alex)}

The first two rules of the program Π1 state that the BrotherOf and SisterOf relations
are subsets of the SiblingOf relation, i.e., if X is a brother or sister of Y then X is also
a sibling of Y . The third rule states that the SiblingOf relation is symmetric, i.e., if X
is a sibling of Y , then Y is also a sibling of X. The database D1 states that Ana is a
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sister of Robin and Bob is a brother of Alex. Now, from Π1’s second rule, we can infer
SiblingOf (ana, robin), i.e., that Ana is a sibling of Robin. From this inferred atom and
Π1’s third rule, we can infer SiblingOf (robin, ana). Analogously, we can infer that Bob
is a sibling of Alex and vice versa.

Datalog Families. Calì et al. (2009) present Datalog± as a family of languages that
extend Datalog (whence the +) to increase its expressive power but also impose restrictions
(whence the −) to ensure decidability of answering Conjunctive Queries (CQs). The
extension most relevant for our purposes is allowing existential rules of the form:

∃z̄P (x̄′, z̄) ← P1(x̄1), . . . , Pn(x̄n),

with x̄′ ⊆ �
i x̄i, and z̄ ∩ �

i x̄i = ∅. Allowing existential rules makes Datalog± well suited
for capturing ontological reasoning.

Query Answering under Ontologies. Ontology-mediated query answering is defined
by considering a given database D and program Π as logical theories. Query answering
under an ontology defined by a Datalog± program comes down to solving an entailment
problem. More precisely, let Q(z⃗) be a CQ with free variables z⃗ over database D and let
an ontology be expressed by Datalog± program Π. Then the answers to Q(z⃗) over D
under ontology Π are defined as {a⃗ | Π ∪ D |= Q(⃗a)}, where a⃗ is a tuple of the same arity
as z⃗ with values from D’s domain.

Canonical Model and the Chase. Note that Π ∪ D can have many models. A
canonical model is obtained via the chase, which is defined as follows: We say that a
rule ρ ∈ Π with head p(z⃗) is applicable to an instance I if there exists a homomorphism
h from the body of ρ to I. We may then carry out a chase step, which consists of adding
atom h′(p(z⃗)) to the instance I, where h′ coincides with h on all variables occurring in
the body of ρ and h′ maps each existential variable in p(z⃗) to a fresh labeled null not
occurring in I. A chase sequence for database D and program Π is a sequence of instances
I0, I1, . . . obtained by applying a sequence of chase steps, starting with I0 = D. The
union of instances obtained by all possible chase sequences is referred to as Chase(D, Π).
The labeled nulls in Chase(D, Π) play the same role as blank nodes in an RDF graph,
i.e., resources for which the concrete value is not known. The importance of Chase(D, Π)
comes from the equivalence Π ∪ D |= Q(⃗a) ⇔ Chase(D, Π) |= Q(⃗a) (Fagin et al., 2005).
However, in general, Chase(D, Π) is infinite. Hence, the previous equivalence does not
yield an algorithm to evaluate a CQ Q(z⃗) w.r.t. database D and program Π. In fact,
without restriction, this is an undecidable problem (Johnson and Klug, 1984). Several
subclasses of Datalog± have, thus, been presented (Fagin et al., 2005; Calì et al., 2013,
2010a,b; Baget et al., 2009, 2011; Arenas et al., 2018) that ensure decidability of CQ
answering (see (Calì et al., 2013) for an overview).

Warded Datalog±. One such subclass is Warded Datalog± (Arenas et al., 2018), which
makes CQ answering even tractable (in terms of data complexity). For a formal definition
of Warded Datalog±, see (Arenas et al., 2018). We give the intuition of Warded Datalog±

22



2.3. DB View: Warded Datalog± and the Vadalog System

here. First, for all positions in rules of a program Π, distinguish if they are affected or
not: a position is affected if the chase may introduce a labeled null here, i.e., a position
in a head atom either with an existential variable or with a variable that occurs only
in affected positions in the body. Then, for variables occurring in a rule ρ of Π, we
identify the dangerous ones: a variable is dangerous in ρ if it may propagate a null in the
chase, i.e., it appears in the head, and all its occurrences in the body of ρ are at affected
positions. A Datalog± program Π is warded if all rules ρ ∈ Π satisfy: either ρ contains no
dangerous variable or all dangerous variables of ρ occur in a single body atom A (= the
“ward”) such that the variables shared by A and the remaining body occur in at least
one non-affected position (i.e., they cannot propagate nulls).

Vadalog. Apart from the favorable computational properties, another critical aspect
of Warded Datalog± is that a full-fledged engine (even with further extensions) exists:
the Vadalog system (Bellomarini et al., 2018). It combines the full support of Warded
Datalog± plus several extensions needed for practical use, including (decidable) arith-
metics, aggregation, and other features. It has been deployed in numerous industrial
scenarios in the finance, supply chain, and logistics sectors.

Bag Semantics of Datalog. Recall from Section 2.2 that SPARQL, the SW’s standard
querying language, employs bag semantics. However, Datalog-based languages typically
employ set semantics (i.e., eliminate all duplicates in query results). In (Mumick et al.,
1990), a bag semantics of Datalog was introduced based on derivation trees. Given a
database D and Datalog program Π, a derivation tree (DT) is a tree T with node and
edge labels, such that either (i) T consists of a single node labeled by an atom from
D or (ii) Π contains a rule ρ : H ← A1, A2, . . . , Ak with k > 0, and there exist DTs
T1, . . . , Tk whose root nodes are labeled with atoms C1, . . . , Ck such that A1, . . . , Ak

are simultaneously matched to C1, . . . , Ck by applying some substitution θ, and T is
obtained as follows: T has a new root node r with label Hθ and the k root nodes of the
DTs T1, . . . , Tk are appended as child nodes of r in this order. All edges from r to its
child nodes are labeled with ρ. Then, the bag semantics of program Π over database D
consists of all ground atoms derivable from D by Π, and the multiplicity m ∈ N ∪ {∞}
of each such atom A is the number of possible DTs with root label A. Datalog with bag
semantics is readily extended by stratified negation (Mumick and Shmueli, 1993): the
second condition of the definition of DTs now has to take negative body atoms in a rule
ρ : H ← A1, A2, . . . , Ak, ¬B1, . . . ¬Bℓ with k > 0 and ℓ ≥ 0 with head atom H from some
stratum i into account in that we request that none of the atoms B1θ, . . . Bℓθ can be
derived from D via the rules in Π from strata less than i.

Bag Semantics via Set Semantics of Warded Datalog±. In (Bertossi et al., 2019),
it was shown how Datalog with bag semantics can be transformed into Warded Datalog±

with set semantics. The idea is to replace every predicate P (. . .) with a new version
P (. ; . . .) with an extra, first argument to accommodate a labeled null, which is interpreted
as tuple ID (TID). Each rule in Π of the form

ρ : H(x̄) ← A1(x̄1), A2(x̄2), . . . , Ak(x̄k), with k > 0, x̄ ⊆ ∪ix̄i
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is then transformed into the Datalog± rule

ρ′ : ∃z H(z; x̄) ← A1(z1; x̄1), A2(z2; x̄2), . . . , Ak(zk; x̄k),

with fresh, distinct variables z, z1, . . . , zk. Some care (introducing auxiliary predicates) is
required for rules with negated body atoms to solely produce rules with safe negations,
i.e., rules where any variable in its head or in a negated atom must occur in at least one
positive body atom of the same rule (Bertossi et al., 2019). A Datalog rule ρ : H(x̄) ←
A1(x̄1), . . . , Ak(x̄k), ¬B1(x̄k+1), . . . , ¬Bℓ(x̄k+ℓ) with, x̄k+1, . . . , x̄k+ℓ ⊆ �k

i=1 x̄i is replaced
by ℓ + 1 rules in the corresponding Datalog± program Π′:

ρ′
0 : ∃zH(z; x̄) ← A1(z1; x̄1), . . . , Ak(zk; x̄k),

¬Auxρ
1(x̄k+1), . . . , ¬Auxρ

ℓ (x̄k+ℓ),
ρ′

i : Auxρ
i (x̄k+i) ← Bi(zi; x̄k+i), i = 1, . . . , ℓ.

The resulting Datalog± program Π′ is trivially warded since the rules thus produced
contain no dangerous variables at all. Moreover, it is proved in (Bertossi et al., 2019) that
an atom P (⃗a) is in the DT-defined bag semantics of Datalog program Π over database D
with multiplicity m ∈ N ∪ {∞}, iff Chase(D, Π′) contains atoms of the form P (t; a⃗) for
m distinct labeled nulls t (i.e., the tuple IDs).

Discussion. Recall from Section 2.2 that the SW community represents properties of KGs
using ontologies, e.g., defined in RDFS and OWL. Furthermore, recall that SPARQL, the
SW’s standard querying language for KGs, employs bag semantics, in contrast to Datalog-
based languages of the DB community that typically employ set semantics. Warded
Datalog±’s and, thus, Vadalog’s capabilities to (i) express bag semantics, (ii) answer
queries under ontologies, while (iii) keeping CQ answering tractable; make the Vadalog
system a promising base for developing a uniform and consistent KG management system
for the DB and SW communities, as we shall see in Chapter 6.
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CHAPTER 3
Related Work

In Chapter 1, we identified three dimensions that divide KG research from different
communities. This section reviews related approaches that tried to bridge these gaps.
As the following sections split the related work based on the dividing dimensions and
their corresponding research goals, we recall them briefly in the following. Essentially,
the reasoning divide states that while the DB and SW communities use a rich set
of logical rules to express major data properties, contemporary KGEs from the ML
community are strongly limited in their expressivity of such rules (cf., Table 1.1). This
limitation calls for (G1) more expressive KGEs that can capture all core inference rules
(defined in Section 2.1). Further problems arise from the scalability divide that points
to the massive KGs the SW and DB communities provide, requiring (G2) the design of
highly scalable and resource-efficient KGEs. On top of all this, the data management
divide reveals a significant mismatch between SW and DB frameworks for modeling,
querying, and reasoning over KGs. This technological mismatch makes blending KGs
from both communities a complex endeavor, calling for (G3) a uniform and consistent
KG management system.

The following sections discuss related work split by our research goals G1–G3. In
particular, as G1 and G2 are concerned with proposing more expressive and efficient
KGEs, Section 3.1 classifies KGEs into different families and reviews their expressivity,
and Section 3.2 reviews the efficiency problems of KGEs. Next, Section 3.3 reviews
approaches that took a step toward G3 by proposing either theoretical translations
between standard SW and DB frameworks or developing practical systems that partially
allow to query (and reason over) KGs from the DB and SW communities. Note that the
related approaches studied in Sections 3.1 and 3.2 incorporate material from (Pavlović
and Sallinger, 2023a,b, 2024a,b,c) and that the approaches analyzed in Sections 3.3
incorporate material from (Angles et al., 2023a,b). Furthermore, note that Section 3.3’s
content is partially taken from my Bachelor’s (Pavlović, 2019) and Master’s theses
(Pavlović, 2020) and left unchanged here for consistency and readability.
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3.1 G1: Expressive KGEs
The main focus of our work lies on geometric Knowledge Graph Embedding Models
(gKGEs), i.e., KGEs that allow for a geometric interpretation of their captured inference
rules. Thus, we have excluded neural KGEs as they are typically less interpretable
(Dettmers et al., 2018; Socher et al., 2013; Nathani et al., 2019; Wang et al., 2021).
gKGEs are commonly classified by how they embed relations:

Functional Models. So far, solely a subset of translational models supports composition.
We call this subset functional models, as they embed relations as functions fri : Kd → Kd

and entities as vectors ej ∈ Kd over some field K. These models represent true triples
ri(eh, et) as et = fri(eh). Thereby, they can capture composition rules via functional
composition. TransE (Bordes et al., 2013) is the pioneering functional model, embedding
relations ri as fri(eh) = eh + eri with eri ∈ Kd. However, it is neither fully expressive
nor can it capture 1–N, N–1, N–N, nor symmetric relations. RotatE (Sun et al., 2019)
embeds relations as rotations in complex space, allowing it to capture symmetry rules but
leaving it otherwise with TransE’s limitations. Recently, it was discovered that TransE
and RotatE may only capture a fairly limited notion of composition (Zhang et al., 2019;
Abboud et al., 2020; Lu and Hu, 2020; Gao et al., 2020), cf. also Section 4.3.1. Therefore,
extensions have been proposed to tackle some limitations, such as MuRP (Balazevic et al.,
2019a), RotH (Chami et al., 2020), HAKE (Zhang et al., 2020), and ConE (Bai et al.,
2021). While these extensions solved some limitations, the purely functional nature of
TransE, RotatE, and any of their extensions limits them to capture solely compositional
definition and not general composition (see Table 1.1 for the defining formulas and cf.
also Section 4.3.1 for details). Therefore, capturing general composition is still an open
problem. Even more, functional models are incapable of capturing vital rules, such as
hierarchies, completely (Abboud et al., 2020).

Bilinear Models embed relations as matrices, allowing them to factorize a graph’s
adjacency matrix by computing the bilinear product of entity and relation embeddings.
The pioneering bilinear model is RESCAL (Nickel et al., 2011). It embeds relations
with full-rank d × d matrices M and entities with d-dimensional vectors. However,
its parameter size grows quadratically with its dimensionality d, limiting RESCAL’s
scalability (Kazemi and Poole, 2018). Thus, more scalable bilinear gKGEs were proposed,
such as DistMult (Yang et al., 2015a), HolE (Nickel et al., 2016), ComplEx (Trouillon
et al., 2016), TuckER (Balazevic et al., 2019b), SimplE (Kazemi and Poole, 2018), QuatE
(Zhang et al., 2019), and DualQuatE (Cao et al., 2021). In particular, DistMult (Yang
et al., 2015a) constrains RESCAL’s relation matrix M to a diagonal matrix for efficiency
reasons, limiting DistMult to capture symmetric relations only. HolE (Nickel et al., 2016)
solves this limitation by combining entity embeddings via circular correlation, whereas
ComplEx (Trouillon et al., 2016) solves this limitation by embedding relations with a
complex-valued diagonal matrix. HolE and ComplEx have subsequently been shown to
be equivalent (Hayashi and Shimbo, 2017). SimplE (Kazemi and Poole, 2018) is based on
canonical polyadic decomposition (Hitchcock, 1927). TuckER (Balazevic et al., 2019b) is
based on Tucker decomposition (Tucker, 1966) and extends the capabilities of RESCAL
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and SimplE (Balazevic et al., 2019b). QuatE (Zhang et al., 2019), and DualQuatE (Cao
et al., 2021) extend ComplEx by using extensions of the complex space as embedding
spaces. In particular, QuatE uses the quaternion space, which extends the real space
by three imaginary units, whereas DualQuatE uses the dual-quaternion space, which
extends the real space by seven imaginary units. While all bilinear models, excluding
DistMult, are fully expressive, they cannot capture any notion of composition.

Spatial Models. Spatial models define semantic regions within the embedding space
that allow the intuitive representation of certain rules. In entity classification, for
example, bounded axis-aligned hyper-rectangles (boxes) represent entity classes, capturing
class hierarchies through the spatial subsumption of these boxes (Vilnis et al., 2018;
Subramanian and Chakrabarti, 2018; Li et al., 2019). Also, query answering systems

— such as Query2Box (Ren et al., 2020) — have used boxes to represent answer sets
due to their natural interpretation as sets of entities. Although Query2Box can be used
for KGC, entity classification approaches cannot scalably be employed in the general
KGC setting, as this would require an embedding for each entity tuple (Abboud et al.,
2020). BoxE (Abboud et al., 2020) is the first spatial KGE dedicated to KGC. It embeds
relations as a pair of boxes and entities as a set of points and bumps in the embedding
space. The usage of boxes enables BoxE to capture most core inference rules, specifically
those that can be described by the intersection of boxes in the embedding space, such
as hierarchy. Moreover, boxes enable BoxE to capture 1–N, N–1, and N–N relations
naturally. Yet, BoxE cannot capture any notion of composition (Abboud et al., 2020).

Our Work. Recently, we proposed ExpressivE (Pavlović and Sallinger, 2023b), a spatio-
functional gKGE that combines the advantages of both spatial and functional models by
embedding relations as hyper-parallelograms. In Chapter 4, we show that ExpressivE
captures all core inference rules simultaneously while additionally allowing to display any
captured inference rule — including general composition — through the spatial relation
of hyper-parallelograms. Thus, Chapter 4 shows how we reach G1.

3.2 G2: Efficient KGEs
Although the KGE families discussed in Section 3.1 are vastly different, all contemporary
gKGEs suffer from at least one of two efficiency problems, namely the embedding space
and high-dimensionality problem. The following paragraphs discuss each of them in detail.

Embedding Space Problem. Contemporary gKGEs often overcome the limitations
of former ones by exploring increasingly more complex spaces. For example, while (i)
RESCAL and DistMult use the Euclidean space R, (ii) ComplEx uses the complex space,
extending R by one imaginary unit, (iii) QuatE uses the quaternion space, extending R
by three imaginary units, and (iv) DualQuatE uses the dual-quaternion space, extending
R by seven imaginary units. Thus, a d-dimensional entity embedding of (i) RESCAL
and DISTMULT requires d, (ii) ComplEx requires 2d, (iii) QuatE requires 4d, and (iv)
DualQuatE requires even 8d real-valued parameters. Therefore, gKGEs based in more
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complex embedding spaces typically require more parameters, lowering their efficiency
compared to Euclidean gKGEs (Wang et al., 2021).

High-Dimensionality Problem. Even more, most gKGEs require high-dimensional
embeddings to reach good KGC performance (Chami et al., 2020; Wang et al., 2021). Yet,
high embedding dimensionalities of 200, 500, or 1000 (Sun et al., 2019; Zhang et al., 2019)
increase the time and space requirements of gKGEs drastically, limiting their efficiency
and application to resource-constrained environments, especially in mobile smart devices
(Wang et al., 2021).

Hyperbolic gKGEs such as RotH and AttH (Chami et al., 2020) embed entities
and relations in the hyperbolic space, which allows for high-fidelity and parsimonious
representations of hierarchical relations (Balazevic et al., 2019a; Chami et al., 2020), i.e.,
relations that describe hierarchies between entities, such as part_of. This allowed them
to reach promising KGC performance using low-dimensional embeddings, addressing
the high-dimensionality problem (Chami et al., 2020). Yet, most hyperbolic gKGEs
were limited to expressing a single global entity hierarchy per relation. ConE (Bai
et al., 2021) solves this problem by embedding entities as hyperbolic cones and relations
as transformations between these cones. However, hyperbolic gKGEs typically cannot
directly employ Euclidean addition and scalar multiplication but require far more costly
hyperbolic versions of these operations, termed Möbius Addition and Multiplication.
Thus, they fail to address the embedding space problem, which results in high time
requirements for hyperbolic gKGEs (Wang et al., 2021).

Euclidean gKGEs have recently shown strong representation, inference, and KGC
capabilities under high-dimensional conditions. On the one hand, HAKE (Zhang et al.,
2020) achieved promising results for representing hierarchical relations on which hyperbolic
gKGEs are typically most effective. On the other hand, our recent ExpressivE model
(Pavlović and Sallinger, 2023b) managed to capture all core inference rules (see Chapter 4
for details). Although Euclidean gKGEs address the embedding space problem, their
reported KGC results under low dimensionalities are dramatically lower than those
of hyperbolic gKGEs (Chami et al., 2020). Thus, they currently fail to address the
high-dimensionality problem.

Our Work. Based on the discussion above, we find that no contemporary gKGE addresses
both the embedding space and high dimensionality problems simultaneously. Inspired
by ExpressivE’s promising results with high-dimensional embeddings (cf., (Pavlović and
Sallinger, 2023b) and see Chapter 4), we propose SpeedE, a highly resource-efficient
gKGE that jointly focuses on both efficiency problems, thereby reaching G2. Chapter 5
presents the SpeedE model and how we reach G2 in detail.

3.3 G3: Uniform Knowledge Graph Management
This section reviews approaches that took a step toward G3, i.e., developing a uniform and
consistent KG management system. Recall the SW and DB communities’ requirements
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(R1–R5) for such a uniform system, identified in Chapter 1. For the reader’s convenience,
we briefly restate the five identified requirements here. To be accepted by the SW and
DB communities, a uniform KG management system should support (R1) the most
common SPARQL features for querying KGs; (R2) bag semantics to answer queries
according to the SPARQL standard (Prud’hommeaux and Seaborne, 2008; Harris and
Seaborne, 2013); (R3) OWL 2 QL for ontological reasoning, which technically means for
DB languages such as Datalog that existential quantification in rule heads is required;
and (R4) full recursion to provide the expressive power necessary for complex business
cases. Finally, (R5) an implemented system is required to apply the framework in the
real world. In the following sections, we review existing approaches and analyze which of
the five requirements they satisfy and which they fall short of. In particular, Section 3.3.1
reviews theoretical endeavors targeted toward G3, while Section 3.3.2 reviews practical
systems that attempted to combine SW and DB frameworks for managing KGs.

3.3.1 Theoretical Approaches
Several theoretical research efforts have aimed at G3, i.e., bridging the gap between the
DB and SW communities for managing KGs.

Translations of SPARQL to Answer Set Programming. In a series of papers,
Polleres et al. presented translations of SPARQL and SPARQL 1.1 to various extensions
of Datalog. The first translation from SPARQL to Datalog (Polleres, 2007) converted
SPARQL queries into Datalog programs by employing negation as failure. This translation
was later extended by the addition of new features of SPARQL 1.1 and by considering
its bag semantics in (Polleres and Wallner, 2013). Thereby, Polleres and Wallner created
a nearly complete translation of SPARQL 1.1 queries to Datalog with Disjunction (DLV)
programs. However, the translation had two major drawbacks: On the one hand, the
chosen target language, DLV, does not support ontological reasoning as it does not
contain existential quantification, thereby missing (R3) a key requirement of the Semantic
Web community. On the other hand, (R5) the requirement of an implemented system
is only partially fulfilled since the prototype implementation DLVhex-SPARQL Plugin
(Polleres and Schindlauer, 2007) of the SPARQL to Datalog translation of (Polleres, 2007)
has not been extended to cover SPARQL 1.1’s new features.
Alternative Translations of SPARQL to Datalog. An alternative approach of
relating SPARQL to non-recursive Datalog with stratified negation (or, equivalently, to
Relational Algebra) was presented by Angles and Gutierrez in (Angles and Gutierrez,
2008). The peculiarities of negation in SPARQL were treated in a separate paper (Angles
and Gutierrez, 2016b). The authors later extended this line of research to an exploration
of the bag semantics of SPARQL and a characterization of the structure of its algebra
and logic in (Angles and Gutierrez, 2016a). They translated a few SPARQL features into
a Datalog dialect with bag semantics (multiset non-recursive Datalog with safe negation).
This work considered only a small set of SPARQL functionality on a very abstract level
and used again a target language that does not support ontological reasoning, failing
to meet important requirements (R1, R3) of the SW community. Most importantly, no
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implementation of the translations provided by Angles and Gutierrez exists, thus failing
to fulfill R5.
Supporting Ontological Reasoning via Existential Rules. In (Calì et al., 2009),
Datalog± was presented as a family of languages that are particularly well suited for
capturing ontological reasoning. The “+” in Datalog± refers to the crucial extension
compared with Datalog by existential rules, that is, allowing existentially quantified
variables in the rule heads. However, without restrictions, basic reasoning tasks such
as answering Conjunctive Queries w.r.t. an ontology given by a set of existential rules
become undecidable (Johnson and Klug, 1984). Hence, numerous restrictions have been
proposed (Fagin et al., 2005; Calì et al., 2013, 2010a,b; Baget et al., 2009, 2011) to ensure
the decidability of such tasks, which led to the “−“ in Datalog±. Of all variants of
Datalog±, Warded Datalog± (Arenas et al., 2018) ultimately turned out to constitute the
best compromise between complexity and expressiveness, and it has been implemented
in an industrial-strength system – the Vadalog system (Bellomarini et al., 2018), thus
fulfilling requirement R5. However, the requirements of (R1) supporting SPARQL with
or without (R2) bag semantics have not been fulfilled up to now.
Warded Datalog± with Bag Semantics. In (Bertossi et al., 2019), it was shown
that Warded Datalog± using set semantics can be used to represent Datalog using
bag semantics by using existential quantification to introduce new tuple IDs. It was
assumed that these results could be leveraged for future translations from SPARQL with
bag semantics to Warded Datalog± with set semantics. However, the (R1) theoretical
translation of SPARQL to Vadalog using these results and also (R5) its implementation
by extending Vadalog were left open in (Bertossi et al., 2019) and considered of primary
importance for future work.

3.3.2 Practical Approaches

Several systems have aimed at bridging the gap between DB and SW technologies. The
World Wide Web Consortium (W3C) lists StrixDB, DLVhex SPARQL-engine, and RDFox
as systems that support SPARQL in combination with Datalog1. Furthermore, we also
have a look at ontological reasoning systems Vadalog, Graal, and VLog, which either
understand SPARQL to some extent or, at least in principle, could be extended in order
to do so.
DLVhex-SPARQL Plugin. The DLVhex-SPARQL Plugin (Polleres and Schindlauer,
2007) is a prototype implementation of the SPARQL to Datalog translation in (Polleres,
2007). According to the repository’s ReadMe file2, it supports basic graph patterns,
simple conjunctive FILTER expressions (such as ISBOUND, ISBLANK, and arithmetic
comparisons), the UNION, OPTIONAL, and JOIN operation. Other operations, language
tags, etc. are not supported, and query results do not conform to the SPARQL protocol,

1https://www.w3.org/wiki/SparqlImplementations (last visited 09/25/2023)
2https://sourceforge.net/p/dlvhex-semweb/code/HEAD/tree/dlvhex-

sparqlplugin/trunk/README (last visited 09/25/2023)
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according to the ReadMe file. Thus, the DLVhex-SPARQL Plugin misses many vital
(R1) SPARQL features. Moreover, the limited support of existential quantification (see
(Eiter et al., 2013)) by DLV does not suffice for (R3) ontological reasoning as required by
the OWL 2 QL standard.
RDFox. RDFox is an RDF store developed and maintained at the University of Oxford
(Nenov et al., 2015). It reasons over OWL 2 RL ontologies in Datalog and computes/stores
materializations of the inferred consequences for efficient query answering (Nenov et al.,
2015). The answering process of SPARQL queries is not explained in great detail,
except that queries are evaluated on top of these materializations by employing different
scanning algorithms (Nenov et al., 2015). However, translating SPARQL to Datalog –
for representing, querying, and reasoning over KGs in one consistent system – is not
supported3. Moreover, RDFox does currently not support (R1) property paths and some
other SPARQL 1.1 features4.

StrixDB. StrixDB is an RDF store developed as a simple tool for working with middle-
sized RDF graphs, supporting SPARQL 1.0 and Datalog reasoning capabilities5. To
the best of our knowledge, no academic paper or technical report explains the system’s
capabilities in greater detail. The StrixStore documentation page6 lists examples of how
to integrate Datalog rules into SPARQL queries and query graphs enhanced by Datalog
ontologies. However, translating SPARQL to Datalog is not supported7. Moreover,
important (R1) SPARQL 1.1 features such as aggregation and property paths are not
supported by StrixDB.
Graal. Graal was developed as a toolkit for querying ontologies with existential rules
(Baget et al., 2015). The system does not focus on a specific storage system but specializes
in algorithms that can answer queries regardless of the underlying database type (Baget
et al., 2015). It reaches this flexibility by translating queries from their host system
language into Datalog±. However, it pays the trade-off of restricting itself to answering
conjunctive queries only (Baget et al., 2015) and therefore supports merely a small subset
of SPARQL features8 — e.g., (R1) basic features such as UNION or MINUS are missing.

VLog. VLog is a rule engine developed at the TU Dresden (Carral et al., 2019). The
system transfers incoming SPARQL queries to specified external SPARQL endpoints
such as Wikidata and DBpedia and incorporates the received query results into their
knowledge base (Carral et al., 2019). Therefore, the responsibility of query answering is
handed over to RDF triple stores that provide a SPARQL query answering endpoint, thus
failing to provide (R5) a uniform, integrated framework for combining query answering
with ontological reasoning.

3see https://docs.oxfordsemantic.tech/reasoning.html (last visited 09/25/2023)
4https://docs.oxfordsemantic.tech/3.1/querying-rdfox.html#query-language (last visited 09/25/2023)
5http://opoirel.free.fr/strixDB/ (last visited 09/25/2023)
6http://opoirel.free.fr/strixDB/DOC/StrixStore_doc.html (last visited 09/25/2023)
7see http://opoirel.free.fr/strixDB/dbfeatures.html (last visited 09/25/2023)
8https://graphik-team.github.io/graal/ (last visited 09/25/2023)
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The Vadalog system (Bellomarini et al., 2018) is a KG management system
implementing the logic-based language Warded Datalog±. It extends Datalog by including
existential quantification necessary for ontological reasoning while maintaining reasonable
complexity. As an extension of Datalog, it supports full recursion. Although Warded
Datalog± has the capabilities to support SPARQL 1.1 under the OWL 2 QL entailment
regime (Arenas et al., 2018) (considering set semantics), no complete theoretical nor any
practical translation from SPARQL 1.1 to Warded Datalog± exists. Therefore, the (R2)
bag semantics and (R1) SPARQL feature coverage requirements are not met.

Our Work. As we have seen in the previous sections, no uniform and consistent
framework for managing KGs exists. Inspired by Vadalog’s theoretical capabilities to
support SPARQL 1.1 under OWL 2 QL in set semantics, we design the SparqLog system.
It translates RDF graphs and SPARQL 1.1 queries to Vadalog programs. As Vadalog
additionally allows the representation of RDFS/OWL ontologies as programs, SparqLog
brings representing, querying, and reasoning over KGs together in one consistent system.
As Chapter 6 shows, SparqLog satisfies all identified requirements (R1–R5), rendering it
a uniform system for managing KGs, thereby reaching G3.
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CHAPTER 4
Reasoning Divide

This chapter presents how we overcome the reasoning divide, reaching (G1) the goal
of designing a KGE that captures logical rules relevant to the DB and SW community,
specifically the core inference rules (as discussed in Section 1.1). In particular:

• We introduce the spatio-functional embedding model ExpressivE. It embeds pairs
of entities as points and relations as hyper-parallelograms in the space R2d, which
we call the virtual triple space. The virtual triple space allows ExpressivE to
represent rules through the spatial relationship of hyper-parallelograms, offering an
intuitive and consistent geometric interpretation of ExpressivE embeddings and
their captured rules.

• To reach G1, we prove that ExpressivE can capture all core inference rules. This
makes ExpressivE the first model capable of capturing both general composition
and hierarchy jointly.

• Additionally, we prove that our model is fully expressive, making ExpressivE the
first KGE that both supports composition and is fully expressive.

• Finally, we evaluate ExpressivE on the two standard KGC benchmarks WN18RR
(Dettmers et al., 2018) and FB15k-237 (Toutanova and Chen, 2015), revealing
that ExpressivE is competitive with state-of-the-art gKGEs and even significantly
outperforms them on WN18RR.

Organization. This chapter contains material from the following constituent papers of
this dissertation (Pavlović and Sallinger, 2023a,b, 2024a,b,c). Based on this material,
Section 4.1 introduces ExpressivE, the virtual triple space, and interprets our model’s
parameters within it. Section 4.2 analyzes our model’s expressive power and inference
capabilities. Section 4.3 discusses ExpressivE’s two natures and how their combination
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allows ExpressivE to capture general composition and hierarchy jointly. Section 4.4
presents the experimental setup of the subsequent analyzes. Section 4.5 discusses empirical
results together with our model’s space complexity, and Section 4.6 summarizes our work.

4.1 ExpressivE and the Virtual Triple Space
This section introduces ExpressivE, a gKGE targeted toward KGC with the capabilities
of capturing a rich set of inference rules. ExpressivE embeds entities as points and
relations as hyper-parallelograms in the virtual triple space R2d. More concretely, instead
of analyzing our model in the d-dimensional embedding space Rd, we construct the novel
virtual triple space that grants ExpressivE’s parameters a geometric meaning. Above
all, the virtual triple space allows us to intuitively interpret ExpressivE embeddings and
their captured rules, as discussed in Section 4.2.

Representation. Entities ej ∈ E are embedded in ExpressivE via a vector ej ∈ Rd,
representing points in the latent embedding space Rd. Relations ri ∈ R are embedded
as hyper-parallelograms in the virtual triple space R2d. More specifically, ExpressivE
assigns to a relation ri for each of its arity positions p ∈ {h, t} the following vectors: (1)
a slope vector sp

i ∈ Rd, (2) a center vector cp
i ∈ Rd, and (3) a width vector wp

i ∈ (R≥0)d.
Intuitively, these vectors define the slopes sp

i of the hyper-parallelogram’s boundaries,
its center cp

i and width wp
i . A triple ri(eh, et) is captured to be true in an ExpressivE

model if its relation and entity embeddings satisfy the following inequalities:

(eh − ch
i − st

i ⊙ et)|.| ⪯ wh
i (4.1)

(et − ct
i − sh

i ⊙ eh)|.| ⪯ wt
i (4.2)

Where x|.| represents the element-wise absolute value of a vector x, ⊙ represents the
Hadamard (i.e., element-wise) product, and ⪯ represents the element-wise less or equal
operator. It is very complex to interpret this model in the embedding space Rd. Hence,
we construct followingly a virtual triple space in R2d that will ease reasoning about the
parameters and inference capabilities of ExpressivE.

Virtual Triple Space. We construct this virtual space by concatenating the head and tail
entity embeddings. In detail, this means that any pair of entities (eh, et) ∈ E × E defines
a point in the virtual triple space by concatenating their entity embeddings eh, et ∈ Rd,
i.e., (eh||et) ∈ R2d, where || is the concatenation operator. We will henceforth call
the first d dimensions of the virtual triple space the head dimensions and the second
d dimensions the tail dimensions. A set of important sub-spaces of the virtual triple
space are the 2-dimensional spaces, created from the j-th embedding dimension of head
entities and the j-th dimension of tail entities — i.e., the j-th and (d + j)-th virtual triple
space dimensions. We call them correlation subspaces, as they visualize the captured
relation-specific dependencies of head and tail entity embeddings, as will be discussed
followingly. Moreover, we call the correlation subspace spanned by the j-th and (d+ j)-th
virtual triple space dimension the j-th correlation subspace.
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Parameter Interpretation. Inequalities 4.1 and 4.2 construct each an intersection of
two parallel half-spaces in any correlation subspace of the virtual triple space. We call
the intersection of two parallel half-spaces a band, as they are limited by two parallel
boundaries. Henceforth, we will denote with v(j) the j-th dimension of a vector v.
For example, (eh(j) − ch

i (j) − st
i(j) ⊙ et(j))|.| ⪯ wh

i (j) defines a band in the j-th
correlation subspace. The intersection of two bands results either in a band (if one
band subsumes the other) or a parallelogram. Since we are interested in constructing
ExpressivE embeddings that capture certain inference rules, it is sufficient to consider
parallelograms for these constructions. Figure 4.1a visualizes a relation parallelogram
(green solid) and its parameters (orange dashed) in the j-th correlation subspace. In
essence, the parallelogram is the result of the intersection of two bands (thick blue
and magenta lines), where its boundaries’ slopes are defined by sp

i , the center of the
parallelogram is defined by cp

i , and finally, the widths of each band are defined by wp
i .

(a) (b)

Figure 4.1: (a) Interpretation of relation parameters (orange dashed) as a parallelogram
(green solid) in the j-th correlation subspace; (b) Multiple relation embeddings with
the following properties: Symmetry (rB), Anti-Symmetry (rA, rD, rE , rF ), Inversion
(rD(X, Y ) ⇔ rA(Y, X)), Hierarchy (rA(X, Y ) ⇒ rC(X, Y )), Intersection (rD(X, Y ) ∧
rE(X, Y ) ⇒ rF (X, Y )), Mutual Exclusion (e.g., rA(X, Y ) ∧ rB(X, Y ) ⇒ ⊥).

Since Inequalities 4.1 and 4.2 solely capture dependencies within the same dimension,
any two different dimensions j ̸= k of head and tail entity embeddings are independent.
Thus, relations are embedded as hyper-parallelograms in the virtual triple space, whose
edges are solely crooked in any j-th correlation subspace. Intuitively, the crooked edges
represent relation-specific dependencies between head and tail entities and are thus vital
for the expressive power of ExpressivE. Note that each correlation subspace represents one
dimension of the element-wise Inequalities 4.1 and 4.2. Since the sum of all correlation
subspaces represents all dimensions of Inequalities 4.1 and 4.2, it is sufficient to analyze
all correlation subspaces to identify the captured inference rules of an ExpressivE model.
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Distance Function. ExpressivE employs the typical distance function of spatial
gKGEs D : E × R × E → R2d (Abboud et al., 2020) — measuring the distance of
entity pair embeddings (points) to relation embeddings (hyper-parallelograms) —– which
we define next. Let τri(h,t) denote the embedding of a triple ri(h, t), i.e., τri(h,t) =
(eht − ci − si ⊙ eth)|.|, with eht = (eh||et), eth = (et||eh), ci = (ch

i ||ct
i), si = (st

i||sh
i ),

and wi = (wh
i ||wt

i), then D is defined as:

D(h, ri, t) =
�

τri(h,t) ⊘ di, if τri(h,t) ⪯ wi

τri(h,t) ⊙ di − ki, otherwise
(4.3)

Where di = 2⊙wi +1 is a width-dependent factor and ki = 0.5⊙ (di −1)⊙ (di −1⊘di).
Observe that Equation 4.3 splits D into two parts:

• Di(h, ri, t) = τri(h,t) ⊘ di for points inside the corresponding relation hyper-
parallelogram, i.e., τri(h,t) ⪯ wi.

• Do(h, ri, t) = τri(h,t) ⊙ di − ki for points outside the corresponding relation hyper-
parallelogram, i.e., τri(h,t) ̸⪯ wi.

Intuition. The general idea of splitting the distance function is to assign high scores
to entity pair embeddings within a hyper-parallelogram and low scores to entity pair
embeddings outside the hyper-parallelogram. Specifically, if a triple ri(h, t) is captured
to be true by an ExpressivE embedding, i.e., if τri(h,t) ⪯ wi, then the distance correlates
inversely with the hyper-parallelogram’s width — through the width-dependent factor di

— keeping low distances/gradients for points within the hyper-parallelogram. Otherwise,
the distance correlates — again through the width-dependent factor di — linearly with
the width to penalize points outside larger parallelograms.

Scoring Function. Based on this distance function D(h, ri, t), we define ExpressivE’s
scoring function for quantifying the plausibility of a given triple ri(h, t) as follows:

s(h, ri, t) =−||D(h, ri, t)||2 (4.4)

Now that the ExpressivE model and its components have been introduced, we are ready
to discuss its theoretical capabilities next.

4.2 Knowledge Capturing Capabilities
This section theoretically analyzes ExpressivE’s expressive power and supported rules.
As the proofs of our theorems are quite technical and long, we discuss the theorems
and their general intuitions first (Sections 4.2.1 and 4.2.2), formalize important notions
(Section 4.2.3) next, thereby, laying the theoretical foundations for the upcoming proofs
(Sections 4.2.4–4.2.8). In what follows, we assume the standard definition of capturing
rules (Sun et al., 2019; Abboud et al., 2020). This means intuitively that a KGE captures
a rule if a set of parameters exists such that the rule is captured exactly and exclusively.
We formalize this notion for ExpressivE in Section 4.2.3 to keep it close to our proofs.
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4.2.1 Expressiveness
This section analyzes whether ExpressivE is fully expressive (Abboud et al., 2020), i.e.,
can capture any graph G over R and E. Theorem 4.2.1 proves that this is the case by
constructing for any graph G an ExpressivE embedding that captures any triple within
G to be true and any other triple to be false. Specifically, the proof uses induction,
starting with an embedding that captures the complete graph, i.e., any triple over E and
R is true. Next, each induction step shows that we can alter the embedding to make an
arbitrarily picked triple of the form ri(ej , ek) with ri ∈ R, ej , ek ∈ E and ej ̸= ek false.
Finally, we add |E| ∗ |R| dimensions to make any self-loop — i.e., any triple of the form
ri(ej , ej) with ri ∈ R and ej ∈ E — false. The full, quite technical proof can be found
in Section 4.2.4.

Theorem 4.2.1 (Expressive Power). ExpressivE can capture any arbitrary graph G over
R and E if the embedding dimensionality d is at least in O(|E| ∗ |R|).

4.2.2 Inference Rules
This section shows that ExpressivE can capture all core inference rules (as can be seen
in Table 1.1). First, we discuss how ExpressivE represents inference rules with at most
two variables. Next, we introduce the notion of compositional definition and continue
by identifying how this rule is described in the virtual triple space. Then, we define
general composition, building on both the notion of compositional definition and hierarchy.
Finally, we conclude this section by discussing the key properties of ExpressivE.

Two-Variable Rules. Figure 4.1b displays several one-dimensional relation embeddings
and their captured rules in a correlation subspace. Intuitively, ExpressivE represents:
(1) symmetry rules r1(X, Y ) ⇒ r1(Y, X) via symmetric hyper-parallelograms, (2) anti-
symmetry rules r1(X, Y )∧r1(Y, X) ⇒ ⊥ via hyper-parallelograms that do not overlap with
their mirror image, (3) inversion rules r1(X, Y ) ⇔ r2(Y, X) via r2’s hyper-parallelogram
being the mirror image of r1’s, (4) hierarchy rules r1(X, Y ) ⇒ r2(X, Y ) via r2’s hyper-
parallelogram subsuming r1’s, (5) intersection rules r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) via
r3’s hyper-parallelogram subsuming the intersection of r1’s and r2’s, and (6) mutual
exclusion rules r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ via mutually exclusive hyper-parallelograms of
r1 and r2. We have formally proven that ExpressivE can capture any of these two-variable
inference rules in Theorem 4.2.2 (see Sections 4.2.6 and 4.2.7).

Theorem 4.2.2. ExpressivE captures (a) symmetry, (b) anti-symmetry, (c) inversion,
(d) hierarchy, (e) intersection, and (f) mutual exclusion.

Compositional Definition. A compositional definition rule is of the form r1(X, Y ) ∧
r2(Y, Z) ⇔ rd(X, Z), where we call r1 and r2 the composing and rd the compositionally
defined relation. In essence, this rule defines a relation rd that describes the start and end
entities of a path X

r1−→ Y
r2−→ Z. Since any two relations r1 and r2 can instantiate the

body of a compositional definition rule, any such pair may produce a new compositionally
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defined relation rd. Interestingly, compositional definition rules translate analogously into
the virtual triple space: Intuitively, this means that the embeddings of any two relations
r1 and r2 define for rd a convex region — which we call the compositionally defined region

— that captures r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z), leading to Theorem 4.2.3 (proven in
Section 4.2.5). Based on this insight, ExpressivE captures compositional definition rules
by embedding the compositionally defined relation rd with the compositionally defined
region, defined by the relation embeddings of r1 and r2. We have formally proven that
ExpressivE can capture compositional definition in Theorem 4.2.4 (see Sections 4.2.6 and
4.2.7 for the full proofs).

Theorem 4.2.3. Let r1, r2, rd ∈ R be relations, A1, A2 be their ExpressivE embeddings,
and assume r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) holds. Then there exists a region Ad in
the virtual triple space R2d such that (i) A1, A2, and Ad capture r1(X, Y ) ∧ r2(Y, Z) ⇔
rd(X, Z) and (ii) Ad is convex.

General Composition. In contrast to compositional definition, general composition
r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) does not specify the composed relation r3 completely.
Specifically, general composition allows the relation r3 to include additional entity pairs
not described by the start and end entities of the path X

r1−→ Y
r2−→ Z. Therefore, to

capture general composition, we need to combine hierarchy and compositional definition.
Formally, this means that we express general composition as: {r1(X, Y ) ∧ r2(Y, Z) ⇔
rd(X, Z), rd(X, Y ) ⇒ r3(X, Y )}, where rd is an auxiliary relation. We have proven that
ExpressivE can capture general composition in Theorem 4.2.4 (see Sections 4.2.6 and
4.2.7 for the full proofs).

Theorem 4.2.4. ExpressivE captures compositional definition and general composition.

We argue that hierarchy and general composition are very tightly connected as hierarchies
are hidden within general composition rules. If, for instance, r1 were to represent the
relation that solely captures self-loops, then the general composition rule r1(X, Y ) ∧
r2(Y, Z) ⇒ r3(X, Z) would reduce to a hierarchy rule r2(X, Y ) ⇒ r3(X, Y ). This hints
at why our model is the first to support general composition, as ExpressivE can capture
both hierarchy and composition jointly in a single embedding space. Finally, from
Theorems 4.2.2 and 4.2.4 directly follows Corollary 4.2.5, which states that ExpressivE
captures vital logical rules of the DB and SW community and, thus, reaches G1.

Corollary 4.2.5. ExpressivE captures all core inference rules.

Relation to OWL 2. Next, we briefly discuss the relation of OWL 2 axioms to the set
of core inference rules and ExpressivE’s limitations. Specifically, the OWL 2 standard
(Motik et al., 2012c) defines the following eleven axioms between properties: (i) Symmet-
ricObjectProperty, (ii) AsymmetricObjectProperty, (iii) InverseObjectProperties, (iv)
SubObjectPropertyOf, (v) EquivalentObjectProperties, (vi) DisjointObjectProperties,
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(vii) FunctionalObjectProperty, (viii) InverseFunctionalObjectProperty, (ix) Reflex-
iveObjectProperty, (x) IrreflexiveObjectProperty, and (xi) TransitiveObjectProperty.
Observe that the set of core inference rules already covers a large portion of these axioms.
In particular, SymmetricObjectProperty axioms correspond to symmetry rules; Asym-
metricObjectProperty axioms to antisymmetry rules; InverseObjectProperties axioms to
inversion rules; SubObjectPropertyOf axioms to hierarchy rules; EquivalentObjectProp-
erties axioms can be straightforwardly expressed by two hierarchy rules, stating that one
relation subsumes the other and vice versa; and DisjointObjectProperties correspond to
mutual exclusion rules.

Limitations. Whether ExpressivE captures the remaining OWL 2 axioms has not
been analyzed yet; however, it is not likely to be the case. For instance, Transi-
tiveObjectProperty axioms describe that a relation r is transitive, i.e., that r(X, Y ) ∧
r(Y, Z) ⇒ r(X, Z) holds. Recall that ExpressivE captures composition rules of the form
r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) by defining the embedding of r3 as a superset of the
compositionally defined region specified by the embeddings of r1 and r2. Thus, if all
relations in the composition rule were the same — as is the case in transitivity rules —
it would be necessary to find a fixed point such that the compositionally defined region
specified by the relation embedding of r is again subsumed by r’s embedding. This
way of capturing transitive relations might be too restrictive, likely forcing r’s hyper-
parallelogram to be an axis-aligned square, which would instead represent a cross-product
relation rather than a transitive one. Similarly, the constraints for the other missing
axioms might be too restrictive for the ExpressivE model, demanding further research
on developing a gKGE that can capture all axioms between properties of OWL 2. Still,
ExpressivE captures additional rules not covered by OWL 2 axioms, such as general
composition, compositional definition, and intersection rules, which have been vital for
its KGC performance, as will be discussed in Section 4.5.

Key Properties. ExpressivE’s way of capturing rules has several interesting implications:

1. We observe that ExpressivE embeddings offer an intuitive geometric interpreta-
tion: there is a natural correspondence between (a) relations in the KG – and –
regions (representing mathematical relations) in the virtual triple space, (b) relation
containment, intersection, and disjointness in the KG – and – region containment, in-
tersection, and disjointness in the virtual triple space, (c) symmetry, anti-symmetry,
and inversion in the KG – and – symmetry, anti-symmetry, and reflection in the
virtual triple space, (d) compositional definition in the KG – and – the composition
of mathematical relations in the virtual triple space.

2. Next, we observe that ExpressivE captures a general composition rule if the hyper-
parallelogram of the rule’s head relation subsumes the compositionally defined
region defined by its body relations. Thereby, ExpressivE assigns a novel spatial
interpretation to general composition rules, generalizing the spatial interpretation
that is directly provided by rules describing set-theoretic properties such as hierarchy,
intersection, and mutual exclusion.
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3. Finally, capturing general composition rules through the subsumption of spatial
regions allows ExpressivE to provably capture composition rules for 1–N, N–1, and
N–N relations. We provide further empirical evidence to this in Section 4.5.4.

4.2.3 Formal Definitions
In this section, we formally introduce the notions of capturing a rule in an ExpressivE
model that we informally discussed in Section 4.2. Furthermore, we will introduce some
additional notations, which will help us simplify the upcoming proofs and present them
intuitively. Let us start by summarizing the notation used throughout this chapter:

v . . . non-bold symbols represent scalars

v . . . bold symbols represent vectors, sets or tuples

0 . . . represents a vector of solely zeros (the same semantics apply to 0.5, 1, and 2)

⊘ . . . represents the element-wise division operator

⊙ . . . represents the element-wise (Hadamard) product operator

⪰ . . . represents the element-wise greater or equal operator

≻ . . . represents the element-wise greater operator

⪯ . . . represents the element-wise less or equal operator

≺ . . . represents the element-wise less operator

x|.| . . . represents the element-wise absolute value

|| . . . represents the concatenation operator

v(j) . . . represents the j-th dimension of a vector v

Knowledge Graph. Formally, a tuple (G, E, R) is called a Knowledge Graph, where
R is a finite set of relations, E is a finite set of entities, and G ⊆ E × R × E is a finite
set of triples. W.l.o.g., we assume that any relation is non-empty since assigning an
empty hyper-parallelogram to an empty relation would be trivial, just adding unnecessary
complexity to the proofs.

ExpressivE model. A tuple M = (ϵ, σ, δ, ρ) is called an ExpressivE model, where
ϵ ⊂ 2Rd is a finite set of entity embeddings, σ ⊂ 2Rd is a finite set of center embeddings,
δ ⊂ 2Rd is a finite set of width embeddings, and ρ ⊂ 2Rd is a finite set of slope vectors.

Linking Embeddings to KGs. An ExpressivE model and a KG are linked via the
following assignment functions: The entity assignment function fe : E → ϵ assigns an
entity embedding eh ∈ ϵ to each entity eh ∈ E. Based on fe, the virtual assignment
function fv : E × E → R2d defines for any pair of entities (eh, et) ∈ E a virtual
entity pair embedding fv(eh, et) = (fe(eh)||fe(et)), where || represents the concatenation
operator. Furthermore, the relation assignment function fh(ri) : R → R2d × R2d × R2d
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assigns a hyper-parallelogram to each relation ri. In more detail, this means that
fh(ri) = (ci, wi, si), where ci = (ch

i ||ct
i) are two concatenated center embeddings

with ch
i , ct

i ∈ σ, where wi = (wh
i ||wt

i) are two concatenated width embeddings with
wh

i , wt
i ∈ δ, and where si = (st

i||sh
i ) are two concatenated slope vectors with st

i, sh
i ∈ ρ.

Intuitively, fh(ri) defines a hyper-parallelogram in the virtual triple space R2d as described
in Section 4.1.

Model Configuration. We call an ExpressivE model M together with a concrete rela-
tion assignment function fh a relation configuration mh = (M , fh) and if it additionally
has a concrete virtual assignment function fv, we call it a complete model configuration
m = (M , fh, fv).

Definition of Truth. A triple ri(eh, et) holds in some m, with ri ∈ R and eh, et ∈ E iff
Inequalities 4.1 and 4.2 hold for the assigned embeddings of h, t, and r. This means more
specifically that Inequalities 4.1 and 4.2 need to hold for fv(eh, et) = (fe(eh)||fe(et)) =
(eh||et) and fh(ri) = (ci, wi, si), with ci = (ch

i ||ct
i), wi = (wh

i ||wt
i), and si = (st

i||sh
i ).

At an intuitive level, this means that a triple ri(eh, et) is true in some complete model
configuration m iff the virtual pair embedding fv(eh, et) of entities eh and et lies within
the hyper-parallelogram of relation ri defined by fh(ri).

Simplifying Notations. Therefore, to simplify the upcoming proofs, we denote with
fv(eh, et) ∈ fh(ri) that the virtual pair embedding fv(eh, et) ∈ R2d of an entity pair
(eh, et) ∈ E × E lies within the hyper-parallelogram fh(ri) ⊆ R2d × R2d × R2d of some
relation ri ∈ R in the virtual triple space. Accordingly, for sets of virtual pair embeddings
P := {fv(eh1 , et1), . . . , fv(ehn , etn)}, we denote with P ⊆ fh(ri) that all virtual pair
embeddings of P lie within the hyper-parallelogram of the relation ri. Furthermore,
we denote with fv(eh, et) ̸∈ fh(ri) that a virtual pair embedding fv(eh, et) does not lie
within the hyper-parallelogram of a relation ri and with P ̸⊆ fh(ri) we denote that an
entire set of virtual pair embeddings P does not lie within the hyper-parallelogram of a
relation ri.

Capturing Inference Rules. Based on the previous definitions, we define capturing
rules formally: A relation configuration mh captures a rule ψ exactly if for any ground
rule φB1 ∧ · · · ∧ φBm ⇒ φH within the deductive closure of ψ and for any instantiation of
fe and fv the following conditions are satisfied:

• if φH is a triple and if mh captures the body triples to be true — i.e., fv(args(φB1)) ∈
fh(rel(φB1)), . . . , fv(args(φBm)) ∈ fh(rel(φBm)) — then mh also captures the head
triple to be true — i.e., fv(args(φH)) ∈ fh(rel(φH)).

• if φH = ⊥, then mh captures at least one of the body triples to be false — i.e.,
there is some j ∈ {1, . . . , m} such that fv(args(φBj )) ̸∈ fh(rel(φBj )).

where args() is the function that returns the arguments of a triple and rel() is the function
that returns the relation of the triple. Furthermore, a relation configuration mh captures
a rule ψ exactly and exclusively if (1) mh exactly captures ψ and (2) mh does not capture
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any positive rule φ (i.e., φ ∈ {symmetry, inversion, hierarchy, intersection, composition})
such that ψ ̸|= φ except where the body of φ is not satisfied over mh.

Discussion. Next, the intuition of the above definition of capturing a rule is discussed.

Capturing a rule exactly is defined straightforwardly by adhering to the semantics of
logical implication φ := φB ⇒ φH , i.e., a relation configuration mh needs to be found
such that for any complete model configuration m over mh if the body φB of the rule is
satisfied, then its head φH can be inferred.

Capturing a rule exactly and exclusively imposes additional constraints. Here, the aim
is not solely to capture a rule but additionally to showcase that a rule can be captured
independently from any other rule. Therefore, some notion of minimality/exclusiveness
of a rule is needed. As in Abboud et al. (2020), we define minimality by means of solely
capturing those positive rules φ that directly follow from the deductive closure of the
rule ψ, except for those φ that are captured trivially, i.e., except for those φ where their
body is not satisfied over the constructed mh.

As presented in Section 4.2, we can express any core inference rule (defined in Section 2)
by means of spatial relations of the corresponding relation hyper-parallelograms in the
virtual triple space. Therefore, we formulate exclusiveness intuitively as the ability to
limit the intersection of hyper-parallelograms to only those intersections that directly
follow from the captured rule ψ for any known relation ri ∈ R, which is in accordance
with BoxE’s notion of exclusiveness (Abboud et al., 2020).

Note that our definition of capturing rules solely depends on relation configurations. This
is vital for ExpressivE to be able to capture rules in a lifted manner, i.e., ExpressivE
shall be able to capture rules without the need of grounding them first. Furthermore,
being able to capture rules in a lifted way is not only efficient but also natural as we aim
at capturing rules between relations. Thus it would be unnatural if constraints on entity
embeddings were necessary to capture such relation-specific rules.

As outlined in the previous paragraphs, our definition of capturing rules is in accordance
with the literature (Abboud et al., 2020), focuses on efficiently capturing rules, and gives
us a formal foundation for the upcoming proofs, which will show that ExpressivE is fully
expressive (Section 4.2.4), can capture all core inference rules (Sections 4.2.6 and 4.2.7),
and is not limited to solely capturing a single composition rule (Section 4.2.8).

4.2.4 Proof of Fully Expressiveness (Theorem 4.2.1)
In this section, we prove Theorem 4.2.1. We will show by induction that ExpressivE is
fully expressive. We will first only consider self-loop-free triples, i.e., triples of the form
ri(ej , ek) with ej , ek ∈ E, ri ∈ R and j ̸= k and later remove unwanted self-loops from
the constructed model configuration.

Since our proof is highly technical, we will first give some general intuition and then
formally state our proof. In the base case, we consider an ExpressivE model that captures
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the complete graph G over the entity vocabulary E and the relationship vocabulary R,
i.e., the graph that contains all triples from the universe. In the induction step, we prove
that we can adjust our ExpressivE model to make any arbitrary self-loop-free triple of G
false while maintaining the truth value of any other triple in the universe.

In the induction step, we make triples ri(ej , ek) false by translating the entity embeddings
of ej and ek such that a hyper-parallelogram can separate pairs of entity embeddings
that shall be true from those that shall be false. Afterward, we translate and shear ri’s
hyper-parallelogram to match such a separating shape.

Finally, after the induction step, we add a separate dimension for any possible self-loop,
i.e., triple of the form ri(ej , ej), to make them false. Thereby, we show that ExpressivE
can make any triple false and thus that it can capture any graph G over R and E.

Our proof shares some common ideas with the fully expressiveness proof of BoxE
(Abboud et al., 2020), yet differs dramatically in many aspects. BoxE embeds relations
with two axis-aligned boxes and entities with two separate embedding vectors, which
greatly simplifies the fully expressiveness proof of BoxE, as the two entity embeddings
are independent of each other. This grants BoxE some flexibility for adapting model
configuration yet imposes substantial restrictions, such as BoxE not being able to capture
any notion of composition rules. Our model does not have these restrictions and uses
only one embedding vector per entity instead, pushing the complexity of our model to
the relation embeddings by representing relations as hyper-parallelogram in the virtual
triple space. This, however, has the consequence that we cannot easily change entity
embeddings without moving and sheering relation embeddings as well when we want
to make solely one triple false and preserve the truth value of any other triple. In the
following proof, we will explain the complex adjustment of relation embeddings and many
more novel aspects of our proof in more detail.

Proof. We start our proof by making the following assumptions without loss of generality:

1. Any relation ri ∈ R and entity ej ∈ E is indexed with 0 ≤ i ≤ |R| − 1 and
0 ≤ j ≤ |E| − 1.

2. The dimensionality of each relation and entity embedding vectors is equal to |E|∗|R|.
Furthermore, v(i, j) represents the dimension i ∗ |E| + j of the vector v. Intuitively,
the dimensions of v(i, 0), . . . , v(i, |E| − 1) corresponds to the dimensions reserved
for relation ri.

3. The slope vectors of relation ri ∈ R are positive, i.e., sh
i , st

i > 0.

4. Any entity embedding is positive, i.e., for any entity ek ∈ E holds that ek > 0.

5. For any pair of entities ek1 , ek2 ∈ E holds that ek1(i, k1) ≥ ek2(i, k1) + m, with
m > 0.
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Building on these assumptions, we prove fully expressiveness by induction as follows:

Base Case. We initialize a graph G as the whole universe over E and R and construct
a complete model configuration m = (M , fh, fv) with dimensionality |E| ∗ |R| such
that G is captured and all assumptions are satisfied. Concretely, we specify for any
dimension (i, k1) with 0 ≤ i ≤ |R| − 1 and 0 ≤ k1 ≤ |E| − 1 the embedding values
of entity embeddings with index k1 to set ek1(i, k1) = 2 and with index k2 ̸= k1 to
ek2(i, k1) = 1. Furthermore, we specify for any dimension (i, k) with 0 ≤ i ≤ |R| − 1
and 0 ≤ k ≤ |E| − 1 the embedding of relation ri to ch

i (i, k) = ct
i(i, k) = 0, sh

i (i, k) = 1,
st

i(i, k) = 2 and wh
i (i, k) = wt

i(i, k) = 4. As can be shown easily, the constructed
complete model configuration satisfies all assumptions and makes any triple over R
and E true. Note that, in particular, any self-loop is also captured to be true in the
constructed complete model configuration.

Induction Step. In the induction step, we adjust the entity and relation embeddings of
the complete model configuration such that a single triple ri(ej , ek) is made false without
affecting the truth value of any other triple within the graph G. We denote any adjusted
embedding with an asterisk v∗ and the old value of the embedding with v and perform
the following adjustments:

1. Increase any slope vector st∗
i (i, k) := st

i(i, k) + Δrt
i with Δrt

i > 0 such that:

ej(i, k) − st
i(i, k)ek(i, k) − ch

i (i, k) − Δrt
im ≤ −wh

i (i, k)

2. Since ek(i, k) is by assumption the largest value in dimension (i, k), we can specify
the following two values:

Δrmax
i := Δrt

iek(i, k)

Δrub
i := Δrt

i(ek(i, k) − m)

with Δrub
i < Δrmax

i .

3. Using this definition, we increase all entity embeddings ej′ with j′ ̸= j in dimension
(i, k) by:

e∗
j′(i, k) := ej′(i, k) + Δrmax

i

4. Furthermore, we increase the entity embedding ej in dimension (i, k) by:

e∗
j(i, k) := ej(i, k) + Δrub

i
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5. For any relation with index i ̸= i′, we adjust any head band in dimension (i, k) by
moving its center downwards and growing the band upwards. This means formally
that we update the following embeddings:

s := st
i′(i, k)Δrt

im + Δrmax
i

wh∗
i′ (i, k) := wh

i′(i, k) + s

2
ch∗

i′ (i, k) := ch
i′(i, k) − st

i′(i, k)Δrmax
i + s

2

6. We adjust any tail band in dimension (i, k) by moving its center downwards and
growing the band upwards. This means formally that we update the following
embeddings:

s := sh
i′(i, k)Δrt

im + Δrmax
i

wt∗
i′ (i, k) := wt

i′(i, k) + s

2
ct∗

i′ (i, k) := ct
i′(i, k) − sh

i′(i, k)Δrmax
i + s

2

7. For any relation with index i, we adjust any head band in dimension (i, k) by
moving its center downwards and growing the band upwards. This means formally
that we update the following embeddings:

s := (Δrt
i + st

i(i, k))Δrt
im + Δrmax

i

wh∗
i (i, k) := wh

i (i, k) + s

2
ch∗

i (i, k) := ch
i (i, k) − Δrt

iΔrmax
i − st

i(i, k)Δrmax
i + s

2

In the induction step, we adjust the slope vectors (Step 1), the entity embeddings (Step 2–
4), and the width and center embeddings (Step 5–7). Intuitively, by changing the slope
vector of relation hyper-parallelograms, we sheer the hyper-parallelograms. Furthermore,
we translate any desired entity embeddings more than the undesired entity embedding of
ej . This allows us to draw a separating hyper-parallelogram between the point defined
by (ej , ek) and any other pair of entities that shall remain within relation ri. Finally, we
must move the sheered hyper-parallelograms into the correct position and stretch it to
make all desired triples true.

Our next goal is to show this behavior formally. We will first show that the initially true
triple ri(ej , ek) is false, then continue by showing that the truth value of any other triple
is preserved.
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Since the induction steps perform only adjustments in dimension (i, k), we only have
to consider the dimension (i, k) for any embedding vector in the following inequalities.
Please note that to state the inequalities concisely, we omitted the notation (i, k) from
any embedding vector v in the following inequalities. For instance, we will denote st

i(i, k)
with st

i henceforth.

Let s := (Δrt
i + st

i)Δrt
im + Δrmax

i , then we can show that our induction step makes
ri(ej , ek) false as follows:

ej − st
iek − ch

i − Δrt
im ≤ −wh

i (4.5)
ej − st

iek − ch
i + Δrub

i − Δrmax
i − Δrt

iΔrmax
i + Δrt

iΔrmax
i

−st
iΔrmax

i + st
iΔrmax

i + s

2 − s

2 ≤ −wh
i

(4.6)

ej + Δrub
i − (st

i + Δrt
i)(ek + Δrmax

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≤ −(wh
i + s

2)
(4.7)

e∗
j − st∗

i e∗
k − ch∗

i ≤ −wh∗
i (4.8)

Inequality 4.5 follows directly from Induction Step 1. Next, in Inequality 4.6 we add many
terms that eliminate each other and apply Δrub

i −Δrmax
i = Δrt

i(ek−m)−Δrt
iek = −mΔrt

i .
Finally, in Inequality 4.7, we restructure the terms such that we can substitute the terms
for the adjusted embedding vectors defined in Steps 1–7. Through this substitution,
we obtain Inequality 4.8, which reveals that the adjusted embeddings e∗

j , e∗
k do not lie

within the adjusted hyper-parallelogram of relation ri. Therefore, we have shown that
the adjustments of the complete model configuration listed in Steps 1–7 have made the
triple ri(ej , ek) false, as required.

Next, we need to show that the truth value of any other self-loop-free triple ri′(ej′ , ek′)
with j′ ≠ k′ is not altered after the induction step. We start by showing that any triple
ri′(ej′ , ek′) that is true in m remains true after the induction step. Since what follows is
a highly technical proof, we give some intuition now. We make a case distinction of any
possible true triple in G and perform the following steps. First, we assume that the triple
is true and therefore instantiate Inequalities 4.1 and 4.2 with the embeddings prior to the
induction step. Note that it is solely necessary to consider Inequality 4.1 as the proofs
work vice versa for Inequality 4.2. Thus, we solely consider Inequality 4.1 henceforth.
Next, we add terms that eliminate each other and adjustment terms a such that we can
substitute our inequality with the adjusted embedding values v∗. Finally, we show that
Inequality 4.1 is satisfied for the adjusted embedding values. Note that Inequality 4.1
defines two inequalities, specifically eh − ch

i − st
i ⊙ et ⪯ wh

i and eh − ch
i − st

i ⊙ et ⪰ −wh
i .

Therefore, we denote with (<) the proof for the first inequality and with (>) the proof
for the second inequality. Thereby, we will show that if we assume the triple ri′(ej′ , ek′)
to be true in the complete model configuration prior to the induction step, we can follow
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that ri′(ej′ , ek′) stays true after the adjustments of the induction step. To provide the
complete formal side of our proof, we consider the following 12 cases:

1. Case i′ = i, j′ = j, k′ = j, k′ ̸= k:

(<) Let s := (Δrt
i +st

i)Δrt
im+Δrmax

i and let a := (Δrmax
i −Δrub

i )(1−Δrt
i −st

iΔrub).
Note that a is positive since a = Δrt

im + Δrmax
i holds. Therefore, we can perform the

following transformations:

ej − st
iej − ch

i ≤ wh
i (4.9)

ej − st
iej − ch

i − a + s − s ≤ wh
i (4.10)

ej + Δrub
i − (st

i + Δrt
i)(ej + Δrub

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≤ wh
i + s

2
(4.11)

e∗
j − st∗

i e∗
j − ch∗

i ≤ wh∗
i (4.12)

(>) Let a := (Δrmax
i −Δrub

i )(Δrt
i +st

i)+Δrub
i −Δrmax

i and let s := (Δrt
i +st

i)Δrt
im+

Δrmax
i . Note that a is positive since (1) a = mΔrt

i(Δrt
i + st

i − 1), (2) we initialize st
i

in the base case to 2 in any dimension and (3) any induction step may only increase
st

i. Therefore, we can perform the following transformations:

ej − st
iej − ch

i ≥ −wh
i (4.13)

ej − st
iej − ch

i + a + s

2 − s

2 ≥ −wh
i (4.14)

ej + Δrub
i − (st

i + Δrt
i)(ej + Δrub

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≥ −(wh
i + s

2)
(4.15)

e∗
j − st∗

i e∗
j − ch∗

i ≥ −wh∗
i (4.16)

2. Case i′ = i, j′ = j, k′ ̸= j, k′ = k:

As can be seen easily this case describes the triple ri(ej , ek), which shall be made false
in the induction step. We have shown that the induction step changes the triples
truth value to false in Inequalities 4.5–4.8 and therefore omitted the case here.

3. Case i′ = i, j′ = j, k′ ̸= j, k′ ̸= k:

(<) Let s := (Δrt
i + st

i)Δrt
im + Δrmax

i and let a := Δrt
iek′ + s − Δrub

i . Note that a
is positive since a = Δrt

i(ek′ + m(1 + Δrt
i + st

i)) holds. Therefore, we can perform the
following transformations:
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ej − st
iek′ − ch

i ≤ wh
i (4.17)

ej − st
iek′ − ch

i − a + Δrt
iΔrmax

i − Δrt
iΔrmax

i + st
iΔrmax

i − st
iΔrmax

i ≤ wh
i (4.18)

ej + Δrub
i − (st

i + Δrt
i)(ek′ + Δrmax

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≤ wh
i + s

2
(4.19)

e∗
j − st∗

i e∗
k′ − ch∗

i ≤ wh∗
i (4.20)

(>) Let a := Δrub
i − Δrt

iek′ and let s := (Δrt
i + st

i)Δrt
im + Δrmax

i . Note that
a is positive since Δrub

i ≥ Δrt
iek′ holds. Therefore, we can perform the following

transformations:

ej − st
iek′ − ch

i ≥ −wh
i (4.21)

ej − st
iek′ − ch

i + a + Δrt
iΔrmax

i − Δrt
iΔrmax

i + st
iΔrmax

i

−st
iΔrmax

i + s

2 − s

2 ≥ −wh
i

(4.22)

ej + Δrub
i − (st

i + Δrt
i)(ek′ + Δrmax

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≥ −(wh
i + s

2)
(4.23)

e∗
j − st∗

i e∗
k′ − ch∗

i ≥ −wh∗
i (4.24)

4. Case i′ = i, j′ ̸= j, k′ = j, k′ ̸= k:

(<) Let a := Δrt
iej and let s := (Δrt

i + st
i)Δrt

im + Δrmax
i . Note that a is trivially

positive since we initially assumed ej > 0 and since we assumed Δrt
i > 0 in Step 1.

Therefore, we can perform the following transformations:

ej′ − st
iej − ch

i ≤ wh
i (4.25)

ej′ − st
iej − ch

i − a + Δrt
iΔrmax

i − Δrt
iΔrmax

i + st
iΔrmax

i

−st
iΔrmax

i + s − s ≤ wh
i

(4.26)

ej′ + Δrmax
i − (st

i + Δrt
i)(ej + Δrub

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≤ wh
i + s

2
(4.27)

e∗
j′ − st∗

i e∗
j − ch∗

i ≤ wh∗
i (4.28)

(>) Let a := Δrmax
i −Δrt

iej +Δrt
im(Δrt

i +st
i) and let s := (Δrt

i +st
i)Δrt

im+Δrmax
i .

Note that a is positive since Δrmax
i − Δrt

iej > 0. Therefore, we can perform the
following transformations:
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ej′ − st
iej − ch

i ≥ −wh
i (4.29)

ej′ − st
iej − ch

i + a + Δrt
iΔrmax

i − Δrt
iΔrmax

i + st
iΔrmax

i

−st
iΔrmax

i + s

2 − s

2 ≥ −wh
i

(4.30)

ej′ + Δrmax
i − (st

i + Δrt
i)(ej + Δrub

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≥ −(wh
i + s

2)
(4.31)

e∗
j′ − st∗

i e∗
j − ch∗

i ≥ −wh∗
i (4.32)

5. Case i′ = i, j′ ̸= j, k′ ̸= j, k′ = k:

(<) Let s := (Δrt
i + st

i)Δrt
im + Δrmax

i and let a := s + Δrt
iek − Δrmax

i . Note that
a is positive since a = Δrt

i(ek + m(Δrt
i + st

i)) holds. Therefore, we can perform the
following transformations:

ej′ − st
iek − ch

i ≤ wh
i (4.33)

ej′ − st
iek − ch

i − a + Δrt
iΔrmax

i − Δrt
iΔrmax

i + st
iΔrmax

i

−st
iΔrmax

i ≤ wh
i

(4.34)

ej′ + Δrmax
i − (st

i + Δrt
i)(ek + Δrmax

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≤ wh
i + s

2
(4.35)

e∗
j′ − st∗

i e∗
k − ch∗

i ≤ wh∗
i (4.36)

(>) Let s := (Δrt
i + st

i)Δrt
im + Δrmax

i . Using this definition, we can perform the
following transformations:

ej′ − st
iek − ch

i ≥ −wh
i (4.37)

ej′ − st
iek − ch

i + Δrmax
i − Δrmax

i + Δrt
iΔrmax

i − Δrt
iΔrmax

i

+st
iΔrmax

i − st
iΔrmax

i − s

2 ≥ −wh
i − s

2
(4.38)

ej′ + Δrmax
i − (st

i + Δrt
i)(ek + Δrmax

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≥ −wh
i − s

2
(4.39)

e∗
j′ − st∗

i e∗
k − ch∗

i ≥ −wh∗
i (4.40)
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6. Case i′ = i, j′ ̸= j, k′ ̸= j, k′ ̸= k:

(<) Let s := (Δrt
i + st

i)Δrt
im + Δrmax

i and let a := s − Δrmax
i + Δrt

iek′ . Note that
a is positive since a = Δrt

i(ek′ + m(Δrt
i + st

i)) holds. Therefore, we can perform the
following transformations:

ej′ − st
iek′ − ch

i ≤ wh
i (4.41)

ej′ − st
iek′ − ch

i − a + Δrt
iΔrmax

i − Δrt
iΔrmax

i + st
iΔrmax

i

−st
iΔrmax

i ≤ wh
i

(4.42)

ej′ + Δrmax
i − (st

i + Δrt
i)(ek′ + Δrmax

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≤ wh
i + s

2
(4.43)

e∗
j′ − st∗

i e∗
k′ − ch∗

i ≤ wh∗
i (4.44)

(>) Let a := Δrmax
i − Δrt

iek′ and let s := (Δrt
i + st

i)Δrt
im + Δrmax

i . Therefore, we
can perform the following transformations:

ej′ − st
iek′ − ch

i ≥ −wh
i (4.45)

ej′ − st
iek′ − ch

i + a + Δrt
iΔrmax

i − Δrt
iΔrmax

i + st
iΔrmax

i

−st
iΔrmax

i + s

2 − s

2 ≥ −wh
i

(4.46)

ej′ + Δrmax
i − (st

i + Δrt
i)(ek′ + Δrmax

i ) − (ch
i − Δrt

iΔrmax
i

−st
iΔrmax

i + s

2) ≥ −(wh
i + s

2)
(4.47)

e∗
j′ − st∗

i e∗
k′ − ch∗

i ≥ −wh∗
i (4.48)

7. Case i′ ̸= i, j′ = j, k′ ̸= j, k′ = k:

(<) Let s := st
i′Δrt

im + Δrmax
i and let a := s − Δrub

i . Note that a is positive since
a = Δrt

im(1 + st
i′)) holds. Therefore, we can perform the following transformations:

ej − st
i′ek − ch

i′ ≤ wh
i′ (4.49)

ej − st
i′ek − ch

i′ − a + st
i′Δrmax

i − st
i′Δrmax

i ≤ wh
i′ (4.50)

ej + Δrub
i − st

i′(ek + Δrmax
i ) − (ch

i′ − st
i′Δrmax

i + s

2) ≤ wh
i′ + s

2 (4.51)

e∗
j − st∗

i′ e∗
k − ch∗

i′ ≤ wh∗
i′ (4.52)
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(>) Let a := Δrub
i and let s := st

i′Δrt
im + Δrmax

i . Note that a is trivially positive
since Δrub

i is positive. Therefore, we can perform the following transformations:

ej − st
i′ek − ch

i′ ≥ −wh
i′ (4.53)

ej − st
i′ek − ch

i′ + a + st
i′Δrmax

i − st
i′Δrmax

i + s

2 − s

2 ≥ −wh
i′ (4.54)

ej + Δrub
i − st

i′(ek + Δrmax
i ) − (ch

i′ − st
i′Δrmax

i + s

2) ≥ −(wh
i′ + s

2) (4.55)

e∗
j − st∗

i′ e∗
k − ch∗

i′ ≥ −wh∗
i′ (4.56)

8. Case i′ ̸= i, j′ = j, k′ ̸= j, k′ ̸= k:

As can be seen easily this case generates the same inequalities as the previous case,
except that k′ = k. Therefore, no relevant difference has to be considered, which is
why we omit this case.

9. Case (i′ ̸= i, j′ ̸= j, k′ = j, k′ ̸= k):

(<) Let s := st
iΔrt

im + Δrmax
i . Using this definition, we can make the following

transformations:

ej′ − st
i′ej − ch

i′ ≤ wh
i′ (4.57)

ej′ − st
i′ej − ch

i′ + s − s ≤ wh
i′ (4.58)

ej′ + Δrmax
i − st

i′(ej + Δrub
i ) − (ch

i′ − st
i′Δrmax

i + s

2) ≤ wh
i′ + s

2 (4.59)

e∗
j′ − st∗

i′ e∗
j − ch∗

i′ ≤ wh∗
i′ (4.60)

(>) Let a := Δrmax
i + st

i(Δrmax
i − Δrub

i ) and let s := st
iΔrt

im + Δrmax
i . Note

that a is positive since Δrmax
i > Δrub

i . Therefore, we can perform the following
transformations:

ej′ − st
i′ej − ch

i′ ≥ −wh
i′ (4.61)

ej′ − st
i′ej − ch

i′ + a + s

2 − s

2 ≥ −wh
i′ (4.62)

ej′ + Δrmax
i − st

i′(ej + Δrub
i ) − (ch

i′ − st
i′Δrmax

i + s

2) ≥ −(wh
i′ + s

2) (4.63)

e∗
j′ − st∗

i′ e∗
j − ch∗

i′ ≥ −wh∗
i′ (4.64)
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10. Case i′ ̸= i, j′ ̸= j, k′ ̸= j, k′ = k:

(<) Let s := st
i′Δrt

im + Δrmax
i and let a := s − Δrmax

i . Note that a is positive since
a = st

iΔrt
im holds. Therefore, we can perform the following transformations:

ej′ − st
i′ek − ch

i′ ≤ wh
i′ (4.65)

ej′ − st
i′ek − ch

i′ − a − Δrmax
i + Δrmax

i − st
i′Δrmax

i + st
i′Δrmax

i ≤ wh
i′ (4.66)

ej′ + Δrmax
i − st

i′(ek + Δrmax
i ) − (ch

i′ − st
i′Δrmax

i + s

2) ≤ wh
i′ + s

2 (4.67)

e∗
j′ − st∗

i′ e∗
k − ch∗

i′ ≤ wh∗
i′ (4.68)

(>) Let s := st
i′Δrt

im + Δrmax
i and a := Δrmax

i . Note that a is trivially positive
since Δrmax

i is positive. Therefore, we can perform the following transformations:

ej′ − st
i′ek − ch

i′ ≥ −wh
i′ (4.69)

ej′ − st
i′ek − ch

i′ + a + st
i′Δrmax

i − st
i′Δrmax

i + s

2 − s

2 ≥ −wh
i′ (4.70)

ej′ + Δrmax
i − st

i′(ek + Δrmax
i ) − (ch

i′ − st
i′Δrmax

i + s

2) ≥ −(wh
i′ + s

2) (4.71)

e∗
j′ − st∗

i′ e∗
k − ch∗

i′ ≥ −wh∗
i′ (4.72)

11. Case i′ ̸= i, j′ ̸= j, k′ ̸= j, k′ ̸= k:

As can be seen easily this case generates the same inequalities as the previous case,
except that k′ = k. Therefore, no relevant difference has to be considered, which is
why we omit this case.

12. Case i′ ̸= i, j′ = j, k′ = j, k′ ̸= k:

(<) Let s := st
i′Δrt

im + Δrmax
i and let a := Δrmax

i − Δrub
i . Note that a is positive

since a = Δrt
im. Therefore, we can perform the following transformations:

ej − st
i′ej − ch

i′ ≤ wh
i′ (4.73)

ej − st
i′ej − ch

i′ − a − s + s ≤ wh
i′ (4.74)

ej + Δrub
i − st

i′(ej + Δrub
i ) − (ch

i′ − st
i′Δrmax

i + s

2) ≤ wh
i′ + s

2 (4.75)

e∗
j − st∗

i′ e∗
j − ch∗

i′ ≤ wh∗
i′ (4.76)
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(>) Let s := st
i′Δrt

im + Δrmax
i and a := Δrub

i + Δrt
imst

i′ . Note that a is trivially
positive since we assumed any parameter to be positive. Therefore, we can perform
the following transformations:

ej − st
i′ej − ch

i′ ≥ −wh
i′ (4.77)

ej − st
i′ej − ch

i′ + a + s

2 − s

2 ≥ −wh
i′ (4.78)

ej + Δrub
i − st

i′(ej + Δrub
i ) − (ch

i′ − st
i′Δrmax

i + s

2) ≥ −(wh
i′ + s

2) (4.79)

e∗
j − st∗

i′ e∗
j − ch∗

i′ ≥ −wh∗
i′ (4.80)

We have shown in any of the twelve discussed cases that if a triple ri′(ej′ , ek′) with i′ ≠ i
or j′ ̸= j or k′ ̸= k was true in the model configuration prior to the induction step, then
it is still true in the adjusted model configuration after the induction step. Hence, to
show that ExpressivE can capture any self-loop-free graph, it remains to show that any
triple that was false remains false after the induction step.

To verify that an initially false tripe ri′(ej′ , ek′) remains false we solely need to show that
the embeddings of ri′ , ej′ and ek′ do not satisfy at least one of the Inequalities 4.1 or 4.2.
We have to consider the following cases:

1. Case k′ ̸= k: Any changes to the dimension v(i, k) do not affect the dimension
v(i′, k′). Therefore, if ri′(ej′ , ek′) for k′ ̸= k was false before the induction step, it
remains false after the induction step, as we solely alter dimension (i, k).

2. Case k′ = k, i′ = i: In this case j′ ̸= j needs to hold as the triple ri(ej , ek) was
initially assumed to be true. We can easily show that in this case, any triple remains
false as follows:
Let s := (Δrt

i + st
i)Δrt

im + Δrmax
i , then we can show that our induction step makes

ri(ej′ , ek) false as follows:

ej′ − st
iek − ch

i ≤ −wh
i (4.81)

ej′ − st
iek − ch
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(4.83)

e∗
j′ − st∗

i e∗
k − ch∗

i ≤ −wh∗
i (4.84)

Since we started with the complete graph, any triple that is false was made false by
an induction step. We have seen that if we apply our algorithm to make ri(ej , ek)
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false, then Inequality 4.8 holds. Since we assume that ri(ej′ , ek) was false prior to
the current induction step and Inequality 4.8 describes how induction steps make
triples false, we can follow that Inequality 4.81 needs to hold prior to this induction
step. Next, we add in Inequality 4.82 terms that eliminate each other. Finally, in
Inequality 4.83 we restructure the terms such that we can substitute them for the
adjusted embedding vectors defined in 1–7. Through this substitution, we obtain
Inequality 4.84, which reveals that the adjusted embeddings of e∗

j′ and e∗
k do not lie

within the adjusted hyper-parallelogram of relation ri. Therefore, we have shown that
the adjustments of the complete model configuration stated in Steps 1–7 preserve the
false triples of this case to remain false.

3. Case i′ ̸= i: Any changes to the dimension v(i, k) do not affect the dimension v(i′, k′).
Therefore, if ri′(ej′ , ek′) for i′ ̸= i was false before the induction step, it remains false
after the induction step, as we solely alter dimension (i′, k).

Hence, we have shown that we can make any self-loop-free triple false in the induction
step while preserving the truth value of the remaining triples in G. To show fully
expressiveness, it remains to show that we can capture any graph G even with self-loops.
We started our proof in the base case with a complete graph, which means that any
self-loop was initially true. Furthermore, we have shown in Inequalities 4.9–4.16 and
4.73–4.80 that any true self-loop remains true after the induction step and that therefore
any constructed complete model configuration captures any self-loop to be true. Since
there are only |R| ∗ |E| possibilities to generate triples of the form ri(ej , ej) for any ri ∈ R
and ej ∈ E and since we require just a single dimension where the embedding of the
entity pair ej , ej is outside of ri’s hyper-parallelogram to make the triple ri(ej , ej) false,
we can simply add a dimension per self-loop to our embeddings, whose sole purpose is
to exclude one undesired self-loop ri(ej , ej). Therefore, ExpressivE can represent any
possible graph G in a complete model configuration of O(|R| ∗ |E|) dimensions, and our
model is thus fully expressive in O(|R| ∗ |E|) dimensions.

4.2.5 Proof of Compositionally Defined Region (Theorem 4.2.3)
This section proves Theorem 4.2.3, which will serve as further machinery for successive
sections. First, we extend the notion of when a compositional definition rule holds in the
virtual triple space (R2d) such that we can employ it later in our proof. Definition 4.2.6
describes when a compositional definition rule holds in dependence of the spatial regions
of its relations in R2d. The definition employs the notion of logical implication, i.e., if
the body of a rule is satisfied, then its head can be inferred.

Definition 4.2.6 (Truth of Compositional Definition in the Virtual Triple Space). Let
r1(X, Y )∧r2(Y, Z) ⇔ rd(X, Z) be a compositional definition rule over some r1, r2, rd ∈ R
and arbitrary X, Y, Z ∈ E. Also, let fh be a relation assignment function defined over r1
and r2. Moreover, let Ad be the spatial region of rd in the virtual triple space R2d. The
compositional definition rule holds for the regions of the relations in R2d, i.e., for fh(r1),
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fh(r2) and Ad, if: (⇒) for any entity assignment function fe and virtual assignment
function fv over fe if fv(X, Y ) ∈ fh(r1) and fv(Y, Z) ∈ fh(r2), then fv(X, Z) must
be within the region Ad of rd. (⇐) For any entity assignment function fe and virtual
assignment function fv over fe if fv(X, Z) is within the region Ad of rd, then there
exists an entity assignment fe(Y ) such that fv(X, Y ) ∈ fh(r1) and fv(Y, Z) ∈ fh(r2).

Recall that Theorem 4.2.3 (reformulated in the definitions of Section 4.2.3 and Defini-
tion 4.2.6) states that if φ := r1(X, Y )∧r2(Y, Z) ⇔ rd(X, Z) is a compositional definition
rule defined over relations r1, r2, rd ∈ R and if fh is a relation assignment function that
is defined over r1 and r2, then there exists a convex region Ad for rd in the virtual triple
space R2d such that φ holds for fh(r1), fh(r2), and Ad. In particular, we are not only
interested in proving the existence of the compositionally defined region Ad, but we
will even identify a system of inequalities that describes the shape of Ad. Specifically,
Theorem 4.2.7 concretely characterizes the shape of Ad, which we prove subsequently.

Theorem 4.2.7. Let r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) be a compositional definition rule
over some relations r1, r2, rd ∈ R and over arbitrary entities X, Y, Z ∈ E. Furthermore,
let fh be a relation assignment function that is defined over r1 and r2 such that for any
i ∈ {1, 2}, fh(ri) = (ci, wi, si) with ci = (ch

i ||ct
i), wi = (wh

i ||wt
i), and si = (st

i||sh
i ).

Moreover, let the slope vectors be positive, i.e., si ⪰ 0 for i ∈ {1, 2}. If Inequalities 4.85–
4.90 define the region Ad of rd in the virtual triple space, then r1(X, Y ) ∧ r2(Y, Z) ⇔
rd(X, Z) holds for fh(r1), fh(r2) and Ad in the virtual triple space.

(x − zst
1st

2 − ch
2st

1 − ch
1)|.| ⪯ wh

2st
1 + wh

1 (4.85)
(zst

2 + ch
2 − xsh

1 − ct
1)|.| ⪯ wt

1 + wh
2 (4.86)

(z − xsh
1sh

2 − ct
1sh

2 − ct
2)|.| ⪯ wt

1sh
2 + wt

2 (4.87)
(z + (ch

1 − x)sh
2 ⊘ st

1 − ct
2)|.| ⪯ wh

1sh
2 ⊘ st

1 + wt
2 (4.88)

(x(1 − sh
1st

1) − ct
1st

1 − ch
1)|.| ⪯ wt

1st
1 + wh

1 (4.89)
(z(1 − sh

2st
2) − ch

2sh
2 − ct

2)|.| ⪯ wh
2sh

2 + wt
2 (4.90)

Proof. Let r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) be a compositional definition rule over some
relations r1, r2, rd ∈ R and over arbitrary entities X, Y, Z ∈ E. Furthermore, let fh be a
relation assignment function that is defined over r1 and r2 such that for any i ∈ {1, 2},
fh(ri) = (ci, wi, si) with ci = (ch

i ||ct
i), wi = (wh

i ||wt
i), and si = (st

i||sh
i ). Moreover, let

the slope vectors be positive, i.e., si ⪰ 0 for i ∈ {1, 2}.

What we want to show is that if Inequalities 4.85–4.90 define the region of rd in the
virtual triple space, then r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) holds in the virtual triple space,
i.e., for any entity assignment function fe and virtual assignment function fv over fe if
fv(X, Y ) ∈ fh(r1) and fv(Y, Z) ∈ fh(r2), then fv(X, Z) must be within the region of rd.
To prove this, we will construct a system of inequalities first that describes rd and satisfies
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the compositional definition rule. Afterward, we will show that the constructed system
of inequalities has the same behavior as Inequalities 4.85–4.90, proving Theorem 4.2.7.

(⇒) First, we choose an arbitrary entity assignment function fe and virtual assignment
function fv over fe. We will henceforth denote the assigned entity embeddings with
fe(X) = x, fe(Y ) = y, and fe(Z) = z to state our proofs concisely. Next, we assume
that the left part of r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) is true, i.e., that fv(X, Y ) ∈ fh(r1)
and fv(Y, Z) ∈ fh(r2) hold. This means concretely that we can instantiate the following
inequalities from Inequalities 4.1–4.2:
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1 ⊙ y − wh
1 ⪯ 0 (4.91)
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1 − st
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1 ⪰ 0 (4.92)
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Our next goal is to construct a system of inequalities that makes rd(X, Z) — the right
part of the rule — true, i.e., that defines the region of rd such that fv(X, Z) lies within
it. To reach this goal, we substitute Inequalities 4.91–4.98 into each other to receive a
system of inequalities that (1) has the same behavior as the initial set and (2) does not
contain the entity embedding y. Since we have in the beginning assumed that the slope
vectors are positive, we can substitute Inequalities 4.91–4.98 into each other as follows:

1. 4.96 in 4.92 and 4.95 in 4.91 leading to 4.99

2. 4.96 in 4.93 and 4.95 in 4.94 leading to 4.100

3. 4.94 in 4.98 and 4.93 in 4.97 leading to 4.101

4. 4.92 in 4.97 and 4.91 in 4.98 leading to 4.102.

5. 4.91 in 4.93 and 4.94 in 4.92 leading to 4.103.

6. 4.95 in 4.97 and 4.98 in 4.96 leading to 4.104.

7. 4.91 in 4.92 leading to 4.105.

8. 4.94 in 4.93 leading to 4.106.

9. 4.95 in 4.96 leading to 4.107.

10. 4.98 in 4.97 leading to 4.108.
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These substitutions result in a system of inequalities with the same behavior as the initial
system of inequalities. We have listed the result of these substitutions in Inequalities 4.99–
4.108.
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Note that Inequalities 4.99–4.104 are equivalent to Inequalities 4.85–4.90 and that Inequal-
ities 4.105–4.108 are tautologies since any width embedding wp

i is positive by the definition
of the ExpressivE model. Therefore, Inequalities 4.99–4.108 and Inequalities 4.85–4.90
have the same behavior, as required. It remains to show that Inequalities 4.99–4.108
define a region Ad containing fv(X, Z) if fv(X, Y ) ∈ fh(r1) and fv(Y, Z) ∈ fh(r2).
This is trivially true since Inequalities 4.99–4.108 directly follow from Inequalities 4.91–
4.98, which are instantiations of Inequalities 4.1–4.2 representing fv(X, Y ) ∈ fh(r1) and
fv(Y, Z) ∈ fh(r2).

Reading the proof bottom-up proves the other direction (⇐), i.e., if fv(X, Z) is in Ad,
then there exists an entity assignment fe(Y ) = y such that fv(X, Y ) ∈ fh(r1) and
fv(Y, Z) ∈ fh(r2). Thereby, we have successfully shown that if Inequalities 4.85–4.90
describe the region Ad of relation rd in the virtual triple space, then r1(X, Y )∧r2(Y, Z) ⇔
rd(X, Z) holds for fh(r1), fh(r2), and Ad in the virtual triple space.

We have proven Theorem 4.2.7 in this section, i.e., that Inequalities 4.85–4.90 define the
compositionally defined region for positive slope vectors. The proof works vice versa for
any other sign of slope vectors, except that the substitutions of Inequalities 4.91–4.98 may
vary due to the different signs of slope vectors. Note that by proving Theorem 4.2.7, we
have also proven Theorem 4.2.3 — i.e., that there exists a convex region that describes the
compositionally defined region Ad — since (1) we have characterized the compositionally
defined region and thereby implicitly proven its existence and since (2) Inequalities 4.85–
4.90 trivially form a convex region.
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4.2.6 Proofs for Exactly Part of Theorems 4.2.2 and 4.2.4
Before we prove the inference capabilities of ExpressivE in this section, we formally define
the considered rules in Definition 4.2.8.

Definition 4.2.8. (Abboud et al., 2020; Pavlović and Sallinger, 2023b) In accordance
with Sun et al. (2019); Abboud et al. (2020), we define the following inference rules:

• rules of the form r1(X, Y ) ⇒ r1(Y, X) with r1 ∈ R are called symmetry rules.

• rules of the form r1(X, Y ) ∧ r1(Y, X) ⇒ ⊥ with r1 ∈ R are called anti-symmetry
rules.

• rules of the form r1(X, Y ) ⇔ r2(Y, X) with r1, r2 ∈ R and r1 ̸= r2 are called
inversion rules.

• rules of the form r1(X, Y )∧r2(Y, Z) ⇒ r3(X, Z) with r1, r2, r3 ∈ R and r1 ̸= r2 ̸= r3
are called general composition rules.

• Rules of the form r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) with r1, r2, rd ∈ R and r1 ̸= r2 ̸=
rd are called compositional definition rules.

• rules of the form r1(X, Y ) ⇒ r2(X, Y ) with r1, r2 ∈ R and r1 ̸= r2 are called
hierarchy rules.

• rules of the form r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) with r1, r2, r3 ∈ R and r1 ̸= r2 ̸=
r3 are called intersection rules.

• rules of the form r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ with r1, r2 ∈ R and r1 ̸= r2 are called
mutual exclusion rules.

With all definitions in place, we prove the exactness part of Theorems 4.2.2 and 4.2.4,
i.e., that ExpressivE captures all core inference rules (defined in Chapter 2) exactly.
Specifically, we do not solely prove that ExpressivE captures all core inference rules exactly,
but that ExpressivE captures these rules exactly iff its relation hyper-parallelograms
meet the properties intuitively described in Section 4.2. Next, in Section 4.2.7, we prove
that ExpressivE captures rules exactly and exclusively. For the upcoming proofs, we
employ the definitions and formal specifications of Sections 4.2.3 and 4.2.5:

Proposition 4.2.9 (Symmetry (Exactly)). Let mh = (M , fh) be a relation configuration
and r1 ∈ R be a symmetric relation, i.e., r1(X, Y ) ⇒ r1(Y, X) holds for any entities
X, Y ∈ E. Then mh captures r1(X, Y ) ⇒ r1(Y, X) exactly iff r1’s relation hyper-
parallelogram fh(r1) is symmetric across the identity line of any correlation subspace.
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Proof. ⇒ For the first direction, what is to be shown is that if r1’s relation hyper-
parallelogram fh(r1) is symmetric across the identity line of any correlation subspace,
then mh captures r1(X, Y ) ⇒ r1(Y, X) exactly. We show this by contradiction. Thus,
we first assume that r1’s corresponding relation hyper-parallelogram fh(r1) of mh is
symmetric across the identity line for any correlation subspace si. Now, to the contrary,
we assume that mh does not capture r1(X, Y ) ⇒ r1(Y, X) exactly. Then, due to the
symmetry of the hyper-parallelogram across the identity line in any correlation subspace
si, for any virtual assignment function fv it holds that if fv(ex, ey) ∈ fh(r1) for arbitrary
entities ex, ey ∈ E, then fv(ey, ex) ∈ fh(r1). Yet, by the definition of capturing rules
exactly, this means that mh captures r1(X, Y ) ⇒ r1(Y, X) exactly. This is a contradiction
to the initial assumption that mh does not capture r1(X, Y ) ⇒ r1(Y, X) exactly, proving
the ⇒ part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X, Y ) ⇒
r1(Y, X) exactly, then r1’s relation hyper-parallelogram fh(r1) is symmetric across the
identity line of any correlation subspace. We show this by contradiction. Thus, we first
assume that mh captures r1(X, Y ) ⇒ r1(Y, X) exactly, i.e., for any instantiation of fe

and fv over fe if fv(ex, ey) ∈ fh(r1), then fv(ey, ex) ∈ fh(r1). Now to the contrary,
we assume that r1’s corresponding relation hyper-parallelogram fh(r1) of mh is not
symmetric across the identity line in at least one correlation subspace si. Then, since
fh(r1) is not symmetric across the identity line in si, there is an instantiation of fv and
fe such that fv(ex, ey) ∈ fh(r1) and fv(ey, ex) ̸∈ fh(r1) for some entities ex, ey ∈ E.
Yet, by the definition of capturing rules exactly, this means that mh does not capture
r1(X, Y ) ⇒ r1(Y, X) exactly. This is a contradiction to the initial assumption that mh

captures r1(X, Y ) ⇒ r1(Y, X) exactly, proving the ⇐ part of the proposition.

Proposition 4.2.10 (Anti-Symmetry (Exactly)). Let mh = (M , fh) be a relation
configuration and r1 ∈ R be an anti-symmetric relation, i.e., r1(X, Y ) ∧ r1(Y, X) ⇒ ⊥
holds for any entities X, Y ∈ E. Then mh captures r1(X, Y ) ∧ r1(Y, X) ⇒ ⊥ exactly iff
r1’s relation hyper-parallelogram fh(r1) is not symmetric across the identity line in at
least one correlation subspace.

Proposition 4.2.10 can be proven analogously to Proposition 4.2.9. Therefore, its proof
has been omitted.

Proposition 4.2.11 (Inversion (Exactly)). Let mh = (M , fh) be a relation configuration
and r1, r2 ∈ R be relations where r1(X, Y ) ⇔ r2(Y, X) holds for any entities X, Y ∈ E.
Then mh captures r1(X, Y ) ⇔ r2(Y, X) exactly iff fh(r1) is the mirror image across the
identity line of fh(r2) for any correlation subspace.

Proof. ⇒ For the first direction, what is to be shown is that if the relation hyper-
parallelogram fh(r1) is the mirror image across the identity line of fh(r2) for any
correlation subspace, then mh captures r1(X, Y ) ⇔ r2(Y, X) exactly. We show this by
contradiction. Thus, we first assume that r1’s corresponding relation hyper-parallelogram
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fh(r1) of mh is the mirror image across the identity line of fh(r2) for any correlation
subspace si. Now to the contrary, we assume that mh does not capture r1(X, Y ) ⇔
r2(Y, X) exactly. Then, due to fh(r1) being the mirror image of fh(r2) in any correlation
subspace si, for any virtual assignment function fv it holds that if fv(ex, ey) ∈ fh(r1)
for arbitrary entities ex, ey ∈ E, then fv(ey, ex) ∈ fh(r2). Yet, by the definition of
capturing rules exactly, this means that mh captures r1(X, Y ) ⇔ r2(Y, X) exactly. This
is a contradiction to the initial assumption that mh does not capture r1(X, Y ) ⇔ r2(Y, X)
exactly, proving the ⇒ part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X, Y ) ⇔
r2(Y, X) exactly, then the relation hyper-parallelogram fh(r1) is the mirror image across
the identity line of fh(r2) for any correlation subspace. We show this by contradiction.
Thus, we first assume that mh captures r1(X, Y ) ⇔ r2(Y, X) exactly, i.e., for any
instantiation of fe and fv over fe if fv(ex, ey) ∈ fh(r1), then fv(ey, ex) ∈ fh(r2).
Now to the contrary, we assume that r1’s corresponding relation hyper-parallelogram
fh(r1) of mh is not the mirror image across the identity line of fh(r2) for at least one
correlation subspace si. Then, since fh(r1) is not the mirror image across the identity
line of fh(r2) in si, there is an instantiation of fv and fe such that fv(ex, ey) ∈ fh(r1)
and fv(ey, ex) ̸∈ fh(r2) for some entities ex, ey ∈ E. Yet, by the definition of capturing
rules exactly, this means that mh does not capture r1(X, Y ) ⇔ r2(Y, X) exactly. This is
a contradiction to the initial assumption that mh captures r1(X, Y ) ⇔ r2(Y, X) exactly,
proving the ⇐ part of the proposition.

Proposition 4.2.12 (Hierarchy (Exactly)). Let mh = (M , fh) be a relation configuration
and r1, r2 ∈ R be relations where r1(X, Y ) ⇒ r2(X, Y ) holds for any entities X, Y ∈ E.
Then mh captures r1(X, Y ) ⇒ r2(X, Y ) exactly iff fh(r1) is subsumed by fh(r2) for
any correlation subspace.

Proof. ⇒ For the first direction, what is to be shown is that if the relation hyper-
parallelogram fh(r1) is subsumed by fh(r2) for any correlation subspace, then mh

captures r1(X, Y ) ⇒ r2(X, Y ) exactly. We show this by contradiction. Thus, we first
assume that r1’s corresponding relation hyper-parallelogram fh(r1) of mh is subsumed
by fh(r2) for any correlation subspace si. Now, to the contrary, we assume that mh does
not capture r1(X, Y ) ⇒ r2(X, Y ) exactly. Then, due to fh(r1) being a subset of fh(r2)
in any correlation subspace si, for any virtual assignment function fv it holds that if
fv(ex, ey) ∈ fh(r1) for arbitrary entities ex, ey ∈ E, then fv(ex, ey) ∈ fh(r2). Yet, by
the definition of capturing rules exactly, this means that mh captures r1(X, Y ) ⇒ r2(X, Y )
exactly. This is a contradiction to the initial assumption that mh does not capture
r1(X, Y ) ⇒ r2(X, Y ) exactly, proving the ⇒ part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X, Y ) ⇒
r2(X, Y ) exactly, then the relation hyper-parallelogram fh(r1) is subsumed by fh(r2)
for any correlation subspace. We show this by contradiction. Thus, we first assume that
mh captures r1(X, Y ) ⇒ r2(X, Y ) exactly, i.e., for any instantiation of fe and fv over
fe if fv(ex, ey) ∈ fh(r1), then fv(ex, ey) ∈ fh(r2). Now to the contrary, we assume
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that r1’s corresponding relation hyper-parallelogram fh(r1) of mh is not subsumed by
fh(r2) for at least one correlation subspace si. Then, since fh(r1) is subsumed by
fh(r2) in si, there is an instantiation of fv and fe such that fv(ex, ey) ∈ fh(r1) and
fv(ex, ey) ̸∈ fh(r2) for some entities ex, ey ∈ E. Yet, by the definition of capturing
rules exactly, this means that mh does not capture r1(X, Y ) ⇒ r2(X, Y ) exactly. This is
a contradiction to the initial assumption that mh captures r1(X, Y ) ⇒ r2(X, Y ) exactly,
proving the ⇐ part of the proposition.

Proposition 4.2.13 (Intersection (Exactly)). Let mh = (M , fh) be a relation config-
uration and r1, r2, r3 ∈ R be relations where r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) holds for
any entities X, Y ∈ E. Then mh captures r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) exactly iff the
intersection of fh(r1) and fh(r2) is subsumed by fh(r3) for any correlation subspace.

Proof. ⇒ For the first direction, what is to be shown is that if the intersection of fh(r1)
and fh(r2) is subsumed by fh(r3) for any correlation subspace, then mh captures
r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) exactly. We show this by contradiction. Thus, we
first assume that the intersection of fh(r1) and fh(r2) of mh is subsumed by fh(r3)
for any correlation subspace si. Now to the contrary, we assume that mh does not
capture r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) exactly. Then, due to the intersection of fh(r1)
and fh(r2) being a subset of fh(r3) in any correlation subspace si, for any virtual
assignment function fv it holds that if fv(ex, ey) ∈ fh(r1) and fv(ex, ey) ∈ fh(r2)
for arbitrary entities ex, ey ∈ E, then fv(ex, ey) ∈ fh(r3). Yet, by the definition of
capturing rules exactly, this means that mh captures r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y )
exactly. This is a contradiction to the initial assumption that mh does not capture
r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) exactly, proving the ⇒ part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X, Y ) ∧
r2(X, Y ) ⇒ r3(X, Y ) exactly, then the intersection of fh(r1) and fh(r2) is subsumed by
fh(r3) for any correlation subspace. We show this by contradiction. Thus, we first assume
that mh captures r1(X, Y )∧r2(X, Y ) ⇒ r3(X, Y ) exactly, i.e., for any instantiation of fe

and fv over fe if fv(ex, ey) ∈ fh(r1) and fv(ex, ey) ∈ fh(r2), then fv(ex, ey) ∈ fh(r3).
Now, to the contrary, we assume that the intersection of fh(r1) and fh(r2) is not
subsumed by fh(r3) for at least one correlation subspace si. Then, since the intersection
of fh(r1) and fh(r2) is not subsumed by fh(r3) in si, there is an instantiation of fv and
fe such that fv(ex, ey) ∈ fh(r1) and fv(ex, ey) ∈ fh(r2) but fv(ex, ey) ̸∈ fh(r3) for
some entities ex, ey ∈ E. Yet, by the definition of capturing rules exactly, this means that
mh does not capture r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) exactly. This is a contradiction to
the initial assumption that mh captures r1(X, Y )∧ r2(X, Y ) ⇒ r3(X, Y ) exactly, proving
the ⇐ part of the proposition.

Proposition 4.2.14 (Mutual Exclusion (Exactly)). Let mh = (M , fh) be a relation
configuration and r1, r2 ∈ R be relations where r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ holds for any
entities X, Y ∈ E. Then mh captures r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ exactly iff fh(r1) and
fh(r2) do not intersect in at least one correlation subspace.
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Proof. ⇒ For the first direction, what is to be shown is that if the relation hyper-
parallelograms fh(r1) and fh(r2) do not intersect in at least one correlation subspace,
then mh captures r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ exactly. We show this by contradiction.
Thus, we first assume that fh(r1) and fh(r2) of mh do not intersect in at least one
correlation subspace si. Now, to the contrary, we assume that mh does not capture
r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ exactly. Then, since fh(r1) and fh(r2) do not intersect in at
least one correlation subspace si, for any virtual assignment function fv it holds that
if fv(ex, ey) ∈ fh(r1) for arbitrary entities ex, ey ∈ E, then fv(ex, ey) ̸∈ fh(r2). Yet,
by the definition of capturing rules exactly, this means that mh captures r1(X, Y ) ∧
r2(X, Y ) ⇒ ⊥ exactly. This is a contradiction to the initial assumption that mh does
not capture r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ exactly, proving the ⇒ part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X, Y ) ∧
r2(X, Y ) ⇒ ⊥ exactly, then the relation hyper-parallelograms fh(r1) and fh(r2) do
not intersect in at least one correlation subspace. We show this by contradiction.
Thus, we first assume that mh captures r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ exactly, i.e., for any
instantiation of fe and fv over fe if fv(ex, ey) ∈ fh(r1), then fv(ex, ey) ̸∈ fh(r2) and
if fv(ex, ey) ∈ fh(r2), then fv(ex, ey) ̸∈ fh(r1). Now to the contrary, we assume that
r1’s corresponding relation hyper-parallelogram fh(r1) of mh intersects with fh(r2) in
any correlation subspace. Then, since fh(r1) intersects with fh(r2) in any correlation
subspace, there is an instantiation of fv and fe such that fv(ex, ey) ∈ fh(r1) and
fv(ex, ey) ∈ fh(r2) for some entities ex, ey ∈ E. Yet, by the definition of capturing rules
exactly, this means that mh does not capture r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ exactly. This
is a contradiction to the initial assumption that mh captures r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥
exactly, proving the ⇐ part of the proposition.

Proposition 4.2.15 (General Composition (Exactly)). Let r1, r2, r3 ∈ R be relations
and let mh = (M , fh) be a relation configuration, where fh is defined over r1, r2, and r3.
Furthermore, let r3 be the composite relation of r1 and r2, i.e., r1(X, Y ) ∧ r2(Y, Z) ⇒
r3(X, Z) holds for any entities X, Y, Z ∈ E. Then mh captures r1(X, Y ) ∧ r2(Y, Z) ⇒
r3(X, Z) iff the relation hyper-parallelogram fh(r3) subsumes the compositionally defined
region Ad defined by fh(r1) and fh(r2) for any correlation subspace.

Proof. ⇒ For the first direction, assume that the compositionally defined region defined
by fh(r1) and fh(r2) is subsumed by fh(r3) for any correlation subspace. What is to
be shown is that mh captures r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) exactly. Our proof for this
direction is based on the following three results:

1. For an auxiliary relation rd ∈ R, there exists a convex region Ad in the virtual
triple space such that r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) holds for fh(r1), fh(r2),
and Ad in any correlation subspace (Theorem 4.2.7).

2. fh(r1) subsumes Ad iff mh captures rd(X, Y ) ⇒ r3(X, Y ) exactly (Proposi-
tion 4.2.12).
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3. r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) logically follows from {r1(X, Y ) ∧ r2(Y, Z) ⇔
rd(X, Z), rd(X, Y ) ⇒ r3(X, Y )}.

For (1), observe that based on Theorem 4.2.7, we know that we can define an auxiliary
relation rd ∈ R with area Ad such that r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) holds for fh(r1),
fh(r2), and Ad, i.e., such that Ad is the compositionally defined region of fh(r1) and
fh(r2). For (2), as shown in Proposition 4.2.12, mh captures rd(X, Y ) ⇒ r3(X, Y )
exactly iff fh(r3) subsumes rd’s area Ad. Therefore, we have shown that if fh(r3)
subsumes Ad, and if Ad is the compositionally defined region of fh(r1) and fh(r2),
then rd(X, Y ) ⇒ r3(X, Y ) and r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) holds for fh(r1), fh(r2),
fh(r3) and Ad. Together with the fact that fh is only defined over r1, r2, and r3, we
can infer that mh exactly captures any rule — solely consisting of r1, r2, and r3 — that
follows from ψ = {r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z), rd(X, Y ) ⇒ r3(X, Y )}. For (3), by
logical deduction, the following statement holds: ψ |= r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Y ).
Since r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) (i) solely consists of r1, r2, and r3 and (ii) follows
from ψ, we have proven that mh captures r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) exactly if
fh(r3) subsumes Ad, proving the ⇒ part of the proposition.

⇐ For the second direction, what is to be shown is that if mh captures r1(X, Y ) ∧
r2(Y, Z) ⇒ r3(X, Z) exactly, then the compositionally defined region defined by fh(r1)
and fh(r2) is subsumed by fh(r3) for any correlation subspace. We prove this by
contradiction. Thus assume that mh captures r1(X, Y )∧r2(Y, Z) ⇒ r3(X, Z) exactly, i.e.,
for any instantiation of fe and fv over fe if fv(ex, ey) ∈ fh(r1) and fv(ey, ez) ∈ fh(r2),
then fv(ex, ez) ∈ fh(r3). Now to the contrary, we assume that r3’s corresponding
relation hyper-parallelogram fh(r3) of mh does not subsume the compositionally defined
region Ad in at least one correlation subspace. The following three points will be used to
construct a counter-example: (1) we have shown in Theorem 4.2.7 that we can define an
auxiliary relation rd ∈ R with area Ad such that r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) holds
for fh(r1), fh(r2), and Ad, (2) r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) logically follows from
{r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z), rd(X, Y ) ⇒ r3(X, Y )}, stating together with Point (1)
and Proposition 4.2.12 that r3 needs to subsume rd’s area Ad such that mh can capture
r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) exactly, and (3) we have initially assumed that fh(r3)
does not subsume Ad. From (1)-(3) we can infer that there exists an instantiation of fv

and fe such that fv(ex, ey) ∈ fh(r1) and fv(ey, ez) ∈ fh(r2) but fv(ex, ez) ̸∈ fh(r3)
for some entities ex, ey, ez ∈ E. Yet, by the definition of capturing rules exactly, this
means that mh does not capture r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) exactly. This is a
contradiction to the initial assumption that mh captures r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z)
exactly, proving the ⇐ part of the proposition.

Proposition 4.2.16 (Compositional Definition (Exactly)). Let r1, r2, rd ∈ R be relations
and let mh = (M , fh) be a relation configuration, where fh is defined over r1, r2, and rd.
Also, let rd be the compositionally defined relation of r1 and r2, i.e., r1(X, Y )∧r2(Y, Z) ⇔
rd(X, Z) holds for any entities X, Y, Z ∈ E. Then mh captures r1(X, Y ) ∧ r2(Y, Z) ⇔
rd(X, Z) iff the relation hyper-parallelogram fh(rd) is equal to the compositionally defined
region Ad defined by fh(r1) and fh(r2) for any correlation subspace.
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The proof for Proposition 4.2.16 is straightforward, as Proposition 4.2.16 can be proven
analogously to Proposition 4.2.15 with the sole difference that instead of defining a
relation embedding fh(r3) that subsumes the compositionally defined region Ad, we
define the compositionally defined relation rd whose embedding fh(rd) is equal to the
compositionally defined region Ad.

Propositions 4.2.9, 4.2.10, 4.2.11, 4.2.12, 4.2.13, and 4.2.14 together prove the exactness
part of Theorem 4.2.2, i.e., that ExpressivE captures symmetry, anti-symmetry, inversion,
hierarchy, intersection, and mutual exclusion exactly. Propositions 4.2.15 and 4.2.16 prove
the exactness part of Theorem 4.2.4, i.e., that ExpressivE captures general composition
and compositional definition exactly. Now it remains to show that ExpressivE captures
all these rules exactly and exclusively, which is shown in Section 4.2.7.

4.2.7 Proofs for Exclusively Part of Theorems 4.2.2 and 4.2.4
This section proves that ExpressivE captures all inference rules of Theorems 4.2.2 and 4.2.4
exactly and exclusively. By the definition of capturing a rule ψ exactly and exclusively,
this means that we need to construct a relation configuration mh such that (1) mh

captures ψ and (2) mh does not capture any positive rule φ such that ψ ̸|= φ. Note that
we have shown in Propositions 4.2.9–4.2.15 that we can construct a relation configuration
mh that captures the following rules by constraining the following geometric properties
of mh’s relation hyper-parallelograms:

1. For symmetry and inversion rules, the mirror images across the identity line of hyper-
parallelograms in any correlation subspace need to be constrained (Propositions 4.2.9
and 4.2.11).

2. For hierarchy and intersection rules the intersections of hyper-parallelograms in
any correlation subspace need to be constrained (Propositions 4.2.12 and 4.2.13).

3. For general composition rules, the compositionally defined region needs to be
subsumed in any correlation subspace.

Since symmetry, inversion, hierarchy, intersection, and composition are all positive rules of
our considered language of rules, it suffices to analyze the mirror images (M), intersections
(I), and compositionally defined regions (C) of each relation hyper-parallelogram to
check which positive rules have been captured. Furthermore, for the upcoming proofs,
Definition 4.2.17 defines head and tail intervals.

Definition 4.2.17 (Head and Tail Intervals). Let ri ∈ R be a relation and mh = (M , fh)
be a relation configuration. We call an interval a head interval Hri,mh and respectively a
tail interval Tri,mh of ri and mh if for arbitrary entities eh, et ∈ E, virtual assignment
functions fv, and complete model configuration m over mh and fv the following property
holds: if m captures a triple r1(eh, et) to be true, then fv(eh) ∈ Hri,mh and fv(et) ∈
Tri,mh.
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Using the Definition 4.2.17 and the insights provided by (M), (I), and (C), we will
followingly prove that ExpressivE captures each considered rule exactly and exclusively.

Proposition 4.2.18 (Symmetry (Exactly and Exclusively)). Let mh = (M , fh) be a
relation configuration and r1 ∈ R be a symmetric relation, i.e., r1(X, Y ) ⇒ r1(Y, X)
holds for any entities X, Y ∈ E. Then mh can capture r1(X, Y ) ⇒ r1(Y, X) exactly and
exclusively.

Proposition 4.2.19 (Anti-Symmetry (Exactly and Exclusively)). Let mh = (M , fh)
be a relation configuration and r1 ∈ R be an anti-symmetric relation, i.e., r1(X, Y ) ∧
r1(Y, X) ⇒ ⊥ holds for any entities X, Y ∈ E. Then mh can capture r1(X, Y ) ∧
r1(Y, X) ⇒ ⊥ exactly and exclusively.

The proofs for Propositions 4.2.18 and 4.2.19 are straightforward, as the only positive rule
that contains only one relation is symmetry. Furthermore, since (i) Propositions 4.2.9 and
4.2.10 have shown that there is a relation configuration that can capture symmetry/anti-
symmetry exactly and (ii) a hyper-parallelogram cannot be symmetric and anti-symmetric
simultaneously, we have shown that there is a relation configuration that captures
symmetry/anti-symmetry exactly and exclusively, proving Propositions 4.2.18 and 4.2.19.

Proposition 4.2.20 (Inversion (Exactly and Exclusively)). Let mh = (M , fh) be a
relation configuration and r1, r2 ∈ R be relations where r1(X, Y ) ⇔ r2(Y, X) holds for any
entities X, Y ∈ E. Then mh can capture r1(X, Y ) ⇔ r2(Y, X) exactly and exclusively.

The proof for Proposition 4.2.20 is straightforward, as the only positive rules that contain
at most two relations are symmetry, hierarchy, and inversion. Furthermore, since (i)
Proposition 4.2.11 has shown that there is a relation configuration that can capture
inversion exactly and (ii) it is simple to show that a hyper-parallelogram can be the
mirror image of another hyper-parallelogram without one of them subsuming the other
(hierarchy) or one of them being symmetric across the identity line (symmetry), we
have shown that there is a relation configuration that captures inversion exactly and
exclusively, proving Proposition 4.2.20.

Proposition 4.2.21 (Hierarchy (Exactly and Exclusively)). Let mh = (M , fh) be
a relation configuration and r1, r2 ∈ R be relations where r1(X, Y ) ⇒ r2(X, Y ) holds
for any entities X, Y ∈ E. Then mh can capture r1(X, Y ) ⇒ r2(X, Y ) exactly and
exclusively.

The proof for Proposition 4.2.21 is straightforward, as the only positive rules that contain
at most two relations are symmetry, hierarchy, and inversion. Furthermore, since (i)
Proposition 4.2.12 has shown that there is a relation configuration that can capture
hierarchy exactly and (ii) it is simple to show that a hyper-parallelogram can subsume
another hyper-parallelogram without one of them being the mirror image across the
identity line of the other (inversion) or one of them being symmetric across the identity
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line (symmetry), we have shown that there is a relation configuration that captures
hierarchy exactly and exclusively, proving Proposition 4.2.21.

Proposition 4.2.22 (Intersection (Exactly and Exclusively)). Let mh = (M , fh) be a
relation configuration and r1, r2, r3 ∈ R be relations where r1(X, Y )∧r2(X, Y ) ⇒ r3(X, Y )
holds for any entities X, Y ∈ E. Then mh can capture r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y )
exactly and exclusively.

Proof. What is to be shown is that mh can capture intersection (r1(X, Y ) ∧ r2(X, Y ) ⇒
r3(X, Y )) exactly and exclusively. We have already shown that mh can capture r1(X, Y )∧
r2(X, Y ) ⇒ r3(X, Y ) exactly in Proposition 4.2.13. Now, to show that mh can capture
intersection exactly and exclusively, we construct an instance of mh such that (1) mh

captures intersection r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) and (2) mh does not capture any
positive rule φ such that r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) ̸|= φ.

ch wh st ct wt sh

r1 −6 2 2 8 2 3
r2 −11.5 3 5 11 3 3
r3 −9.5 5 5 9 1 3

Table 4.1: One-dimensional relation embeddings of a relation configuration mh that
captures intersection (i.e., r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y )) exactly and exclusively.

Figure 4.2 visualizes the hyper-parallelograms defined by the one-dimensional relation
embeddings of Table 4.1. In particular, it displays the hyper-parallelograms of r1, r2, r3.
As can be easily seen in Figure 4.2 (and proven using Proposition 4.2.13), the relation
configuration mh described by Table 4.1 captures r1(X, Y )∧r2(X, Y ) ⇒ r3(X, Y ) exactly,
as fh(r3) subsumes the intersection of fh(r1) and fh(r2).
Now, it remains to show that mh does not capture any positive rule φ such that
r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) ̸|= φ. To show this, we will show that (M) the mirror
image of any relation hyper-parallelogram is not subsumed by any other relation hyper-
parallelogram (i.e., no unwanted symmetry nor inversion rule is captured) and (C)
the compositionally defined region defined by any pair of hyper-parallelograms is not
subsumed by any relation hyper-parallelogram (i.e., no unwanted composition rule is
captured). We do not need to show that (I) no unwanted relation hyper-parallelograms
intersect, as by the nature of the intersection rule, fh(r1), fh(r2), and fh(r3) should
intersect.
For (M), observe in Figure 4.2 that all hyper-parallelograms fh(r1), fh(r2), and fh(r3)
of mh are on the same side of the identity line. Thus, the mirror images of fh(r1),
fh(r2), and fh(r3) across the identity line must be on the other side. Therefore, we
have shown (M), i.e., that no relation hyper-parallelograms subsume the mirror image of
any other relation hyper-parallelogram and thus that mh does not capture any unwanted
symmetry nor inversion rule.
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Figure 4.2: Visualization of the relation configuration mh described by Table 4.1.

For (C), observe in Figure 4.2 that for the displayed relation configuration mh, the head
intervals of any relation hyper-parallelogram of mh contain only negative values and the
tail intervals contain only positive values. Thus, for any pair (ri, rj) ∈ {r1, r2, r3}2, there
is no virtual assignment function fv such that m over mh and fv captures ri(x, y) and
rj(y, z) for arbitrary entities x, y, z ∈ E. Therefore, no pair of relations (ri, rj) defines a
compositionally defined region. Thus, we have shown (C) that no compositionally defined
region is subsumed by any relation hyper-parallelogram (as no compositionally defined
region exists) and that mh does not capture any unwanted general composition rule.

By Proposition 4.2.13 and by proving (M) and (C), we have shown that the constructed
relation configuration mh of Table 4.1 captures the intersection rule r1(X, Y )∧r2(X, Y ) ⇒
r3(X, Y ) and does not capture any positive rule φ such that r1(X, Y ) ∧ r2(X, Y ) ⇒
r3(X, Y ) ̸|= φ. This means by the definition of capturing rules exactly and exclusively
that mh captures intersection (r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y )) exactly and exclusively,
proving the proposition.

Proposition 4.2.23 (General Composition (Exactly and Exclusively)). Let r1, r2, r3 ∈ R
be relations and let mh = (M , fh) be a relation configuration, where fh is defined
over r1, r2, and r3. Furthermore, let r3 be the composite relation of r1 and r2, i.e.,
r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) holds for all entities X, Y, Z ∈ E. Then mh can capture
r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) exactly and exclusively.

Proof. What is to be shown is that mh can capture general composition (r1(X, Y ) ∧
r2(Y, Z) ⇒ r3(X, Z)) exactly and exclusively. We have already shown that mh can
capture r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) exactly in Proposition 4.2.15. Now, to show that
mh can capture general composition exactly and exclusively, we construct an instance of
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mh such that (1) mh captures general composition and (2) mh does not capture any
positive rule φ such that r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) ̸|= φ.

ch wh st ct wt sh

r1 −6 0 2 8 5 3
r2 −35 5 5 −1 2 5
rd −76 10 10 14 2 2.5
r3 −46 11 6 19 6 4

Table 4.2: One-dimensional relation embeddings of a relation configuration mh that
captures general composition (i.e., r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z)) and that captures
compositional definition (i.e., r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z)) exactly and exclusively.

Figure 4.3 visualizes the hyper-parallelograms defined by the one-dimensional relation
embeddings of Table 4.2. In particular, it displays the hyper-parallelograms of r1,
r2, r3, and the compositionally defined region Ad of auxiliary relation rd such that
r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) holds for fh(r1), fh(r2), and Ad. As can be easily seen
in Figure 4.3 (and proven using Theorem 4.2.7 and Proposition 4.2.15), the relation
configuration mh described by Table 4.2 captures r1(X, Y )∧r2(Y, Z) ⇒ r3(X, Z) exactly,
as fh(r3) subsumes the compositionally defined region Ad.

Now, it remains to show that mh does not capture any positive rule φ such that r1(X, Y )∧
r2(Y, Z) ⇒ r3(X, Z) ̸|= φ. To show this, we will show that (M) the mirror image of any
relation hyper-parallelogram is not subsumed by any other relation hyper-parallelogram
(i.e., no unwanted symmetry nor inversion rule is captured), (I) no relation hyper-
parallelograms intersect with each other (i.e., no unwanted hierarchy nor intersection rule
is captured), and (C) solely the compositionally defined region Ad defined by fh(r1) and
fh(r2) is subsumed by fh(r3) and no other compositionally defined region is subsumed by
any other relation hyper-parallelogram (i.e., no unwanted composition rule is captured).

For (M), observe in Figure 4.3 that all hyper-parallelograms fh(r1), fh(r2), and fh(r3)
of mh are on the same side of the identity line. Thus, the mirror images of fh(r1),
fh(r2), and fh(r3) across the identity line must be on the other side. Therefore, we
have shown (M), i.e., that no relation hyper-parallelograms subsume the mirror image of
any other relation hyper-parallelogram and thus that mh does not capture any unwanted
symmetry nor inversion rule.

For (I), observe in Figure 4.3 that no relation hyper-parallelograms fh(r1), fh(r2), and
fh(r3) of mh intersect with each other. Thus, we have shown (I), i.e., that mh does not
capture any unwanted hierarchy nor intersection rule.

For (C), observe in Figure 4.3 that for the displayed relation configuration mh, the
following head and tail intervals can be defined: (i) Hr1,mh = [−4, 0] and Tr1,mh = [1, 3],
(ii) Hr2,mh = [1, 3] and Tr2,mh = [6, 9], and (iii) Hr3,mh = [−6, −1] and Tr3,mh = [4, 10].
The tail intervals solely overlap with the head intervals for Tr1,mh and Hr2,mh , i.e.,
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Figure 4.3: Visualization of the relation configuration mh described by Table 4.2.
Tri,mh ∩ Hrj ,mh = ∅, (ri, rj) ∈ {r1, r2, r3}2 \ (r1, r2). Thus, for any pair (ri, rj) ∈
{r1, r2, r3}2 \ (r1, r2) there is no virtual assignment function fv such that m over mh

and fv captures ri(x, y) and rj(y, z) for arbitrary entities x, y, z ∈ E. Therefore, (r1, r2)
is the only pair of relations that defines a compositionally defined region, i.e., no other
pair of relations defines a compositionally defined region. Thus, we have shown (C) that
no other compositionally defined region is subsumed by any other relation (as no other
compositionally defined region exists) and thus that no unwanted composition rule is
captured by mh.

By Proposition 4.2.15 and by proving (I), (M), and (C), we have shown that the
constructed relation configuration mh of Table 4.2 captures the general composition
rule r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) and does not capture any positive rule φ such that
r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) ̸|= φ. This means by the definition of capturing rules
exactly and exclusively that mh captures general composition (r1(X, Y ) ∧ r2(Y, Z) ⇒
r3(X, Z)) exactly and exclusively, proving the proposition.

Proposition 4.2.24 (Compositional Definition (Exactly and Exclusively)). Let r1, r2, rd ∈
R be relations and let mh = (M , fh) be a relation configuration, where fh is defined
over r1, r2, and rd. Furthermore, let rd be the compositionally defined relation of r1 and
r2, i.e., r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) holds for all entities X, Y, Z ∈ E. Then mh can
capture r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z) exactly and exclusively.
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The proof for Proposition 4.2.24 is straightforward, as it can be proven analogously to
Proposition 4.2.23 with the only difference that instead of defining a relation embedding
fh(r3) that subsumes the compositionally defined region, we define the compositionally
defined relation rd whose embedding fh(rd) is equal to the compositionally defined region
Ad. We have stated the relation embeddings for rd in Table 4.2 and also visualized fh(rd)
in Figure 4.3.

Finally, the sum of Propositions 4.2.18–4.2.24 proves Theorems 4.2.2 and 4.2.4. Thus, we
have theoretically shown that ExpressivE captures all core inference rules exactly and
exclusively, directly proving Corollary 4.2.5.

4.2.8 Extended Compositions
This section provides theoretical evidence that ExpressivE is not limited to capturing a
single composition rule. Specifically, we prove that ExpressivE can capture more than
one application of a composition rule. The following theoretical result is empirically
backed up by further experimental results of Section 4.5.6.

Proposition 4.2.25. Let r1, r2, r3, r1,2, r1,2,3 ∈ R be relations and let mh = (M , fh) be
a relation configuration, where fh is defined over r1, r2, r3, r1,2, and r1,2,3. Furthermore,
let r1(X, Y ) ∧ r2(Y, Z) ⇒ r1,2(X, Z) and r1,2(X, Y ) ∧ r3(Y, Z) ⇒ r1,2,3(X, Z) hold for
all entities X, Y, Z ∈ E. Then mh can capture r1(X, Y ) ∧ r2(Y, Z) ⇒ r1,2(X, Z) and
r1,2(X, Y ) ∧ r3(Y, Z) ⇒ r1,2,3(X, Z) exactly and exclusively.

Proof. What is to be shown is that mh can capture φ1 := r1(X, Y )∧r2(Y, Z) ⇒ r1,2(X, Z)
and φ2 := r1,2(X, Y ) ∧ r3(Y, Z) ⇒ r1,2,3(X, Z) exactly and exclusively. To show that
there is an mh that captures φ1 and φ2 exactly and exclusively, we construct an instance
of mh such that (1) mh captures φ1 and φ2 exactly, and (2) mh does not capture any
positive rule ψ such that (φ1 ∧ φ2) ̸|= ψ.

Figure 4.4 visualizes the hyper-parallelograms defined by the one-dimensional relation
embeddings of Table 4.3. In particular, it displays the hyper-parallelograms of r1, r2,
r1,2, r3, r1,2,3, and the compositionally defined regions Ad

1,2, Ad
2,3, Ad

(1,2),3, Ad
1,(2,3) of

auxiliary relation rd
1,2, rd

2,3 rd
(1,2),3, and rd

1,(2,3) such that r1(X, Y ) ∧ r2(Y, Z) ⇔ rd
1,2(X, Z),

r2(X, Y ) ∧ r3(Y, Z) ⇔ rd
2,3(X, Z), r1,2(X, Y ) ∧ r3(Y, Z) ⇔ rd

(1,2),3(X, Z), and r1(X, Y ) ∧
rd

2,3(Y, Z) ⇔ rd
1,(2,3)(X, Z) hold for fh(r1), fh(r2), fh(r3), fh(r1,2), fh(r1,2,3), Ad

1,2,
Ad

2,3, Ad
(1,2),3, and Ad

1,(2,3). Note that from φ1 and φ2 together with the auxiliary
relation rd

1,(2,3) — defined above — follows that rd
1,2(X, Y ) ⇒ r1,2(X, Y ), rd

(1,2),3(X, Y ) ⇒
r1,2,3(X, Y ), and rd

1,(2,3)(X, Y ) ⇒ r1,2,3(X, Y ) need to be satisfied. Thus, as can be easily
seen in Figure 4.4 (and proven using Theorem 4.2.7 and Proposition 4.2.15), the relation
configuration mh described by Table 4.3 captures φ1 and φ2 exactly, as fh(r1,2) subsumes
the compositionally defined region Ad

1,2 and as fh(r1,2,3) subsumes the compositionally
defined regions Ad

(1,2),3 and Ad
1,(2,3).
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ch wh st ct wt sh

r1 −6 0 2 8 5 3
r2 −35 5 5 −1 2 5

r1,2 −46 11 6 19 6 4
r3 −45 3 5 −20 0 4

r1,2,3 −215 20 20 22 8 4

Table 4.3: One-dimensional relation embeddings of a relation configuration mh that
captures two general compositions (i.e., r1(X, Y )∧r2(Y, Z) ⇒ r1,2(X, Z) and r1,2(X, Y )∧
r3(Y, Z) ⇒ r1,2,3(X, Z)) exactly and exclusively.

Figure 4.4: Visualization of the relation configuration mh described by Table 4.3.

Now it remains to show that mh does not capture any positive rule ψ such that (φ1 ∧
φ2) ̸|= ψ. To show this, we will show that (M) the mirror image of any relation
hyper-parallelogram is not subsumed by any other relation hyper-parallelogram (i.e., no
unwanted symmetry nor inversion rule is captured), (I) no relation hyper-parallelograms
intersect with each other (i.e., no unwanted hierarchy nor intersection rule is captured),
and (C) solely that Ad

1,2 ⊆ fh(r1,2) and (Ad
(1,2),3 ∪ Ad

1,(2,3)) ⊆ fh(r1,2,3) are satisfied,
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and no other compositionally defined region is subsumed by any other relation hyper-
parallelogram (i.e., no unwanted composition rule is captured).

For (M), observe in Figure 4.4 that all hyper-parallelograms fh(r1), fh(r2), fh(r3),
fh(r1,2), and fh(r1,2,3) of mh are on the same side of the identity line. Thus, the mirror
images of any of these hyper-parallelograms across the identity line must be on the other
side. Therefore, we have shown (M), i.e., that no relation hyper-parallelograms subsume
the mirror image of any other relation hyper-parallelogram and thus that mh does not
capture any unwanted symmetry nor inversion rule.

For (I), observe in Figure 4.4 that no relation hyper-parallelograms fh(r1), fh(r2),
fh(r3), fh(r1,2), and fh(r1,2,3) of mh intersect with each other. Thus, we have shown
(I), i.e., that mh does not capture any unwanted hierarchy nor intersection rule.

For (C), recall Definition 4.2.17, describing head and tail intervals. We observe in
Figure 4.4 that for the displayed relation configuration mh, the following head and tail
intervals can be defined: (i) Hr1,mh = [−4, 0] and Tr1,mh = [1, 3], (ii) Hr2,mh = [1, 3]
and Tr2,mh = [6, 9], (iii) Hr1,2,mh = [−6, −1] and Tr1,2,mh = [4, 9.7], (iv) Hr3,mh = [7, 9]
and Tr3,mh = [10, 12], (v) Hr1,2,3,mh = [−6, 0] and Tr1,2,3,mh = [9.8, 12], and (vi)
Hrd

2,3,mh
= [1, 3] and Trd

2,3,mh
= [9.8, 12]. The tail intervals solely overlap with the

head intervals for the pairs {(r1, r2), (r2, r3), (r1,2, r3), (r1, rd
2,3)}, i.e., Tri,mh ∩ Hrj ,mh =

∅, (ri, rj) ∈ {r1, r2, r3}2\{(r1, r2), (r2, r3), (r1,2, r3), (r1, rd
2,3)}. Thus, for any pair (ri, rj) ∈

{r1, r2, r3}2 \ {(r1, r2), (r2, r3), (r1,2, r3), (r1, rd
2,3)} there is no virtual assignment function

fv such that m over mh and fv captures ri(x, y) and rj(y, z) for arbitrary entities
x, y, z ∈ E. Therefore, {(r1, r2), (r2, r3), (r1,2, r3), (r1, rd

2,3)} are the only pairs of relations
that define a compositionally defined region, i.e., no other pair of relations defines a
compositionally defined region. Thus, we have shown that (1) mh captures φ1 and φ2
exactly — since Ad

1,2 ⊆ fh(r1,2) and (Ad
(1,2),3 ∪ Ad

1,(2,3)) ⊆ fh(r1,2,3) — and (2) the
only other existing compositionally defined region Ad

2,3 is disjoint with any other relation
hyper-parallelograms. By (1) and (2), we have shown (C) that no other compositionally
defined region (specifically Ad

1,2) is subsumed by any other relation and thus that no
unwanted composition rule is captured by mh.

By proving that the constructed mh captures φ1 and φ2 exactly and by (I), (M), and
(C), we have shown that the constructed relation configuration mh of Table 4.3 captures
φ1 and φ2 and does not capture any positive rule ψ such that (φ1 ∧ φ2) ̸|= ψ. This means
by the definition of capturing rules exactly and exclusively that mh captures φ1 and φ2
exactly and exclusively, proving the proposition.

4.3 ExpressivE’s Two Natures
In this section, we analyze functional and spatial models in more detail and outline how
ExpressivE combines the capabilities of both model families. ExpressivE has two natures,
specifically:
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• ExpressivE has a functional nature (in the spirit of functional models such as
TransE and RotatE), allowing it to capture functional composition, discussed in
detail in Section 4.3.1.

• ExpressivE has a spatial nature (in the spirit of spatial models such as BoxE),
allowing it to capture hierarchy, discussed in detail in Section 4.3.2.

The combination of the functional and spatial nature is precisely the reason that allows
ExpressivE to capture hierarchy and composition rules jointly. In the following, we review
the inference capabilities of spatial and functional models and discuss how ExpressivE
combines both the spatial and functional nature.

4.3.1 Analysis of Functional Models
We recall the definition of functional models provided in Section 3.1, which states that
functional models basically embed relations as functions fri : Kd → Kd and entities
as vectors ej ∈ Kd over some field K. These models represent true triples ri(eh, et) as
et = fri(eh) in the embedding space.

Our analysis has revealed that the root cause that functional models cannot capture
general composition rules lies within the functional nature of these models. In essence,
these models mainly use functions to embed relations. This allows them to leverage
functional composition frd = fr2 ◦ fr1 to capture composition rules. Yet, employing
functional composition defines the composite relation rd completely and thus represents a
more restricted rule that we call compositional definition r1(X, Y ) ∧ r2(Y, Z) ⇔ rd(X, Z).

In contrast, general composition r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) does not completely
define its composite relation r3. This means that in the case of general composition, the
composite relation r3 may contain more triples than those that are directly inferable
by compositional definition rules. Due to this notion of extensibility, we can describe
general composition as a combination of compositional definition and hierarchy, i.e.,
a general composition rule defines its composite relation r3 as a superset (hierarchy
component) of the compositionally defined relation rd. This explains why no KGE has
managed to capture general composition, as any state-of-the-art KGE that supports some
notion of composition cannot represent hierarchy and vice versa (as will be discussed
in Section 4.3.2), yet both are essential to support general composition. Therefore, to
capture general composition, ExpressivE combines hierarchy and compositional definition
rules, as discussed in more detail in Section 4.2.2.

4.3.2 Analysis of Spatial Models
Spatial models embed a relation r ∈ R via spatial regions in the embedding space.
Furthermore, they embed an entity ea ∈ E in the role of a head and tail entity with
two independent embeddings eh

a ∈ Kd and et
a ∈ Kd. A triple r(eh, et) is true for spatial

models if the embeddings of the entities eh and et lie within the respective spatial regions
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of the relation r. Thus, spatial models may capture hierarchy rules via the spatial
subsumption of the regions defined by the relations. However, since there is no relation
between eh

a and et
a, spatial models — such as BoxE (Abboud et al., 2020) — cannot

capture composition.

ExpressivE embeds relations as regions (spatial nature). Yet, to achieve the functional
nature, it cannot use two independent entity embeddings in the typical embedding space
- as we discussed above. The solution and key difference to BoxE is to define the virtual
triple space, which is formed by concatenating head and tail entity embeddings of the
same embedding space (as described in detail in Section 4.1). More specifically, any
line through the virtual triple space defines a function between head and tail entity
embeddings of the same space - the key to the functional nature:

• Functional nature. Regions in this virtual triple space establish a mathematical
relation between head and tail entities of the same space by which composition can
be captured.

• Spatial nature. At the same time, regions can subsume each other, by which - as
is intuitive - hierarchy rules can be captured.

Finally, it is precisely the combination of the functional and spatial nature that allows
ExpressivE to capture general composition, as described in detail in Section 4.2.2.

4.4 Experimental Setup Details
Before we can discuss empirical results, we need to first introduce our experimental setup.
Specifically, this section presents our concrete experimental setup, including details of our
implementation, used hardware, learning setup, hyperparameters, and CO2 emissions.

Implementation Details. We have implemented ExpressivE in PyKEEN 1.7 (Ali
et al., 2021), which is a Python library that uses the MIT license and supports many
benchmark KGs and KGEs. Thereby, we make ExpressivE comfortably accessible to the
community for future benchmarks and experiments. We have made our code publicly
available in a GitHub repository1. It contains, in addition to the code of ExpressivE,
a setup file to install the necessary libraries and a ReadMe.md file containing library
versions and running instructions to facilitate the reproducibility of our results.

Ablation Versions. To study the effects of ExpressivE’s parameters on its performance,
we consider the following constrained ExpressivE versions: (1) Base ExpressivE, which
represents ExpressivE without any parameter constraints, (2) Functional ExpressivE,
where the width parameter of each relation is zero, (3) EqSlopes ExpressivE, where all
slope vectors are constrained to be equal, (4) NoCenter ExpressivE, where the center

1https://github.com/AleksVap/ExpressivE
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vector of any relation is zero, and (5) OneBand ExpressivE, where each relation is
embedded by solely one band instead of two. For details and results see Section 4.5.2.

Training Setup. Each model was trained and evaluated on one of four GeForce RTX
2080 GPUs of our internal cluster. Specifically, the training process uses the Adam
optimizer (Kingma and Ba, 2015) to optimize the self-adversarial negative sampling loss
(Sun et al., 2019). ExpressivE is trained with gradient descent for up to 1000 epochs
with early stopping, finishing the training if after 100 epochs the H@10 score did not
increase by at least 0.5% for WN18RR and 1% for FB15k-237. We have increased the
patience for OneBand ExpressivE to 150 epochs for FB15k-237, as it converges slower
than the other ablation versions of ExpressivE. We use the model of the final epoch for
testing. Each experiment was repeated three times to account for small performance
fluctuations. In particular, the MRR values fluctuate by less than 0.003 between runs for
Base and Functional ExpressivE on any dataset. We performed hyperparameter tuning
over the learning rate λ, embedding dimensionality d, number of negative samples neg,
loss margin γ, adversarial temperature α, and minimal denominator Dmin . Specifically,
two mechanisms were employed to implicitly regularize the hyper-parallelogram: (1) the
hyperbolic tangent function tanh was element-wise applied to each entity embedding ep,
slope vector sp

i , and center vector cp
i , projecting them into the bounded space [−1, 1]d,

and (2) the size of each hyper-parallelogram is limited by the novel Dmin parameter. In
the following, we will briefly introduce the Dmin parameter and its function.

Minimal Denominator. As can be easily shown, Equations 4.109 describe the relation
hyper-parallelogram’s center, and Equations 4.110–4.111 its corners in R2d.

centerh
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Note that the denominator of each term is equal to (1−sh
i st

i). Since a small denominator
in Equations 4.110 and 4.111 produces large corners and, therefore, a large hyper-
parallelogram, we have introduced the hyperparameter Dmin , allowing ExpressivE to
tune the maximal size of its hyper-parallelograms. In particular, Dmin constrains the
relation embeddings such that (1 − sh

i st
i) ⪰ Dmin , thereby constraining the maximal size

of a hyper-parallelogram as required.

Hyperparameter Optimization. Following Abboud et al. (2020), we have varied the
learning rate by λ ∈ {a ∗ 10−b|a ∈ {1, 2, 5} ∧ b ∈ {−2, −3, −4, −5, −6}}, the margin m by
integer values between 3 and 24 inclusive, the adversarial temperature by α ∈ {1, 2, 3, 4},
and the number of negative samples by neg ∈ {50, 100, 150}. Furthermore, we have
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varied the novel minimal denominator parameter by Dmin ∈ {0, 0.5, 1}. We have tuned
the hyperparameters of ExpressivE manually within the specified ranges. Finally, to
allow a direct performance comparison of ExpressivE to its closest spatial relative BoxE
and its closest functional relative RotatE, we chose for each benchmark the embedding
dimensionality and negative sampling strategy of the best-performing RotatE and BoxE
model (Abboud et al., 2020; Sun et al., 2019). Concretely, we chose self-adversarial
negative sampling (Sun et al., 2019) and the embedding dimensionalities listed in Table 4.4.
The best-performing hyperparameters for ExpressivE on each benchmark dataset are also
listed in Table 4.4. We have used the hyperparameters of Table 4.4 for any considered
version of ExpressivE — namely Base, Functional, EqSlopes, NoCenter, and OneBand
ExpressivE —, which are described in the ablation study of Section 4.5.2.

Dataset Embedding
Dimensionality Margin Learning

Rate
Adversarial

Temperature
Negative
Samples

Batch
Size

Minimal
Denominator

WN18RR 500 3 1 ∗ 10−3 2 100 512 0
FB15k-237 1000 4 1 ∗ 10−4 4 150 1024 0.5

Table 4.4: Best hyperparameters for ExpressivE on WN18RR and FB15k-237.

Evaluation. In all of our experiments we: (i) employ the standard benchmarks, (ii)
follow the standard evaluation protocol, and (iii) present the standard metrics (filtered
MRR and H@k) for KGC. Each of these parts is described in detail in Section 2.1.1.

CO2 Emission. The computation of the reported experiments took below 200 GPU
hours. On an RTX 2080 (TDP of 215W) with a carbon efficiency of 0,432 kg/kWh (based
on the OECD’s 2014 yearly carbon efficiency average), 200 GPU hours correspond to
a rough CO2 emission of 18.58 kg CO2-eq. The estimations were conducted using the
Machine Learning Emissions Calculator (Lacoste et al., 2019).

4.5 Experimental Evaluation and Space Complexity
In this section, we evaluate ExpressivE on the standard KGC benchmarks WN18RR
(Dettmers et al., 2018) and FB15k-237 (Toutanova and Chen, 2015) and report state-
of-the-art results, providing strong empirical evidence for the theoretical strengths of
ExpressivE (Section 4.5.1). Furthermore, we perform an ablation study on ExpressivE’s
parameters to quantify the importance of each parameter (Section 4.5.2). Using a relation-
wise performance comparison on WN18RR, we analyze the performance of ExpressivE
compared to the state of the art (Section 4.5.3). Next, we analyze ExpressivE’s perfor-
mance on relations of various cardinalities to provide empirical evidence for ExpressivE’s
capability to represent 1–1, 1–N, N–1, and N–N relations (Section 4.5.4). Moreover,
we empirically validate that ExpressivE captures general composition rules exactly and
exclusively and analyze the link between these results and ExpressivE’s performance gain
on WN18RR (Section 4.5.5). Finally, we investigate whether ExpressivE can reason over
more than one step of composition rules (Section 4.5.6).
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4.5.1 Knowledge Graph Completion
Baselines. As in Abboud et al. (2020), we compare ExpressivE to the functional models
TransE (Bordes et al., 2013) and RotatE (Sun et al., 2019), spatial model BoxE (Abboud
et al., 2020), and bilinear models DistMult (Yang et al., 2015a), ComplEx (Trouillon
et al., 2016), and TuckER (Balazevic et al., 2019b). We maintain the fairness of our
result comparison by considering gKGEs with a dimensionality d ≤ 1000 (Balazevic et al.,
2019b; Abboud et al., 2020). To allow a direct comparison of ExpressivE’s performance
and parameter efficiency to its closest functional relative RotatE and spatial relative
BoxE, we employ the same dimensionality for the benchmarks as RotatE and BoxE.

Benchmark Dimensionality ExpressivE BoxE RotatE
WN18RR 500 467MB 930MB 930MB
FB15k-237 1000 366MB 687MB 687MB

Table 4.5: Model sizes of ExpressivE, BoxE, and RotatE models of equal dimensionality.

Space Complexity. For a d-dimensional embedding, RotatE and BoxE require (2|E| +
2|R|)d, whereas ExpressivE solely requires (|E| + 6|R|)d parameters, where |E| is the
number of entities and |R| the number of relations. Since |R| << |E| in most graphs, (e.g.,
FB15k-237: |R|/|E| = 0.016) ExpressivE almost halves the number of parameters for a
d-dimensional embedding compared to BoxE and RotatE. Table 4.5 lists the model sizes
of trained ExpressivE, BoxE, and RotatE models of the same dimensionality, empirically
confirming that ExpressivE almost halves BoxE’s and RotatE’s sizes.

Family Model WN18RR FB15k-237

Fu
nc

.
&

Sp
at

ia
l H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

Base ExpressivE .464 .522 .597 .508 .243 .366 .512 .333
Func. ExpressivE .407 .519 .619 .482 .256 .387 .535 .350
BoxE .400 .472 .541 .451 .238 .374 .538 .337
RotatE .428 .492 .571 .476 .241 .375 .533 .338
TransE .013 .401 .529 .223 .233 .372 .531 .332

Bi
lin

ea
r DistMult - - .531 .452 - - .531 .343

ComplEx - - .547 .475 - - .536 .348
TuckER .443 .482 .526 .470 .266 .394 .544 .358

Table 4.6: KGC performance of ExpressivE and state-of-the-art gKGEs on FB15k-237
and WN18RR. The table shows the best-published results of the competing models
per family, specifically: TransE and RotatE (Sun et al., 2019), BoxE (Abboud et al.,
2020), DistMult and ComplEx (Ruffinelli et al., 2020; Yang et al., 2015b), and TuckER
(Balazevic et al., 2019b).

Benchmark Results. We use two versions of ExpressivE in the benchmarks, one where
the width parameter wi is learned and one where wi = 0, called Base ExpressivE and
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Functional ExpressivE. Tables 4.5 and 4.6 reveal that Functional ExpressivE, with only
half the number of parameters of BoxE and RotatE, performs best among spatial and
functional models on FB15k-237 and is competitive with TuckER, especially in MRR.
Even more, Base ExpressivE outperforms all competing models significantly on WN18RR.
The significant performance increase of Base ExpressivE on WN18RR is likely due to
WN18RR containing both hierarchy and composition rules in contrast to FB15k-237
(similar to the discussion of Abboud et al. (2020)). We will empirically investigate the
reasons for ExpressivE’s performances on FB15k-237 and WN18RR in Section 4.5.2 and
Section 4.5.3.

Discussion. Tables 4.5 and 4.6 reveal that ExpressivE is highly parameter efficient
compared to related spatial and functional models while reaching competitive performance
on FB15k-237 and even new state-of-the-art performance on WN18RR, supporting the
extensive theoretical results of our paper.

4.5.2 Ablation Study
This section analyzes how constraints on ExpressivE’s parameters impact its benchmark
performances. Specifically, we analyze the following constrained ExpressivE versions:
(1) Base ExpressivE, which represents ExpressivE without any parameter constraints,
(2) Functional ExpressivE, where the width parameter wi of each relation ri is zero, (3)
EqSlopes ExpressivE, where all slope vectors are constrained to be equal — i.e., si = sk

for any relations ri and rk, (4) NoCenter ExpressivE, where the center vector ci of any
relation ri is zero, and (5) OneBand ExpressivE, where each relation is embedded by
solely one band instead of two — i.e., OneBand ExpressivE captures a triple ri(eh, et) to
be true if its relation and entity embeddings only satisfy Inequality 4.1.

Model WN18RR FB15k-237
H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR

Base ExpressivE .464 .522 .597 .508 .243 .366 .512 .333
Func. ExpressivE .407 .519 .619 .482 .256 .387 .535 .350
EqSlopes ExpressivE .254 .415 .528 .353 .237 .361 .510 .328
NoCenter ExpressivE .457 .514 .591 .501 .224 .349 .494 .314
OneBand ExpressivE .435 .480 .538 .470 .230 .352 .491 .318

Table 4.7: Ablation study on ExpressivE’s parameters.

Ablation Results. Table 4.7 provides the results of the ablation study on WN18RR and
FB15k-237. It reveals that each component of ExpressivE is vital as setting all slopes si to
be equal (EqSlopes ExpressivE) or removing the center ci (NoCenter ExpressivE), width
wi (Functional ExpressivE), or a band (OneBand ExpressivE) results in performance
losses on at least one benchmark. Interestingly, Functional outperforms Base ExpressivE
on FB15k-237. The reasons for Functional and Base ExpressivE’s strong performance on
FB15k-237 and, respectively, WN18RR are analyzed in the following:
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• Functional ExpressivE. Since Functional ExpressivE sets wi = 0, the relation
embeddings reduce from a hyper-parallelogram to a function. Intuitively, this means
that Functional ExpressivE loses the spatial capabilities of Base ExpressivE, such
as the ability to capture hierarchy, while it maintains functional capabilities, such as
the ability to capture compositional definition. The effect of the reduced expressive
power of Functional ExpressivE can be seen in the performance drop on WN18RR
over Base ExpressivE in Table 4.6. However, since Functional ExpressivE uses fewer
parameters than Base ExpressivE, it has a lower degree of freedom, making it less
likely to stop in a local minimum than Base ExpressivE as empirically supported
by Functional ExpressivE’s performance gain over Base ExpressivE on FB15k-237
in Table 4.6. Furthermore, the performance gain of Functional ExpressivE over
Base ExpressivE on FB15k-237 hints at the dataset not containing many hierarchy
rules. Thus, FB15k-237 cannot exploit the added capabilities of Base ExpressivE,
namely the ability to capture general composition and hierarchy.

• Base ExpressivE. In contrast, Base ExpressivE provides the full expressive
power - the high degree of freedom heightening the chance of ending in a local
minimum. Table 4.6 reveals a significant performance increase of Base ExpressivE
over Functional ExpressivE on WN18RR, giving evidence that the added expressive
power can be helpful on datasets containing many composition and hierarchy rules
such as WN18RR ((Abboud et al., 2020), cf. Section 4.5.5). The downside of Base
ExpressivE’s added expressivity is, however, that its higher degrees of freedom may
make it likelier to stop in a local optimum, manifesting in its performance drop
over Functional ExpressivE on FB15k-237.

4.5.3 WN18RR Performance Analysis

This section analyzes the performance of ExpressivE and its closest spatial relative BoxE
(Abboud et al., 2020) and functional relative RotatE (Sun et al., 2019) on WN18RR.
Table 4.8 lists the MRR of ExpressivE, RotatE, and BoxE for each of the 11 relations of
WN18RR. Bold values represent the best, and underlined values represent the second-best
results across the compared models.

Results. ExpressivE performs very well on many relations, where either only BoxE or
only RotatE produces good rankings, empirically confirming that ExpressivE combines
the inference capabilities of BoxE (hierarchy) and RotatE (compositional definition).
Additionally, ExpressivE does not only reach similar performances as RotatE and BoxE
if only one of them produces good rankings but even surpasses both of them significantly
on relations such as verb_group, also_see, and hypernym. This gives strong experi-
mental evidence that ExpressivE combines the inference capabilities of functional and
spatial models, even extending them by novel capabilities (such as general composition),
empirically supporting our extensive theoretical results of Section 4.2.
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Relation Name ExpressivE RotatE BoxE
member_meronym 0.233 0.199 0.226
hypernym 0.189 0.162 0.159
has_part 0.198 0.187 0.168
instance_hypernym 0.352 0.326 0.425
synset_domain_topic_of 0.363 0.384 0.323
member_of_domain_usage 0.288 0.333 0.360
member_of_domain_region 0.123 0.188 0.189
also_see 0.649 0.631 0.517
derivationally_related_from 0.956 0.943 0.902
similar_to 1.000 1.000 1.000
verb_group 0.972 0.843 0.876

Table 4.8: Relation-wise MRR comparison of ExpressivE, RotatE, and BoxE on WN18RR.

4.5.4 Cardinality Experiments
This section studies the benchmark performances of ExpressivE and its closest relatives
on WN18RR stratified by the cardinality of each relation, providing empirical evidence
that ExpressivE performs well on 1–1, 1–N, N–1, and N–N relations.

Experiment Setup. Following the procedure of Bordes et al. (2013), we have categorized
the relations of WN18RR into four cardinality classes, specifically 1–1, 1–N, N–1, and
N–N. As in Bordes et al. (2013), we have classified a relation r ∈ R by computing:

• µrt the averaged number of head entities h ∈ E per tail entity t ∈ E, appearing in
a triple r(h, t) of WN18RR.

• µrh the averaged number of tail entities t ∈ E per head entity h ∈ E, appearing in
a triple r(h, t) of WN18RR.

Following the soft classification of Bordes et al. (2013), a relation is:

• 1–1 if µrt ≤ 1.5 and µrh ≤ 1.5

• 1–N if µrt ≤ 1.5 and µrh ≥ 1.5

• N–1 if µrt ≥ 1.5 and µrh ≤ 1.5

• N–N if µrt ≥ 1.5 and µrh ≥ 1.5

Results. Table 4.9 summarizes the performance results of ExpressivE and its closest
spatial relative BoxE and functional relative RotatE on WN18RR, stratified by the
four cardinality classes defined previously. It reveals that ExpressivE almost exclusively
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reaches a competitive or state-of-the-art performance on 1–N, N–1, and N–N relations. In
particular, ExpressivE outperforms both RotatE and BoxE consistently on N–N relations,
which are often considered the most complex relations to capture in KGC with regard to
cardinalities. Thus, Table 4.9 provides empirical results supporting our theoretical claim
that ExpressivE can capture 1–1, 1–N, N–1, and N–N relations well.

Task Predicting Head Predicting Tail
Cardinality 1–1 1–N N–1 N–N 1–1 1–N N–1 N–N
ExpressivE 0.976 0.290 0.105 0.941 0.976 0.141 0.327 0.938
RotatE 0.833 0.294 0.103 0.930 0.875 0.107 0.288 0.925
BoxE 0.877 0.272 0.146 0.883 0.893 0.147 0.246 0.884

Table 4.9: MRR of ExpressivE, RotatE, and BoxE on WN18RR by cardinality class (1–1,
1–N, N–1, N–N). The best results are bold, and the second-best are underlined.

4.5.5 General Composition and Link to Performance Gain
This section provides empirical evidence for the theoretical result of Sections 4.2.6 and
4.2.7 that ExpressivE can capture general composition exactly and exclusively. Even
more, the experiments in this section provide evidence for a direct link between the
support of general composition and ExpressivE’s performance gain on WN18RR. In the
following, we first discuss the details of our experiments’ preparation and setup, followed
by the considered hypotheses and final results.

Rule Identification. Our first goal, to provide empirical evidence for the discussed
points, was to identify rules occurring in WN18RR. To reach this goal, we have analyzed
rules mined with AMIE+ (Galárraga et al., 2015) from WN18RR by Akrami et al. (2020)
that were provided in a GitHub repository2. To identify the most relevant rules, we
have — similar to the discussion of (Galárraga et al., 2013, 2015) — sorted the rules
ρ = φB1 ∧ · · · ∧ φBm ⇒ r(X, Y ) by their head coverage h(ρ), which is formally defined as
(Galárraga et al., 2013):

h(ρ) = |{(x, y) ∈ E2 | r(x, y) ∈ G ∧ ∃z1 . . . zk(φB1(z1, z2) ∈ G ∧ · · · ∧ φBm(zk−1, zk) ∈ G)}|
|{(x, y) ∈ E2 | r(x, y) ∈ G}|

On an intuitive level, the head coverage h(ρ) represents the ratio of true triples implied
by the rule ρ on a given Knowledge Graph (G, E, R).

Rule Selection. To analyze the most relevant rules in the following experiments, we
have selected any rules whose head coverage is greater than 15% (as inspection of the
head coverage of AMIE shows a very low number of inferred triples contained in the
test set below that). From these rules, we have left out any rule with the head relation
_similar_to, as ExpressivE, BoxE, and RotatE already have an MRR of 1 on this relation,

2https://github.com/idirlab/kgcompletion (last visited 07/25/2024)
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thus further stratifying _similar_to’s test triples will not reveal novel information. This
procedure leads to the following set of rules, where relations of the form r−1 depict the
inverse relation of r ∈ R:

S1 := _verb_group(Y, X) ⇒ _verb_group(X, Y )
C2 := _derivationally_related_form(X, Y ) ∧

_derivationally_related_form(Y, Z) ⇒ _verb_group(X, Z)
C3 := _derivationally_related_form(X, Y ) ∧

_derivationally_related_form−1(Y, Z) ⇒ _verb_group(X, Z)
C4 := _derivationally_related_form−1(X, Y ) ∧

_derivationally_related_form(Y, Z) ⇒ _verb_group(X, Z)
C5 := _also_see(X, Y ) ∧ _also_see(Y, Z) ⇒ _also_see(X, Z)
C6 := _also_see(X, Y ) ∧ _also_see−1(Y, Z) ⇒ _also_see(X, Z)
S7 := _also_see(Y, X) ⇒ _also_see(X, Y )
C8 := _hypernym(X, Y ) ∧

_synset_domain_topic_of (Y, Z) ⇒ _synset_domain_topic_of (X, Z)

Experimental Setup. For each of these rules ρ, we have computed all triples that (i)
can be derived by ρ from the data known to our model and (ii) are known to be true
in the KG, yet unseen to our models. Thus, for each rule ρ, we have computed the set
sρ, containing all triples that (i) can be derived with ρ from the training set and (ii) are
contained in the test set of WN18RR. We have used each of the computed sets of triples
sρ to evaluate the performance of ExpressivE, BoxE, and RotatE on the corresponding
rule ρ.

Hypotheses. Note that (as discussed in Section 4.3.1) compositional definition r1(X, Y )∧
r2(Y, Z) ⇔ r3(X, Z) defines the triples of the composite relation r3 completely, whereas
general composition r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) allows r3 to contain more triples
than those that the compositional definition rule can directly infer. Thus, if ExpressivE
captures general composition and if RotatE captures compositional definition, we expect
the following behavior:

• H1. RotatE will perform well solely on relations occurring as the head of maximally
one composition rule, as RotatE solely supports compositional definition.

• H2. ExpressivE will perform well even when a relation is defined by multiple
composition rules and multiple other rules since ExpressivE supports general
composition.

Results. Table 4.10 lists for each rule S1 to C8 the performances of BoxE, RotatE, and
ExpressivE on sρ, where ρ ∈ {S1, . . . , C8} and where Si represents a symmetry rule and
Ci represents a composition rule. Table 4.10 provides evidence for both hypotheses:
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• Evidence for H1. In the case of the relation _synset_domain_topic_of (_syn_dto),
there is only one rule that has _synset_domain_topic_of as its head relation,
specifically the composition rule C8. RotatE achieves comparable performance to
ExpressivE on sC8 as RotatE is capable of defining _synset_domain_topic_of
using compositional definition, providing evidence for H1.

• Evidence for H2. Yet, when a relation is defined via multiple rules, RotatE’s per-
formance decreases drastically on most composition rules compared to ExpressivE’s
performance, as can be seen for the rules C2, C3, C4, and C5, giving evidence for
hypothesis H2.

Head Rel. _verb_group _also_see _syn_dto
Model S1 C2 C3 C4 C5 C6 S7 C8
Base Exp. 1.000 1.000 1.000 1.000 0.818 0.907 0.985 0.621
RotatE 0.865 0.760 0.760 0.760 0.771 0.893 0.975 0.599
BoxE 0.906 0.801 0.806 0.806 0.632 0.645 0.727 0.547

Table 4.10: MRR of ExpressivE, RotatE, and BoxE on WN18RR stratified by rules
S1-C8. Si represents a [S]ymmetry rule, Ci a [C]omposition rule (i ∈ {1, . . . , 8}).

Conclusion. Thus, these experiments empirically support that (i) ExpressivE can
capture general composition, as ExpressivE and RotatE perform as expected by H1 and H2,
i.e., under the assumption that ExpressivE captures general composition, while RotatE
solely captures compositional definition. Furthermore, the experiments support that
(ii) ExpressivE’s ability to capture general composition contributes to the performance
gain on WN18RR, as ExpressivE consistently outperforms RotatE and BoxE on triples
inferred from composition rules.

4.5.6 Multiple Steps of Composition
This section presents empirical results for ExpressivE’s ability to reason over more than
one step of composition rules, formally proven in Section 4.2.8. To evaluate how well
ExpressivE supports more than one step of a composition rule, our first goal was to
identify multi-step rules (i.e., rules that can be “chained” in multiple steps) occurring
in WN18RR. We recall parts of Section 4.5.5 for the self-containedness of this section,
readers who have read that section can skip ahead to the “experimental setup” paragraph.
To reach the goal of identifying multi-step rules occurring in WN18RR, we have analyzed
rules mined with AMIE+ (Galárraga et al., 2015) from WN18RR by Akrami et al. (2020)
that were provided in a GitHub repository3. To identify the most relevant rules, we have —
similar to (Galárraga et al., 2013, 2015) — sorted the rules ρ = φB1∧· · ·∧φBm ⇒ r(X, Y )
by their head coverage h(ρ), which is formally defined as (Galárraga et al., 2013):

3https://github.com/idirlab/kgcompletion (last visited 07/25/2024)
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h(ρ) = |{(x, y) ∈ E2 | r(x, y) ∈ G ∧ ∃z1 . . . zk(φB1(z1, z2) ∈ G ∧ · · · ∧ φBm(zk−1, zk) ∈ G)}|
|{(x, y) ∈ E2 | r(x, y) ∈ G}|

At an intuitive level, the head coverage h(ρ) represents the ratio of true triples implied
by the rule ρ on a given Knowledge Graph (G, E, R).
Next, we present the four multi-step rules with head coverage of at least 15%, as discussed
in Section 4.5.5:

R1 := _hypernym(X, Y ) ∧
_synset_domain_topic_of (Y, Z) ⇒ _synset_domain_topic_of (X, Z)

R2 := _also_see(X, Y ) ∧ _also_see(Y, Z) ⇒ _also_see(X, Z)
R3 := _also_see(X, Y ) ∧ _also_see−1(Y, Z) ⇒ _also_see(X, Z)
R4 := _also_see−1(X, Y ) ∧ _also_see−1(Y, Z) ⇒ _also_see(X, Z)

The relation _also_see−1 of R3 and R4 represents the inverse relation of _also_see.
Experimental Setup. For each of the selected multi-step rules ρ ∈ {R1, R2, R3, R4},
we have generated three datasets, the 1-Step, 2-Steps, and 3-Steps sets. Specifically, we
have generated for each ρ a j-Step(s) set by computing all triples that (i) can be derived
by ρ in j steps from the data known to our model and (ii) are known to be true in
the KG, yet unseen to our model. Thus, we have computed for each ρ a j-Step(s) set,
containing all triples that (i) can be derived with ρ by j applications on the training set
and (ii) are contained in the test set of WN18RR. The performance of ExpressivE on the
computed datasets is summarised in Table 4.11.

1-Step 2-Steps 3-Steps 4-Steps+
R1 0.627 0.621 - -
R2 0.720 0.804 0.818 -
R3 0.768 0.907 - -
R4 0.716 0.922 - -

Table 4.11: ExpressivE’s MRR on WN18RR in dependence on the number of reasoning
steps. Hyphens represent that no new triples can be inferred with additional steps.

Results. We report the performance of at most two steps of R1/R3/R4 as after applying
R1/R3/R4 twice on the training set; no new triples are derived. Similarly, no new triples
are derived after at most three steps of R2 on the training set. We can see that the
performance of ExpressivE increases by a large margin when more than one step of
reasoning is considered, depicted by the performance gain of the 2-Steps and 3-Steps
set over the 1-Step set. Interestingly, a small exception for this is R1, where we see a
slightly worse behavior – inspection of the results shows that this is due to a single triple.
In total, Table 4.11 provides empirical evidence that ExpressivE can capture chained
composition rules and thus perform more than one step of reasoning.
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4.6 Summary
In this chapter, we have reached our first research goal (G1) by introducing ExpressivE, a
gKGE that — as required by G1 — (i) captures all core inference rules, including hierarchy
and general composition, which are fundamental rules for representing data properties in
the DB and SW fields. Thereby, our model overcomes the reasoning divide, strengthening
the connection between ML-, DB- and SW-based KG research. Additionally, ExpressivE
(ii) represents inference rules through spatial relations of hyper-parallelograms, offering
an intuitive and consistent geometric interpretation of ExpressivE embeddings and their
captured rules, (iii) is fully expressive, and (iv) reaches competitive performance on
FB15k-237, even outperforming any competing gKGE significantly on WN18RR.
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CHAPTER 5
Scalability Divide

As discussed in Section 1.2, recall that most KGEs suffer from at least one of the
following efficiency problems: They rely either on (i) a high embedding dimensionality to
reach state-of-the-art KGC performance, limiting their scalability or (ii) a more complex
embedding space, typically requiring computationally more costly operations or a higher
number of parameters, increasing their space and time requirements.

Facing these challenges, this chapter designs a Euclidean gKGE that performs well
on KGC with low-dimensional embeddings, reducing its storage space, inference, and
training times and, thereby reaching G2 (defined in Section 1.2). To reach this goal, we
perform simple yet impactful enhancements on the parameters and distance function of
ExpressivE — a Euclidean gKGE that has shown state-of-the-art performance on KGC
with high-dimensional embeddings (see Chapter 4 for details) — raising its efficiency.
Based on our ExpressivE model (introduced in Chapter 4):

• We propose the lightweight SpeedE model that halves ExpressivE’s inference time
and enhances ExpressivE’s distance function, significantly improving its KGC
performance.

• We evaluate SpeedE on the three standard KGC benchmarks, WN18RR, FB15k-
237, and YAGO3-10, finding that it is competitive with state-of-the-art gKGEs on
FB15k-237 and even outperforms them significantly on WN18RR and the large
YAGO3-10 benchmark.

• We find that SpeedE preserves ExpressivE’s KGC performance on WN18RR with
much fewer parameters, in particular, requiring solely a fourth of the number of
parameters of ExpressivE and solely a fifth of its training time to reach the same
KGC performance (as we shall see in Section 5.3.3).
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In total, we reach G2 by proposing the highly scalable SpeedE model, which reaches
strong KGC performance using low-dimensional embeddings while maintaining the low
space and time requirements of Euclidean gKGEs.

Organization. This chapter contains material from the following constituent papers of
this dissertation (Pavlović and Sallinger, 2023a,b, 2024a,b,c). Based on these publications,
Section 5.1 disassembles ExpressivE’s components to find a simpler model that still
supports the core inference rules (which are defined in Chapter 2) and continues by
building on these results to introduce the lightweight SpeedE model. Before proceeding
to empirical results, Section 5.2 discusses the experimental setup, listing details on
reproducing our results, SpeedE’s implementation, training setup, evaluation protocol,
and estimated CO2 emissions. Next, Section 5.3 empirically evaluates SpeedE’s KGC
performance, studies its space and time efficiency, and analyzes the relevance of SpeedE’s
novel distance slope parameters by performing an ablation study. Section 5.4 summarizes
all of our results.

5.1 The Methodology
Our goal is to design a KGE that addresses the efficiency problems raised by the use of (1)
complex embedding spaces and (2) high-dimensional embeddings while (3) allowing for a
geometric interpretation of its embeddings (Abboud et al., 2020; Pavlović and Sallinger,
2023b). We reach this goal by designing a KGC model that (1) is based in the Euclidean
space, (2) reaches high KGC performance under low-dimensional conditions while at the
same time supports all core inference rules, and (3) is a gKGE.

Toward our goal, Section 5.1.1 analyzes the ExpressivE model, finding that it uses
redundant parameters that negatively affect its inference time. By redundant parameters,
we mean parameters that can be removed while preserving the support of the core
inference rules. Facing this problem, we propose the lightweight Min_SpeedE model that
removes these redundancies, halving ExpressivE’s inference time (Section 5.1.1).

However, Min_SpeedE loses the ability to adjust its distance function, which is essential
for representing hierarchical relations (as empirically verified in Section 5.3). Thus,
Section 5.1.2 introduces SpeedE, a model that enhances Min_SpeedE by adding care-
fully designed parameters for flexibly adjusting the distance function while preserving
Min_SpeedE’s low inference times. Since our formal definitions (Section 5.1.3) and proofs
(Section 5.1.4) are quite technical and long, we provide them at the end of this section.

5.1.1 Min_SpeedE
To design Min_SpeedE, let us first analyze ExpressivE’s parameters, particularly its
width vector. Adjusting ExpressivE’s width vector wi has two competing effects: (1) it
alters the distance function’s slopes (by di in Equation 4.3), and (2) it changes which
entity pairs are inside the relation hyper-parallelogram (by wi in the inequality condition
τri(h,t) ⪯ wi of Equation 4.3). To increase ExpressivE’s time efficiency substantially, we
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introduce Min_SpeedE, a constrained version of ExpressivE that replaces the relation-
wise width vectors wi ∈ (R≥0)2d by a constant value w ∈ R>0 - that is shared across all
relations ri ∈ R. The following paragraphs theoretically analyze Min_SpeedE’s inference
capabilities and time efficiency.

Inference Capabilities. We find that Min_SpeedE surprisingly still captures the core
inference rules and prove this in Theorem 5.1.1. We give the full proof in Section 5.1.4
and discuss one of the most interesting parts here, namely, hierarchy rules.

Theorem 5.1.1. Min_SpeedE captures the core inference rules, i.e., symmetry, anti-
symmetry, inversion, general composition, hierarchy, intersection, and mutual exclusion.

Hierarchy rules. Recall from Section 4.2.2 that an ExpressivE model captures a
hierarchy rule r1(X, Y ) ⇒ r2(X, Y ) iff r1’s hyper-parallelogram is a proper subset of
r2’s. Thus, one would expect that ExpressivE’s ability to capture hierarchy rules is
lost in Min_SpeedE, as the width parameter w ∈ R>0 (responsible for adjusting a
hyper-parallelogram’s size) is shared across all hyper-parallelograms. However, the
actual size of a hyper-parallelogram does not solely depend on its width but also on its
slope parameter si ∈ R2d, allowing one hyper-parallelogram H1 to properly subsume
another H2 even when they share the same width parameter w. We have visualized two
hyper-parallelograms H2 ⊂ H1 with the same width parameter w in Figure 5.1.

Intuition. Min_SpeedE can capture H2 ⊂ H1 as w (depicted with orange dotted
lines) represents the intersection of the bands (depicted with blue and green dotted
lines), expanded from the hyper-parallelogram, and the axis of the band’s corresponding
dimension. Thus, a hyper-parallelogram’s actual size can be adapted by solely changing
its slopes, removing the need for a learnable width parameter per dimension and relation.

Inference Time. The most costly operations during inference are operations on vectors.
Thus, we can estimate ExpressivE’s and Min_SpeedE’s inference time by counting the
number of vector operations necessary for computing a triple’s score: By reducing the
width vector to a scalar, many operations reduce from a vector to a scalar operation.
In particular, the calculation of di and ki uses solely scalars in Min_SpeedE instead
of vectors (c.f., Section 4.1). Thus, ExpressivE needs 15, whereas Min_SpeedE needs
solely 8 vector operations to compute a triple’s score. This corresponds to Min_SpeedE
using approximately half the number of vector operations of ExpressivE for computing a
triple’s score, thus roughly halving ExpressivE’s inference time, which aligns with Section
5.3.3’s empirical results.

Key Insights. Fixing the width to a constant value w stops Min_SpeedE from adjusting
the distance function’s slopes. As we will empirically see in Section 5.3, the effect of this is
a severely degraded KGC performance on hierarchical relations. Introducing independent
parameters for adjusting the distance function’s slopes solves this problem. However,
these parameters must be designed carefully to (1) preserve ExpressivE’s geometric
interpretation and (2) retain the reduced inference time provided by Min_SpeedE. Each
of these aspects will be covered in detail in the next section.
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Figure 5.1: Representation of the two-dimensional relation hyper-parallelograms H1 and
H2, such that H1 subsumes H2 and such that they share the same width parameter w
in each dimension.

5.1.2 SpeedE
SpeedE further enhances Min_SpeedE by adding the following two carefully designed
scalar parameters to each relation embedding: (1) the inside distance slope sι

i ∈ [0, 1] and
(2) the outside distance slope so

i with sι
i ≤ so

i . Let dι
i := 2sι

iw + 1, do
i := 2so

i w + 1, and
ki := do

i (do
i − 1)/2 − (dι

i − 1)/(2dι
i), then SpeedE defines the following distance function:

D(h, ri, t) =
�

τri(h,t) ⊘ dι
i, if τri(h,t) ⪯ w

τri(h,t) ⊙ do
i − ki, otherwise

(5.1)

Again, the distance function is separated into two piece-wise linear functions: (1) the
inside distance Dι(h, ri, t) = τri(h,t) ⊘ dι

i for triples that are captured to be true (i.e.,
τri(h,t) ⪯ w) and (2) the outside distance Do(h, ri, t) = τri(h,t) ⊙ do

i − ki for triples that
are captured to be false (i.e., τri(h,t) ̸⪯ w). Based on this function, SpeedE defines the
score as s(h, ri, t) =−||D(h, ri, t)||2.

Geometric Interpretation. The intuition of sι
i and so

i is that they control the slopes
of the respective linear inside and outside distance functions. However, without any
constraints on sι

i and so
i , SpeedE would lose ExpressivE’s intuitive geometric interpre-

tation (cf., Section 4.2.2) as sι
i and so

i could be chosen in such a way that distances
of embeddings within the hyper-parallelogram are larger than those outside. By con-
straining these parameters to sι

i ∈ [0, 1] and sι
i ≤ so

i , we preserve lower distances within
hyper-parallelograms than outside and, thereby, the intuitive geometric interpretation.
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Inference Time. The additional introduction of two scalar distance slope parameters
sι

i, so
i ∈ R per relation ri does not change the number of vector operations necessary

for computing a triple’s score and, thus, does not significantly affect SpeedE’s inference
time. Therefore, we expect that SpeedE retains the time efficiency of Min_SpeedE, as
empirically validated in Section 5.3.3.

With this, we have finished our introduction of SpeedE. What remains to be shown
are the formal definitions of SpeedE (Section 5.1.3) and the proofs of its theoretical
capabilities (Section 5.1.4).

5.1.3 Formal Definitions

In this section, we introduce the formal semantics of SpeedE models. Specifically, this
section slightly adapts the notions of capturing a rule in an ExpressivE model (formally
defined in Section 4.2.3) for the SpeedE model. For the convenience of the reader and
to give a quick reference to fall back in this chapter, we provide here the full formal
definitions for SpeedE. In what follows, we employ the same formal definition for a
Knowledge Graph (G, E, R) and the same notations as introduced in Section 4.2.3.

SpeedE Model. We define a SpeedE model as a tuple M+ = (ϵ, σ, w, ρ), where
ϵ ⊂ 2Rd is the set of entity embeddings, σ ⊂ 2Rd is the set of center embeddings, w ∈ R>0
represents the width constant, and ρ ⊂ 2Rd is the set of slope vectors.

Linking Embeddings to KGs. A SpeedE model M+ = (ϵ, σ, w, ρ) and a KG
(G, E, R) are linked via the following assignment functions: We employ ExpressivE’s
entity assignment function fe : E → ϵ and virtual assignment function fv : E ×E → R2d

directly for the SpeedE model (see Section 4.2.3 for details). For completeness, we
recall the definitions of fe and fv briefly. The entity assignment function fe assigns to
each entity eh ∈ E an entity embedding eh ∈ ϵ. Based on fe, the virtual assignment
function fv defines for any pair of entities (eh, et) ∈ E a virtual entity pair embedding
fv(eh, et) = (fe(eh)||fe(et)), where || represents concatenation. Next, we define SpeedE’s
relation assignment function f+

h (ri) : R → R2d × R × R2d as f+
h (ri) = (ci, w, si), where

ci = (ch
i ||ct

i) with ch
i , ct

i ∈ σ and where si = (st
i||sh

i ) with st
i, sh

i ∈ ρ.

Model Configuration. We call a SpeedE model M+ together with a concrete relation
assignment function f+

h a relation configuration m+
h = (M+, f+

h ). If m+
h additionally

has a virtual assignment function fv, we call it a complete model configuration m+ =
(M+, f+

h , fv).

Definition of Truth. A triple ri(eh, et) is captured to be true in some m+, with ri ∈ R
and eh, et ∈ E iff Inequality 5.2 holds for the assigned embeddings of h, t, and r. This
means more precisely that Inequality 5.2 needs to hold for fv(eh, et) = (fe(eh)||fe(et)) =
(eh, et) and f+

h (ri) = (ci, w, si).

(eht − ci − si ⊙ eth)|.| ⪯ w, (5.2)
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Intuition. At an intuitive level, a triple ri(eh, et) is captured to be true by some complete
SpeedE model configuration m+ iff the virtual pair embedding fv(eh, et) of entities eh

and et lies within the hyper-parallelogram of relation ri defined by f+
h (ri).

Simplifying Notations. To simplify the upcoming proofs, we denote with fv(eh, et) ∈
f+

h (ri) that the virtual pair embedding fv(eh, et) of an entity pair (eh, et) ∈ E × E lies
within the hyper-parallelogram f+

h (ri) of some relation ri ∈ R in the virtual triple space.
Accordingly, for sets of virtual pair embeddings P := {fv(eh1 , et1), . . . , fv(ehn , etn)}, we
denote with P ⊆ f+

h (ri) that all virtual pair embeddings of P lie within the hyper-
parallelogram of the relation ri. Furthermore, we denote with fv(eh, et) ̸∈ f+

h (ri) that a
virtual pair embedding fv(eh, et) does not lie within the hyper-parallelogram of a relation
ri and with P ̸⊆ f+

h (ri) we denote that an entire set of virtual pair embeddings P does
not lie within the hyper-parallelogram of a relation ri.

Capturing Inference rules. Based on the previous definitions, we define capturing
rules formally: A relation configuration m+

h captures a rule ψ exactly if for any ground
rule φB1 ∧ · · · ∧ φBm ⇒ φH within the deductive closure of ψ and for any instantiation of
fe and fv the following conditions hold:

• if φH is a triple and if m+
h captures the body triples to be true — i.e., fv(args(φB1)) ∈

f+
h (rel(φB1)), . . . , fv(args(φBm)) ∈ f+

h (rel(φBm)) — then m+
h also captures the

head triple to be true — i.e., fv(args(φH)) ∈ f+
h (rel(φH)).

• if φH = ⊥, then m+
h captures at least one of the body triples to be false — i.e.,

there is some j ∈ {1, . . . , m} such that fv(args(φBi)) ̸∈ f+
h (rel(φBi)).

where args() is the function that returns the arguments of a triple, and rel() is the function
that returns the relation of the triple. Furthermore, a relation configuration m+

h captures
a rule ψ exactly and exclusively if (1) m+

h exactly captures ψ and (2) m+
h does not capture

any positive rule φ (i.e., φ ∈ {symmetry, inversion, hierarchy, intersection, generalcomposition})
such that ψ ̸|= φ except where the body of φ is not satisfied over m+

h .

These formal definitions for capturing rules in SpeedE models are in accordance with
the literature (Abboud et al., 2020; Pavlović and Sallinger, 2023b) and follow the same
intuition as their counterparts for ExpressivE discussed in Section 4.2.3.

5.1.4 Proof of Theorem 5.1.1
To prove that SpeedE captures the core inference rules exactly and exclusively (Theo-
rem 5.1.1), let us first recall Section 4.2.6’s formal definition of these rules (cf., Defini-
tion 4.2.8). For the convenience of the reader and to give a quick reference, we restate
the definitions of the core inference patterns below (Definition 5.1.2).

Definition 5.1.2. (Abboud et al., 2020; Pavlović and Sallinger, 2023b) Let the core
inference rules be defined as follows:
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• rules of the form r1(X, Y ) ⇒ r1(Y, X) with r1 ∈ R are called symmetry rules.

• rules of the form r1(X, Y ) ∧ r1(Y, X) ⇒ ⊥ with r1 ∈ R are called anti-symmetry
rules.

• rules of the form r1(X, Y ) ⇔ r2(Y, X) with r1, r2 ∈ R and r1 ̸= r2 are called
inversion rules.

• rules of the form r1(X, Y )∧r2(Y, Z) ⇒ r3(X, Z) with r1, r2, r3 ∈ R and r1 ̸= r2 ̸= r3
are called general composition rules.

• rules of the form r1(X, Y ) ⇒ r2(X, Y ) with r1, r2 ∈ R and r1 ̸= r2 are called
hierarchy rules.

• rules of the form r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y ) with r1, r2, r3 ∈ R and r1 ̸= r2 ≠
r3 are called intersection rules.

• rules of the form r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ with r1, r2 ∈ R and r1 ̸= r2 are called
mutual exclusion rules.

Based on these definitions, we will prove Theorem 5.1.1, i.e., that SpeedE captures the
core inference rules exactly and exclusively. To prove the theorem, we refer to the relevant
propositions of ExpressivE proven in Chapter 4 and adapt them to SpeedE. For each of
them, we give proofs, which in some situations follow from the ones in Chapter 4, and in
other situations are entirely new constructions.

The key change of SpeedE that will be of our concern in the following proofs is fixing
the width to a constant value, as this will require new proofs for some of the properties.
Observe that SpeedE additionally changes the distance function of ExpressivE. However,
this does not affect ExpressivE’s inference capabilities, i.e., which inference rules can be
captured. Careful inspection of the proofs of ExpressivE’s inference capabilities given
in Chapter 4 shows that the only property required of the distance function is that
scores within the hyper-parallelogram are larger than those outside. As the newly defined
distance function of SpeedE keeps this property, the change of distance function between
the two models does not affect the proofs of the inference capabilities given in Chapter 4.
Hence, the same proof argument can be applied.

The other observation that we will make in general before giving the specific proofs is that
the “exactly” part, proven for ExpressivE in Propositions 4.2.9–4.2.15, of “exactly and
exclusively” capturing rules is not affected by the changes in the SpeedE model. These
proofs are all based on embedding pairs of entities as points in the virtual triple space
and relations as hyper-parallelograms, which is still the case in SpeedE. Thus, we now
proceed to prove that SpeedE captures the core inference rules exactly and exclusively.

Proposition 5.1.3 (Inversion (Exactly and Exclusively)). Let m+
h = (M+, f+

h )
be a relation configuration and r1, r2 ∈ R be relations where r1(X, Y ) ⇔ r2(Y, X) holds
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for any entities X, Y ∈ E. Then m+
h can capture r1(X, Y ) ⇔ r2(Y, X) exactly and

exclusively.

Proof. The proof of this property in Proposition 4.2.20 is based on a key assumption,
namely that there is an mh such that fh(r1) is the mirror image of fh(r2) with
fh(r1) ̸= fh(r2). This is straightforward in ExpressivE but more complex in SpeedE.
We will show this next.

Let us first observe that in SpeedE, it is not trivially given that there is an m+
h =

(M+, f+
h ) such that f+

h (r1) is the mirror image of f+
h (r2) with f+

h (r1) ̸= f+
h (r2), as

fh(ri)’s width embedding wi has been replaced by a shared width constant w in f+
h (ri)

with j ∈ {1, 2}. Thus, what needs to be shown is that there is a relation configuration
m+

h such that f+
h (r1) is the mirror image of f+

h (r2) with f+
h (r1) ̸= f+

h (r2), as then
the original proof of ExpressivE can be directly applied to prove Proposition 5.1.3’s
claim, i.e., that m+

h can capture r1(X, Y ) ⇔ r2(Y, X) exactly and exclusively. Now, it is
interesting to see that fixing the width parameter in SpeedE as opposed to ExpressivE
not only changes the model but actually allows a quite elegant construction witnessing
this property.

Let us now give this construction, thereby showing the claim. Specifically, let f+
h (r1) =

(c1, w, s1) with c1 = (ch
1 ||ct

1) ∈ R2d, w ∈ R>0, and s1 = (st
1||sh

1) ∈ R2d. Furthermore,
let f+

h (r2) = (c2, w, s2) with c2 = (ct
1||ch

1) ∈ R2d, w ∈ R>0, and s2 = (sh
1 ||st

1) ∈ R2d.
We will, in the following, show that the constructed f+

h (r2) is the mirror image of
f+

h (r1) to prove our claim. Let X, Y ∈ E be arbitrary entities and let fv be an arbitrary
virtual assignment function defined over (X, Y ) and (Y, X) with fv(X, Y ) = exy and
fv(Y, X) = eyx. Then by Inequality 5.2, a triple r1(X, Y ) is captured to be true by
m+ = (M+, f+

h , fv) if Inequality 5.3 is satisfied.

(exy − c1 − s1 ⊙ eyx)|.| ⪯ w (5.3)
(exy − (ch

1 ||ct
1) − (st

1||sh
1) ⊙ eyx)|.| ⪯ w (5.4)

(eyx − (ct
1||ch

1) − (sh
1 ||st

1) ⊙ exy)|.| ⪯ w (5.5)
(eyx − c2 − s2 ⊙ exy)|.| ⪯ w (5.6)

First, we replace c1 and s1 with their definitions based on ch
1 , ct

1, sh
1 , and st

1, retrieving
Inequality 5.4. Since Inequality 5.4 is element-wise, one can equivalently reformulate it
by arbitrarily exchanging its dimensions. Using this insight, we can replace the head and
tail dimensions for each embedding, thereby obtaining Inequality 5.5. Finally, by our
construction of f+

h (r2), we have that c2 = (ct
1||ch

1) and s2 = (sh
1 ||st

1). We substitute
these equations into Inequality 5.5, thereby obtaining Inequality 5.6. Now, Inequality 5.6
states by the definition of a triple’s truth (i.e., Inequality 5.2) that r2(Y, X) is captured
by m+

h . Since Inequalities 5.3–5.6 are all equivalent, we have shown that f+
h (r1) is the

mirror image of f+
h (r2). Since, it is now easy to see that an m+

h exists such that f+
h (r1)
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is the mirror image of f+
h (r2) with f+

h (r1) ̸= f+
h (r2), the proof of Proposition 4.2.20

can be directly applied to SpeedE. Thus, we have proven Proposition 5.1.3, i.e., that m+
h

can capture r1(X, Y ) ⇔ r2(Y, X) exactly and exclusively.

ch st ct sh

r1 −2.5 0.5 1.5 0
r2 1 −2 4.5 2

Table 5.1: Relation embeddings of a relation configuration m+
h that captures hierarchy

(i.e., r1(X, Y ) ⇒ r2(X, Y )) exactly and exclusively using width w = 1.

Proposition 5.1.4 (Hierarchy (Exactly and Exclusively)). Let m+
h = (M+, f+

h )
be a relation configuration and r1, r2 ∈ R be relations where r1(X, Y ) ⇒ r2(X, Y ) holds
for any entities X, Y ∈ E. Then m+

h can capture r1(X, Y ) ⇒ r2(X, Y ) exactly and
exclusively.

Proof. The proof of this property in Proposition 4.2.21 is based on the key assumption that
there is an mh such that fh(r1) ⊂ fh(r2) with fh(r1) ̸= fh(r2). This is straightforward
in ExpressivE but much more complex in SpeedE. We will show this next.

Let us first observe that in SpeedE, it is not trivially given that there is an m+
h =

(M+, f+
h ) such that f+

h (r1) ⊂ f+
h (r2) with f+

h (r1) ̸= f+
h (r2), as fh(ri)’s width

embedding wi has been replaced by a shared width constant w in f+
h (ri) with j ∈ {1, 2}.

Thus, what needs to be shown is that there is a relation configuration m+
h such that

f+
h (r1) ⊂ f+

h (r2) with f+
h (r1) ̸= f+

h (r2), as then the original proof of ExpressivE
can be directly applied to prove Proposition 5.1.4’s claim, i.e., that m+

h can capture
r1(X, Y ) ⇒ r2(X, Y ) exactly and exclusively. In the following, we construct such a relation
configuration m+

h = (M+, f+
h ), where f+

h (r1) ⊂ f+
h (r2) with f+

h (r1) ̸= f+
h (r2) to

prove the claim of Proposition 5.1.4:

Figure 5.1 (given in Section 5.1.1) visualizes the relation configuration m+
h = (M+, f+

h )
provided in Table 5.1. As can be easily seen in Figure 5.1, m+

h captures f+
h (r1) ⊂ f+

h (r2)
with f+

h (r1) ̸= f+
h (r2). Thus, we have proven Proposition 5.1.4, as (1) we have shown

the existence of an m+
h that captures f+

h (r1) ⊂ f+
h (r2) with f+

h (r1) ̸= f+
h (r2) and

(2) the proof of Proposition 4.2.21 can be directly applied to SpeedE since an m+
h exists

such that f+
h (r1) ⊂ f+

h (r2) with f+
h (r1) ̸= f+

h (r2).

Proposition 5.1.5 (Intersection (Exactly and Exclusively)). Let m+
h = (M+, f+

h )
be a relation configuration and r1, r2, r3 ∈ R be relations where r1(X, Y ) ∧ r2(X, Y ) ⇒
r3(X, Y ) holds for any entities X, Y ∈ E. Then m+

h can capture r1(X, Y ) ∧ r2(X, Y ) ⇒
r3(X, Y ) exactly and exclusively.

Proof Sketch. This is similar in construction to the previous proof. Hence, we only
give a proof sketch for ease of readability. To prove Proposition 5.1.5, observe that in
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ch st ct sh

r1 −3.75 0.5 1 0
r2 1 −2 5 2
r3 −3.5 0.5 0.5 −1

Table 5.2: Relation embeddings of a relation configuration m+
h that captures intersection

(i.e., r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y )) exactly and exclusively using width w = 1.

Figure 5.2: Relation embeddings of a relation configuration m+
h that captures intersection

(i.e., r1(X, Y ) ∧ r2(X, Y ) ⇒ r3(X, Y )) exactly and exclusively using width w = 1.

Proposition 4.2.22, an ExpressivE relation configuration mh with several different width
embeddings is constructed. However, the key observation we will make is that choosing
the width embeddings differently is not necessary. In fact, an interested reader inspecting
the original proof can obtain a proof applicable to SpeedE by following the proof of
Proposition 4.2.22 analogously for the SpeedE relation configuration m+

h described
in Table 5.2 and visualized by Figure 5.2. Thus, the proof for Proposition 5.1.5 is
straightforward given m+

h defined in Table 5.2 and Proposition 4.2.22.

Proposition 5.1.6 (General Composition (Exactly and Exclusively)). Let r1, r2, r3 ∈
R be relations and let m+

h = (M+, f+
h ) be a relation configuration, where f+

h is defined
over r1, r2, and r3. Furthermore, let r3 be the composite relation of r1 and r2, i.e.,
r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) holds for all entities X, Y, Z ∈ E. Then m+

h can capture
r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z) exactly and exclusively.

Proof Sketch. This is similar in construction to the proof of Proposition 5.1.4. Hence, we
only give a proof sketch for ease of readability. To prove Proposition 5.1.6, observe that in
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ch st ct sh

r1 −7 3 5 1
r2 −7.5 1 2 3
r3 −19.5 2 13 2

Table 5.3: Relation embeddings of a relation configuration m+
h that captures general

composition (i.e., r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z)) exactly and exclusively using width
w = 1.

Figure 5.3: Relation embeddings of a relation configuration m+
h that captures general

composition (i.e., r1(X, Y ) ∧ r2(Y, Z) ⇒ r3(X, Z)) exactly and exclusively using width
w = 1.

Proposition 4.2.23, an ExpressivE relation configuration mh with several different width
embeddings is constructed. However, choosing the width embeddings differently is not
necessary. In fact, an interested reader inspecting the original proof can obtain a proof
applicable to SpeedE by following the proof of Proposition 4.2.23 analogously for the
SpeedE relation configuration m+

h described in Table 5.3 and visualized by Figure 5.3.
Thus, the proof for Proposition 5.1.6 is straightforward given m+

h defined in Table 5.3
and Proposition 4.2.23.

Proposition 5.1.7 (Symmetry (Exactly and Exclusively)). Let m+
h = (M+, f+

h )
be a relation configuration and r1 ∈ R be a symmetric relation, i.e., r1(X, Y ) ⇒ r1(Y, X)
holds for any entities X, Y ∈ E. Then m+

h can capture r1(X, Y ) ⇒ r1(Y, X) exactly and
exclusively.
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Proposition 5.1.8 (Anti-Symmetry (Exactly and Exclusively)). Let m+
h =

(M+, f+
h ) be a relation configuration and r1 ∈ R be an anti-symmetric relation, i.e.,

r1(X, Y ) ∧ r1(Y, X) ⇒ ⊥ holds for any entities X, Y ∈ E. Then m+
h can capture

r1(X, Y ) ∧ r1(Y, X) ⇒ ⊥ exactly and exclusively.

The proofs for Proposition 5.1.7–5.1.8 are straightforward and work analogously to the
proofs of Propositions 4.2.18 and 4.2.19. This is the case, as (1) any of these rules contain
at most one relation, (2) thus we solely need to show that no unwanted rules over at most
one relation are captured, as any considered rule over more than one relation (precisely
inversion, hierarchy, intersection, and general composition) requires by Definition 5.1.2
at least two or three distinct relations and thus is not applicable, and (3) it is easy to
see that, for instance, a relation hyper-parallelogram can be symmetric without being
anti-symmetric, or vice versa (i.e., without capturing any unwanted rule).

Proposition 5.1.9 (Mutual Exclusion (Exactly and Exclusively)). Let m+
h =

(M+, f+
h ) be a relation configuration and r1, r2 ∈ R be mutually exclusive relations,

i.e., r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ holds for any entities X, Y ∈ E. Then m+
h can capture

r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ exactly and exclusively.

The proof for Proposition 5.1.9 is trivial, as it is straightforward to see that (1) there is
an m+

h = (M+, f+
h ) such that f+

h (r1) ∩ f+
h (r2) = ∅, thereby m+

h captures r1(X, Y ) ∧
r2(X, Y ) ⇒ ⊥ exactly, (2) neither f+

h (r1) nor f+
h (r2) need to be symmetric, thereby no

unwanted symmetry rule is captured, (3) f+
h (r1) does not need to be the mirror image

of f+
h (r2), thus no unwanted inversion rule is captured, and finally (4) since f+

h (r1)
and f+

h (r2) are disjoint, neither f+
h (r1) can subsume f+

h (r2) nor vice versa, thus no
unwanted hierarchy rule is captured. Thus by Points 1–4, we have shown that m+

h

captures r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ exactly and that it does not capture any unwanted
positive rule that is applicable, i.e., requires at most two different relations (symmetry,
inversion, and hierarchy). Thus, we have shown Proposition 5.1.9, i.e., that m+

h can
capture r1(X, Y ) ∧ r2(X, Y ) ⇒ ⊥ exactly and exclusively.

Finally, by Propositions 5.1.3–5.1.9, we have shown Theorem 5.1.1, i.e., that SpeedE
captures all core inference rules exactly and exclusively.

5.2 Experimental Setup Details
This section discusses our experiment design to establish the basis for the upcoming empir-
ical results. In particular, this section presents the concrete experimental setup, including
details of the implementation, used hardware, learning setup, chosen hyperparameters,
and CO2 emissions.

Implementation Details. As for ExpressivE in Chapter 4, we have implemented our
gKGE using PyKEEN 1.7 (Ali et al., 2021), a Python library that runs under the MIT
license and offers support for numerous benchmarks and gKGEs. In doing so, we facilitate
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the comfortable reuse of SpeedE for upcoming benchmarks and applications. To ease
reproducing our findings, we provide SpeedE’s source code in a public GitHub repository1

together with a ReadMe.md file stating library dependencies and running instructions.

Training Setup. Following our approach in Chapter 4, we train SpeedE and ExpressivE
for up to 1000 epochs using gradient descent and the Adam optimizer (Kingma and Ba,
2015) and stop the training if the validation H@10 score does not increase by minimally
0.5% for WN18RR, YAGO3-10, and 1% for FB15k-237 after 100 epochs. We average the
experimental results over three runs on each benchmark to handle marginal performance
fluctuations. We have trained each model on one of four GeForce RTX 2080 Ti GPUs
of our internal cluster. In particular, during the training phase, we optimize the self-
adversarial negative sampling loss (Sun et al., 2019) using the Adam optimizer (Kingma
and Ba, 2015). Following our approach in Chapter 4, we train SpeedE and ExpressivE
for up to 1000 epochs using gradient descent and the Adam optimizer (Kingma and Ba,
2015) and stop the training early if after 100 epochs the validation H@10 score does not
rise by minimally 0.5% for WN18RR and YAGO3-10, and 1% for FB15k-237. Following
the procedure of Chami et al. (2020), we employ the standard augmentation protocol
of Lacroix et al. (2018), adding inverse relations to the benchmarks. Any experiment
was run three times to average over light performance variations. We will discuss the
optimization of hyperparameters in the following paragraph.

Hyperparameter Optimization. Following similar optimization principles as Balazevic
et al. (2019a); Chami et al. (2020), and our approach in Chapter 4, we manually tuned the
following hyperparameters within the listed ranges: (1) the learning rate λ ∈ {b∗10−c | b ∈
{1, 2, 5} ∧ c ∈ {2, 3, 4, 5, 6}}, (2) the negative sample size n ∈ {100, 150, 200, 250}, (3) the
loss margin γ ∈ {2, 3, 4, 5, 6}, (4) the adversarial temperature α ∈ {1, 2, 3, 4}, (5) the batch
size b ∈ {100, 250, 500, 1000, 2000}, and (6) constraining the distance slope parameters
to be equal — i.e., sι

i = so
i for each relation ri ∈ R — or not EqDS ∈ {true, false}.

Following the literature (Chami et al., 2020; Lu and Hu, 2020), we used for the large
YAGO3-10 benchmark a wider range for the negative sampling size n, in particular
n ∈ {100, 200, 500, 1000, 2000}. Similar to Lu and Hu (2020), we also increased the range
for margins γ to include 50 and 100 for YAGO3-10. In accordance with our approach in
Chapter 4, we chose self-adversarial negative sampling (Sun et al., 2019) for generating
negative triples. We list the best hyperparameters for SpeedE split by benchmark and
embedding dimensionality in Table 5.4. Following Chami et al. (2020), we used one
parameter set for any low-dimensional experiment (i.e., d ≤ 50) and one parameter set for
any high-dimensional experiment (i.e., d > 50). Furthermore, for ExpressivE, we used the
hyperparameters of Table 4.4 (in Chapter 4) under high-dimensional conditions, as they
correspond to the best-published results for ExpressivE (Pavlović and Sallinger, 2023b).
For low-dimensional conditions, ExpressivE’s best hyperparameter setting was unknown.
Thus, we optimized ExpressivE’s hyperparameters manually, finding the hyperparameters
of Table 5.5 to produce the best KGC results for ExpressivE under low dimensionalities.
For RotH, we used the hyperparameters of Chami et al. (2020), as they report the

1https://github.com/AleksVap/SpeedE
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best-published results for RotH. Finally, we used the same hyperparameters for each
of SpeedE’s model variants (Min_SpeedE, Diff_SpeedE, and Eq_SpeedE, which are
introduced in Sections 5.1 and 5.3) to compare SpeedE to them directly.

Dataset Embedding
Dimensionality Margin Learning

Rate
Adversarial

Temperature
Negative

Sample Size
Batch
Size EqDS

WN18RR d ≤ 50 3 5 ∗ 10−3 2 200 250 false
WN18RR d > 50 3 1 ∗ 10−3 2 200 250 true
FB15k-237 d ≤ 50 2 5 ∗ 10−4 4 250 100 false
FB15k-237 d > 50 4 1 ∗ 10−4 4 150 1000 false
YAGO3-10 d ≤ 50 100 1 ∗ 10−2 2 2000 2000 false

Table 5.4: Hyperparameters of SpeedE models that achieve the best performance on
WN18RR, FB15k-237, and YAGO3-10 split by low-dimensional (i.e., d ≤ 50) and high-
dimensional setting (i.e., d > 50).

Dataset Embedding
Dimensionality Margin Learning

Rate
Adversarial

Temperature
Negative

Sample Size
Batch
Size

WN18RR d ≤ 50 2 5 ∗ 10−3 3 200 250
FB15k-237 d ≤ 50 2 5 ∗ 10−4 4 250 100
YAGO3-10 d ≤ 50 100 1 ∗ 10−2 2 2000 2000

Table 5.5: Hyperparameters of ExpressivE that achieve the best performance on WN18RR,
FB15k-237, and YAGO3-10 under low-dimensional conditions (i.e., d ≤ 50).

Evaluation. In all of our experiments we: (i) employ the standard benchmarks, (ii)
follow the standard evaluation protocol, and (iii) presents the standard metrics (filtered
MRR and H@k) for KGC. Each of these parts is described in detail in Section 2.1.1.

CO2 Emissions. The sum of all reported experiments took less than 150 GPU hours.
This corresponds to an estimate of approximately 16.20kg CO2-eq, based on the OECD’s
2014 carbon efficiency average of 0.432kg/kWh and the usage of an RTX 2080 Ti
on private infrastructure. We computed these estimates using the Machine Learning
Emissions Calculator (Lacoste et al., 2019).

5.3 Experiments
This section empirically evaluates SpeedE. Section 5.3.1 briefly describes the selected
benchmarks and baseline models. Section 5.3.2 studies SpeedE’s KGC performance, find-
ing that it is competitive with state-of-the-art gKGEs on FB15k-237 and even significantly
outperforms them on YAGO3-10 and WN18RR. Section 5.3.3 studies SpeedE’s space
and time efficiency, finding that on WN18RR, SpeedE needs a quarter of ExpressivE’s
parameters to reach the same KGC performance while training five times faster than it.
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5.3.1 Benchmarks and Baselines

Dataset |E| |R| CG κ

FB15k-237 14,541 237 -0.65 (1.00, 0.18, 0.36, 0.06)
WN18RR 40,943 11 -2.54 (1.00, 0.61, 0.99, 0.50)
YAGO3-10 123,143 37 -0.54 -

Table 5.6: Benchmark dataset characteristics. Curvature CG is from (Chami et al., 2020);
the lower, the more hierarchical the data. Krackhardt scores κ are from (Bai et al., 2021);
the higher, the more hierarchical the data.

Datasets. We empirically evaluate SpeedE on the three standard KGC benchmarks,
WN18RR (Bordes et al., 2013; Dettmers et al., 2018), FB15k-237 (Bordes et al., 2013;
Toutanova and Chen, 2015), and YAGO3-10 (Mahdisoltani et al., 2015) (for detailed
information see Section 2.1.1).

Characteristics. Table 5.6 displays the following characteristics of the benchmarks:
their number of entities |E| and relations |R|, their curvature CG (taken from Chami
et al. (2020)), and the Krackhardt scores κ (taken from Bai et al. (2021)), consisting
of the four metrics: (connectedness, hierarchy, efficiency, LUBedness). Both CG and κ
state how tree-like a benchmark is and, thus, how hierarchical its relations are.

Baselines. We compare our SpeedE model to (1) the Euclidean gKGEs ExpressivE
(introduced in Chapter 4), HAKE (Zhang et al., 2020), TuckER (Balazevic et al., 2019b),
MuRE (Balazevic et al., 2019a), and RefE, RotE, and AttE (Chami et al., 2020), (2) the
complex gKGEs ComplEx-N3 (Lacroix et al., 2018) and RotatE (Sun et al., 2019), and
(3) the hyperbolic gKGEs ConE (Bai et al., 2021), MuRP (Balazevic et al., 2019a), and
RefH, RotH, and AttH (Chami et al., 2020). Furthermore, as in (Chami et al., 2020),
we evaluate SpeedE and ExpressivE in the low-dimensional setting using an embedding
dimensionality of 32.

5.3.2 Knowledge Graph Completion
In this section, we evaluate the KGC performance of SpeedE and state-of-the-art gKGEs.
Next, we study how well these models represent hierarchical relations, on which hyperbolic
gKGEs are typically most effective (Balazevic et al., 2019a; Chami et al., 2020). Finally,
we analyze the effect of the embedding dimensionality on SpeedE’s KGC performance and
perform an ablation study to understand the necessity of its distance slope parameters.

Low-Dimensional KGC. Following the evaluation protocol of Chami et al. (2020), we
evaluate each gKGE’s performance under d = 32. We report the MRR and H@k for
k ∈ {1, 3, 10} in Table 5.7. The table reveals that on YAGO3-10 — the largest benchmark,
containing over a million triples — SpeedE outperforms any state-of-the-art gKGE by a
relative difference of 7% on H@1, providing strong evidence for SpeedE’s scalability to large
KGs. Furthermore, it shows that our enhanced SpeedE model is competitive with state-of-
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the-art gKGEs on FB15k-237 and even outperforms any competing gKGE on WN18RR by
a large margin. Furthermore, SpeedE’s performance gain over Min_SpeedE on the highly
hierarchical dataset WN18RR (see Table 5.6) provides strong empirical evidence for the
effectiveness of the distance slope parameters for representing hierarchical relations under
low-dimensional conditions. SpeedE’s performance on the more hierarchical WN18RR
already questions the necessity of hyperbolic gKGEs for representing hierarchical relations,
which will be further investigated in the following.

Space Model WN18RR FB15k-237 YAGO3-10
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Eu
cl

id
ea

n

SpeedE .493 .446 .512 .584 .320 .227 .356 .504 .413 .332 .453 .564
Min_SpeedE .485 .442 .499 .573 .319 .226 .356 .502 .410 .328 .449 .563
ExpressivE .485 .442 .499 .571 .298 .208 .331 .476 .333 .257 .367 .476
TuckER .428 .401 - .474 .306 .223 - .475 - - - -
MuRE .458 .421 .471 .525 .313 .226 .340 .489 .283 .187 .317 .478
RefE .455 .419 .470 .521 .302 .216 .330 .474 .370 .289 .403 .527
RotE .463 .426 .477 .529 .307 .220 .337 .482 .381 .295 .417 .548
AttE .456 .419 .471 .526 .311 .223 .339 .488 .374 .290 .410 .537
HAKE .416 .389 .427 .467 .296 .212 .323 .463 .253 .164 .286 .430

N
on

-E
uc

lid
ea

n

RotatE .387 .330 .417 .491 .290 .208 .316 .458 .235 .153 .260 .410
ComplEx-N3 .420 .390 .420 .460 .294 .211 .322 .463 .336 .259 .367 .484
MuRP .465 .420 .484 .544 .323 .235 .353 .501 .230 .150 .247 .392
RefH .447 .408 .464 .518 .312 .224 .342 .489 .381 .302 .415 .530
RotH .472 .428 .490 .553 .314 .223 .346 .497 .393 .307 .435 .559
AttH .466 .419 .484 .551 .324 .236 .354 .501 .397 .310 .437 .566
ConE .471 .436 .486 .537 - - - - - - - -

Table 5.7: Low-dimensional (d = 32) KGC performance of SpeedE, Min_SpeedE,
ExpressivE, and state-of-the-art gKGEs on WN18RR, FB15k-237, and YAGO3-10 split
by embedding space. The results of SpeedE, Min_SpeedE, and ExpressivE were obtained
by us; ConE are from (Bai et al., 2021); HAKE and RotatE are from (Zheng et al., 2022);
TuckER are from (Wang et al., 2021); and any other gKGE are from (Chami et al., 2020).

Hierarchical Relations (Chami et al., 2020; Zhang et al., 2020) describe hierarchies
between entities, such as part_of. Hyperbolic gKGEs have shown great potential for rep-
resenting hierarchical relations, outperforming Euclidean gKGEs under low-dimensional
conditions, thereby justifying the increased model complexity added by the hyperbolic
space (Chami et al., 2020). To study SpeedE’s performance on hierarchical relations,
we evaluate SpeedE on the triples of any hierarchical relation of WN18RR following
the methodology of Bai et al. (2021). Table 5.8 presents the results of this study. It
reveals that SpeedE significantly improves over ExpressivE on most relations and outper-
forms RotH on five out of the seven hierarchical ones. Most notably, SpeedE improves
over RotH by a relative difference of 23% on H@10 on the hierarchical relation _mem-
ber_of_domain_usage, providing empirical evidence for SpeedE’s promising potential for
representing hierarchical relations even under low-dimensional settings. The performance
gain on hierarchical relations is likely due to the added distance slope parameters, which
allow for independently adjusting the distance function’s slopes.
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Relation ExpressivE RotH SpeedE
_member_meronym 0.362 0.399 0.379
_hypernym 0.276 0.276 0.301
_has_part 0.308 0.346 0.330
_instance_hypernym 0.509 0.520 0.543
_member_of_domain_region 0.365 0.365 0.397
_member_of_domain_usage 0.545 0.438 0.538
_synset_domain_topic_of 0.468 0.447 0.502

Table 5.8: H@10 of ExpressivE, RotH, and SpeedE on hierarchical relations (Bai et al.,
2021) of WN18RR.

Dimensionality Study. To analyze the effect of the embedding dimensionality on
the KGC performance, we evaluate state-of-the-art gKGEs on WN18RR under varied
dimensionalities. Figure 5.4 visualizes the results of this study, displaying error bars
for our SpeedE model with average MRR and standard deviation computed over three
runs. The figure reveals that, surprisingly, ExpressivE significantly outperforms RotH,
especially under low-dimensional conditions, and that the enhanced SpeedE model
achieves an additional performance improvement over ExpressivE. This result provides
further evidence for the great potential of Euclidean gKGEs under low-dimensional
conditions.

Figure 5.4: MRR of the best gKGEs on WN18RR with d ∈ {10, 16, 20, 32, 50, 200, 500}.

High-Dimensional KGC. Table 5.9 displays the KGC performance of state-of-the-art
gKGEs under high-dimensional conditions (i.e., d ≥ 200), where the results for SpeedE
were obtained by us, for ExpressivE are from Table 4.6 (in Chapter 4), for HAKE are
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from (Zhang et al., 2020), for ConE are from (Bai et al., 2021), for BoxE are from
(Abboud et al., 2020), for MuRE and MuRP are from (Balazevic et al., 2019a; Chami
et al., 2020), for DistMult are from (Dettmers et al., 2018), for RotatE are from (Sun
et al., 2019), for TuckER are from (Balazevic et al., 2019b), and for any other gKGE are
from (Chami et al., 2020). Table 5.9 reveals that on FB15k-237, SpeedE achieves highly
competitive KGC performance compared to gKGEs of its own family while dramatically
outperforming any competing gKGE on WN18RR. Note that for sustainability reasons
and due to limited computational resources, the high-dimensional setting for the largest
benchmark, YAGO3-10, was not performed.

Family Model WN18RR FB15k-237
MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

Fu
nc

tio
na

l/
Sp

at
ia

l

SpeedE .512 .460 .531 .615 .348 .253 0.386 .536
ExpressivE .508 .464 .522 .597 .350 .256 .387 .535
HAKE .497 .452 .516 .582 .346 .250 .381 .542
ConE .496 .453 .515 .579 .345 .247 .381 .540
BoxE .451 .400 .472 .541 .337 .238 .374 .538
MuRE .475 .436 .487 .554 .336 .245 .370 .521
RefE .473 .430 .485 .561 .351 .256 .390 .541
RotE .494 .446 .512 .585 .346 .251 .381 .538
AttE .490 .443 .508 .581 .351 .255 .386 .543
MuRP .481 .440 .495 .566 .335 .243 .367 .518
RefH .461 .404 .485 .568 .346 .252 .383 .536
RotH .496 .449 .514 .586 .344 .246 .380 .535
AttH .486 .443 .499 .573 .348 .252 .384 .540

Bi
lin

ea
r

DistMult .430 .390 .440 .490 .241 .155 .263 .419
RotatE .476 .428 .492 .571 .338 .241 .375 .533
ComplEx-N3 .480 .435 .495 .572 .357 .264 .392 .547
QuatE .488 .438 .508 .582 .348 .248 .382 .550
TuckER .470 .443 .482 .526 .358 .266 .394 .544

Table 5.9: KGC performance under high dimensionalities of SpeedE and state-of-the-art
gKGEs on WN18RR and FB15k-237 split by model family.

Ablation Study. Finally, to study the necessity of sι
i and so

i in SpeedE, we intro-
duce two versions of SpeedE: (1) Eq_SpeedE that forces sι

i = so
i and (2) Diff_SpeedE,

where sι
i and so

i can be different. We hypothesize that the flexibility of different sι
i and

so
i might be beneficial under lower dimensionalities, while under higher dimensionali-

ties, reducing the number of parameters and thus setting sι
i = so

i might be beneficial.
Figure 5.5 visualizes the result of this analysis, using embedding dimensionalities of
d ∈ {10, 16, 20, 32, 50, 200, 500}. It empirically supports our hypothesis, as Diff_SpeedE
outperforms Eq_SpeedE under low dimensionalities and vice-versa in high ones.
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Figure 5.5: MRR of different ablations of SpeedE on WN18RR

5.3.3 Space and Time Efficiency

This section empirically analyzes SpeedE’s space and time efficiency compared to state-
of-the-art gKGEs.

Time per Epoch. Following the methodology of Wang et al. (2021), Table 5.10 displays
the training time per epoch of SpeedE and state-of-the-art gKGEs for WN18RR, FB15k-
237, and YAGO3-10 with dimensionality d = 32, negative sampling size n = 500, and
batch size b = 500. The times per epoch were recorded on a GeForce RTX 2080 Ti
GPU of our internal cluster. The empirical results of the table align with the theoretical
results of Sections 5.1.1 and 5.1.2, stating that SpeedE approximately halves ExpressivE’s
inference time and, thus, also its time per epoch. Moreover, the results emphasize the
efficiency benefits of SpeedE over state-of-the-art gKGEs, revealing that under the same
configurations, SpeedE solely requires about a sixth of RotH’s and AttH’s time per epoch.

To provide a fair space and time efficiency comparison, we measure the convergence time
of gKGEs with roughly equal KGC performance. Specifically, we observe that SpeedE
with dimensionality d = 50 achieves comparable or slightly better KGC performance on
WN18RR to ExpressivE with d = 200 and the best-published results of RotH, HAKE,
and ConE with d = 500. In particular, the results are summarized in Table 5.11.

Hypotheses. Since (1) the dimensionality of SpeedE embeddings is much smaller in
comparison to RotH’s, HAKE’s, ConE’s, and ExpressivE’s dimensionality, while (2)
SpeedE achieves comparable or even slightly better KGC performance, we expect a
considerable improvement in SpeedE’s space and time efficiency at comparable KGC
performance. Next, based on Table 5.11’s results, we analyze how strongly SpeedE
reduces the model size and convergence time of competing gKGEs.
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Model Time per Epoch
WN18RR FB15k-237 YAGO3-10

SpeedE 7s 22s 88s
ExpressivE 15s 46s 185s

RotH 42s 112s 520s
AttH 43s 113s 533s

Table 5.10: Time per epoch of SpeedE, ExpressivE, RotH, and AttH.

Model Dim. MRR Conv. Time #Parameters
SpeedE 50 .500 6min 2M
ExpressivE 200 .500 31min 8M
HAKE 500 .497 50min 41M
ConE 500 .496 1.5h 20M
RotH 500 .496 2h 21M

Table 5.11: Dimensionality, MRR, convergence time, and number of parameters of state-
of-the-art gKGE’s on WN18RR.

Model Size Analysis. Since |R| << |E| in most graphs, (WN18RR: |R|/|E| = 0.00012)
and since SpeedE, ExpressivE, ConE, and RotH embed each entity with a single real-
valued vector, SpeedE (d = 50) needs solely a quarter of ExpressivE’s (d = 200) and
a tenth of ConE’s and RotH’s (d = 500) number of parameters, while preserving their
KGC performance on WN18RR (Table 5.11). As HAKE requires two real-valued vectors
per entity, SpeedE (d = 50) solely needs a twentieth of HAKE’s (d = 500) parameters to
achieve a slightly better KGC performance. Table 5.11 lists the number of parameters of
a trained SpeedE model and state-of-the-art gKGEs, empirically confirming that SpeedE
significantly reduces the size of competing gKGEs.

Convergence Time Analysis. To quantify the convergence time, we measure for each
gKGE the time to reach a validation MRR score of 0.490, i.e., approximately 1% less than
the worst reported MRR score of Table 5.11. As outlined in the table, SpeedE converges
already after 6min. Thus, while keeping strong KGC performance on WN18RR, SpeedE
speeds up ExpressivE’s convergence time by a factor of 5, HAKE’s by a factor of 9,
ConE’s by a factor of 15, and RotH’s by a factor of 20.

Discussion. These results show that SpeedE is not only competitive with state-of-the-art
gKGEs on FB15k-237 and significantly outperforms them on YAGO3-10 and WN18RR
but even preserves their KGC performance on WN18RR with much fewer parameters
and a dramatically shorter convergence time, in particular speeding up the convergence
time of the ExpressivE model by a factor of 5, while using solely a fourth of its number
of parameters.
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5.4 Summary
Although there has been much work on resource-efficient gKGEs, any such work has
focused exclusively on reducing the embedding dimensionality (Balazevic et al., 2019a;
Chami et al., 2020; Bai et al., 2021) or using simpler embedding spaces (Kazemi and
Poole, 2018; Zhang et al., 2020; Pavlović and Sallinger, 2023b), thus addressing only one
side of the efficiency problem.

This chapter has reached our second research goal (G2) by jointly addressing the embed-
ding space and dimensionality sides. In particular, we introduce SpeedE, a lightweight
gKGE that — as required by G2 — (i) dramatically increases the efficiency of current
gKGEs, needing solely a fifth of the training time and a fourth of the number of pa-
rameters of the state-of-the-art ExpressivE model on WN18RR to reach the same KGC
performance. Even more, (ii) SpeedE is competitive with state-of-the-art gKGEs on
FB15k-237 while even significantly outperforming them on WN18RR and YAGO3-10, the
largest benchmark containing over a million triples. Therefore, our model overcomes the
scalability divide, strengthening the bond between the ML, DB, and SW fields. Similarly
to ExpressivE, we show that SpeedE also captures all core inference rules. Thus, SpeedE
additionally even satisfies G1, bridging also the reasoning divide.
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CHAPTER 6
Data Management Divide

The goal of this chapter is to reach G3 (see Chapter 1), i.e., to bridge the data management
divide for KGs between the DB and SW communities by developing one uniform and
consistent KG management system that satisfies the requirements of both communities.
More specifically:

• Theoretical Translation. We provide a uniform and complete framework to
integrate SPARQL support into a KG language that meets all of the DB and SW
requirements R1–R5, described in Chapter 1. We have thus extended, simplified,
and – in some cases – corrected previous approaches of translating SPARQL queries
(under both set and bag semantics) to various Datalog dialects (Polleres, 2007;
Polleres and Wallner, 2013; Angles and Gutierrez, 2016a). For instance, to the best
of our knowledge, all previous translations have missed or did not consider correctly
certain aspects of the SPARQL standard of the zero-or-one and zero-or-more
property paths.

• Translation Engine. On top of the Vadalog system, we have developed SparqLog,
a translation engine that covers most of the considered SPARQL 1.1 functionality.
We thus had to fill several gaps between the abstract theory and the practical
development of the translation engine. For instance, we have designed specific
Skolem functions to support bag semantics and to generate a universal duplicate
preservation process. On the other hand, using the Vadalog system as the basis of
our engine made significant simplifications possible (such as letting Vadalog take
care of complex filter constraints), and we also got ontological reasoning “for free”.
SparqLog, therefore, supports both query answering and ontological reasoning in a
single uniform and consistent system.

• Experimental Evaluation. We carry out an extensive empirical evaluation on
multiple benchmarks with two main goals in mind: to verify the compliance of
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SparqLog with the SPARQL standard and to compare our system’s performance
with comparable ones. It turns out that while SparqLog covers a great part of
the selected SPARQL 1.1 functionality correctly, some other systems (specifically
Virtuoso) employ a non-standard behavior on queries containing property paths.
As far as query-execution times are concerned, the performance of SparqLog is,
in general, comparable to other systems such as the SPARQL system Fuseki or
the querying and reasoning system Stardog, and it significantly outperforms these
systems on complex queries containing recursive property paths and involving
ontologies.

Organization. This chapter contains material from the following constituent papers of
this dissertation (Angles et al., 2023a,b). Furthermore, note that this chapter, including
its introduction, reuses content from my Bachelor’s (Pavlović, 2019) and Master’s theses
(Pavlović, 2020). Thus, we make the reused and novel content for each of the following
sections explicit in Section 6.1. Next, we present the general principles of our SparqLog
system in Section 6.2, formally define our system’s translation from SPARQL 1.1 to a
suitable Datalog dialect in Section 6.3, and prove the correctness of this translation in
Section 6.4. Moreover, in Section 6.5, we discuss some essential details on SparqLog’s
implementation. In Section 6.6, we identify suitable benchmarks and design experiments
for (i) testing SparqLog’s compliance to SPARQL and measuring its performance on (ii)
query answering and (iii) ontological reasoning, subsequently presenting the retrieved
results. Section 6.7 summarizes this chapter’s key insights.

6.1 Details on SparqLog’s Complete Presentation
This section extensively discusses which parts of this chapter (i) are taken from my
Bachelor’s (Pavlović, 2019) and Master’s theses (Pavlović, 2020), solely being stated here
for completeness, and (ii) constitute novel content, i.e., contributions of this dissertation.
Theoretical Translation. A first version of the translation from SPARQL 1.1 to the
Datalog dialect, Warded Datalog±, was already covered in (Pavlović, 2019, 2020). Thus,
the SPARQL feature prioritization (Section 6.2.3) was largely taken from (Pavlović, 2020)
(extended by additional supported features as discussed in the next paragraph). The
translations of RDF graphs (Section 6.3.1) and SPARQL graph patterns (Section 6.3.2) are
taken from (Pavlović, 2019). We slightly modify them for consistency with the rest of this
work. Furthermore, the translation of property path patterns (Section 6.3.3) was already
presented in the form of algorithms in (Pavlović, 2020). Section 6.3.3 reformulates these
algorithms to formal definitions of a translation function for property path expressions,
thereby ensuring consistency with the translation function of RDF graphs and SPARQL
graph patterns presented in Sections 6.3.1 and 6.3.2. The translation of the SELECT
query form (presented in Section 6.3.4) was taken from (Pavlović, 2019). At the same
time, the translation of the ASK query form (also in Section 6.3.4) was added in this
dissertation for completeness. A novel and vital contribution of this dissertation w.r.t.
the presented theoretical translation are proofs for its correctness, covered in Section 6.4.
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Implementation and Benchmarks. Also, a prototypical version of the SparqLog
system was already implemented in the course of my Master’s thesis (Pavlović, 2020).
Thus, the implementation details (covered in Section 6.5) are taken from (Pavlović, 2020).
Furthermore, the selection of appropriate benchmarks for the compliance of SparqLog
to the SPARQL 1.1 standard (Section 6.6.1), as well as the corresponding compliance
analysis (Section 6.6.2) are primarily taken from (Pavlović, 2020). This dissertation
extends the benchmark analysis of (Pavlović, 2020) by adding a discussion on appropriate
performance benchmarks for measuring query execution times in Section 6.6.1 (Paragraph
Performance Benchmarking). Additionally, we extend the SparqLog system by missing
SPARQL features in this dissertation, including (i) complex expressions in ORDER BY
and COUNT statements, (ii) REGEX functions, such as UCASE and CONTAINS, (iii)
the DATATYPE feature, and (iv) the “exactly n occurrences”, “n or more occurrences”,
and “between 0 and n occurrences” property path features. Furthermore, we optimize
SparqLog’s implementation with standard query optimization techniques of the DB
community by rewriting the query execution tree based on relational algebra, for instance,
pushing selection operations toward the leaf nodes to convert cross-products to joins.
These contributions of my dissertation — i.e., SparqLog’s support of additional SPARQL
features and enhanced query optimization — allow SparqLog to reach compliance with the
SPARQL standard on all benchmark queries (see Section 6.6.2). In contrast, SparqLog’s
prototype (Pavlović, 2020) could not answer (i) 9 queries of the FEASIBLE benchmark
due to unsupported SPARQL features and (ii) two queries of the SP2Bench benchmark
due to time-outs.

Further Contributions of this Dissertation. A key contribution of this dissertation
is the measurement of the query answering performance of SparqLog (presented in
Section 6.6.3). In a nutshell, the measurements show that — compared to standard
SPARQL querying systems, such as Virtuoso and Fuseki — SparqLog is not solely
highly competitive with the very fast Virtuoso system on regular SPARQL queries but
can even (correctly) answer many more property path queries. Furthermore, SparqLog
dramatically outperforms Fuseki on query execution time while keeping its ability to
follow the SPARQL standard accurately. Finally, Section 6.6.4 covers another essential
contribution of this dissertation. Specifically, in Section 6.6.4, we extend SP2Bench
with triples describing subproperty and subclass relationships, subsequently using this
extended benchmark to evaluate SparqLog’s ontological reasoning performance. We
find that SparqLog is faster than the state-of-the-art reasoning system Stardog for most
queries, especially for queries with recursive property paths that contain two variables.

Summary of Contributions. This chapter makes the following contributions:

• While the theoretical translation from SPARQL 1.1 to Warded Datalog± was taken
from (Pavlović, 2019, 2020), it is (i) split across these works and (ii) presented
as translation functions in one work (Pavlović, 2019) and as algorithms in the
other (Pavlović, 2020). Sections 6.3.2–6.3.4 consolidate, rewrite, and extend the
translations, thereby presenting them in a uniform, consistent, and complete way.
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• My theses (Pavlović, 2019, 2020) did not theoretically investigate the correctness of
the translation. Thus, Section 6.4 studies the semantics of the considered SPARQL
features, based on which it extensively proves the correctness of our translation.

• The prototypical SparqLog system of (Pavlović, 2020) was not optimized and
missed some vital SPARQL features. This chapter tackles both problems, allowing
SparqLog to be compliant with the standard on all benchmarks (see Section 6.6.2).

• Measuring the query answering performance of SparqLog’s prototype was considered
out of scope in (Pavlović, 2020). Thus, Section 6.6.3 analyzes this performance and
compares SparqLog with the state of the art. The analysis reveals that SparqLog
consistently outperforms Fuseki and is highly competitive with Virtuoso while being
able to (correctly) answer many more property path queries than both systems.

• Finally, also the ontological reasoning capabilities of SparqLog’s prototype were
not studied in (Pavlović, 2020). Thus, Section 6.6.4 (i) extends SP2Bench with
ontological concepts, and (ii) subsequently uses it to empirically evaluate SparqLog’s
and Stardog’s reasoning performance. It finds that SparqLog is faster than Stardog
on most queries, especially for recursive property path queries with two variables.

6.2 The SparqLog System
This section introduces SparqLog, a system that allows the evaluation of SPARQL 1.1
queries on top of the Vadalog system. To the best of our knowledge, SparqLog is the
first system that provides a complete translation engine from SPARQL 1.1 with bag
semantics to Datalog. In order to obtain a functional and efficient system, we combined
the knowledge provided by the theoretical work with database implementation techniques.

SparqLog implements three translation methods: (i) a data translation method TD which
generates Datalog± rules from an RDF Dataset; (ii) a query translation method TQ which
generates Datalog± rules from a SPARQL query; and (iii) a solution translation method
TS which generates a SPARQL solution from a Datalog± solution. Hence, given an RDF
dataset D and a SPARQL query Q, SparqLog generates a Datalog± program Π as the
union of the rules returned by TD and TQ, then evaluates the program Π, and uses TS to
transform the resulting Datalog± solution into a SPARQL solution.

6.2.1 Example of Graph Pattern Translation
In order to give a general idea of the translation, we will sketch the translation of the
RDF graph and the SPARQL query presented in Section 2.2. To facilitate the notation,
we will abbreviate the IRIs using their prefix-based representation. For example, the
IRI http://ex.org/name will be represented as ex:name, where ex is a prefix bound
to the namespace http://ex.org/. Additionally, we will use film.rdf instead of
http://ex.org/film.rdf.
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Data translation
Consider the RDF graph G presented in Section 2.2 and restated below for the convenience
of the reader:

<http://ex.org/glucas> <http://ex.org/name> "George"
<http://ex.org/glucas> <http://ex.org/lastname> "Lucas"
<http://ex.org/rwilliams> <http://ex.org/name> "Robin"
_:b1 <http://ex.org/name> "Robin"

First, the data translation method TD generates a special fact for every RDF term (i.e.,
IRI, literal, and blank node) in G:

iri("ex:glucas"). iri("ex:name"). iri("ex:lastname").
literal("George"). literal("Lucas"). literal("Steven").
bnode("b1").

These facts are complemented by the following rules, which represent the domain of RDF
terms:

term(X) :- iri(X).
term(X) :- literal(X).
term(X) :- bnode(X).

For each RDF triple (s,p,o) in graph G with IRI g, TD generates a fact triple(s,p,o,g).
Hence, in our example, TD produces:

triple("ex:glucas", "ex:name", "George", "film.rdf").
triple("ex:glucas", "ex:lastname", "Lucas", "film.rdf").
triple("ex:rwilliams", "ex:name", "Robin", "film.rdf").
triple("b1", "ex:name", "Robin", "film.rdf").

Query translation

Assume that Q is the SPARQL query of Section 2.2, restated in Figure 6.1 for the
convenience of the reader. Applying the query translation method TQ over Q returns
the Datalog± rules shown in Figure 6.2. The general principles of the translation will be
discussed in Section 6.3. In the interest of readability, we slightly simplify the presentation,
e.g., by omitting language tags and type definitions and using simple (intuitive) variable
names (rather than more complex ones as would be generated by SparqLog to rule out
name clashes).

The query translation method TQ produces rules for each language construct of SPARQL 1.1
plus rules defining several auxiliary predicates. In addition, also system instructions (e.g.,
to indicate the answer predicate or ordering requirements) are generated. The translation
begins with the WHERE clause, then continues with the SELECT clause, and finalizes with
the ORDER BY clause.
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1 SELECT ?N ?L
2 FROM <http://ex.org/film.rdf>
3 WHERE { ?X <http://ex.org/name> ?N
4 . OPTIONAL { ?X <http://ex.org/lastname> ?L }}
5 ORDER BY ?N

Figure 6.1: Example of a SPARQL query.

1 // SELECT ?N ?L
2 ans(ID, L, N, D) :- ans1(ID1, L, N, X, D),
3 ID = ["f", L, N, X, ID1].
4 // P1 = { P2 . OPTIONAL { P3 } }
5 ans1(ID1, V2_L, N, X, D) :- ans2(ID2, N, X, D),
6 ans3(ID3, V2_L, V2_X, D), comp(X, V2_X, X),
7 ID1 = ["f1a", X, N, V2_X, V2_L, ID2, ID3].
8 ans1(ID1, L, N, X, D) :- ans2(ID2, N, X, D),
9 not ans_opt1(N, X, D), null(L),

10 ID1 = ["f1b", L, N, X, ID2].
11 ans_opt1(N, X, D) :- ans2(ID2, N, X, D),
12 ans3(ID3, V2_L, V2_X, D), comp(X, V2_X, X).
13 // P2 = ?X ex:name ?N
14 ans2(ID2, N, X, D) :-
15 triple(X, "ex:name", N, D),
16 D = "default",
17 ID2 = ["f2", X, "ex:name", N, D].
18 // P3 = ?X ex:lastname ?L
19 ans3(ID3, L, X, D) :-
20 triple(X, "ex:lastname", L, D),
21 D = "default",
22 ID3 = ["f3", X, "ex:lastname", L, D].
23 @post("ans", "orderby(2)").
24 @output("ans").

Figure 6.2: Datalog± rules for the SPARQL query Q of Figure 6.1.

The most complex part of TQ is the translation of the graph pattern defined in the
WHERE clause. In our example, the graph pattern defined by the WHERE clause is of the
form P1 = P2 OPTIONAL P3 with triple patterns P2 = ?X ex:name ?N and P3 = ?X

ex:lastname ?L. The instruction @output (Line 24) is used to define the literal of
the goal predicate ans. It realizes the projection defined by the SELECT clause. The
instruction @post("ans","orderby(2)") (Line 23) realizes the ORDER BY clause; it
indicates a sort operation over the elements in the second position of the goal predicate
ans(ID,L,N,D), i.e., sorting by N (note that ID is at position 0). The ans predicate
is defined (Lines 2–3) by projecting out the X variable from the ans1 relation, which
contains the result of evaluating pattern P1. The tuple IDs are generated as Skolem
terms (Line 3 for ans; likewise Lines 7, 10, 17, 22). In this example, we assume that the
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pattern P1 and its subpatterns P2 and P3 are evaluated over the default graph. This is
explicitly defined for the basic graph patterns (Lines 15, 20) and propagated by the last
argument D of the answer predicates.

The OPTIONAL pattern P1 gives rise to 3 rules defining the predicate ans1: a rule (Lines
11–12) to define the predicate ans_opt1, which computes those mappings for pattern P2
that can be extended to mappings of P3; a rule (Lines 5–7) to compute those tuples of
ans1 that are obtained by extending mappings of P2 to mappings of P3; and finally a
rule (Lines 8–10) to compute those tuples of ans1 that are obtained from mappings of
P2 that have no extension to mappings of P3. In the latter case, the additional variables
of P3 (here: only variable L) are set to null (Line 9). The two basic graph patterns P2
and P3 are translated to rules for the predicates ans2 (Lines 14–17) and ans3 (Lines
19–22) in the obvious way.

Solution translation

The evaluation of the program Π produced by the data translation and query translation
methods yields a set of ground atoms for the goal predicate ans. In our example, we thus
get two ground atoms: ans(id1, "George","Lucas", "film.rdf") and ans(id2,

"Steven","null","film.rdf"). Note that the ground atoms are guaranteed to have
pairwise distinct tuple IDs. These ground atoms can be easily translated to the multiset
of solution mappings by projecting out the tuple ID. Due to the simplicity of our example,
we only get a set {µ1, µ2} of solution mappings with µ1(?N) = "George", µ1(?L) =
"Lucas", and µ2(?N) = "Steven".

6.2.2 Example of Property Path Translation

A property path is a feature of the SPARQL query language that allows the user to query
for complex paths between nodes instead of being limited to graph patterns with a fixed
structure. SPARQL defines different types of property paths, named: PredicatePath,
InversePath, SequencePath, AlternativePath, ZeroOrMorePath, OneOrMorePath, Ze-
roOrOnePath, and NegatedPropertySet. Next, we present an example of the translation
of property paths.

Assume that <http://ex.org/countries.rdf> identifies an RDF graph with the
following prefixed RDF triples:

@prefix ex: <http://ex.org/> .
ex:spain ex:borders ex:france .
ex:france ex:borders ex:belgium .
ex:france ex:borders ex:germany .
ex:belgium ex:borders ex:germany .
ex:germany ex:borders ex:austria
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Note that each triple describes two bordered countries in Europe. Recall that ex is a prefix
for the namespace http://ex.org/, meaning, e.g., that ex:spain is the abbreviation
of http://ex.org/spain.

A natural query could be asking for the countries that can be visited by starting a trip
in Spain. In other words, we want to get the nodes (countries) reachable from the node
representing Spain. Although the above query could be expressed by computing the union
of different fixed patterns (i.e., one-country trip, two-country trip, etc.), the appropriate
way is to use the SPARQL query shown in Figure 6.3. The result of this query is the set
{µ1, µ2, µ3, µ4} of mappings with µ1(?B) = ex:france, µ2(?B) = ex:germany, µ3(?B)
= ex:austria, and µ4(?B) = ex:belgium.

1 PREFIX ex: <http://ex.org/>
2 SELECT ?B
3 FROM <http://ex.org/countries.rdf>
4 WHERE { ?A ex:borders+ ?B . FILTER (?A = ex:spain) }

Figure 6.3: Example of a SPARQL property path query.

A property path pattern is a generalization of a triple pattern (s, p, o) where the predicate
p is extended to be a regular expression called a property path expression. Hence, the
expression ?A ex:borders+ ?B shown in Figure 6.3 is a property path pattern, where
the property path expression ex:borders+ allows to return all the nodes ?B reachable
from node ?A by following one or more matches of edges with the ex:borders label. The
FILTER condition restricts the solution mappings to those where variable ?A is bound
to ex:spain, i.e., pairs of nodes where the source node is spain. Finally, the SELECT

clause projects the result to variable ?B, i.e., the target nodes.

1 // P1 = "{?A ex:borders+ ?B . FILTER (?A = ex:spain)}"
2 ans1(ID1,A,B,D) :- ans2(ID2,A,B,D),
3 X = "ex:spain", ID1 = [...].
4 // P2 = "?A ex:borders+ ?B"
5 ans2(ID2,X,Y,D) :- ans3(ID3,X,Y,D), ID2 = [...].
6 // PP3 = "ex:borders+"
7 ans3(ID3,X,Y,D) :- ans4(ID4,X,Y,D), ID4 = [ ].
8 ans3(ID3,X,Z,D) :- ans4(ID4,X,Y,D),
9 ans3(ID31,Y,Z,D), ID4 = [ ].

10 // PP4 = "ex:borders"
11 ans4(ID4,X,Y,D) :- triple(X,"ex:borders",Y,D),
12 D = "default", ID4 = [...].
13 @output("ans1").

Figure 6.4: Datalog± rules obtained after translating the SPARQL property path query
shown in Figure 6.3.

In Figure 6.4, we show the Datalog± rules obtained by translating the graph pattern
shown in Figure 6.3. The rule in Line 2 corresponds to the translation of the filter
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graph pattern. The rule in Line 5 is the translation of the property path pattern ?A

ex:borders+ ?B. The rules shown in Lines 8 and 9 demonstrate the use of recursion to
emulate the property path expression ex:borders+. The rule in Line 11 is the translation
of ex:borders, called a link property path expression. The general principles of the
translation of property paths will be discussed in Section 6.3.3.

6.2.3 Coverage of SPARQL 1.1 Features
In order to develop a realistic integration framework between SPARQL and Vadalog, we
conduct a prioritization of SPARQL features. We first lay our focus on basic features, such
as terms and graph patterns. Next, we prepare a more detailed prioritization by considering
the results of Bonifati et al. (2020), who examined the real-world adoption of SPARQL
features by analyzing a massive amount of real-world query logs from different well-
established Semantic Web sources. Additionally, we study further interesting properties
of SPARQL, for instance, SPARQL’s approach to support partial recursion (through the
addition of property paths) or interesting edge cases (such as the combination of Filter
and Optional features) for which a “special” treatment is required.

The outcome of our prioritization step is shown in Table 6.1. For each feature, we present
its real-world usage according to (Bonifati et al., 2020) and its current implementation
status in our SparqLog system. The table represents the real-world usage by a percentage
value (drawn from (Bonifati et al., 2020)) in the feature usage field, if (Bonifati et al.,
2020) covers the feature, “Unknown” if (Bonifati et al., 2020) does not cover it, and
“Basic Feature” if we consider the feature as fundamental to SPARQL. Note that some
features are supported by SparqLog with minor restrictions, such as ORDER BY, for
which we did not re-implement the sorting strategy defined by the SPARQL standard
but directly use the sorting strategy employed by the Vadalog system. Table 6.1 reveals
that our SparqLog engine covers all features that are used in more than 5% of the queries
in practice and are deemed, therefore, to be of the highest relevance to SPARQL users.
Some of these features have relatively low usage in practice (< 1%); however, they are
still supported by our engine. These features include property paths and GROUP BY.
We have chosen to add property paths to our engine, as they are not only interesting
for being SPARQL’s approach to support partial recursion but, according to (Bonifati
et al., 2020), some datasets make extensive use of them. Moreover, we have chosen to
add GROUP BY and some aggregates (e.g., COUNT), as they are critical in traditional
database settings and, thus, are essential to establish a bridge between the Semantic Web
and Database communities.

In addition to these most widely used features, SparqLog covers all features occurring
in critical benchmarks (see Section 6.1 for a detailed discussion). Specifically, as used
in the FEASIBLE benchmark, SparqLog covers the following features: ORDER BY
with complex arguments (such as ORDER BY with BOUND conditions), functions
on strings such as UCASE, the DATATYPE function, LIMIT, and OFFSET. For the
gMark benchmark, we cover the “exactly n occurrences” property path, the “n or more
occurrences” property path, and the “between 0 and n occurrences” property path.
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General Feature Specific Feature Feature Usage Status
Terms IRIs, Literals, Blank nodes Basic Feature ✓

Semantics Sets, Bags Basic Feature ✓

Graph patterns

Triple pattern Basic Feature ✓

AND / JOIN 28.25% ✓

OPTIONAL 16.21% ✓

UNION 18.63% ✓

GROUP Graph Pattern < 1% ✗

Filter constraints

Equality / Inequality

All Constraints
40.15%

✓

Arithmetic Comparison ✓

bound, isIRI, isBlank, isLiteral ✓

Regex ✓

AND, OR, NOT ✓

Query forms

SELECT 87.97% ✓

ASK 4.97% ✓

CONSTRUCT 4.49% ✗

DESCRIBE 2.47% ✗

Solution modifiers

ORDER BY 2.06% ✓

DISTINCT 21.72% ✓

LIMIT 17.00% ✓

OFFSET 6.15% ✓

RDF datasets GRAPH ?x { . . . } 2.71% ✓

FROM (NAMED) Unknown ✗

Negation MINUS 1.36% ✓

FILTER NOT EXISTS 1.65% ✗

Property paths LinkPath (X exp Y) < 1% ✓

InversePath (^exp) < 1% ✓

SequencePath (exp1 / exp2) < 1% ✓

AlternativePath (exp1 | exp2) < 1% ✓

ZeroOrMorePath (exp*) < 1% ✓

OneOrMorePath (exp+) < 1% ✓

ZeroOrOnePath (expr?) < 1% ✓

NegatedPropertySet (!expr) < 1% ✓

Assignment BIND < 1% ✗

VALUES < 1% ✗

Aggregates GROUP BY < 1% ✓

HAVING < 1% ✗

Sub-Queries Sub-Select Graph Pattern < 1% ✗

FILTER EXISTS < 1% ✗

Filter functions Coalesce Unknown ✗

IN / NOT IN Unknown ✗

Table 6.1: Selected SPARQL features, including their real-world usage according to
(Bonifati et al., 2020) and the current status in SparqLog.
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Among our contributions concerning the translation of SPARQL to Datalog are: the
available translation methods have been combined into a uniform and practical framework
for translating RDF datasets and SPARQL queries to Warded Datalog± programs; we
have developed simpler translations for MINUS and OPT, compared with (Polleres and
Wallner, 2013); we provide translations for both bag and set semantics, thus covering
queries with and without the DISTINCT keyword; we have enhanced current translations
by adding partial support for data types and language tags; we have developed a novel
duplicate preservation model based on the abstract theories of ID generation (this was
required because plain existential ID generation turned out to be problematic due to its
dependence on a very specific chase algorithm of the Vadalog system), and we propose a
complete method for translating property paths, including zero-or-one and zero-or-more
property paths.

There are also a few features that have a real-world usage of slightly above one percent and
which are currently not supported by SparqLog. Among these features are CONSTRUCT,
DESCRIBE, and FILTER NOT EXISTS. We do not support features CONSTRUCT
and DESCRIBE, as these solution modifiers do not yield any interesting theoretical or
practical challenges, and they did not occur in any of the benchmarks chosen for our
experimental evaluation. The features for query federation are out of the considered
scope, as our translation engine demands RDF datasets to be translated to the Vadalog
system for query answering. Furthermore, SPARQL query federation is used in less than
1% of SPARQL queries (Bonifati et al., 2020).

6.3 Translating SPARQL 1.1 to Warded Datalog±

In this section, we provide a detailed description of our translation from SPARQL 1.1
to Warded Datalog±. Note that many of the rules thus generated are simple Datalog
rules, i.e., they do not have existentially quantified variables in the head. In such cases,
we shall interchangeably refer to these rules as “‘Datalog rules” or “Datalog± rules”. Of
course, if existentially quantified variables are indeed used in the head, we shall always
speak of “Datalog± rules”.

We start by translating RDF graphs to Datalog rules in Section 6.3.1. We then detail
our translation of graph patterns and the specific translation rules for property path
expressions in Sections 6.3.2 and 6.3.3. Finally, in Section 6.3.4, we consider query forms.

6.3.1 Translation of RDF Graphs
Assume that I, L, and B are disjoint infinite sets corresponding to IRIs, literals, and
blank nodes. An RDF term is an element in the set T = I ∪ L ∪ B. An RDF triple is a
tuple (s, p, o) ∈ T × I × T where s is called the subject, p is the predicate, and o is the
object. An RDF graph G is a set of RDF triples. An RDF dataset D is a collection of
graphs including a default graph G0 and zero or more named graphs, such that a named
graph is a pair (u, G) where u is an IRI which identifies the RDF graph G.
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Let G be a given RDF graph; the translation of the graph to Datalog facts is defined as
follows:

1. For each IRI, constant and blank node in G, the corresponding facts iri(X),
literal(X), and bnode(X) are generated.

2. For each named graph g a tuple named(g) and for each triple (s, p, o) of graph g a
fact triple(s, p, o, g) where g is either ”default” for the default graph, or the IRI of
a named graph is created.

3. A term is either an IRI, a literal, or a blank node: The set of terms is represented
by the predicate term.

Definition 6.3.1 (Terms). The predicate terms is defined as follows:

term(X) :− iri(X).
term(X) :− literal(X).
term(X) :− bnode(X).

6.3.2 Translation of SPARQL Graph Patterns
Graph Pattern. Assume the existence of an infinite set V of variables disjoint from T .
We will use var(α) to denote the set of variables occurring in any structure α. A graph
pattern is defined recursively as follows: a tuple from (T ∪V )×(I ∪V )×(T ∪V ) is a triple
pattern; if P1 and P2 are graph patterns, C is a filter constraint, and g ∈ I then {P1 . P2},
{P1 UNION P2}, {P1 OPT P2}, {P1 MINUS P2}, {P1 FILTER C}, and; {GRAPH g P1}
are graph patterns. A filter constraint is defined recursively as follows: (i) If ?X, ?Y ∈ V ,
c ∈ I ∪ L and r is a regular expression then true, false, ?X = c, ?X =?Y , bound(?X),
isIRI(?X), isBlank(?X), isLiteral(?X) and regex(?X, r) are atomic filter constraints; (ii)
If C1 and C2 are filter constraints then (!C1), (C1 && C2) and (C1 || C2) are Boolean
filter constraints.

Subpattern. A subpattern P ′ of a graph pattern P is defined to be any substring of P
that is also a graph pattern. Furthermore, P ′ is defined to be an immediate subpattern
of P if it is a subpattern of P and if there is no other subpattern of P , different from P ,
that contains P ′. A parse tree is specified as a tree < V, E > with the set of nodes V
being the subpatterns of a graph pattern P and the set of edges E containing an edge
(P1, P2) if P2 is an immediate subpattern of P1.

Solution Mapping. The evaluation of a graph pattern results in a multiset of solution
mappings. A solution mapping is a partial function µ : V → T , i.e., an assignment of
variables to RDF terms. The domain of µ, denoted dom(µ), is the subset of V where µ is
defined. The empty mapping, denoted µ0, is the mapping satisfying that dom(µ0) = ∅. A
multiset of solution mappings Ω is an unsorted list of solution mappings where duplicates
are allowed. The domain of Ω is the set of variables occurring in the solution mappings
of Ω.
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Translation Function. Let P be a SPARQL graph pattern and D be an RDF dataset
D = ⟨G, Gnamed⟩ where G is the default graph and Gnamed is the set of named graphs. The
translation of graph patterns is realized by the translation function τ(P, dst, D, NodeIndex)
where: P is the graph pattern that should be translated next; dst (short for “distinct”) is
a Boolean value that describes whether the result should have set semantics (dst = true)
or bag semantics (dst = false); D is the graph on which the pattern should be evaluated;
NodeIndex is the index of the pattern P to be translated; and the output of function τ is
a set of Datalog± rules. In the following paragraphs, we briefly discuss some aspects of
the translation before stating τ ’s definitions.

General Strategy of the Translation. Analogously to (Polleres, 2007; Polleres and
Wallner, 2013), our translation proceeds by recursively traversing the parse tree of a
SPARQL 1.1 query and translating each subpattern into its respective Datalog± rules.
Subpatterns of the parse tree are indexed. The root has index 1, the left child of the
i-th node has index 2 ∗ i, and the right child has index 2 ∗ i + 1. During the translation,
bindings of the i-th subpattern are represented by the predicate ansi. In all answer
predicates ansi, we have the current graph as the last component. It can be changed by
the GRAPH construct; for all other SPARQL constructs, it is transparently passed on
from the children to the parent in the parse tree. Since the order of variables in predicates
is relevant, some variable sets will need to be lexicographically ordered, which we denote
by x as in (Polleres and Wallner, 2013). We write var(P ) to denote the lexicographically
ordered tuple of variables of P . Moreover, a variable renaming function vj : V → V is
defined.

Auxiliary Predicates. The translation generates several auxiliary predicates. Above
all, we need a predicate comp for testing if two mappings are compatible. The notion of
compatible mappings is fundamental to the evaluation of SPARQL graph patterns. Two
mappings µ1 and µ2 are compatible, denoted µ1 ∼ µ2, if for all ?X ∈ dom(µ1) ∩ dom(µ2)
it is satisfied that µ1(?X) = µ2(?X). The auxiliary predicate comp(X1, X2, X3) checks if
two values X1 and X2 are compatible. The third position X3 represents the value that is
used in the result tuple when joining over X1 and X2:

null(”null”).

comp(X, X, X) :− term(X).
comp(X, Z , X) :− term(X), null(Z ).
comp(Z , X, X) :− term(X), null(Z ).
comp(Z , Z , Z ) :− null(Z ).

Bag Semantics. For bag semantics (i.e., dst = false), all answer predicates contain a
fresh existential variable when they occur in the head of a rule. In this way, whenever
such a rule fires, a fresh tuple ID is generated. This is particularly important for the
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translation of the UNION construct. In contrast to (Polleres and Wallner, 2013), we can
thus distinguish duplicates without the need to increase the arity of the answer predicate.
We have developed a novel duplicate preservation model based on the abstract theories
of ID generation of (Bertossi et al., 2019). As mentioned above, plain existential ID
generation turned out to be problematic due to the peculiarities of the Vadalog system.
Therefore, our ID generation process is abstracted away using a Skolem function generator
and representing nulls (corresponding to tuple IDs) as specific Skolem terms.

Filter Constraints. Note how we treat filter conditions in FILTER constructs: building
our translation engine on top of the Vadalog system allows us to literally copy (possibly
complex) filter conditions into the rule body and let the Vadalog system evaluate them.
For instance, the regex functionality uses the corresponding Vadalog function, which
makes direct use of the Java regex library. For evaluating filter functions, such as isIRI,
isURI, isBlank, isLiteral, isNumeric, and bound expressions, our translation engine uses
the corresponding auxiliary predicates generated in our data translation method.

This finishes the discussion of τ . In the following, we list the translation of various graph
patterns in Definitions 6.3.2 and 6.3.10. To improve readability, we omit the explicit
generation of IDs via Skolem functions and put a fresh ID-variable in the first position of
the head atoms of the rules.

Definition 6.3.2 (Triple). Let Pi be the i-th subpattern of P and furthermore let Pi be a
triple pattern (s, p, o), then τ(Pi, true, D, i) is defined as:

ansi(var(Pi), D) :− triple(s, p, o, D).

And τ(Pi, false, D, i) is defined as:

ansi(Id, var(Pi), D) :− triple(s, p, o, D).

Definition 6.3.3 (Graph). Let Pi be the i-th subpattern of P and furthermore let Pi be
(GRAPH g P1), then τ(Pi, true, D, i) is defined as:

ansi(var(Pi), D) :− ans2i(var(P1), g),
named(g).

τ(P1, true, g, 2i).

And τ(Pi, false, D, i) is defined as:

ansi(Id, var(Pi), D) :− ans2i(Id1, var(P1), g),
named(g).

τ(P1, false, g, 2i)
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Definition 6.3.4 (Join). Let Pi be the i-th subpattern of P and furthermore let Pi be
(P1 . P2), then τ(Pi, true, D, i) is defined as:

ansi(var(Pi), D) :− ans2i(v1(var(P1)), D),
ans2i+1(v2(var(P2)), D),
comp(v1(x1), v2(x1), x1), . . . , comp(v1(xn), v2(xn), xn).

τ(P1, true, D, 2i)
τ(P2, true, D, 2i + 1)

And τ(Pi, false, D, i) is defined as:

ansi(Id, var(Pi), D) :− ans2i(Id1, v1(var(P1)), D),
ans2i+1(Id2, v2(var(P2)), D),
comp(v1(x1), v2(x1), x1), . . . , comp(v1(xn), v2(xn), xn).

τ(P1, false, D, 2i)
τ(P2, false, D, 2i + 1)

Here, we are using the following notation:

• var(Pi) = var(P1) ∪ var(P2)
• {x1, . . . , xn} = var(P1) ∩ var(P2)
• v1, v2 : var(P1) ∩ var(P2) → V , such that Image(v1) ∩ Image(v2) = ∅

Definition 6.3.5 (Union). Let Pi be the i-th subpattern of P and furthermore let Pi be
(P1 UNION P2), then τ(Pi, true, D, i) is defined as:

ansi(var(Pi), D) :− ans2i(var(P1), D),
null(x1), . . . null(xn).

ansi(var(Pi), D) :− ans2i+1(var(P2), D),
null(y1), . . . null(ym).

τ(P1, true, D, 2i)
τ(P2, true, D, 2i + 1)
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And τ(Pi, false, D, i) is defined as:

ansi(Id, var(Pi), D) :− ans2i(Id1, var(P1), D),
null(x1), . . . null(xn).

ansi(Id, var(Pi), D) :− ans2i+1(Id2, var(P2), D),
null(y1), . . . null(ym).

τ(P1, false, D, 2i)
τ(P2, false, D, 2i + 1)

Here, we are using the following notation:

• {x1, . . . , xn} = var(P2) \ var(P1)
• {y1, . . . , ym} = var(P1) \ var(P2)

Definition 6.3.6 (Optional). Let Pi be the i-th subpattern of P and furthermore let Pi

be (P1 OPT P2), then τ(Pi, true, D, i) is defined as:

ansopt−i(var(P1), D) :− ans2i(var(P1), D),
ans2i+1(v2(var(P2)), D),
comp(x1, v2(x1), z1), . . . , comp(xn, v2(xn), zn).

ansi(var(Pi), D) :− ans2i(v1(var(P1)), D),
ans2i+1(v2(var(P2)), D),
comp(v1(x1), v2(x1), x1), . . . , comp(v1(xn), v2(xn), xn).

ansi(var(Pi), D) :− ans2i(var(P1), D),
not ansopt−i(var(P1), D),
null(y1), . . . , null(ym).

τ(P1, true, D, 2i)
τ(P2, true, D, 2i + 1)
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And τ(Pi, false, D, i) is defined as:

ansopt−i(var(P1), D) :− ans2i(Id1, var(P1), D),
ans2i+1(Id2, v2(var(P2)), D),
comp(x1, v2(x1), z1), . . . , comp(xn, v2(xn), zn).

ansi(Id, var(Pi), D) :− ans2i(Id1, v1(var(P1)), D),
ans2i+1(Id2, v2(var(P2)), D),
comp(v1(x1), v2(x1), x1), . . . , comp(v1(xn), v2(xn), xn).

ansi(Id, var(Pi), D) :− ans2i(Id1, var(P1), D),
not ansopt−i(var(P1), D),
null(y1), . . . , null(ym).

τ(P1, false, D, 2i)
τ(P2, false, D, 2i + 1)

Here, we are using the following notation:

• var(Pi) = var(P1) ∪ var(P2)
• {x1, . . . , xn} = var(P1) ∩ var(P2)
• {y1, . . . , ym} = var(P2) \ var(P1)
• v1, v2 : var(P1) ∩ var(P2) → V , such that Image(v1) ∩ Image(v2) = ∅

Definition 6.3.7 (Filter). Let Pi be the i-th subpattern of P and furthermore let Pi be
(P1 FILTER C), then τ(Pi, true, D, i) is defined as:

ansi(var(Pi), D) :− ans2i(var(P1), D), C.

τ(P1, true, D, 2i)

And τ(Pi, false, D, i) is defined as:

ansi(Id, var(Pi), D) :− ans2i(Id1, var(P1), D), C.

τ(P1, false, D, 2i)
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Definition 6.3.8 (Optional Filter). Let Pi be the i-th subpattern of P and furthermore
let Pi be (P1 OPT(P2 FILTER C)), then τ(Pi, true, D, i) is defined as:

ansopt−i(var(P1), D) :− ans2i(var(P1), D),
ans2i+1(v2(var(P2)), D),
comp(x1, v2(x1), z1), . . . , comp(xn, v2(xn), zn), C.

ansi(var(Pi), D) :− ans2i(v1(var(P1)), D),
ans2i+1(v2(var(P2)), D),
comp(v1(x1), v2(x1), x1), . . . , comp(v1(xn), v2(xn), xn), C.

ansi(var(Pi), D) :− ans2i(var(P1), D),
not ansopt−i(var(P1), D),
null(y1), . . . , null(ym).

τ(P1, true, D, 2i)
τ(P2, true, D, 2i + 1)

And τ(Pi, false, D, i) is defined as:

ansopt−i(var(P1), D) :− ans2i(Id1, var(P1), D),
ans2i+1(Id2, v2(var(P2)), D),
comp(x1, v2(x1), z1), . . . , comp(xn, v2(xn), zn), C.

ansi(Id, var(Pi), D) :− ans2i(Id1, v1(var(P1)), D),
ans2i+1(Id2, v2(var(P2)), D),
comp(v1(x1), v2(x1), x1), . . . , comp(v1(xn), v2(xn), xn), C.

ansi(Id, var(Pi), D) :− ans2i(Id1, var(P1), D),
not ansopt−i(var(P1), D),
null(y1), . . . , null(ym).

τ(P1, false, D, 2i)
τ(P2, false, D, 2i + 1)

Here, we are using the following notation:
• var(Pi) = var(P1) ∪ var(P2)
• {x1, . . . , xn} = var(P1) ∩ var(P2)
• {y1, . . . , ym} = var(P2) \ var(P1)
• v1, v2 : var(P1) ∩ var(P2) → V , such that Image(v1) ∩ Image(v2) = ∅
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Definition 6.3.9 (Minus). Let Pi be the i-th subpattern of P and furthermore let Pi be
(P1 MINUS P2), then τ(Pi, true, D, i) is defined as:

ansjoin−i(var(Pi), D) :− ans2i(var(P1), D),
ans2i+1(v2(var(P2)), D),
comp(x1, v2(x1), z1), . . . , comp(xn, v2(xn), zn).

ansequal−i(var(P1), D) :− ansjoin−i(var(Pi), D),
x1 = v2(x1), not null(x1).

. . .

ansequal−i(var(P1), D) :− ansjoin−i(var(Pi), D),
xn = v2(xn), not null(xn).

ansi(var(P1), D) :− ans2i(var(P1), D),
not ansequal−i(var(P1), D).

τ(P1, true, D, 2i)
τ(P2, true, D, 2i + 1)

And τ(Pi, false, D, i) is defined as:

ansjoin−i(var(Pi), D) :− ans2i(Id1, var(P1), D),
ans2i+1(Id2, v2(var(P2)), D),
comp(x1, v2(x1), z1), . . . , comp(xn, v2(xn), zn).

ansequal−i(var(P1), D) :− ansjoin−i(var(Pi), D),
x1 = v2(x1), not null(x1).

. . .

ansequal−i(var(P1), D) :− ansjoin−i(var(Pi), D),
xn = v2(xn), not null(xn).

ansi(Id, var(P1), D) :− ans2i(Id1, var(P1), D),
not ansequal−i(var(P1), D).

τ(P1, false, D, 2i)
τ(P2, false, D, 2i + 1)

Here, we are using the following notation:

• var(Pi) = var(P1) ∪ v2(var(P2))
• {x1, . . . , xn} = var(P1) ∩ var(P2)
• v2 : var(P1) ∩ var(P2) → V \ var(P1)
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Property path patterns are given in the form S P1 O, where P1 is a property path
expression. Due to the complex semantics of property paths, we have introduced a
separate translation function τPP for property path expressions, which we will take a
closer look at in Section 6.3.3.

Definition 6.3.10 (Property Path Pattern). Let Pi be the i-th subpattern of P and let
Pi = S P1 O be a property path pattern, then τ(Pi, true, D, i) is defined as:

ansi(var(Pi), D) :− ans2i(S, O, D).
τPP(P1, true, S, O, D, 2i)

And τ(Pi, false, D, i) is defined as:

ansi(Id, var(Pi), D) :− ans2i(Id1, S, O, D).
τPP(P1, false, S, O, D, 2i)

with τPP being the translation function for property path expressions, defined next.

6.3.3 Translation of Property Path Expressions
Property paths are an important feature introduced in SPARQL 1.1. A translation
of property paths to Datalog was presented in (Polleres and Wallner, 2013) – but not
fully compliant with the SPARQL 1.1 standard: the main problem in (Polleres and
Wallner, 2013) was the way how zero-or-one and zero-or-more property paths were
handled. In particular, the case that a path of zero length from t to t also exists for those
terms t which occur in the query but not in the current graph, was omitted in (Polleres
and Wallner, 2013). A property path pattern is given in the form s, p, o, where s, o are
the usual subject and object, and p is a property path expression. That is, p is either
an IRI (the base case) or composed from one or two other property path expressions
p1, p2 as: ˆp1 (inverse path expression), p1 | p2 (alternative path expression), p1/p2
(sequence path expression), p1? (zero-or-one path expression), p1+ (one-or-more path
expression), p1∗ (zero-or-more path expression), or !p1 (negated path expression). A
property path pattern s, p, o is translated by first translating the property path expression
p into rules for each subexpression of p. The end points s and o of the overall path
are only applied to the top-level expression p. Analogously to our translation function
τ(P, dst, D, NodeIndex) for graph patterns, we now also introduce a translation function
τPP(PP, dst, S, O, D, NodeIndex) for property path expressions PP, where S, O, are the
subject and object of the top-level property path expression that have to be kept track
of during the entire evaluation (cf., Definition 6.3.10).

The translation of a property path pattern S, P1, O for some property path expression
P1 consists of two parts: the translation of P1 by the translation function τPP and the
translation τ of S, P1, O (see Definition 6.3.10) – now applying the end points S and O to
the top-level property path expression P1. The base case of τPP is a link property path
PP i = p1 (i.e., simply an IRI), which returns all pairs (X, Y ) that occur as subject and
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object in a triple with predicate p1 (see Definition 6.3.11). Equally simple translations
apply to inverse paths, which swap start point and end point (see Definition 6.3.12);
alternative paths, which are treated similarly to UNION in Definition 6.3.5 (see Defini-
tion 6.3.13); and sequence paths, which combine two paths by identifying the end point
of the first path with the start point of the second path (see Definition 6.3.14). In the
following, we will only state the translations for property path expressions under bag
semantics (i.e., dst = false), since for set semantics, the IDs are simply left out or set to
a constant value (e.g., Id = []).

Definition 6.3.11 (Link Property Path). Let PP i be the i-th subexpression of a property
path expression PP and furthermore let PP i = p1 be a link property path expression.
Then τPP(PP i, false, S, O, D, i) is defined as:

ansi(Id, X, Y, D) :− triple(X, p1, Y, D).

Definition 6.3.12 (Inverse Property Path). Let PP i be the i-th subexpression of a
property path expression PP and furthermore let PP i = ˆPP1 be an inverse property
path expression. Then τPP(PP i, false, S, O, D, i) is defined as:

ansi(Id, X, Y, D) :− ans2i(Id1, Y, X, D).
τPP(PP1, false, S, O, D, 2i)

Definition 6.3.13 (Alternative Property Path). Let PP i be the i-th subexpression of
a property path expression PP and furthermore let PP i = PP1|PP2 be an alternative
property path expression. Then τPP(PP i, false, S, O, D, i) is defined as:

ansi(Id, X, Y, D) :− ans2i(Id1, X, Y, D).
ansi(Id, X, Y, D) :− ans2i+1(Id1, X, Y, D).

τPP(PP1, false, S, O, D, 2i)
τPP(PP2, false, S, O, D, 2i + 1)

Definition 6.3.14 (Sequence Property Path). Let PP i be the i-th subexpression of a
property path expression PP and furthermore let PP i = PP1/PP2 be a sequence property
path expression. Then τPP(PP i, false, S, O, D, i) is defined as:

ansi(Id, X, Z, D) :− ans2i(Id1, X, Y, D),
ans2i+1(Id2, Y, Z, D).

τPP(PP1, false, S, O, D, 2i)
τPP(PP2, false, S, O, D, 2i + 1)

For zero-or-one paths (and likewise for zero-or-more paths), we need to collect all
terms that occur as subjects or objects in the current graph by an auxiliary predicate
subjectOrObject (Definition 6.3.15). As shown in Definition 6.3.16, this auxiliary
predicate is needed to produce paths of length zero (i.e., from X to X) for all these
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terms occurring in the current graph. Moreover, if exactly one of S and O is not a
variable, or if both are the same non-variable, then also, for these nodes, we have to
produce paths of zero length. It is because of this special treatment of zero-length paths
that the subject S and object O from the top-level property path expression have to be
propagated through all recursive calls of the translation function τPP . In addition to the
zero-length paths, of course, also paths of length one have to be produced by recursively
applying the translation τPP to PP1 if PP i is of the form PP i = PP1?.

Definition 6.3.15 (SubjectOrObject). The subjectOrObject predicate defines intuitively
the set of all possible subjects and objects occurring in a graph, i.e.:

subjectOrObject(X) :− triple(X, P, Y, D).
subjectOrObject(Y ) :− triple(X, P, Y, D).

It should be noted that, according to the SPARQL semantics of property paths1, zero-or-
one, zero-or-more, and one-or-more property paths always have set semantics. This is
why the Datalog± rules for these three path expressions contain a body literal Id = [].
By forcing the tuple ID to the same value whenever one of these rules fires, multiply
derived tuples are indistinguishable for our system and will, therefore, never give rise to
duplicates.

Definition 6.3.16 (Zero-Or-One Property Path). Let PP i be the i-th subexpression of a
property path expression PP and furthermore let PP i = PP1? be a zero-or-one property
property path expression. Then τPP(PP i, false, S, O, D, i) consists of the following rules:

ansi(Id, X, X, D) :− subjectOrObject(X), Id = [].
ansi(Id, X, Y, D) :− ans2i(Id1, X, Y, D), Id = [].

τPP(PP1, false, S, O, D, 2i)

Moreover, if either one of S and O is a variable and the other is a non-variable t or both
S and O are the same non-variable t, then the following rule is added:

ansi(Id, X, X, D) :− not term(X), X = t, Id = [].

Furthermore, one-or-more paths are realized in the usual style of transitive closure
programs in Datalog (see Definition 6.3.17).

Definition 6.3.17 (One-Or-More Property Path). Let PP i be the i-th subexpression of a
property path expression PP and furthermore let PP i = PP1+ be a one-or-more property
path expression. Then τPP(PP i, false, S, O, D, i) is defined as:

ansi(Id, X, Y, D) :− ans2i(Id1, X, Y, D), Id = [].
ansi(Id, X, Z, D) :− ans2i(Id1, X, Y, D),

ansi(Id2, Y, Z, D), Id = [].
τPP(PP1, false, S, O, D, 2i)

1https://www.w3.org/TR/SPARQL11-query/#defn_PropertyPathExpr (last visited 09/25/2023)
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Essentially, the zero-or-more property path (see Definition 6.3.18) is a combination of
the zero-or-one and one-or-more property paths.

Definition 6.3.18 (Zero-Or-More Property Path). Let PP i be the i-th subexpression of a
property path expression PP and furthermore let PP i = PP1∗ be a zero-or-more property
property path expression. Then τPP(PP i, false, S, O, D, i) consists of the following rules:

ansi(Id, X, X, D) :− subjectOrObject(X), Id = [].
ansi(Id, X, Y, D) :− ans2i(Id1, X, Y, D), Id = [].
ansi(Id, X, Z, D) :− ans2i(Id1, X, Y, D),

ansi(Id2, Y, Z, D), Id = [].
τPP(PP1, false, S, O, D, 2i)

Moreover, if either one of S and O is a variable and the other is a non-variable t or both
S and O are the same non-variable t, then the following rule is added:

ansi(Id, X, X, D) :− not term(X), X = t, Id = [].

Finally, the negated property path S !P O allows the exclusion of top-level subjects S
and objects O connected via some path specified by P (Definition 6.3.19).

Definition 6.3.19 (Negated Property Path). Let PP i be the i-th subexpression of a
property path expression PP and furthermore let PP i = !(P) be a negated property path
expression. Then τPP(PP i, false, S, O, D, i) is defined as:

ansi(Id, X, Y, D) :− triple(X, P, Y, D), P != pf1 , . . . , P != pfn .

ansi(Id, Y, X, D) :− triple(X, P, Y, D), P != pb1 , . . . , P != pbm .

Here, we are using the following notation:

• pf1 , . . . , pfn ∈ {p | p ∈ P} ... i.e. the set of negated forward predicates.

• pb1 , . . . , pbm ∈ {p | ˆp ∈ P} ... i.e. the set of negated backward predicates.

6.3.4 Translation of Query Forms
Let P1 be a graph pattern and W be a set of variables. We consider two types of query
forms: (SELECT W P1) and (ASK P1). Their translation is given below.

Definition 6.3.20 (Select). Let Pi be the i-th subpattern of P and furthermore let Pi be
(SELECT W P1), then τ(Pi, true, D, i) is defined as:

ansi(var(W ), D) :− ans2i(var(P1), D).
τ(P1, true, D, 2i)
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And τ(Pi, false, D, i) is defined as:

ansi(Id, var(W ), D) :− ans2i(Id1, var(P1), D).
τ(P1, false, D, 2i)

Definition 6.3.21 (Ask). Let Pi be the i-th subpattern of P and furthermore let Pi be
ASK P1), then τ(Pi, true, D, i) is defined as:

ansi(HasResult) :− ans_aski(HasResult).
ansi(HasResult) :− not ans_aski(true), HasResult = false.

ans_aski(HasResult) :− ans2i(var(P1), D), HasResult = true.

τ(P1, true, D, 2i)

And τ(Pi, false, D, i) is defined as:

ansi(HasResult) :− ans_aski(HasResult).
ansi(HasResult) :− not ans_aski(true), HasResult = false.

ans_aski(HasResult) :− ans2i(Id1, var(P1), D), HasResult = true.

τ(P1, false, D, 2i)

6.4 Correctness of the Translation
To ensure the correctness of our translation, we have applied a two-way strategy, consisting
of an extensive empirical evaluation and a formal analysis. For the empirical evaluation,
we have run our SparqLog system, as well as Fuseki and Virtuoso, on several benchmarks,
which provide a good coverage of SPARQL 1.1. The results of our empirical evaluation are
summarized in Section 6.6.2. In a nutshell, SparqLog and Fuseki turn out to fully comply
with the SPARQL 1.1 standard, while Virtuoso shows deviations from the standard on
quite some queries. To provide yet further evidence, we will now formally examine the
Warded Datalog± rules produced by our translation for the various SPARQL language
constructs and compare them with the formal semantics of these language constructs.

As was mentioned in Section 6.2, SparqLog includes a translation engine with three meth-
ods, namely a (i) data translation, (ii) query translation, and (iii) solution translation
method. The data translation is very straightforward. In particular, the IRIs, literals,
and blank nodes, as well as the triples in an RDF graph, are presented as Datalog ground
facts in the obvious way. Recall from Table 6.1 that, as far as query forms are concerned,
we currently only support SELECT (which is by far the most common one) and ASK.
The former allows one to define a projection to some of the variables in the graph pattern,
while the latter just asks if at least some mapping satisfying the graph pattern exists.
In the case of SELECT, the solution modifier can be further extended by a DISTINCT,
ORDER BY, LIMIT, or OFFSET clause. The two supported solution modifiers (with
the possible extensions) are obvious and they are taken care of by the solution translation
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method of SparqLog. In the following, we restrict our discussion to the query translation
method. We treat the basic translation rules and the translation of property paths in
separate subsections.

6.4.1 Basic Translation Rules
First, we recall some basic principles of defining a formal semantics of SPARQL (Angles
and Gutierrez, 2008; Arenas et al., 2009; Polleres and Wallner, 2013). At the heart of
evaluating a SPARQL query is the evaluation of the graph pattern (GP) given in the
WHERE clause of the query. This evaluation is relative to the active graph D, which is
initially the default graph (obtained by merging the graphs given in the FROM clause of
the query) and which can be switched to some named graph (given by an IRI in a FROM
NAMED clause of the query) via the GRAPH construct. We write gr(u) to denote the
graph with name u and we write names to denote all names of named graphs according
to the FROM NAMED clauses.

The result of evaluating a graph pattern P relative to some graph D, denoted by [[P ]]D, is
a multiset of partial mappings µ : V → T (simply referred to as “mappings” henceforth),
where V is the set of variables and T is the set of terms (i.e., the union of IRIs, blank
nodes, and literals). It is convenient to allow also the constant “null” as function value
to indicate by µ(?X) = “null” that µ is undefined on variable ?X. The domain of µ,
denoted dom(µ), is defined as the set of variables on which µ is defined. Mappings are
applied to triple patterns in the obvious way, i.e., let t = (s, p, o) be a triple pattern and
let var(t) denote the variables in t. For a mapping µ with var(t) ⊆ dom(µ), we write µ(t)
to denote the triple obtained by replacing each variable ?X ∈ var(t) by µ(?X).

Compatibility. An important property when combining or comparing two mappings is
compatibility. Two mappings µ1, µ2 are compatible, denoted µ1 ∼ µ2, if µ1(?X) = µ2(?X)
holds for all ?X ∈ dom(µ1) ∩ dom(µ2). In this case, the mapping µ = µ1 ∪ µ2 with
µ(?X) = µ1(?X) if ?X ∈ dom(µ1) and µ(?X) = µ2(?X) if ?X ∈ dom(µ2) is well-defined.

In Section 6.3.2, we have also defined the compatibility of two individual terms or nulls
v1, v2, namely: v1 and v2 are compatible if they are equal (i.e., either the same term or
both ‘null”) or if one of them is “null”. Clearly, two partial mappings µ1, µ2 are compatible
if and only if µ1(?X) and µ2(?X) are compatible for every variable ?X ∈ var(µ1)∩var(µ2).
If this is the case, then µ = µ1 ∪ µ2 is obtained as follows: for every variable ?X, (1) if
µ1(?X) = µ2(?X) (where µ1(?X) and µ2(?X) are either the same term or they are both
“null”), then µ(?X) = µ1(?X) = µ2(?X); and (2) if one of µ1(?X), µ2(?X) is a term and
the other is “null”, then µ(?X) is set equal to the term.

We observe that the auxiliary predicate comp(X1, X2, X3) defined in Section 6.3.2 realizes
precisely the compatibility check between two values µ1(?X) and µ2(?X) (in the first
two components of comp) and yields µ(?X) in the third component.

Operations on Multisets of Mappings. We consider the following operations between
two sets of mappings Ω1, Ω2:
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Graph pattern P Evaluation [[P ]]D
(GRAPH u P1) [[P1]]gr(u) if u ∈ names and ∅ otherwise
(GRAPH ?X P1) �

v∈names([[P1]]gr(v) ⋊⋉ {?X → v})
(P1 . P2) [[P1]]D ⋊⋉ [[P2]]D
(P1 FILTER C) {µ | µ ∈ [[P1]]D and µ |= C}
(P1 OPT P2) [[P1]]D ⊐⋊⋉ [[P2]]D
(P1 OPT {{µ | µ ∈ [[P1]]D ▷◁ [[P2]]D and µ |= C}} ∪

(P2 FILTER C)) {{µ1 | µ1 ∈ [[P1]]D and for all µ2 ∈ [[P2]]D:
either µ1 ̸∼ µ2
or µ1 ∼ µ2 and µ1 ∪ µ2 ̸|= C}}

(P1 UNION P2) [[P1]]D ∪ [[P2]]D
(P1 MINUS P2) {{µ1 ∈ [[P1]]D | for all µ2 ∈ [[P2]]D,

(µ1 ̸∼ µ2 or dom(µ1) ∩ dom(µ2) = ∅)}}
Table 6.2: Semantics of basic graph patterns. P1, P2 are graph patterns, C is a filter
constraint, u ∈ I and ?X ∈ V .

Ω1 ⋊⋉ Ω2 = {{µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2 and µ1 ∼ µ2}}
Ω1 ∪ Ω2 = {{µ | µ ∈ Ω1 or µ ∈ Ω2}}
Ω1 \ Ω2 = {{µ1 ∈ Ω1 | for all µ2 ∈ Ω2, µ1 ̸∼ µ2}}
Ω1 ⊐⋊⋉ Ω2 = (Ω1 ⋊⋉ Ω2) ∪ (Ω1 \ Ω2)

Note that, of the above operations, only the union ∪ may alter the cardinality of elements
in the resulting multiset, namely, if a mapping µ is contained in both Ω1 and Ω2, then
its cardinality in Ω is the sum of the original cardinalities in Ω1 and Ω2.

Semantics of Basic SPARQL Constructs. The semantics [[P ]]D of a graph pattern
P is defined recursively on the structure of P . In the base case, P is a triple pattern
P = (s, p, o) and [[P ]]D is defined as [[P ]]D = {µ | dom(µ) = var(P ) and µ(P ) ∈ D}. For
complex graph patterns P , the semantics definition [[P ]]D is shown in Table 6.2.

Translation of Basic SPARQL Constructs. We are now ready to inspect the
translations from SPARQL 1.1 to Warded Datalog± given in Section 6.3.2. In the
following, we concentrate on bag semantics as they are the more complex case.

Triple. First, consider the base case of graph patterns, namely a triple pattern Pi = (s, p, o),
where each of s, p, o can be a term or a variable. Clearly, the single rule produced by
our translation τ(Pi, false, D, i) in Definition 6.3.2 produces all mappings in var(Pi) that
match (s, p, o) to a triple in the active graph D.

134



6.4. Correctness of the Translation

Graph. Suppose that Pi is of the form Pi = (GRAPH g P1). According to the semantics
definition in Table 6.2 we have to distinguish two cases depending on whether g is an
IRI or a variable. Moreover, in the former case, we have the two subcases depending on
whether the IRI g is the name of some named graph (i.e., it occurs in names) or not.
It is easy to verify that the single rule produced by our translation τ(Pi, false, D, i) in
Definition 6.3.3 covers exactly these three cases.

If g is an IRI that occurs in names, then the body literal named(g) of the Datalog rule
will evaluate to true, and the resulting mappings (on the variables var(P1)), obtained by
the body literal ans2i(Id1, var(P1), g) are precisely the mappings obtained by evaluating
the graph pattern P1 over the graph with name g, i.e., gr(g). In particular, the head
variables var(Pi) coincide with the body variables var(P1). Note that the variable Id in
the head has the effect that every firing of the rule binds Id to a different labeled null.
Hence, if ans2i(Id1, var(P1), g) yields duplicates (i.e., identical mappings with different
bindings of Id1), then these duplicates are preserved by the corresponding firings of the
rule (producing a binding of Id to a different labeled null for each firing of the rule).

The rule also behaves correctly in the other 2 cases: if g is an IRI that does not occur in
names, then the body literal named(g) of the Datalog rule cannot match, and the rule
will never fire, thus producing no mapping at all, which is the correct behavior in this
case. Finally, if g is a variable, then the body literal named(g) produces mappings of g
to all IRIs in names and, for each such binding, ans2i(Id1, var(P1), g) produces precisely
the mappings obtained by evaluating graph pattern P1 over the graph whose name is
the current binding of g. Note that, in this case, the head variables var(Pi) consist of
the variables in P1 plus the variable g. Again, it is the correct behavior that the rule
produces bindings for this increased variable set.

Join. Suppose that Pi is of the form Pi = (P1 . P2). By expanding the definition of the ⋊⋉-
operator into the semantics definition in Table 6.2, we get [[Pi]]D = {{µ1 ∪µ2 | µ1 ∈ [[P1]]D,
µ1 ∈ [[P2]]D, and µ1 ∼ µ2}}, that is, the multiset of those mappings which can be obtained
as the union of any two compatible mappings µ1 ∈ [[P1]]D and µ2 ∈ [[P2]]D.

The rule produced by our translation τ(Pi, false, D, i) in Definition 6.3.4 achieves precisely
this: the two body atoms ans2i(Id1, v1(var(P1)), D) and ans2i+1(Id2, v2(var(P2)), D)
yield the sets of mappings [[P1]]D and [[P2]]D. Note that the variable renaming functions
v1 and v2 make sure that there is no interference between the evaluation of [[P1]]D (by
the first body atom) and the evaluation of [[P2]]D (by the second body atom). The
comp-atoms in the rule’s body make sure that µ1 and µ2 are compatible on all common
variables. Moreover, they bind the common variables {x1, . . . , xn} to the correct values
according to the definition of the comp-predicate. In particular, the comp-atoms set the
common variables to the same value xj = v1(xj) = v2(xj) if v1(xj) and v2(xj) are bound
to the same term or if they are both bound to “null”. Otherwise, if one of v1(xj), v2(xj)
is a term and the other is “null”, then the comp-atoms set xj equal to the term. Finally,
recall that the compatibility of two mappings µ1, µ2 is defined as the compatibility of
all common variables of the two mappings. Hence, the comp-atoms in the rule’s body
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produced by our translation τ(Pi, false, D, i) indeed verify that the two mappings µ1, µ2
are compatible.

Filter. Suppose that Pi is of the form Pi = (P1 FILTER C). By the semantics definition
in Table 6.2, [[Pi]]D contains those mappings µ of [[P1]]D which satisfy the filter condition
C. This is precisely what the single rule resulting from our translation τ(Pi, false, D, i)
in Definition 6.3.7 achieves: the body atom ans2i(var(P1), D) yields all those variable
bindings that correspond to the mappings in [[P1]]D; and adding the filter condition C
to the body of the rule means that the rule only fires for variable bindings (strictly
speaking, for the mappings corresponding to these variable bindings) for which condition
C evaluates to true.

Optional. Suppose that Pi is of the form Pi = (P1 OPT P2). By expanding the definition
of the ⊐⋊⋉-operator into the semantics definition in Table 6.2, we get [[Pi]]D = ([[P1]]D ⋊⋉
[[P2]]D) ∪ ([[P1]]D \ [[P2]]D). The translation τ(Pi, false, D, i) in Definition 6.3.6 yields three
rules. The second rule is identical to the translation of a Join expression. As was argued
above, it computes precisely the variable bindings corresponding to the mappings in
[[P1]]D ⋊⋉ [[P2]]D.
It remains to show that the first and third rule taken together produce the variable
bindings corresponding to the mappings in [[P1]]D \ [[P2]]D. The first rule is almost
the same as the second one, with the only difference being that it projects the join
result to the variables in var(P1). In other words, it determines the variable bindings
corresponding to the mappings in [[P1]]D, which are compatible with some mapping in
[[P2]]D. Therefore, the first two body literals of the third rule have the following effect: the
first literal produces all variable bindings corresponding to mappings in [[P1]]D while the
second (i.e., the negative) body literal selects those variable bindings which correspond
to mappings that are not compatible with any mapping in [[P2]]D. By setting all variables
in var(P2) \ var(P1) to “null” (with the remaining m body atoms), the third rule indeed
produces the variable bindings corresponding to the mappings in [[P1]]D \ [[P2]]D.

Optional Filter. Suppose that Pi is an optional filter expression of the form Pi =
(P1 OPT(P2 FILTER C)). According to the semantics definition in Table 6.2, [[Pi]]D is
obtained as the union of 2 multisets:

1. the mappings µ in [[(P1 . P2)]]D which satisfy the filter condition C;

2. the mappings µ1 in [[P1]]D for which all mappings µ2 in [[P2]]D have one of the
following two properties: either µ1 and µ2 are not compatible or they are compatible,
but their combination does not satisfy the filter condition C.

The translation τ(Pi, false, D, i) in Definition 6.3.8 yields three rules, which are very
similar to the translation of Optional expressions discussed before. The only difference is
that now, the first and second rules have filter condition C as additional body literals.
Compared with the rules in the case of Optional expressions, these additional body
literals have the following effect:
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• The second rule computes the variable bindings corresponding to those mappings
in [[P1]]D ⋊⋉ [[P2]]D which satisfy the filter condition C. That is, the mappings
according to item 1 above.

• The first rule computes those variables bindings corresponding to the mappings in
[[P1]]D which are compatible with some mapping in [[P2]]D and which, together with
a compatible mapping from [[P2]]D satisfy the condition C.

Therefore, the (negative) second body literal in the third rule has the effect of eliminating
precisely those mappings µ1 from the multiset of mappings in [[P1]]D (obtained via the
first body atom) for which there exists a compatible mapping µ2 in [[P2]]D, such that their
combination satisfies the filter condition C. In other words, we are left with the mappings
from item 2 above. Analogously to Optional patterns, the variables in var(P2) \ var(P1)
are not part of the domain of these mappings. Hence, with the null-atoms in the body
of the third rule, we set all these variables to “null”.

Union. Suppose that Pi is of the form Pi = (P1 UNION P2). According to the semantics
definition in Table 6.2, [[Pi]]D is simply obtained as the union of the two multisets [[P1]]D
and [[P2]]D. In principle, the two rules of our translation τ(Pi, false, D, i) in Definition 6.3.5
compute this union of the variable bindings corresponding to the mappings in [[P1]]D
(via the body atom ans2i(Id1, var(P1), D) in the first rule) and the variable bindings
corresponding to the mappings in [[P2]]D (via the body atom ans2i+1(Id2, var(P2), D)
in the second rule). However, care has to be taken that all variable bindings obtained
for ansi(Id, var(Pi), D) must be defined on all variables in var(Pi). Therefore, variable
bindings obtained from ans2i(Id1, var(P1), D) have to be extended to the variables
in var(P2) \ var(P1) by setting the latter explicitly to “null”. Likewise, the variable
bindings obtained from ans2i+1(Id1, var(P2), D) have to be extended to the variables
in var(P1) \ var(P2) by setting the latter explicitly to “null”. This is achieved by the
null-atoms in the rule bodies of the two rules.

Minus. Suppose that Pi is of the form Pi = (P1 MINUS P2). According to the semantics
definition in Table 6.2, [[Pi]]D consists of those mappings µ1 of [[P1]]D which, for any
mapping µ2 of [[P2]]D satisfy one of the following two conditions: either µ1 and µ2 are
not compatible or dom(µ1) and dom(µ2) have no variable in common. In other words,
a mapping µ1 ∈ [[P1]]D is retained in [[Pi]]D unless there exists a mapping µ2 ∈ [[P2]]D
such that µ1 and µ2 are compatible, and there exists at least one variable x with
µ1(x) = µ2(x) ̸=“null”.

Similar to our translation of Join patterns, the first rule of our translation τ(Pi, false, D, i)
of a Minus pattern in Definition 6.3.9 computes the variable bindings of the variables in
var(P1) and of var(P2) which correspond to compatible mappings. The next n rules (all
with head predicate ansequal−i) restrict the set of compatible mappings to those whose
domains have at least one variable in common, i.e., the corresponding variable bindings
have at least one variable on which they coincide, and they are both not “null”. Note that
the signature of ansequal−i is restricted to the variables in var(P1). That is, ansequal−i
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contains all variable bindings on var(P1), which correspond to “forbidden” mappings. The
last rule in our translation τ(Pi, false, D, i) computes the variable bindings corresponding
to the mappings in [[Pi]]D by computing the variable bindings corresponding to the
mappings in [[P1]]D (via the first body literal) and eliminating the “forbidden” ones (via
the negative second body literal).

6.4.2 Translation Rules for Property Paths
Analogously to the previous section, we now also juxtapose the semantics of property
path expressions with our translation.

Semantics of Property Paths. For a property path PP, we write [[PP]]D,s,o to denote
the semantics of a property path PP over a graph D with s, o denoting the subject and
object of the top-level property path expression. The semantics of a property path PP is
a pair (x, y) of terms such that there is a path PP from x to y. Here, we mainly follow
the semantics definition in (Kostylev et al., 2015). The semantics of property paths is
defined recursively, with link property paths (i.e., simply an IRI p) as the base case.

The definition [[PP]]D,s,o for arbitrary property paths PP is given in Table 6.3. There,
we write Distinct for converting a multiset into a set by deleting duplicates. Moreover,
we write reach(x, PP, D, s, o) for the set of terms reachable from some start point x by
applying the path PP one or more times, where s, o are again the subject and object of
the top-level property path expression.

Recall from the previous section that the semantics [[P ]]D of a graph pattern P over a
graph D is defined as a multiset of (partial) mappings. If a graph pattern P is of the
form P = (s PP o), where PP is a property path, then [[(s PP o)]]D is the multiset of
mappings obtained as follows:

[[s PP o]]D = {{µ | dom(µ) = var({s, o}) and
(µ(s), µ(o)) ∈ [[PP]]D,s,o}},

where we write µ(x) with x ∈ {s, o} for both variables and non-variables x with the
understanding that µ(x) = x if x ̸∈ V .

Graph Pattern with a Property Path. Before we inspect the translations of property
paths to Warded Datalog±, we inspect our translation of graph patterns using a property
path. That is, consider a graph pattern P of the form P = s PP1 o, where PP1 is a
property path. We have recalled above the definition of [[s PP1 o]]D as a multiset of pairs
of terms. Now suppose that our translation τPP(PP1, false, S, O, D, 2i) of property path
PP1 is correct. (A proof sketch of this fact comes next.) Then, the single additional
rule of our translation in Definition 6.3.10, with head atom ans2i(Id1, S, O, D), indeed
produces all mappings µ on var(P ) such that (µ(S), µ(O)) is in [[PP1]]D,µ(S),µ(O). Note
that the multiplicities of the mappings thus obtained are taken care of by different
bindings of the variable Id1.
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Property Path PP Evaluation [[PP]]D,s,o

p {{(x, y) | (x, p, y) ∈ D}}
ˆPP1 {{(x, y) | (y, x) ∈ [[PP]]D,s,o}}
PP1|PP2 [[PP1]]D,s,o ∪ [[PP2]]D,s,o

PP1/PP2 {{(x, z) | ∃y : (x, y) ∈ [[PP1]]D,s,o

∧ (y, z) ∈ [[PP2]]D,s,o}}
PP1+ {(x, y) | y ∈ reach(x, PP1, D, s, o)}
PP1? Distinct([[PP1]]D,s,o)

∪ {(x, x) | (x, y, z) ∈ D}
∪ {(z, z) | (x, y, z) ∈ D}
∪ {(s, s) | s ̸∈ V ∧ o ∈ V }
∪ {(o, o) | o ̸∈ V ∧ s ∈ V }
∪ {(s, s) | s ̸∈ V ∧ s = o})

PP1∗ Distinct(PP1? ∪ PP1+)
!P with {{(x, y) | ∃a : (x, a, y) ∈ D, s.t.
pf1 , . . . , pfn ∈ {p | p ∈ P}∧ a ̸∈ {pf1 , . . . , pfn}}} ∪
pb1 , . . . , pbm ∈ {p | ˆp ∈ P} {{(x, y) | ∃a : (y, a, x) ∈ D, s.t.

a ̸∈ {pb1 , . . . , pbm}}}
Table 6.3: Semantics of SPARQL property paths. PP1 and PP2 are property paths; P is
a set of link property paths and inverse link property paths; p ∈ I; and s and o are the
subject and object of the top-level property path expression.

Translation of Property Paths. We are now ready to inspect the translations of
property paths to Warded Datalog± given in Section 6.3.3. Again, we concentrate on
bag semantics as the more complex case. We proceed inductively on the structure of the
property paths. In all cases, suppose that we want to evaluate property paths over a
graph D and let s, o denote the top-level subject and object, given in a graph pattern of
the form (s PP o). We start with link property paths as the base case and then cover all
types of compound property path expressions.

Link Property Path. Suppose that the property path PP i consists of a single IRI p, i.e.,
PP i = p. Then [[PP]]D,s,o consists of all pairs (x, y), such that (x, p, y) is a triple in D.
On the other hand, the single rule produced by our translation τPP(PP i, false, S, O, D, i)
in Definition 6.3.11 yields exactly these pairs of terms.

Inverse Path. Consider a property path PP i of the form PP i = ˆPP1 for some property
path PP1. Then [[PP i]]D,s,o consists of all pairs (y, x) such that (x, y) is contained in
[[PP1]]D,s,o. That is, [[PP i]]D,s,o just swaps first and second component of each pair in
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[[PP1]]D,s,o. This is exactly what the single rule in our translation τPP(PP i, true, S, O, D, i)
in Definition 6.3.12 does.

Alternative Path. Consider a property path PP i of the form PP i = PP1 | PP2 for some
property paths PP1 and PP2. Then, according to the semantics definition in Table 6.3,
[[PP i]]D,s,o consists of the union of [[PP1]]D,s,o and [[PP2]]D,s,o. The two rules in our
translation τPP(PP i, true, S, O, D, i) in Definition 6.3.13 realize exactly this union.

Sequence Path. Consider a property path PP i of the form PP i = PP1/PP2 for some
property paths PP1 and PP2. Then, according to the semantics definition in Table 6.3,
[[PP i]]D,s,o consists of pairs (x, z) (i.e., start and end points of paths described by PP i)
such that there exist pairs (x, y) ∈ [[PP1]]D,s,o and (y, z) ∈ [[PP2]]D,s,o (i.e., start and
end points of paths described by PP1 and PP2, respectively, such that the end point
of a path according to PP1 and the start point of a path according to PP2 coincide).
The single rule in our translation τPP(PP i, true, S, O, D, i) in Definition 6.3.14 realizes
precisely these combinations of pairs (x, y) ∈ [[PP1]]D,s,o and (y, z) ∈ [[PP2]]D,s,o.

One-Or-More Path. Consider a property path PP i of the form PP i = PP1+ for some
property path PP1. The semantics of the one-or-more path expression is essentially that of
reachability via hops defined by the property path expression PP1. That is, we get all pairs
(x, y) that are in the “infinite” union [[PP1]]D,s,o∪[[PP1/PP1]]D,s,o∪[[PP1/PP1/PP1]]D,s,o∪
[[PP1/PP1/PP1/PP1]]D,s,o ∪ . . . , with one important difference though: according to
the SPARQL semantics of property paths2, one-or-more property paths (and likewise
zero-or-one and zero-or-more property paths) always have set semantics. The two rules
in our translation τPP(PP i, true, S, O, D, i) in Definition 6.3.17 realize exactly this kind
of reachability relationship. Moreover, neither in the semantics definition nor in the
translation, we need to keep track of duplicates. Therefore, in the semantics definition,
we define [[PP i]]D,s,o as a set (rather than a multiset). In our translation, duplicates
are avoided by the Id = [] body atom in both rules. As was already mentioned in
Section 6.3.3, this body atom has the effect that no copies of the same pair (x, y) (but
with different binding of Id) can ever be produced.

Zero-Or-One Path. Consider a property path PP i of the form PP i = PP1? for some
property path PP1. Then, intuitively, [[PP i]]D,s,o consists of pairs of nodes that are
the start and end point of a “one-path” (i.e., traversing PP1 once) plus “zero-paths”
(i.e., identical start and end points). In the semantics definition in Table 6.3, the pairs
corresponding to “one-paths” are taken care of by the expression [[PP1]]D,s,o. Analogously,
in our translation τPP(PP i, true, S, O, D, i) in Definition 6.3.16 these pairs are produced
by the second rule.

All remaining expressions in the semantics definition correspond to various ways of
getting “zero-paths”, namely either for every term in the graph (captured by the second
and third expression of the semantics definition) or if at least one of s or o is a term
(captured by the remaining expressions of the semantics definition). In case both s and o

2https://www.w3.org/TR/SPARQL11-query/#defn_PropertyPathExpr (last visited 09/25/2023)
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are terms, they must be the same in order to constitute a “zero-path”. In our translation
τPP(PP i, true, S, O, D, i) in Definition 6.3.16, the first rule produces the pairs (x, x) for
terms x occurring in the active graph. The last rule of the translation produces the
remaining pairs (t, t) if t is a term that occurs as a top-level subject or object of the
entire property path expression. As with one-or-more path expressions, it is important
to keep in mind that also zero-or-one paths always have set semantics according to the
SPARQL semantics of property paths. The elimination of duplicates is ensured by the
Distinct operator in the semantics definition and by the Id = [] body atom in the rules
of our translation.

Zero-Or-More Path. Consider a property path PP i of the form PP i = PP1∗ for some
property path PP1. In our semantics definition in Table 6.3, we have defined [[PP i]]D,s,o

simply as the set-variant (i.e., deleting any duplicates) of the union of the zero-or-one
path and the one-or-more path. Of course, in the case of bag semantics this would
be problematic since we thus count “one-paths” twice. However, since zero-or-more
property paths always have set semantics, the Distinct operator applied to the union
eliminates any duplicates anyway. The rules in our translation τPP(PP i, true, S, O, D, i)
in Definition 6.3.18 are indeed obtained as the union of the rules that one gets for the
translations of the zero-or-one path PP1? and of the one-or-more path PP1+. The Id = []
body atom in each of the rules makes sure that we never produce any copies of any pair
(x, y).

Negated Path. Consider a property path PP of the form PP = !P, where P is a set of
“forward” link property path expressions {pf1 , . . . , pfn} and “backward” link property path
expressions {ˆpb1 , . . . , ˆpbm}. Then, according to our semantics definition in Table 6.3,
[[PP i]]D,s,o contains those pairs (x, y) for which either there exists a triple (x, a, y) in the
active graph such that a is different from all pfj

or there exists a triple (y, a, x) in the
active graph such that a is different from all pbj

. Our translation τPP(PP i, true, S, O, D, i)
in Definition 6.3.19 generates two rules. Clearly, the first type of pairs in [[PP i]]D,s,o is
produced by the first rule of our translation, and the second type of pairs in [[PP i]]D,s,o

is produced by the second rule.

6.5 Implementation Details
Based on the translation from SPARQL to Warded Datalog±, covered in Section 6.3, we
implemented the SparqLog system. In this section, we state details of its implementation.

Some Basic Principles. The SPARQL to Warded Datalog± translator was implemented
in Java using the library org.apache.jena to parse SPARQL query strings and handle
operations, solution modifiers, basic graph patterns, etc. appropriately. The ARQ algebra
query parser3 of Apache Jena parses SPARQL query strings in a top-down fashion. First,
query forms are parsed; next, solution modifiers; and in the end, operations starting from
the outer-most operation going inward.

3https://jena.apache.org/documentation/query/ (last visited 09/25/2023)
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In contrast, our developed SPARQL to Warded Datalog± parser analyzes queries bottom-
up. Thus, the translation starts at basic graph patterns and continues upwards. This
setup is necessary, as the variables inside an expression need to be kept track of when
parsing it, as rules usually modify the results of sub-operations. Therefore, it needs to be
known which variables occur in the respective subresult predicates.

Datatypes, Languages, and Compatibility. Our translation engine partially supports
datatypes and language tags by adding two additional arguments to each variable
containing the respective information. This has implications on most SPARQL operations
such as UNION, JOIN, and FILTER. For example, in the case of JOIN operations, we
have extended the existing translation of (Angles and Gutierrez, 2016a) by developing
two additional comparison predicates (compD and compL). In (Angles and Gutierrez,
2016a), the predicate comp is used for computing the compatibility between two variables.
The new predicates compD and compL are used to compute the respective compatibility
for their datatypes and language tags, which is done in the same way as for variables
thus far.

Moreover, Vadalog (and Datalog in general) joins variables of the same rule by name.
However, the semantics of joins in SPARQL differs from that of Datalog. It is for that
reason (1) that we have to prefix/rename variables in such a way that Vadalog’s internal
join strategy is prevented and (2) that we introduce the join predicate comp described in
Section 6.3.2 to realize SPARQL join semantics.

Skolem Functions (For Bag Semantics). The Skolem function generator lies at the
heart of how we preserve duplicate results. As in the work of (Bertossi et al., 2019),
we introduce IDs to preserve Datalog bag semantics in Warded Datalog± set semantics.
Therefore, each generated result tuple is distinguished from its duplicates by a tuple ID
(referred to as TID in (Bertossi et al., 2019)). However, instead of simply generating nulls,
our ID generation process is abstracted away by the getSkolF function of the skolFG
object. We thus generate IDs as follows. Since the grounding of each positive atom
in the rule body is responsible for the generation of a tuple in Datalog±, we extract a
sorted list of all variables occurring in positive atoms of the rule body bodyVars. Finally,
the tuple ID is generated by assigning it to a list starting with the string “f<ruleID>”,
followed by the list of positive body variables bodyVars and a string label. The strings
“f<ruleID>” and label were added, as we use “f<ruleID>” to identify the translated rules of
the processed operator at the current translation step, while label provides additional
information when needed.

This setup preserves generated duplicates of SPARQL bag semantics in Warded Datalog±

set semantics by utilizing their provenance information to make them distinguishable.
Furthermore, it provides information for debugging/explanation purposes of the reasoning
process, as each tuple carries the information which rule and grounding have led to its
generation. As an added bonus, this layer of abstraction may be used to adapt different
duplicate generation semantics/strategies as might be necessary for different applications
by simply exchanging the skolFG by any self-implemented solution.
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6.6 Experimental Evaluation
In this section, we report on the experimental evaluation of the SparqLog system. We
want to give a general understanding of the behavior of SparqLog in the following three
areas: (1) we first analyze various benchmarks available in the area to identify coverage
of SPARQL features and which benchmarks to use subsequently in our evaluation, (2) we
analyze the compliance of our system with the SPARQL standard using the identified
benchmarks, and set this in context with the two state-of-the-art systems Virtuoso and
Fuseki, and, finally, (3) we evaluate the performance of query execution of SparqLog
and compare it with state-of-the-art systems for SPARQL query answering and reasoning
over ontologies, respectively. We thus put particular emphasis on property paths and
their combination with ontological reasoning.

6.6.1 Benchmark Analysis
In this section, we take a deeper look at current state-of-the-art benchmarks for executing
SPARQL queries. Following Saleem et al. (2019), we analyze the following benchmarks:
BowlognaBench (Bowlogna) (Demartini et al., 2011), TrainBench (Szárnyas et al., 2018a),
Berlin SPARQL Benchmark (BSBM) (Bizer and Schultz, 2009), SP2Bench (Schmidt et al.,
2008), Waterloo SPARQL Diversity Test Suite (WatDiv) (Aluç et al., 2014), LDBC Social
Network Benchmark Business Intelligence Workload (SNB-BI) (Szárnyas et al., 2018b),
LDBC SNB Interactive Workload (SNB-INT) (Erling et al., 2015), FEASIBLE (Saleem
et al., 2015), Fishmark (Bail et al., 2012), DBpedia SPARQL Benchmark (DBPSB)
(Morsey et al., 2011), and BioBench (Wu et al., 2014). Note that FEASIBLE is not
directly a benchmark but a query generator, producing queries from real-world query
logs. We employed FEASIBLE on two query logs, provided at FEASIBLE’s GitHub
repository4, namely on the Semantic Web Dog Food (SWDF) and on the DBPedia query
log. We refer to the resulting FEASIBLE benchmark from SWF as FEASIBLE (S) and
respectively from DBPedia as FEASIBLE (D).

The aim of this analysis is to identify the set of SPARQL features that are covered by
the queries of each benchmark, thereby getting some notion of how exhaustively the
benchmarks cover the SPARQL language. To reach this goal, we count the SPARQL
features of each benchmark query. Following a similar approach as Saleem et al. (2019),
we count each feature once per query in which it occurs, with one exception being the
DISTINCT feature. As in (Saleem et al., 2019), we count the DISTINCT feature only if
it is applied to the entire query. This is also in line with our interest of testing bag and
set semantics in combination with different SPARQL features.

Table 6.4 represents the result of our exploration of the SPARQL feature coverage of
the considered benchmarks. Particularly heavily used SPARQL features are marked
in blue , while missing SPARQL features are marked in orange . The abbreviations
of the columns represent the following SPARQL features: DIST[INCT], FILT[ER],

4https://github.com/dice-group/feasible (last visited 09/25/2023)
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REG[EX], OPT[IONAL], UN[ION], GRA[PH], P[roperty Path] Seq[uential], P[roperty
Path] Alt[ernative], GRO[UP BY].

Benchmark DIST FILT REG OPT UN GRA PSeq PAlt GRO

Sy
nt

he
ti

c

Bowlogna 5.9 41.2 11.8 0.0 0.0 0.0 0.0 0.0 76.5
TrainBench 0.0 41.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
BSBM 25.0 37.5 0.0 54.2 8.3 0.0 0.0 0.0 0.0
SP2Bench 35.3 58.8 0.0 17.6 17.6 0.0 0.0 0.0 0.0
WatDiv 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SNB-BI 0.0 66.7 0.0 45.8 20.8 0.0 16.7 0.0 100.0
SNB-INT 0.0 47.4 0.0 31.6 15.8 0.0 5.3 10.5 42.1

R
ea

l

FEASIBLE (D) 56.0 58.0 14.0 28.0 40.0 0.0 0.0 0.0 0.0
FEASIBLE (S) 56.0 27.0 9.0 32.0 34.0 10.0 0.0 0.0 25.0
Fishmark 0.0 0.0 0.0 9.1 0.0 0.0 0.0 0.0 0.0
DBPSB 100.0 44.0 4.0 32.0 36.0 0.0 0.0 0.0 0.0
BioBench 39.3 32.1 14.3 10.7 17.9 0.0 0.0 0.0 10.7

Table 6.4: Feature coverage of SPARQL benchmarks (Saleem et al., 2019)

In contrast to (Saleem et al., 2019), we do not limit our benchmark analysis to SELECT
queries, but rather analyze all queries provided at the GitHub repository of the dice
group5. Therefore, we also analyze the DESCRIBE queries of, e.g., the BSBM benchmark.
Moreover, since the query file of the SP2Bench benchmark does not contain the hand-
crafted ASK queries provided on its homepage6, we have chosen to add these to the
benchmark to be able to analyze the complete query-set of SP2Bench. For these reasons,
the results of overlapping SPARQL features and benchmarks from our analysis in Table
6.4 and the one of (Saleem et al., 2019) differ slightly.

Furthermore, note that we do not display basic features, such as Join, Basic Graph
Pattern, etc. in Table 6.4, as these features are, of course, covered by each of the considered
benchmarks. Moreover, we have chosen to only include the REGEX filter constraint in
the feature coverage table and no other specific constraints, as the REGEX function is
argued to be of vital importance for SPARQL users in (Saleem et al., 2019). For this
reason, we have chosen to cover this feature with our translation engine in addition to
the other filter constraints. Finally, we have not included the SPARQL features MINUS
and the inverted, zero-or-one, zero-or-more, one-or-more and negated property path, as
none of the selected benchmarks covers any of these SPARQL features.

Table 6.4 reveals that no benchmark covers all SPARQL features. Even more, SNB-BI
and SNB-INT are the only benchmarks that contain property paths. Yet, they cover
merely the sequential (PSeq) and alternative property path (PAlt), which in principle
correspond to the JOIN and UNION operator. This means that no existing benchmark
covers recursive property paths (though we will talk about the benchmark generator
gMark (Bagan et al., 2017) later), which are one of the most significant extensions

5https://hobbitdata.informatik.uni-leipzig.de/benchmarks-data/queries/ (last visited 09/25/2023)
6http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/queries.php (last visit: 09/25/2023)
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provided by SPARQL 1.1. Our analysis of SPARQL benchmarks leads us to the following
conclusions for testing the compliance with the SPARQL standard and for planning the
performance tests with SparqLog and state-of-the-art systems.

Evaluating Compliance With the SPARQL Standard. Based on the results of
Table 6.4, we have chosen the following three benchmarks to evaluate the compliance
of our SparqLog system with the SPARQL standard: (1) We have identified FEASI-
BLE (S) (Saleem et al., 2015) as the real-world benchmark of choice, as it produces the
most diverse test cases (Saleem et al., 2019) and covers the highest amount of features; (2)
SP2Bench (Schmidt et al., 2008) is identified as the synthetic benchmark of choice since
it produces synthetic datasets with the most realistic characteristics (Saleem et al., 2019);
(3) finally since no benchmark that employs real-world settings provides satisfactory
coverage of property paths, we have additionally chosen BeSEPPI (Skubella et al., 2019)
– a simplistic, yet very extensive benchmark specifically designed for testing the correct
and complete processing of property paths. We report on the results of testing the
compliance of our SparqLog system as well as Fuseki and Virtuoso in Section 6.6.2.

Performance Benchmarking. For the empirical evaluation of query execution times
reported in Section 6.6.3, we have identified SP2Bench as the most suitable benchmark,
as it contains hand-crafted queries that were specifically designed to target query opti-
mization. Since none of the existing benchmarks for SPARQL performance measurements
contains recursive property paths, we have included instances generated by the benchmark
generator gMark (Bagan et al., 2017) and report extensive results of this important
aspect. In order to include in our tests also the performance measurements for the
combination of property paths with ontologies, we have further extended SP2Bench with
an ontology containing subPropertyOf and subClassOf statements and report the results
in Section 6.6.4.

6.6.2 SPARQL Compliance Tests
As detailed in Section 6.6.1, we have selected three benchmarks (BeSEPPI, SP2Bench
and FEASIBLE (S)) for evaluating the standard-compliance of the chosen three systems
(SparqLog, Jena Fuseki, and OpenLink Virtuoso). For the SPARQL compliance tests, we
use Apache Jena Fuseki 3.15.0 and Virtuoso Open Source Edition, version 7.2.5. The
tests are run on a Windows 10 machine with 8GB of main memory. In this section, we
explain the setup of the standard-compliance tests that we performed on our SparqLog
system and the two state-of-the-art SPARQL engines Fuseki and Virtuoso. Moreover, we
mention some challenges with these tests and provide further details on the outcome of
the compliance tests.

Benchmark Generation

In order to carry out our standard-compliance tests, we first have to make the queries
and the data provided by the benchmarks accessible to the tested systems. While this
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turns out to be an easy task for BeSEPPI and SP2Bench, some care is required for the
FEASIBLE (S) benchmark.

BeSEPPI and SP2Bench. The BeSEPPI benchmark contains queries and a dataset
for the evaluation of property path queries. Its dataset can be directly loaded into the
selected systems and its queries can be directly executed. The SP2Bench benchmark
contains 17 hand-crafted queries and a benchmark dataset generator. For the purpose of
our compliance tests, we have generated a dataset with 50k triples, which was loaded
into each of the considered systems.

FEASIBLE. The FEASIBLE benchmark contains a query generator, which generates
queries for an arbitrary dataset that provides a query log. In the case of the FEASIBLE (S)
benchmark, we have chosen the Semantic Web Dog Food (SWDF) dataset and generated
100 queries using the SWDF query log. However, some additional work was required
before we could use the FEASIBLE (S) benchmark for our tests.

The first complication arises from the fact that Vadalog uses Java sorting semantics,
whereas the SPARQL standard defines its own ordering semantics. We had to remove
LIMIT and OFFSET from each query of the FEASIBLE (S) benchmark, as queries with
these features can only be reasonably evaluated (comparing the generated query results,
rather than only checking if their cardinalities are equal) if the results are sorted and
if each considered RDF query and storage system provides the same sorting semantics.
Some queries of the generated benchmark only differed from each other in the argument
of the LIMIT or OFFSET clause. Thus, after removing all LIMIT and OFFSET clauses,
we ended up with duplicate queries. These duplicate queries were eliminated, leaving the
FEASIBLE (S) benchmark with a total number of 77 unique queries.

Moreover, Vadalog does currently not support UTF-8 characters. We were, therefore,
faced with the necessity of changing the encoding of the SWDF dataset of the FEASI-
BLE (S) benchmark. We have made the plausible assumption that dropping non-ASCII
characters from RDF strings would not lead to vastly different results and we have,
therefore, simply deleted all non-ASCII characters from the SWDF dataset.

Furthermore, since the FEASIBLE (S) benchmark includes queries with the GRAPH
feature (which selects the graph IRI of RDF triples), we have loaded the SWDF dataset
both into the default graph of each tested system and into a named graph for the
FEASIBLE benchmark to be able to test the GRAPH feature.

Challenges of the Evaluation Process

The evaluation of the standard compliance of the three chosen systems requires the
comparison of query results. In the case of BeSEPPI, the benchmark also provides the
expected result for each query. We, therefore, have to compare the results produced by
each of the three systems with the correct result defined by the benchmark itself. In
contrast, FEASIBLE and SP2Bench do not provide the expected results for their queries.
We, therefore, use a majority voting approach to determine the correct answer. That is,
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we compare the query results produced by the three considered systems and accept a
result as the expected query answer if it is equal to the generated query result of at least
two of the tested systems.

A major challenge for comparing query results (both when comparing the result produced
by one system with the expected result defined by the benchmark itself and when
comparing the results produced by two systems) comes from blank nodes. On the one
hand, each system employs its own specific functionality for assigning blank node names.
Therefore, to compare blank nodes between the different result multisets, a mapping
between the internal system-specific blank node names has to be found. However, finding
such a mapping comes down to finding an isomorphism between two arbitrarily sized
tables containing only blank nodes, which requires exponential time in the worst case
and poses a severe problem for large result multisets with many blank nodes. We have,
therefore, tried out a simple heuristic to find a suitable mapping between blank nodes by
sorting the query results without considering blank node names first. We then iterate
over both results, and finally, each time a new blank node name is encountered, we save
the mapping between the system-specific blank node names. Even though this is a very
simple heuristic, it has worked quite well in many cases. Nevertheless, there are cases
where this simple procedure infers wrong blank node mappings, even though the results
are semantically equivalent. Hence, due to the instability of this efficient blank node
checking heuristic, we have chosen to remove the evaluation of blank nodes from our
compliance tests. That is, our current evaluation test suite does, for this reason, not
distinguish between different blank node names, but, of course, it distinguishes between
all other terms.

Outcome of the Compliance Tests

FEASIBLE (S). The FEASIBLE(S) benchmark contains 77 queries that we used
for testing the standard-conformant behavior. It turned out that both SparqLog and
Fuseki fully comply with the standard on each of the 77 queries, whereas Virtuoso does
not. More specifically, for 14 queries, Virtuoso returned an erroneous result by either
wrongly outputting duplicates (e.g., ignoring DISTINCTs) or omitting duplicates (e.g.,
by handling UNIONs incorrectly). Moreover, in 18 cases, Virtuoso was unable to evaluate
the query and produced an error.

SP2Bench. The SP2Bench benchmark contains 17 queries in total and is specifically
designed to test the scalability of SPARQL engines. All three considered systems produce
identical results for each of the 17 queries.

BeSEPPI. The BeSEPPI benchmark contains 236 queries specifically designed to
evaluate the correct and complete support of property path features. Table 6.5 shows
the detailed results of the experimental evaluation of the three considered systems on
this benchmark. We distinguish four types of erroneous behavior: correct but incomplete
results (i.e., the mappings returned are correct, but there are further correct mappings
missing), complete but incorrect (i.e., no correct mapping is missing, but the answer
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falsely contains additional mappings), incomplete and incorrect, or failing to evaluate the
query and returning an error instead. The entries in the table indicate the number of
cases for each error type. We see that Fuseki and SparqLog produce the correct result in
all 236 cases. Virtuoso only handles the queries with inverse, sequence, and negated path
expressions 100% correctly. For queries containing alternative, zero-or-one, one-or-more,
or zero-or-more path expressions, Virtuoso is not guaranteed to produce the correct result.
The precise number of queries handled erroneously is shown in the cells marked red .
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Inverse 0 0 0 0 0 0 0 0 0 0 0 0 20
Sequence 0 0 0 0 0 0 0 0 0 0 0 0 24

Alternative 3 0 0 0 0 0 0 0 0 0 0 0 23
Zero or One 0 0 0 3 0 0 0 0 0 0 0 0 24
One or More 10 0 0 8 0 0 0 0 0 0 0 0 34
Zero or More 0 0 0 7 0 0 0 0 0 0 0 0 38

Negated 0 0 0 0 0 0 0 0 0 0 0 0 73
Total 13 0 0 18 0 0 0 0 0 0 0 0 236

Table 6.5: Compliance test results with BeSEPPI

Next, we take a more detailed look at the problems that Virtuoso is currently facing
with property path expressions. As already observed by Skubella et al. (2019), Virtuoso
produces errors for zero-or-one, zero-or-more, and one-or-more property paths that
contain two variables. Furthermore, the error messages state that the transitive start
is not given. Therefore, we come to the same conclusion as Skubella et al. (2019) that
these features were most likely left out on purpose since Virtuoso is based on relational
databases, and it would require huge joins to answer such queries. Moreover, we have
noticed that the errors for inverse negated property paths (reported in (Skubella et al.,
2019)) have been fixed in the current OpenLink Virtuoso release.

Virtuoso produces 10 incomplete results when evaluating one-or-more property path
queries. As already discovered by Skubella et al. (2019), they all cover cases with cycles
and miss the start node of the property path, indicating that the one-or-more property
path might be implemented by evaluating the zero-or-more property path first and simply
removing the start node from the computed result. Finally, in contrast to the results
of Skubella et al. (2019), we have found that the current version of OpenLink Virtuoso
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generates wrong answers for queries that contain alternative property paths. Virtuoso
generates incomplete results for three alternative property path queries, which differ
from the results of Fuseki and SparqLog by missing all duplicates that should have been
generated.

To conclude, while SparqLog and Fuseki handle all considered queries from the three
chosen benchmarks correctly, Virtuoso produces a significant number of errors.

6.6.3 Query Answering Performance
Experimental Setup. Our benchmarks were executed on a system running openSUSE
Leap 15.2 with dual Intel(R) Xeon(R) Silver 4314 16-core CPUs, clocked at 3.4 GHz, with
512GB RAM, of which 256GB were reserved for the system under test, and 256GB for the
operating system. For each system, we set a time-out of 900s. We start each benchmark
by repeating the same warm-up queries 5 times and by 5 times loading and deleting
the graph instance. Furthermore, we did 5 repetitions of each query (each time deleting
and reloading the dataset). We use Apache Jena Fuseki 3.15.0, Virtuoso Open Source
Edition 7.2.5, and Stardog 7.7.1 for our experiments. Vadalog loads and queries the
databases simultaneously. Hence, to perform a fair comparison with competing systems,
we compare their total loading and querying time to the total time that SparqLog needs
to answer the query. Since loading includes index building and many more activities, we
delete and reload the database each time we run a query (independent of warm-up or
benchmark queries).

Performance on General SPARQL Queries

SP2Bench is a benchmark targeting query optimization and computation-intensive queries.
We have visualized the result in Figure 6.5, finding that SparqLog reaches competitive
performance with Virtuoso and significantly outperforms Fuseki on most queries.

Performance on Property Path Queries

Since current SPARQL benchmarks provide only rudimentary coverage of property
path expressions, we have evaluated SparqLog, Fuseki, and Virtuoso using the gMark
benchmark generator (Bagan et al., 2017), a domain- and language-independent graph
instance and query workload generator which focuses explicitly on path queries, i.e.,
queries over property paths. We have evaluated SparqLog’s, Fuseki’s, and Virtuoso’s
path query performance on the test7 and social8 demo scenarios. Each of these two demo
scenarios provides 50 SPARQL queries and a graph instance. Since the graph instances
consist of triples of entity and relation IDs, we had to translate the graph instance to
RDF by replacing any entity ID α with <http://ex.org/gMark/α> and any relation ID β
with <http://ex.org/gMark/pβ>. Table 6.6 provides further details on the benchmarks
we used to evaluate a system’s query execution time.

7https://github.com/gbagan/gMark/tree/master/demo/test (last visited 09/25/2023)
8https://github.com/gbagan/gMark/tree/master/demo/social (last visited 09/25/2023)
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Figure 6.5: SP2Bench benchmark results

Benchmark #Triples #Predicates #Queries
Social (gMark) 226,014 27 50
Test (gMark) 78,582 4 50

SP2Bench 50,168 57 17

Table 6.6: Benchmark statistics

System SparqLog Fuseki Virtuoso
#Not Supported 0 0 12

#Time- and Mem-Outs 1 16 1
#Incomplete Results 0 0 16

Total 1 16 29

Table 6.7: Benchmark results on Social (gMark)

System SparqLog Fuseki Virtuoso
#Not Supported 0 0 9

#Time- and Mem-Outs 1 21 5
#Incomplete Results 0 0 4

Total 1 21 18

Table 6.8: Benchmark results on Test (gMark)

Table 6.7 and 6.8 reveal the results on the gMark benchmarks. Specifically, the tables state
the number of queries of the respective benchmark that a system (1) does not support,
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(2) answered with a time- or mem-out (out-of-memory) exception, or (3) answered with
an incomplete result. Furthermore, the tables present the total number of queries that
could not be (correctly) answered by the systems. Figures 6.6 and 6.7 visualize the query
execution time of the three systems per benchmarks. A bar reaching 900s represents a
time-out. A missing bar represents a mem-out, a faulty result, or that a query was not
supported. We have excluded Query 31 from the gMark social benchmark and Query 15
from the gMark test benchmark, as none of the three systems managed to answer these
queries. In the following, we compare the results of the three systems on gMark:

Virtuoso could not (correctly) answer 48 of the in total 100 queries of the gMark Social
and Test benchmark. Thus, it could not correctly answer almost half of the queries
provided by both gMark benchmarks, which empirically reveals its dramatic limitations
in answering complex property path queries. In 20 of these 48 cases, Virtuoso returned
an incomplete result. While in solely 3 incomplete result cases, Virtuoso missed solely
one tuple in the returned result multi-set; in the remaining 17 incomplete result cases,
Virtuoso produces either the result tuple null or an empty result multi-set instead of the
correct non-null/non-empty result multi-set. In the other 28 cases, Virtuoso failed either
due to a time-, mem-out, or due to not supporting a property path with two variables.
This exemplifies severe problems with handling property path queries.

Fuseki suffered on 37 of the in total 100 queries of the gMark Social and Test benchmark
a time-out (i.e., took longer than 900s for answering the queries). Thus, it timed out on
more than a third of gMark queries, which empirically reveals its significant limitations
in answering complex property path queries.

SparqLog managed to answer 98 of gMark’s (in total 100) queries within less than 200s
and timed out on solely 2 queries (see Figures 6.6 and 6.7). These results reveal our
system’s strong ability to answer queries containing complex property paths. Furthermore,
each time when both Fuseki and SparqLog returned a result, the results were equal, even
further empirically confirming the correctness of our system (i.e., that our system follows
the SPARQL standard).

In conclusion, the benchmark results on SP2Bench, GMark (Social), and GMark (Test)
show that SparqLog (1) is highly competitive with Virtuoso on regular queries with
respect to query execution time (see Figure 6.5), (2) follows the SPARQL standard much
more accurately than Virtuoso and supports more property path queries than Virtuoso
(see Tables 6.7 and 6.8), and (3) dramatically outperforms Fuseki on query execution
while keeping its ability to follow the SPARQL standard accurately.

6.6.4 Ontological Reasoning Performance
One of the main advantages of our SparqLog system is that it provides a uniform and
consistent framework for reasoning and querying Knowledge Graphs. We, therefore,
wanted to measure the performance of query answering in the presence of an ontology.
Since Fuseki and Virtuoso do not provide such support, we compare SparqLog with
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Figure 6.6: gMark Social benchmark results
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Figure 6.7: gMark Test benchmark results
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Stardog, a commonly accepted state-of-the-art system for reasoning and querying within
the Semantic Web. Furthermore, we created a new ontology benchmark for reasoning
and querying KGs by extending the SP2Bench dataset with (i) ontological concepts
such as subPropertyOf and subClassOf, and (ii) ten queries containing these ontological
concepts together with property paths. We list the used ontologies and queries below:

1 # Ontology
2 bench:Journal rdfs:subClassOf foaf:Document.
3 bench:Proceedings rdfs:subClassOf foaf:Document.
4 bench:Inproceedings rdfs:subClassOf foaf:Document.
5 bench:Article rdfs:subClassOf foaf:Document.
6 bench:Www rdfs:subClassOf foaf:Document.
7 bench:MastersThesis rdfs:subClassOf foaf:Document.
8 bench:PhDThesis rdfs:subClassOf foaf:Document.
9 bench:Incollection rdfs:subClassOf foaf:Document.

10 bench:Book rdfs:subClassOf foaf:Document.
11 dc:title rdfs:subPropertyOf dc:description.
12 swrc:volume rdfs:subPropertyOf dc:description.
13 dcterms:issued rdfs:subPropertyOf dc:description.
14
15 % Query 0
16 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
17 SELECT *
18 WHERE {?s a foaf:Document.}
19
20 % Query 1
21 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
22 PREFIX dc: <http://purl.org/dc/elements/1.1/>
23 SELECT *
24 WHERE {?s dc:description ?o.}
25
26 % Query 2
27 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
28 PREFIX dc: <http://purl.org/dc/elements/1.1/>
29 PREFIX swrc: <http://swrc.ontoware.org/ontology#>
30 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
31 SELECT distinct *
32 WHERE {
33 foaf:Document
34 ^rdf:type/swrc:journal/dc:description
35 ?o.
36 }
37
38 % Query 3
39 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
40 PREFIX dc: <http://purl.org/dc/elements/1.1/>
41 PREFIX swrc: <http://swrc.ontoware.org/ontology#>
42 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
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43 SELECT *
44 WHERE {
45 foaf:Document
46 ^rdf:type/swrc:journal/dc:description
47 ?o.
48 }
49
50 % Query 4
51 PREFIX dcterms: <http://purl.org/dc/terms/>
52 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
53 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
54 PREFIX dc: <http://purl.org/dc/elements/1.1/>
55 SELECT distinct * WHERE {
56 ?s
57 (^dc:creator/dc:creator)+
58 <http://localhost/persons/Paul_Erdoes>.
59 }
60
61 % Query 5
62 PREFIX dcterms: <http://purl.org/dc/terms/>
63 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
64 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
65 PREFIX dc: <http://purl.org/dc/elements/1.1/>
66 PREFIX swrc: <http://swrc.ontoware.org/ontology#>
67 SELECT distinct * WHERE {
68 ?s
69 (^dc:creator/swrc:journal/^swrc:journal/dc:creator)+
70 <http://localhost/persons/Paul_Erdoes>.
71 }
72
73 % Query 6
74 PREFIX dcterms: <http://purl.org/dc/terms/>
75 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
76 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
77 PREFIX dc: <http://purl.org/dc/elements/1.1/>
78 SELECT distinct * WHERE {
79 <http://localhost/persons/Paul_Erdoes>
80 (^dc:creator/dc:creator)+
81 ?o.
82 }
83
84 % Query 7
85 PREFIX dcterms: <http://purl.org/dc/terms/>
86 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
87 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
88 PREFIX dc: <http://purl.org/dc/elements/1.1/>
89 PREFIX swrc: <http://swrc.ontoware.org/ontology#>
90 SELECT distinct * WHERE {
91 <http://localhost/persons/Paul_Erdoes>
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92 (^dc:creator/swrc:journal/^swrc:journal/dc:creator)+
93 ?o.
94 }
95
96 % Query 8
97 PREFIX dcterms: <http://purl.org/dc/terms/>
98 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
99 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

100 PREFIX dc: <http://purl.org/dc/elements/1.1/>
101 SELECT distinct * WHERE {
102 ?s (^dc:creator/dc:creator)+ ?o.
103 }
104
105 % Query 9
106 PREFIX dcterms: <http://purl.org/dc/terms/>
107 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
108 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
109 PREFIX dc: <http://purl.org/dc/elements/1.1/>
110 PREFIX swrc: <http://swrc.ontoware.org/ontology#>
111 SELECT distinct * WHERE {
112 ?s
113 (^dc:creator/swrc:journal/^swrc:journal/dc:creator)+
114 ?o.
115 }

Furthermore, observe that SP2Bench’s dataset represents people as blank nodes (such as
_:Paul_Erdoes). However, comparing query results containing blank nodes is challeng-
ing, as this basically comes down to finding a mapping between the internal system-specific
blank node names, which may require exponential time (see Section 6.6.2 for details).
Thus, to simplify the query result comparisons, we exchange blank nodes _:BName with the
name BName by IRIs of the form <http://localhost/persons/BName> in our ontology
benchmark dataset. For example, we use <http://localhost/persons/Paul_Erdoes>
instead of the blank node _:Paul_Erdoes.

Figure 6.8 shows the outcome of our ontology benchmark. In summary, we note that
SparqLog is faster than Stardog on most queries. Particularly interesting are Queries 4
and 5, which contain recursive property path queries with two variables. Our engine
needs on Query 4 only about a fifth of the execution time of Stardog, and it can even
answer Query 5, on which Stardog times outs (using a timeout of 900s). On the other
queries, Stardog and SparqLog perform similarly.

To conclude, our new SparqLog system not only follows the SPARQL standard but
also shows good performance. Even though SparqLog is a full-fledged, general-purpose
Knowledge Graph management system and neither a specialized SPARQL engine nor a
specialized ontological reasoner, it is highly competitive with state-of-the-art SPARQL
engines and reasoners, and it even outperforms them in answering property path queries
and particularly hard cases.
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Figure 6.8: Ontology benchmark results

6.7 Summary
In this work we have reached our third and final research goal (G3), by developing Spar-
qLog, a uniform and consistent KG management system that satisfies the requirements
(R1–R5) of the SW and DB community. To satisfy R1 and R2, we have (R1) provided a
uniform and fairly complete theoretical translation of SPARQL into Warded Datalog±

that (R2) follows the SPARQL standard by considering bag semantics. Additionally,
we have proved the correctness of this translation. Furthermore, as Warded Datalog±

supports existential quantification, choosing it as the base language allows for ontological
reasoning under the OWL 2 QL profile, as required by R3. Moreover, as Warded Datalog±

is a Datalog dialect, it trivially satisfies R4 by allowing for full recursion. In addition, as
Warded Datalog± provides an implemented system, namely Vadalog, we could introduce
the SparqLog engine, an implementation of our SPARQL translation on top of Vadalog,
thereby satisfying R5. Finally, we have provided an extensive experimental evaluation,
considering the compliance of our system to the SPARQL standard and its query ex-
ecution time (also under ontologies). We note that the contribution of the SparqLog
engine can be seen in two ways: (1) as a stand-alone translation engine for SPARQL into
Warded Datalog±, and (2) as a full Knowledge Graph engine by using our translation
engine together with the Vadalog system. To facilitate the comfortable reuse of our work,
we provide SparqLog’s source code in a public GitHub repository9. Thereby, we have
bridged the data management divide, bringing the KG management systems of the DB
and SW communities closer together.

9https://github.com/joint-kg-labs/SparqLog
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CHAPTER 7
Conclusion and Future Work

In this dissertation, we have identified three dimensions dividing KG research from the
ML, DB, and SW communities, namely the reasoning, scalability, and data management
divides (see Chapter 1). To overcome these divisions, we formulated desired properties
of potential solutions by deriving three research goals G1–G3 (see Chapter 1). The key
aim of this work is to break down barriers across communities and their research on
KGs. Thus, we briefly recall the identified divisions and derived research goals before
summarizing our proposed solutions in Section 7.1. Next, we study the broader impact of
our achieved goals and point to promising future research directions in Section 7.2. Finally,
we discuss concrete open research problems together with future work in Section 7.3.

7.1 Conclusion
G1: Solving the Reasoning Divide. The reasoning divide states that while the DB
and SW communities employ a broad set of logical rules to express the key properties
of stored data, contemporary KGEs from the ML community are severely constrained
in their expressivity of such rules (cf., Table 1.1). Due to this restriction, (G1) more
expressive KGEs that are capable of capturing all core inference rules (which are defined
in Section 2.1) are required. In order to overcome the reasoning divide, Chapter 4
introduces the spatio-functional embedding model ExpressivE that captures rules via
spatial relations of hyper-parallelograms. Thereby, ExpressivE embeddings offer an
intuitive and consistent geometric interpretation of their captured rules. In Theorem 4.2.2,
Theorem 4.2.4, and Corollary 4.2.5, we exploit the offered geometric interpretation to
prove that ExpressivE captures all core inference rules. Thereby, we do not only reach
G1 but find the first KGE capable of capturing both general composition and hierarchy
jointly (cf., Table 1.1). In addition, we prove that our model is fully expressive, i.e., it can
represent any graph, making ExpressivE the first KGE with this capability that supports
composition. Finally, we evaluate ExpressivE on the two standard KGC benchmarks and
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find that ExpressivE is competitive with state-of-the-art gKGEs on FB15k-237 and even
significantly outperforms them on WN18RR. Chapter 4 provides more details on each of
these results and additional theoretical and empirical analyzes.

G2: Solving the Scalability Divide. The scalability divide poses another critical
barrier between KG research efforts, as it sheds light on the efficiency problems of
current KGEs, hindering their application on enormous KGs offered by the SW and DB
communities. These efficiency problems arise from relying on (i) more complex embedding
spaces or (ii) high embedding dimensionalities for strong prediction performance, raising
the space and time requirements of the respective KGEs (see Section 3.2). Thus, the
scalability problem calls for (G2) the design of highly resource-efficient models. Based
on ExpressivE, Chapter 5 introduces the lightweight SpeedE model that addresses both
efficiency problems simultaneously. SpeedE is a Euclidean gKGE (addressing Point A)
that removes redundant parameters from ExpressivE, halving its inference time while
still capturing all core inference rules (proven in Theorem 5.1.1). To address Point B,
SpeedE’s distance function introduces scalar parameters that allow for more flexible
representations, raising its KGC performance using low-dimensional embeddings while
keeping ExpressivE’s intuitive geometric interpretation. We evaluate SpeedE on the three
standard KGC benchmarks, finding that it is competitive with state-of-the-art gKGEs
on FB15k-237 and even outperforms them significantly on WN18RR and the massive
YAGO3-10 benchmark. Most importantly, we find that SpeedE preserves ExpressivE’s
KGC performance on WN18RR with solely a fourth of the parameters and a fifth of
the training time of ExpressivE (Table 5.11, also cf. Section 5.3.3). In total, we reach
G2 by proposing the highly scalable SpeedE model that maintains low space and time
requirements while reaching strong KGC performance using low-dimensional embeddings.
Chapter 5 presents an elaborate discussion on each of these results together with additional
findings.

G3: Solving the Data Management Divide. The data management divide reveals
that the modeling, querying, and reasoning frameworks for KGs in SW and DB systems
are incompatible. Therefore, combining KGs can be a difficult task, demanding (G3)
a uniform and consistent KG management system that satisfies the requirements (R1–
R5) of both communities (introduced in Section 1.3). Chapter 6 tackles the data
management divide by proposing the SparqLog system, which translates the standard
modeling (RDF) and querying (SPARQL) languages of the SW into a DB language
(Warded Datalog±). Thereby, SparqLog satisfies the first SW requirement (R1), namely
the support of the most commonly used SPARQL features. For a list of its covered
SPARQL features, see Table 6.1. In addition, we prove and empirically validate that
SparqLog complies with the SPARQL standard. Thus, our system meets the second
SW requirement (R2), namely the support of bag semantics as specified in the standard.
Furthermore, Warded Datalog± straight-forwardly allows the expression of SW ontologies
(under OWL 2 QL). Thus, SparqLog accomplishes the last SW requirement, i.e., the
support of ontological reasoning. As full recursion is the main feature of Datalog, the DB
requirement to support full recursion (R4) is trivially satisfied as Warded Datalog± is a
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Datalog dialect. Finally, to comply with the last requirement (R5), we have implemented
the SparqLog system to allow for its usage in real-world applications. Additionally,
we have benchmarked SparqLog’s query-execution time, finding that it is comparable
with other SPARQL systems, such as Fuseki or Virtuoso, and reasoning systems, such
as Stardog, outperforming them significantly on complex queries containing recursive
property paths and involving ontologies. Ultimately, we find that SparqLog satisfies all
identified requirements (R1–R5) and, thereby, reaches G3. Chapter 6 provides full details
on the briefly presented results.

Final Discussion. In total, we have identified and studied three open problems that
divide the KG research between the ML, DB, and SW communities. Toward bridging
these divisions, we expressed favorable properties of potential solutions in the form of
research goals (G1–G3). We reached G1–G3 by proposing concepts for a KG management
system and KGEs that we (i) studied theoretically to reveal their strong representation
and inference capabilities; (ii) implemented into practical systems that we made publicly
available to allow for their comfortable reuse1 2 3; and (iii) benchmarked to show
their superiority over state-of-the-art solutions, in terms of prediction performance and
efficiency. Thus, by proposing solutions to overcome the reasoning, scalability, and data
management divide, our work contributes toward breaking down the walls separating
different communities and extending the foundations for inter-disciplinary KG research
while solving vital open problems of the real world.

7.2 Broader Picture and Future Directions

This section switches from the view of individual research results to a broader, holistic view
of this dissertation’s results and discusses promising future directions. Fundamentally,
any KG management systems should allow for at least the following crucial capabilities,
including the ability to (i) represent knowledge about the real world, (ii) capture and
reason over data properties, and (iii) query its stored information. Although these three
parts are at the core of any data management research, many complex challenges remain.

Querying and Reasoning in Incomplete KGs. First, as KGs are inherently incom-
plete, solutions for querying incomplete KGs need to be found. Although KGEs have
been developed to answer simple queries over incomplete KGs, they lack the capabilities
to capture and reason over vital data properties, such as general composition rules
(cf., Table 1.1). We identified this challenge as the reasoning divide and bridged it by
proposing the spatio-functional embedding model ExpressivE (see Chapter 4 for details)
that, among its favorable representation capabilities, can represent any graph (i.e., is
fully expressive) and can capture relevant rules for modeling key data properties (i.e.,
captures the core inference rules).

1ExpressivE: https://github.com/AleksVap/ExpressivE
2SpeedE: https://github.com/AleksVap/SpeedE
3SparqLog: https://github.com/joint-kg-labs/SparqLog
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Complex Query Answering. Still more challenges remain, particularly most KGEs
(Trouillon et al., 2016; Sun et al., 2019; Zhang et al., 2019; Lu and Hu, 2020; Abboud
et al., 2020; Pavlović and Sallinger, 2023b, 2024c; Charpenay and Schockaert, 2024) solely
focus on a relatively restricted form of query answering, namely the problem of KGC that
approximately corresponds to answering atomic queries over binary relations in the DB
world; and queries solely containing a single triple pattern in the SW world (see Section 2.1
for a full discussion). Of course, in practice, more complex queries are required. Thus,
a recent line of works studied generalizations of KGC by proposing embedding-based
approaches for answering more complex queries. Approaches for complex query answering
over incomplete KGs include GQE (Hamilton et al., 2018), which supports admissible
conjunctive queries; Query2Box (Ren et al., 2020) and CQD (Arakelyan et al., 2021),
which additionally allow disjunction in queries; and BetaE (Ren and Leskovec, 2020),
ConE (Zhang et al., 2021), MLP (Amayuelas et al., 2022), and Var2Vec (Wang et al.,
2023), which allow negation and subsequently reduce the training and inference times.

Efficient Answering of Complex Queries. Still, the efficiency of most embedding-
based approaches for complex query answering over incomplete KGs is limited as they
require either (i) millions of training queries to achieve state-of-the-art performance
(Zhang et al., 2021; Amayuelas et al., 2022) or (ii) expensively pre-trained gKGEs
as a foundation to their approach (Arakelyan et al., 2021; Wang et al., 2023). Even
more, we already identified dramatic efficiency problems in the simpler KGC setting,
as contemporary gKGEs rely either on (i) more complex embedding spaces or (ii) high
embedding dimensionalities to reach state-of-the-art KGC performance (see Section 3.2).
We have identified this fundamental challenge as the scalability divide and bridged this
gap by proposing our lightweight SpeedE model (see Chapter 5 for details) that addresses
both efficiency problems simultaneously, maintaining low space and time requirements
while reaching strong KGC performance using low-dimensional embeddings. Our work
on efficient and scalable gKGEs (see Chapter 5) directly benefits many approaches for
answering complex queries (Arakelyan et al., 2021; Wang et al., 2023), including the
current state of the art, Var2Vec (Wang et al., 2023), that trains additional parameters
on top of pre-trained gKGEs, extending them to answer first-order logic queries that use
conjunction, disjunction, existential quantification, and negation.

Managing KGs in the Wild. In the real world, representation, reasoning, and query-
ing frameworks for KGs are primarily developed by the DB and the SW communities.
However, these frameworks are already incompatible with regard to their used repre-
sentation formalisms, querying languages, and reasoning capabilities. We identified this
problem as the data management divide and solved it by proposing the SparqLog system
(see Chapter 6 for details) that translates the standard modeling (RDF) and querying
(SPARQL) languages of the SW into a DB language (Warded Datalog±). Thereby, our
system allows to combine the management of KGs from different communities while
allowing to query them using SPARQL, the standard querying language of the SW,
and simultaneously reason over rules defined in Warded Datalog±. In contrast to other
systems of the SW, e.g., Fuseki, Virtuoso, and Stardog, defining ontologies with such
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Warded Datalog± rules allows SparqLog to exploit the complete power (e.g., full recursion)
of DB frameworks to capture and reason over data properties, even when querying KGs
with SPARQL. In addition, although our system is not a full-fledged SPARQL system
but a uniform and consistent system for querying and reasoning over KGs, it reaches
highly competitive performance compared to state-of-the-art SPARQL systems. Thus,
we find that SparqLog does not solely bridge the mismatch between DB- and SW-based
KG management frameworks but even combines the advantages of both worlds.

The Big Picture. With this final part in place, looking at the big picture, we see the
bridge from SPARQL to Datalog-based engines (stemming from Chapter 6), building
upon related work (Polleres and Wallner, 2013; Polleres, 2007; Polleres and Schindlauer,
2007)), hence a reasonably expressive fragment of SW queries. Adding to that is the
well-known translation from the wide-spread SW ontology languages of the OWL 2 family
to (Warded) Datalog± (Arenas et al., 2018), hence a reasonably expressive fragment of
SW ontologies. Finally, the initial but growing support of embedding-based reasoning in
Datalog± engines (Baldazzi et al., 2022), including ExpressivE and SpeedE (Chapters 4
and 5), hence reasonably expressive embedding-based reasoning. Taken together, this
allows answering both Datalog-based and SW-based queries (Chapter 6), ontological
reasoning in powerful SW languages of the OWL 2 family and Datalog± ontologies, and
embedding-based reasoning (Chapters 4 and 5) together. Yet, this is not the end of this
combination of techniques but rather the beginning, which we will discuss next.

Future Directions. A vital costly data management challenge encountered by many
large organizations is how to efficiently query and reason over their collected data, which
is typically distributed across various different data sources suited to the needs of specific
applications (Bernstein and Haas, 2008). OBDM (Ontology-Based Data Management)
mappings (Lenzerini, 2011) are one possible approach to tackle this challenge. Basically,
they define a set of rules specifying how to align and integrate diverse data sources under a
common ontology (Lenzerini, 2011). Thereby, OBDM mappings make it possible to relate
elements of different data sources to ontological concepts in a structured way, allowing
for querying and reasoning over heterogeneous data (Lenzerini, 2011). Still, an important
challenge of OBDM mappings is how to translate the elements of (often relational)
databases to ontological concepts efficiently to facilitate efficient querying and reasoning
over abstract ontological representations of the domain rather than application-dependent
database systems (Calvanese et al., 2007; Lenzerini, 2011). The work on our SparqLog
system naturally aligns with the research on OBDM mappings, as SparqLog establishes
a consistent framework for querying and reasoning over both relational databases from
the DB and ontologies of the SW side. Thus, a highly interesting path for KG research
lies in exploring how to exploit the combined reasoning and querying capabilities of
SparqLog, among other Datalog-based KG management systems, to improve the efficiency
of OBDM mappings, e.g., by directly exploiting rule-based inference. Another promising
direction for the future of KG research lies in the integration of embedding models with
KG management systems. In particular, these two frameworks could live in synergy with
each other, benefiting from their individual advantages, as we shall discuss next.
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Embeddings for KG Management. On the one hand, KG management systems
might benefit from the potential of embedding models to (i) allow for approximate query
answering, especially on very computationally intensive queries; (ii) identify semantically
similar entities, e.g., for enhancing entity resolution, which is the problem of finding and
merging entities that represent the same real-world individual; (iii) recommend plausible
links to complete the stored KG; and (iv) mine rules hidden in the data, enhancing and
extending already present ontologies.

KG Management for Embeddings. On the other hand, embedding models might
leverage the capabilities of traditional KG management systems, such as their ability to
(i) answer queries exactly, using these exact answers to improve the embedding model’s
prediction results; (ii) optimize query structures, employing the simplified structures
to ease the task of embedding queries and answer them more efficiently; (iii) apply
logical rules to filter, constrain, or extend prediction results, taking care of, e.g., legal
regulations or other constraints of the real world; (iv) reason over complex properties,
such as recursion or aggregation, which embeddings alone currently have a hard time
with; and (v) store complex knowledge. In the future, embedding KGs might make all the
knowledge stored in the KG management system, including all its triples and logical rules,
directly applicable to many downstream tasks. For instance, such knowledge-enriched
embeddings might enhance the ones of Large Language Models (LLMs) to mitigate
hallucinations, thereby tightening the bond between KG management systems and LLMs.

Embeddings and KG Management. Finally, hybrid systems might very tightly
connect KG management systems with embedding models, allowing them to continuously
refine each other. For instance, inconsistencies might be detected by a combination of
KG management systems and embedding models, triggering updates in the underlying
embeddings, triples, and rules of the KG.

Summary. In conclusion, the overall aim of this line of research is to take a step forward
at developing systems for efficient and scalable query answering over KGs in various
settings, ranging from incomplete graphs to reasoning over entailment regimes. As we
have seen, further strengthening the synergy between embeddings and KG management
systems will likely enhance the context-awareness and semantic understanding of future
solutions for representing, querying, and reasoning over KGs.

7.3 Future Work
Observe that ExpressivE (Pavlović and Sallinger, 2023b) and SpeedE (Pavlović and
Sallinger, 2024c), among other gKGEs (Trouillon et al., 2016; Sun et al., 2019; Zhang
et al., 2019; Lu and Hu, 2020; Abboud et al., 2020; Charpenay and Schockaert, 2024),
focus on the support of individual logical rules, specifically, the core inference rules.
However, KG management frameworks of the SW and DB communities, including our
SparqLog system, represent key data properties with complex logical languages.
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Recently, gKGEs have been developed for specific description logics (Özçep et al., 2020;
Mondal et al., 2021; Xiong et al., 2022; Jackermeier et al., 2024), fragments of first-order
logic commonly used by the SW community. Yet, less attention was paid to the languages
of the DB community, such as Datalog and its dialects. Aside from this, graph neural
networks (GNN) — i.e., neural networks designed for graph data — have been very
successful on inductive KGC (Mai et al., 2021; Teru et al., 2020; Zhu et al., 2021), i.e.,
KGC where the task is to predict links between entities that have not been seen during
training. However, GNNs for KGC typically suffer from scalability problems (Pavlović
et al., 2024).

In a first step toward efficient graph embeddings that can model data properties with
Datalog, we have developed ReshufflE (Pavlović et al., 2024), a GNN for inductive
KGC that can learn to exactly predict the triples inferable from an arbitrary set of general
composition rules via a bounded number of steps. Based on our results in Pavlović et al.
(2024), a highly promising future direction points at the design of graph embeddings for
specific Datalog dialects, which would tie KG research of the ML and DB communities
even closer together. Even more ambitiously, designing a graph embedding approach for
Warded Datalog± would be a key achievement for all three considered communities (ML,
DB, and SW).

Moreover, observe that SpeedE and ExpressivE use one d-dimensional vector to embed
entities and four, respectively, six d-dimensional vectors to embed relations. Thus,
ExpressivE and SpeedE have the same space complexity, which is linear in the number
of the KG’s relations and entities (i.e., O(d|E| + d|R|). A critical limitation of both
models is that they use the same dimensionality d for relations and entities. Being able to
decouple the relation and entity embedding dimensionalities might be crucial for further
raising their efficiency as (i) at an intuitive level, entities are less complex objects than
relations (which represent sets of pairs of entities) and therefore (ii) entity embeddings
might solely require a lower embedding dimensionality than relation embeddings. Since
in real-world KGs, the number of entities is typically much higher than the number of
relations, a lower entity dimensionality might further raise the model’s efficiency.

Since gKGEs naturally provide a geometric interpretation of their learned rules, how to
automatically and efficiently mine these learned rules from the embeddings — to make the
implicitly learned knowledge explicit and further raise the model’s transparency — remains
an open challenge and forms an exciting direction for future work. Another interesting
direction points at how to integrate KG embeddings in novel practical applications, such
as aligning their learned knowledge with the latent representations of LLMs.

Scaling KGEs and other KGC approaches to massive KG projects, such as DBpedia
(Auer et al., 2007) and Wikidata (Vrandecic and Krötzsch, 2014) that currently contain
billions of triples4 5, is a known open problem in the community. Most evaluation settings
of contemporary KGEs consider YAGO3-10 (Mahdisoltani et al., 2015), containing over

4https://www.wikidata.org/wiki/Property:P10209 (last visited 31/10/2024)
5https://www.dbpedia.org/about/ (last visited 31/10/2024)
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a million triples, as their largest KGC benchmark (Abboud et al., 2020; Chami et al.,
2020; Charpenay and Schockaert, 2024). While there are many orders of magnitude
between the size of YAGO3-10 in comparison to Wikidata and DBpedia, still our results
in Chapter 5 show that SpeedE can be effectively trained on YAGO3-10, using rather
limited resources. In particular, we solely employ a single GeForce RTX 2080 Ti GPU
with 11 GB of RAM. As we saw in Tables 2.1 and 5.10, under the same hyper-parameter
setting, the training time of KGEs approximately scales proportionally with the number
of triples in the dataset. Specifically, the tables show that SpeedE requires 7s per epoch
for WN18RR, containing around 90k triples; 22s for FB15k-237, containing around 270k
triples; and 88s for YAGO3-10, containing around 1.1M triples. Thus, in comparison to
SpeedE’s training time per epoch on WN18RR, SpeedE requires approximately three
times longer on FB15k-237 and twelve times longer on YAGO3-10, which contain three
and twelve times the triples of WN18RR, respectively. Based on this observation, using
stronger resources, such as an NVIDIA A100 with 100 GB of RAM, likely allows SpeedE
to train on even larger real-world KGs. Under this setting, SpeedE might be able to
embed, for instance, YAGO (Suchanek et al., 2008), a KG containing approximately 15
million triples. In the future, exploring the scalability limits of contemporary KGEs and
optimizing their performance further to tackle even larger KGs will be highly interesting.

As to our proposed SparqLog system, we naturally envisage a close to 100% coverage of
SPARQL features. Possibly more interesting, we plan to expand on the finding that query
plan optimization dramatically affects performance and investigate SPARQL-specific
query plan optimization in a unified SPARQL-Datalog± system. Finally. as we have
observed in Section 6.6.1, no benchmark currently exists that covers all or close to all of
the SPARQL 1.1 features. Thus, we note that work on a unified benchmark considering
most features would be desirable.

In summary, all investigated fields offer crucial individual problems whose solutions will
further strengthen the connection between Knowledge Graph research of the Machine
Learning, Database, and Semantic Web communities.
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