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Abstract

Neural Networks (NNs) have become prominent Machine Learning (ML) algorithms as
they achieve state-of-the-art accuracy for a wide range of data analytic applications,
such as image classification, object recognition, healthcare systems, autonomous driving
systems, and even business analytics. Therefore, deploying advanced NN algorithms,
such as deep neural networks (DNNs) and spiking neural networks (SNNs), to resource-
and energy-constrained embedded systems is an interesting research direction as it can
enable many applications to improve the productivity of human life through better
quality of services, higher efficiency, lower latency, as well as better security and privacy.
Deploying NNs on embedded systems (i.e., so-called embedded NN systems) is a challenging
task since NN algorithms are memory- and compute-intensive, thereby requiring large
memory footprint and high energy consumption, which hinder the realization or limit
the applicability of embedded NN systems. However, the existing solutions still face
energy efficiency issues due to high memory access energy. Furthermore, the existing
solutions also incur high memory and energy overheads for adapting to dynamically-
changed environments, which make the offline-learned knowledge obsolete and degrade
the accuracy at run time. Apart from energy efficiency issues, the existing solutions for
SNN-based systems do not mitigate the negative impact of hardware-induced faults such
as approximation errors (e.g., from reduced-voltage memories), permanent faults (e.g.,
from manufacturing defects), and transient faults (e.g., from the strikes of high energy
particles). Therefore, alternate solutions are required to address the above challenges.

Toward this, the focus of our research is to provide a novel methodology that employs
cross-layer hardware- and software-level techniques for improving energy efficiency and
fault tolerance of spiking and deep neural networks. First, we improve DNN- and SNN-
based systems by optimizing the off-chip memory (DRAM) access energy, as it dominates
the total energy of NN-based systems. To do this, we optimize the number of DRAM
accesses through the reduction of redundant accesses, and reduce the DRAM energy-
per-access through effective data mapping in DRAM and novel DRAM architectures.
Then, we enhance the NN-based systems to efficiently adapt to dynamic environments
by improving the SNNs with a lightweight unsupervised continual learning mechanism.
This learning mechanism is obtained through a learning algorithm that carefully learns
new features while retaining the old yet important ones by leveraging the spiking activity.
Furthermore, our research also improves the tolerance of SNN-based systems against
hardware-induced faults. To do this, we mitigate approximation errors and permanent
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faults by employing fault-aware training if the training dataset is fully available, and
efficient fault-aware mapping without retraining if the training dataset is not fully available
(e.g., due to IP and privacy reasons). Meanwhile, we mitigate transient faults (i.e., soft
errors) by employing weight bounding and neuron protection techniques to minimize
the negative impact of weight value changes and faulty neuron operations on accuracy.
Furthermore, to support these fault mitigation techniques, we also propose lightweight
hardware enhancements. All these techniques are integrated into our novel methodology
to provide a judicious and synergistic design approach for enabling energy-efficient and
fault-tolerant NN-based systems in diverse operating conditions/environments, which is
crucial for resource- and energy-constrained embedded applications.



Kurzfassung

[Translation of the English version]

Neural Networks (NNs) haben sich zu herausragenden Algorithmen des Machine Lear-
ning (ML) entwickelt, da sie für eine breite Palette von Datenanalyseanwendungen, wie
Bildklassifizierung, Objekterkennung, Gesundheitssysteme, autonome Fahrsysteme und
sogar Geschäftsanalysen, höchste Genauigkeit erreichen. Daher ist der Einsatz fortschritt-
licher NN-Algorithmen wie Deep Neural Networks (DNNs) und Spiking Neural Networks
(SNNs) für ressourcen- und energiebeschränkte eingebettete Systeme eine interessante
Forschungsrichtung, da sie vielen Anwendungen ermöglichen kann, die Produktivität des
menschlichen Lebens durch bessere Servicequalität, höhere Effizienz, geringere Latenz
sowie bessere Sicherheit und Privatsphäre zu verbessern. Der Einsatz von NNs auf einge-
betteten Systemen (d. h. so genannten eingebetteten NN-Systemen) ist eine anspruchsvolle
Aufgabe, da NN-Algorithmen speicher- und rechenintensiv sind und daher einen großen
Speicherbedarf und einen hohen Energieverbrauch erfordern, was die Realisierung einge-
betteter NN-Systeme behindert oder ihre Anwendbarkeit einschränkt. Die vorhandenen
Lösungen haben jedoch aufgrund des hohen Energieverbrauchs beim Speicherzugriff
immer noch mit Energieeffizienzproblemen zu kämpfen. Darüber hinaus verursachen die
bestehenden Lösungen auch einen hohen Speicher- und Energieaufwand für die Anpas-
sung an dynamisch veränderte Umgebungen, wodurch das offline erlernte Wissen obsolet
wird und die Genauigkeit zur Laufzeit abnimmt. Abgesehen von Problemen mit der
Energieeffizienz mildern die bestehenden Lösungen für SNN-basierte Systeme nicht die
negativen Auswirkungen von hardwarebedingten Fehlern wie Approximationsfehlern (z.
B. durch Speicher mit reduzierter Spannung), permanenten Fehlern (z. B. durch Ferti-
gungsfehler) und transienten Fehlern (z. B. durch Einschläge hochenergetischer Partikel).
Daher sind alternative Lösungen erforderlich, um die oben genannten Herausforderungen
zu bewältigen.

In diesem Zusammenhang liegt der Schwerpunkt unserer Forschung auf der Bereitstel-
lung einer neuartigen Methodik, die schichtübergreifende Techniken auf Hardware- und
Softwareebene zur Verbesserung der Energieeffizienz und Fehlertoleranz von Spiking-
und Deep Neural Networks verwendet. Zunächst verbessern wir DNN- und SNN-basierte
Systeme, indem wir die Zugriffsenergie auf den Off-Chip-Speicher (DRAM) optimieren,
da diese die Gesamtenergie von NN-basierten Systemen dominiert. Zu diesem Zweck
optimieren wir die Anzahl der DRAM-Zugriffe durch Reduzierung redundanter Zugriffe
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und reduzieren den DRAM-Energieverbrauch pro Zugriff durch effektives Datenmap-
ping in DRAM und neuartigen DRAM-Architekturen. Anschließend verbessern wir die
NN-basierten Systeme, um sie effizient an dynamische Umgebungen anzupassen, indem
wir die SNNs mit einem leichten, unbeaufsichtigten kontinuierlichen Lernmechanismus
verbessern. Dieser Lernmechanismus wird durch einen Lernalgorithmus erreicht, der
sorgfältig neue Funktionen lernt und gleichzeitig die alten, aber wichtigen beibehält,
indem er die Spiking-Aktivität nutzt. Darüber hinaus verbessert unsere Forschung auch
die Toleranz von SNN-basierten Systemen gegenüber hardwarebedingten Fehlern. Zu
diesem Zweck mildern wir Approximationsfehlern und permanente Fehler, indem wir
fehlerbewusstes Training einsetzen, wenn der Trainingsdatensatz vollständig verfügbar
ist, und effizientes fehlerbewusstes Mapping ohne erneutes Training, wenn der Trai-
ningsdatensatz nicht vollständig verfügbar ist (z. B. aus IP- und Datenschutzgründen).
Gleichzeitig mildern wir transienten Fehler (d. h. Soft Errors) durch den Einsatz von
Gewichtsbegrenzungs- und Neuronenschutztechniken, um die negativen Auswirkungen
von Gewichtswertänderungen und fehlerhaften Neuronenoperationen auf die Genauigkeit
zu minimieren. Darüber hinaus schlagen wir zur Unterstützung dieser Fehlerminderungs-
techniken auch leichte Hardwareverbesserungen vor. Alle diese Techniken sind in unsere
neuartige Methodik integriert, um einen umsichtigen und synergetischen Designansatz
für die Ermöglichung energieeffizienter und fehlertoleranter NN-basierter Systeme unter
unterschiedlichen Betriebsbedingungen/-umgebungen bereitzustellen, was für ressourcen-
und energiebeschränkte eingebettete Anwendungen von entscheidender Bedeutung ist.
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CHAPTER 1
Introduction

Artificial Intelligence (AI) has been widely used for organizing, analyzing, and inferring
information from digital data. The reason is that Machine Learning (ML)-based AI has
demonstrated state-of-the-art performance in many data analytic tasks [LBH15], such
as object recognition [KSH12, SZ14, HZC+17], smart home [MPC16, ZAJ+19], smart
healthcare [M+18, PAR+21], and smart automotive [ABAR17, MAD+20]. The state-of-
the-art performance of ML algorithms is achieved through Brain-inspired Computations
that take inspiration from how a human brain works, so-called Neural Networks (NNs).
The computation models in advanced NNs can be categorized into two approaches, i.e.,
Deep Neural Networks (DNNs) and Spiking Neural Networks (SNNs). An overview of
the relation between AI, ML, and NNs (DNNs and SNNs) is shown in Figure 1.1. These
advanced NN algorithms can improve the productivity of users, hence the deployment
of such algorithms for many AI applications, especially the ones with resource- and
energy-constrained computing platforms (e.g., embedded systems), is highly desired.

1.1 Research Motivation

1.1.1 Trends of Application Use-Cases of Neural Networks
The widespread use of powerful computing platforms, such as CPUs, (general purpose or
embedded) GPUs, or specialized hardware accelerators in servers, personal computers, or
smartphones, has enabled the deployment of NN algorithms for diverse ML applications,
such as smart healthcare, smart robots/agents, smart home, smart transportation, smart
factory/industry, smart automotive, smart grid, and smart assistant [LBH15, SMWPH21];
see Figure 1.2. Recently, researchers have started studies on how to bring the remarkable
capabilities of NNs to resource- and energy-constrained embedded systems (such as
edge computing). This is to improve the productivity of users through better quality of
services, lower latency, higher energy efficiency, as well as better security and privacy,
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Artificial Intelligence (AI)

Machine Learning (ML)

Brain-inspired Computation

Programs that try to mimic the cognitive function of the human brain.

Algorithms that learn without being explicitly programmed.

Computations that take inspiration from neuron operations.

Deep Learning (DL) /
Deep Neural Networks 

(DNNs)

Neural Networks (NNs)

Spiking Neural Networks 
(SNNs)

Figure 1.1: The relation of AI, ML, and NNs which encompass DNNs and SNNs. AI
is defined as the science and engineering field that develops intelligent machines with
cognitive capabilities like humans, while ML refers to concepts/algorithms that enable
computers to learn without being explicitly programmed [SCYE17].

thereby enabling diverse energy-efficient ML systems, such as ML-powered smartphones
and IoT-Edge devices. These studies are considered even more important nowadays
since the number of smartphones and IoT-connected devices has increased significantly
in the last few years and is estimated to stay increasing in the future, as shown in
Figure 1.3. Therefore, the successful deployment of NNs on embedded systems will enable
more application use-cases with stringent memory and energy constraints to benefit from
NN algorithms. To accomplish this, understanding the requirements of NNs is important,
which will be discussed in Section 1.1.2.

1.1.2 Requirements of Neural Networks
There are two prominent NN paradigms that are actively studied and explored, i.e., DNNs
and SNNs, each having unique computational models [SNT+20a]. DNNs employ the
weighted sum neuron model, and supervised learning schemes like gradient descent-based
backpropagation. DNNs are now used extensively in practical ML systems, as they
achieve state-of-the-art accuracy [HMD16]. Trends in DNN developments show that
higher accuracy can be achieved through larger model sizes and higher complexity of
computations, as illustrated in Figure 1.4. Meanwhile, SNNs employ biological neuron
models like Leaky Integrate-and-Fire (LIF), and biological learning schemes like Spike-
Timing-Dependent Plasticity (STDP), which can be performed in an unsupervised manner.
Therefore, SNNs bear the potential for having lower energy consumption than DNNs due
to their sparse spike-based computations. Trends in SNN developments also show that
higher accuracy can be achieved through larger model sizes and higher complexity of
computations, as illustrated in Figure 1.5.
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Applications

Smart Robots / Agents Smart Home SystemsSmart Healthcare Systems

Smart Factory / Industrial SystemsSmart Transport Systems

Smart Automotive Smart Grid Systems Smart Assistant 

Smart 
Grid

Figure 1.2: Prominent applications of NN-based ML algorithms.
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Figure 1.3: (a) Current estimation and forecast of the number of smartphones, whose
data are obtained from [ban]. (b) Current estimation and forecast of the number of
IoT-connected devices, whose data are obtained from [Vai].

Consequently, executing high-accuracy NN models (DNNs and SNNs) will impose high-
complexity computations and high energy consumption, thereby making it challenging
to implement them in resource-constrained computing platforms [SMWPH21]. Various
optimization techniques (e.g., pruning and quantization) and specialized hardware accel-
erators have been proposed to expedite the NN processing. However, these NN-based
systems still face energy efficiency challenges due to the DRAM-based off-chip memory
energy, which is higher than the energy for other operations and dominates the systems’
total energy [SCYE17, CBM+20a, CBM+20b]. Therefore, minimizing the DRAM ac-
cess energy is the key to substantially improving the overall energy efficiency of both
the DNN and SNN systems. Furthermore, real-world environments may have diverse
operational conditions, which may not be completely accommodated at the design time
of ML systems. Hence, the deployed systems should have the capability to learn new
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and unsupervised learning settings. (b) Characteristics of SNN models for image classifi-
cation task on the MNIST dataset considering the accuracy scores and model sizes [PS20].

data/features online for adapting to dynamic environments, since the information learned
offline can be obsolete or may lead to low accuracy at run-time under changing scenar-
ios [PARR18]. Moreover, new data that are gathered directly from environments are
usually unlabeled [RPR19], and their classes might not be randomly distributed, thereby
making the systems difficult to learn different classes/tasks proportionally [AR16, AR20].
For this purpose, we focus on the SNN systems as they support unsupervised learning
capabilities which are required for addressing the given challenge.
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These NN-based systems are also expected to produce reliable output under the presence
of hardware-induced reliability threats, such as approximation errors from approximate
hardware units (e.g., memories), permanent faults from manufacturing defects, and
transient faults from strikes of high-energy particles. It is important since the hardware-
induced faults can lead to accuracy degradation, and decrease the yield of wafer chips. For
this purpose, we focus on the SNN systems as their fault tolerance under hardware-induced
faults has not been extensively explored yet.

In summary, NN-based systems should have high energy efficiency and high tolerance
against hardware-induced faults to enable their reliable embedded implementation.

1.2 Research Problems and Challenges
Section 1.1.2 highlights that energy efficiency and fault tolerance aspects are the key
requirements for the successful deployment of NNs on embedded systems. Therefore, the
targeted research problems are about how to achieve energy-efficient and fault-tolerant
NN-based systems; see the overview in Figure 1.6. Solving these problems impose scientific
research challenges, as highlighted in the following.

• Challenges for Energy Efficiency Techniques: In DNN systems, most of previous
works [ZLS+15, ZSF+19, LYL+18] only presented the isolated (on-chip) DNN acceler-
ator design, and did not thoroughly study the impact of DRAM accesses, especially
when the full DNN processing cannot be mapped on an accelerator fabric at the same
time. Therefore, the related challenge is to understand the impact of DRAM accesses
considering the dataflow of DNN processing, and then leverage this information for
saving DRAM access energy. Meanwhile, in SNN systems, the existing works still
focus on improving accuracy but at the cost of a huge amount of additional computa-
tions [S+17, HSS+18, SPH+19, HSS+19], thereby leading to a high memory footprint
and energy consumption. Other SNN works proposed various bio-plausible learning
techniques to achieve high accuracy in dynamically changed environments, but at the
cost of additional operations [AR16, AR20], non-proportional quantities of training
samples [PARR18], and large memory footprint and complex exponential calculations
[PARR18]. Therefore, the related challenge is to optimize SNNs for reducing memory
footprint and energy consumption, while devising a lightweight unsupervised learning
mechanism considering both dynamic and non-dynamic environments.

• Challenges for Fault Tolerance Techniques: The existing works still focus on
the software-level fault modeling for SNNs [VDNA19, SPMJ+20]. Therefore, the
impact of hardware-induced faults (e.g., approximation errors, permanent faults, and
transient faults) in system-level accuracy considering SNN hardware architectures,
and the respective fault mitigation techniques, are still an unexplored avenue. There-
fore, the related challenge is to devise cost-effective fault tolerance for SNNs against
approximation errors, permanent faults, and transient faults.
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Figure 1.6: Overview of the targeted problems in this research. For the DNN-based
system, our works will investigate techniques for improving energy efficiency. Meanwhile,
for the SNN-based system, our works will investigate techniques to improve energy
efficiency in both non-dynamic and dynamic environments, as well as resilience against
hardware-induced errors.

1.3 Summary of the State-of-the-Art Techniques and
Their Limitations

In this section, we present the summary of state-of-the-art works for improving the
energy efficiency and fault tolerance of NN-based systems, and their limitations. In
specific, for DNN systems, the presented works are related to techniques for optimizing
energy consumption. For SNN systems, the presented works are related to techniques for
optimizing energy consumption and improving resilience against hardware-induced faults.

1.3.1 Energy-Efficient DNN Systems
Some works employed pruning [HMD16, AHS17, HLL+18] and quantization [GAGN15,
HMD16, JKC+18a] to compress the DNN model size for reducing the number of DRAM
accesses, and thereby the systems’ total energy. Other works employed data partitioning
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1.3. Summary of the State-of-the-Art Techniques and Their Limitations

and scheduling to minimally move the data from DRAM to on-chip memory [ZLS+15,
ZSF+19, LYL+18, TKP20]. However, there are several limitations to the state-of-the-art
works as discussed in the following.

1. DRAM access optimization: The existing works do not minimize redundant DRAM
accesses for overlapping data in convolutional operations. Therefore, their estimation
regarding the number of DRAM accesses provides sub-optimal results.

2. DRAM energy-per-access optimization: The existing works do not optimize the DRAM
energy-per-access, which varies depending on the internal state of DRAM, hence leading
to sub-optimal DRAM access energy and latency.

3. Data mapping policy for the on-chip memory: The existing works do not devise a
data mapping policy for the on-chip memory that efficiently moves data between the
DRAM and the compute engine, hence leading to sub-optimal on-chip access energy
and throughput.

1.3.2 Energy-Efficient SNN Systems
Some works employed pruning [RPR19, EBDB20, GFY+20] and quantization [RPR19]
to compress the SNN model size for reducing the memory access requirements. Other
works employed approximate operations [SVR17] and data bundling to reduce memory
accesses [KSVR19]. Hardware accelerators have also been employed to improve the
efficiency of SNN processing, but they do not exploit the intrinsic resilience characteris-
tics of SNNs, thereby limiting further energy savings. Meanwhile, to achieve learning
capabilities in dynamic environments, existing works proposed to employ a set of reserved
synapses and neurons for learning new features [AR16], a weight decay to remove the
learned information and provide spaces for learning new features [PARR18], and a set of
specialized neurons [AR20]. However, there are several limitations to the state-of-the-art
works as discussed in the following.

1. SNN model optimization: SNN systems with unsupervised learning capabilities typ-
ically employ a pair of excitatory and inhibitory neurons to support the learning
process. However, the existing works do not optimize the functionality of inhibitory
neurons, thereby incurring large memory and energy consumption.

2. Hardware-level optimization: The existing works do not consider hardware-level
optimization (e.g., employment of approximate hardware) that can substantially reduce
the operational power/energy of the SNN systems, while exploiting the resilience
nature of SNNs.

3. Improvement of the learning mechanism: The existing works suffer from spurious
weight updates during training as the weight update happens at every spike, thereby
leading to accuracy degradation. For dynamic environments, they consider learning
mechanisms that require additional components (e.g., neurons), complex exponential
calculations, and/or non-proportional quantities of training samples, thereby incurring
high memory and energy consumption.

7
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1.3.3 Fault-Tolerant SNN Systems
State-of-the-art works on fault tolerance for SNNs still focus on modeling possible types
of faults [VDNA19] and studying the impact of a specific fault (e.g., bit flips or synapses
removal) on accuracy [SPMJ+20, VMA+20, RLIS21], without considering the underlying
hardware architecture. Therefore, the impact of hardware-induced faults in system-level
accuracy considering SNN neuromorphic architectures, and the respective fault mitigation
techniques, are still an unexplored avenue.

1.4 Scientific Research Objectives
To systematically address the targeted research problems, while considering the associated
research challenges and limitations of state-of-the-art works, we define the following
major scientific objectives for the thesis.

1. Optimizing the memory access energy for DNN systems: Most of the state-of-
the-art works observed that optimizing the data partitioning and scheduling is effective
to reduce the DRAM accesses and improve the energy of DNN systems. However,
they do not optimize the redundant DRAM accesses for the overlapping data partition
in feature maps, and the DRAM energy-per-access.

Objective: We aim to optimize the redundant DRAM accesses for the overlapping data
partition in feature maps, and the DRAM energy-per-access. Besides DRAM access
optimization, we also investigate the data mapping strategy for the on-chip memory to
efficiently shuttle data between the DRAM and the compute engine. Furthermore, we
investigate how to exploit the new memory architectures from the literature, such as
DRAM with subarray-level parallelism (SALP) and tiered-latency DRAM (TL-DRAM),
to further optimize the DRAM access energy, and thereby the DNN systems’ energy.

2. Optimizing the memory access energy for SNN systems: The state-of-the-art
works employed pruning, quantization, and data bundling to optimize the memory
access energy. However, these techniques incur high overheads for data encoding and
may suffer from accuracy degradation due to information loss. Moreover, they do
not optimize the inhibitory operations which incur considerable memory and energy
consumption.

Objective: We aim to minimize the memory requirement of SNNs by optimizing the
inhibitory operations and employing quantization. To deal with the loss of inhibitory
operations, a cost-effective compensation technique is also investigated. In this manner,
memory footprint is expected to be reduced significantly, without losing accuracy.
This approach keeps all excitatory neurons and synapses active, so that they can be
maximally used for learning new features at run-time, which is required for unsupervised
continual learning settings.

8
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3. Investigating the effective hardware-level optimization for SNN systems:
In hardware-level optimization, state-of-the-art works employed hardware accelerators
to improve the performance efficiency of SNN processing. However, such solutions
consume high design time and do not consider exploiting the resilience characteristics of
SNNs through hardware-level approximations, which have the potential to substantially
reduce the processing power/energy.
Objective: We focus on hardware-level optimization for SNN systems by employing
approximate hardware on SNN hardware accelerators, e.g., off-chip and on-chip mem-
ories. To find the appropriate approximation configurations, we design and employ
design space exploration. In this manner, this approach will judiciously reduce the
processing power/energy of the SNN systems, while meeting the design constraints
(e.g., accuracy).

4. Investigating the unsupervised continual learning for SNN systems: The
state-of-the-art techniques suffer from spurious weight updates, as their weight update
happens at each spike. Moreover, they incur high memory requirements and processing
energy due to their large resources (e.g., inhibitory and additional neurons) and
complex exponential computations, thereby hindering the SNN systems to perform
unsupervised continual learning at run-time in tight resource budgets.
Objective: First, we aim to experimentally study the impact of the inhibitory layer and
different SNN parameters (e.g., weight decay and neurons’ membrane threshold poten-
tial) on accuracy, under non-dynamic and dynamic environments. These observations
will provide information that is required to optimize and control the neuron behav-
ior and spiking activity, which are important for bio-plausible unsupervised learning.
Then, we hope to leverage this information to determine how the learning process and
weight updates should be performed, so that the SNN model can continually learn new
knowledge while retaining old yet important information in dynamic environments.

5. Investigating the fault mitigation techniques for SNN systems: Recent
works studied different types of faults in SNNs and the impact of random faults on
accuracy, without considering detailed fault models and the underlying SNN hardware
architecture. Therefore, more studies are required to better understand the impact of
hardware-induced faults in SNN systems. Then, based on these studies, cost-effective
fault-mitigation techniques should be devised.
Objective: First, we aim to analyze the resilience of SNNs under hardware-induced
faults, with a focus on approximation-induced errors, permanent faults, and transient
faults. Then, we aim to investigate fault-aware training techniques that make the
trained SNNs adaptive to the presence of faults. Since the fault-aware training is not
applicable for all conditions (e.g., when the dataset is not fully unavailable), we hope to
also develop alternate techniques (e.g., fault-aware mapping and lightweight hardware
supports) to ensure that the trained SNNs are properly mapped in the SNN hardware
accelerators/chips with faults, thereby maintaining the accuracy. In this manner, the
yield of SNN chips can be improved with low overheads.
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1.5 Thesis Contributions
This thesis aims at achieving high energy efficiency and high fault tolerance in NN-based
systems, thereby enabling the deployment of advanced spiking and deep neural networks
for diverse resource- and energy-constrained embedded applications. This thesis presents
novel techniques at both hardware and software levels (i.e., HW/SW-level techniques),
thereby maximizing the potential for improvements offered from both domains. This
thesis consists of the following contributions, as illustrated in Figure 1.7.
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Figure 1.7: An overview of this PhD thesis, i.e., the integrated methodology for energy
efficiency and fault tolerance for spiking and deep neural networks. The proposed
techniques are highlighted in blue boxes, and the related publications are written in a
bold-italic format inside a square bracket.

1. HW/SW-level DRAM Optimization for Energy-Efficient DNN Systems
It proposes novel HW-level and SW-level optimization techniques for minimizing the
DRAM access energy, and thereby the DNN systems’ total energy. For SW-level
techniques, it performs DRAM access optimization through a design space exploration
(DSE) to find data partitioning and scheduling that provide the minimum number of
DRAM accesses, while avoiding redundant accesses for the overlapping data during
convolutional operations. It also employs efficient data mapping policies in memories
to minimize the energy-per-access to off-chip DRAM and on-chip SRAM buffers. For
HW-level techniques, it exploits new DRAM architectures to further optimize the
DRAM energy-per-access through a generalized DRAM data mapping policy, which is
proven through a DSE that considers different DRAM data mapping policies as well
as different data partitioning and scheduling schemes.
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2. HW/SW-level Design and Optimization for Energy-Efficient SNN Systems
It proposes novel HW-level and SW-level design and optimization techniques for
minimizing the memory and energy requirements of SNN systems. For SW-level
techniques, it optimizes SNN operations through the elimination of an inhibitory layer
and simplification of weight update operations. It also employs weight quantization
to reduce the memory footprint. To make the SNN systems capable of adapting to
different operational environments (i.e., non-dynamic or dynamic), it leverages the
spiking activity information to determine an adaptive learning algorithm and parameter
enhancements (e.g., weight decay). It also performs memory and energy estimation in
DSE to quickly find an SNN model that meets the memory and energy budgets. For
HW-level techniques, it employs reduced-voltage DRAMs (i.e., approximate DRAMs)
to substantially reduce the operational power/energy of SNN accelerators, while
minimizing the negative impact of approximation errors through fault-aware training.

3. Cost-Effective HW/SW-level Fault Tolerance for SNN Systems
It proposes novel HW-level and SW-level optimization techniques for mitigating HW-
induced faults, such as approximation errors, permanent faults, and transient faults
(soft errors). To mitigate approximation errors in the off-chip and on-chip memories,
it employs fault-aware mapping (FAM) if the training set is not fully available (e.g.,
due to IP or privacy reasons), and it may employ fault-aware training-and-mapping
(FATM) if the training set is fully available to improve the SNN resilience. To mitigate
permanent faults in the compute engine of SNN accelerators, it performs FAM-based
techniques to safely map/store weights in the faulty synapses and selectively employ
faulty neurons without retraining. To support this, lightweight HW enhancements are
employed to perform data transformation due to the mapping technique. Meanwhile,
to mitigate soft errors in the compute engine of SNN accelerators, it performs weight
bounding and neuron protection using lightweight HW enhancements to ensure that
the weight values and neuron behavior do not cause significant accuracy degradation.

1.6 Thesis Outline
The thesis is organized into six chapters. Chapter 1 introduces the need for energy-
efficient and fault-tolerance spiking and deep neural networks, a summary of state-of-the-
art techniques, associated research challenges, and a summary of thesis contributions.
Chapter 2 presents the necessary background knowledge and work related to DNNs,
SNNs, and reliability threats in NN-based computing systems. Afterward, Chapters 3, 4
and 5 discuss the concepts, techniques, and evaluations of the novel contributions of this
thesis. Toward the end, Chapter 6 provides a summary of the novel contributions and
findings of this thesis, as well as highlights several potential research directions for the
future. A brief outline of each chapter is provided in the following.

Chapter 2 - Background and Related Work: This chapter describes the essential
background and related work used in this thesis. It introduces the concepts of NNs
in Section 2.1. Then, it explains the DNN fundamentals in Section 2.2 such as layers
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and operations, training and inference, network models, HW accelerators, and existing
techniques for improving the energy efficiency of DNNs. Meanwhile, SNN fundamentals
are explained in Section 2.3, covering neuron models, neural coding techniques, learning
approaches, network architectures, training and inference, HW accelerators, and existing
techniques for improving the energy efficiency of SNNs. Then, Section 2.4 describes the
reliability threats in NN-based computing systems. Additionally, Section 2.5 describes
quantization techniques in NNs. Meanwhile, Section 2.6 explains the DRAM fundamentals,
including the organization, operations, types, and novel DRAM architectures. This
chapter is concluded with a summary of the background and related work in Section 2.7.

Chapter 3 - DRAM Optimization for Energy-Efficient DNN Systems: This
chapter discusses our novel methodology to optimize DRAM energy for enabling energy-
efficient DNN systems. First, it identifies the targeted problems in Section 3.1. Then, it
discusses an off-chip memory access management for DNN accelerators in Section 3.2,
mainly covering techniques to reduce the redundant DRAM accesses, while exploring
data partitioning and scheduling that offer the minimum number of DRAM accesses.
Afterward, Section 3.3 discusses how to leverage DRAM access characteristics to devise a
generalized DRAM data mapping policy that optimizes the DRAM energy-per-access and
latency-per-access considering any given DRAM architectures. This chapter is concluded
with a summary of the DRAM optimization for DNN systems in Section 3.4.

Chapter 4 - Energy-Efficient SNN Systems: This chapter discusses our novel
methodology to achieve energy-efficient SNN systems. First, it identifies the targeted
problems in Section 4.1. Then, Section 4.2 discusses an optimization framework for
reducing the overall memory and energy requirements of SNNs. Section 4.3 discusses a
systematic way to explore the quantization techniques for reducing the memory footprint
of SNNs. Then, it explains how to exploit approximate hardware (e.g., DRAM) to
substantially reduce the operational power/energy of SNN HW accelerators in Section 4.4.
It also discusses how to enable SNNs with unsupervised continual learning capabilities
considering high-precision weights (Section 4.5) and low-precision weights (Section 4.6).
This chapter is concluded with a summary of energy-efficient SNN systems in Section 4.7.

Chapter 5 - Fault-Tolerant SNN Systems: This chapter discusses our novel method-
ology that employs cost-effective techniques for enabling fault-tolerant SNN systems.
First, it identifies the targeted problems in Section 5.1. Then, Section 5.2 discusses
how our FAM- and FATM-based techniques mitigate faults in the off-chip and on-chip
memories of SNN HW accelerators. Afterward, Section 5.3 discusses how our low-cost
techniques mitigate permanent faults in the compute engine of SNN HW accelerators
without retraining. Meanwhile, Section 5.4 discusses how our low-cost techniques mitigate
soft errors in the compute engine of SNN HW accelerators without retraining. This
chapter is concluded with a summary of the fault-tolerant SNN systems in Section 5.5.

Chapter 6 - Conclusion and Outlook: This chapter concludes the thesis in Section 6.1
and provides an outlook for the potential future directions toward energy-efficient and
fault-tolerant spiking and deep neural networks in Section 6.2.
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CHAPTER 2
Background and Related Work

This chapter presents the background knowledge and work related to NNs encompassing
DNNs and SNNs, reliability threats in computing systems, quantization in NNs, and
DRAM fundamentals in subsequent sections. Section 2.1 highlights a general background
of the NN computation models for DNNs and SNNs. Details of DNNs are discussed
in Section 2.2, including the description of DNN operations, models, training and
inference process, HW accelerators, and techniques for improving the energy efficiency of
DNN systems. Meanwhile, details of SNNs are discussed in Section 2.3, including the
components of an SNN model (i.e., neuron models, neural coding, learning techniques, and
network architectures), training and inference process, neuromorphic HW processors, and
techniques for improving the energy efficiency of SNN systems. Section 2.4 presents the
reliability threats in NN-based computing systems (e.g., approximation errors, permanent
faults, and soft errors), and techniques for improving the fault tolerance of SNN systems
against these threats. Section 2.5 presents quantization approaches for NNs. Afterward,
Section 2.6 presents DRAM fundamentals as the main memory of modern computing
systems, including DRAM organization, operations, and its novel architectures.

2.1 Introduction to Neural Networks
NNs are the prominent algorithms since they have achieved state-of-the-art accuracy for
AI tasks such as image classification and object detection [LBH15]. NN algorithms can
be categorized into two prominent computational models, i.e., DNNs and SNNs, which
will be discussed in Section 2.2 and Section 2.3, respectively. The computational models
of NNs mimic the structures and operations of a human brain, i.e., an interconnected
network of neurons. Therefore, each neuron of NNs also mimics the basic functionality
of a biological neuron from the brain. The functionality of a biological neuron includes
several operations, i.e., the dendrites collect the input signals, the cell body (soma)
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computes the output signal, the axon transmits the output signal, and the synapse
connects the output signal to the input of another neuron; as shown in Figure 2.1.

Dendrites
(Inputs)

They collect the 
input signals

Biological Neuron

Cell body / Soma
(Computational Unit)

Compute an output signal 
based on input signals

Electrical signals
: input signal
: output signal

Nucleus

Synapse
(Connection)

Connect the output signal to 
the input of another neuron

Axon
(Output)

It transmits the output signal

Figure 2.1: The structure of a biological neuron and its basic operations that inspire NN
algorithms, encompassing DNNs and SNNs.

2.2 Deep Neural Networks (DNNs)

An NN is established by interconnected neurons, and these neurons are arranged in
the form of layers, including an input layer, hidden layer(s), and an output layer, as
shown in Figure 2.2(a). The layer arrangement aims at enabling the network to learn
the hierarchical representation of input samples [LBH15]. NNs that have more than
two hidden layers are typically called DNNs [B+09, DY14]. The basic functionality of a
neuron in DNNs can be stated as Equation 2.1 and illustrated in Figure 2.2(b).

O = f


n�

i=1
(wi · ai) + b



(2.1)

In Equation 2.1, wi denotes the ith synaptic weight, ai denotes the ith activation, b
denotes the bias, and n denotes the number of input activations/weights. Meanwhile,
f(.) denotes the non-linear activation function to introduce non-linearity in the network,
such as Rectified Linear Unit (ReLU).

In the basic form of DNNs, neurons are arranged in multiple layers, and each neuron
in layer l is connected to all neurons in layer (l + 1), as shown in Figure 2.2(a). This
architecture is known as a fully-connected network. The connection between two neurons
is represented by synaptic weight, which can be represented by W l

x,y notation. Here, W
denotes the synaptic weight that connects neuron x in layer (l − 1) with the neuron y in
layer l. In this manner, each neuron and synaptic weight in a DNN can be identified.
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Figure 2.2: (a) An illustration of a DNN with fully-connected network architecture. (b)
The functionality of a neuron in DNNs.

2.2.1 DNN Layers and Operations
In DNN, there are several types of layers with their specific operations. Following is a
list of the most common types of DNN layers and operations.

Fully-Connected (FC) Layer: In this layer, each neuron in layer l receives inputs from
the output of all neurons in layer (l − 1) and their corresponding parameters, as shown
in Figure 2.3(a). Therefore, the number of parameters of an FC layer is potentially huge
and may require a large memory footprint. This layer is typically used for classification,
such as the output layer of DNNs.

Convolutional Layer: In this layer, activations and weight filters are arranged in a
3D shape, and each arrangement of 2D-shaped activations is also termed as a feature
map. Here, each neuron in layer l processes selected input feature maps and weights
within receptive fields [LBBH98b], as shown in Figure 2.3(b). This process employs
multiply-and-accumulate (MAC) operations to produce output feature maps. Note, a
receptive field of the convolutional layer is a portion of an input feature map that is
considered by a neuron for generating an output feature (e.g., a pixel of an image).
Therefore, the size of a receptive field corresponds to the 2D size of a weight filter, which
is commonly termed as kernel size. Distance between adjacent receptive fields is called
stride. The idea of convolution is to take advantage of the local spatial coherence in
input feature maps, as processing adjacent features (e.g., pixels of an image) with smaller
kernels may obtain more meaningful information than processing a whole image at once.

Pooling Layer: In this layer, the dimension of input feature maps is decreased through
down-sampling. To do this, several adjacent features (e.g., 2x2 pixels) are grouped
as a receptive field of the pooling layer, and their values are processed to produce a
single output feature (e.g., 1 pixel) through a statistical approach, e.g., average value
or maximum value. A prominent approach for pooling is MaxPooling, i.e., selecting the
maximum value, as shown in Figure 2.3(c). Meanwhile, the stride size of pooling usually
equals the size of the receptive field. This layer reduces the size of feature maps.
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Figure 2.3: Illustrations of (a) FC layer, (b) Convolutional layer, and (c) Pooling layer.

Normalization Layer: This layer aims to keep the input activations of a layer having
a normal distribution with the same range of values, as it eases the computations and
avoids the saturation of the results from non-linear activation functions. Moreover, this
layer can expedite the training process since DNN layers do not need to adapt to different
distributions at each training step. The prominent normalization technique is the Batch
Normalization [IS15].

Activation Function: The activation function aims to introduce a non-linearity to the
network. There are several activation functions, such as Sigmoid, Hyperbolic Tangent,
Rectified Linear Unit (ReLU), Leaky ReLU, Exponential Linear Unit (ELU), and Softmax,
as shown in Figure 2.4. Sigmoid and Hyperbolic Tangent functions have relatively high
computational complexity, hence they are rarely used in the current trends of DNN
models [LBH15]. In contrast, ReLU is widely used in many DNN models, since it
incurs low computational complexity yet it has an effective non-linearity impact on the
networks [NH10, LBH15]. Recently, variants of ReLU such as Leaky RELU [MHN13,
RDGF16] and ELU [CUH15] were developed for introducing more non-linearity to the
networks, at the cost of higher computational complexity than ReLU. Meanwhile, Softmax
is typically employed in the output layer of DNNs for classification purposes, as its values
are within the range of (0,1) which is ideal for representing the probabilities of the output
classes. Following are the mathematical definitions of these activation functions.

• Sigmoid: y = 1/(1 − ex)

• Hyperbolic Tangent: y = (ex − e−x)/(ex + e−x)

• ReLU: y = max (0, x)

• Leaky ReLU: y = max (αx, x) with α is a small constant

• ELU: y =
�

x, if x ≥ 0
α(ex − 1), if x < 0 with α is a small constant
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Figure 2.4: Illustrations of different activation functions: Sigmoid, Hyperbolic Tangent,
ReLU, Leaky ReLU, and ELU.

2.2.2 DNN Training and Inference
To make a DNN model work properly to complete its task while achieving high accuracy, it
has to learn the required information/knowledge. This learning period is referred to as the
training phase. Once the training phase is complete, the learned knowledge is reflected by
the DNN parameters (i.e., weights and biases). Therefore, these parameters are employed
in DNN operations for completing the given task (e.g., classification, recognition, etc.)
during the inference phase. For training and inference purposes, a dataset is employed.
A dataset is typically split into three sets: training, validation, and testing.

• Training set is employed for fitting parameters (weights and biases) so that the
DNN model learns patterns from training samples that can generalize well to new or
unknown data. In best practices, the number of training samples is 60%-80% from all
samples in the dataset.

• Validation set is employed for fine-tuning the hyperparameters so that the DNN
model can achieve better accuracy. In best practices, the number of validation samples
is 10%-20% from all samples in the dataset.

• Testing set is employed for testing the accuracy of DNN inference with unbiased
evaluation. In best practices, the number of testing samples is 10%-20% from all
samples in the dataset.

There are several approaches for training DNNs, i.e., supervised learning, unsupervised
learning, and reinforcement learning. These approaches are described in the following.

• Supervised Learning: It is the most common approach for training DNNs, as
it achieves state-of-the-art accuracy for various ML tasks. It employs labeled data
samples to train DNNs, and the prominent algorithm for this learning approach is
gradient backpropagation (or simply backpropagation) [SCYE17]. Here, the training
set is typically divided into batches, and each batch of samples is passed through the
network for updating the parameters. The outputs of the network are compared with
the labels to evaluate the distance between the outputs with the expected values (i.e.,
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loss score) using a loss function. The loss score is used to compute the gradients of all
network parameters (weights and biases). These gradients are then used to adjust the
corresponding weights and biases so that the loss score is minimized. Note, a complete
pass of the entire training set is referred to as an epoch, and the number of epochs for
proper training depends on the complexity of the task.

• Unsupervised Learning: This learning approach employs unlabeled data samples
for training the networks. Here, the prominent technique is clustering whose idea is
to find common similarities/patterns in training samples [SCYE17]. Common DNNs
that employ unsupervised learning are Generative Adversarial Networks (GANs) and
Autoencoders. Furthermore, unsupervised learning is also beneficial for systems that
require online training with unlabeled data samples (taken directly from environments)
to update their knowledge at run time, such as exploratory mobile agents/robots.

• Reinforcement Learning: This learning approach employs unlabeled data samples
and rewards to effectively train the networks. Its idea is to employ agent that makes
decision on what action to take [SCYE17]. If the action leads to the expected result,
then the agent will get a reward. Otherwise, the agent will not get any reward. In this
manner, a series of actions that leads to the highest reward is the final knowledge.

During the training phase, there are two prominent issues that may occur, i.e., underfitting
and overfitting. Underfitting refers to the problem when the network model does not
effectively learn the important features from the training samples. Meanwhile, overfitting
refers to the problem when the network model learns both the important features and
the noise, hence the corresponding model cannot generalize well for new or unseen data
samples. It is usually indicated by a condition when the training error is low and test
error is high [B+09]. The most prominent technique for addressing overfitting is the
early stopping strategy. Its key idea is to quickly detect overfitting, and if so, it stops the
training process. Overfitting detection is usually performed by employing the validation
set to evaluate how well the model can generalize after training.

2.2.3 DNN Models
Current trends show that, researchers have been continuously developing DNN models to
achieve higher accuracy. One of the main indicators is the ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), which evaluates the accuracy of DNN models for the
ImageNet dataset [DDS+09]. Convolutional Neural Networks (CNNs), a particular type
of DNNs, have emerged as a prominent design approach for developing deep learning
models [PHS21b], since this design approach has achieved state-of-the-art accuracy.
Following are some prominent CNN models from the community.

• LeNet [LBBH98b]: It is one of the earliest CNN models that were trained with the
backpropagation technique. It consists of 2 convolutional layers and 3 FC layers.

• AlexNet [KSH12]: This model won the ILSVRC 2012 and outperformed state-of-
the-art computer vision techniques. Therefore, AlexNet is often considered the pioneer
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of high-accuracy CNNs that started a deep learning era. This model consists of a
sequence of 5 convolutional layers and 3 FC layers. It also introduced the ReLU
activation function to add non-linearity to the model.

• GoogLeNet [SLJ+15]: This model was developed by Google and won the ILSVRC
2014. It has 22 layers including convolutional layers, FC layers, pooling layers, and
inception modules. The inception module allows the model to use multiple filter sizes
in the same layer, whose outputs are concatenated and passed to the next layer. Hence,
the inception module can extract input features at varying scales in the same layer.

• VGG-16 [SZ14]: This model was the runner-up of the ILSVRC 2014. VGG-16
became one of the most popular image classification models due to its idea of employing
many hidden layers to improve accuracy. It consists of 13 convolutional layers, 3 FC
layers, and 5 pooling layers. It also employs the ReLU activation functions and the
MaxPooling layers. Afterward, it was realized that adding more hidden layers may
cause the model to suffer from vanishing or exploding gradients.

• ResNets [HZRS16]: Researchers from Microsoft developed the Residual Networks
(ResNets) to address the problem of vanishing or exploding gradients. Its idea is to
reformulate the layers as learning functions with reference to the layer inputs (so-called
residue) for preserving the reference information across layers. Therefore, the number
of hidden layers can be increased without facing vanishing or exploding gradients.

• SqueezeNet [IHM+16]: This model was developed for achieving AlexNet-level
accuracy with a significantly lower number of parameters (50× smaller). It employs
fire modules that are slightly different from conventional CNNs. Each fire module has
a squeeze layer (i.e., a convolutional layer with 1x1 filters) and an expand layer (i.e.,
a convolutional layer with 1×1 and 3×3 filters).

• MobileNet [HZC+17]: This model was developed for mobile and embedded vision
applications. It employs depthwise separable and pointwise convolutions to factorize
a standard convolutional layer, thereby reducing the computations and the model size
as compared to the standard convolutional layer.

2.2.4 DNN Hardware Accelerators
To expedite the DNN inference, DNN HW architectures typically employ massively
parallel processing elements (PEs), that perform basic DNN operations (i.e., MAC).
They can be classified as temporal and spatial architectures [SCYE17]. In temporal
architectures, the control unit is centralized, and the PEs can only access data through
the central/global memory as there are no connections among PEs. Examples of this
category are CPUs and GPUs. Meanwhile, in spatial architectures, each PE employs
local memory and control units, and there are connections among PEs as well. Examples
of this category are specialized DNN HW accelerators, which are tailored and optimized
for specific dataflows. There are several dataflow types explored in the literature.
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• Weight Stationary: It aims at reducing the energy consumption of off-chip accesses
for weights. To do this, it first stores and keeps the weights in the local memory of
PEs. Then, it moves the input activations across PEs to generate output partial sums,
which are also propagated to other PEs.

• Output Stationary: It aims at reducing the energy consumption of off-chip accesses
for partial sums. To do this, it moves the input activations and weights across PEs to
generate partial sums, which are then kept in the local PE memory.

• Row Stationary: It aims at reducing the energy consumption of off-chip accesses for
all data types (i.e., weights and partial sums). To do this, it assigns the processing of
a 1D row convolution into each PE. Here, it keeps the row of filter weights stationary
inside the local memory, then it streams the row of input activations into the PEs for
generating partial sums.

• No Local Reuse: It aims at maximizing the storage capacity while minimizing the
off-chip memory bandwidth. To do this, no local storage is provided, hence there is no
data reuse at the PE level. Instead, it moves all data types (i.e., weights and partial
sums) across PEs to complete the processing.

In recent years, larger and deeper DNNs have been developed to achieve higher accuracy.
However, large DNN models require a huge memory footprint, intensive computations,
and energy consumption. Therefore, to maximize the performance (i.e., speed) and energy
efficiency of DNN inference, specialized DNN HW accelerators are employed [SCYE17,
CBM+20c]. In the literature, there is a significant amount of work on DNN accelerator
designs. Some of these accelerators aim at expediting the un-structurally sparse networks
by exploiting sparse activations and/or weights. Activation sparsity usually comes from
the employment of ReLU activation function, while weight sparsity comes from the
employment of pruning. Popular examples of these DNN accelerators are Cambricon-
X [ZDZ+16], Cnvlutin [AJH+16], EIE [HLM+16], ZeNa [KAY17], SCNN [PRM+17],
Bit-Pragmatic [ADJ+17], UCNN [HYA+18], Bit Fusion [SPS+18], SparTen [GCTV19],
SqueezeFlow [LJG+19], Laconic [SLM+19a]. However, recent studies show that simply
employing sparsity does not directly lead to energy efficiency improvements for DNN
inference, as the sparsity requires more sophisticated and complex accelerator designs to
achieve high performance, thereby requiring larger area and higher power/energy consump-
tion [CYES18a, YLP+17]. Meanwhile, the other accelerator designs aim at expediting
dense networks, such as DianNao [CDS+14], ShiDianNao [DFC+15], Eyeriss [CES16],
DaDianNao [LLL+16], Tensor Processing Unit (TPU) [JYP+17], FlexFlow [LYL+17],
DNA [TYO+17], MAERI [KSK18], and DNPU [SLL+18]. Furthermore, these acceler-
ators can also be used for expediting the structurally sparse networks by tailoring the
processing dataflows to the respective accelerator architectures [AHS17, YLP+17]. All
these DNN accelerators have similar characteristics: (1) massively parallel compute arrays
to perform MAC operations, and (2) dedicated memory hierarchy to maximize local data
reuse while minimizing costly off-chip memory accesses.
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Among the existing DNN accelerators, TPU [JYP+17] is one of the most prominent
designs due to its high performance and efficiency, hence its design has inspired many
other DNN accelerators [HPT+18]. TPU was developed by Google to expedite the
DNN processing for cloud-based applications. The core design of TPU is the systolic
array (SA)-based compute engine (i.e., “SA engine” for brevity) that employs 256×256
processing elements (PEs). Each PE in the SA engine performs three main tasks, i.e.,
receiving data from the upstream neighbor, performing MAC operation, and passing the
data along with the partial sum to the downstream neighbor. To support this process,
the SA engine of TPU employs a weight stationary dataflow. In this thesis, most of the
case studies for DNN accelerators are based on a similar design, as shown in Figure 2.5.
The overview of DNN HW accelerator architecture is shown in Figure 2.5(a) and the
architecture of the SA engine is illustrated in Figure 2.5(b). Meanwhile, the architecture
of each PE is presented in Figure 2.5(c).
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Figure 2.5: (a) An overview of the DNN HW accelerator. Here, the activation buffers
consist of a buffer for input feature maps (ifmaps buffer) and a buffer for output feature
maps (ofmaps buffer). (b) A detailed view of the systolic array-based compute engine
architecture. (c) A detailed view of the processing element architecture.
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Figure 2.6: Overview of the dataflow for mapping data to the SA-based engine and
performing convolutional computations.

Figure 2.6 presents the overview of the dataflow for mapping data to the SA engine and
performing convolutional computations. If we consider an array of PEs with R × S size
(with R and S denoting the number of rows and columns of PEs, respectively), then
only a set of R × S weights from the weight buffer can be mapped on the SA engine at
one time. The dataflow maps a specific filter to a column of the SA engine at one time,
hence only R number of weights from the same filter are mapped. Once the weights are
mapped to the array, they are kept stationary. Then, the input activation values are fed
from the left side of the SA engine. In each PE, the input activation is computed with
the stored weight through MAC operation to generate the partial sum. To ensure that
PEs can operate in lockstep to generate the correct partial sums, the input activations
must be arranged properly, as shown in Figure 2.6.

In the first clock cycle, the PE1,1 performs multiplication between the first input activation
from the first input set and the first weight from the first filter, then stores the generated
partial sum in the partial sum register. In the second clock cycle, PE2,1 receives the
second activation from the first input set, multiplies it with the second weight from the
first filter, adds the multiplication product with the partial sum from PE1,1, and then
stores the generated partial sum in the partial sum register. Furthermore, in the same
clock cycle, PE1,1 receives the first activation from the second input set and multiplies it
with the stored weight (i.e., the first weight from the first filter); while PE1,2 receives
the first activation from the first input set, and multiplies it with the stored weight (i.e.,
the first weight from the second filter). In this manner, the SA generates its first partial
sum from the first column after R clock cylces, and can generate up to S partial sums
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simultaneously. If the number of weights in a filter is more than the number of rows in the
array (R), then the filter needs to be divided into blocks, and each block has a maximum
of R weights. Furthermore, the partial sums from these blocks must be accumulated
using the accumulation units to generate the final output activation. Meanwhile, if the
number of filters is more than the number of columns in the array (S), then the filters
need to be divided into sets, and each set has a maximum of S filters.

DNN Accelerators with Conventional and Emerging Technologies: In conven-
tional computing paradigm, DNN accelerators employs the von-Neumann architecture
with conventional CMOS technology. Since DNN processing is data intensive, this
computing paradigm leads to frequent data movements between compute engines and
memory modules. To minimize data movements, recent works developed DNN accelera-
tors with non-von-Neumann architecture and emerging technologies, such as Resistive
RAM (RRAM), Magnetic RAM (MRAM), and Carbon Nanotube FET (CNTFET). Here,
the non-volatile memory (NVM) devices like RRAM and MRAM are employed to store
weights [AMY+23]. Meanwhile, CNTFET is employed to replace CMOS for other circuit
parts (e.g., logic) due to its better energy-delay-product (EDP) and scalability [CSLC21].
However, these emerging NVM technologies still face reliability issues, such as variability
(resistance drift) and endurance, indicating that they are not yet mature and still need
further studies [AZH+23]. Moreover, the conventional computing with off-chip DRAM
and on-chip SRAM structure have been widely used in real-world applications. Therefore,
in this thesis, we focus on the conventional computing paradigm with CMOS technology
for DNN accelerators to provide immediate impact in both academia and industry.

2.2.5 Techniques for Improving the Energy Efficiency of DNNs
To expedite the inference process, many DNN HW accelerators have been designed and
employed in the past few years since they can provide higher performance efficiency as
compared to the general-purpose CPU and GPU-based solutions. However, the energy
consumption of these accelerators is typically dominated by the off-chip memory accesses,
especially when the full DNN parameters and processing cannot be mapped at the
same time to the accelerator fabric. The reason is that, the size of DNN models is
large, while the typical size of compute engines and on-chip memory are small [SCYE17].
Therefore, the on-chip resources of a DNN accelerator are usually not sufficient to hold and
process a complete DNN model or even one layer of the network at one time. Moreover,
each data value is usually involved in multiple computations (i.e., MAC operations).
Therefore, multiple redundant accesses for the same data to the off-chip memory (i.e.,
DRAM) are required to complete the DNN processing. However, such redundant accesses
hinder the DNN accelerators from gaining further energy efficiency improvement as
DRAM access energy is significantly higher as compared to other operations in DNN
accelerators [SCYE17, PHS20, CBM+20b, AAH+20, PHS21b], which is also shown in
Figure 2.7. In summary, reduction of DRAM access energy is the key for improving the
energy efficiency of DNN-based systems.

Many techniques have been proposed to optimize the DRAM access energy, as it is the
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Figure 2.7: (a) Energy consumption of data movement considering the memory hierarchy
of a DNN HW accelerator (adapted from [SCYE17]), showing that DRAM energy-per-
access is significantly higher than other operations. Note, DRAM fundamentals (e.g.,
organization and operations) are discussed in Section 2.6. (b) Breakdown of energy
consumption of Cambricon-X [ZDZ+16], showing that DRAM access energy dominates
the energy consumption of DNN accelerators.

key to improving the energy efficiency of DNN systems, as summarized in Table 2.1.
Some works compress the DNN model size with an expectation of a reduced number
of DRAM accesses, and thereby the systems’ total energy [DLH+20] through pruning
(i.e., unstructured [HMD16, LKD+16, MHMS18] and structured [AHS17, HLL+18]), and
quantization [GAGN15, HMD16, JKC+18a] whose concept is discussed in Section 2.5.
However, recent studies show that only relying on model compression does not directly
lead to energy savings, as it may incur high overhead due to additional operations and
resources (e.g., data encoding and decoding) [YLP+17, CYES18b, KMZ19]. Other works
employ a data partitioning and scheduling approach to minimally move the data from
DRAM to on-chip memory and then reuse the data multiple times for computation, i.e.,
fixed scheduling [ZLS+15, ZSF+19] and adaptive scheduling [LYL+18, TKP20]. This
approach can be combined with quantization and structured pruning to further improve
energy efficiency [PHS21b]. However, there are several limitations to the existing works
as discussed in the following.
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2. Background and Related Work

Limitations of the State-of-the-Art Works:

1. Optimization of the number of DRAM accesses: The data partitioning and scheduling
are required to determine the portion of data to be accessed from DRAM for on-chip
computation. Here, there are overlapping data in convolutional operations that should
not be re-fetched again from DRAM to minimize the DRAM accesses. However, this
aspect is not optimized by state-of-the-art works. Therefore, their analytical models
for estimating the number of DRAM accesses provide sub-optimal results and need to
be reformulated.

2. Optimization of the DRAM energy-per-access: DRAM access energy is dependent on
the number of accesses and the energy-per-access that varies depending upon whether
the access faces a row buffer hit, a row buffer miss, or a row buffer conflict. Therefore,
the DRAM energy-per-access should also be optimized to get further energy savings.
However, this aspect is not optimized by state-of-the-art works.

3. Effective data mapping in the on-chip memory: To efficiently move the data between
the DRAM and the compute engine, a judicious data mapping in the on-chip memory
is required. Otherwise, the data accessed from DRAM might not be utilized in an
energy-efficient manner by the compute engine, thereby decreasing the energy saving
benefits. However, this aspect is not considered in state-of-the-art works.

2.3 Spiking Neural Networks (SNNs)
SNNs are considered the third generation of NN computation models because they exhibit
high biological plausibility by mimicking the biological brain through the employment of
spiking networks as well as spikes (i.e., action potentials) to convey information [Maa97].
Recently, with the advances in neuromorphic computing, SNNs have demonstrated
great success in achieving high accuracy with ultra-low power/energy consumption,
thereby making SNNs suitable for resource-constrained computing systems. SNNs can
achieve high accuracy due to the effectiveness of their learning mechanism, and ultra-low
power/energy consumption due to their sparse spike-based computations. An SNN model
is composed of several design aspects, i.e., network architecture, spiking neuron model,
neural coding, and learning rule [MGNDM19]. Figure 2.8 shows the overview of an SNN
architecture. To perform SNN processing, each input sample (e.g., an image) is first
converted into sequences of spikes (so-called spike trains) using a specific neural coding.
Here, each data from an input sample (e.g., a pixel of an image) is mapped to a specific
neuron in the input layer, and this neuron generates a spike train that represents the
corresponding data value (e.g., a pixel value). Afterward, these input spikes are fed to the
SNN model with a specific architecture, as shown in Figure 2.8(a). In each neuron, input
spikes trigger the increase of neurons’ membrane potential, and the respective neuron
generates output spikes when the membrane potential reaches the neurons’ membrane
threshold potential. A neuron can generate spikes and pass them to another neuron (the
destination neuron) through a synapse connection. These spikes are seen as input spikes
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(i.e., presynaptic spikes when they have not reached the synapse) by the destination
neuron. Afterward, the destination neuron will process these spikes and may generate
the output spikes (i.e., postsynaptic spikes), as shown in Figure 2.8(b). In the output
layer, e.g., the excitatory layer in Figure 2.8(a), the output spikes are decoded based on
the neural coding to understand the information.
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Figure 2.8: (a) Illustration of an SNN with a fully-connected network architecture
that supports biologically-plausible learning rules. (b) Illustration of a single synaptic
connection between neuron-p and neuron-q, showing different components: presynaptic
and postsynaptic neurons, presynaptic and postsynaptic spikes from the perspective of
neuron-q, and a synapse.

2.3.1 Spiking Neuron Models
The spiking neuron is the basic building block of SNNs since it is where most of SNN
processing happens [GK02, Izh04]. The behavior of a spiking neuron is called the neuronal
dynamics [GKNP14]. The basic neuronal dynamics of a neuron is that the neuron will
increase its membrane potential (vmem) when a spike comes. The magnitude of ‘the
membrane increase’ corresponds to the strength of the connecting synapse, i.e., weight
(wgh). If the vmem reaches/surpasses the membrane threshold potential (vth), the neuron
generates an output spike. Afterward, the vmem goes to the reset potential (vreset). The
vreset is usually equal to the resting potential (vrest), i.e., the potential when the neuron
does not perform operations for a long period of time. Note, details of the neuronal
dynamics may differ depending on the neuron model, and there are different types of
neuron models as shown in Table 2.2. Among them, the prominent spiking neurons are
described in the following.
• Hodgkin-Huxley Model [HH52]: It is considered as the most biologically-plausible

neuron model and the most complex one. As a consequence, the development of SNNs
using this model is costly/inefficient. This model considers three types of ion channels,
i.e., sodium (Na), potassium (K ), and a leak current that mainly consists of Cl− (L).
Its neuronal dynamics can be generally formulated as Equations 2.2-2.3, which can be
extended further for achieving more accurate behavior. In these equations, vmem(t)
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Table 2.2: A representative list of neuron models (adapted from [CMA+13]).
Neuron Model Year Reference

Integrate-and-Fire (IF) 1907 [Abb99]
McCulloch-Pitts 1943 [MP43]
Hodgkin-Huxley 1952 [HH52]
Perceptron 1958 [Ros58]
Fitzhugh-Nagumo 1961 [Fit61]
Leaky Integrate-and-Fire (LIF) 1965 [Ste65]
Morris-Lecar 1981 [ML81]
Quadratic IF 1986 [EK86]
Hindmarsh-Rose 1989 [RH89]
Spike Response Model 1995 [Ger95]
Time-varying IF 1998 [SZ98]
Wilson Polynomial 1999 [Wil99]
IF-or-Burst 2000 [SCSR00]
Resonate-and-Fire 2001 [Izh01]
Izhikevich 2003 [Izh03]
Exponential IF 2003 [FTHVVB03]
Generalized IF 2004 [JLG04]
Adaptive Exponential IF 2005 [BG05]
Mihalas-Neibur 2009 [MN09]
Augmented LIF 2013 [CMA+13]

denotes the membrane potential at time t, Cmem denotes the membrane capacitance,
I(t) denotes the input current, and �

k Ik denotes the sum of the ionic currents which
pass through the membrane. gNa, gK , and gL denote the maximum conductance for
Na, K, and L, respectively. m, n, and h denote the gating variables to model the
probability of the respective channel to open at the given time. Meanwhile ENa, EK ,
and EK denote the reversal potential of the respective channel.

Cmem
dvmem(t)

dt
= −

�
k

Ik(t) + I(t) (2.2)

�
k

Ik = gNam3h(vmem(t) − ENa) + gKn4(vmem(t) − EK) + gL(vmem(t) − EL) (2.3)

• Integrate-and-Fire (IF) Model [Fal19]: It is considered the simplest neuron
model, as it incurs the lowest computation requirements as compared to other neuron
models [Izh04]. This model increases the vmem proportionally to the connecting weight
each time a spike arrives at the neuron. If the vreset reaches/surpasses the vth, the
neuron generates an output spike, and then it goes back to the vreset. Typically, the
vreset is equal to the vrest. Afterward, the neuron will not be able to generate spikes in
a certain period, i.e., refractory period (tref ), before becoming active again to perform
operations. Note, in some implementations, the IF neuron model may not consider
tref . Its neuronal dynamics can be formulated as Equations 2.4-2.5.

Cmem
dvmem(t)

dt
= I(t) (2.4)
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if vmem ≥ vth then vmem ← vreset (2.5)

• Leaky Integrate-and-Fire (LIF) Model [GK02]: It is an enhanced version of
the IF neuron model by employing the concept of leaky membrane potential and
refractory period tref to achieve higher biological plausibility, as shown in Figure 2.9.
This model increases the vmem proportionally to the connecting weight each time a
spike arrives at the neuron. If there are no input spikes, the vmem leaks at a certain
rate. If the vmem reaches the vth, the neuron generates an output spike, and then
it goes back to the vreset. Typically, the vreset is equal to the vrest. Afterward, the
neuron will not increase its vmem within the tref even if there are spikes received in
the input. Once the tref passes, the neuron is active again to perform its operations.
Its neuronal dynamics can be modeled using a resistance-conductance (RC) circuit
and formulated as Equations 2.6-2.8. Here, Rmem denotes the membrane resistance,
and τleak = RmemCmem denotes the time constant for the ‘vmem leak’. In this thesis,
most of the case studies for neuron model consider the LIF neuron model, as LIF can
provide reasonable bio-plausible spike patterns with low computational cost.

I(t) = vmem(t) − vreset

Rmem
+ Cmem

dvmem(t)
dt

(2.6)

τleak
dvmem(t)

dt
= −[vmem(t) − vreset] + RmemI(t) (2.7)

if vmem ≥ vth then vmem ← vreset (2.8)
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Figure 2.9: Illustration of the neuronal dynamics of the LIF neuron model.
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• Izhikevich Model [Izh03]: It can reproduce around 20 types of spiking patterns like
the Hodgkin-Huxley model, while incurring less computational intensity [Izh04]. As
compared to the IF/LIF model, the Izhikevich model is more biologically plausible while
incurring higher computational intensity. Its neuronal dynamics can be formulated as
Equations 2.9-2.11. Here, umem denotes the membrane recovery variable, a denotes
the time scale of the umem (i.e., a smaller value leads to slower recovery), and b denotes
the sensitivity of the umem to the fluctuations of the vmem.

dvmem(t)
dt

= 0.04v2
mem(t) + 5vmem(t) + 140 − umem(t) + I(t) (2.9)

dumem(t)
dt

= a(bvmem(t) − umem(t)) (2.10)

if vmem ≥ vth, then
�

vmem ← vreset

umem ← umem + d
(2.11)

2.3.2 Neural Coding Techniques

Neural coding (a.k.a. spike coding [PS20] or information coding [MGNDM19]) converts
each information/data (e.g., a pixel of an image) into a spike train. In the literature,
multiple types of neural coding techniques have been studied [AHMK21, GFES21], and
their descriptions are presented in the following.

• Rate Coding (a.k.a. Frequency Coding): It utilizes the frequency of spikes (rate)
to encode data. It converts the intensity of a data value into a spike train, i.e., a
higher intensity is typically converted into a higher number of spikes than a lower
intensity, as shown in Figure 2.10(a). Most SNN works employ the rate coding since it
is simple, relatively robust against noise [DC15], and has demonstrated high accuracy
when employed in SNNs under unsupervised learning settings, which is beneficial
for efficient online learning capabilities of autonomous systems (e.g., mobile robots,
UAVs, and UGVs) [PS21b, PS22a, PS23a, PS23b]. Rate coding has several variants:
(1) spike count, which counts the number of spikes over time, hence having the most
efficient mechanism than other variants; (2) spike density, which averages the number
of spikes over several runs; and (3) population activity, which averages over several
neurons that act together on the same stimulus [AES21]. In this thesis, most of the
case studies for neural coding consider the rate coding with the spike count scheme.

• Temporal Coding: It utilizes temporal information to encode data and may achieve
lower power consumption than the rate coding if they employ a lower spiking rate
within the same/smaller time window [GT98]. There are several variants of temporal
coding techniques (i.e., burst, time-to-first spike, phase, and rank-order coding schemes)
as described in the following.
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– Burst Coding [PKCY19]: It encodes data in the form of burst spikes, i.e., a
sequence of spikes that has a short inter-spike interval (ISI). To do this, a higher-
intensity data value is typically converted into a shorter ISI than lower-intensity
data, as shown in Figure 2.10(b).

– Time-To-First Spike (TTFS) Coding [PKCY19]: It encodes data in the form
of burst spikes, i.e., a sequence of spikes that has a short inter-spike interval (ISI).
To do this, a higher-intensity data value is typically converted into a shorter ISI
than lower-intensity data, as shown in Figure 2.10(c).

– Phase Coding: It encodes data based on a global oscillator as the oscillating
signals in the brain (e.g., delta: 1-3 Hz, theta: 4-8 Hz, alpha: ∼10 Hz, beta: 15-25
Hz, and gamma: 30-100 Hz) are believed to influence the spiking activity [Fri05,
Fal19]. To do this, the oscillation is used to determine the timing of spikes. For
instance, the spikes for higher-intensity data are distributed at the times when the
corresponding amplitude is higher than the spikes for lower-intensity data, as shown
in Figure 2.10(d).

– Rank-Order Coding [TG98]: It encodes data based on the order of spikes, and
the exact timing between spikes is not considered. To do this, a specific data value
is converted into a specific order of spikes, thereby requiring a population of neurons
to generate the expected order.

time

time

time

time

Signal Rate Burst
Time-to-First 

Spike Phase
global oscillator

(a) (b) (c) (d)

Figure 2.10: Illustration of different neural coding: (a) rate coding, (b) burst coding, (c)
time-to-first spike coding, and (d) phase coding (adapted from [PKCY19]).
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2.3.3 SNN Learning Approaches
In the literature, there are different learning approaches for SNNs, which can be cate-
gorized as supervised learning and unsupervised learning [MGNDM19]. Descriptions of
these learning approaches are presented in the following.

• Supervised Learning: This approach needs a labeled dataset to train the net-
work. However, the prominent learning methods in the DNN domain (e.g., gradient
backpropagation) cannot be directly used in SNNs as its loss function for spikes is
not differentiable [RKL+19]. Therefore, researchers have proposed several supervised
learning rules to overcome such a limitation, such as SpikeProp [BKL02], remote
supervised learning (ReSuMe) [KP06], Chronotron [Flo12], spike pattern association
neuron (SPAN) [MSMK12], DNN-to-SNN conversion, and surrogate gradient learning.
Among them, the most popular and recent ones are described in the following.

– DNN-to-SNN Conversion: It performs network training in the non-spiking domain
using the backpropagation, then converts the trained model and input data into
SNN domain [RLH+17]. Another technique is through a hybrid conversion, i.e.,
performing training in the spiking domain after conversion using approximate
backpropagation [RSPR20]. Note, this DNN-to-SNN conversion technique can only
be used for static datasets as DNNs cannot be directly trained on event-based data,
thereby limiting its energy-efficiency gains.

– Surrogate Gradient Learning: Its idea is to adapt the backpropagation concept
from the DNN domain to the SNN domain, by approximating the derivative of the
loss function of spikes during the backward propagation [NMZ19]. Some related
works are the Spike Layer Error Reassignment in Time (SLAYER) [SO18] and
Spatio-Temporal Back-Propagation (STBP) [WDL+18]. Further enhancements of
this learning approach may enable online training on the neuromorphic hardware,
such as the Deep Continuous Local Learning (DECOLLE) [KMN20] due to its
localized learning mechanism in synapses.

• Unsupervised Learning: This approach can use an unlabeled dataset to train the
network, which is very beneficial for enabling energy-efficient smart computing systems
due to the following reasons. First, gathering an unlabeled dataset is significantly
easier and cheaper, as the costly data labeling process is avoided [RPR19]. Second,
unsupervised learning enables continual learning capabilities as the training can be
efficiently performed at run time (i.e., online training) using unlabeled data from the
environments [PS21b, PS22a, PS23a]. In the literature, several unsupervised learning
rules have been developed, and they typically have higher biological plausibility than
the supervised ones [TGK+19]. Hence, they are known as bio-plausible learning rules,
whose ideas are described in the following.

– Hebbian Rule [RS97]: It strengthens a synapse if both the connected presynaptic
and postsynaptic neurons have high spiking rates at the same time. If it considers a
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single spike event, then the weight change depends on the time difference between
a presynaptic and postsynaptic spike.

– Spike-Driven Synaptic Plasticity (SDSP) [FAB+00, BSF07]: It changes the weight
value at the time when a presynaptic spike happens (tpre). Weight potentiation
(i.e., Δwgh = +a) is performed if the vmem is higher or equal to the vth, and
weight depression (i.e., Δwgh = −b) is performed if the vmem is lower than the vth,
while considering the concentration of Calcium (Ca) as compared to concentration
thresholds θ1, θ2, and θ3. The SDSP rule can be formulated as Equation 2.12.

Δwgh =
�

+a if vmem(tpre) ≥ vth and θ1 ≤ Ca(tpre) < θ3

−b if vmem(tpre) < vth and θ1 ≤ Ca(tpre) < θ2
(2.12)

– Spike-Time-Dependent Plasticity (STDP) [RAIAS+14]: It updates the weight value
based on the temporal correlation between the presynaptic and postsynaptic spikes.
STDP learning rule has two variants, i.e., pair-based STDP and triplet-based STDP.
The pair-based STDP depends on a pair of the presynaptic and postsynaptic spikes,
while the triplet-based STDP depends on the triplet combinations of spikes. Due
to its simplicity and bio-plausibility, the pair-based STDP is more desired and have
been widely used in the SNN community [PP18, TGK+19]. The pair-based STDP
can be formulated as Equation 2.13-2.14. Here, A+ and A− denote the amplitude
parameters for potentiation and depression, respectively. τ+ and τ− denote the
time constants for potentiation and depression, respectively. Meanwhile, the time
difference between the presynaptic spike time (tpre) and postsynaptic spike time
(tpost) is denoted as Δt.

Δwgh =

A+ e
−Δt
τ+ if Δt > 0

−A− e
Δt
τ− if Δt > 0

(2.13)

Δt = tpost − tpre (2.14)

The Δwgh in pair-based STDP is often computed using synaptic traces to improve
the computation speed (e.g., in simulation) [MAD07], as shown in Equation 2.15.
ηpre and ηpost denote the learning rate for the presynaptic and postsynaptic spike
event, respectively. xpre and xpost denote the traces for the presynaptic and
postsynaptic spike event, respectively. When a spike occurs, the corresponding
trace is set to 1, otherwise the trace decreases, as shown in Figure 2.11. Meanwhile,
wgh denotes the current weight value, wghmax denotes the maximum weight value,
and µ denotes the weight dependence factor. In this thesis, most of the case studies
consider the pair-based STDP learning rule.

Δwgh =
�

ηpre xpost wghµ on presynaptic spike
−ηpost xpre (wghmax − wgh)µ on postynaptic spike

(2.15)
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Figure 2.11: Illustration of the dynamics of spike traces for the presynaptic spike event
xpre and the postsynaptic spike event xpost (adapted from [PS20]).

2.3.4 SNN Architectures
SNN architecture or topology is defined as the structure of how spiking neurons are
connected to each other through synapses. In general, the spiking neurons are arranged
in the form of layers, including an input layer, hidden layer(s), and an output layer.
Several SNN architectures have been explored, as described in the following.

• Feed-Forward Networks: In the feed-forward architecture, multiple layers are
ordered subsequently. Neurons in layer l are connected to the neurons in the subsequent
layer (layer l+1), and FC layers are typically employed [TGK+19]. Figure 2.12(a)
shows the most popular feed-forward architecture for SNNs (i.e., FC-based SNNs),
which was introduced by the work of [DC15].
This architecture consists of input, excitatory, and inhibitory layers. The input layer
contains an input image, where every pixel is connected to all excitatory neurons.
Each excitatory neuron has to recognize a class in the dataset, and the connecting
synapses from the same neuron have to learn the features of the corresponding class.
The excitatory neurons are connected to inhibitory neurons in a one-to-one connection.
Each spike from an excitatory neuron triggers the corresponding inhibitory neuron
to generate a spike that will be delivered to all excitatory neurons, except for the
one from which the inhibitory neuron receives a connection. This inhibition provides
competition among excitatory neurons. Here, a winner-takes-all (WTA) mechanism
is employed to determine the classification. Furthermore, to prevent a neuron from
dominating the spiking activity, the neurons’ membrane threshold potential (vth) is
usually defined by vth + θ. The θ denotes the adaptation potential which is increased
each time the corresponding neuron generates a spike, and otherwise, it decays with a
rate of θdecay. In this thesis, most of the case studies consider a similar architecture,
as it has demonstrated high accuracy when employing the bio-plausible learning rules
under unsupervised learning settings, thereby making it suitable for energy-efficient
SNN training and inference on neuromorphic hardware.

• Convolutional Networks: In the convolutional architecture, multiple convolutional
layers with specific sizes are arranged in a specific order. The convolutional-based SNN
architectures can be developed through two main approaches. First, the development
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Figure 2.12: (a) An SNN architecture with unsupervised-based local STDP learning rule
(adapted from [DC15]). (b) The multi-layer SNN architecture with supervised-based
local learning called DECOLLE (adapted from [KMN20]).

is performed using DNN-to-SNN conversion. Here, the architectures follow the given
DNNs (e.g., AlexNet and VGG-16) [RLH+17]. As consequence, the benefits of SNNs
are limited only to the inference phase, as the training is performed in the DNN domain.
Second, the development is performed directly in the SNN domain [CCK15, KMN20].
Among the existing convolutional-based SNNs, a network shown in Figure 2.12(b)
can achieve promising accuracy by employing the supervised Deep Continuous Local
Learning (DECOLLE) [KMN20], which makes its architecture more suitable for
training directly on neuromorphic hardware than other convolutional-based SNNs.

The DECOLLE network consists of 3 convolutional layers and 1 FC layer, as shown in
Figure 2.12(b). Each network layer is trained using a surrogate gradient for minimizing
the local (layer-wise) loss function, so that the readout unit can produce the targeted
output (ŷ). The difference between the readout output (y) and the target (ŷ) denotes
the error that is used to train the weights (red-dashed line). In this manner, the loss
function minimization can be performed directly in the spiking environment. The
dynamics of each layer are based on the current-based LIF neuron [SJ20], and can
be expressed as Equation 2.16. V l

i [n] denotes the membrane potential of neuron-i in
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layer-l at timestep-n, while wij denotes the weight between the pre-synaptic neuron-
j and the post-synaptic neuron-i. A spike Sl

i[n] is emitted at timestep-n if V l
i [n]

reaches the threshold (Vth) through the Θ function, where Θ(x) = 1 if x ≥ 0, and
otherwise 0. P and Q denote the traces of the membrane and the current-based
synapse respectively, while R denotes the refractory state and ρ is the inhibition
weight. α = exp(− Δt

τmem
), β = exp(− Δt

τsyn
), and γ = exp(− Δt

τref
) denote the decay

of the V , Q, and R, respectively [SJ20]. In this thesis, we consider the DECOLLE
network for some case studies under supervised learning scenarios.

V l
i [n] =

�
j

wl
ijP l

j [n] − ρRl
i[n]

Sl
i[n] = Θ(V l

i [n] − Vth)
P l

j [n + 1] = αP l
j [n] + Ql

j [n]
Ql

j [n + 1] = βQl
j [n] + Sl−1

j [n]
Rl

i[n + 1] = γRl
i[n] + Sl

i[n]

(2.16)

• Recurrent Networks: This architecture has some cycles of connections in the
network. Reservoir computing is an example of recurrent networks. Reservoir com-
puting employs a reservoir layer that contains a population of randomly connected
neurons [SVVC07].

2.3.5 SNN Training and Inference
SNN training and inference process depends on the learning approach since the processing
will follow a specific learning rule, as described in Section 2.3.3. For instance, if we
consider a widely used FC-based SNN model from [DC15] with rate coding and STDP
learning rule, then the training and inference phases are performed under the unsupervised
learning settings (see Figure 2.13).

In the training phase, each sample of a dataset is fed into the network. Each data value
from the sample (e.g., a pixel value of an image) is mapped to a specific neuron in the
input layer. This value is converted into a spike train based on the rate coding. Each
spike train travels to the connected excitatory neurons. Then, neuronal dynamics in each
excitatory neuron decide if the neuron will generate an excitatory spike train. Afterward,
the timing correlation between the input spikes and the excitatory spikes is leveraged to
train the network, i.e., update the weight value of the connecting synapse using the STDP
learning rule. The excitatory neurons are categorized based on their highest response
to different classes over the training phase due to the rate coding, hence each neuron
is assigned to a specific class (i.e., class-assigned neuron). Meanwhile, in the inference
phase, the weight values are kept unchanged. The process of data conversion and spike
propagation is the same as the training phase. The excitatory spike trains are leveraged
to indicate the classification. Here, the response of the class-assigned neurons is used to
measure the accuracy.
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Figure 2.13: An illustration of an FC-based SNN model during (a) training phase, and
(b) inference phase.

2.3.6 Neuromorphic Hardware Accelerators
SNN processing is highly inspired by the biological brain due to the employment of spike-
encoded information, spike-based operations, and bio-plausible learning rules. Therefore,
SNN processing requires a specialized computing approach (i.e., neuromorphic computing)
to maximize the performance and energy efficiency of the SNN training and/or inference
phase. The prominent solution is by employing neuromorphic HW accelerators [SPP+17,
BDFZ22, LDT+23]. In the literature, there are three main categories of neuromorphic
accelerator designs: (1) large-scale multi-core designs, (2) digital single-core designs, and
(3) mixed-signal single-core designs. The representative designs for different categories
are presented in Table 2.3.

Among the above-mentioned neuromorphic accelerators, the most popular designs are
described in the following.

• HICANN [SBG+10]: HICANN stands for High Input Count Analog Neural Network,
and it is part of the BrainScaleS project. This chip contains 512 neurons and 112K
synapses in crossbar style. It is implemented in 180 nm CMOS technology with a
mixed-signal design, which results in a chip with 49 mm2 of area. It supports both,
the inference process and the on-chip learning with the STDP rule.

• SpiNNaker [PPG+13]: It employs microprocessors to enable higher flexibility than
silicon neurons. It consists of 18 ARM microprocessors with toroidal connection
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Table 2.3: A representative list of state-of-the-art neuromorphic accelerator designs.
Multi-core Design Single-core Design

(Digital or Mixed-signal) Digital Mixed-signal
SpiNNaker [PPG+13] (D, OL, m) [SBL+11] (D, X, OL, a) HICANN [SBG+10] (M, X, OL, a)

IFAT [PHY+14] (M, a) ODIN [FLLB19] (D, X, OL, a) [BNH+13] (M, X, OL, a)

TrueNorth [ASC+15] (D, X, a) [PLJ20] (D, OL, a) Neurogrid [BGM+14] M, a)

DYNAPs [MQSI17] (M, a) µBrain [SSYC21] (D, a) ROLLS [QMC+15] (M, X, OL, a)

Loihi [DSL+18] (D, X, OL, a) IMPULSE [AAK+21] (D, X, a) [MPN+16] (M, X, OL, a)

Tianjic [PDS+19] (D, X, a) [GWG+22] (D, X, f) MNIFAT [MET+17] (M, X, a)

MorphIC [FLB19] (D, X, OL, a) ESSA [KCW+22] (D, X, f) Braindrop [NFB+19] (M, a)

Novena [NPL+20] (D, X, a) Cerebron [CGF22] (D, X, f) [WKE+20] (M, X, a)

OpenSpike [MGE23] (D, a)

D: Full digital design; M : Mixed-signal design.
X : Crossbar-based design; OL: The design supports on-chip learning.
a: ASIC; f : FPGA; m: General-purpose microprocessor.

topology. It is implemented in 130 nm CMOS technology with full digital design,
which results in a chip with 88 mm2 of area. It supports both, the inference process and
the on-chip learning with flexible rules as it employs general-purpose microprocessors.

• Neurogrid [BGM+14]: It consists of 16 interconnected chips (i.e., Neurocores), and
each Neurocore chip has a 256×256 grid of compute units. It is implemented in 18 nm
CMOS technology with a mixed-signal design, which results in a chip with 149 mm2

of area. It only supports the inference phase and cannot perform on-chip learning.

• ROLLS [QMC+15]: ROLLS stands for Reconfigurable On-Line Learning Spiking neu-
romorphic processor. It consists of 256 neurons and 128 K synapses. It is implemented
in 180 nm CMOS technology in a mixed-signal design, which results in a chip with 44
mm2 of area. It supports both inference and on-chip learning with the SDSP rule.

• TrueNorth [ASC+15]: TrueNorth chip is developed under the SyNAPSE project. It
consists of 4096 neuromorphic cores, each containing 256 LIF neurons and a 256×256
crossbar of synapse connections. It only supports the inference phase, hence it cannot
perform on-chip learning. It is implemented in 28 nm CMOS technology with full
digital design, which results in a chip with 413 mm2 of area.

• Loihi [DSL+18]: It is a neuromorphic manycore processor with on-chip learning from
Intel. It consists of 128 cores, including around 130K neurons and around 130M
synapses. Loihi is implemented in 14 nm CMOS technology with full digital design,
which results in a chip with 60 mm2 of area. It supports both the inference process
and the on-chip learning with flexible rules, such as the STDP rule.

• Tianjic [PDS+19]: This chip has 156 cores, each of which consists of the dendrite,
synapse array, soma, axon, and router units, with around 22 KB of SRAM for weight
memory. It is implemented in 28 nm CMOS technology, which results in a chip with
14.4 mm2 of area. It only supports inference and cannot perform on-chip learning.
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• ODIN [FLLB19]: This chip has a single core with 256 neurons and 256×256 synapses,
with 4 KB neuron memory and 32 KB synapse memory. It is implemented in 28 nm
CMOS technology with full digital design, which results in a chip with 0.086 mm2 of
area. It supports the inference process and the on-chip learning with the SDSP rule.

The above literature highlights the design characteristics of neuromorphic accelerators
required for achieving high-performance and ultra-low-power/energy-efficient AI systems,
as follows. First, a single-core design with a crossbar-based compute engine is favored
to achieve good trade-offs between performance (i.e., speed) and efficiency (e.g., area,
power/energy). Second, recent works consider the digital design approach to ensure
the reliability of computation. Furthermore, neuromorphic accelerators should have
on-chip learning capabilities to enable online learning for adaptive computing systems.
Therefore, the representative architecture of neuromorphic accelerators may follow designs
from [FLLB19, GWG+22, KCW+22, CGF22], which can be illustrated as Figure 2.14-
2.15. In this thesis, most of the case studies consider a similar design, i.e., a digital
single-core neuromorphic accelerator with a crossbar-based compute engine and an on-chip
learning unit. Note, we refer the compute engine of neuromorphic accelerators to as the
“SNN compute engine” for conciseness.

Figure 2.16(a) presents the overview of the dataflow for mapping weights on the synapses,
feeding spike trains, and performing computations on the compute engine. If we consider
an array of synapses with M × N size (with M and N denoting the number of rows and
columns of synapses, respectively), then only a set of M × N weights from the weight
buffer can be mapped on the compute engine at one time. The dataflow maps a specific
set of filters to a column of the compute engine at one time, hence only M weights for the
same neuron are mapped. Once the weights are mapped to the synapses, they are kept
stationary. Then, the input spike trains are fed from the left side of the compute engine.
In each synapse, each input signal (i.e., spike or no-spike) determines if the weight value
in the local register is propagated to the adjacent synapse and accumulated for updating
the neuronal dynamics. To ensure that synapses can operate in lockstep to generate the
correct accumulated weight value, the input spike trains must be arranged properly, as
shown in Figure 2.16(b).

In the first clock cycle, synapses S1,1 receives an input signal (i.e., spike or no-spike)
from the first input set. If a spike presents, S1,1 propagates its weight value in the local
register to the next synapse in the same column (S2,1). Otherwise, S1,1 propagates zero.
In the same clock cycle, all other synapses from the same row also receive the same input
signal. In the second clock cycle, synapse S2,1 receives the second input signal (i.e., spike
or no-spike) from the first input set, propagates the weight value based on the presence
of the input spike, adds the weight value from PE1,1, and then stores the accumulated
weight value in its local accumulation register. Furthermore, in the same clock cycle,
synapses at the first row also receive the first input signal (i.e., spike or no-spike) from
the second input set. Then, these synapses propagate their respective stored values
(i.e., weight or zero based on the input signal) to the synapses in the second row. This
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Figure 2.14: (a) An overview of the neuromorphic accelerator. (b) A detailed view of the
crossbar-based compute engine architecture.

process goes forward until the last row of synapses. In this manner, the compute engine
generates its first accumulated weight value after M clock cylces, and can generate up
to N accumulated weight values simultaneously. These values are then processed in
neurons to update their membrane potentials and generate output spikes. If the number
of weights for the same neuron is more than the number of rows in the array (M), then
the filter needs to be divided into blocks, and each block has a maximum of M number
of weights. Meanwhile, if the number of neurons in a layer is more than the number of
columns in the array (N), then the filters need to be divided into sets, and each set has
a maximum of N number of filters.

Neuromorphic Accelerators with Conventional and Emerging Technologies: In
conventional computing paradigm, neuromorphic accelerators employs the von-Neumann
architecture with CMOS technology, which leads to frequent data movements between
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compute engines and memory modules. To minimize data movements, recent works
developed neuromorphic accelerators with non-von-Neumann architecture and emerging
technologies (e.g., RRAM, MRAM, and CNTFET). However, these emerging NVM
devices (e.g., RRAM and MRAM) still face reliability issues, indicating that they are
not yet mature and still require further studies [AZH+23]. Moreover, the conventional
computing with off-chip DRAM and on-chip SRAM structure have been widely used
in real-world applications. Therefore, in this thesis, we also focus on the conventional
computing paradigm with CMOS technology for neuromorphic accelerators to provide
immediate impact in both academia and industry.

2.3.7 Techniques for Improving the Energy Efficiency of SNNs

Recent studies observed that memory accesses dominate the total energy of SNN sys-
tems [KSVR19], mainly due to a high number of DRAM accesses as well as complex
and costly DRAM operations (whose concept is discussed in Section 2.6). Therefore,
optimizing memory access is the key to improving these systems’ energy efficiency. At the
software level, the existing works compressed the SNN model size with an expectation of
reduced memory access requirements through pruning [RPR19, EBDB20, GFY+20], and
quantization [RPR19] whose concept is discussed in Section 2.5. Other works employed
approximation to reduce the required neural operations [SVR17] and data bundling

41



2. Background and Related Work

…

…

…

sp
ike

0
sp

ike
1

sp
ike

M
-1

Synapse

…wghM-1,0

whg1,0

wgh0,0

Neuron

…wghM-1,1

whg1,1

wgh0,1

…wghM-1,N-1

whg1,N-1

wgh0,N-1

S0,0 S0,1 S0,N-1

S1,0 S1,1 S1,N-1

SM-1,0 SM-1,1 SM-1,N-1

wgh
0,1

wgh
1,1

wgh
M-1,1

wgh
0,N-1

wgh
1,N-1

wgh
M-1,N-1

wgh
0,0

wgh
1,0

wgh
M-1,0

…

Weights are mapped to 
the compute engine

Fo
rw

ei
gh

tm
ap

pi
ng …

…

…

sp
ike

0
sp

ike
1

sp
ike

M
-1 …wghM-1,0

whg1,0

wgh0,0

…wghM-1,1

whg1,1

wgh0,1

…wghM-1,N-1

whg1,N-1

wgh0,N-1

wgh
0,0

wgh
1,0

wgh
M-1,0

wgh
0,1

wgh
1,1

wgh
M-1,1

wgh
0,N-1

wgh
1,N-1

wgh
M-1,N-1

……

Network with 
color-coded weights

0

M-1

1

0

N-1

1

a1,1 a1,2 a1,3 a1,4 a1,5

a2,1 a2,2 a2,3 a2,4 a2,5

a3,1 a3,2 a3,3 a3,4 a2,5

a4,1 a4,2 a4,3 a4,4 a4,5

a5,1 a5,2 a5,3 a5,4 a5,5

Input activations

Conversion to spike trains

The direction of the 
accumulated weight value 
(one synapse step per cycle 

downward)

…

…

…

sp
ike

0
sp

ike
1

sp
ike

M
-1 …wghM-1,0

whg1,0

wgh0,0

…wghM-1,1

whg1,1

wgh0,1

…wghM-1,N-1

whg1,N-1

wgh0,N-1

wgh
0,0

wgh
1,0

wgh
M-1,0

wgh
0,1

wgh
1,1

wgh
M-1,1

wgh
0,N-1

wgh
1,N-1

wgh
M-1,N-1

…………

…

…

…Spike train a1,1 :

Spike train a1,2 :

Clock cycle
123456…

(a)

(b)

Input set 1Input set 2
Input set 3

SNN compute engine is 
ready for computation

Figure 2.16: Overview of the dataflow for (a) mapping weight to the compute engine,
and (b) feeding the spike trains to the compute engine and performing spike-based
computation.42



2.4. Reliability Threats in NN-based Computing Systems

to reduce memory accesses [KSVR19]. At the hardware level, SNN accelerators have
been proposed to improve performance efficiency, such as TrueNorth [ASC+15], Loihi
[DSL+18], Tianjic [PDS+19], and ODIN [FLLB19]. Table 2.4 presents a summary of the
techniques for improving the energy efficiency of the SNN systems. However, there are
several limitations to the existing works as discussed in the following.

Limitations of the State-of-the-Art Works:

1. Optimization of the memory requirement of SNNs: SNN systems with unsupervised
learning typically employed a pair of excitatory neurons and inhibitory neurons
to support the learning process [DC15, S+17, HSS+18, SPH+19, HSS+19]. Since
the inhibitory neurons have different functionality from the excitatory ones, their
parameters for connections and neurons are also different from the excitatory ones,
thereby occupying a significant amount of memory footprint and incurring high memory
access energy. However, this aspect is not optimized by state-of-the-art works.

2. Hardware-level optimization: Previous works employed software-level optimization
techniques to exploit the error-resilient nature of SNNs to improve energy efficiency,
such as pruning [RPR19, EBDB20, GFY+20], quantization [RPR19], and approximate
operations [SVR17]. Therefore, they do not consider hardware-level optimization
(e.g., employment of approximate hardware units) that can substantially reduce the
operational power/energy of the SNN systems.

2.4 Reliability Threats in NN-based Computing Systems

2.4.1 Overview

The advanced NNs (DNNs and SNNs) require high resource and power/energy budgets
due to their huge memory and computing requirements. Therefore, specialized HW
accelerators are typically employed to significantly improve the efficiency of NN-based
systems. However, these accelerators are still vulnerable to HW-induced reliability threats,
such as approximation errors, permanent faults, and transient faults. These challenges are
associated with the impact of HW-level optimization (e.g., approximation), limitations of
chip fabrication process, and interactions with high-energy particles. A brief description
of HW-induced reliability threats is provided below.

• Approximation Errors are errors that occur due to approximation techniques
that trade the quality (e.g., computing accuracy) for better efficiency of computing
systems. These errors can occur in (1) approximate functional units such as adders
and multipliers [GMP+11, KGE11, REHS+16] due to logic simplification or voltage
scaling [RBKS17, VCC+13], and (2) approximate memories such as DRAM [KOY+19,
CYG+17b] and on-chip buffer [PHS21a] due to voltage and access latency scaling.
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2.4. Reliability Threats in NN-based Computing Systems

• Permanent Faults are faults that remain for indefinite periods until corrective action
is performed [Muk11]. Permanent faults can come from different sources, as briefly
described in the following.

1. Chip Fabrication Process: Fabricating chips with millions-to-billions of nano-scale
transistors with 100% correct functionality is difficult, and even worsen due to
the aggressive technology scaling [ZGBG18, HKP+18, HKP+21]. It can lead to
manufacturing defects and extreme process variations (i.e., deviations in hardware
circuits from the expected characteristics [RTGM13]), which cause permanent faults
and decrease the yield of the chips.

2. Run Time Operation: Permanent faults can also occur due to device/transistor
wear out (aging) and damages caused by various physical phenomena, such as
Hot Carrier Injection (HCI), Bias Temperature Instability (BTI), Electromigration
(EM), and/or Time Dependent Dielectric Breakdown (TDDB) [RFZJ13, WNL16,
HKP+18, BBD19, MKK+20, HKP+21].

• Transient Faults are faults that occur once and then disappear (i.e., soft errors).
They are usually caused by high-energy particle strikes on a chip. These particles can
be neutrons that come from cosmic radiations or alpha particles from the packaging
materials of the chip [Bau05]. These faults manifest as bit flips in the chip, and the
impact of these bit flips can propagate to the application layer, thereby resulting in
incorrect outputs and affect the accuracy of the system.

2.4.2 Techniques for Improving the Fault Tolerance of SNN Systems
In this thesis, the studies of fault tolerance are focused on the SNN systems, because (1)
SNNs have the potential to achieve more efficient processing than DNNs, (2) SNNs can
provide efficient online learning using their unsupervised learning settings to make their
systems adapt to diverse operational environments, and (3) the fault tolerance aspects of
SNNs have not been explored thoroughly [PHS21a, PHS22b].

To mitigate faults in SNNs, standard fault-tolerance techniques for VLSI circuits such as
Dual Modular Redundancy (DMR) [VZBT10], Triple Modular Redundancy (TMR) [LV62],
and Error Correction Codes (ECCs) [LM76, CH84, Sze00], might be employed. However,
these techniques require redundant hardware and/or executions, thereby incurring high
latency and energy overheads. These overheads coupled with the compute- and memory-
intensive nature of SNNs make them infeasible for efficient implementation of SNN
systems. Therefore, alternate low-cost techniques are required to improve SNNs against
HW-induced reliability threats. Toward this, state-of-the-art works have studied fault
tolerance for SNNs, which are summarized in Table 2.5 and briefly described as follows.

• Fault Modeling for SNNs: Previous works studied different aspects of fault
modeling in SNNs, such as identifying a set of possible faults that can affect SNN
components (including neurons and synapses) [VDNA19], and investigating the fault
modeling for transistor-level neuron HW [ESSP+20].
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• Studies on the Impacts of Faults on Accuracy: Previous works studied the
impacts of bit flips in weights [VMA+20] and synapse failure (i.e., synapse re-
moval) [SPMJ+20] [RLIS21] on the accuracy, considering different fault rates with
random distribution.

• Fault Mitigation: Previous works studied different fault mitigation techniques. For
instance, training with dropouts, neuron saturation detection, and TMR are employed
in [SESA+21] as fault-tolerance strategy that corresponds to fault modeling of neuron
HW from [ESSP+20]. Another work employed additional components (i.e., astrocyte
units) for enhancing the retraining process [RLIS21].

Limitations of the State-of-the-Art Works: The above discussion shows that,
current state-of-the-art on fault tolerance works for SNNs still focus on studying the
fault modeling and the impact of a specific fault on the accuracy. Moreover, their fault
mitigation techniques still rely on costly techniques, such as retraining and redundancy.
Therefore, the impact of HW-induced faults on the system-level accuracy considering the
underlying SNN neuromorphic architectures, and the respective fault mitigation techniques,
are still an unexplored avenue.

2.5 Quantization in Neural Networks
2.5.1 Data Representation and Rounding Schemes
The quantization of NNs typically employs a fixed-point format [Kri18]. This fixed-point
format is represented as Qi.f , which consists of 1 sign bit, i integer bits, and f fractional
bits, and follows the 2’s complement format [GD03]. If the sign bit is not required, it
can be eliminated, and hence this free bit can be used for integer or fractional parts.
Given the fixed-point Qi.f , the range of representable values is [−2i, 2i − 2−f ] and
the precision is ϵ = 2−f . In the quantization process, a rounding scheme is required,
and we consider the widely used ones, i.e., truncation, rounding-to-the-nearest, and
stochastic [HMLF20, GAGN15].

Truncation (TR): This scheme keeps the f bits and discards the other bits from
the fractional part. Hence, the output fixed-point for the given real number x and
configuration Qi.f , is defined as TR(x, Qi.f) = ⌊x⌋.

Rounding-to-the-Nearest (RN): This scheme rounds the value, that is halfway
between two representable values (⌊x⌋ + ϵ

2), by rounding it up. Therefore, the output
fixed-point for the given real number x and configuration Qi.f , is defined as

RN(x, Qi.f) =

⌊x⌋ if ⌊x⌋ ≤ x < ⌊x⌋ + ϵ

2
⌊x⌋ + ϵ if ⌊x⌋ + ϵ

2 ≤ x < ⌊x⌋ + ϵ
(2.17)

Stochastic Rounding (SR): This scheme rounds the value using a non-deterministic
approach. Given a random value P ∈ [0, 1) that is drawn from a uniform random number

46



2.5. Quantization in Neural Networks

Ta
bl

e
2.

5:
A

n
ov

er
vi

ew
of

st
at

e-
of

-t
he

-a
rt

te
ch

ni
qu

es
fo

r
st

ud
yi

ng
an

d/
or

im
pr

ov
in

g
th

e
fa

ul
t

to
le

ra
nc

e
of

th
e

SN
N

sy
st

em
s

[P
H

S2
1a

,P
H

S2
2b

,S
LS

23
].

St
ud

y
Te

ch
ni

qu
e

/
A

pp
ro

ac
h

R
el

at
ed

W
or

k
B

ri
ef

D
es

cr
ip

ti
on

Ta
rg

et
ed

Fa
ul

ts
B

en
efi

ts
C

os
t

/
W

ea
kn

es
se

s

Fa
ul

t
M

od
el

in
g

Lo
gi

ca
l

D
es

cr
ip

tio
n

[V
D

N
A

19
]

It
de

sc
rib

es
a

se
t

of
po

ss
ib

le
fa

ul
ts

in
SN

N
s,

co
ve

rin
g

fa
ul

ts
in

ne
ur

on
s

an
d

sy
na

ps
es

.
Pe

rm
an

en
t

an
d

tr
an

sie
nt

fa
ul

ts
A

lis
t

of
po

ss
ib

le
fa

ul
ts

in
SN

N
s

N
o

ex
pe

rim
en

ts

Tr
an

sis
to

r-
le

ve
l

N
eu

ro
n

[E
SS

P+
20

]
It

st
ud

ie
s

fa
ul

t
m

od
el

in
g

fo
r

ne
ur

on
H

W
at

tr
an

sis
to

r-
le

ve
l,

bu
t

on
ly

co
ve

rs
In

te
gr

at
e-

an
d-

Fi
re

(I
F)

ne
ur

on
m

od
el

.

Pe
rm

an
en

t
fa

ul
ts

in
ne

ur
on

H
W

Fi
ne

-g
ra

in
ed

fa
ul

t
m

od
el

in
g

fo
r

ne
ur

on
H

W

•
O

nl
y

fo
r

IF
ne

ur
on

•
Fa

ul
ty

sy
na

ps
es

ar
e

no
t

co
ns

id
er

ed
•

D
es

ig
n

tim
e

Im
pa

ct
of

Fa
ul

ts
on

A
cc

ur
ac

y

Bi
t-

le
ve

l
Fa

ul
t

In
je

ct
io

n
[V

M
A

+
20

]
It

st
ud

ie
s

th
e

im
pa

ct
of

bi
t

fli
ps

at
th

e
ra

nd
om

lo
ca

tio
ns

of
we

ig
ht

s,
w

ith
ou

t
co

ns
id

er
in

g
un

de
rly

in
g

SN
N

H
W

ar
ch

ite
ct

ur
es

.

Pe
rm

an
en

t
fa

ul
ts

in
we

ig
ht

bi
ts

Fa
st

fa
ul

t
in

je
ct

io
n

Im
pr

ec
ise

fa
ul

t
m

od
el

Sy
na

ps
e-

le
ve

l
Fa

ul
t

In
je

ct
io

n
[S

PM
J+

20
]

[R
LI

S2
1]

It
st

ud
ie

s
th

e
im

pa
ct

of
sy

na
ps

e
fa

ilu
re

(r
em

ov
al

)
at

th
e

ra
nd

om
lo

ca
tio

ns
in

th
e

gi
ve

n
m

od
el

,
w

ith
ou

t
co

ns
id

er
in

g
un

de
rly

in
g

SN
N

H
W

ar
ch

ite
ct

ur
es

.

Pe
rm

an
en

t
fa

ul
ts

in
sy

na
ps

es
Fa

st
fa

ul
t

in
je

ct
io

n
Im

pr
ec

ise
fa

ul
t

m
od

el

Fa
ul

t
M

iti
ga

tio
n

Fa
ul

t-
aw

ar
e

Tr
ai

ni
ng

[S
ES

A
+

21
]

[S
H

23
]

[R
LI

S2
1]

It
pr

op
os

es
a

fa
ul

t-
aw

ar
e

tr
ai

ni
ng

to
m

ak
e

th
e

m
od

el
be

tt
er

ad
ap

t
to

fa
ul

ts
in

ne
ur

on
H

W
.

Pe
rm

an
en

t
fa

ul
ts

in
ne

ur
on

H
W

A
da

pt
iv

e
to

m
an

y
SN

N
co

m
pu

te
en

gi
ne

•
Fa

ul
ty

sy
na

ps
es

ar
e

no
t

co
ns

id
er

ed
•

R
et

ra
in

in
g

co
st

A
no

m
al

y
D

et
ec

tio
n

[S
ES

A
+

21
]

It
de

te
ct

s
an

om
al

y
th

at
in

di
ca

te
s

ne
ur

on
sa

tu
ra

tio
n.

Pe
rm

an
en

t
fa

ul
ts

in
ne

ur
on

H
W

A
ct

iv
e

fa
ul

t
to

le
ra

nc
e

at
ru

n
tim

e
•

O
nl

y
fo

r
IF

ne
ur

on
•

Fa
ul

ty
sy

na
ps

es
ar

e
no

t
co

ns
id

er
ed

T
M

R
[S

ES
A

+
21

]
It

em
pl

oy
s

T
M

R
te

ch
ni

qu
e

us
in

g
th

re
e

id
en

tic
al

ne
ur

on
s

to
vo

te
fo

r
de

ci
di

ng
th

e
ou

tp
ut

cl
as

s.
Pe

rm
an

en
t

fa
ul

ts
in

ne
ur

on
H

W
A

ct
iv

e
fa

ul
t

to
le

ra
nc

e
at

ru
n

tim
e

•
O

nl
y

fo
r

IF
ne

ur
on

•
La

rg
e

ar
ea

an
d

en
er

gy
ov

er
he

ad
s

47



2. Background and Related Work

generator, the output fixed-point for the real number x and configuration Qi.f is defined
as

SR(x, Qi.f) =

��
⌊x⌋ if P ≥ x − ⌊x⌋

ϵ

⌊x⌋ + ϵ if P <
x − ⌊x⌋

ϵ

(2.18)

2.5.2 Quantization Schemes
There are two widely used quantization schemes in the neural network models, i.e., the
Post-Training Quantization, and the In-Training Quantization (or Quantization-aware
Training) [Kri18], whose key mechanisms are shown in Figure 2.17.

(a) Trained 
SNN Model 

(FP32)

SNN 
Model 
(FP32)

Training 
(FP32)

Quantize 
the SNN 

Parameters 
(Qi.f)

Trained & 
Quantized SNN 
Model (FP32)

Test (Qi.f)

Accuracy

(b) SNN 
Model 
(FP32)

Training (Qi.f) Trained & 
Quantized SNN 

Model (Qi.f)

Test (Qi.f)

Accuracy

Quantized 
SNN Model (Qi.f)

Quantize the SNN 
Parameters (Qi.f)

Figure 2.17: Overview of (a) the post-training quantization, and (b) the in-training
quantization or quantization-aware training.

Post-Training Quantization (PTQ) trains an SNN model with a floating-point
precision (e.g., FP32) and results in a trained model. Afterward, the quantization is
performed on the trained model with the given Qi.f precision, resulting in a quantized
model for the inference phase.

In-Training Quantization (ITQ) quantizes an SNN model with the given Qi.f
precision during the training phase. Therefore, the trained model is already in a quantized
form and can be used for the inference phase. The quantization is typically performed
using the simulated quantization [Kri18].

In this thesis, in most of the study cases, we implement the quantization using simulated
quantization, i.e., the network parameters are represented and stored using their low-
precision fixed-point values (FxP), and then computed (e.g., through MAC or LIF neuron
operations) using floating point arithmetic (FP32) [Kri18, JKC+18b, GKD+, vBKM+22].

2.6 DRAM Fundamentals
Dynamic Random Access Memory (DRAM) is a specific type of Random Access Memory
(RAM) that employs a single transistor-capacitor pair for holding a data bit [JWN10].
The capacitor can be charged or discharged, and these two states are used to represent
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the two values of a single bit: 1 (charged state) and 0 (discharged state). This circuit
is dynamic as the electric charge (data) in each capacitor gradually leaks away and
will eventually be lost. Therefore, DRAM employs a refresh mechanism to periodically
rewrite/restore the original data in each capacitor. In this manner, data bits in DRAM
can be preserved during the operational time and will disappear when the DRAM is
powered off. Therefore, DRAM is also categorized as a volatile memory. In modern
computing systems, DRAM is employed as the main memory [GLH+19], as shown in
Figure 2.18. The main reason is that, DRAM can store large data bits in a smaller area
as compared to on-chip Static RAM (SRAM), as DRAM employs a smaller number of
components (i.e., a transistor and a capacitor) for its storage cell. Furthermore, DRAM
can also perform faster data access as compared to commodity storage devices (e.g., hard
disk) due to its electric charge/discharge characteristics.
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Figure 2.18: The typical computer organization, showing the connections between the
processor (including cores and memory controller) and main memory modules: (a) from
an overview perspective and (b) from a top-view perspective.

2.6.1 DRAM Organization

A DRAM-based memory is organized in a certain hierarchy as seen from a top-down
perspective: channel, rank, chip, bank, subarray, row, and column [KSL+12, GLH+19];
see an overview in Figure 2.19. The highest level of the hierarchy is a memory channel
(or simply a channel). Each channel has a dedicated bus to the host (e.g., processor)
and memory controller. This channel can connect to one or multiple DRAM module(s),
such as Dual Inline Memory Modules (DIMMs), as shown in Figure 2.18. Each module
typically has several DRAM chips. A group of chips that operate in lockstep is referred to
as a DRAM rank. In each DRAM chip, there are several banks, as shown in Figure 2.19(a).
These banks are the lowest hierarchy that can operate in parallel, i.e., referred to as
bank-level parallelism [KPMHB11]. However, these banks also share a single memory
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bus, hence the memory controller has to schedule the memory requests so that operations
in different banks in the same DRAM chip do not interfere with each other [GLH+19].
Furthermore, a DRAM bank is not implemented in a monolithic design (i.e., a large array
of cells with a single row buffer). Instead, a bank is implemented in multiple subarrays,
and each subarray has its local row buffer, as shown in Figure 2.19(b)-(c). Multiple
subarrays in a bank share a global row address decoder as well as global bitlines which
connect local row buffers to a global row buffer [KSL+12], as shown in Figure 2.19(c).
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Figure 2.19: DRAM organization. (a) DRAM ranks with an overview of DRAM chips
and banks inside a rank. (b) A DRAM bank with an overview of the memory array,
row buffer, decoders, and interconnections. (c) A DRAM bank with an overview of the
memory subarrays, local and global row buffers, local and global row decoders, and
interconnections. (d) A storage cell of DRAM technology.

2.6.2 DRAM Operations

Basic DRAM Access

To enable a memory request for accessing data at a specific DRAM row and column
address, the memory controller issues three commands which trigger a particular sequence
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of events in the DRAM bank. Following is a brief description of these three commands.

• Activate (ACT): It reads of the entire data in the targeted/requested row, then
copy the data into the row buffer.

• Read/Write (RD/WR): It accesses the requested column from the row buffer, i.e.,
either reading data for RD command or writing data for WR command.

• Precharge (PRE): It deactivates the row buffer, so that the connected banks are
ready for receiving another command.

The memory controller sends a request to DRAM through a specific channel, and a
targeted DRAM rank will respond. Since there are typically multiple DRAM chips in a
rank, then multiple chips in the targeted rank can be accessed in parallel. In each chip,
the request is passed to a specific DRAM bank, and then decoded into a DRAM row and
column address. The activate (ACT) command triggers a row activation, and data from
the requested row are copied to the row buffer (so-called activated row buffer). Afterward,
either a read (RD) or write (WR) command can be issued by the memory controller to
access a certain column in the activated row buffer. There are three different conditions
that may be faced in this case: row buffer hit, row buffer miss, or row buffer conflict.

• Row Buffer Hit: It happens when the requested row is already activated, hence the
data in this row is already copied into the row buffer. In this condition, data in the
row buffer can be accessed directly without any new row activation.

• Row Buffer Miss: It happens when there is no activated row yet in the row buffer.
In this condition, a new row activation is needed and the data in the requested row is
copied to the row buffer.

• Row Buffer Conflict: It happens when there is an activated row in the row buffer,
but its address is not the one that the request is expecting. Therefore, the activated row
has to be closed first using the precharge (PRE) command. Afterward, the requested
row can be activated using the activation (ACT) command, and the subsequent
commands of DRAM access can be issued and executed.

The data accessed from different chips form a DRAM data word, which will be transmitted
to memory controller, as shown in Figure 2.19(a). For example, if a rank has 8 chips
that can be accessed in parallel and each chip provides 8-bit data-per-access, then this
rank can provide 64-bit data word-per-access.

DRAM Timing Constraints

After the memory controller sends a command to DRAM, it has to wait for sufficient
amount of time before sending another command. These restrictions are referred to as
DRAM timing constraints, which are illustrated in Figure 2.20 and described as follows.
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• Row-to-Column Delay (tRCD): It is the time required to copy data in the specified
row into the row buffer (i.e., sense amplifier). During this time, the connection of
cell to the bitline is established, hence sharing the charge (or the lack of charge) of
cell capacitor with the bitline parasitic capacitor and perturbing the bitline voltage.
Afterward, the sense amplifier senses and amplifies the perturbation until reaching a
threshold state, where the data is considered to be “copied” to the row buffer.

• Row Active Time (tRAS): It is the time when a row is active. It includes time for
charge sharing, charge sensing, charge amplification, as well as charge restoration to
the original value to the cell capacitor. Therefore, tRAS includes tRCD.

• Row Precharge Time (tRP ): It is the time required for precharging phase. During
this time, the connection of cell to the bitline is terminated, and sense amplifier
precharges the bitline voltage by withdrawing charge from (or injecting charge to)
bitline parasitic capacitor so that the bitline voltage reaches the quiescent value.

• Row Cycle Time (tRC): It is the minimum time interval required between two
successive ACT commands (ACT → ACT) to the same subarray of a bank. Since
a new ACT command can only be issued when both the activation phase (tRAS)
from previous ACT command and precharging phase (tRP ) to complete, hence the
tRC = tRAS + tRP .
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I/O-Circuitry

Bus timedata data

Subarray

access latency

ACT RDCommand PRE ACT RD
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Figure 2.20: Illustration of DRAM accesses with the respective commands: ACT, RD/WR,
and PRE; phases: activation, I/O, and precharge; as well as timing constraints: row-to-
column delay (tRCD), row active time (tRAS), row precharge time (tRP ), column access
latency (tCL), and data bus latency (tBL).

2.6.3 Modern DRAM Types
In this subsection, prominent DRAM types are introduced to highlight their specific
features, architectural designs, and operations.
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DDR3 and DDR4

In the Double Data Rate (DDR) DRAM, a sequence of data is sent on both the positive
and negative edges of the DRAM bus clock to double the DRAM data rate. DDR3 is the
third generation of Double Data Rate (DDR) DRAM, which contains eight DRAM banks
in a rank [JED12]. Meanwhile, DDR4 increases the number of banks per rank to 16 and
introduces bank groups as a new level of hierarchy in the DRAM [JED17b]. Typically,
DDR4 has longer memory access than DDR3 due to the interconnection between the
bank groups and I/O of the DRAM chip, but DDR4 provides higher bandwidth than
DDR3 due to its significantly higher bus clock frequency.

Low-Power DDR3 (LPDDR3) and Low-Power DDR4 (LPDDR4)

LPDDR3 is the low-power variant of DDR3 [JED15], while LPDDR4 is the low-power
variant of DDR4 [JED17a]. These DRAM types reduce power consumption as compared
to their standard-power counterparts through several techniques, like the employment of a
lower core voltage, two voltage domains on a single chip, deep power-down modes, reduced
chip width, temperature-controlled refresh, and fewer chips-per-module [GLH+19].

High Bandwidth Memory (HBM)

HBM is a 3D-stacked memory that aims at providing high throughput, where multiple
DRAMs are stacked on top of one another. It is designed for computing platforms that
require high performance and high bandwidth, like Graphic Processing Units (GPUs). To
achieve this, each HBM module typically connects multiple memory channels (e.g., 4-8)
to a large number of requests in parallel while avoiding the I/O contention [GLH+19].

The above description shows that, the internal organizations of different DRAM types
are the same, i.e., channel, rank, chip, bank, subarray, row, and column as seen from a
top-down perspective. Therefore, data mapping policy in a specific type of DRAM will
be applicable to other types of DRAMs [GLH+19].

2.6.4 Novel DRAM Architectures

DRAM with Subarray-level Parallelism (SALP)

In a modern DRAM, each memory request that goes to a DRAM bank, can only access
a single subarray at a time. Hence, it limits the potential to further reduce the DRAM
access latency and energy. To address this limitation, new DRAM architectures and
mechanisms have been proposed to exploit the subarray-level parallelism (SALP) in
the same DRAM bank, that are referred to as SALP-enabled DRAM architectures or
simply SALP architectures [KSL+12]. Three types of SALP architectures include SALP-1,
SALP-2, and SALP-MASA (see their service time in Figure 2.21), whose key ideas are
discussed in the following.
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Figure 2.21: Service time for modern DRAMs, SALP-1, SALP-2, and SALP-MASA
(adapted from [KSL+12]).

• SALP-1 reduces the DRAM service time by overlapping the precharge operation of
one subarray with the activation operation of another subarray. It can be performed
since mostly the precharge and activate operations are local to a subarray. To enable
this mechanism, a re-interpretation of the existing timing constraint for precharge
operation is required.

• SALP-2 reduces the DRAM service time by overlapping the write-recovery latency
(tW R) of an active subarray with the activation of another subarray. In this manner,
SALP-2 can reduce the DRAM service time even more than SALP-1. To enable the
SALP-2 mechanism, additional circuitry to activate two DRAM subarrays at the
same time is employed. Note, after the memory controller sends a WR command,
the targeted bank requires tW R so that its row buffer can drive the bitlines to new
voltages and new values are safely stored in the targeted cells.

• Multitude of Activated Subarrays (SALP-MASA) reduces the DRAM service
time by overlapping the activation of different subarrays, hence multiple subarrays are
activated at the same time. In this manner, SALP-MASA reduces the DRAM service
time even more than SALP-1 and SALP-2. To enable the SALP-MASA mechanism,
additional circuitry (more complex than the one for SALP-2) to activate multiple
subarrays at the same time is employed.
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Tiered-Latency DRAM (TL-DRAM)

Recent study observes that the high latency of DRAM access is a result of the trade-off
made by DRAM manufacturers for optimizing the DRAM cost-per-bit [LKS+13]. The
reason is that, modern DRAM technology typically connects many storage cells with a
single sense amplifier through a bitline, as shown in Figure 2.22(a). In this manner, many
cells can be sensed with a relatively small number of sense amplifier, but at the cost of
long bitlines. These long bitlines have a high parasitic capacitance, which is the dominant
source of DRAM latency [LKS+13]. Therefore, specialized low-latency DRAMs typically
use shorter bitlines at the cost of larger area overhead for sense amplifiers considering
the same DRAM capacity, as shown in Figure 2.22(b). In summary, DRAMs with longer
bitlines have lower cost-per-bit and higher latency, while the ones with shorter bitlines
have higher cost-per-bit and shorter latency.

To achieve the benefits of both low access latency and low cost-per-bit, previous work has
proposed Tiered-Latency DRAM (TL-DRAM), whose key idea is to split long bitline in
each DRAM subarray into two shorter segments using an isolation transistor [LKS+13],
as shown in Figure 2.22(c). Therefore, one segment (i.e., near segment) in each bitline of
TL-DRAM can be accessed with the latency of a short-bitline, while incurring minimum
area and cost-per-bit overheads.
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Figure 2.22: An overview of the architectural differences among (a) long-bitline DRAM,
(b) short-bitline DRAM, and (c) TL-DRAM, considering the same number of cells-per-
bitline (adapted from [LKS+13]).

2.7 Summary of Background and Related Work
This chapter mainly discusses the fundamentals of NNs (i.e., DNNs and SNNs), reliability
threats in computing systems, and DRAM technology. First, this chapter provides detailed
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description of DNNs and SNNs, encompassing their operations, models, training and
inference process, and HW accelerators. Then, it presents state-of-the-art techniques for
improving the energy efficiency of the DNN and SNN systems. This chapter also provides
detailed description of reliability threats in computing systems including approximation
errors, permanent faults, and soft errors. Then, it presents state-of-the-art techniques
for mitigating the reliability threats in SNN systems. Afterward, this chapter describes
the quantization techniques for NNs, and discusses the DRAM technology as the main
memory of modern computing systems, including DRAM organization, operations, and
novel architectures. Furthermore, this chapter also identifies the limitations of state-
of-the-art techniques for improving energy efficiency and fault tolerance of NN-based
systems, which will be addressed in the following chapters.
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CHAPTER 3
DRAM Optimization for

Energy-Efficient DNN Systems

This chapter discusses our novel methodology to perform DRAM optimization for achiev-
ing energy-efficient DNN systems. This chapter first identifies and discusses the problems
for enabling energy-efficient DNN inference systems in Section 3.1. To systematically
address the research problems, we propose a novel methodology that employs our pro-
posed HW/SW-level optimization techniques for achieving energy-efficient DNN systems.
The proposed design flow is shown in Figure 3.1 and the details of novel contributions
are described in the following sections in this chapter. Section 3.2 discusses a novel
methodology for optimizing the DRAM access requirements for DNN accelerators. It
employs a design space exploration (DSE) to find the appropriate data partitioning
and scheduling scheme that minimizes the number of DRAM accesses for the given
DNN model. Furthermore, Section 3.3 discusses a novel methodology for exploiting the
characteristics of new DRAM architectures through a generalized DRAM data mapping
for optimizing the DRAM energy-per-access for DNN accelerators, thereby improving
the energy efficiency of DNN systems.
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Figure 3.1: An overview of the design flow of this chapter.
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3.1 Problem Identification
CNNs, a particular type of DNNs, have emerged as a promising solution for a wide range
of machine learning applications, e.g., image classification, object detection, autonomous
vehicles, and smart healthcare [LBH15]. To expedite the inference process, several
CNN HW accelerators have been proposed over the past few years [CDS+14, ZLS+15,
ZDZ+16, HLM+16, CKES17, AJH+16, LLL+16, JYP+17, PRM+17, LYL+17, MUDV17,
YYY+18, KSK18, HPT+18, SPS+18, UAH+18, LKK+18, ZLL+21, SNFK20]. These
accelerators offer a higher performance efficiency as compared to the general-purpose
CPU-based solution. However, most of them only present isolated accelerator design,
and do not thoroughly study the impact of off-chip memory accesses, especially for
scenarios where the full CNN processing cannot be mapped to an accelerator fabric
at the same time. The reason is that CNN models are large in size, and typical CNN
compute engine and on-chip memory are small and may not even be sufficient to process
one complete layer of a network at a time. Moreover, each data is usually involved in
multiple computations (i.e., MAC operations) during processing. Therefore, multiple
redundant accesses for the same data to off-chip memory are inevitable. The redundant
accesses to DRAM-based off-chip memory hinder the accelerators from achieving further
efficiency gains as DRAM energy is significantly higher compared to other operations
[SCYE17, PHS20, CBM+20b, CBM+20a, AAH+20], which is also shown in Figure 2.7(b).
Therefore, DRAM energy savings result in the proportional system-level energy savings.
DRAM access energy is dependent on the number of accesses and the energy-per-access
that varies depending upon whether the access faces a row buffer hit, a row buffer miss,
or a row buffer conflict, as described in Section 2.6.2. We observe that, a row buffer hit
incurs less latency and energy as compared to a row buffer miss and a row buffer conflict,
as shown in Figure 3.2. From these observations, it is evident that DRAM access energy
an latency for CNN accelerators can be optimized by decreasing the number of DRAM
accesses, row buffer conflicts and row buffer misses.
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Figure 3.2: Profile of (a) DRAM access latency and (b) DRAM access energy for a row
buffer conflict, miss, and hit. Data are obtained from our experiments for DDR3-1600
2Gb x8 using cycle-accurate DRAM simulators [KYM16, GYG+18].

The full CNN processing usually cannot be mapped at once to the accelerator fabric
due to limited on-chip memory, i.e., 100 KB - 500 KB [SCYE17]. Therefore, to reduce
the DRAM accesses, state-of-the-art works [ZLS+15, LYL+18] employ different data
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partitioning and scheduling schemes to move the data from DRAM to on-chip memory,
and then reuse it multiple times for computation. Such data partitioning and scheduling
schemes depend on which data type should be kept longer on chip, as there are three
data types: input activations/feature maps (ifmaps), output activations/feature maps
(ofmaps), and weights. Previous works can be loosely classified into two categories: fixed
scheduling and adaptive scheduling. In fixed scheduling, the priority of data reuse is
fixed to only one data type, which is not effective to minimize the DRAM accesses, since
different layers of a network may have different priorities of data reuse. This limitation is
addressed by the adaptive scheduling [LYL+18, TKP20], the state-of-the-art scheduling
which adaptively prioritizes the data reuse for each layer of a network. However, they do
not consider the DRAM organization and overlapping data which should not be re-fetched
again from DRAM in the analytical model for estimating the number of DRAM accesses.
Therefore, the analytical model used by state-of-the-art works for estimating the number
of DRAM accesses is sub-optimal and needs re-formulation.

Furthermore, CNN accelerators typically employ DRAM burst mode to increase the
DRAM throughput [ZSF+19, QWY+16, GLX+17], since it allows accessing multiple data
with a single DRAM request. The state-of-the-art work [ZSF+19] exploits the burst mode
by mapping each data partition to continuous addresses in a DRAM bank. It prioritizes
mapping each data partition to different columns in the same row of the same bank. If
all columns in the same row are fully filled, the remaining data are mapped to a different
row in the same bank. Therefore, each data partition may occupy multiple rows in a
bank. However, this mapping has a high chance to face row buffer conflicts, since data
from multiple rows in a bank need to be fetched for accessing the entire data partition,
thereby consuming high energy and latency. Therefore, the state-of-the-art works have
not optimized the DRAM data mapping, which is crucial for CNN accelerators.

Problem-1: How can we optimize the number of DRAM accesses and the DRAM
access energy for CNN accelerators, while improving the DRAM throughput.

From the literature, there are various types of DRAM architectures that can be employed
in CNN accelerators, including commodity DRAMs like DDR3 and DDR4 (see Sec-
tion 2.6.3) and new DRAM architectures like SALP [KSL+12] and TL-DRAM [LKS+13]
(see Section 2.6.4). In fact, different DRAM architectures have different characteristics
regarding their access energy and access latency, thereby providing different energy effi-
ciency gains for CNN accelerators. Moreover, new DRAM architectures (e.g., SALP and
TL-DRAM) have been proposed to address some limitations of commodity DRAMs (e.g.,
latency) with some overheads (e.g., area, power/energy), thereby having the potential
for improving the efficiency of CNN accelerators. Therefore, to maximize the energy
efficiency gains of the given DRAM architecture in CNN accelerators, an understanding
on the characteristics of the DRAM energy-per-access and latency-per-access is required.
However, state-of-the-art works have not studied these characteristics and potentials
of different DRAM architectures for CNN accelerators, thereby limiting their energy
efficiency gains.
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Problem-2: How can we optimize the DRAM energy-per-access and latency-per-access
of different DRAM architectures for maximizing the efficiency gains of CNN accelerators.

Benefits: The solution to these problems will enable energy-efficient DNN inference
systems for energy-constrained embedded platforms and their applications for Edge-AI
and Smart CPS. Edge-AI is the system that runs AI algorithms on resource- and energy-
constrained computing devices at the edge of the computing network, i.e., close to the
source of data [CR19, SCZ+16, Sat17, YLH+18, LTL+19, CLMS20]. Meanwhile, Smart
CPS (Cyber-Physical System) is the system that includes the interacting networks of
computational components (e.g., computation and storage devices), physical components
(e.g., sensors and actuators), and human users [GGWB17, CPS17, SKR18, KRH+18].

Proposed Solution: To systematically address the above problems, we propose a
comprehensive solution which is discussed in several sections. Specifically, Problem-1 and
Problem-2 are addressed in Section 3.2 and Section 3.3, respectively.

3.2 ROMANet: Reuse-Driven Off-Chip Memory Access
Management for DNN Accelerators

This section aims at addressing Problem-1, i.e., the solution for optimizing the number
of DRAM accesses and the DRAM access energy for CNN accelerators, while improving
the DRAM throughput.

3.2.1 Motivational Study
If we consider the number of times a specific data is reused for MAC operations (i.e.,
reuse factor), then we will observe that different data types (i.e., weights, ifmaps, and
ofmaps) may have different reuse factors across layers of a CNN model. Therefore, a
data type that has the highest reuse factor in one layer can have the least reuse factor
in another layer. For instance, our observations in Figure 3.3(a) illustrate that the
1st layer of VGG-16 (CONV1) has the highest reuse factor for the weights, however in
the 14th layer of VGG-16 (FC1), weights has the lowest reuse factor. This indicates
that, the data partitioning and scheduling for DRAM accesses should consider the reuse
factor information from each layer of a network, thereby maximizing data reuse on-chip
and avoiding redundant off-chip DRAM accesses. Furthermore, we also observe that
the overlapping data on the ifmaps during the convolution can be stored on-chip and
used in the subsequent process directly; see Figure 3.3(b). Therefore, these data do not
need to be re-accessed again. In this manner, the redundant accesses to DRAM for the
overlapping data can be minimized.

3.2.2 Scientific Research Challenges
An effective data partitioning and scheduling solution leads to the minimum number of
DRAM accesses and thereby minimum energy consumption. However, the number of
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Figure 3.4: Estimated number of data partitioning options to be investigated in the
design space (left) for different cases in the table. Each option defines the size of ifmaps
and weights partitions to be fetched from the DRAM and used for computing the ofmaps.

possible configurations can be significantly large and grows exponentially with the data
size, as shown in Figure 3.4. Therefore, it is necessary to efficiently explore the design
space in search of effective solution(s). Toward this, we need to formulate an optimization
problem, i.e., we have to identify the constraints and formulate the design goal. Solving
this problem requires an analytical model to efficiently estimate the number of DRAM
accesses in an accurate manner.

Required: A methodology that optimizes the number of DRAM accesses through effective
data partitioning and scheduling, and optimizes the DRAM energy-per-access through
efficient DRAM data mapping.
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3.2.3 Novel Contributions
To address the above challenges, we propose ROMANet, a novel methodology that enables
fine-grained Reuse-driven Off-chip Memory Access management for deep neural Network
accelerators [PHS21b], that employs the following key techniques; see an overview in
Figure 3.5.

1. An analytical model to compute the number of DRAM accesses for a given data
partitioning and scheduling scheme of a network layer. It models (1) the reuse factors
of different data types (ifmaps, ofmaps, and weights), and (2) the data partitions.

2. A data mapping in off-chip DRAM that maximizes the row buffer hits, bank- and
chip-level parallelism, and exploits DRAM multi-bank burst feature. This mechanism
considers data partitioning and DRAM configuration as inputs.

3. A data mapping in on-chip SRAM buffers that exploits bank-level parallelism
to efficiently shuttle data between DRAM and compute engine. This mechanism
considers data partitioning, buffer, and compute engine configuration as inputs.
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Figure 3.5: Overview of our novel contributions, as highlighted in blue boxes.

3.2.4 Data Partitioning and Scheduling
The data partitioning and scheduling of convolutional operations in a CNN are typically
devised for each layer of a network, hence most of the CNN accelerators process a network
sequentially, one layer at a time [ZLS+15, CKES17, LLL+16]. The pseudo-code of a
convolutional layer processing in a CNN accelerator can be represented as shown in
Figure 3.6(a). It has two main parts: the inner loops and the outer loops. The inner loops
represent the processing of a portion of the convolutional layer whose data is available in
the on-chip memory. The outer loops define the schedule of processing different portions.
The size of a portion that can be processed at one time depends on the data that can be
stored in the on-chip memory. Therefore, based on the size of the on-chip memory, the
data can be partitioned in the form of blocks/tiles as tiling can improve locality when
there is data reuse [WL91], and this is represented with the step sizes in the outer loops
in Figure 3.6(a). The sequence of the outer loops defines the sequence in which these
tiles are moved from the DRAM to the on-chip memory to process the corresponding
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Off-chip data transfer
(outer loops)

On-chip computation
(inner loops)

for ( z = 0; z < Z; z++ ) {  // Z: number of images in a batch
for ( m = 0; m < M; m += Tm ) {  // M: height of ofmaps

for ( n = 0; n < N; n += Tn ) {  // N: width of ofmaps
for ( j = 0; j < J; j += Tj ) {  // J: depth of ofmaps

for ( i = 0; i < I; I += Ti ) {  // I: depth of ifmaps & weights
// load ifmaps, weights, and ofmaps (psums)
for ( p = 0; p < P; p++ ) {  // P: height of weights

for ( q = 0; q < Q; q++ ) {  // Q: width of weights
for ( mx = m; mx < min(mx+Tm , M); mx++ ) {

for ( nx = n; nx < min(nx+Tn , N); nx++ ) {
for ( jx = j; jx < min(jx+Tj , J); jx++ ) {

for ( ix = i; ix < min(ix+Ti , I); ix++ ) {
ofmaps[z][mx][nx][jx] += …
ifmaps[z][str*mx+p][str*nx+q][ix] * weights[p][q][ix][jx]

} } } } } } 
// store ofmaps (psums)

} } } } } 

input feature 
maps (ifmaps)

output feature 
maps (ofmaps)weights

J
I

M

N

H

W

(a) Pseudo-code of a tiled convolutional layer processing

…

J

P

I

Q
Tp

Ti

Tq

Tj

Ti

Tw

Th Tn

Tm

Tj

Th : tile height of ifmapsTp : tile height of weights
Tq : tile width of weights
Ti : tile depth of weights & ifmaps

Tw : tile width of ifmaps
Tm : tile height of ofmaps
Tn : tile width of ofmaps
Tj : tile depth of ofmaps

(b) Illustration of a tiled convolutional layer processing

Figure 3.6: (a) Pseudo-code of a tile-based convolutional layer processing. (b) Illustration
of a tile-based convolutional layer processing. Tiling factors define the portion of data
(shaded region) in each data type which are used for on-chip processing at one time.

portions of the layer. This sequence also defines the total number of DRAM accesses
required to process a layer. Here, two subsequent on-chip computations can have some
data in common that do not need re-fetching from the DRAM, and thereby affecting the
total number of DRAM accesses required for inference.

To minimize DRAM accesses, different data partitioning and scheduling have been studied
and employed by state-of-the-art CNN accelerators. The idea is to keep data (that has
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to be reused the most) longer in the on-chip memory. Depending upon which data type
should be kept longer in the on-chip memory, the previous works can be loosely classified
into two main categories: fixed scheduling and adaptive scheduling.

Fixed scheduling employs static tiling factors and scheduling across layers of a network,
by giving priority of reuse to only one specific data type, either ifmaps, ofmaps, or weights.
This concept has been widely used in previous works, such as [ZLS+15]. However, the
reuse factors of different data types vary across layers of a CNN model. Therefore, a
data type that has the highest reuse factor in one layer can have the least reuse factor in
another layer. This can lead to a significant loss in energy efficiency, specifically when
a fixed dataflow forces a data type which has the highest reuse factor, to be fetched
multiple times from DRAM, instead of keeping it longer in the on-chip memory and
reusing it to the maximum level.

To address this limitation, adaptive scheduling is proposed in the literature [LYL+18,
TKP20]. They employ adaptive tiling factors and scheduling, thereby further reducing
the DRAM accesses. However, their analytical models for estimating the number of
DRAM accesses do not consider the DRAM organization and the overlapping data
which should not be re-fetched from DRAM. Therefore, their analytical models for
estimating the number of DRAM accesses are sub-optimal and need to be re-formulated.
Furthermore, they also do not consider the DRAM data organization to reduce the
DRAM energy-per-access and latency-per-access.

3.2.5 ROMANet Methodology
We propose the ROMANet methodology [PHS21b] to provide a novel synergistic opti-
mization to improve the DRAM access energy and data throughput in CNN accelerators;
see Figure 3.7. The overview of its operational flow is explained in the following points.

• First, we determine the data partitioning and scheduling scheme for each layer
of a network that offers the minimum DRAM accesses while considering numerous
parameters, which is a non-trivial problem. To do this, a design space exploration
(DSE) is performed. Here, the DSE employs the analytical model of DRAM accesses
while considering different sizes of data partitioning for all data types and scheduling
schemes, as well as leveraging the information of the CNN model (e.g., data size and
stride), the DRAM (e.g., number of banks), and the on-chip accelerator fabric (e.g.,
buffer size). Furthermore, we devise an analytical model that considers minimizing
the redundant accesses for overlapping data.

• We devise en efficient data mapping policy in DRAM that places each data
partition across the available DRAM channels, ranks, chips, banks, rows, and columns,
in a manner to maximize the row buffer hits, bank- and chip-level parallelism, while
exploiting the DRAM multi-bank burst feature.

• We also devise en efficient data mapping policy in SRAM buffers that places
each data partition across the available SRAM banks, rows, and columns, in a manner
to maximize the bank-level parallelism.
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Figure 3.7: An overview of the ROMANet methodology. The novel contributions are
highlighted in blue.

3.2.5.1 Analytical Modeling for Estimating the Number of DRAM Accesses

In the ROMANet, there are two key solutions proposed: (1) DSE, and (2) memory
mapping in DRAM and SRAM buffers. To perform DSE, we develop analytical models
for (a) reuse factors, (b) data partitioning, and (c) DRAM accesses. These models jointly
provide a measure of the number of DRAM accesses that should be minimized. Figure 3.8
provides an overview of how these models are connected.

Design Space Reduction: We reduce the overall design space to be investigated by
fixing some design parameters.
• We consider a CNN accelerator design based on Tensor Processing Unit (TPU) [JYP+17],

with single-level SRAM buffers hierarchy implemented using scratch-pad memory
(SPM), as shown in Figure 2.5. We consider SPM since it is commonly used as the
local buffer in many CNN accelerators [SCB19].
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CNN
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(Algorithm 1)
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Figure 3.8: Flow of steps to compute the number of DRAM accesses.

• We process only a single layer of a network at one time.
• We also consider to process a tile of ifmaps and weights on-chip, and producing a tile

of ofmaps at one time. A tile of ifmaps is defined by tiling factors Th · Tw · Ti, a tile of
weights is defined by Tp · Tq · Ti · Tj , and a tile of ofmaps is defined by Tm · Tn · Tj , as
shown in Figure 3.6(b).

The Optimization Problem Formulation: We formulate the optimization problem
to minimize the total number of DRAM accesses for a network (#DRAMaccess). The
#DRAMaccess is defined as the sum of the DRAM accesses from all layers of the network,
expressed as

#DRAMaccess =
L�

l=1
#DRAM l

access (3.1)

The #DRAM l
access represents the total number of DRAM accesses in layer-l, and L

represents the number of layers in the network. Since we consider to process only a single
layer of a network at one time, the optimization of #DRAMaccess can be approached
by minimizing the number of DRAM accesses-per-layer (#DRAM l

access). We consider
the data partitioning approach in the optimization problem, as it is employed by many
CNN accelerators, such as [ZLS+15, CKES17, LYL+17]. Therefore, the objective of the
optimization is formulated as

Objective : minimize
<Th,Tw,Ti,Tj ,Tm,Tn>

#DRAM l
access

Constraints :
(Th · Tw · Ti) · bitifmaps ≤ iBuff

(Tp · Tq · Ti · Tj) · bitweights ≤ wBuff

(Tm · Tn · Tj) · bitofmaps ≤ oBuff

(3.2)

Constraints of the optimization problem are the size of on-chip buffers, because they
limit the volume of data that can be stored at one time. iBuff, wBuff, and oBuff denote
the sizes of ifmaps buffer, weight buffer, and ofmaps buffer, respectively. Here, the
#DRAM l

access is defined as a sum of the number of DRAM accesses from all data types
in layer-l, and can be expressed as

#DRAM l
access =#accessl

ifmaps + #accessl
weights + #accessl

ofmaps (3.3)
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Terms #accessl
ifmaps, #accessl

weights, and #accessl
ofmaps represent the number of DRAM

accesses in layer-l for ifmaps, weights, and ofmaps, respectively. From the above equa-
tions, it is evident that to further define the model in a more fine-grained manner, the
formulations need to consider the modeling of different data types for calculating the
reuse factors, the data partitioning, and the DRAM accesses.

1) Model of Reuse Factors

The reuse factor (RF ) represents the number of MACs that each data entity is used
for [CYES19]. Hence, each data type has its own reuse factor in each layer of a network,
which can be estimated by

RF l
ifmaps =


P l

str

�
·


Ql

str

�
· J l (3.4)

RF l
weights =


H l − P l + 1

str

�
·


W l − Ql + 1
str

�
(3.5)

RF l
ofmaps = P l · Ql · I l (3.6)

Terms P l and Ql denote the height and the width of weights; I l and J l denote the number
of ifmaps and ofmaps; H l and W l denote the height and the width of ifmaps; while str
represents stride, respectively. Each of which is for a specific layer-l. The reuse factor
computations for different data types are illustrated in Figure 3.9.

2) Model of Data Partitioning

2.a) Input Feature Maps (ifmaps)

Depending upon the size of tiling factors, ifmaps may have many possibilities of data
partitioning. Therefore, multiple tiles may have different sizes and there may be overlap-
ping data that do not require redundant fetches. Here, we observe that there are three
possible access directions that can affect the modeling of layer partitioning: width-wise,
height-wise, and depth-wise, as shown in Figure 3.10.

Width-wise direction: In this case, tile access scheduling for width-wise direction is
prioritized. For instance, if we start the access from tile-1 of ifmaps, then the sequence
of access is tile-1 → tile-2 → tile-3. In this direction, there may be three types of tiles
involved (i.e., tile-1, tile-2, and tile-3), which differ from each other in the tiling width
(T ′

w: base tiling width, Twint : intermediate tiling width, and Twlast
: last tiling width).

The model is formulated as

Twlast
= W − T

′
w − nTwint


T

′
w − Twov


(3.7)

Term nTwint
denotes the number of intermediate tile (Twint). The Twint value reflects a

portion of the overlapped data (Twov ) from previous fetch that should not be re-fetched
again, because Twint = T

′
w − Twov .
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Figure 3.9: The reuse factor calculations in different data types involve the corresponding
shaded regions. (a) In RFifmaps: A single pixel of ifmaps is reused as many as the
number of pixels within the shaded region in weights. (b) In RFweights: A single weight
is reused as many as the number of pixels within the shaded region in ifmaps. (c) In
RFofmaps: A single pixel of ofmaps is reused as many as the number of partial sums
produced from convolution between the shaded regions in ifmaps and weights.

Height-wise direction: In this case, tile access scheduling for height-wise direction is
prioritized. For instance, if we start the access from tile-1 of ifmaps, then the sequence
of access is tile-1 → tile-4 → tile-7. In this direction, there may be three types of tiles
involved (i.e., tile-1, tile-4, and tile-7), which differ from each other in the tiling height
(T ′

h: base tiling height, Thint
: intermediate tiling height, and Thlast

: last tiling height).
The model is formulated as

Thlast
= H − T

′
h − nThint


T

′
h − Thov


(3.8)

Term nThint
denotes the number of intermediate tile (Thint

). The Thint
value reflects a

portion of the overlapped data (Thov ) from previous fetch that should not be re-fetched
again, because Thint

= T
′
h − Thov .
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Figure 3.10: Model of layer partitioning for ifmaps.

Depth-wise direction: In this case, tile access scheduling for depth-wise direction is
prioritized. For instance, if we start the access from tile-1 of ifmaps, then the sequence of
access is tile-1 → tile-10 → tile-19. In this direction, there may be two possible types of
tiles involved (i.e., tile-1 and tile-19), which differ from each other in the tiling depth (T ′

i :
base tiling depth and Tilast

: last tiling depth). Here, there is no intermediate tile because
of no overlapping data. The model is formulated as

Tilast
= I − nTi · T

′
i (3.9)

Term nTi denotes the number of tile T
′
i . In summary, the tiling configuration of whole

ifmaps is characterized by a combination of tiling factors Th ∈ {T
′
h, Thint

, Thlast
}, Tw ∈

{T
′
w, Twint , Twlast

}, and Ti ∈ {T
′
i , Tilast

}.

2.b) Filter Weights (weights)

For weights, the data partitioning is characterized by Tp, Tq, Ti, and Tj as shown in
Figure 3.11. Since the height and the width of weights are typically small, we simplify
the Tp and Tq as Tp = P and Tq = Q to reduce the complexity of the model and design
space. Therefore, there are only two possible access directions: filter set-wise direction
and depth-wise direction.

Filter set-wise direction: In this case, tile access scheduling for filter set-wise direction is
prioritized. The sequence of access is tile-1 → tile-2 → tile-3. In this direction, there
may be two possible types of tiles involved, which differ from each other in the number
of filters in a filter set (T ′

j : base tiling set and Tjlast
: last tiling set). Here, there is no

intermediate tile because of no overlapping data. The model is formulated as

Tjlast
= J − nTj

· T
′
j (3.10)

Term nTj denotes the number of filter set T
′
j .
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Figure 3.11: Model of layer partitioning for weights.

Depth-wise direction: In this case, tile access scheduling for depth-wise direction is
prioritized. The sequence of access is tile-1 → tile-4. In this direction, there may be two
possible types of tiles involved, which differ from each other in the tiling depth (T ′

i : base
tiling depth and Tilast

: last tiling depth). Here, there is no intermediate tile because of
no overlapping data. The model is formulated as

Tilast
= I − nTi

· T
′
i (3.11)

Term nTi denotes the number of tile depth T
′
i . In summary, tiling configuration of weights

is characterized by a combination of tiling factors Tp ∈ {P}, Tq ∈ {Q}, Ti ∈ {T
′
i , Tilast

},
and Tj ∈ {T

′
j , Tjlast

}.

2.c) Output Feature Maps (ofmaps)

For ofmaps, the data partitioning is characterized by Tm, Tn, and Tj , as illustrated in
Figure 3.12. A tile of ofmaps is generated from MAC operations between a tile of ifmaps
and a tile of weights at one time. Which tile of ofmaps generated from MACs, depends
on which tile of ifmaps and weights that are computed. Hence, the model of ofmaps in
terms of tiling height Tm and tiling width Tn, can be formulated as

Tm =


Th − Tp + 1
str

�
(3.12)

Tn =


Tw − Tq + 1
str

�
(3.13)

Meanwhile, the model for tiling depth Tj in ofmaps follows the Equation 3.10. Even
though the ifmaps may have intermediate values such as intermediate height Thint

and
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intermediate width Twint , its MAC computations will still consider base tiling height T
′
h

and base tiling width T
′
w due to overlapping data. Therefore, in ofmaps, the generated

Tm is limited to {T
′
m, Tmlast

} and Tn is limited to {T
′
n, Tnlast

}. In summary, the layer
partitioning of the ofmaps is defined by combination of tiling factors Tm ∈ {T

′
m, Tmlast

},
Tn ∈ {T

′
n, Tnlast

}, and Tj ∈ {T
′
j , Tjlast

}.
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Figure 3.12: Model of layer partitioning for ofmaps.

3) Model of DRAM Accesses

Equation 3.3 shows that the DRAM access-per-layer is defined as the sum of the DRAM
accesses from all data types. Meanwhile, the number of DRAM accesses for each data type
is dependent on the data partitioning. Therefore, the number of DRAM accesses-per-layer
for each data type can be estimated as the sum of the number of DRAM accesses-per-tile,
and can be formulated as

#accessl
x =

NTx�
t=1

#accesst
x

with x ∈ {ifmaps, weights, ofmaps}
(3.14)

Term #accesst
x represents the number of DRAM accesses-per-tile for x data type (x is

either ifmaps, weights, or ofmaps), while NTx denotes the number of tiles in layer-l, for
x data type. In DRAM, ifmaps and weights have only read (rd) type of accesses, thus
their number of accesses-per-tile can be estimated as

#accesst
ifmaps =


Th · Tw · Ti

Dp

�
rd

(3.15)

#accesst
weights =


Tp · Tq · Ti · Tj

Dp

�
rd

(3.16)

Term Dp denotes the number of DRAM chips-per-rank. Meanwhile, the ofmaps may have
two types of DRAM accesses, read (rd) and write (wr). These two types exist when a tile
of partial sums which are in oBuff can not be accumulated with newly generated partial
sums, but they still need to be accumulated with other partial sums to produce final
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ofmaps. Hence, they need to be stored back to DRAM, so that the oBuff can provide
space to store a new tile of partial sums. Later, this tile of partial sums has to be fetched
from DRAM to complete the computation, producing a tile of final ofmaps. The generic
equation to estimate the number of DRAM accesses-per-tile for ofmaps is formulated as

#accesst
ofmaps =


Tm · Tn · Tj

Dp

�
rd

+


Tm · Tn · Tj

Dp

�
wr

(3.17)

Equation 3.17 shows that the same partial sums are moved from oBuff to DRAM (wr)
and fetched again from DRAM to oBuff (rd). If there is no need for transporting partial
sums back to DRAM, the equation only needs to consider the write access part (wr) for
storing final ofmaps to DRAM.

3.2.5.2 Proposed Design Space Exploration (DSE)

We devise an algorithm that performs an exhaustive DSE for searching the effective
data partitioning and scheduling that offer minimum DRAM accesses. The algorithm is
presented in Algorithm 1 and explained in the following steps.

Step-1: For each layer of a network, we define scheduling schemes to be explored in the
DSE, which are based on the reuse priority orders that are determined using Algorithm 2.
Here, the reuse factors of different data types are calculated and then sorted, so that the
order of priority is known (Algorithm 2: lines 3-5). The idea is to ensure that the data
type with a higher reuse factor has a higher priority to be kept longer in the on-chip
buffer and reused maximally for reducing the redundant accesses to DRAM. The possible
orders are presented in Table 3.1. Therefore, a network will have reuse priority orders
from all layers which can be used to define scheduling schemes for DSE (Algorithm 1:
line 3). For instance, if a layer has reuse priority order of ofmaps → ifmaps → weights,
then the corresponding scheduling is devised as shown in Figure 3.13. Here, the priority
is to maximally reuse ofmaps or partial sums (psums) by traversing the tile accesses
of ifmaps and weights in the depth-wise direction. Therefore, the DRAM accesses for
ofmaps are minimized, i.e., only for storing the final ofmaps to the DRAM. Furthermore,
ifmaps should have a less number of redundant accesses than weights, since ifmaps has
higher reuse priority than weights. It is expected to be achieved by putting the tiling
parameters of ifmaps (i.e., nTh, nTw) at the outer loop of the scheduling.

Table 3.1: Possible reuse priority orders for scheduling.

Reuse Factors
Highest Medium Lowest Highest Medium Lowest
ifmaps weights ofmaps weights ofmaps ifmaps
ifmaps ofmaps weights ofmaps ifmaps weights
weights ifmaps ofmaps ofmaps weights ifmaps

Step-2: Fetch a tile of ifmaps and weights from DRAM, as long as they fit in the
corresponding buffer (iBuff and wBuff, respectively) and can be used together in MAC
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Algorithm 1 Pseudo-code of the proposed DSE
INPUT: (1) CNN: #layers (L), ifmaps (H, W , I), weights (P , Q, I), ofmaps (M , N , J), etc.;

(2) Buffer size: ifmaps (iBuff ), weights (wBuff ), ofmaps (oBuff );
(3) Bitwidth: ifmaps (bitifm), weights (bitwgh), ofmaps (bitofm);
(4) Analytical models: (i) tiling factors of ifmaps (Th, Tw, Ti), weights (Tp, Tq, Ti, Tj), ofmaps
(Tm, Tn, Tj); (ii) DRAM accesses;
(5) Reuse Priority Orders (RPO);

OUTPUT: (1) Number of DRAM accesses (#DRaccess);
(2) Data partitioning: ifmaps (TPifm), weights (TPwgh), ofmaps (TPofm);
(3) Scheduling (Schedule);

BEGIN
Initialization:

1: Tp = P ;
2: Tq = Q;

Process:
3: #Scheduling ← RPO;
4: for (Layer = 1 to L) do
5: for (Sched = 1 to #Scheduling) do
6: for (Th = P : stepTh

: H) do
7: for (Tw = Q : stepTw : W ) do
8: for (Tj = 1 : stepTj : J) do
9: Calculate Ti;

10: if (Th · Tw · Ti · bitifm ≤ iBuff) and (P · Q · Ti · Tj · bitwgh ≤ wBuff) then
11: Calculate Tm, Tn, Tj ;
12: if (Tm · Tn · Tj · bitofm ≤ oBuff) then
13: Calculate #DRaccess;
14: if (first loop) then
15: minDRaccess = #DRaccess;
16: Save TPifm, TPwgh, and TPofm;
17: Save Schedule = Sched;
18: else if (#DRaccess ≤ minDRaccess) then
19: minDRaccess = #DRaccess;
20: Save TPifm, TPwgh, and TPofm;
21: Save Schedule = Sched;
22: return (1) minDRaccess, (2) TPifm, TPwgh, TPofm, (3) Schedule;
END

operations for generating a tile of ofmaps, whose size has to fit in the oBuff (Algorithm 1:
lines 10-12). To define the size of a tile, we explore different combinations of tiling
factors from ifmaps, weights, and ofmaps (Algorithm 1: lines 6-12). Here, we consider the
adjustable search steps for different tiling factors, i.e., stepy, with y ∈ {Th, Tw, Tj}, to
achieve faster search, as the higher search step means smaller design space to be explored.
This gives trade-offs between the possible number of DRAM accesses that can be found
and the DSE computation time.

Step-3: DSE calculates the number of DRAM accesses (in Algorithm 1: line 13) based
on the layer partitioning and scheduling, which have been defined in the previous steps.
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Algorithm 2 Pseudo-code of the Reuse Priority Order
INPUT: (1) CNN: #layers (L);

(2) Analytical model of reuse factor: ifmaps (RFifm), weights (RFwgh), ofmaps (RFofm);
OUTPUT: Reuse Priority Orders (RPO); // for Algorithm 1
BEGIN:

Initialization:
1: RFifm, RFwgh, RFofm = 0;
2: RPO = [];

Process:
3: for (Layer = 1 to L) do
4: Calculate RFifm, RFwgh, RFofm;
5: RPO[Layer] ← Sort(RFifm, RFwgh, RFofm);
6: return RPO;

END:

Order: ofmaps → ifmaps → weights 

Fetch ifmaps and weights from 
off-chip memory (DRAM)

On-chip computation

Maximally reuse ofmaps from 
SRAM buffer (oBuff)

Legend
Terms nTh , nTw , nTi , nTj denote 
the number of tiles of tiling factors 
Th , Tw , Ti , Tj respectively

For (nth = 0; nth < nTh ; nth ++) {
For (ntw = 0; ntw < nTw ; ntw ++) {

For (ntj = 0; ntj < nTj ; ntj ++) {
// load ofmaps or psums
For (nti = 0; nti < nTi ; nti ++) {

// load ifmaps (nth, ntw, nti)
// load weights (nti, ntj)
// compute ofmaps or psums }}}}

Figure 3.13: Illustration of a scheduling scheme derived from the reuse priority order of
ofmaps → ifmaps → weights. Here, ofmaps is maximally reused by re-fetching the partial
sums from oBuff to produce final ofmaps.

Step-4: The information of data partitioning and scheduling that offer minimum DRAM
accesses is saved (Algorithm 1: lines 14-21), and then used for mapping data to DRAM
and buffers, which are discussed in Sections 3.2.5.3 and 3.2.5.4, respectively.

Note: The DSE needs to be performed only once at the design time to find the effective
partitioning and scheduling policy. Once the policy has been found, the corresponding
settings in the CNN accelerator are set once during the initialization stage before
performing an inference.

3.2.5.3 Data Mapping in the DRAM

As the dataflow of CNN processing is known prior to the execution, it is always certain
at every point during the execution which data will be required next. Therefore, CNN
execution can significantly benefit from the spatial locality. Spatial locality means that if
a particular data is referenced at a particular time, it is likely that the adjacent data will
be referenced in the near future. In CNN execution where the dataflow is completely
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known, the spatial locality can be maximized by mapping the data that will be required in
the subsequent cycles together in the DRAM.

To understand the energy and latency values associated with a single DRAM access,
we perform experiments to observe the energy and latency incurred by a single DRAM
access in different conditions, i.e., 1 a row buffer miss, 2 a row buffer hit, 3 a row
buffer conflict, and 4 access to a location in a different bank in the same chip (see
Figure 3.14). Here, we consider DDR3-1600 2Gb x8 DRAM (i.e., 1 channel, 1 rank-per-
channel, 1 chip-per-rank, 8 banks-per-chip, and 8-bit I/O). We employ the state-of-the-art
DRAM simulator [KYM16] for simulating the DRAM, and employ the DRAM energy
simulator [GYG+18] for estimating the DRAM access energy. The energy and latency
results are shown in Figure 3.14(b) and Figure 3.14(c), respectively.

…
……

…

(b) DRAM access energy (c) DRAM access latency

0
4
8

12

RD PRE ACT STBY Total

En
er

gy
[n

J]

Row buffer hit in a read access
Row buffer conflict in a read access

Row buffer miss in a read access
Access to location in a different bank 
in the same chip

Legend

1x

1.25x
6x

10x

time

…
1

(a) Illustration of different DRAM access conditions

2

…
……3

…
……

4

Latency (cycles)

…
…
……

…
…
……

…
…
……

…
…
……

0 10 20 30 40

Figure 3.14: (a) Illustration of different DRAM access conditions and their corresponding
(b) DRAM access energy and (c) DRAM access latency.

These figures show some key observations:

• A single DRAM access consumes standby (STBY) energy and operational energy:
read (RD) or write (WR), activation (ACT), and precharge (PRE) [GLH+19].

• A row buffer hit requires read/write and standby energy, thereby consuming less access
energy and latency as compared to a row buffer conflict or a row buffer miss.

• A row buffer conflict requires precharge, activation, and standby energy, as it has to
close the currently activated row and then open a different row. It consumes the
highest access energy and latency among the observed cases.

• A row buffer miss requires activation and standby energy to activate the target row as
there is no activated row yet.
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• Exploiting DRAM bank-level parallelism (i.e., access to location in a different bank of
the same chip in a short time interval) can also be done faster and consume less energy
as compared to a row buffer conflict. It requires the activation, precharge and standby
energy with less total energy than a row buffer conflict due to its lower latency.

Furthermore, DRAM has the multi-bank burst feature that can be exploited to further
improve the data throughput, as shown in Figure 3.15. Hence, we also leverage the
DRAM multi-bank burst feature to devise an effective DRAM mapping that offers high
throughput with the lowest access energy and latency.

Bank-0
Bank-1

Bank-7

… …

time

t0 t0+1   t0+2  t0+3

t1 t1+1   t1+2  t1+3

t7 t7+1   t7+2  t7+3

burst

burst

burst

Figure 3.15: Timing diagram of the DRAM multi-bank burst feature, which happens in
the same DRAM chip.

Proposed DRAM Data Mapping Policy: Here, multiple data from the same tile
which are expected to be accessed subsequently in a short time interval, are placed in the
same row of the same bank, thereby increasing the row buffer hits. To further minimize
the row buffer conflicts while increasing the throughput, chip- and bank-level parallelism
are exploited. Exploiting chip-level parallelism means that if multiple data from the
same tile are expected to be fetched in parallel, these data are placed across chips, if
applicable. Similarly, for bank-level parallelism, the data are placed across banks in the
same chip, if applicable. Our DRAM mapping also exploits the DRAM multi-bank burst
feature to further improve the DRAM throughput. This mapping concept is illustrated
in Figure 3.16(a).
We further define the DRAM mapping sequence, based on our observations in Figure 3.14.
The proposed mapping sequence is shown in Figure 3.16(b). In step- 1 , we prioritize
mapping a data tile to different columns in the same row, to achieve maximum row buffer
hits. This step can be done across different chips in parallel, if applicable, to exploit
chip-level parallelism. If all columns in the same row are fully filled, then the remaining
data are mapped to the different banks in the same chip, to exploit bank-level parallelism
(step- 2 ). Mapping to different banks can also be done across different chips in parallel,
if applicable. For each bank, data are mapped to different columns in the same row, just
like step- 1 . Here, if all columns in the same row across all banks are fully filled, then the
remaining data are mapped to a different row (step- 3 ). These steps 1 - 3 are repeated
until all data are mapped in a DRAM rank. If there are remaining data left, they can
be mapped to different ranks (step- 4 ) and channels (step- 5 ) respectively if applicable,
using the same steps as 1 - 3 .
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(a) Overview of DRAM mapping for ifmaps and weights across banks and chips
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(b) Overview of DRAM mapping sequence
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Rank-0
Rank-1

3 3

4

Pseudo-code of DRAM mapping
5 For (ch = 0,  ch < #channel , ch++) {

For (ra = 0,  ra < #rank , ra++) {
For (ro = 0,  ro < #row , ro++) {

For (ba = 0, ba < #bank , ba++) {
For (co = 0, co < #column , co++) {
// map a tile of data to 

DRAM [ch, ra, ba, ro, co];
} } } } }

4
3
2

1

Figure 3.16: (a) Overview of the proposed DRAM data mapping. (b) Proposed DRAM
data mapping sequence. In the pseudo-code, #column denotes the number of columns-
per-row, #row denotes the number of rows-per-bank, #bank denotes the number of
banks-per-chip, #rank denotes the number of ranks-per-module, and #channel denotes
the number of channel.

To effectively perform DRAM mapping, information regarding data partitioning and
scheduling for different data types is required. Note that our DRAM mapping scheme
can be employed for all DRAM variants (e.g., DDR3, DDR4, etc.) since all of them have
similar internal organization, i.e., they consist of channels, ranks, chips, banks, rows, and
columns, when viewed from a top-down perspective (see Figure 2.19) [GLH+19].
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3.2.5.4 Data Mapping in the SRAM Buffer

To efficiently transport the data between the DRAM and the compute engine, a data
mapping in the SRAM buffer is required. Since the DRAM mapping considers tile-wise
mapping, hence the SRAM buffer considers the same. Here, we employ SRAM buffer in
the scratch-pad memory fashion, since it is commonly used in many CNN accelerators
as the local on-chip buffer. The idea of the mapping is that, if multiple data from the
same tile are expected to be fetched in parallel, these data are placed across banks to
exploit bank-level parallelism. Based on the SRAM buffer configuration (e.g., capacity
and number of banks), we can devise an efficient data mapping.

Proposed SRAM Data Mapping Policy: The concept of the proposed mapping is
illustrated in Figure 3.17. Here, we prioritize mapping a data tile (for each data type) to
the same row, across different banks, to achieve maximum bank-level parallelism. If the
same rows across different banks are fully filled, then the remaining data are mapped in
a different row, across different banks. These steps are repeated until all data from the
same tile are mapped in the SRAM buffer. In this manner, each tile may occupy multiple
subsequent rows. For weights data type, if a systolic array-based CNN accelerator is
considered, different filters can be mapped in different banks, thus each bank can supply
specific filter(s) to a specific column of the systolic array. Furthermore, we can also
employ different sectors in the buffer, and each having a dedicated sleep transistor to
power-gate the unused sectors, for obtaining lower power and energy.
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Figure 3.17: Overview of the concept in SRAM buffer data mapping for ifmaps and
weights, across different banks.

3.2.6 Evaluation Methodology
Figure 3.18 shows our experimental setup and tool flow for evaluating our ROMANet
methodology.
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Figure 3.18: Our experimental setup and tool flow.

Memory Access Generator: Our in-house memory access generator receives the CNN
information (e.g., number of layers) and the configuration of DRAM and SRAM buffers,
as the inputs. It produces a DRAM access trace that represents the sequence of DRAM
requests. Our tool analyzes the characteristics of CNN and extracts its reuse factor
information. The reuse factor is used for devising the scheduling, depending on the
methodology. Afterward, the tool generates the representative DRAM access trace.

DRAM Simulator: We use the state-of-the-art and cycle-accurate DRAM simulator
(i.e., Ramulator [KYM16]) to simulate the DRAM. The input is the DRAM access trace
from our memory access generator. The outputs are DRAM command trace and statistics,
such as the number of accesses, operations, row buffer conflicts and row buffer misses.

DRAM Power/Energy Simulator: To estimate the DRAM access energy for the
defined DRAM requests, we use the state-of-the-art real experiments-based DRAM
energy simulator (i.e., VAMPIRE [GYG+18]). The input is the DRAM command trace
generated by the DRAM simulator and the output is the DRAM access energy estimation.

On-chip Memory Simulator: To estimate the on-chip buffers’ access latency and
energy, we used the state-of-the-art on-chip memory simulator (i.e., CACTI 7.0 [BKM+17])
that incorporates the number of on-chip buffer accesses and the on-chip buffer latency-
per-access and energy-per-access.

In this evaluation, we consider a state-of-the-art TPU [JYP+17]-like CNN accelerator,
as specified in Figure 2.5 and Table 3.2. We consider DRAM with DDR3-1600 2Gb x8
configuration [Mic10, MLN+12]. The DRAM open row policy was used as it keeps the row
open after an access, hence the subsequent accesses to the same row can be performed fast
and with less energy. We use first-come first-serve (FCFS) scheduling policy for handling
DRAM requests, which serves the request that is received first. We use different DRAM
access modes: (1) burst mode with burst length = 8 (BL8) for DDR3 DRAM [Mic10],
which provides multiple words of data per-request, and (2) non-burst mode, which provides
a single word of data per-request. For the networks, we use the AlexNet [KSH12] and the
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VGG-16 [SZ14] to represent conventional CNNs, and the MobileNet [HZC+17] and the
SqueezeNet [IHM+16] to represent CNNs for embedded applications. The SqueezeNet has
fire modules, which are slightly different from the conventional CNNs. The conventional
ones are typically composed of cascaded convolutional (CONV) layers, and each having
uniform-sized filters. Meanwhile, each fire module consists of a squeeze layer and an
expand layer. The squeeze layer is simply a CONV layer, while the expand layer is a
CONV layer that contains 1x1 and 3x3 filters. The expand layer can be implemented as
two separate CONV layers. Hence, the dimensions of these CONV layers can be inserted
into the analytical model in ROMANet for the optimization process. ROMANet can
also be used for residual networks (e.g., ResNet [HZRS16]), as shown in Figure 3.19. In
each residual module, ROMANet considers the dimensions of the CONV layers for the
optimization process. Here, ifmaps of the residual module are kept in the DRAM and
accessed when they are used for CONV execution and element-wise addition. For the
evaluation, we focus on the conventional CNNs and the ones for embedded applications.

CONV1

ROMANet Methodology

ofmaps1 ofmaps2 to CONV3ifmaps1

+

ifmaps1

CONV2
ifmaps3

Legend: Dimension of feature maps (ifmaps or ofmaps)

Figure 3.19: A single residual module in a residual network and the parts that benefit
from our ROMANet.

Table 3.2: Configuration of the systolic array-based CNN accelerator.

Module Description
Systolic Array Size = 8 × 8 PEs (1 PE = 1 MAC operation)

Buffers 64 KB iBuff, 64 KB wBuff, 64 KB oBuff
#banks = 8 banks-per-buffer

Memory Controller Policy = open row, Scheduler = FCFS

DRAM
DDR3-1600 2Gb x8
1 channel, 1 rank/channel, 1 chip/rank, 8 banks/chip
Mode: non-burst, burst (burst length = 8)

To study the improvements offered by the ROMANet over the state-of-the-art works,
i.e., Caffeine [ZSF+19], SmartShuttle [LYL+18], and Bus-Width Aware (BWA) ap-
proach [TKP20], we implement and integrate them in our experiments. For data reuse
strategy, the Caffeine employs ofmaps-reuse scheduling, while the SmartShuttle and
the BWA use weights-reuse and ofmaps-reuse scheduling. For DRAM mapping, since
the SmartShuttle has no defined DRAM mapping scheme, we use the state-of-the-art
mapping from the Caffeine for the SmartShuttle, which maps each layer partition in a
continuous address space in a DRAM bank. The BWA employs similar DRAM mapping
to effectively use the DRAM bandwidth.
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3.2.7 Results and Discussion
This section discusses the experimental results regarding reductions in the number of
DRAM accesses, DRAM requests, DRAM row buffer conflicts and misses, DRAM opera-
tions in Sections 3.2.7.1-3.2.7.4, subsequently. It then discusses the DRAM energy savings
for dense and sparse CNNs in Sections 3.2.7.5-3.2.7.6, subsequently. It also discusses
DRAM throughput and related observations in Sections 3.2.7.7-3.2.7.8, subsequently.

3.2.7.1 Reduction in the Number of DRAM Accesses

Evaluation results for the number of DRAM accesses are presented in Figure 3.20. The
results show that our ROMANet decreases the number of DRAM accesses over the BWA
by 12% for the AlexNet, 36% for the VGG-16, 44% for the SqueezeNet, and 45% for the
MobileNet. These improvements are achieved due to the effective data partitioning and
scheduling performed by the ROMANet, and can be associated with several aspects.

1. The analytical model in the ROMANet considers the overlapping data that do not
need to be re-fetched from the DRAM, while the analytical model of the BWA does
not consider the overlapping data. It contributes 5% DRAM access reduction for the
AlexNet, 16% for the VGG-16, 20% for the SqueezeNet, and 21% for the MobileNet.

2. The ROMANet also considers more possible scheduling schemes than the BWA, as they
are devised from reuse factors and reuse priority orders. However, the BWA considers
only the weights- and ofmaps-based scheduling schemes. It contributes 7% DRAM
access reduction for the AlexNet, 20% for the VGG-16, 24% for the SqueezeNet, and
24% for the MobileNet.

Therefore, the ROMANet considers a wider search space than the state-of-the-art, as it
investigates the number of DRAM accesses using a more detailed analytical model and
more data partitioning and scheduling schemes, which in-turn open a higher possibility
to find the configuration that leads to less number of DRAM accesses. These results also
show that the reductions of the DRAM accesses happen on a layer-wise basis, which is in
line with the defined optimization problem.

3.2.7.2 Reduction in the Number of DRAM Requests

In practice, CNN accelerators typically exploit DRAM burst mode [ZSF+19, QWY+16,
GLX+17]. Therefore, we also study the impact of the burst mode on the number of
DRAM requests, compared to the non-burst mode. Evaluation results are provided in
Figure 3.21. The results show that, the burst mode requires less number of DRAM
requests as compared to the non-burst mode, for accessing the same number of data from
DRAM. For instance, employing the burst mode with BL8 can decrease the number of
DRAM requests by 8x. This is important because the burst mode only requires one-time
address decoding to fetch multiple data, while the non-burst mode needs to perform
address decoding each time a request is issued. Therefore, the burst mode incurs less
access energy than the non-burst mode, which will be discussed in Section 3.2.7.5.
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Figure 3.20: Results of the number of DRAM accesses for (a) AlexNet, (b) VGG-16, (c)
SqueezeNet, and (d) MobileNet. Here, FIRE refers to the fire module.

0

1

2

3
Caffeine SmartShuttle BWA ROMANet

0

15

30

45

Nu
m

be
r o

f D
RA

M
 

Re
qu

es
ts

 [1
06 ]

0
5

10
15 AlexNet VGG-16

0

1

2

3 MobileNet SqueezeNet

Figure 3.21: The total number of DRAM requests during an inference in different DRAM
access modes (burst mode and non-burst mode).

3.2.7.3 Reduction in the Number of DRAM Row Buffer Conflicts and Misses

The evaluation results for the number of DRAM row buffer conflicts and misses are
presented in Figure 3.22. The figure shows that, in general, our ROMANet decreases the
number of DRAM row buffer conflicts and misses as compared to the BWA. For both
burst mode and non-burst mode, ROMANet reduces the row buffer conflicts and misses
by 12% for the AlexNet, 35% for the VGG-16, 48% for the MobileNet, and 45% for
the SqueezeNet. These reductions are achieved because ROMANet devises an effective
DRAM mapping policy that minimizes subsequent accesses to different rows in the same
DRAM bank, when accessing a single tile partition. On the other hand, the addressing
in the BWA makes the subsequent accesses to different rows in the same DRAM bank
happen more frequent, when accessing a single tile partition. Therefore, it has a higher
possibility of row buffer conflicts than the proposed technique.
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Figure 3.22: Results of the total number of DRAM row buffer conflicts and misses for
the AlexNet, the VGG-16, the MobileNet, and the SqueezeNet.

3.2.7.4 Reduction in the Number of DRAM Operations

Reduction in the number of DRAM requests decreases the total number of DRAM
operations, especially for read and write. Meanwhile, reduction in the number of DRAM
row buffer conflicts and misses also decreases the total number of DRAM operations,
especially for activation and precharge. The reason is that, if there is no row buffer
conflict or miss, then there is no need for precharging and/or activating a different row
in a DRAM bank. Moreover, the open row policy keeps the currently activated row
open for some time to facilitate subsequent accesses to the same row at a faster rate and
with less energy consumption. Therefore, the precharge and/or activation operations are
not performed and the number of DRAM operations is reduced. It is validated by the
evaluation results presented in Figure 3.23 for the AlexNet, the VGG-16, the MobileNet,
and the SqueezeNet. Each bar of the graph in these figures already includes all DRAM
operations: activation, precharge, read, and write operations.

Figure 3.23 shows that employing different DRAM access modes may lead to different
numbers of operations. For both burst mode and non-burst mode, ROMANet reduces
the operations by about 12% for the AlexNet, by about 34% for the VGG-16, by about
45% for the MobileNet, and by about 42% for the SqueezeNet. The burst mode has less
number of DRAM operations as compared to the non-burst mode, since it has less number
of DRAM requests (as shown in Figure 3.21). The reduction of DRAM operations is
important because each operation consumes some energy. Therefore, reducing the number
of DRAM operations leads to DRAM access energy savings, which will be discussed in
Section 3.2.7.5.
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Figure 3.23: Results of the total number of DRAM operations performed for the AlexNet,
the VGG-16, the MobileNet, and the SqueezeNet.
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3.2.7.5 DRAM Access Energy Savings

The evaluation results for the DRAM access energy are presented in Figure 3.24. The
figure shows that, ROMANet reduces the DRAM access energy significantly as compared
to the BWA, i.e., by 12% for the AlexNet, 36% for the VGG-16, 46% for the MobileNet,
and 45% for the SqueezeNet. The burst mode has less DRAM access energy as compared
to the non-burst mode (about 8x energy saving), since it has less number of DRAM
operations. The main sources of these savings are: (1) the reduction in the number of
accesses, and (2) the reduction in the number of row buffer conflicts and misses. The
energy savings from the reduction of accesses can be observed in the figure from the
reduction in the energy consumption incurred by the read and write operations. Here, read
and write operations already include operations for all data types (i.e., ifmaps, ofmaps,
and weights). The savings are achieved because of the effective data partitioning and
scheduling found through the design space exploration. Meanwhile, the energy savings
from the reduction of row buffer conflicts and misses, are reflected by the reduction in the
energy consumption incurred by the activation and precharge operations. These savings
are mainly because of the effective DRAM mapping that exploits row buffer locality, to
decrease the row buffer conflicts and misses. Furthermore, since the proposed mapping in
ROMANet also optimizes the DRAM access latency, the standby energy is also reduced.
We also observe that, for the AlexNet and the VGG-16, the FC layers consume more
access energy compared to the CONV layers, as shown in Figure 3.24(a)-(b). The reason
is that, in these networks, the FC layers have a large number of weights compared to
the CONV layers. Hence, to access these weights, a proportional number of DRAM
accesses are required, which leads to the high energy consumption. Meanwhile for the
MobileNet, the FC layer does not dominate the DRAM access energy as the network
only has a single FC layer whose number of weights and feature maps are relatively small
(1024x1000 weights, 1024 ifmaps, and 1000 ofmaps).

3.2.7.6 DRAM Access Energy Savings in Sparse Networks

To improve the energy efficiency of DNN-based systems, the network models are usually
first passed through a compression framework for achieving a compact model that can
be deployed in resource constraint mobile devices [HLL+18, HMD16]. Based on the
study of different compression techniques, it has been observed that structured pruning
techniques are more commonly employed due to their easy deployability using off-the-
shelf libraries [HLL+18, YLP+17]. Therefore, to show the applicability of ROMANet
for structurally pruned networks, we evaluate ROMANet for a sparse MobileNet, that
is pruned using one of the state-of-the-art structured pruning techniques, i.e., AutoML
for Model Compression (AMC) [HLL+18]. Figure 3.25 shows the DRAM access energy
per inference for the sparse MobileNet. The figure shows that our ROMANet reduces
the DRAM access energy by about 30% in the burst mode and by about 38% in the
non-burst mode, when compared to the BWA. The main contributors to these savings
are also the reductions in the number of DRAM accesses and the number of DRAM row
buffer conflicts and misses. These results prove that our ROMANet can provide DRAM
access energy savings even for sparse networks when compared to the state-of-the-art.
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Figure 3.24: Results of DRAM access energy and the breakdown showing the contribution
of different DRAM operations for (a) AlexNet, (b) VGG-16, (c) MobileNet, and (d)
SqueezeNet. For AlexNet: CONVs refers to CONV1-CONV5 layers and FCs refers to
FC1-FC3 layers; for VGG-16: CONVs refers to CONV1-CONV13 layers and FCs refers
to FC1-FC3 layers; for MobileNet: CONVs refers to CONV1-CONV27 layers and FCs
refers to FC1 layer; and for SqueezeNet: CONVs refers to CONV1-CONV2 layers and
FIREs refers to FIRE1-FIRE8 layers.

3.2.7.7 Data Throughput Improvement for DRAM Accesses

Besides optimizing DRAM access energy, our ROMANet also improves the DRAM
throughput in CNN accelerators. This can be observed from the experimental results
presented in Figure 3.26. The figure shows that ROMANet improves the data throughput
by about 10% in burst mode and 1.5% in non-burst mode, compared to the BWA. The
main source of the improvement is that the proposed DRAM mapping uses bank-level
parallelism to exploit DRAM multi-bank burst feature, thereby decreasing the possibility
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Figure 3.25: Results of the DRAM access energy and the breakdown showing the
contribution of different DRAM operations in the sparse MobileNet. The CONVs refer
to CONV1-CONV27 layers and the FCs refer to FC1 layer.

of facing row buffer conflicts. Figure 3.26 also shows that throughput improvement
in the burst mode is typically higher than in the non-burst mode. The reason is that
the non-burst mode requires a higher number of DRAM operations than the burst
mode for accessing the same amount of data, thereby consuming higher DRAM access
latency and decreasing the benefit of exploiting the DRAM multi-bank burst feature.
Therefore, DRAM burst mode is preferred in the practical implementation of CNN
accelerators. DRAM throughput improvement achieved by ROMANet is important as it
enables fast data transfer between the off-chip DRAM and the on-chip SRAM buffers
of CNN accelerators. This is beneficial for most of the existing CNN accelerators (such
as [JYP+17, LYL+17]) since the obtained DRAM throughput can fulfill the bandwidth
requirements to fully utilize the on-chip compute engines, and hence maximizing their
processing potential.
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Figure 3.26: Results of the data throughput of DRAM accesses for the AlexNet, the
VGG-16, the MobileNet, and the SqueezeNet using DDR3-1600 DRAM.

3.2.7.8 Additional Discussion

DRAM access mode selection: The DRAM access mode (i.e., burst mode or non-
burst mode) is not defined by the amount of workload, but by the DRAM mapping. If
the data are available in the subsequent DRAM columns, then the burst mode can speed
up the data transfer.
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Impact of data precision on the DRAM access energy: The data precision
defines the bitwidth for each data value and the number of DRAM columns occupied.
Therefore, the number of accesses required to fetch each value depends on the data
precision, as shown in Figure 3.27(a). To achieve minimum DRAM accesses for each
value, ROMANet employs the following mapping strategy: (1) the bits of each value are
mapped to subsequent columns of a DRAM row, and (2) all bits of each value have to be
placed to the same DRAM row. To quantify the impact of different bit precision settings,
we perform experiments and the results are shown in Figure 3.27(b). The results show
that the value with higher precision incurs higher DRAM access energy, due to a higher
number of accesses.
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Figure 3.27: (a) The relation between different bit-precision settings of a single data with
the number of DRAM accesses. (b) The DRAM access energy for different bit-precision
settings for a DDR3-1600 2Gb x8 DRAM.

On-chip buffer access latency and energy: The total SRAM buffer access latency
and energy are shown in Figure 3.28. Our ROMANet reduces the total buffer access
latency and energy compared to the BWA, by 12% for the AlexNet, 34% for the VGG-16,
52% for the MobileNet, and 55% for the SqueezeNet. These reductions come from the
decreased amount of data to be accessed from DRAM.

Design-time overhead of the ROMANet: The DSE of ROMANet is performed only
once at compile time. It needs 2 hours for the AlexNet, 9 hours for the VGG-16, 2 hours
for the MobileNet, and 5 hours for the SqueezeNet on Intel Core i7-7700 CPU @3.60GHz.
Once the DSE is done, the data partitioning and scheduling information can be used by
the existing software.

Usability for different accelerators and applications: Different CNN accelerators
have different levels of flexibility to support different dataflows. For highly-flexible
accelerators, ROMANet can be used directly, while for non-flexible ones, ROMANet can
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Figure 3.28: Results of the on-chip buffer access latency and energy. Each bar includes
all SRAM buffers (i.e., iBuff, wBuff, and oBuff ).

incorporate accelerator-specific constraints for the optimization process. Furthermore,
in memory-bound applications, ROMANet can be employed directly. Meanwhile, in
compute-bound applications, ROMANet can incorporate compute-specific constraints for
the optimization process.

Note that the ROMANet methodology targets mainly the inference phase, which is
particularly beneficial for memory-constrained embedded applications, such as for IoT
and edge devices. Furthermore, our ROMANet can also be used for training to a
certain extent, i.e., for forward computation, as its process is similar to inference. For
backpropagation, the ROMANet needs enhancements to model the DRAM accesses for
the required operations.

3.2.8 Summary of ROMANet Methodology

We propose a novel ROMANet methodology to reduce the DRAM access energy and
to improve the DRAM throughput for CNN accelerators. It performs a design space
exploration that finds the effective data partitioning and scheduling that offer minimum
DRAM accesses. It also exploits the DRAM row buffer locality and the DRAM multi-bank
burst feature by employing effective DRAM data mapping. The experimental results
prove that the ROMANet can reduce the number of DRAM accesses, the row buffer
conflicts and misses, as well as the operations that lead to significant DRAM access
energy savings while improving the data throughput, as compared to the state-of-the-art
works. Furthermore, our novel concepts would enable further studies on energy-efficient
CNN accelerators.

3.3 High-Performance and Energy-Efficient DNNs using a
Generalized DRAM Mapping

This section aims at addressing Problem-2, i.e., the solution for optimizing the DRAM
energy-per-access and latency-per-access of different DRAM architectures for maximizing
the efficiency gains of DNN accelerators.
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3.3.1 Motivational Study

Although there are various types of commodity DRAMs (e.g., DDR3, DDR4, etc.), they
have similar internal organization and operations [GLH+19], as discussed in Section 2.6.
Therefore, they have similar trends regarding latency-per-access and energy-per-access. In
commodity DRAMs, each request that goes to a bank can only access a single subarray at
a time, although each bank is composed of multiple subarrays. This limits the capability
of commodity DRAMs to offer lower access latency and energy. Recently, several DRAM
architectures that offer subarray-level parallelism (SALP) in a bank, have been proposed
in the literature. Three variants of SALP-based architectures (i.e., SALP-1, SALP-2, and
SALP-MASA) are proposed in [KSL+12], as discussed in Section 2.6.4. Meanwhile, in
another work [LKS+13], the long bitline in each DRAM subarray is split into two shorter
segments (near and far segments from sense amplifier) using an isolation transistor (so-
called TL-DRAM), as discussed in Section 2.6.4. Hence, the near segment of TL-DRAM
can be accessed with the latency of a short bitline. To illustrate the characteristics of
different DRAM architectures, we perform an experimental analysis to observe the DRAM
latency-per-access and energy-per-access, and the experimental results are presented in
Figure 3.29. Our observation results show that SALP and TL-DRAM architectures have
the potential to further reduce the DRAM latency-per-access and energy-per-access as
compared to commodity DRAMs, as they offer lower latency and/or energy in certain
conditions; see 1 , 2 , and 3 in Figure 3.29.

0

4

8

12

16

0

4

8

12

16

DD
R3

SA
LP

-1
SA

LP
-2

SA
LP

-M
AS

A
TL

-D
RA

M
DD

R3
SA

LP
-1

SA
LP

-2
SA

LP
-M

AS
A

TL
-D

RA
M

DD
R3

SA
LP

-1
SA

LP
-2

SA
LP

-M
AS

A
TL

-D
RA

M
DD

R3
SA

LP
-1

SA
LP

-2
SA

LP
-M

AS
A

TL
-D

RA
M

DD
R3

SA
LP

-1
SA

LP
-2

SA
LP

-M
AS

A
TL

-D
RA

M
DD

R3
SA

LP
-1

SA
LP

-2
SA

LP
-M

AS
A

TL
-D

RA
M

DD
R3

SA
LP

-1
SA

LP
-2

SA
LP

-M
AS

A
TL

-D
RA

M

Row buffer hit Row buffer miss Row buffer
conflict

(near segment)

Row buffer
conflict

(far segment)

Subarray-level
parallelism

(near segment)

Subarray-level
parallelism

(far segment)

Bank-level
parallelism

En
er

gy
[n

J]

No
rm

al
ize

d
nu

m
be

ro
fc

yc
le

s

1 2 3

Figure 3.29: DRAM latency-per-access and energy-per-access for different access con-
ditions (i.e., a row buffer hit, a row buffer miss, a row buffer conflict, subarray- and
bank-level parallelism) in different DRAM architectures (DDR3, SALP-1, SALP-2, SALP-
MASA, and TL-DRAM). Data are obtained from our experiments using state-of-the-art
cycle-accurate DRAM simulators [KYM16, GYG+18] for DDR3-1600 2Gb x8 and SALP
2Gb x8 with 8 subarrays-per-bank.

3.3.2 Scientific Research Challenges

From previous observations, the energy efficiency of DRAM accesses for CNN accelerators
can be improved by minimizing the DRAM latency-per-access and energy-per-access.
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Hence, there is a need for a generalized DRAM mapping policy that can achieve maximum
row buffer hits while exploiting the internal organization of different DRAM architectures,
such as subarray-level and bank-level parallelism. Furthermore, to justify that the
proposed DRAM mapping policy is applicable to different design choices, a design space
exploration (DSE) is required. This DSE explores different DRAM mapping policies in
different DRAM architectures with different data partitioning and scheduling schemes, to
find the minimum energy-delay-product (EDP) of DRAM accesses. This EDP is used as
a measure of the energy efficiency of a CNN accelerator. Therefore, an analytical model
to estimate the EDP of different DRAM mapping policies in DSE is also needed.

Required: A methodology that leverages a generalized DRAM mapping policy to optimize
DRAM energy-per-access and latency-per-access considering different DRAM architectures
for CNN accelerators.

3.3.3 Novel Contributions
To address the above challenges, we propose PENDRAM, a novel methodology to enable
high-Performance and Energy-efficient DNNs using a generalized DRAM data mapping
policy [PHS20] through the following key techniques; see an overview in Figure 3.30.

1. We propose a generalized DRAM data mapping policy that offers minimum EDP
of DRAM accesses, for a given DRAM architecture, data partitioning, and scheduling
scheme of CNN processing in a hardware accelerator. Our mapping policy orderly
prioritizes maximizing row buffer hits, bank-level parallelism, and subarray-level
parallelism in the near segment of the subarray.

2. We propose a DSE algorithm to find a DRAM mapping policy that offers minimum
EDP, while considering different DRAM architectures, different data partitioning and
scheduling schemes.

3. We propose an analytical model for estimating EDP of different DRAM
mapping policies, which will be used in the DSE. Here, the EDP for each DRAM
mapping policy is estimated by multiplying the number of DRAM accesses with the
respective number of cycles and energy values.
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Figure 3.30: The overview of our novel contributions (shown in blue boxes). We consider
separate on-chip buffers in a CNN accelerator for different data types: input buffer (iBuff )
for ifmaps, weight buffer (wBuff ) for weights, and output buffer (oBuff ) for ofmaps.
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3.3.4 PENDRAM Methodology

We propose PENDRAM methodology [PHS20] to optimize DRAM energy-per-access
and latency-per-access for a given DRAM architecture, data partitioning, and scheduling
scheme in CNN accelerators. Our PENDRAM methodology employs the following key
techniques; see an overview in Figure 3.31.

• A generalized DRAM data mapping policy (Section 3.3.4.1): It aims at
providing minimum EDP of DRAM accesses, for each given combination of DRAM
architecture, data partitioning, and scheduling scheme. To achieve this, we leverage
the characteristics of DRAM energy- and latency-per-access from different DRAM
architectures to devise a mapping policy that orderly prioritizes maximizing row buffer
hits, bank-level parallelism, and subarray-level parallelism in the near segment of the
subarrays before moving to the far segments.

• A DSE algorithm (Section 3.3.4.2): We perform DSE to ensure that the pro-
posed DRAM mapping policy always achieves the minimum EDP. To do this, DSE
investigates different combinations of DRAM mapping policies, DRAM architectures,
as well as data partitioning and scheduling schemes, then evaluates the EDP for these
combinations.

• To efficiently perform the DSE, we also propose and employ an analytical model
for EDP estimation of the DRAM mapping policies (Section 3.3.4.3). Our
analytical model leverages the number of DRAM accesses and the characteristics of
DRAM energy- and latency-per-access to calculate the EDP, i.e., by multiplying the
number of DRAM accesses with the respective number of cycles and energy values.
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Figure 3.31: An overview of the PENDRAM methodology. The novel contributions are
highlighted in blue.
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3.3.4.1 A Generalized DRAM Data Mapping Policy

The experimental results in Figure 3.29 show that different DRAM architectures have
similar behavior in terms of latency-per-access and energy-per-access. Therefore, we
propose a generalized DRAM mapping policy for enabling high-performance and energy-
efficient DRAM accesses in CNN accelerators (i.e., PENDRAM mapping). Its main
idea is to orderly prioritize the data mapping that maximizes DRAM row buffer hit,
bank-parallelism, and subarray-level parallelism in the near segments of the subarrays
before mapping data to the far segments. The pseudo-code and physical representation
of the proposed PENDRAM mapping policy in DRAM are illustrated in Figure 3.32.

Partitioning each data type 
(ifmaps, weights, or ofmaps)

into several tiles

map

Pseudo-code of PENDRAM in a DRAM chip
for (ch = 0,  ch < # channels , ch++) {

for (ra = 0,  ra < # ranks, ra++) {
for (ro = 0,  ro < # rows , ro++) {

// prioritize to map data to the rows in the near segment, 
before the rows in the far segment

for (sa = 0,  sa < # subarrays , sa++) {
for (ba = 0, ba < # banks , ba++) {

for (co = 0, co < # columns , co++) {
// map a tile of data to 
DRAM [ch, ra, ba, sa, ro, co];

} } } } } }

Chip-0 Chip-1 Chip-7<7:0> <15:8> <63:56>

<63:0>

a data tile

Far 
segment

Near 
segment

…

…
…

…

…
…

…

…
…

…

Subarray

Subarray

Figure 3.32: Pseudo-code of PENDRAM mapping policy and its conceptual implementa-
tion in DRAM.

PENDRAM mapping considers tile-based partitioning in its mechanism, thereby it can
be performed for each data tile using the following steps.

• Step-1: We prioritize mapping the data to an available row that is closer to the
sense amplifier (i.e., target row) in the target subarray and the target bank, thereby
prioritizing rows in the near segment over the far segment for data mapping. After
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the target row is identified, then we map the data to different columns in the same
row to achieve maximum row buffer hits. If multiple chips are available within a
rank, then this step can be performed in different chips in parallel for exploiting the
chip-level parallelism. If some data remain but all columns in the same row of the
target subarray and the target bank are fully filled, then we go to Step-2.

• Step-2: We map the remaining data to a different target bank in the same chip to
exploit bank-level parallelism. If multiple chips are available, then this step can be
performed in different chips in parallel. Then, we follow the mapping mechanism in
Step-1 to Step-2 again until all data are mapped across all banks. If some data
remain but all columns in the same row and the same subarray across all banks are
fully filled, then we go to Step-3.

• Step-3: We map the remaining data to a different target subarray in the target bank
to exploit subarray-level parallelism. If multiple chips are available, then this step
can be performed in different chips in parallel. Then, we follow Step-1 to Step-3
again until all data are mapped. If some data remain but all columns in the same row
across all subarrays and all banks are fully filled, then we go to Step-4.

• Step-4: We select a different row index as the target row from the target subarray
and the target bank. Then, we follow Step-1 to Step-4 again until all data are
mapped. If some data remain but all memory cells in a rank are fully filled, then we
map the remaining data following Step-1 to Step-4 again until all data are mapped
to a different rank and a different channel, respectively.

To illustrate that our PENDRAM mapping policy always achieves the minimum EDP
of DRAM accesses in different possible conditions, we perform an extensive DSE. Our
DSE investigates different combinations of DRAM mapping policies, different DRAM
architectures (e.g., DDR3, SALP-1, SALP-2, SALP-MASA, and TL-DRAM), as well as
different data partitioning and scheduling schemes, then estimates the EDP for these
different combinations. This DSE is important to corroborate that the best solution that
provides the minimum EDP in each given combination is always the same as provided by
our PENDRAM mapping policy.

3.3.4.2 DSE for Evaluating Different DRAM Mapping Policies

To evaluate the impact of different DRAM mapping policies and see the performance
of our PENDRAM mapping as compared to others, we perform an extensive DSE. An
overview of the DSE is shown in Figure 3.33 and its algorithm is presented in Algorithm 3.
For each layer of a network, the DSE performs three key steps: (1) defining different
sizes of data tiles and scheduling schemes, (2) defining different DRAM mapping policies,
and (3) performing exploration to find a DRAM mapping policy that offers minimum
EDP. The operational flow of the DSE is explained in the following points.

• Step- 1 : We define different sizes of data tiles for all data types (ifmaps, weights, and
ofmaps), and different scheduling schemes. The tile sizes are defined by the step sizes
in the outer loops of CNN processing in Figure 3.6(a). The tile sizes of ifmaps, weights,
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Figure 3.33: The operational flow of our DSE.

and ofmaps have to fit in the corresponding buffers (iBuff, wBuff, and oBuff ). Each
combination of the tile sizes for all data types defines one possible partitioning, which
will be considered in the DSE. The scheduling schemes are determined by the sequence
of the outer loops of CNN processing in Figure 3.6(a). We consider four scheduling
schemes, based on the reuse priority of the data type: ifmaps-reuse, weight-reuse,
ofmaps-reuse, and adaptive-reuse scheduling. The ifmaps-reuse scheduling means
that ifmaps data type will be maximally reused when the data are available in the
on-chip buffer. A similar definition is also applied for weights-reuse and ofmaps-reuse.
Meanwhile, the adaptive-reuse scheduling means that the reuse priority changes across
different layers of a network, according to which one among ifmaps-/weights-/ofmaps-
reuse scheduling that offers the minimum number of DRAM accesses.

• Step- 2 : We define different DRAM mapping policies, by determining the different
orders of mapping loops to different columns, rows (including near and far segments),
subarrays, and banks in the same DRAM chip. For DDR3, orders of mapping loops
are the permutation of banks, rows, and columns in the same DRAM chip. For
SALP architectures (SALP-1, SALP-2, and SALP-MASA), orders of mapping loops
are the permutation of banks, subarrays, rows, and columns in the same DRAM
chip. Meanwhile, for TL-DRAM, orders of mapping loops are the permutation of
banks, subarrays, near and far segment rows, and columns in the same DRAM chip.
Furthermore, we narrow down the design space by selecting the DRAM mapping
policies that have the least frequent subsequent accesses to different rows, since it is
the most expensive access in the same DRAM chip, for both latency and energy (as
validated by Figure 3.29). Therefore, there are six mapping policies to be explored in
the DSE, as presented in Table 3.3. Note, our proposed DRAM mapping policy is
represented as Mapping-3.
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Algorithm 3 Pseudo-code of the proposed DSE algorithm
INPUT: (1) CNN configuration: number of layers (L);

(2) Buffer size: for ifmaps (iB), for weights (wB), for ofmaps (oB);
(3) Analytical models of EDP (EDP );
(4) Data partitioning for ifmaps, weights, and ofmaps (Partitioning);
(5) DRAM access scheduling (Scheduling);
(6) DRAM mapping policies (DRAMmaps);

OUTPUT: (1) Efficient DRAM mapping (map);
(2) Minimum EDP (minEDP );
BEGIN
Initialization:

1: Tp = P ;
2: Tq = Q;
3: EDP [] = 0;
4: minEDP [] = 0;

Process:
5: for (l = 1 to L) do
6: for (each Partitioning) do
7: for (each Scheduling) do
8: for (each DRAMmaps) do
9: if (ifmaps tile ≤ iB) and (weights tile ≤ wB) and (ofmaps tile ≤ oB) then

10: Calculate EDP [l];
11: if (first loop) then
12: minEDP [l] = EDP [l];
13: else if (EDP [l] ≤ minEDP [l]) then
14: minEDP [l] = EDP [l];
15: Save map, minEDP ;
16: return (1) map; (2) minEDP ;

END

Table 3.3: Different DRAM mapping policies for the DSE. Note, our proposed DRAM
mapping policy is represented as Mapping-3

Mapping Inner-most- to outer-most-loops
1 column, subarray, bank, row (from near segment to far segment)
2 subarray, column, bank, row (from near segment to far segment)
3 column, bank, subarray, row (from near segment to far segment)
4 bank, column, subarray, row (from near segment to far segment)
5 subarray, bank, column, row (from near segment to far segment)
6 bank, subarray, column, row (from near segment to far segment)

• Step- 3 : We perform the DSE to find a DRAM mapping policy that offers minimum
EDP, across different combinations of DRAM architectures, data partitioning, and
scheduling schemes. The minimum EDP and the corresponding DRAM mapping
are the outputs of the DSE, for the given combination of DRAM architecture, data
partitioning, and scheduling scheme.
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Note, the DSE also incorporates the characteristics of DRAM latency and energy for
determining the EDP in the final results. For each layer of a network, the EDP value
is obtained by multiplying the DRAM access energy and latency consumed by each
combination of DRAM mapping policy, DRAM architecture, as well as configuration of
data partitioning and scheduling scheme. Therefore, the DSE will be able to find the
combination that offers minimum EDP for each layer of a network and minimum total
EDP for a whole network.

3.3.4.3 Analytical Model of EDP Estimation for DRAM Mapping Policies

Based on the proposed DSE, the optimization problem is formulated to minimize the
EDP of DRAM accesses for each layer of a network and can be stated as

Objective : minimize (EDPlayer) (3.18)

The EDP-per-layer (EDPlayer) is obtained by multiplying the energy-per-layer and
latency-per-layer. The energy-per-layer is obtained by accumulating all energy values
incurred from the DRAM accesses for all data tiles during the processing of a network
layer. Meanwhile, the latency-per-layer is obtained by accumulating all latency values
incurred from the DRAM accesses for all data tiles during the processing of a network
layer. Note, the DRAM access latency and energy are calculated on the basis of DRAM
accesses for each data tile since we consider the tile-based data partitioning approach. For
each tile, the number of cycles required for DRAM accesses (Ncycletile) which represents
the DRAM latency can be calculated using Equation 3.19, and the DRAM access energy
(Energytile) can be calculated using Equation 3.20.

Ncycletile =Naccesscolumn · Ncyclecolumn + Naccessrow_near · Ncyclerow_near+
Naccessrow_far · Ncyclerow_far + Naccesssubarray · Ncyclesubarray+
Naccessbank · Ncyclebank

(3.19)

Energytile =Naccesscolumn · Energycolumn + Naccessrow_near · Energyrow_near+
Naccessrow_far · Energyrow_far + Naccesssubarray · Energysubarray+
Naccessbank · Energybank

(3.20)

Term Naccessx denotes the number of accesses to a different DRAM-x. Ncyclex denotes
the number of cycles incurred when accessing a different DRAM-x. Meanwhile, Energyx

denotes the access energy incurred when accessing a different DRAM-x. For all terms,
x ∈ {column, row in the near segment, row in the far segment, subarray, bank}.

3.3.5 Evaluation Methodology
To evaluate our proposed methodology, we build the experimental setup, as shown in
Figure 3.34. We use a cycle-accurate DRAM simulator, Ramulator [KYM16], to obtain
the statistics of latency (i.e, DRAM cycle-per-access) for different DRAM access conditions
(e.g., row buffer hits, row buffer misses, and row buffer conflicts, as well as subarray-level
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and bank-level parallelism) in different DRAM architectures. Meanwhile, to profile the
DRAM energy-per-access, we use a real experiments-based DRAM energy simulator,
VAMPIRE [GYG+18]. Information regarding the DRAM energy-per-access and cycle-per-
access are used for the DSE, which considers different DRAM mapping policies, different
DRAM architectures, as well as different data partitioning and scheduling schemes to
find the DRAM mapping policy that offers minimum EDP. For the DSE, we consider
a state-of-the-art TPU [JYP+17]-like CNN accelerator as shown in Figure 2.5(a), with
a reduced size of on-chip buffers and MAC array engine, as specified in Table 3.4. We
also employ separate on-chip buffers for different data types (iBuff for ifmaps, wBuff for
weights, and oBuff for ofmaps). To represent different DRAM architectures, we consider
DDR3, SALP architectures (SALP-1, SALP-2, and SALP-MASA), and TL-DRAM. For
scheduling schemes, we use ifmaps-reuse, weights-reuse, ofmaps-reuse, and adaptive-reuse
scheduling schemes. For DRAM mapping policies, we evaluate six mapping policies
presented in Table 3.3. For inputs, we use the AlexNet [KSH12], the VGG-16 [SZ14],
the MobileNet [HZC+17], and the SqueezeNet [IHM+16] for dense networks, as well
as a the Sparse MobileNet that is achieved using the AutoML for Model Compression
(AMC) [HLL+18] technique, while considering the ImageNet dataset [DDS+09].

Minimum 
EDP

Efficient 
DRAM 

Mapping

DRAM Power / Energy 
Simulator (VAMPIRE)

DRAM 
Requests

Our In-house Simulator for DSE

Command Traces

Convolutional 
Neural Network

DRAM 
Configuration

Buffers 
Configuration

Energy
Statistics

Compute EDP

Define different 
DRAM mapping 

policies

Define different data 
partitioning and 

scheduling schemes

Find minimum EDP

Cycle-accurate DRAM Simulator 
(Ramulator)

Figure 3.34: Experimental setup and tool flow.

3.3.6 Results and Discussion
We evaluate the impact of different DRAM data mapping policies for a CNN accelerator
across different DRAM architectures, data partitioning, and scheduling schemes. The
experimental results are shown in Figure 3.35-3.39 for AlexNet, VGG-16, MobileNet,
SqueezeNet, and Sparse MobileNet, respectively.

3.3.6.1 Comparisons of Different DRAM Mapping Policies

Observation- 1 : Our PENDRAM mapping policy (Mapping-3) achieves the lowest
EDP across different layers of the network, different DRAM architectures, different
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Table 3.4: Configuration of the CNN accelerator.

Module Description
CNN Processing Array Size = 8 × 8 MACs
On-chip Buffers iBuff : 64 KB, wBuff : 64 KB, oBuff : 64 KB
Memory Controller Policy = open row, scheduler = FCFS

DDR3-1600
Configuration: 2Gb x8
1 channel, 1 rank-per-channel
1 chip-per-rank, 8 banks-per-chip

SALPs

Configuration: 2Gb x8
1 channel, 1 rank-per-channel,
1 chip-per-rank, 8 banks-per-chip,
8 subarrays-per-bank

TL-DRAM

Configuration: 2Gb x8
1 channel, 1 rank-per-channel,
1 chip-per-rank, 8 banks-per-chip,
32 subarrays-per-bank,
64 rows/near segment, 960 rows/far segment

scheduling schemes, and different networks. It indicates that the PENDRAM mapping is
the most effective DRAM mapping policy as it always achieves the smallest EDP for each
layer of networks across different possible conditions, thereby meeting the optimization
objective described in Section 3.3.4.3. According to Table 3.3, our PENDRAM mapping
(Mapping-3) orderly prioritizes mapping the data to (1) different columns in the same
row, which leads to row buffer hits in DDR3, SALPs, and TL-DRAM; (2) different banks
in the same chip, which exploits bank-level parallelism in DDR3, SALPs, and TL-DRAM;
(3) different subarrays in the same bank with priority mapping to the near segment
rows, which exploits subarray-level parallelism in SALPs and near segment accesses in
TL-DRAM, but leads to row buffer conflicts in DDR3; and (4) different rows in the
same subarray with priority mapping to the near segment rows, which exploits near
segment accesses in TL-DRAM but leads to row buffer conflicts in DDR3 and SALPs.
Following are detailed EDP improvements achieved by our PENDRAM mapping policy
(Mapping-3) as compared to other mapping policies.

• For the AlexNet, our mapping improves the EDP by up to 96% in DDR3, 94% in
SALP-1, 88% in SALP-2, 73% in SALP-MASA, and 96% in TL-DRAM.

• For the VGG-16, our mapping improves the EDP by up to 96% in DDR3, 94% in
SALP-1, 89% in SALP-2, 77% in SALP-MASA, and 96% in TL-DRAM.

• For the MobileNet, our mapping improves the EDP by up to 96% in DDR3, 94% in
SALP-1, 89% in SALP-2, 79% in SALP-MASA, and 95% in TL-DRAM.

• In the SqueezeNet, our mapping improves the EDP by up to 95% in DDR3, 93% in
SALP-1, 90% in SALP-2, 81% in SALP-MASA, and 95% in TL-DRAM.

• For the Sparse MobileNet, our mapping improves the EDP by up to 96% in DDR3,
94% in SALP-1, 89% in SALP-2, 79% in SALP-MASA, and 95% in TL-DRAM.
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Figure 3.35: The EDP profiles of different DRAM mapping policies for the AlexNet
across different DRAM architectures (i.e., DDR3, SALP-1, SALP-2, and SALP-MASA),
while considering different data partitioning and scheduling schemes: (a) ifmaps-reuse,
(b) weights-reuse, (c) ofmaps-reuse, and (d) adaptive-reuse.

These results prove that our PENDRAM mapping policy is a generalized DRAM mapping
policy that offers the lowest EDP for different design conditions. Moreover, different
DRAM access scheduling schemes can make use of the PENDRAM mapping, so that the
CNN accelerators that employ different scheduling schemes can optimize their DRAM
access latency and energy.

Observation- 2 : Mapping-2 and Mapping-5 obtain worse EDP values across different
layers of the network, different DRAM architectures, and different scheduling schemes,
than other mapping policies. The reason is that, Mapping-2 and Mapping-5 prioritize
mapping the data across different subarrays in the same bank, which exploits subarray-
level parallelism in SALPs, but leads to row buffer conflicts in DDR3 and may lead to
far segment accesses in TL-DRAM. Consequently, these mapping policies incur higher
EDP values as compared to other mapping policies that mainly exploit row buffer hits
(Mapping-1 and Mapping-3) and bank-level parallelism (Mapping-4 and Mapping-6).
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Figure 3.36: The EDP profiles of different DRAM mapping policies for the VGG-16
across different DRAM architectures (i.e., DDR3, SALP-1, SALP-2, and SALP-MASA),
while considering different data partitioning and scheduling schemes: (a) ifmaps-reuse,
(b) weights-reuse, (c) ofmaps-reuse, and (d) adaptive-reuse.

Observation- 3 : Mapping-1 and Mapping-3 obtain comparable EDP values across
different layers of the network, different DRAM architectures, and different scheduling
schemes. The reason is that, Mapping-1 and Mapping-3 prioritize mapping the data
across different columns in the same row, which leads to row buffer hits in DDR3,
SALPs, and TL-DRAM. The difference between these mapping policies comes when
Mapping-1 prioritizes exploiting subarray-level parallelism over bank-level parallelism,
while Mapping-3 is the opposite. From observation, bank-level parallelism incurs lower
latency and energy than subarray-level parallelism as presented in Figure 3.29, thereby
leading to lower EDP values for Mapping-3 (i.e., our PENDRAM mapping policy).

Observation- 4 : The adaptive-reuse scheduling scheme offers the lowest EDP for each
layer of networks and the lowest total EDP for the given DNN models, as compared to
other scheduling schemes. The reason is that, for each layer of networks, the adaptive-
reuse scheduling scheme prioritizes keeping the data type that has the highest reuse
factor on-chip for multiple operations, thereby maximizing the benefits of data reuse from
different scheduling schemes (i.e., either ifmaps-reuse, weights-reuse, or ofmaps-reuse).
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Figure 3.37: The EDP profiles of different DRAM mapping policies for the MobileNet
across different DRAM architectures (i.e., DDR3, SALP-1, SALP-2, and SALP-MASA),
while considering different data partitioning and scheduling schemes: (a) ifmaps-reuse,
(b) weights-reuse, (c) ofmaps-reuse, and (d) adaptive-reuse.

3.3.6.2 Comparisons of Employing Different DRAM Architectures

In general, we observe that employing the SALP architectures (e.g., SALP-1, SALP-2,
or SALP-MASA) can improve the EDP as compared to DDR3, across different DNN
models. For instance, if we consider an adaptive-reuse scheduling scheme, the SALP
architectures achieve EDP improvements by up to 88% for the AlexNet, by up to 87%
for the VGG-16, by up to 86% for the MobileNet, by up to 81% for the SqueezeNet,
and by up to 85% for the Sparse MobileNet. The EDP improvements offered by SALP
architectures over DDR3 are most notable in Mapping-2 and Mapping-5 since these
mapping policies prioritize mapping data across subarrays in the same bank, thereby
exploiting subarray-level parallelism in SALP architectures but leading to row buffer
conflicts in DDR3. Meanwhile, employing the TL-DRAM can also improve the EDP
as compared to DDR3 across different DNN models. For instance, if we consider an
adaptive-reuse scheduling scheme, TL-DRAM achieves EDP improvements by up to 4%
for all investigated DNN models (i.e., AlexNet, VGG-16, MobileNet, SqueezeNet, and
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Figure 3.38: The EDP profiles of different DRAM mapping policies for the SqueezeNet
across different DRAM architectures (i.e., DDR3, SALP-1, SALP-2, and SALP-MASA),
while considering different data partitioning and scheduling schemes: (a) ifmaps-reuse,
(b) weights-reuse, (c) ofmaps-reuse, and (d) adaptive-reuse.

Sparse MobileNet). The EDP improvements offered by TL-DRAM over DDR3 are most
notable in Mapping-5 since this mapping policy prioritizes mapping data across subarrays
in the same bank, thereby exploiting near-segment row accesses in TL-DRAM but leading
to row buffer conflicts in DDR3. Although these mapping policies provide improvements
in novel DRAM architectures (i.e., SALPs and TL-DRAM), their EDP values for DRAM
accesses are still higher than the EDP values achieved by our PENDRAM mapping policy
(Mapping-3) across different scheduling schemes. Therefore, these results lead to several
observation points as follows.

• The EDP of employing different DRAM architectures may be different due to different
DRAM access energy and latency profiles.

• Employing SALP architectures or TL-DRAM is beneficial for improving the energy
efficiency of DRAM accesses in CNN accelerators, as long as an efficient mapping
policy (i.e., our PENDRAM mapping) is employed to achieve the lowest EDP of
DRAM accesses.
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Figure 3.39: The EDP profiles of different DRAM mapping policies for the Sparse
MobileNet across different DRAM architectures (i.e., DDR3, SALP-1, SALP-2, and
SALP-MASA), while considering different data partitioning and scheduling schemes: (a)
ifmaps-reuse, (b) weights-reuse, (c) ofmaps-reuse, and (d) adaptive-reuse.

• Since the internal organization of all DRAM architectures is similar (i.e., it is composed
of channel, rank, chip, bank, subarray, row, and column), our PENDRAM methodology
can be employed for all DRAM architectures to achieve energy-efficient processing of
convolutional neural networks in CNN accelerators.

3.3.7 Summary of PENDRAM Methodology

We present the PENDRAM methodology which employs a generalized DRAM mapping
policy that offers the lowest EDP of DRAM accesses for maximizing high-performance and
energy-efficient CNN accelerators, as compared to other mapping policies. It is proven
through an extensive design space exploration that evaluates the latency and energy of
different mapping policies across different DRAM architectures (DDR3, SALP-1, SALP-2,
SALP-MASA, and TL-DRAM), as well as different data partitioning and scheduling
schemes. We expect that this work enables energy-efficient CNN accelerator designs and
improves the DRAM access latency and energy for the existing CNN accelerators.
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3.4 Summary of DRAM Optimization for DNN Systems
This chapter discusses our novel methodology for enabling energy-efficient DNN systems.
It systematically addresses the targeted problems using our proposed optimization
techniques. Specifically, it optimizes the dominant source of energy consumption for DNN
inference (i.e., the DRAM access energy) through the reduction of the number of DRAM
accesses and the DRAM energy-per-access. To do this, we perform a comprehensive
design space exploration to find a combination of data partitioning and scheduling scheme
that offers the minimum DRAM accesses. This exploration incorporates our analytical
model which keeps the overlapping data on-chip for subsequent convolutional processes.
Furthermore, we also propose a generalized DRAM data mapping to minimize DRAM
energy-per-access and latency-per-access for DNN accelerators considering different
DRAM design choices, including commodity DRAMs (e.g., DDR3) and novel DRAM
architectures from the literature (e.g., SALP-1, SALP-2, SALP-MASA, and TL-DRAM).
Our generalized DRAM data mapping policy is proven through a comprehensive design
space exploration across different combinations of DRAM architectures, data partitioning,
and scheduling schemes. In this manner, the DNN systems can perform inference in tight
energy budgets, thereby making such systems suitable for many resource-constrained AI
applications (e.g., Edge-AI and Smart CPS).
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CHAPTER 4
Energy-Efficient SNN Systems

This chapter discusses our novel methodology for achieving energy-efficient SNN systems.
This chapter first identifies the problems for enabling energy-efficient SNN systems in both
the training and inference phases in Section 4.1. To systematically address the research
problems, we propose a novel methodology that employs our conjoint HW/SW-level
design and optimization techniques for energy-efficient SNN systems. The proposed
design flow is shown in Figure 4.1 and the details of novel contributions are described in
the following sections in this chapter. Section 4.2 discusses a framework for optimizing
the memory and energy requirements of SNN processing during both the training and
inference phases. Section 4.3 further explores the quantization techniques for SNNs while
considering different SNN parameters and quantization schemes. Afterward, Section 4.4
discusses a framework for employing approximate hardware (e.g., approximate DRAM) to
substantially reduce the operational power/energy of SNN accelerators, while mitigating
the negative impact of approximation on the accuracy. Apart from the development of
SNNs through an offline training approach, we also propose a framework for enabling SNNs
to continually adapt to diverse operational environments through our improved learning
process, which is discussed in Section 4.5. Then, in Section 4.6, we further improve
the learning process through learning rate enhancements and parameter adjustments to
enable low-precision SNN processing for unsupervised continual learning scenarios.

4.1 Problem Identification
In an SNN architecture with unsupervised STDP learning rules depicted in Figure 2.12(a),
each excitatory neuron is expected to recognize a class in the dataset, hence the connecting
synapses from the same excitatory neuron have to learn the input features of a specific class.
The existing works [HSS+18, S+17, PARR18, SPH+19, HSS+19] focus on improving the
classification accuracy, but at the cost of a huge amount of additional computations, which
leads to high energy and high memory footprint. For instance, the state-of-the-art work
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Figure 4.1: An overview of the design flow of this chapter.

improves the effectiveness of the STDP-based learning by updating the weights every two
or three postsynaptic spikes, to ensure that the update is essential [S+17]. This reduces
the number of weight updates, but requires a 2-bit counter for each excitatory neuron to
keep track of the number of postsynaptic spikes. Moreover, it also needs 200 neurons
(i.e., 100 neurons for each excitatory and inhibitory layer), to achieve ∼75% accuracy
in the MNIST digit classification1, as shown in Figure 4.2(a). Although all the existing
techniques result in an improvement in accuracy, they incur high computational, memory,
and energy costs. This is not desired for embedded applications with stringent constraints
in computations, memory, and energy consumption (e.g., Edge-AI applications).

Problem-1: How can we optimize memory footprint and energy consumption of SNN
processing for both the training and inference phases.

1Unlike DNNs, the research for unsupervised learning-based SNNs is still in the early stage and mostly
uses small datasets like MNIST and Fashion MNIST [DC15, HSS+18, S+17, PARR18, SPH+19, HSS+19,
SLM19b]. We adopt the same test conditions used widely by the SNN research community [YAA+23].
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Figure 4.2: (a) A large-sized SNN typically achieves higher classification accuracy, e.g.,
the accuracy of an SNN with a total of 200 neurons (i.e., 100 excitatory and inhibitory
neurons) is lower than an SNN with a total of 9800 neurons (i.e., 4900 excitatory and
inhibitory neurons) on the MNIST dataset [LBBH98a]. (b) Accuracy of an SNN with
400 excitatory neurons with different weight precision levels on the MNIST dataset.

Previous works also proposed different methodologies to reduce the memory footprint
of SNNs, such as (1) reduction of SNN operations via stochastic neuron operations
[SVR17], neuron elimination [PS20], and weight pruning [RPR19]; and (2) quantization
[RPR19, SLBS20, ZCG+20]. Among these techniques, quantization is a prominent one
that incurs relatively low overhead, since it only needs to reduce the data precision.
Besides memory saving, the reduced precision also leads to other advantages, e.g., faster
computation and lower power/energy consumption. However, reducing the precision of
SNN parameters leads to accuracy degradation if it is not performed carefully due to the
information loss, as shown in Figure 4.2(b). The results show that a network with weight
precision W(Q1.4), i.e., 6-bit of fixed-point weights with 1 sign bit, 1 integer bit, and 4
fractional bits, suffers from an accuracy drop as compared to the 32-bit floating-point
(FP32). The state-of-the-art works typically employed quantization to reduce the precision
of the weights by directly using a specific quantization scheme, i.e., either the post-training
quantization (PTQ) or the in-training quantization (ITQ) [RPR19, SLBS20, ZCG+20].
However, they have several drawbacks as they do not consider the following aspects.

• Quantization for other SNN parameters (e.g., neurons’ membrane potential) that oc-
cupy a considerable amount of memory during the SNN processing [SVR17][RVG+17].

• Exploration on different combinations of quantization approaches (i.e., quantization
schemes, precision levels, and rounding schemes) to find the SNN model that fulfills
the targeted accuracy and achieves high memory saving.

Therefore, the memory savings offered by the state-of-the-art works to meet the targeted ac-
curacy are limited, thereby hindering the deployment of SNNs on the resource-constrained
computing platforms.
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Problem-2: How can we systematically employ the quantization on SNNs to maximize
memory saving, while maintaining accuracy.

Most of the SNN hardware platforms have relatively small on-chip memory, e.g., less than
100 MB [RVG+17, SVR17, FLLB19, FLB19]. Therefore, running an SNN model with a
larger size than the on-chip memory of SNN hardware platforms, will require intensive
access to the off-chip memory. Recent studies observed that a single access to the off-chip
memory (i.e., DRAM) incurs significantly higher energy consumption than a single access
to the on-chip memory (i.e., SRAM) [SCYE17, PHS21b]. Another work also identified
that memory accesses dominate the energy consumption of SNN processing, incurring
50%-75% of the total system energy across different SNN hardware platforms, as shown
in Figure 4.3. The reason is that, DRAM access energy is significantly higher than
other SNN operations (e.g., neuron operations) [KSVR19]. This problem is even more
critical for AI applications with stringent constraints (e.g., low-cost embedded devices
with a small on-chip memory size) [SMWPH21], since it leads to even more intensive
DRAM accesses. Consequently, this problem hinders SNN-based embedded systems from
obtaining further efficiency gains.

To decrease the energy consumption of SNN inference, state-of-the-art works developed
different optimization techniques, which can be loosely classified as the following.

• Reduction of the SNN operations through approximate neuron operations [SVR17],
weight pruning [RPR19], and neuron removal [PS20]. These techniques decrease the
number of DRAM accesses for the corresponding model parameters.

• Quantization by reducing the range of representable values for SNN parameters
(e.g., weights) [RPR19, PS20, PS21a]. These techniques reduce the amount of SNN
parameters (e.g., weights) to be stored in and fetched from DRAM.

These state-of-the-art works mainly aim at reducing the number of DRAM accesses, but
do not optimize the DRAM energy-per-access and do not employ approximations in
DRAM that provide an additional knob for obtaining high energy efficiency. Therefore,
optimization gains offered by the state-of-the-art works are sub-optimal, hindering the
SNN inference systems from achieving the full potential of DRAM energy savings.

Problem-3: How can we substantially decrease the DRAM access energy of SNN
hardware platforms for the SNN inference, while maintaining accuracy.

Previous works have also explored different methodologies to build energy-efficient and
unsupervised SNN systems, and most of them employed offline training [DC15, S+17,
HSS+18, SPH+19, PS20]. However, the information learned by the offline-trained SNN
system can be obsolete or may lead to low accuracy at run time under dynamically
changing scenarios, as new data may have new features that should be learned online
[PARR18, LDBK20, LLS+20, Ant19, vdVST20]. It becomes especially important for use
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Figure 4.3: Energy breakdown of processing SNN in several hardware platforms, i.e.,
TrueNorth [ASC+15], PEASE [RVG+17], and SNNAP [SVR17] (adapted from the studies
presented in [KSVR19]).

cases like IoT-Edge devices deployed in dynamically changing environments [LDBK20]
and the autonomous agents (e.g., mobile robots, UAVs, and UGVs) in unknown terrains
[LLS+20], as illustrated in Figure 4.4. New data that are gathered directly from such
dynamic environments are usually unlabeled. Hence, an SNN-based system should employ
unsupervised learning to process these data [PS20]. Moreover, new data are uncontrolled
and their classes might not be randomly distributed, thereby making it difficult to learn
different classes/tasks proportionally [AR16]. Therefore, the SNN system should employ
online training/learning through real-time continual learning2, while avoiding the
undesired conditions, such as the following.

• The system learns information from the new data, but quickly forgets the previously
learned ones (i.e., catastrophic forgetting) [MC89, CL18, PKP+19].

• The system mixes new information with the existing ones, thereby corrupting (pollut-
ing) the existing information [PARR18, AR16].

• The learning process needs a large number of weights and neuron parameters, and
complex exponential calculations, thereby consuming high energy.

Previous works have tried to achieve continual learning through different techniques.
The first category includes the supervised learning techniques that minimize the cost
function in the learning process using data labels [KPR+17, LKJ+17, WBK06]. Hence,
they cannot process unlabeled data which is required in the targeted problem. The
second category includes the unsupervised learning techniques that perform learning
using unlabeled data [PARR18, AR16, AR20]. However, the existing works suffer from
spurious updates which lead to the sub-optimal accuracy, since they update the weights
at each spike event, as observed in [S+17]. They also incur high energy consumption
due to: (a) additional neurons [AR16, AR20]; (b) non-proportional quantities of training
samples, i.e., samples from the earlier task are presented with larger quantities than later

2Continual learning is defined as the ability of a model to learn consecutive tasks (e.g., classes), while
retaining information that have been learned [LDBK20, CL18, PKP+19]. Real-time means during the
operational lifetime of the system.
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tasks [PARR18]; and (c) large memory footprint and complex exponential calculations
to achieve high accuracy [PARR18], i.e., a total of 800 neurons are needed to achieve
75% accuracy on the MNIST dataset3. Therefore, the unsupervised continual learning
capabilities offered by the state-of-the-art works are sub-optimal, hindering the SNN
systems from enabling efficient mechanisms for adapting to dynamic environments.

Problem-4: How can we design lightweight and energy-efficient unsupervised continual
learning for SNNs that adapts to dynamic environments for providing improved accuracy
at run time.

Furthermore, the existing works on unsupervised continual learning for SNNs typically
employed high-precision weights (i.e., 32 bits) for both the training and inference phases
to achieve high accuracy [PARR18, AR16, AR20], hence posing high memory and energy
costs which hinder their efficient embedded implementations for battery-powered mobile
autonomous agent applications. Toward this, quantization is a potential technique for
efficiently reducing the memory footprint of SNNs, and thereby the energy consump-
tion [PS20, PS21a]. However, the impacts of weight quantization on the accuracy of
unsupervised continual learning in SNN systems have not been explored yet.

Problem-5: How can we efficiently implement quantization for SNNs with unsupervised
continual learning capabilities under tight memory constraints, while keeping the accuracy
close to the baseline implementation.

Dynamically changing environments

Environment-1 Environment-2 Environment-3

An SNN-based 
autonomous agent

(e.g., drone)

Current knowledge

The agent is moving across environments

to learn to learn to learn

Figure 4.4: The SNN-based autonomous agent needs to perform training online using
unsupervised continual learning strategies to update the knowledge, thereby adapting to
dynamically changing environments in an efficient manner.

3Note, the research for the unsupervised continual learning in SNNs is still at an early stage and
prominent SNN works mostly use the MNIST dataset [PARR18, AR16, AR20]. Therefore, we adopt the
same test conditions as used widely by the SNN research community [YAA+23].
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Benefits: The solution to these problems will enable memory- and energy-efficient
SNN systems with unsupervised continual learning capabilities that can adapt to diverse
operational environments for energy-constrained embedded platforms and their applications
for Edge-AI and Smart CPS. For instance, mobile autonomous systems (e.g., robots,
UGV, and UAVs) can employ such an SNN processing to perform inference (e.g., object
recognition) as well as update the knowledge regularly (online learning) at run time.

Proposed Solution: To systematically address the above problems, we propose a com-
prehensive solution which is discussed in the following sections. Specifically, Problem-1,
Problem-2, Problem-3, Problem-4, and Problem-5 are addressed in Section 4.2, Section 4.3,
and Section 4.4, Section 4.5, and Section 4.6, respectively.

4.2 FSpiNN: An Optimization Framework for
Memory-Efficient and Energy-Efficient SNNs

This section aims at addressing Problem-1 with the solution for optimizing the memory
footprint and the energy consumption of SNN processing for both the training and
inference phases.

4.2.1 Motivational Study

In Figure 4.2(a), we observe that a large-sized SNN typically achieves higher classification
accuracy and consumes a larger memory footprint. It shows that to achieve 92% accuracy
for the MNIST digit classification, the SNN requires 9800 neurons (i.e, 4900 neurons
for each excitatory and inhibitory layer) with 3 epochs of training, and consumes more
than 200 MB of memory. On the other hand, most of the SNN hardware platforms
have a limited size of on-chip memory (e.g., less than 100 MB) [ASC+15, SVR17,
RVG+17, FLLB19], which makes running a large-sized network (whose size is larger than
the on-chip memory) energy-consuming. The reason is that, this condition requires a
high number of memory accesses, whose energy is typically higher than the compute
operations [Hor14, CBM+20b, PHS20]. Studies in [KSVR19] observed that the memory
accesses are dominant, consuming about 50%-75% energy of SNN processing in different
hardware platforms [ASC+15, SVR17, RVG+17], as shown in Figure 4.3.

We also observe that there are inefficient computations that hinder SNNs to achieve higher
energy efficiency, which come from complex neuron and STDP operations. They require
exponential calculations for computing the membrane and threshold potential decay,
and the synaptic trace and weight dependence, respectively (see details in Section 2.3).
Furthermore, there are ineffective STDP operations that come from spurious weight
updates, which occur when the synapses of a neuron learn the overlapped features from
different classes, thereby degrading the recognition capability of the neuron. This happens
because the general STDP rule updates the synaptic weight on every presynaptic and
postsynaptic spike, as discussed in Section 2.3.
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4.2.2 Scientific Research Challenges
The high memory requirements in SNNs mainly come from a large number of parameters,
such as synaptic weights and neuron parameters. Reducing these parameters may degrade
the classification accuracy. Here, bitwidth quantization techniques may also be employed,
but it can also lead to accuracy degradation. To overcome the limitations of the above
optimization methods, parameter reduction should be done by identifying and eliminating
the non-significant parameters. Furthermore, the STDP-based learning technique should
be refined, so that the classification accuracy can be maintained/improved at minimal
overheads.

Required: An optimization technique is required to reduce SNNs’ memory and energy
requirements for both training and inference processing, while maintaining classification
accuracy, thereby enabling the SNN deployment on the memory- and energy-constrained
embedded systems.

4.2.3 Novel Contributions
To address the above challenges, we propose FSpiNN, a novel optimization Framework
for memory-efficient and energy-efficient Spiking Neural Networks for both the training
and inference phases [PS20], that employs the following key techniques (see an overview
in Figure 4.5).

1. Optimization of the neuron and STDP-based learning operations. It re-
places the inhibitory neurons with direct lateral inhibitory connections, reduces the
presynaptic spike-based weight updates, and reduces the STDP complexity through
the elimination of the exponential calculation in the weight dependence part.

2. An algorithm for improving the STDP-based learning. It minimizes the
spurious weight updates through timestep-based operations, effectively updates the
weights through an adaptive potentiation factor, and provides an effective competition
among neurons through an adaptive inhibition.

3. SNN quantization to compress the size of network parameters. It employs
a fixed-point format by rounding-to-the-nearest value, thereby providing a trade-off
between the classification accuracy and the memory footprint.

4. An algorithm to find the memory-aware and energy-aware SNN model. It
incorporates the memory and energy requirements in the optimization process, and
employs a search algorithm to find the desired model.

4.2.4 FSpiNN Framework
FSpiNN framework [PS20] is an optimization framework for obtaining memory- and
energy-efficient SNNs in both the training and inference phases while maintaining accuracy.
FSpiNN employs the following key steps, and its flow is shown in Figure 4.6.
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Figure 4.5: An overview of the FSpiNN framework. The novel contributions are high-
lighted in blue.

1. Optimize the neuron and STDP-based learning operations (Section 4.2.4.1)
through the following means.

• Reduce the number of neuron operations by replacing the inhibitory layer with
the direct lateral inhibitory connections. It removes the inhibitory neurons and
substitutes the function of spikes from the inhibitory neurons with spikes from the
excitatory neurons.

• Reduce the number of synaptic weight updates during STDP-based learning by
eliminating the presynaptic spike-based weight updates. The updates happen only
when the postsynaptic spikes occur, which indicates that the synapses learn the
input features effectively.

• Reduce the STDP complexity by fixing the weight dependence factor µ to 1, hence
eliminating the complex exponential calculation.

2. Improve the accuracy of STDP-based learning (Section 4.2.4.2) through the
following means.

• Employ timestep-based synaptic weight updates to minimize the spurious weight
updates that are induced by postsynaptic spikes, thereby ensuring that each update
is essential.

• Employ adaptive potentiation factor in STDP-based learning that makes use of
the number of postsynaptic spikes to ensure how strong the potentiation should be
applied in each weight update. It compensates for the loss of accuracy induced by
the simplification of STDP operations.

• Employ adaptive inhibition strength to proportionally provide competition among
the excitatory neurons by applying a proper inhibition strength to other neurons. It
is derived from an experimental analysis that investigates the accuracy of different
inhibition strength values.
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Figure 4.6: An overview of the FSpiNN framework. The novel contributions are high-
lighted in blue.

3. Fixed-point SNN quantization (Section 4.2.4.3) to compress the bitwidth of
SNN parameters. It employs the rounding-to-the-nearest value technique, and explores
the trade-off between the accuracy and memory costs for different quantization levels.

4. A design space exploration (DSE) algorithm to find the SNN model (Sec-
tion 4.2.4.4) that fulfills the memory and energy budgets. It integrates a search
algorithm with the proposed optimization to obtain a model that offers a good trade-off
in memory footprint, energy consumption, and accuracy.

4.2.4.1 Optimizing the Neuron and STDP Operations

Reducing the number of neuron operations: Our experiments in Figure 4.7 illustrate
that the number of postsynaptic spikes generated from excitatory neurons is less than
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the presynaptic spikes. Therefore, the number of incoming spikes required to trigger an
inhibitory neuron to generate a spike is less than the excitatory ones, and the inhibitory
neuron typically has a smaller range of active membrane potential (between reset potential
vreset and threshold potential vth) compared to the excitatory ones. This indicates that
the inhibitory neurons have different parameters from excitatory ones to be saved in
memory. Hence, a large number of neurons utilized in the inhibitory layer will consume a
considerable amount of memory and energy. Moreover, each inhibitory neuron needs to
process only a small number of incoming spikes to generate the inhibition spike. Therefore,
the use of inhibitory neurons could be optimized further to reduce memory and energy
requirements.
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Figure 4.7: Illustration of the spike trains from the input and excitatory layers. It shows
a significant difference between the number of spikes from the input layer (presynaptic
spikes) and the excitatory layer (postsynaptic spikes).

Proposed Optimization: We propose to replace the inhibitory layer with direct lateral
inhibitory connections to reduce the number of neurons in the network, thereby curtailing
the neuron operations, as illustrated in Figure 4.8(a). In this manner, half of the total
number of neurons are removed, and the function of spikes from the inhibitory neurons
(to provide competition among excitatory neurons through a winner-takes-all mechanism)
is substituted by the spikes from the excitatory neurons. Our experimental results in
Figure 4.8(b) show that the lateral inhibitory connections have the potential to maintain
accuracy, while having less resources than using the inhibitory layer. For instance,
label- 1 in Figure 4.8(b) indicates that the SNN with a lateral inhibition can achieve a
high accuracy faster than the SNN with an inhibitory layer, and then they converge to a
comparable accuracy after more samples presented in the training phase. The reason is
that, the lateral inhibition directly conveys spikes from an excitatory neuron to other
neurons, hence the number of spikes is typically higher than the ones from the inhibitory
layer. Therefore, the inhibition is stronger and it results in more diverse feature learning
across neurons, thereby achieving high accuracy with a small number of training samples.
This behavior is beneficial, especially when the SNN-based systems have only a small
number of training samples.

115



4. Energy-Efficient SNN Systems

0

20

40

60

80

100

0 10000 20000 30000 40000 50000 60000

Ac
cu

ra
cy

(%
)

Number of samples over a training phase

Size: 100 | Lateral Inhibition Size: 100 | Exc. & Inh.  Layers
Size: 400 | Lateral Inhibition Size: 400 | Exc. & Inh. Layers
Size: 900 | Lateral Inhibition Size: 900 | Exc. & Inh. Layers
Size: 1600 | Lateral Inhibition Size: 1600 | Exc. & Inh. Layers

(b)

(a) Excitatory neurons Inhibitory neurons Excitatory neurons

Excitatory and inhibitory layers Lateral inhibitory connections

1

Figure 4.8: (a) Replacing the inhibitory layer with the direct lateral inhibitory connections
(red-dashed lines), through which each excitatory neuron is connected to other excitatory
neurons. (b) Impact of employing the direct lateral inhibitory connections on accuracy.
This architecture offers comparable accuracy across different sizes of networks (i.e., 100,
400, 900, and 1600 excitatory neurons) as compared to employing the inhibitory layer.

Reducing the number of STDP-based synaptic weight updates: In the unsu-
pervised SNNs, each neuron has to recognize features that belong to a specific class, so
that each neuron can generate the highest number of spikes to represent its recognition
category. To achieve this, the general STDP rule presented in Equation 2.15 updates
the synaptic weight in every event of a presynaptic and postsynaptic spike. However,
previous work observed that there are spurious weight updates which may decrease the
accuracy of learning [S+17]. The spurious updates are observed in two conditions: (i)
when the neurons generate spikes unpredictably in the early phase of learning, due to the
random weight initialization, and (ii) when a neuron generates spikes for patterns that
belong to different classes, but share common features, thereby causing the synapses to
learn the overlapped features from different classes. Therefore, the STDP-based weight
updates that are induced by these presynaptic and postsynaptic spikes might not learn
the input features effectively, and hence decreasing the recognition capability of the
neuron and consuming energy. We exploit this observation in a new way to optimize the
SNN computations, while preserving the classification accuracy.
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Proposed Optimization: We propose to eliminate the presynaptic spike-based weight
updates to reduce the spurious weight updates that are induced by the presynaptic spikes.
Therefore, the learning will focus on the condition when postsynaptic spikes happen,
which indicates that the connecting synapses effectively learn the input features. It also
reduces the computational energy as the number of presynaptic spikes is higher than the
postsynaptic ones, as shown in Figure 4.7.

Reducing the STDP complexity: The change in each synaptic weight (Δw) is
updated using an STDP operation that requires complex exponential calculations for the
synaptic trace and weight dependence parts (see Equation 2.15). We observe that the
value of the weight dependence factor (µ) is typically less than 1 [S+17], which makes
it expensive to compute. Therefore, the use of a weight dependence factor could be
optimized to achieve further energy efficiency.

Proposed Optimization: We propose to fix the weight dependence factor µ to 1, thereby
simplifying the computation of STDP operations. However, we observe that only fixing
the weight dependence factor value may degrade the classification accuracy across different
sizes of the network, as shown in Figure 4.9. Therefore, we propose a technique for
improving the STDP-based learning (discussed in Section 4.2.4.2) to compensate for the
loss of this µ simplification, and to maintain the accuracy.
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Figure 4.9: Impact of different values of weight dependence factor µ on accuracy, across
different sizes of networks.

4.2.4.2 Improving the Accuracy of STDP-based Learning

We observe that for each input image, at least a single excitatory neuron is expected to
recognize the input features, and then generate the highest number of spikes to represent
a recognition of the corresponding class. Therefore, information regarding the number of
postsynaptic spikes should be leveraged and used to improve accuracy.

Proposed Solution: We propose an algorithm to improve the accuracy of STDP-based
learning by employing timestep-based synaptic weight updates, and adaptively deter-
mining the STDP potentiation factor (k) and the inhibition strength. Timestep-based
synaptic weight updates aim to reduce the spurious weight updates, that are induced by
the postsynaptic spikes. Hence, our technique updates the weight once within a defined
timestep period, as long as at least there is a postsynaptic spike, as shown in Figure 4.10.
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Figure 4.10: Overview of the timestep period, the synaptic weight updates, and the
number of accumulated postsynaptic spikes (Nspikes) in our proposed technique.

We also propose an adaptive STDP potentiation factor k, which aims at determining how
strong the potentiation should be in each weight update, by leveraging the number of
postsynaptic spikes. To do this, our technique accumulates the number of postsynaptic
spikes observed from the first time when the spike trains of an input sample (e.g., image)
are presented to the network, until the time when a weight update is performed (denoted
as Nspikes in Figure 4.10). The number of postsynaptic spikes is used to determine the
potentiation factor k, as formulated in Equation 4.1. Term maxNspikes denotes the
maximum number of accumulated spikes, and Nspikes_th denotes the number of threshold
spikes, which normalizes the value of maxNspikes. Afterwards, the potentiation factor k
is used to compute the synaptic weight change Δw, as formulated in Equation 4.2. The
synaptic weight update is conducted for the excitatory neuron that generates the highest
number of postsynaptic spikes (i.e., the winning neuron). In this manner, the confidence
level of learning is expected to increase over time when presenting the input spike trains.

k =
	

maxNspikes

Nspikes_th



(4.1)

Δw = k ηpost xpre (wm − w) on update time (4.2)

Furthermore, balancing the strength of excitatory and inhibitory synaptic connections
is important since it makes the inhibition neither too strong, nor too weak. Too strong
inhibition means that once the winning neuron is selected, it strongly prevents other
excitatory neurons from firing, thereby dominating the recognition of input features (inef-
fective competition). Meanwhile, too weak inhibition means that it does not necessarily
provide competition among the excitatory neurons, thereby giving no influence on the
overall learning process (no competition). Previous studies in [DC15] observed that the
ratio between the excitatory and inhibitory strengths have an important role to balance
the learning process. Toward this, we perform an experimental analysis to investigate the
accuracy in different inhibition strength conditions and different datasets to justify the
generality of the effective ratio conclusion. The results are presented in Figure 4.11. Our
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analysis shows that when the inhibitory strength is too weak or too strong, the accuracy
is sub-optimal. We observe that two comparable accuracy points are obtained using the
ratio of 2x-4x. Therefore, we propose to use an adaptive inhibition strength that provides
proper competition among the excitatory neurons, by applying an inhibition strength
equal to 2x-4x of the excitatory strength.
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Figure 4.11: Impact of different ratio values between inhibitory and excitatory strengths
when running the MNIST and Fashion MNIST datasets. When the ratio is too weak or
too strong, the accuracy is sub-optimal.

Algorithm 4 synergistically employs the above-discussed techniques. For each excitatory
neuron, the algorithm monitors whether a postsynaptic spike is generated. If so, the
number of postsynaptic spikes is accumulated, and the corresponding presynaptic traces
are recorded. Otherwise, no action is required. When the defined timestep period is
reached, the algorithm identifies which excitatory neuron generates the highest number
of spikes (the winning neuron). Once a winning neuron is identified, the connecting
synapses to the winning neuron are updated with the synaptic weight change Δw.

4.2.4.3 Fixed-Point Quantization for SNNs

It is a common practice to perform SNN processing using a single-precision floating-point
operation to achieve a high classification accuracy. However, floating-point operations
typically consume high memory and energy. To achieve memory- and energy-efficient
SNN processing, it is more convenient to use a fixed-point format for neuron and
STDP operations. However, quantizing a value implies a reduction of its representation
capability, thereby decreasing the accuracy of the networks. Therefore, the quantization
process should consider the trade-off between accuracy and memory requirements, to find
acceptable quantization levels. In this manner, the users can select acceptable accuracy
and memory to comply with the design specifications.
Toward this, our FSpiNN framework performs an exploration to investigate the impact of
different quantization levels of SNN parameters (i.e., synaptic weights) on the accuracy,
using the rounding-to-the-nearest value technique with the rounding half-up rule. This
technique approximates the values that are halfway between two representable numbers
by rounding them up. The fixed-point number can be written in Qi.f format, as discussed
in Section 2.5. The precision of the fixed-point format ϵ is defined as ϵ = 2−f , and it is
used to define the quantized number xq as stated in Equation 4.3.
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Algorithm 4 Pseudo-code for improving the accuracy of STDP-based learning
INPUT: (1) Number of training dataset (Dtrain);

(2) Simulation time for an input image (tsim = 350);
(3) Timestep (tstep = 4);
(4) SNN parameters: number of excitatory neurons (nexc), number of synapses-per-neuron
(nsyn), number of accumulated postsynaptic spikes (Nspikes);
(5) STDP parameters: learning rate (ηpost = 0.01), max. weight value (wm = 1), previous
weight value (w), number of threshold spikes (Nspikes_th = 10), potentiation factor (k);
(6) Postsynaptic spike event (spikepost);

OUTPUT: Synaptic weight update (Δw);
BEGIN

Initialization:
1: Δw[nexc, nsyn] = zeros[nexc, nsyn];
2: Nspikes[nexc] = zeros[nexc];
3: xpre = zeros[nexc, nsyn];

Process:
4: for (d = 0 to (Dtrain − 1)) do
5: for (t = 0 to (tsim − 1)) do
6: for (i = 0 to (nexc − 1)) do
7: if spikepost then
8: Nspikes[i] += 1;
9: monitor xpre[i, :];

10: if ((t mod tstep) == 0) then
11: maxNspikes = max(Nspikes);
12: j ← index(max(Nspikes));
13: k = ⌈(maxNspikes/Nspikes_th)⌉;
14: Δw[j, :] = kηpostxpre[j, :](wm − w);
15: return Δw;
END

xq =

x + ϵ

2

�
(4.3)

4.2.4.4 DSE Algorithm for the Memory- and Energy-Aware SNN Model

To provide better applicability in many application scenarios, the proposed optimizations
need to fulfill the given memory and energy requirements. Toward this, we also propose
a DSE algorithm to find an SNN model whose memory and energy (for both the training
and inference) are within the given memory and energy budgets, while maintaining
high accuracy. The main idea is to incrementally increase the size of the SNN model
(i.e., the number of excitatory neurons) and evaluate whether the currently investigated
model satisfies the memory and energy budgets. If so, the DSE will evaluate whether
the accuracy is better. If the accuracy is the same, the DSE will select the smaller
model to keep the memory and energy consumption low. In this manner, our FSpiNN
framework can support many applications where memory and energy are constrained.
The pseudo-code of the algorithm is presented in Algorithm 5.
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Algorithm 5 Pseudo-code for the DSE algorithm
INPUT: (1) Memory requirement (mem);

(2) Energy requirements: for training (Etrain), for inference (Einf );
(3) SNN model (model): number of the excitatory neurons (model.nexc), model size
(model.mem), energy consumption for training (model.Etrain), energy consumption for
inference (model.Einf ), accuracy (model.acc);
(4) Number of additional excitatory neurons (nadd);

OUTPUT: SNN model (model);
BEGIN

Initialization:
1: model.nexc = 0;
2: model.size = 0;
3: accsaved = 0;

Process:
4: while model.size ≤ memreq do
5: if (model.nexc > 0) then
6: perform training using Algorithm 4;
7: monitor model.Etrain;
8: if (model.Etrain ≤ Etrain) then
9: perform inference;

10: monitor model.Einf and model.acc;
11: if (model.Einf ≤ Einf ) and (model.acc > accsaved) then
12: accsaved = model.acc;
13: save model;
14: model.nexc+ = nadd;
15: return model;
END

4.2.5 Evaluation Methodology

Figure 4.12 shows the experimental setup for evaluating our proposed framework. We
employ a Python-based SNN simulator [HSK+18] for evaluating the accuracy. We run
the SNN simulations on different types of GPUs, namely Nvidia GeForce GTX 1060,
GTX 1080 Ti, and RTX 2080 Ti (see Table 4.3), providing a wide range of compute and
memory capabilities to show the scalability of our FSpiNN framework. We select the
GTX 1060 and the GTX 1080 Ti as representatives of the Pascal architecture, which is
used in the embedded GPUs, such as Nvidia Jetson TX2 [Nvie]. We also select the RTX
2080 Ti as representative of the Turing architecture, to provide variation in compute
and memory capabilities. The same GPU architecture means the same technology and
memory hierarchy. Hence, the experimental results can be used to estimate the relative
energy-efficiency improvement obtained by our FSpiNN framework, as compared to the
state-of-the-art works. From the simulations, we extract the size of the SNN model which
represents the memory footprint. This information is used to evaluate memory savings.
To estimate the energy, we adopt the approach in [HMD16]. We record the start and end
time of the simulation to obtain the processing time, and employ the nvidia-smi utility
to report the processing power, which are then used to estimate the energy consumption.
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Figure 4.12: Experimental setup and tools flow.
Table 4.1: GPU specifications.

Specifications GTX 1060 [Nvia] GTX 1080 Ti [Nvib] RTX 2080 Ti [Nvic]
Architecture Pascal Pascal Turing
CUDA cores 1280 3584 4352

Memory 6GB GDDR5 11GB GDDR5X 11GB GDDR6
Interface width 192 bit 352 bit 352 bit

Bandwidth 8 Gbps 11 Gbps 14 Gbps
Power 120 W 250 W 250 W

Datasets: We use the MNIST [LBBH98a] and Fashion MNIST [XRV17] datasets, as they
are widely used for evaluating the accuracy of SNNs [TGK+19]. The MNIST represents
a simple dataset, while the Fashion MNIST represents a more complex dataset [SLM19b].
Each dataset has 60,000 images for training and 10,000 images for testing, each having a
dimension of 28x28 pixels.

Input Encoding: Every pixel of an image from the dataset is converted into a Poisson-
distributed spike train whose firing rate is proportional to the intensity of the pixel. A
higher-intensity pixel is converted into a higher number of spikes than a lower-intensity
pixel. The spike train from each pixel is presented to the network for 350 ms duration.

Classification: In the training, the synaptic weight updates are performed without label
information as it is unsupervised learning. Therefore, an additional mechanism is required
to categorize the excitatory neurons for classification. The neurons are categorized based
on their highest response to different classes over one presentation of the training set (1x
epoch of training). Here, the labels are used to assign each neuron to a specific class.
Afterward, the response of the class-assigned neurons is used to measure the accuracy.

Comparisons: We compare our proposed framework with two state-of-the-art designs,
i.e., the general pair-wise weight dependence STDP-based SNN (baseline) [DC15], and
the enhanced self-learning STDP-based SNN (SL-STDP) [S+17]. The sizes of networks
considered in the evaluation are the networks with different numbers of excitatory neurons:
100, 400, 900, 1600, 2500, 3600, and 4900. For conciseness, we refer them to as Net100,
Net400, Net900, Net1600, Net2500, Net3600, and Net4900, respectively. To provide
fair comparisons, we recreate the baseline [DC15] and the SL-STDP [S+17], and then
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simulate them using the same SNN simulator [HSK+18]. We also use the same approach
for obtaining memory footprint and energy consumption. That is, we extract the size
of the SNN model from simulations to evaluate the memory footprint, and we use the
nvidia-smi utility to report the power and record the simulation time, which are then
used to estimate the energy consumption. We also keep the hyper-parameter values the
same for different sizes of networks. In particular, we use 1x epoch of training because the
network will be trained with a full training set once. Moreover, an SNN model trained
with 1x epoch of training is adopted by a wide range of researchers in the SNN community
and considered a completely trained network [HSS+18, S+17, SPH+19, SSKR18].

4.2.6 Results and Discussion
4.2.6.1 Maintaining Accuracy Comparable to State-of-the-Art

Results for the MNIST Dataset: Figure 4.13(a) shows the accuracy after 1x epoch
of training. It shows that our FSpiNN maintains (and even improves in certain cases)
the accuracy across different sizes of networks as compared to other designs (i.e., baseline
and SL-STDP). Following are the detailed accuracy improvements achieved by FSpiNN
from the baseline.

• Label- 1 : In Net100, FSpiNN achieves 13.2% improvement with 89.2% accuracy.

• Label- 2 : In Net400, FSpiNN achieves 7.2% improvement with 95.6% accuracy.

• Label- 3 : In Net900, FSpiNN achieves 2.4% improvement with 94.4% accuracy.

• Label- 4 : In Net1600, FSpiNN achieves 2.2% improvement with 95.2% accuracy.

• Label- 5 : In Net2500, FSpiNN achieves 0.8% improvement with 90% accuracy.

• Label- 6 : In Net3600, FSpiNN achieves 4.8% improvement with 92.8% accuracy.

• Label- 7 : In Net4900, FSpiNN achieves 2.4% improvement with 92.4% accuracy.

These results indicate that a larger network is harder to train. For instance, the accuracy
achieved in Net100 and Net900 are 89.2% and 94.4% respectively, but the accuracy
improvements in Net100 and Net900 are 13.2% and 2.4% respectively. The reason is
that, a larger network has more synapses to train for learning the input features, thereby
requiring more careful training (e.g., hyper-parameter tuning). This condition may cause
the accuracy of the larger networks lower than the smaller ones in certain cases. For
instance, the accuracy achieved in Net4900 is 92.4%, which is lower than the accuracy in
Net900 (i.e., 94.4%). Furthermore, Figure 4.13(b) shows the synaptic weights and its
classification matrix, and Figure 4.13(c) shows the confusion matrix for Net400. These
results show the common confusions happen when identifying between digits 3 and 8, 4
and 9, etc. The reason is that, the connecting synapses from the same neuron learn the
common features (shape) from these classes, hence the same neuron generates the highest
number of spikes for different classes, that results in more frequent false classification.
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Figure 4.13: (a) Comparisons of accuracy for the MNIST dataset in different sizes
of networks: Net100, Net400, Net900, Net1600, Net2500, Net3600, and Net4900. (b)
Synaptic weights learned by FSpiNN and its classification matrix. (c) Confusion matrix
in inference phase for Net400.

Results for the Fashion MNIST Dataset: Figure 4.14(a) shows the accuracy after
1x epoch of training. It shows that our FSpiNN still maintains (and even improves in
certain cases) the accuracy across different sizes of networks as compared to other designs
(i.e., baseline and SL-STDP). Following are the detailed accuracy improvements achieved
by FSpiNN from the baseline.
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Figure 4.14: (a) Comparisons of accuracy for the Fashion MNIST dataset in different
sizes of networks: Net100, Net400, Net900, Net1600, Net2500, Net3600, and Net4900. (b)
Synaptic weights learned by FSpiNN and its classification matrix. (c) Confusion matrix
in inference phase for Net400.

• Label- 1 : In Net100, FSpiNN achieves 14.2% improvement with 60.2% accuracy.

• Label- 2 : In Net400, FSpiNN achieves 5.2% improvement with 64.8% accuracy.

• Label- 3 : In Net900, FSpiNN achieves 3.6% improvement with 66% accuracy.

• Label- 4 : In Net1600, FSpiNN achieves 3.5% improvement with 68.8% accuracy.
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• Label- 5 : In Net2500, FSpiNN achieves 3% improvement with 60.6% accuracy.

• Label- 6 : In Net3600, FSpiNN achieves 27% improvement with 64.4% accuracy.

• Label- 7 : In Net4900, FSpiNN achieves 11% improvement with 61.6% accuracy.

Here, we observe the same trend as observed in the MNIST case. A larger network has the
potential to achieve higher accuracy because more neurons are available for recognizing
more feature variations. This trend is shown in Figure 4.14(a) for Net100-Net1600 and
Net3600-Net4900. At the same time, a larger network is harder to train because more
synapses have to effectively learn input features. Therefore, a larger network may achieve
lower accuracy than the smaller ones in cases where the synapses are not effectively
trained. This trend is shown in Figure 4.14(a) for Net1600-Net3600. The reason is that,
in our experiments, we keep the same hyper-parameter tuning across different sizes of
networks, and only performed 1x epoch of training. Therefore, the accuracy of a larger
network could still be improved through more effective hyper-parameter tuning (e.g.,
more training epochs), as suggested in Figure 4.15. The results in Figure 4.15 indicate
that employing multi-epoch training can increase the accuracy, since the same features in
the training set are learned multiple times by the network. The accuracy improvement
in the earlier epoch is typically higher than in the later ones, thereby only relying on
multi-epoch training may incur high energy consumption, without gaining significant
accuracy improvement in the end. To address this, our FSpiNN employs the adaptive
potentiation factor and inhibition strength, which increase the confidence in learning over
time in the training. The results also show that our FSpiNN achieves the highest accuracy
across different epochs as compared to state-of-the-art designs. Moreover, FSpiNN with a
1x training epoch achieves higher accuracy than state-of-the-art designs with 3x training
epochs. These results show the effectiveness of the learning algorithm in FSpiNN.
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Figure 4.15: Results of accuracy after 3x epochs of training for Net3600 when running
the Fashion MNIST.

Furthermore, Figure 4.14(b) shows the synaptic weights and its classification matrix, and
Figure 4.14(c) shows the confusion matrix for Net400. These results show the common
confusions, such as when identifying between pullover, coat, and shirt, as well as sandals,
sneakers, and ankle boots. The reason is that, the connecting synapses from the same
neuron learn the common features (shape) from these classes. Hence, the same neuron
generates the highest number of spikes for different classes, thereby resulting in more
frequent false classifications.
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These experimental results also indicate that the input images with more overlapping
features are harder to classify. Therefore, in general, the classification accuracy achieved
in the MNIST is higher than the Fashion MNIST, since the MNIST has relatively simpler
features than the Fashion MNIST. However, our FSpiNN can still achieve better accuracy
in the Fashion MNIST across different sizes of networks, outperforming state-of-the-art
designs. The maintained accuracy achieved by our FSpiNN comes from the improved
STDP-based learning, which reduces the spurious weight updates, and employs an
effective STDP potentiation and inhibition strength.

4.2.6.2 Impact of the Fixed-Point Quantization on Accuracy

Our framework converts a floating-point (FP32) format to a fixed-point format, and
conducts exploration to study the impact of different quantization levels on the accuracy.

Results for the MNIST Dataset: Figure 4.16 shows the experimental results for the
MNIST. Label- 1 shows that the FSpiNN achieves better accuracy than the baseline and
the SL-STDP, when the minimum bit-width of quantization is 8 bits. The reason is that,
the 8-bit (or more) format in the FSpiNN provides sufficient levels of weight values to
modulate the input spikes from the MNIST images, and induce each neuron to recognize
a specific digit class. In 8-bit precision, our FSpiNN achieves 91.6% accuracy, while the
baseline and the SL-STDP achieve 87.6% and 82%, respectively. It indicates that the
accuracy achieved by the FSpiNN 8-bit is slightly less than the FSpiNN FP32 (pointed
by label- 2 ), but still higher than the baseline and the SL-STDP with FP32 precision
(pointed by label- 3 and label- 4 , respectively). Therefore, the FSpiNN 8-bit offers no
accuracy loss with a reduced bitwidth for the MNIST.
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Figure 4.16: Accuracy vs. quantization for the MNIST dataset for Net400.

Results for the Fashion MNIST Dataset: Figure 4.17 shows the experimental
results for the Fashion MNIST. Label- 1 shows that the FSpiNN achieves better accuracy
than the baseline and the SL-STDP, when the minimum bitwidth of quantization is 8
bits. The reason is that, the 8-bit (or more) format in the FSpiNN provides sufficient
levels of weight values to modulate the input spikes from the Fashion MNIST images, and
induce each neuron to recognize a specific fashion class. In 8-bit precision, our FSpiNN
achieves 64.8% of accuracy, while the baseline and the SL-STDP achieve 59.2% and 58%,
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Figure 4.17: Accuracy vs. quantization for the Fashion MNIST dataset for Net400.

respectively. It indicates that the accuracy achieved by the FSpiNN 8-bit is comparable
to the FSpiNN FP32 (pointed by label- 2 ), and it is higher than the baseline and the
SL-STDP with FP32 precision (pointed by label- 3 and label- 4 , respectively). Therefore,
the FSpiNN 8-bit offers no accuracy loss with a reduced bitwidth for the Fashion MNIST.

These experimental results also show that, for both the MNIST and Fashion MNIST
datasets, the quantization levels with less than 8-bit precision do not provide sufficient
unique information for distinguishing features of different classes in the input images.
This condition reduces the efficacy of STDP learning of the synapses and recognition
capability of the neurons, thereby leading to low classification accuracy. Furthermore, a
reduced bitwidth is beneficial since it leads to a reduced memory requirement and energy
consumption, which will be discussed in Section 4.2.6.3 and Section 4.2.6.4. Note, the
users can select the quantization level based on the trade-off consideration in the design
specifications (e.g., accuracy, memory, and power/energy budget).

4.2.6.3 Reducing the Memory Requirements

Figure 4.18 shows the memory requirements of different designs across different sizes of
networks for both the training and inference phases. Label- 1 shows that, Net3600 and
Net4900 that employ the baseline or the SL-STDP techniques consume more than 100
MB, thereby making them difficult to be deployed on embedded systems. Meanwhile, our
FSpiNN without quantization (FP32) achieves 1.8x and 1.9x memory savings as compared
to the baseline, for Net3600 and Net4900, respectively. The reason is that, the FSpiNN
FP32 removes the inhibitory neurons completely, thereby preventing their parameters
to be saved in the memory. After applying quantization, the memory requirement is
reduced even more. The FSpiNN 16-bit achieves about 3.6x and 3.7x memory savings,
while the FSpiNN 8-bit achieves about 7.3x and 7.5x memory savings, when compared
to the baseline for Net3600 and Net4900, respectively. Figure 4.18 also shows that the
FSpiNN 8-bit consumes about 0.16 MB - 28 MB for Net100-Net4900, thereby making
the networks easier to be deployed on embedded systems. Furthermore, if we consider
the accuracy that the quantized designs can achieve, we can select the FSpiNN design
that offers a good trade-off between high accuracy and an acceptable memory footprint.
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Figure 4.18: Memory requirements for different sizes of networks (i.e., Net100, Net400,
Net900, Net1600, Net2500, Net3600, and Net4900) and different quantization levels (i.e.,
FP32/without quantization, 16-bit, and 8-bit).

4.2.6.4 Energy Efficiency Improvements

Figure 4.19 and Figure 4.20 illustrate the energy efficiency across different sizes of
networks and different GPUs for the MNIST and Fashion MNIST datasets, respectively.
These figures show that the SL-STDP achieves higher energy efficiency than the baseline
in the training phase, and our FSpiNN achieves the highest energy efficiency among all
designs in both the training and inference phases.

Training: The SL-STDP improves the energy efficiency by 1.1x-1.2x as compared to
the baseline, across different sizes of networks and GPUs, for both the MNIST and
Fashion MNIST datasets. The reason is that, the SL-STDP only employs postsynaptic
spike-based weight updates whose number of updates is less than the baseline, which
employs presynaptic and postsynaptic spike-based weight updates. The FSpiNN FP32
improves the energy efficiency more than the SL-STDP, that is by 1.1x-2.8x (MNIST)
and by 1.1x-1.9x (Fashion MNIST) as compared to the baseline. The reason is that,
apart from the elimination of presynaptic spike-based weight updates, the FSpiNN FP32
also eliminates the inhibitory neurons and reduces the STDP complexity. After applying
quantization, the FSpiNN 16-bit and the FSpiNN 8-bit improve the energy efficiency even
more than the FSpiNN FP32. That is, the FSpiNN 16-bit achieves 1.7x-3.9x (MNIST)
and 1.2x-2.4x (Fashion MNIST), while the FSpiNN 8-bit achieves a 1.8x-4.3x (MNIST)
and 1.5x-2.7x (Fashion MNIST), as compared to the baseline.

Inference: The SL-STDP has comparable energy efficiency as compared to the baseline,
across different sizes of networks and GPUs, for both the MNIST and Fashion MNIST
datasets. The reason is that, the SL-STDP and the baseline have similar computational
complexity in the inference phase. Meanwhile, the FSpiNN FP32 improves the energy
efficiency by 1.3x-1.9x (MNIST) and by 1.1x-1.4x (Fashion MNIST) as compared to
the baseline. The improvements mainly come from the elimination of the inhibitory
neurons. After applying quantization, the FSpiNN 16-bit and the FSpiNN 8-bit improve
the energy efficiency even more than the FSpiNN FP32. That is, the FSpiNN 16-bit
achieves 1.4x-2.6x (MNIST) and 1.2x-2.1x (Fashion MNIST), while the FSpiNN 8-bit
achieves 1.4x-2.9x (MNIST) and 1.3x-2.3x (Fashion MNIST), compared to the baseline.
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Figure 4.19: Results of energy efficiency (normalized to the baseline) for training and
inference with the MNIST datset, while considering different sizes of networks (i.e., Net100,
Net400, Net900, Net1600, Net2500, Net3600, and Net4900), different quantization levels
(i.e., FP32, 16-bit, and 8-bit), and different types of GPUs: Nvidia GeForce (a) GTX
1060, (b) GTX 1080 Ti, and (c) RTX 2080 Ti. Due to the limited memory, the GTX
1060 can only run Net100-Net3600.

Furthermore, if we consider the classification accuracy and memory footprint that the
quantized designs can achieve, we can select the FSpiNN design that offers a good
trade-off in accuracy, memory, and energy efficiency. For instance, the FSpiNN 8-bit
achieves energy-efficiency improvements by 4.3x (MNIST) and by 2.7x (Fashion MNIST)
in training (see label- 1 in Figure 4.19 and Figure 4.20), and by 2x (MNIST) and by
1.6x (Fashion MNIST) in inference (see label- 2 in Figure 4.19 and Figure 4.20), as
compared to the baseline in Net4900, while obtaining 7.5x memory saving with accuracy
of ∼92% for the MNIST and ∼61% for the Fashion MNIST. The experimental results
in Figure 4.19 and Figure 4.20 also suggest that our FSpiNN framework is scalable for
different sizes of networks, and can be used for other systems where different types of
GPUs are deployed, such as embedded systems with embedded GPUs.

Note that this work is not about justifying SNNs over deep neural networks (DNNs).
Rather, we consider what necessary optimizations are required if the SNNs make it to
a real-world system following an increasing trend of neuromorphic computing, due to
their benefits in energy-efficient spike-based computations and unsupervised learning.
Moreover, there is a substantial difference in the underlying learning mechanism between
the SNNs (with unsupervised learning) and the DNNs (with supervised learning), thus
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Figure 4.20: Results of energy-efficiency (normalized to the baseline) for training and
inference with the Fashion MNIST dataset, while considering different sizes of networks
(i.e., Net100, Net400, Net900, Net1600, Net2500, Net3600, and Net4900), different
quantization levels (i.e., FP32, 16-bit, and 8-bit), and different types of GPUs: Nvidia
GeForce (a) GTX 1060, (b) GTX 1080 Ti, and (c) RTX 2080 Ti. Due to the limited
memory, the GTX 1060 can only run Net100-Net3600.

we cannot directly compare the accuracy of the unsupervised SNNs with the supervised
DNNs. Previous work [DBDRC+15] has observed that the accuracy of the DNNs (with
the supervised back-propagation algorithm) is generally higher than the SNNs (with the
unsupervised STDP algorithm), because the unsupervised STDP algorithm does not
have labels when updating the weights, hence it is less effective than the supervised ones.
Furthermore, in the SNN community, many different optimization aspects are explored,
and they have the potential to be incorporated into our FSpiNN framework. For instance,
the works in [MMS+11] and [ROD+10] focus on generating precise spike sequences like
real-world observation. They target a different optimization purpose compared to the
one targeted by our FSpiNN framework. However, they can still be incorporated into
the FSpiNNs’ optimization flow for generating precise spike sequences. This illustrates
the flexibility of our FSpiNN for integration with other optimization techniques.

4.2.6.5 Further Discussion

The proposed compression techniques for SNNs have several clear differences over the
deep compression work [HMD16] which is designed for DNNs, as highlighted the following.
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• Edge (connection) removal in the proposed compression techniques replaces the
inhibition spikes which come from the inhibitory neurons with the excitatory spikes
from the excitatory neurons, hence it does not depend on the weights of inhibitory
connections. In this manner, all inhibitory neurons and synapses are completely
removed from the network. Meanwhile, edge removal in the deep compression work
eliminates all connections with weights below a pre-defined threshold value from the
network.

• Optimization in the proposed compression techniques focuses on the SNN-specific
operations, which do not exist in the deep compression work. For instance, the
complexity of the bio-inspired STDP learning rule and the number of weight updates
during STDP learning process are reduced.

• To compensate the loss of accuracy induced by the optimization process, the proposed
compression techniques employ adaptive potentiation factor, timestep-based weight
updates, and inhibition strength adjustments, while the deep compression work mainly
relies on the retraining approach.

4.2.7 Summary of FSpiNN Framework
The proposed FSpiNN framework synergistically employs different optimization techniques
to reduce the memory footprint and improve the energy efficiency of SNNs, while
maintaining their accuracy. Experimental results illustrate the benefits and efficiency
of the proposed framework as compared to the state-of-the-art designs, across different
sizes of networks and different datasets (MNIST and Fashion MNIST). For instance, in
a network with 4900 excitatory neurons, our FSpiNN achieves 7.5x memory saving, as
well as 3.5x energy-efficiency improvement on average for training and 1.8x on average
for inference, with no accuracy loss. In short, our proposed framework enables efficient
embedded SNN implementations for the next-generation smart embedded systems.

4.3 Q-SpiNN: A Framework for Quantizing SNNs
This section aims at addressing Problem-2, i.e., the solution for systematically employing
quantization on SNNs to maximize memory saving, while maintaining accuracy.

4.3.1 Motivational Study
We observe that, apart from the weights, there are other SNN parameters that can be
quantized to further reduce the memory footprint as they also need to be stored in the
on-chip memory [SVR17, RVG+17], e.g., neurons’ membrane and threshold potentials.
To see the potential of such an idea, we study the impact of different precision levels
(bitwidth) for different SNN parameters on the accuracy through experiments. Here, we
consider the FC-based network architecture in Figure 4.8(a) and run it through PyTorch-
based simulation on GPGPU, i.e., Nvidia RTX 2080 Ti. The detailed experimental setup
is explained in Section 4.3.5. Figure 4.21 shows the experimental results, from which we
make the following key observations.
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• Different SNN parameters may need different integer bitwidth representation, as they
have a different range of values.

• Different combinations of precision levels (bitwidth) may achieve comparable accuracy,
but occupy different memory footprints. For instance, W(Q1.16)-N(FP32), W(FP32)-
N(Q11.16), and W(Q1.16)-N(Q11.16) obtain about 84% accuracy, while consuming
about 1.2 MB, 0.68 MB, 1.19 MB, and 0.67 MB respectively, as indicated by label- 1
in Figure 4.21.

• Less memory footprint requires a less number of memory accesses, and thereby less
access energy. This potentially improves the energy efficiency of SNN processing, as
the memory accesses dominate the energy of SNN processing (i.e., 50%-75% of total
system energy) [KSVR19].
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Figure 4.21: Accuracy and memory footprint of an SNN with 400 excitatory neurons with
different precision levels on the MNIST dataset [LBBH98a]. The W(X)-N(Y ) denotes X
precision format for the weights and Y precision format for the neuron parameters (i.e.,
neurons’ membrane and threshold potentials).

4.3.2 Scientific Research Challenges

Although the quantization effectively reduces the memory footprint, it leads to accuracy
degradation if the quantization process is not performed carefully. Furthermore, finding
the appropriate quantization levels for different SNN parameters is challenging, as the
number of potential combinations of precision levels is large. Therefore, the key challenge
is how to effectively perform quantization and exploit the trade-off between memory and
accuracy, so that the memory footprint is reduced and the targeted accuracy is met.

Required: A systematic quantization approach for SNN parameters (i.e., weights and
neuron parameters) to maximize the memory saving while maintaining accuracy, thereby
enabling the SNN deployment on many AI applications under tight memory budgets.

4.3.3 Novel Contributions

To address the above challenges, we propose Q-SpiNN, a novel Quantization framework
for Spiking Neural Networks [PS21a], through the following mechanisms (the overview is
shown in Figure 4.22).
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• Employing quantization for different SNN parameters based on their signifi-
cance to the accuracy, which are analyzed by observing the accuracy obtained under
different precision levels.

• Exploring different combinations of quantization schemes, precision levels,
and rounding schemes to find the SNN models that meet the user-targeted accuracy,
and refer them to as the solution candidates.

• Developing an algorithm to select the SNN model from the given candidates.
It quantifies the benefit of the memory-accuracy trade-off obtained by the candidates
using the proposed reward function, and then selects the one with the highest benefit.

Our Novel Contributions
Q-SpiNN Framework

Input

…

FP32

Output

…

Qi.f

Target Accuracy
Quantize different SNN parameters

Exploration under different quantization schemes, 
precision levels, and rounding

An SNN model selection algorithm

Figure 4.22: Overview of our novel contributions (shown in the blue boxes).

4.3.4 Q-SpiNN Framework
The Q-SpiNN framework employs the following key steps for obtaining memory-efficient
SNNs while meeting the target accuracy (the overview is in Figure 4.23).
1. Quantization of different parameters (Section 4.3.4.1) through the following.

• Maximizing the quantization for each SNN parameter.
• Defining the precision level (bitwidth) for each parameter based on its significance,

that is obtained by analyzing the accuracy under different precision levels.

2. Exploration of different quantization approaches (Section 4.3.4.2) through
the following means.
• Observing the accuracy obtained from different quantization schemes (PTQ and

ITQ), different precision levels, and different rounding schemes (TR, RN, and SR).
• Selecting the SNN models that meet the target accuracy as the solution candidates.

3. An SNN model selection (Section 4.3.4.3) that finds an appropriate SNN model
from the given candidates through the following means.
• Quantifying the benefit of the memory-accuracy trade-off obtained by the SNN

model candidates using our proposed multi-objective reward function,
• Selecting the SNN model with the highest benefit.
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Figure 4.23: An overview of the Q-SpiNN framework. The novel contributions are
highlighted in blue.

4.3.4.1 Quantization of Different SNN Parameters

Different SNN designs may have different SNN parameters that can be quantized. There-
fore, to provide a generic solution for any SNN designs, we propose significance-aware
quantization steps (the overview is shown in Figure 4.24). The idea is to maximize the
quantization for each SNN parameter, and define the precision level for each parameter
based on its significance to the accuracy. For the given SNN model (in FP32), we
first determine the parameters to be quantized by manually selecting them. Afterward,
we analyze the significance of each parameter to determine the integer and fractional
bitwidth. For the integer part, the bitwidth requirement is analyzed by observing the
range of parameter values when running the given workload. For the fractional part,
there are two cases. If the parameter is a constant, then the bitwidth depends on the
parameter value; and otherwise (if the parameter is a variable), the bitwidth requirement
is analyzed by gradually reducing its precision and observing the output accuracy. In this
manner, the impact of the parameters’ bitwidth on accuracy is systematically explored.

Case Study: We provide a case study to show how the proposed quantization steps
are done for the unsupervised SNN with the MNIST dataset; see the reference for the
unsupervised SNN in Section 2.3 and Figure 2.12(a). First, we select the w, v, vth, vreset,
and θ as the parameters to be quantized. vreset and θ are constants, while others (i.e., w,
v, and vth) are variables in the training.
• For constant parameters: We quantize the constant parameters based on their values
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Figure 4.24: Overview of the proposed quantization steps for the given SNN model.

(see Table 4.2). For instance, vreset = -65 mV, and it is represented using 8 bits with
Q7.0 format, while θ = 0.05 mV and it is represented using 8 bits with Q1.6 format.
In this manner, 24 bits are saved for vreset and θ, as compared to the FP32.

• For variable parameters: We perform experiments to obtain the ranges of parameter
values (see the values in Table 4.2).

– For the integer part, we define the integer bitwidth based on the observed ranges,
i.e., vth, v, and w need 11 bits, 11 bits, and 1 bit of integer, respectively.

– For the fractional part, we gradually reduce the precision and observe the output
accuracy to study the impact of different precision levels. Therefore, we perform a
design exploration, which is discussed further in Section 4.3.4.2.

Table 4.2: Observed unsupervised SNN parameter values for the MNIST workload.

Parameters Value Description
vreset -65 mV shown by label- 1 in Figure 4.25(a)

θ 0.05 mV shown by label- 2 in Figure 4.25(a)
vth -52 mV – 1271.88 mV shown by label- 3 in Figure 4.25(a)
v -887.29 mV – 1250.18 mV shown by label- 4 in Figure 4.25(a)
w 0 – 0.7 shown by label- 5 in Figure 4.25(b)
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Figure 4.25: (a) Overview how neuron parameters are involved in neuronal dynamics. (b)
The weight distribution of the trained unsupervised SNN with 400 excitatory neurons.

136



4.3. Q-SpiNN: A Framework for Quantizing SNNs

4.3.4.2 Exploration of Different Quantization Approaches

To find the effective configuration of quantization for the given SNN, a design exploration
of different quantization approaches is required. Therefore, we comprehensively study the
impact of different quantization schemes (PTQ and ITQ), different precision levels, and
different rounding schemes (TR, RN, and SR), and select the ones that meet the targeted
accuracy. To do this, we devise an algorithm to systematically perform exploration across
a range of selected parameters (pseudo-code is in Algorithm 6). This algorithm employs
the following steps (considering an example for the unsupervised SNN case).

• We train the given model with a floating-point precision (Algorithm 6: line 3), and the
test accuracy of the trained model is considered as the baseline accuracy (Algorithm 6:
line 4). Then, we perform the PTQ and the ITQ schemes, subsequently.

• For the PTQ, the quantization is performed on the trained model, then the accuracy
is evaluated (Algorithm 6: lines 12-16). Meanwhile, for the ITQ, we quantize the given
SNN model during the training. Therefore, the trained model is already in a quantized
form, and can be used for the accuracy evaluation (Algorithm 6: lines 18-23).

• For both schemes, we reduce the precision of each parameter using a nested for-loop
(Algorithm 6: lines 7-9), and in each step, we explore the use of different rounding
schemes (Algorithm 6: line 10). The depth of the loop depends on the parameters
(e.g., we consider w, v, and vth for the unsupervised SNN case). If the accuracy is
within the target, then the model is selected as a solution candidate. Otherwise, the
currently investigated precision and the lower precision (if any) for the corresponding
parameter, are not considered in the next exploration steps (Algorithm 6: lines 24-33).
Therefore, the design space is reduced and the exploration is performed efficiently.

This exploration populates the SNN models that meet the target accuracy (i.e., the
solution candidates). To select the appropriate model out of them, we propose a model
selection algorithm, which is discussed in Section 4.3.4.3.

4.3.4.3 SNN Model Selection

We obtain a set of model candidates (with their corresponding accuracy and quantization)
from the exploration in Section 4.3.4.2. Afterward, we need to select the Pareto-optimal
model out of the candidates, while considering the accuracy and the memory footprint.
Towards this, we propose an SNN model selection algorithm that quantifies the benefit
of the memory-accuracy trade-off obtained by the candidates using the proposed multi-
objective reward function. The idea of our reward function is to prioritize the model with
higher accuracy and a smaller memory footprint, which is expressed as Equation 4.4.

R(accq, mnorm) = accq − µ mnorm (4.4)

mnorm = memq

memfp
(4.5)
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Algorithm 6 Pseudo-code of the proposed exploration
INPUT: (1) SNN: floating-point model (mfp), accuracy (accfp), parameters (mfp.w, mfp.v, mfp.vth);

(2) Maximum allowed accuracy degradation (accdeg); (3) Quantization schemes (QS = [P T Q, IT Q]);
(4) Rounding schemes (RS = [T R, RN, SR]); (5) Precision levels (QL); // QL is the user-defined
fractional bitwidth sorted in descending order, e.g., QL = [16, 14, ..., 0];

OUTPUT: SNN model candidates (C);
BEGIN

Initialization:
1: C = [];
2: c = 1;

Process:
3: mfp ← train(mfp);
4: accfp = test(mfp);
5: for (qs = 1 to len(QS)) do
6: Nw = len(QL); Nv = len(QL); Nt = len(QL);
7: for (iw = 1 to Nw) do
8: for (iv = 1 to Nv) do
9: for (it = 1 to Nt) do

10: for (rs = 1 to len(RS)) do
11: if (QS[qs] == P T Q) then
12: wq = quantize(mfp.w, QL[iw], RS[rs]);
13: vq = quantize(mfp.v, QL[iv], RS[rs]);
14: vthq = quantize(mfp.vth, QL[it], RS[rs]);
15: mq ← substitute(mfp, (wq, vq, vthq));
16: accq = test(mq);
17: else
18: wq = quantize(mfp.w, QL[iw], RS[rs]);
19: vq = quantize(mfp.v, QL[iv], RS[rs]);
20: vthq = quantize(mfp.vth, QL[it], RS[rs]);
21: mq ← substitute(mfp, (wq, vq, vthq));
22: mq ← train(mq);
23: accq = test(mq);
24: if (accq ≥ (accfp − accdeg)) then
25: C[c] = mq;
26: c += 1;
27: else
28: if (iw ≥ 1)&(iv == 1)&(it == 1) then
29: Nw = iw − 1;
30: else if (iw == 1)&(iv ≥ 1)&(it == 1) then
31: Nv = iv − 1;
32: else if (iw == 1)&(iv == 1)&(it ≥ 1) then
33: Nt = it − 1;
34: return C;
END

mem = mem_w + mem_n = Nw Bw +
�

k

Nnk Bnk
(4.6)

accq denotes the test accuracy of the quantized SNN model, mnorm denotes the normalized
memory footprint, and the coefficient µ is the weight to trade-off between memory and
accuracy. Note acc, mnorm, and µ have a value range of [0,1]. mnorm is obtained from the
ratio between the memory of the quantized model (memq) and the floating-point model
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(memfp), as stated in Equation 4.5. The memory footprint (mem) is estimated by the
total memory required by the weights (mem_w) and neuron parameters (mem_n), as
shown in Equation 4.6. mem_w is obtained by multiplying the number of weights (Nw)
and the respective bitwidth (Bw). A similar approach is used for neuron parameters, i.e.,
multiplying the number of parameters (Nn) and the bitwidth (Bn). Since the neuron
has several parameters (k) which may have different precision, mem_n is defined as the
total bits from all neuron parameters.

4.3.5 Evaluation Methodology

Figure 4.26 shows the experimental setup for evaluating the Q-SpiNN framework. We use
the PyTorch-based simulation to evaluate the accuracy of the unsupervised SNN [HSK+18]
and the supervised SNN [KMN20], estimate the memory, and select the SNN model. We
run the simulations on GPGPU machine (i.e., Nvidia GeForce RTX 2080 Ti [Nvic]) and
Embedded GPU machine (i.e., Nvidia Jetson Nano [Nvid]) to show the applicability of
the Q-SpiNN framework on different hardware platforms with different compute and
memory capabilities.
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Figure 4.26: Experimental setup for evaluating our Q-SpiNN framework.

Networks: We use networks with different architectures, number of layers, and learning
rules to show the generality of our Q-SpiNN. For the unsupervised SNN (i.e., U-SNN),
we consider an FC-based network with the STDP, as shown in Figure 4.8(a), while for
the supervised SNN (i.e., S-SNN), we consider a multi-layer convolutional network with
the DECOLLE, as shown in Figure 2.12(b).

Datasets: We use the MNIST dataset [LBBH98a] for the U-SNN case, and the DVS-
Gesture dataset [ATB+17] for the S-SNN case. In the MNIST, there are 60,000 images
for the training and 10,000 images for the test, each having a dimension of 28x28 pixels.
Meanwhile, the DVS-Gesture, which is obtained using a Dynamic Vision Sensor (DVS),
has 1,342 instances of a set of 11 hand and arm gestures. They are collected from 29
subjects under 3 lighting conditions. Gestures from 23 subjects are used as the training
set, and the remaining 6 subjects are used as the test set. Each gesture consists of a
stream of events and lasts for 6 seconds. The event streams are downsized from 128x128
to 32x32 by summing the events from 4 neighboring pixels as a common stream [KMN20].
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Comparisons: We use networks with different precision levels as the comparison partners,
for both the U-SNN and S-SNN cases. For the U-SNN, we consider a network from
Figure 4.8(a) with 400 excitatory neurons with 1 training epoch (i.e., using the STDP
during forward propagation). For the S-SNN, we train the network using the DECOLLE
network [KMN20] from Figure 2.12(b) with 200 epochs. For both cases, the baseline
refers to the network with FP32 precision for all parameters.

Quantization Format: We use the W(X)-N(Y ) format to represent a model with X
precision for the weights and Y precision for the neuron parameters (see Section 2.5). For
conciseness, we simply use W(Qi.f) to represent a model with W(Qi.f)-N(FP32) precision,
and N(Qi.f) to represent a model with W(FP32)-N(Qi.f) precision. Furthermore, since
there are several neuron parameters involved in the quantization process, their integer
part is simply written as i, e.g., N(Qi.8) means that each neuron parameter employs
integer bitwidth based on its value range and 8-bit fraction.

4.3.6 Results and Discussion
4.3.6.1 Impact of Different Quantization Approaches on Accuracy

Accuracy of the Unsupervised SNN: In the U-SNN case, we quantize the weights
(w) and the neuron parameters (vreset, θ, v, and vth), and the experimental results are
shown in Figure 4.27. Here, N(Qi.f) represents the precision of variables v and vth.
Notable accuracy degradation from the baseline accuracy is observed when the weights’
bitwidth is reduced to the 4-bit fraction, as pointed out by label- 1 for the PTQ and
label- 2 for the ITQ. The reason is that the 4-bit fraction (or fewer) for weights does
not have sufficient levels of value to modulate the input spikes, thereby making the
learning process ineffective. Meanwhile, quantizing v and vth with the same fractional
bits (i.e., 4 bits) still maintains the accuracy compared to the baseline, as shown by
label- 3 and label- 4 for the PTQ and the ITQ, respectively. The reason is that the
values for updating the v and vth can be represented using fewer fractional bits than
the ones for updating the weights w. These also indicate that the weights are more
significant than the neuron parameters, as their small update can change the accuracy
significantly. Hence, quantizing all parameters of the U-SNN also leads to a notable
accuracy degradation when the fractional bitwidth is reduced to 4 bits (or fewer), as
pointed by label- 5 and label- 6 for the PTQ and the ITQ, respectively

Accuracy of the Supervised SNN: In the S-SNN case, we quantize the weights (w),
and the neuron parameters (α, β, γ, P , Q, R, and v), and the experimental results
are presented in Figure 4.28. Here, N(Qi.f) represents the precision of variables P , Q,
R, and v. Notable accuracy degradation from the baseline accuracy is observed when
reducing the fractional bits of the weights and/or the neuron parameters to 10 bits (and
fewer), indicating that weights and neuron parameters have comparable significance to the
accuracy. These also indicate that the S-SNN requires considerable bitwidth to maintain
the high accuracy for the DVS-Gesture dataset. The reason is that, the DVS-Gesture is
a relatively complex dataset because, besides considering the stream of events in each
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Figure 4.27: Results for the U-SNN with the MNIST dataset, when varying (a) the
precision of weights and the rounding schemes, (b) the precision of neuron parameters
and the rounding schemes, (c) the precision of weights and neuron parameters, as well
as the rounding schemes. Labels (a.1/b.1/c.1) indicate the test accuracy in the PTQ,
(a.2.1/b.2.1/c.2.1) indicate the estimated accuracy during the training in the ITQ, and
(a.2.2/b.2.2/c.2.2) indicate the test accuracy in the ITQ.

frame, the network has to draw a correct conclusion of a gesture for the complete stream
of events from multiple frames. Hence, it requires considerable bitwidth to distinguish a
gesture from other gestures in each frame and in a complete stream of events.

Additional Discussion: We also make the following observations across different
network types (i.e., U-SNN and S-SNN) and different quantization approaches.
• The SR scheme generally achieves slightly better accuracy than other rounding schemes,

because this scheme is not biased towards a specific rounding direction, thereby having
a higher probability of values that lead to higher accuracy. However, it consumes the
highest hardware resource as it needs a random number generator.

• Different combinations of the quantization and rounding schemes achieve various accu-
racy, but their values are not significantly different. Users can decide the quantization
and rounding schemes, as well as the parameters to be quantized, that are suitable for
the target applications, considering the accuracy and memory constraints, and the
exploration cost. Therefore, the overhead depends on the selected scheme.

141



4. Energy-Efficient SNN Systems

0
20
40
60
80

100

0 50 100 150 200

Baseline W(Q1.16)-N(Qi.16) TR W(Q1.16)-N(Qi.16) RN W(Q1.16)-N(Qi.16) SR W(Q1.12)-N(Qi.12) TR
W(Q1.12)-N(Qi.12) RN W(Q1.12)-N(Qi.12) SR W(Q1.8)-N(Qi.8) TR W(Q1.8)-N(Qi.8) RN W(Q1.8)-N(Qi.8) SR
W(Q1.4)-N(Qi.4) TR W(Q1.4)-N(Qi.4) RN W(Q1.4)-N(Qi.4) SR

0
20
40
60
80

100

0 50 100 150 200

Baseline N(Qi.16) TR N(Qi.16) RN N(Qi.16) SR N(Qi.12) TR N(Qi.12) RN N(Qi.12) SR
N(Qi.8) TR N(Qi.8) RN N(Qi.8) SR N(Qi.4) TR N(Qi.4) RN N(Qi.4) SR

0
20
40
60
80

100

0 50 100 150 200

Baseline W(Q1.16) TR W(Q1.16) RN W(Q1.16) SR W(Q1.12) TR W(Q1.12) RN W(Q1.12) SR
W(Q1.8) TR W(Q1.8) RN W(Q1.8) SR W(Q1.4) TR W(Q1.4) RN W(Q1.4) SR

60
70
80
90

100

W
(Q

i.1
6)

W
(Q

i.1
4)

W
(Q

i.1
2)

W
(Q

i.1
0)

W
(Q

i.8
)

W
(Q

i.6
)

W
(Q

i.4
)

TR RN SR

60
70
80
90

100

W
(Q

i.1
6)

W
(Q

i.1
4)

W
(Q

i.1
2)

W
(Q

i.1
0)

W
(Q

i.8
)

W
(Q

i.6
)

W
(Q

i.4
)Ac

cu
ra

cy
[%

]

(a.1)

(a.2.1)

Baseline
(a.2.2)

Baseline
PTQ - Test ITQ - TestITQ - Train

60
70
80
90

100

W
(Q

i.1
6)

N(
Q

i.1
6)

W
(Q

i.1
4)

N(
Q

i.1
4)

W
(Q

i.1
2)

N(
Q

i.1
2)

W
(Q

i.1
0)

N(
Q

i.1
0)

W
(Q

i.8
)

N(
Q

i.8
)

W
(Q

i.6
)

N(
Q

i.6
)

W
(Q

i.4
)

N(
Q

i.4
)

TR RN SR

60
70
80
90

100

N(
Q

i.1
6)

N(
Q

i.1
4)

N(
Q

i.1
2)

N(
Q

i.1
0)

N(
Q

i.8
)

N(
Q

i.6
)

N(
Q

i.4
)

TR RN SR

60
70
80
90

100

W
(Q

i.1
6)

N(
Q

i.1
6)

W
(Q

i.1
4)

N(
Q

i.1
4)

W
(Q

i.1
2)

N(
Q

i.1
2)

W
(Q

i.1
0)

N(
Q

i.1
0)

W
(Q

i.8
)

N(
Q

i.8
)

W
(Q

i.6
)

N(
Q

i.6
)

W
(Q

i.4
)

N(
Q

i.4
)

60
70
80
90

100

N(
Q

i.1
6)

N(
Q

i.1
4)

N(
Q

i.1
2)

N(
Q

i.1
0)

N(
Q

i.8
)

N(
Q

i.6
)

N(
Q

i.4
)

(b.2.1)

Ac
cu

ra
cy

[%
]

(c.1)

(c)

(c.2.1)

Baseline

Baseline

(b.1)

(c.2.2)
Baseline

(b.2.2)
Baseline

Ac
cu

ra
cy

[%
]

EpochPrecision Precision

EpochPrecision Precision

(b)

(a)

EpochPrecision Precision

Figure 4.28: Results for the S-SNN with the DVS-Gesture dataset, when varying (a) the
precision of weights and the rounding schemes, (b) the precision of neuron parameters
and the rounding schemes, (c) the precision of weights and neuron parameters, as well
as the rounding schemes. Labels (a.1/b.1/c.1) indicate the test accuracy in the PTQ,
(a.2.1/b.2.1/c.2.1) indicate the estimated accuracy during the training in the ITQ, and
(a.2.2/b.2.2/c.2.2) indicate the test accuracy in the ITQ.

4.3.6.2 SNN Model Selection with Memory-Accuracy Trade-Offs

To find the SNN model that offers a good memory-accuracy trade-off, we employ the
proposed reward function in Equation 4.4 that quantifies the trade-off benefit of the
given model. To do this, we need to define the coefficient µ in the reward function. Small
µ means that the function prioritizes the weight of accuracy more than the memory. On
the other hand, large µ means that the function prioritizes the weight of memory more
than the accuracy. The users can define the value of µ based on their preferences to meet
the design specifications. In this work, for the exploration purpose, we define the value
of coefficient µ ∈ {0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1}.

Model Selection for the Unsupervised SNN: We apply the proposed reward function
to the U-SNN model candidates and the results are provided in Figure 4.29(a), from
which we make the following observations.
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• Label- 1 : The model that has the highest reward for µ = 0.01 is the one that employs
W(Q1.8)-N(Qi.8) precision, and achieves 86.6% accuracy and 3.2x memory saving.

• Label- 2 : The model that has the highest reward for µ = 0.3 is the one that employs
W(Q1.6)-N(FP32) precision, and achieves 86.3% accuracy and 3.9x memory saving.

• Label- 3 : The model that has the highest reward for µ ∈ {0.1, 0.2, 0.4, 0.5, 1} is the
one that employs W(Q1.6)-N(Qi.6) precision, and achieves 86.2% accuracy and about
4x memory saving.

These results show that larger µ shifts the preferred model towards the one with smaller
memory, which typically has lower accuracy. Meanwhile, smaller µ shifts the preferred
model towards the one with higher accuracy, which typically has a larger memory
footprint. If the maximum tolerance of accuracy degradation is 1% from the baseline,
then the model with W(Q1.6)-N(Qi.6) precision is the Pareto-optimal one, with 86.2%
accuracy and about 4x memory saving.
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Figure 4.29: Accuracy vs. normalized memory footprint for (a) U-SNN and (b) S-SNN.

Model Selection for the Supervised SNN: We also apply the proposed reward
function to the S-SNN model candidates and the results are provided in Figure 4.29(b),
from which we make the following observations.
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• Label- 4 : The model that has the highest reward for µ = 0.01 is the one that employs
W(FP32)-N(Qi.16) precision, and achieves 96.1% accuracy and 1.2x memory saving.

• Label- 5 : The model that has the highest reward for µ = 0.1 is the one that employs
W(Q1.14)-N(Qi.14) precision, and achieves 95.1% accuracy and 1.9x memory saving.

• Label- 6 : The model that has the highest reward for µ ∈ {0.2, 0.3, 0.4, 0.5, 1} is the
one that employs W(Q1.12)- N(Qi.12) precision, and achieves 94.1% accuracy and
2.1x memory saving.

Here, a similar trend regarding the impact of µ is also observed, e.g., larger µ shifts
the preferred model towards the one with smaller memory and lower accuracy. If the
maximum tolerance of accuracy degradation is only 1% from the baseline, then the model
with W(FP32)-N(Qi.16) precision level is selected. If we relax the tolerance to 2%, it
suggests a different Pareto-optimal SNN model, i.e., the model with W(Q1.14)-N(Qi.14)
precision, 95.1% accuracy, and 1.9x memory saving. If we relax the tolerance even more,
e.g., allowing 3% accuracy degradation, then the one with W(Q1.12)-N(Qi.12) precision
(with 94.1% accuracy and 2.1x memory saving) is selected.
The above results and discussion show that our Q-SpiNN framework provides (1) com-
prehensive information about the accuracy and the memory of the given SNN models
under different quantization approaches, and (2) an effective model selection to find the
efficient SNN model. Moreover, the users can set µ with their preferred value in the
reward function to select an SNN model that meets the design requirements.

4.3.7 Summary of Q-SpiNN Framework
We propose the Q-SpiNN framework for quantizing SNNs through (1) quantization
of different parameters, (2) exploration that considers different quantization schemes,
precision levels, and rounding schemes, and (3) employment of a reward function for
model selection. For the unsupervised SNN, the Q-SpiNN obtains about 4x memory
saving and keeps the accuracy within 1% from the baseline on the MNIST dataset. For
the supervised one, it obtains about 2x memory saving and keeps the accuracy within
2% from the baseline on the DVS-Gesture dataset. Therefore, our framework enables
SNNs to be deployable on many AI applications under tight memory budgets.

4.4 EnforceSNN: Energy-Efficient SNN Inference with
Approximate DRAMs

This section aims at addressing Problem-3 with the solution for substantially decreasing
the DRAM access energy of SNN hardware platforms for the inference phase through
HW-level approximation in DRAM, while maintaining accuracy.

4.4.1 Motivational Study
To enable the full potential of DRAM energy savings, the effective optimization should
jointly minimize the DRAM energy-per-access and the number of DRAM accesses, by
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leveraging the approximation in DRAM to expose the full energy-saving potential. To
highlight the potential of reduced-voltage-based approximate DRAM, we perform an
experimental case study. Here, we aim at observing (1) the dynamics of DRAM bitline
voltage (Vbitline) for both the accurate and approximate DRAM settings, and (2) the
DRAM access energy for different access conditions (including a row buffer hit, miss, or
conflict). Note, Vbitline is defined as the voltage measured in each DRAM bitline when a
DRAM supply voltage (Vsupply) is applied.

In the experiments, we employ the DRAM circuit model from previous work [CYG+17a]
and the SPICE simulator to study the dynamics of Vbitline. The accurate DRAM operates
at 1.35 V of the supply voltage (Vsupply), while the approximate one operates at 1.025 V.
Further details on the experimental setup are discussed in Section 4.4.6. We consider the
LPDDR3-1600 4Gb DRAM configuration as it is representative of the low-power DRAM
types for embedded systems. We also employ the DRAMPower simulator to estimate the
DRAM access energy because it has been validated against real measurements [Cha14]
and has been widely used in the computer architecture communities. For the network,
we consider the FC-based SNN architecture in Figure 4.8(a). The experimental results
are presented in Figure 4.30, from which we make the following key observations.
• The reduced-voltage DRAM decreases the DRAM energy-per-access across differ-

ent access conditions, i.e., by up to 42% of energy reduction for each access; see
Figure 4.30(a)-(b).

• The row buffer hit has lower energy consumption than the row buffer miss or conflict;
see Figure 4.30(b). Moreover, the row buffer hit also incurs less latency than the
row buffer miss or conflict [PHS20, PHS21b]. Therefore, the row buffer hit should be
exploited to optimize the DRAM latency and energy.

• The Vbitline decreases as the Vsupply decreases, hence forcing the DRAM cells to
operate under lower reliability as the weak cells may fail to hold the correct bits.
Weak cells are DRAM cells that fail when the DRAM parameters (e.g., voltage) are
reduced [CYG+17a, KPHM18]. This condition is indicated by the increase of bit error
rate (BER) on DRAM as the Vsupply decreases; see Figure 4.30(c)

Moreover, the reduced-voltage approximate DRAM technique can also be combined with
state-of-the-art techniques to further improve the energy efficiency of SNN inference. For
example, Figure 4.30(d) shows the estimated DRAM energy savings achieved by our
technique when combined with the weight pruning.

4.4.2 Scientific Research Challenges
Although employing the approximate DRAM can substantially decrease the DRAM
energy-per-access, it also decreases the DRAM reliability since the bit errors increase
when the Vsupply decreases, as shown in Figure 4.30(c). These errors may degrade the
accuracy of SNN inference since they can change the weight values in DRAM, which
then deteriorates the neuron behavior. Therefore, the key challenge is how to achieve
low DRAM access energy for SNN inference using approximate DRAM, while minimizing
the negative impact of DRAM errors on the accuracy.
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Figure 4.30: (a) The dynamics of Vbitline under different Vsupply values. (b) DRAM
access energy for a row buffer hit, a row buffer miss, and a row buffer conflict, under
different Vsupply values. (c) BER of approximate DRAM and its respective supply voltage
Vsupply; adapted from studies in [CYG+17a]. (d) The estimated potential of DRAM
energy savings achieved by our technique when combined with the weight pruning across
different rates of network connectivity (i.e., synaptic connections) for a network with 4900
excitatory neurons. The results are obtained from experiments using the LPDDR3-1600
4Gb DRAM configuration and the DRAMPower simulator [Cha14].

Required: A systematic approach for reducing the DRAM supply voltage of the SNN
hardware platforms, thereby substantially decreasing the system energy during inference
while mitigating the negative impact of approximation errors.

4.4.3 Novel Contributions
To overcome the above research challenges, we propose EnforceSNN, a novel framework
that enables resilient and energy-efficient SNNs considering approximate DRAMs (i.e.,
reduced-voltage DRAMs) for embedded systems [PHS22a]. Based on the best of our
knowledge, this work is the first effort that employs approximate DRAM for improving
the energy efficiency of SNN inference, while enhancing their error tolerance against bit
errors in DRAM. Our EnforceSNN framework employs the following key steps.

1. Employing weight quantization to reduce the memory footprint for SNN weights
and the number of DRAM accesses for SNN inference, thereby optimizing the DRAM
access energy.

2. Devising an efficient DRAM data mapping to maximize row buffer hits for
optimizing the DRAM energy-per-access while considering BER in DRAM.

3. Analyzing the SNN error tolerance to understand the SNN accuracy profile
under different DRAM supply voltage values and different BER values.
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4. Improving the SNN error tolerance by developing and employing efficient fault-
aware training (FAT) that considers SNN accuracy profile and bit error locations in
DRAM.

5. Devising an algorithm to select the SNN model that offers good trade-offs
among accuracy, memory, and energy consumption from the given model candidates
using the proposed reward function.

4.4.4 Approximate DRAM

Dynamics of the Reduced-Voltage DRAM

To understand the dynamics of the reduced-voltage DRAM, we perform extensive ex-
periments using the SPICE simulator and the DRAM circuit model from [CYG+17a]
while considering different supply voltage (Vsupply) values, to characterize the parameters
of reduced-voltage DRAM, i.e, including the bitline voltage (Vbitline) and the respective
timing parameters (i.e., tRP , tRCD, and tRAS). The experimental results are presented in
Figure 4.31, and the obtained parameters are used for further DRAM energy estimation.
The ready-to-access voltage is defined as the condition when Vbitline reaches 75% of
Vsupply, which represents the minimum tRCD for reliable DRAM operations, as shown
by A . The ready-to-precharge voltage is defined as the condition when Vbitline reaches
98% of Vsupply, which represents the minimum tRAS for reliable DRAM operations, as
shown by B . Meanwhile, the ready-to-activate voltage is defined as the condition when
the Vbitline is within 2% of Vsupply/2, which represents the minimum tRP for reliable
DRAM operations, as shown by C .
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Figure 4.31: (a) Diagram of the DRAM commands (i.e., ACT, RW or WR, and PRE)
and the DRAM timing parameters (i.e., tRCD, tRAS , and tRP ). (b) The dynamics of the
DRAM bitline voltage Vbitline and the respective timing parameters.
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Error Modeling for Approximate DRAM

To obtain accurate error profiles of commercial DRAMs under reduced-voltage settings,
a complex hardware experimental platform that can apply different voltage settings and
capture the map of approximation-induced errors, is required. However, this approach
requires costly resources as well as long design and investigation time. To address these
limitations, previous work [KOY+19] has proposed four error models that closely fit the
real reduced-voltage-based approximate DRAMs as the following.

• Error Model-0: The bit errors have a uniform random distribution across a DRAM
bank. The errors are modeled by considering (1) the weak cells, i.e., cells that fail
when the DRAM parameters are reduced, and (2) the probability of an error in any
weak cell.

• Error Model-1: The bit errors have a vertical distribution across the bitlines of a
DRAM bank. The errors are modeled by considering (1) the weak cells in bitline B,
and (2) the probability of an error in the weak cells of bitline B.

• Error Model-2: The bit errors have a horizontal distribution across the wordlines of
a DRAM bank. The errors are modeled by considering (1) the weak cells in wordline
W , and (2) the probability of an error in the weak cells of wordline W .

• Error Model-3: It is a data-dependent error model, i.e., the profile of the bit errors
follows a uniform random distribution that depends on the content of the DRAM cells.
The errors are modeled by considering (1) the weak cells, (2) the probability of an
error in the weak cells that contain a 1 value, and (3) the probability of an error in
the weak cells that contain a 0 value.

In this work, we employ the Error Model-0, due to the following reasons: (1) it produces
errors with high similarity to the real reduced-voltage-based approximate DRAM by
using the percentage of weak cells and the error probability in any weak cell; (2) it offers
a reasonable approximation of other error models, including the approximation of (a)
errors across bitlines similar to Error Model-1, (b) errors across wordlines similar to
Error Model-2, and (c) uniform random distribution similar to Error Model-3; and (3) it
provides fast error injection through software. Previous work [KOY+19] also employed
the DRAM Error Model-0 majorly due to similar reasons.

4.4.5 EnforceSNN Framework
The EnforceSNN framework employs the following key mechanisms for enabling a resilient
and energy-efficient SNN inference under the presence of voltage-induced DRAM errors
(the overview is shown in Figure 4.32).

1. Quantizing of the SNN weights (Section 4.4.5.1). It aims at reducing the
memory footprint of SNN weights which leads to the reduction of DRAM accesses,
and hence DRAM access energy for SNN inference. The quantization is performed
using truncation.
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2. Devising an error-aware DRAM data mapping policy (Section 4.4.5.2) to
optimize the DRAM energy-per-access. The proposed policy considers (1) mapping the
data in the appropriate DRAM part (e.g., subarray) whose error rate meets the BER
requirement, and (2) maximizing the row buffer hits and exploiting the multi-bank
burst feature.

3. Analyzing the SNN error tolerance (Section 4.4.5.3). It aims at understanding
the accuracy profile of SNN inference considering different BER values. The idea is to
classify the range of BER values based on their impact on accuracy. This information
is then leveraged for developing an efficient fault-aware training (FAT) technique.

4. Improving the SNN error tolerance (Section 4.4.5.4) through an efficient
FAT technique that considers the selected BER values from the SNN error-tolerance
analysis. Hence, SNN error tolerance is improved under reduced training time and
energy consumption.

5. Developing an SNN model selection algorithm (Section 4.4.5.5). Its target
is to find an appropriate model from the given candidates considering their accuracy,
memory, and energy consumption. Our algorithm quantifies the trade-off benefits of
the candidates using our multi-objective reward function, then selects the model with
the highest benefit.
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Error 

Modeling 1010
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Figure 4.32: An overview of the EnforceSNN framework. The novel contributions are
highlighted in blue.

4.4.5.1 Quantizing the SNN Weights

We employ weight quantization to substantially reduce the memory footprint of the SNN
model and the number of DRAM accesses, which lead to DRAM energy saving. The
reason is that, quantization is a prominent technique for reducing the memory footprint
of NNs [GAGN15, MNA+18]. Moreover, this work is the first effort to study and exploit
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SNN weight quantization considering approximation errors in DRAM, thereby providing
new insights as compared to previous studies on SNN weight quantization. Our weight
quantization considers the fixed-point format which can be represented as Qi.f (see
the quantization concept in Section 2.5). Note, the fixed-point format Qi.f can also
be represented as FxP(1+i+f). We select the “signed Qi.f” format to show that our
EnforceSNN framework provides a generic solution with high applicability for different
variants of bio-plausible learning rules (e.g., STDP variants) which may lead to positive
or negative weight values [RAIAS+14, DC15]. To do this, we perform a fixed-point
quantization to the trained SNN weights using a specific rounding scheme, such as
truncation (TR), round to the nearest (RN), or stochastic rounding (SR). For a case
study, we select the truncation as it provides competitive accuracy with low computational
complexity [PS21a, PS22a, PS22b]. To illustrate this, we evaluate the impact of different
rounding schemes on the accuracy through an experimental case study, and the results
are shown in Figure 4.33. Since TR keeps the f bits and removes the other fractional
bits, the output fixed-point for the given real number x with Qi.f format is defined
as TR(x, Qi.f) = ⌊x⌋. In our SNN model, we employ the pair-based weight-dependent
STDP learning rule (from Section 2.3.3) that bounds each weight value (w) within the
defined range, i.e., w = [0, 1]. Consequently, applying the truncation to the weights
will round the value down. In this work, we consider an 8-bit fixed-point with “signed
Q1.6” and 2’s complement format (i.e., 1 sign bit, 1 integer bit and 6 fractional bits),
since it provides high accuracy for SNNs under unsupervised learning scenarios [PS21a].
Note, we can also employ the “unsigned Qi.f” format without sign bit to represent the
8-bit non-negative weights (i.e., 1 integer bit and 7 fractional bits) in the EnforceSNN if
desired. For both “signed Qi.f” and “unsigned Qi.f” formats, 1 bit for the integer part
is required for representing the maximum possible weight value (i.e., w = 1).

Quantization Steps: We quantize only the weights through the simulated quantization
approach, which represents the weight values under fixed-point format, and perform
computations under floating-point format [Kri18, JKC+18b, GKD+, vBKM+22]. To
perform quantization, we convert the weight values from 32-bit floating-point format
(FP32) to 8-bit fixed-point format (signed Q1.6) by constructing their 8-bit binary
representations under 32-bit integer format (INT32), thereby conveniently performing
bit-wise modification and rounding operation while considering the sign and the rounding
scheme (i.e., truncation). Afterward, we convert the quantized weight values (INT32) to
FP32 format through casting and then normalizing the values by 2f . Hence, the 8-bit
binary representations of quantized weight values are saved in FP32 and can be used in
the FP32-based arithmetic computations.

4.4.5.2 Error-aware DRAM Data Mapping Policy

DRAM Error Injection: If there is no DRAM error, the quantization steps are
performed, and the quantized weight values (in FP32) can be used for computations
in SNN processing. If DRAM errors exist, the quantization steps are performed while
considering the DRAM error injection. These errors are injected to the 8-bit binary
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Figure 4.33: The accuracy of a 900-neuron network on the MNIST across different
precision levels and rounding schemes, i.e., truncation (TR), round to the nearest (RN),
and stochastic rounding (SR). These results show that employing TR on top of the FxP8
precision leads to competitive accuracy than other rounding schemes (i.e., RN and SR).

representations of quantized weights (in INT32) under a specific DRAM data mapping
policy. Afterward, we convert the binary representations of quantized weights (in INT32)
to FP32 format, so that the quantized weight values can be used for computations in
SNN processing.

Proposed Data Mapping Policy: It is important to map the SNN model properly
in DRAM to ensure that (1) the weights are minimally affected by errors in DRAM
so that the accuracy is maintained, and (2) the DRAM energy-per-access is optimized.
Towards this, we devise and employ an error-aware DRAM mapping policy to place the
SNN weights in DRAM, while optimizing the DRAM energy-per-access. The proposed
DRAM mapping policy is illustrated in Figure 4.34(a), and its key ideas are explained in
the following.

1. The weights are mapped in the appropriate DRAM part (e.g., chip, bank, or subarray),
whose error rate meets the BER requirement, i.e., ≤ the maximum tolerable BER
(BERth). Here, we consider the subarray-level granularity for data mapping, since it
allows us to exploit the following features.

• The multi-bank burst feature, which is available in commodity DRAMs, can be
employed to increase the throughput. Its timing diagram is shown in Figure 4.34(b).

• The subarray-level parallelism, which is available in novel DRAM architectures (e.g.,
SALP [KSL+12]), can also be employed to increase the throughput.

We determine BERth through experiments that investigate the accuracy profile of a
network across different BER values. Figure 4.35 shows the experimental results for a
900-neuron network. If the accuracy scores are significantly lower than the baseline
accuracy without bit errors (i.e., >3% accuracy degradation), we refer the respective
BER values as intolerable BER, as shown by 1 and 2 in Figure 4.35. Otherwise, we
define them as tolerable BER. For instance, 3 in Figure 4.35 shows an accuracy with
a tolerable BER. Based on this discussion, we define BERth = 10−2.
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Figure 4.35: The test accuracy profile of a 900-neuron network across different BER
values, showing the tolerable and intolerable BER. This network has a fully-connected
architecture like in Figure 2.12(a) where each input pixel is connected to all neurons,
and the output of each neuron is connected to other neurons for performing inhibition,
thereby providing competition among neurons to correctly recognize the input class.

2. The weights are mapped in a way to maximize the row buffer hits for optimizing the
DRAM energy-per-access while exploiting the multi-bank burst feature for maximizing
the data throughput. The reason is that a row buffer hit incurs the lowest DRAM
access energy than other access conditions (i.e., a row buffer miss or conflict), as
suggested by our experimental results in Figure 4.30(b).

To efficiently implement the above ideas, we devise Algorithm 7 with the following steps.
First, we identify the subarrays whose error rate ≤ BERth and refer them as the safe
subarrays, which should be used for storing the weights. Otherwise, we refer the subarrays
whose error rate > BERth as the unsafe subarrays, which should not be used for storing
the weights. This step is represented in line 7 of Algorithm 7. Second, to maximize
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Algorithm 7 The proposed DRAM mapping policy
INPUT: (1) DRAM (DRAM): number of channel (nch), number of rank-per-channel (nra),

number of chip-per-rank (ncp), number of bank-per-chip (nba), number of subarray-per-bank
(nsu), number of row-per-subarray (nro), number of column-per-row (nco);
(2) Bit error rate (BER): BER of a subarray (BER_subarray), maximum tolerable BER
(BERth);
(3) Data (data);

OUTPUT: DRAM (DRAM);
BEGIN

Process:
1: for ch = 0 to (nch − 1) do
2: for ra = 0 to (nra − 1) do
3: for cp = 0 to (ncp − 1) do
4: for ro = 0 to (nro − 1) do
5: for su = 0 to (nsu − 1) do
6: for ba = 0 to (nba − 1) do
7: if BER_subarray[ch, ra, cp, ba, su] ≤ BERth then
8: for co = 0 to (nco − 1) do
9: DRAM [ch, ra, cp, ba, su, ro, co] ← data;

10: return DRAM ;
END

the row buffer hits and exploit the multi-bank burst feature, the data mapping in each
DRAM chip should follow the following policy (represented in lines 3-8 of Algorithm 7).

• Step-1: Assume that we consider mapping data to a target subarray of the target
bank with the following initial indices, i.e., subarray_index = i, bank_index = j.

• Step-2: If the target subarray is a safe subarray, then we prioritize mapping the data
to different columns in the same row for maximizing row buffer hits. Otherwise, this
subarray is not utilized and we move to another target subarray in a different bank
(subarray_index = i, bank_index += 1 ) to exploit bank-level parallelism. Then, we
perform Step-2 again. If all columns in the same row across all banks are fully filled
or unavailable, then we move to another subarray in the initial bank (subarray_index
+= 1, bank_index = j) to exploit subarray-level parallelism, if applicable.

• Step-3: In the target subarray, the remaining data are mapped in the same fashion as
Step-2. When all columns in the same row in all safe subarrays across all banks are
fully filled, then the remaining data are placed in a different row of the initial target
subarray and bank (subarray_index = i, bank_index = j). Afterward, we perform
Step-2 to Step-3 again until all data are mapped to a DRAM chip. If some data still
remain but there are no available spaces in a DRAM chip, then we perform Step-4.

• Step-4: The remaining data are mapped using Step-1 to Step-3 to different DRAM
chips, ranks, and channels respectively, if applicable.
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Figure 4.36: The test accuracy profile of a 900-neuron network shows the region with
acceptable accuracy, the region with unacceptable accuracy, and the range of BER values
for the proposed fault-aware training. Note, this network is the same as the one in
Figure 4.35. Here, the observation focuses on the BER values that can be considered in
the retraining process, thereby having a smaller range than the one in Figure 4.35.

4.4.5.3 Analyzing the SNN Error Tolerance

Previous discussion highlights that bit errors in the SNN weights can degrade the
accuracy, as they change the weight values and deviate the neuron behavior from the
correct classification. Therefore, SNN error tolerance should be improved, so that the SNN
model can achieve high accuracy even in the presence of high error rate. To effectively
enhance the SNN error tolerance, it is important to understand the SNN accuracy profile
under DRAM errors. Towards this, our EnforceSNN analyzes the accuracy profile of the
SNN model considering the data mapping pattern in DRAM and different BER values.
We observe that the accuracy profile typically has acceptable accuracy (i.e., within 1%
accuracy degradation from the baseline without errors) when BER is low, and has notable
accuracy degradation when BER is high. Therefore, we classify the accuracy profile into
two regions: A a region with acceptable accuracy, and B a region with unacceptable
accuracy, as shown in Figure 4.36. These insights will be leveraged for developing an
efficient enhancement technique for improving the SNN error tolerance in Section 4.4.5.4.

4.4.5.4 Improving the SNN Error Tolerance

Our EnforceSNN enhances the SNN error tolerance through a fault-aware training (FAT)
technique that incorporates the error profile of the approximate DRAM. We consider to
efficiently perform FAT for minimizing training time, energy consumption, and carbon
emission [SGM19, SGM20], by conducting a small yet effective number of iterations for
the retraining process, while avoiding accuracy collapse. Accuracy collapse is a significant
accuracy degradation due to training divergence that is caused by introducing high BER
immediately at the beginning of the retraining process [KOY+19]. The proposed FAT
technique has the following key steps, which are also presented in Algorithm 8.

• Step-1: We define the range of BER values that will be incorporated in the training
process to make the SNN model adaptable to DRAM errors, as shown by region- C in
Figure 4.36. We incorporate (1) BER values in region- A that are close to region- B ,
and (2) all BER values in region- B , in the training process. Here, we consider the
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Algorithm 8 The proposed FAT technique
INPUT: (1) Baseline pre-trained SNN: model (model0), accuracy (model0.acc);

(2) DRAM error model (DRAMerr);
(3) BER for retraining: error rates (BER), number of error rates (NBER);
(4) Training dataset: samples (Strain), number of samples (Ntrain);
(5) Test dataset: samples (Stest), number of samples (Ntest);

OUTPUT: (1) Improved SNN: model (model1), accuracy (model1.acc);
BEGIN

Initialization:
1: modeltemp = model0;
2: model1 = model0;
3: model1.acc = 0;

Process:
4: for i = 0 to (NBER − 1) do
5: error_map = DRAMerr(BER[i]); // error generation
6: inject error_map into modeltemp; // error injection
7: for r = 0 to (Ntrain − 1) do
8: train modeltemp with Strain[r]; // train
9: for s = 0 to (Ntest − 1) do

10: test modeltemp with Stest[s]; // test
11: if modeltemp.acc > model1.acc then
12: model1 = modeltemp;
13: model1.acc = modeltemp.acc;
14: return model1;
END

two highest BER values in region- A in the training process to make the model adapt
to high fault rates safely with less training time, without facing accuracy collapse.

• Step-2: The bit errors in DRAM are generated for different BER values (which
correspond to different Vsupply values), based on the DRAM error model-0 that follows
a uniform random distribution across a DRAM bank.

• Step-3: The generated bit errors are then injected into the DRAM cell locations, and
the weight bits in these locations are flipped. In this step, we consider the proposed
DRAM data mapping discussed in Section 4.4.5.2 for maximizing the row buffer hits
and exploiting the multi-bank burst feature.

• Step-4: We include the generated bit errors in the retraining process by incrementally
increasing the BER from the minimum rate to a maximum one following the defined
range of BER values from Step-1. We increase the BER value after each epoch of
retraining by a defined ratio (e.g., 10x from the previous error rate). In this manner,
the SNN model is gradually trained to tolerate DRAM errors from the defined lowest
rate to the maximum one, thereby carefully improving the SNN error tolerance.
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4.4.5.5 Algorithm for SNN Model Selection

From the previous steps, we may get different sizes of error-tolerant SNN models as
potential solutions for the given embedded applications. Therefore, we need to consider
design trade-offs to select the most appropriate model for the given accuracy, memory,
and energy constraints. Toward this, we propose an algorithm to quantify the trade-off
benefits of the SNN model candidates using our proposed reward function, and then
select the one with the highest benefit. The idea of our multi-objective reward function
(R) is to prioritize the model that has high accuracy, small memory, and low energy
consumption. The reward R is defined as the resultant between the accuracy with the
memory footprint and the energy consumption, as expressed in Equation 4.7. In this
equation, accx denotes the accuracy of the investigated SNN model (x). mnorm denotes
the normalized memory, which is defined as the ratio between the memory footprint of
the investigated model (memx) and the floating-point model (memfp); see Equation 4.8.
The memory footprint of the model is estimated by leveraging the number of weights
(Nwgh) and the corresponding bitwidth (BWwgh); see Equation 4.9. Meanwhile, Enorm

denotes the normalized energy consumption, which is defined as the ratio between the
DRAM access energy of the approximate DRAM (EDRAM_approx) and the accurate one
(EDRAM_accurate) for the investigated model; see Equation 4.10. To define the significance
of memory and energy consumption with respect to the accuracy when calculating R, we
employ µ and ε as the adjustable trade-off variables for memory and energy consumption,
respectively. Here, µ and ε are the non-negative real numbers.

R(accx, mnorm, Enorm) = accx − (µ · mnorm + ε · Enorm) (4.7)

mnorm = memx

memfp
(4.8)

mem = Nwgh · BWwgh (4.9)

Enorm = EDRAM_approx

EDRAM_accurate
(4.10)

4.4.6 Evaluation Methodology
Figure 4.37 shows the experimental setup and tools flow for evaluating our EnforceSNN
framework, which are explained in the following.

Accuracy Evaluation: We employ PyTorch-based simulations [HSK+18] with 32-bit
floating-point (FP32) and 8-bit fixed-point precision (i.e., FxP8 with “signed Q1.6” and
“unsigned Q1.7” formats) that run on a multi-GPU machine, i.e., Nvidia GeForce RTX
2080 Ti. For network architecture, we consider the fully-connected network shown in
Figure 2.12(a), with a different number of excitatory neurons, which are referred to as
N-i for conciseness with i denoting the number of excitatory neurons. We use the rate
coding converting data into spikes, and employ the MNIST and Fashion MNIST datasets.
For comparison partners, we use the SNN model which is pre-trained without considering
DRAM errors as the baseline. We perform an epoch of STDP-based unsupervised learning
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Figure 4.37: Our experimental setup and tools flow.

through 60K experiments for each retraining process considering each combination of the
SNN model, dataset, and training BER. Afterward, we perform inference through 10K
experiments for each combination of the SNN model, dataset, and testing BER.

DRAM Error Generation and Injection: First, we generate bit errors based on the
DRAM error model-0, and inject them into the DRAM cell locations, while considering
the data mapping policy in DRAM. Afterward, the weight bits that are stored in the faulty
DRAM cell locations (cells with errors), will be flipped. For the baseline data mapping,
we place the weight bits in the subsequent address in a DRAM bank to maximize the
DRAM burst feature, and if a DRAM bank is fully filled, then the weight bits are mapped
in a different bank of the same DRAM chip. Meanwhile, we use the proposed DRAM
mapping in Algorithm 7 for our EnforceSNN.

DRAM Energy Evaluation: We use the DRAM circuit model from [CYG+17a] and
the SPICE simulator to extract the DRAM operational parameters (e.g., Vsupply, Vbitline,
tRCD, tRAS , tRP ), while considering the configuration of LPDDR3-1600 4Gb DRAM
which is representative for the main memory of embedded systems. The accurate DRAM
operates with 1.35V of Vsupply, while the approximate one operates with 1.025V-1.325V
of Vsupply. Afterward, we use the state-of-the-art cycle-accurate DRAMPower [Cha14]
that incorporates the DRAM access traces and statistics as well as the extracted DRAM
parameters for estimating the DRAM access energy.

4.4.7 Results and Discussion
4.4.7.1 Improvements of the SNN Error Tolerance

Figure 4.38 shows the accuracy of the baseline model and the EnforceSNN-improved
model with accurate and approximate DRAM across different BER values, precision
levels, i.e., FP32 and FxP8 (“signed Q1.6” and “unsigned Q1.7”), network sizes, and
workloads (i.e., the MNIST and Fashion MNIST datasets). In general, we observe that
the baseline model with approximate DRAM achieves lower accuracy than the baseline
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model with accurate DRAM, and the accuracy decreases as the BER increases. These
trends are observed across different weight precision levels, network sizes, and datasets.
The reason is that, the weights are changed (i.e., flipped) if they are stored in the faulty
DRAM cells, and these weights are not trained to adapt to such bit flips. Therefore, the
corresponding neuron behavior deteriorates from the expected behavior, hence decreasing
accuracy. On the other hand, the EnforceSNN-improved model with approximate DRAM
improves accuracy over the baseline model with accurate and approximate DRAM, across
different BER values, network sizes, and datasets, as shown in 1 . We also observe that,
the EnforceSNN-improved model with approximate DRAM improves the accuracy over
the baseline model with accurate and approximate DRAM, even in the high error rate
case (i.e., BER = 10−2), as shown in 2 for FP32 and 3 for FxP8 weight precision levels.
The reason is that, our EnforceSNN incorporates the error profiles from the approximate
DRAM across different BER values in the training process, which makes the SNN model
adaptive to the presence of DRAM errors, thereby improving the SNN error tolerance.
For the MNIST dataset, a high error rate (i.e., BER = 10−2) typically decreases the
accuracy of the SNN-FxP8 more than the SNN-FP32, as shown in 4 . The reason is
that, the MNIST dataset has a narrow weight distribution in each class to represent its
digit features, hence bit errors may change the weight values significantly in the FxP8
precision than the FP32 due to its shorter bit-width. As a result, the corresponding
neuron behavior deteriorates from its ideal behavior, hence degrading accuracy. For the
Fashion MNIST dataset, the SNN-FxP8 may achieve higher accuracy than the SNN-FP32
in some cases, as shown in 5 . The potential reason is the following. The Fashion MNIST
dataset has relatively more complex features than the MNIST dataset, hence having a
wider weight distribution in each class to represent its various features which may overlap
with features from other classes (i.e., non-unique features). Then, the quantization
removes these non-unique features by eliminating the less significant bits of the trained
weights (i.e., like the denoising effect), and the retraining makes the quantized weights
adaptive to bit flips, thereby leading to higher accuracy than the non-quantized ones.
Furthermore, we also observe that the accuracy of the SNN-FxP8 starts showing notable
degradation at a high error rate (i.e., BER = 10−2). For quantized models, in general,
the “unsigned Q1.7” and “signed Q1.6” formats have similar trends and comparable
accuracy as they represent similar weight values which differ only in the least significant
fractional bit, thereby leading to similar neuron behavior and accuracy. These formats
may have notable accuracy differences for some cases, such as after the retraining process,
as shown by 6 . The possible reason is that, these formats have different bit positions for
sign, integer, and fraction, thereby making the DRAM errors affect different weight bits
and lead to different learning qualities during the respective fault-aware training.

In summary, our EnforceSNN maintains accuracy (i.e., no accuracy loss) as compared to
the baseline with accurate DRAM when BER ≤ 10−3 across different datasets. Meanwhile,
for higher BER values (i.e., 10−3 < BER ≤ 10−2), our EnforceSNN still achieves higher
accuracy than the baseline with accurate DRAM across different datasets. Therefore,
these results show that our EnforceSNN framework effectively improves the SNN error
tolerance against DRAM errors with minimum retraining efforts.
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Figure 4.38: The accuracy of the baseline model with accurate and approximate DRAM,
as well as the EnforceSNN-improved model with approximate DRAM for (a) MNIST
and (b) Fashion MNIST datasets, across different precision levels, different BER values,
and different network sizes.

4.4.7.2 DRAM Access Energy Savings and Throughput Improvements

DRAM Access Energy Savings: Figure 4.39(a) shows the normalized energy con-
sumption of the DRAM accesses for an inference (i.e., inferring one input sample)
required by the baseline model and the EnforceSNN-improved model with accurate and
approximate DRAM, across different Vsupply values, precision levels, network sizes, and
workloads. We observe that different network sizes show similar normalized DRAM
access energy, hence we only show a single figure representing the experimental results for
all network sizes. For accurate DRAM cases across different network sizes, the baseline
model achieves 75% DRAM energy saving when it employs the quantization technique,
while our EnforceSNN-improved model achieves 75.1% DRAM energy saving due to the
quantization and the proposed DRAM mapping policy, as shown in 7 . Meanwhile, the
difference in these DRAM energy savings comes from the DRAM mapping policy. That
is, our EnforceSNN optimizes the DRAM energy-per-access by maximizing the row buffer
hits and the multi-bank burst feature, thereby having fewer row buffer conflicts than
the baseline which only exploits the single-bank burst feature. For the FP32 precision
across different network sizes, employing the approximate DRAM in the baseline model
reduces the DRAM energy savings by up to 39.2% as compared to employing the accurate
DRAM. Meanwhile, employing the approximate DRAM in the EnforceSNN-improved
model reduces the DRAM energy savings by up to 39.5% as compared to employing the
accurate DRAM, as shown in 8 . These energy savings come from the reduced DRAM
energy-per-access due to the reduction of operational Vsupply. Moreover, the difference in
energy savings between the baseline and our EnforceSNN also comes from the DRAM
mapping policy. For the FxP8 precision (i.e., “signed Q1.6” and “unsigned Q1.7”) across
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Figure 4.39: (a) The normalized DRAM access energy for an inference incurred by the
baseline model and the EnforceSNN-improved model with accurate and approximate
DRAM, and (b) the normalized speed-up of DRAM data throughput for an inference
achieved by our EnforceSNN-improved model over the baseline model, across different
Vsupply values, different workloads (datasets), and different network sizes (N-900, N-1600,
N-2500, and N-3600). These results are applicable to all network sizes. They are also
applicable for both the MNIST and Fashion MNIST datasets, as these workloads have
similar DRAM access energy, due to the same number of weights and number of DRAM
accesses for an inference.

different network sizes, employing the approximate DRAM in the baseline model reduces
the DRAM energy savings by up to 84.8% over employing the accurate one. Meanwhile,
employing the approximate DRAM in the EnforceSNN-improved model reduces the
DRAM energy savings by up to 84.9% over employing the accurate one, as shown in 9 .
These energy savings come from the reduced weight precision and the reduced DRAM
energy-per-access due to Vsupply reduction. Moreover, the difference in energy savings
between the baseline and our EnforceSNN also comes from the DRAM mapping policy.

DRAM Throughput: We observe that our EnforceSNN-improved model obtains 4.1x
throughput speed-up over the baseline model across different Vsupply values, workloads,
and network sizes; see 10 in Figure 4.39(b). It is achieved through (1) the quantization
technique which reduces the number of DRAM accesses, and (2) our proposed DRAM
mapping policy which optimizes the DRAM latency-per-access by maximizing the row
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buffer hits and the multi-bank burst features. The results also show that the “unsigned
Q1.7” and “signed Q1.6” achieve comparable DRAM access energy savings and throughput
improvements since they employ the same bitwidth of weights, thereby having similar
DRAM access behavior.

In summary, the results in Figure 4.39 indicate that our EnforceSNN framework sub-
stantially reduces the DRAM access energy by employing the reduced-voltage approximate
DRAM and our efficient DRAM mapping policy, while effectively improving the DRAM
data throughput mainly due to the quantization.

4.4.7.3 Model Selection under Design Trade-Offs

Figure 4.40 and Figure 4.41 show the results of the accuracy-memory-energy trade-offs for
the MNIST and Fashion MNIST datasets, respectively. In this evaluation, the quantized
models consider the FxP8 precision with “signed Q1.6” format. For the given SNN model
candidates, we observe that the models that incur small memory typically employ FxP8
precision, as shown in Figure 4.40(a) for the MNIST and Figure 4.41(a) for the Fashion
MNIST. Considering that the accuracy of the FxP8-based models is comparable to the
FP32-based models, we narrow down the candidates to only the FxP8-based models.

To analyze the design trade-offs, we explore the impact of different µ and ε values on
the rewards. For instance, if we consider that the accuracy should have a higher priority
than the memory and the energy consumption, we set µ and ε low (e.g., µ = 0 and
ε = 0). Meanwhile, if we consider that the memory should have a higher priority than
the energy consumption, we set µ higher than ε (e.g., µ = 10 and ε = 0). For both cases,
the highest reward is achieved by the EnforceSNN-improved N-1600 FxP8 for the MNIST
and the EnforceSNN-improved N-2500 FxP8 for the Fashion MNIST under 10−5 error
rate; see D for µ = 0 and ε = 0 case, and see E for µ = 10 and ε = 0 case. The reason
is that, these models employ our efficient FAT technique to improve their error tolerance,
thereby leading to high accuracy under a high error rate. We also observe that having µ
higher than ε makes the high rewards shift towards smaller models, as shown by E in
Figure 4.40(c) and Figure 4.41(c). The reason is that a higher µ makes the small mnorm

have a smaller impact on the reward reduction than the large mnorm, thereby maintaining
the high reward values. If the energy consumption should have a higher priority than
the memory footprint, we set µ lower than ε (e.g., µ = 0 and ε = 10). The highest
reward is achieved by the EnforceSNN-improved N-1600 FxP8 under 10−5 error rate for
the MNIST and the EnforceSNN-improved N-2500 FxP8 under 10−4 error rate for the
Fashion MNIST. In this case, we observe that high rewards are shifted towards models
with smaller energy consumption (represented by higher BER); see F in Figure 4.40(d)
and Figure 4.41(d). The reason is that a higher ε makes the small Enorm have a smaller
impact on the reward reduction than the large Enorm, thereby maintaining the high
reward values. Furthermore, if the memory and the energy consumption should have a
higher priority than the accuracy, we set µ and ε high (e.g., µ = 10 and ε = 10). The
highest reward is achieved by the EnforceSNN-improved N-1600 FxP8 under 10−5 error
rate for the MNIST and the EnforceSNN-improved N-2500 FxP8 under 10−4 error rate for
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Figure 4.40: The trade-offs among accuracy, memory footprint, and energy consumption
for the MNIST dataset. (a) Accuracy profiles of SNN models. (b-g) Reward profiles
of SNN models. The network sizes represent the memory sizes, and the BER values
represent the energy savings from approximate DRAM.
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Figure 4.41: The trade-offs among accuracy, memory, and energy consumption for the
Fashion MNIST dataset. (a) Accuracy profiles of SNN models. (b-g) Reward profiles
of SNN models. The network sizes represent the memory sizes, and the BER values
represent the energy savings from approximate DRAM.
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the Fashion MNIST. In this case, high rewards are shifted towards models with smaller
memory and energy consumption (represented by high BER), but their overall rewards
decrease as the values of µ and ε increase; see G in Figure 4.40(e) and Figure 4.41(e).
The reason is that, higher µ and ε jointly make the mnorm and Enorm decrease the
reward. It means that if we want to significantly reduce the memory footprint and energy
consumption, we have to accept more accuracy degradation.

In summary, the results in Figure 4.40 and Figure. 4.41 show that our EnforceSNN
framework has an effective algorithm to trade-off the accuracy, memory footprint, and
energy consumption of the given SNN models, thereby providing good applicability for
diverse embedded applications with their respective constraints.

4.4.7.4 Optimization of the Retraining Costs

The conventional FAT for neural networks usually injects errors at an incremental rate
during the retraining process from the minimum value to the maximum one for avoiding
accuracy collapse [KOY+19]. Therefore, in this work, the conventional FAT considers
BER = {10−8, 10−7, 10−6, ..., 10−2}, while our efficient FAT in EnforceSNN only considers
BER = {10−4, 10−3, 10−2} in the retraining process.

Retraining Speed-ups: The conventional FAT with FxP8 (cFAT8) obtains speed-up
over the one with FP32 (cFAT32) by up to 1.16x and 1.14x for the MNIST and the
Fashion MNIST respectively, since the cFAT8 employs quantized weights, thereby leading
to a faster error injection and learning process. Meanwhile, our efficient FAT with FP32
(eFAT32) obtains a 2.33x speed-up over the cFAT32, since our eFAT32 has fewer iterations
of the retraining process. Furthermore, we also observe that our efficient FAT with FxP8
(eFAT8) obtains more speed-up over the cFAT32, i.e., by up to 2.71x for the MNIST and
2.65x for the Fashion MNIST as shown by H in Figure 4.42(a), since our eFAT8 employs
quantized weights in addition to fewer iterations of the retraining process.

Retraining Energy Savings: The cFAT8 achieves energy saving over the cFAT32 by
up to 13.9% for the MNIST and 12% for the Fashion MNIST, since the cFAT8 employs
quantized weights which incur lower energy consumption during the error injection and
learning process. Meanwhile, our eFAT32 achieves energy saving over the cFAT32 by
57.1%, as the eFAT32 performs fewer iterations of the retraining process as compared
to the cFAT32. Our eFAT8 achieves further energy saving over the cFAT32, i.e., by up
to 63.1% for the MNIST and by up to 62.3% for the Fashion MNIST as shown by I in
Figure 4.42(b), since it employs quantized weights in addition to fewer iterations of the
retraining process, thereby leading to a higher energy saving.

Carbon Emission Reduction: The retraining process also poses additional challenges
that correspond to environmental concerns, i.e., carbon emission. Recent works have
highlighted that the carbon emission from neural network training should be minimized
to prevent the increasing rates of natural disasters [SGM19, SGM20]. To estimate the
carbon emission of neural network training, the work of [SGM19] proposed Equation 4.11
and Equation 4.12. In these equations, CO2e denotes the estimated carbon (CO2)
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Figure 4.42: (a) The retraining speed-ups across different network sizes (i.e., N-900,
N-1600, N-2500, and N-3600), and (b) the retraining energy for the MNIST, which are
normalized to the conventional FAT with FP32 for a 900-neuron network. The results
for the Fashion MNIST show similar trends to the MNIST since these workloads have
the same number of weights and number of DRAM accesses for a training phase. Here,
FxP8 represents both the “signed Q1.6” and “unsigned Q1.7” formats.

emission during the training, which is a function of the total power during the training
(pt). Meanwhile, t is the training duration, pc is the average power from all CPUs, pr is
the average power from all main memories (DRAMs), pg is the average power from a
GPU and g is the number of GPUs.

CO2e = 0.954 · pt (4.11)

pt = 1.58 · t(pc + pr + g · pg)
1000 (4.12)

These equations indicate that if we assume pc, pr, pg, and g are the same for different
FAT techniques, then the difference will come from the training duration t. Therefore,
our efficient FAT in EnforceSNN employs fewer iterations of the retraining process
than the conventional FAT, thereby producing less carbon emission. Moreover, our
EnforceSNN also reduces the operational power of the main memory (DRAM) through
the reduced-voltage approximation approach, thereby further reducing the emission.

In summary, our EnforceSNN framework effectively offers speed-up of retraining time,
reduction of energy consumption for retraining, and less carbon emission than the con-
ventional FAT technique, thereby making it more friendly for our environments.

4.4.7.5 Further Discussion

Previous works that exploit the reduced-voltage DRAM concept mainly aim at im-
proving the energy efficiency of mobile systems [HYAK+20], personal computing sys-
tems [NLSU+21, FFW22], and server systems [NLSU+21, DFG+11, DMR+11, DMB+12a,
DMB+12b]. This concept is also employed for minimizing the energy consumption of
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deep neural networks (DNNs) [KOY+19]. Since SNNs have different data representa-
tions, computation models, and learning rules as compared to DNNs, our EnforceSNN
provides a different framework with different techniques that are crafted specifically for
improving the resilience and energy efficiency of SNNs. Furthermore, the reduced-voltage
DRAM is also beneficial for generating noise (i.e., from DRAM errors) for obfuscating
the intellectual property (IP) against security threats, such as IP stealing [XTAQ20].

Our EnforceSNN framework can be put in the approximate computing field, especially in
the context of the approximation for main memory through voltage scaling [VCRR15,
XMK16, Mit16]. Furthermore, some of the techniques in our EnforceSNN framework are
suitable for different domains outside SNNs: (1) DRAM voltage reduction for optimizing
the DRAM access energy, (2) quantization for reducing the memory footprint, and (3)
error-aware DRAM data mapping policy for minimizing the negative impact of DRAM
errors to the data. These techniques are applicable for error-tolerant applications, such
as image/video processing (e.g., data compression) and data analytic applications (e.g.,
data clustering).

4.4.8 Summary of EnforceSNN Framework
We propose a novel EnforceSNN framework to achieve a resilient and energy-efficient
SNN inference considering reduced-voltage-based approximate DRAM, through weight
quantization, error-aware DRAM mapping, SNN error-tolerance analysis, efficient error-
aware SNN training, and effective SNN model selection. Our EnforceSNN achieves no
accuracy loss for BER ≤ 10−3 with minimum retraining costs as compared to the baseline
SNN with accurate DRAM while achieving up to 84.9% of DRAM energy saving and
up to 4.1x speed-up of DRAM data throughput. In this manner, our work may enable
efficient SNN inference for energy-constrained embedded systems like Edge-AI devices.

4.5 SpikeDyn: A Framework for SNNs with Unsupervised
Continual Learning

This section aims at addressing Problem-4 with the solution for enabling a lightweight
and energy-efficient unsupervised continual learning mechanism in SNNs for adapting to
dynamic environments.

4.5.1 Motivational Study
To understand the characteristics (i.e., accuracy, memory, and energy consumption) of
SNNs under dynamic environment settings, we perform an experimental case study. Here,
we consider an unsupervised learning-based SNN model that is widely considered in the
SNN community, i.e., the model with fully-connected architecture and a pair of excitatory
and inhibitory layers, that has been employed in state-of-the-art works [PARR18, AR20];
see Figure 2.12(a). In this case study, we provide dynamic environments by feeding
consecutive task (i.e., class) changes to the network. If we consider the MNIST dataset,
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Figure 4.43: (a) Per-digit accuracy for a 400-neuron SNN. (b) Energy consumption for
networks with 200 excitatory neurons (N200) and 400 excitatory neurons (N400). Here,
the baseline refers to the pair-based weight-dependence STDP [DC15], while the ASP
refers to the adaptive synaptic plasticity [PARR18].

then first, a stream of samples for digit-0 is fed to the network. Afterward, the task is
changed to digit-1. This process is repeated for other tasks without re-feeding previous
tasks, and each task has the same number of samples. More details of the experimental
setup are presented in Section 4.5.5. Our experimental results are presented in Figure 4.43,
from which we make the following key observations.

1 The baseline does not efficiently learn new tasks from digit-2 onward, as most of the
synapses are already occupied by previously learned tasks (digit-0 and digit-1), and
mix new information with the existing ones.

2 The state-of-the-art work improves the accuracy over the baseline at a cost of an energy
overhead due to: (a) a large number of weights and neuron parameters from excitatory
and inhibitory layers, and (b) complex exponential calculations for computing multiple
spike traces, membrane- and threshold-potential decay, and weight decay.

4.5.2 Scientific Research Challenges
Our above observations expose several challenges that need to be solved to address the
targeted problem as the following.

• The SNN systems should employ a simple yet effective learning algorithm at run time
that achieves high accuracy, in both dynamic and non-dynamic environment settings.
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• It should reduce the non-significant weights or neuron parameters, and the complex
exponential calculations, to optimize the energy consumption.

• The memory and energy constraints should be considered in the design process to
meet the design specification.

Required: A lightweight technique that effectively performs unsupervised continual
learning for SNNs in a memory-efficient and energy-efficient manner under dynamic
environments is required.

4.5.3 Novel Contributions
To address the above challenges, we propose SpikeDyn, a novel framework for developing
energy-efficient Spiking Neural Networks with unsupervised continual learning capabilities
in Dynamic environments. The SpikeDyn employs the following key mechanisms (see an
overview in Figure 4.44).

1. Reducing the energy consumption of the neuronal operations by replacing
the inhibitory neurons with the direct lateral inhibitory connections.

2. An SNN model search algorithm under the given memory- and energy-constraints.
It quickly estimates the memory footprint and energy consumption of the investigated
SNN models using our analytical models that leverage the network parameters, the
bit precision, the energy for processing an input sample, and the number of samples.

3. An algorithm for enabling an efficient unsupervised continual learning
that leverages (a) adaptive learning rates, (b) synaptic weight decay, (c) adaptive
membrane threshold potential, and (d) reduction of the spurious weight updates.

Our Novel Contributions
SpikeDyn Framework

An SNN model search algorithm

A lightweight unsupervised 
continual learning algorithm

…

Output 

Modified STDP 

Reducing the neuronal operations

… …

Input

STDP 
General

Figure 4.44: The overview of novel contributions (shown in the blue boxes).

4.5.4 SpikeDyn Framework
The SpikeDyn framework employs the following key mechanisms for enabling lightweight
unsupervised continual learning for SNNs (the overview is shown in Figure 4.45), which
are explained in the subsequent sections.
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1. Reducing the operations in SNN model (Section 4.5.4.1) to minimize the
energy consumption by replacing the inhibitory neurons with the direct lateral inhibi-
tions. Hence, the operations in the inhibitory layer of the SNN model that supports
unsupervised continual learning settings, are eliminated.

2. An SNN model search algorithm (Section 4.5.4.2) that explores a different
number of excitatory neurons to find SNN model size that meet the memory and
energy constraints. To quickly perform the search, we also propose analytical models
that incorporate the following.

• Number of weights and neuron parameters, as well as bit precision: They are used
for estimating the memory footprint;

• Energy consumption for processing an input sample, and the number of samples
that will be processed: They are used for estimating the energy consumption.

3. An unsupervised continual learning (Section 4.5.4.3) that employs the following.

• Adaptive learning rates that determine the potentiation and depression factors in
the STDP-based learning, using the presynaptic and postsynaptic spike activities.

• Synaptic weight decay that helps the network to gradually remove the weak synaptic
connections (which represent old and insignificant information), thereby enabling
the synapses to learn new information.

• Adaptive membrane threshold potential that provides balance in the neurons’ internal,
so that the neuron generates spikes only when the corresponding synapses need to
learn the input features. It is determined by the neurons’ threshold potential value
and its decay rate.

• Reduction of the spurious weight updates considering the presynaptic and post-
synaptic spike event by employing timestep-based updates to carefully perform
weight potentiation and depression.

4.5.4.1 Reducing the Neuronal Operations

State-of-the-art works in the unsupervised continual learning for SNNs, employ the
network architecture shown in Figure 2.12(a), which consists of the input, excitatory, and
inhibitory layers [PARR18, AR16]. We observe that the inhibitory neurons have different
parameters from the excitatory ones to be saved in memory. Therefore, employing such an
architecture will consume high memory and energy. To address this issue, we reduce the
neuron operations in the inhibitory layer to substantially decrease the memory footprint
and energy consumption, as shown in Figure 4.46(a)-(c). We also observe that, the
optimized architecture still achieves a similar accuracy profile as of the baseline, as shown
in Figure 4.46(d). Therefore, we will improve the accuracy of the optimized architecture
with our learning mechanism, as discussed in Section 4.5.4.3.
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170



4.5. SpikeDyn: A Framework for SNNs with Unsupervised Continual Learning

4.5.4.2 An SNN Model Search Algorithm

Each application use-case typically has memory- and energy-constraints that need to be
considered in the model generation. Toward this, we propose an algorithm to search for
an appropriate model size for a given SNN architecture that meets the design constraints
(see Algorithm 9). The idea is to explore different sizes of an SNN model and estimate
their memory and energy consumption in both training and inference phases, using the
proposed analytical models as discussed in the following.

Algorithm 9 Pseudo-code of the proposed search algorithm
INPUT: (1) Memory constraint (memc); (2) Energy constraints: training (Ect), inference

(Eci); (3) SNN model (model): number of neurons (model.nexc), size (model.mem), energy
of training (model.Et) and inference (model.Ei); (4) Energy for one sample: training (E1t),
inference (E1i); (5) number of additional neurons (nadd);

OUTPUT: SNN model (model);
BEGIN

Initialization:
1: model.nexc = 0;
2: model.mem = 0;

Process:
3: while model.mem ≤ memc do
4: if (model.nexc > 0) then
5: perform training with 1 sample using Algorithm 10;
6: calculate E1t; // for 1 sample
7: estimate model.Et; // for all samples
8: if (model.Et ≤ Ect) then
9: perform inference with 1 sample;

10: calculate E1i; // for 1 sample
11: estimate model.Ei; // for all samples
12: if (model.Ei ≤ Eci) then
13: save model;
14: model.nexc+ = nadd;
15: estimate model.mem;
16: return model;
END

For each investigated SNN model size, the memory footprint (mem) is estimated using
mem = (Pw + Pn) · BP , which leverages the number of weights (Pw) and neuron
parameters (Pn), as well as the bit precision (BP ). The reason is that, the above aspects
are dominant factors in determining the size of an SNN model. Meanwhile, the total
energy consumption (E) is estimated using E = E1 · N , which leverages the energy
for processing a single sample (E1), and the number of samples that will be processed
(N). The number of samples N is important, as the deployed systems might have a
different number of samples available from the environment. If the estimated memory
mem and energy E are within the memory constraint (memc) and energy constraint (Ec)
respectively, then the investigated SNN model is selected as the candidate of solution.
Our algorithm then selects the largest-sized SNN model from the candidates as the
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solution, since a larger network usually can achieve higher accuracy [PS20]. We validate
our analytical models against the actual execution runs, see the results presented in
Figure 4.47(a) for memory footprint, and Figure 4.47(b)-(c) for energy consumption
of training and inference, respectively. The results show that our analytical models
achieve less than 5% errors compared to the actual runs. Thus, they are suitable for a
fast estimation. Employing our algorithm is beneficial, rather than actually running all
possible SNN configurations and selecting the desired one at the end, since it saves the
exploration time, as shown in Figure 4.47(d)-(e).
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Figure 4.47: Validation of our analytical models against the actual runs in terms of (a)
the memory footprint, and the energy consumption for (b) training and (c) inference,
using the full MNIST dataset. Our algorithm also reduces the exploration time over the
actual runs for both (d) training and (e) inference.

4.5.4.3 Proposed Learning Algorithm

Our SpikeDyn employs an algorithm that incorporates the following techniques (the
pseudo-code is presented in Algorithm 10).

Adaptive Learning Rates: Our algorithm employs the potentiation factor (kp) and the
depression factor (kd) to adaptively determine the learning rates for weight potentiation
and depression. The idea is to adjust the potentiation factor kp to have a high value
when the corresponding synapses need to learn input features, which is indicated by
the occurrences of postsynaptic spikes. The value of kp is obtained by normalizing
the maximum accumulated postsynaptic spikes (maxSppost) with the spike threshold
(Spth); see Equation 4.13. Meanwhile, the depression factor kd provides weight depression
when the corresponding synapses need to weaken the connections, which is indicated
by no occurrences of postsynaptic spikes. The value of kd is obtained by the ratio
between the maximum accumulated postsynaptic spikes (maxSppost) and presynaptic
spikes (maxSppre); see Equation 4.13. These factors are incorporated into the improved
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Algorithm 10 Pseudo-code of the proposed learning algorithm
INPUT: (1) Simulation time for an input (tsim);

(2) Timestep (tstep);
(3) SNN parameters: # of neurons (nexc), # of synapses-per-neuron (nsyn), accumulated
presynaptic spikes (Nsp_pre) and accumulated postsynaptic spikes (Nsp_post);
(4) Presynaptic spike (sppre), postsynaptic spike (sppost);

OUTPUT: Synaptic weight update (Δw);
BEGIN

Initialization:
1: Δw[nexc, nsyn] = zeros[nexc, nsyn];
2: Nsp_pre[nexc, nsyn] = zeros[nexc, nsyn];
3: Nsp_post[nexc] = zeros[nexc];

Process:
4: for (t = 0 to (tsim − 1)) do
5: for (i = 0 to (nexc − 1)) do
6: for (j = 0 to (nsyn − 1)) do
7: if sppre then
8: Nsp_pre[i, j] += 1;
9: if sppost then

10: Nsp_post[i] += 1;
11: if ((t mod tstep) == 0) then
12: maxSppre = max(Nsp_pre);
13: maxSppost = max(Nsp_post);
14: if (no sppost within tstep) then
15: update Δw[:, :] using Equation 4.14; // weight depression
16: else
17: m ← index(max(Nsp_post));
18: update Δw[m, :] using Equation 4.14; // weight potentiation
19: else
20: update Δw[:, :] using weight decay;
21: return Δw;
END

STDP-based learning algorithm; see Equation 4.14. Here, Δw denotes the weight change,
ηpre and ηpost denote the learning rate for a presynaptic and postsynaptic spike, xpre and
xpost denote the presynaptic and postsynaptic trace, respectively.

kp =


maxSppost

Spth

�
and kd = maxSppost

maxSppre
(4.13)

Δw =
�

−kd · ηpre · xpost on depression update time
kp · ηpost · xpre on potentiation update time

(4.14)

Synaptic Weight Decay: We employ a weight decay to gradually remove the old
and insignificant information, which is represented by small weight values. It follows
Equation 4.15, with τdecay denotes the decay time constant and wdecay denotes the weight
decay rate.
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τdecay · dw

dt
= −wdecay · w (4.15)

In this manner, weak connections will get more disconnected over the training period.
We define the value of wdecay to be inversely proportional to the size of the network
(wdecay ∝ 1/nexc), with nexc denotes the number of excitatory neurons. The reason is
that, a smaller network has less number of synapses for learning new information, while
retaining the old ones. Therefore, it needs to forget the old information at a faster rate
than the larger network. We observe that an appropriate wdecay can improve accuracy,
as shown by the label- 1 in Figure 4.48.
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Figure 4.48: Impact of employing weight decay and adaptation potential θ on the accuracy
of learning new tasks in a dynamic scenario.

Adaptive Membrane Threshold Potential: The neurons’ threshold potential vth

is defined by vth + θ, as discussed in Section 2.3.4. We observe that the adaptation
potential θ has an important role to determine whether a neuron would generate spikes
easily for later inputs. If θ is too high, the neurons will not spike easily for later inputs,
since the threshold potential is already adjusted for recognizing earlier inputs. In the
context of dynamic scenarios, the network will face difficulties when learning new tasks.
If θ is too low, the neurons will spike easily for any inputs. In the context of dynamic
scenarios, the network will quickly forget old information. Thus, the threshold potential
should be balanced, so that some neurons are available for recognizing new features, while
others retain the old yet significant information. Towards this, we define the adaptation
potential θ to be proportional to its decay rate θdecay and the presentation time of a
sample tsim, and can be stated as θ = cθ · θdecay · tsim, with cθ denotes the adaptation
constant. An appropriate θ can improve accuracy, as shown by the label- 2 in Figure 4.48.

Reducing the Spurious Weight Updates: Previous work [S+17] has observed that
there are spurious updates in SNNs, which can degrade the accuracy. These are observed
in two cases: (1) when the neurons spike unpredictably, due to the random weight
initialization; and (2) when a neuron generates spikes for patterns that belong to different
classes due to the overlapped features. We exploit this observation in a novel way to
reduce the spurious updates that are induced by both the presynaptic and postsynaptic
spikes. The idea is to employ a timestep period, and then monitor whether at least one
postsynaptic spike happens. If so, then the weight potentiation will be conducted, and
otherwise, the weight depression will be conducted (see Figure 4.49).
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❑ Spike trace:

Presynaptic spikes
Postsynaptic spikes

Presynaptic traces

timestep period timestep period

potentiation depression

Postsynaptic traces

1
0

time
time

time

xpre

1
0

xpost

Nsp_pre = 6, Nsp_post = 2 Nsp_pre = 9, Nsp_post = 2

time

Figure 4.49: Overview of the proposed timestep-based weight updates during the STDP
learning process.

4.5.5 Evaluation Methodology
Figure 4.50 shows the experimental setup for evaluating the SpikeDyn framework. We
use Python-based SNN simulations [HSK+18] that run on Embedded GPU (Nvidia
Jetson Nano) and GPGPUs (Nvidia GTX 1080 Ti and RTX 2080 Ti) to perform diverse
evaluations under different memory and compute capabilities, for showing the generality
of our SpikeDyn framework. Note, GPU specifications are presented in Table 4.3.
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on GPU

SNN model 
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for a single 
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(for estimation)Selected SNN modelConstraints (memory, energy)
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Improved learning algorithm

SNN Configuration:
(Neuron and synapse models, etc.)

Our memory and energy estimator (MATLAB)

Spike train

Accuracy

Memory 
footprint

Power

Time

Figure 4.50: The experimental setup and tool flow.

Table 4.3: GPU Specifications.
Category Jetson Nano [Nvid] GTX 1080 Ti [Nvib] RTX 2080 Ti [Nvic]

Architecture Maxwell Pascal Turing
CUDA cores 128 3584 4352

Memory 4GB LPDDR4 11GB GDDR5X 11GB GDDR6
Interface width 64-bit 352-bit 352-bit

Power 10W 250W 250W

To estimate the energy consumption of both the training and the inference phases,
we adopt the approach of work in [HMD16]. That is, leveraging the information of
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the processing time, and the processing power that is reported through (1) nvidia-smi
utility for GPGPUs, and (2) measurement using a power-meter for Embedded GPU.
We use the MNIST as it is widely used for evaluating the continual and unsupervised
learning in SNNs [PARR18, AR16, AR20], and employed the rate coding to convert
each pixel of an image into a Poisson-distributed spike train. For comparison partners,
we employ techniques in [DC15] as the baseline, and the adaptive synaptic plasticity
(ASP) [PARR18] as the state-of-the-art since it is the only available recent work that
has the complete set of configurations, parameters, and implementations details to have
a reproducible design and results. The evaluation is performed for both dynamic and
non-dynamic environments. Dynamic environments mean that the network is fed with
consecutive task changes without re-feeding previous tasks, and each task has the same
number of samples. It simulates an extreme condition where an SNN system receives
training tasks from the environment in a consecutive manner, and each task has a defined
number of samples. Meanwhile, non-dynamic environments mean that the network is fed
with input samples whose tasks are distributed randomly. We consider networks with
200 and 400 excitatory neurons, which we refer to as N200 and N400, respectively.

4.5.6 Results and Discussion
4.5.6.1 Maintaining Accuracy in Dynamic and Non-Dynamic Environments

Dynamic Environments: We evaluate the classification accuracy for two cases, i.e.,
(1) classifying the most recently learned task, which represents the capability of learning
new information; and (2) classifying the previously learned tasks, which represents the
capability of retaining old information.

Case-1: Figure 4.51(a.1) and Figure 4.51(b.1) show the accuracy when the network
classifies the most recently learned task (i.e., learning new information) for N200 and
N400, respectively. Here, the ASP achieves better accuracy than the baseline, since it
employs an adaptive learning rate and weight decay, while the baseline does not consider
the dynamic tasks in its learning. Meanwhile, our SpikeDyn improves learning capabilities
more than the ASP, i.e., improving the accuracy by up to 38% (avg. 23%) than the ASP
for N200, and by up to 29% (avg. 21%) for N400. The reason is that, the SpikeDyn
employs: (1) a more careful mechanism to determine the rates of weight potentiation
and depression for learning new features, (2) an appropriate neurons’ threshold potential
to adjust some neurons to be active in the learning process, (3) weight decay rate that
effectively removes the old and insignificant information, and (4) reduction of the spurious
weight updates.

Case-2: Figure 4.51(a.2) and Figure 4.51(b.2) show the accuracy when the network
classifies the previously learned tasks (i.e., retaining old information) for N200 and N400,
respectively. The baseline performs the worst as it does not decrease the weights, thereby
suffering from mixed information in its synapses. Here, our SpikeDyn shows comparable
accuracy to the ASP. The SpikeDyn improves the accuracy by up to 36% (avg. 4%)
than the ASP for N200, and by up to 37% (avg. 8%) for N400. The reason is that, the
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Figure 4.51: Accuracy in the dynamic environments: for most recently learned task in
(a.1) N200, (b.1) N400; and for the previously learned tasks in (a.2) N200, (b.2) N400.
Accuracy in the non-dynamic environments: over the presentation of training samples in
(c.1) N200 and (c.2) N400.

SpikeDyn employs: (1) a neurons’ threshold potential that tunes some neurons to be
inactive in the learning process, thereby retaining the old yet significant information,
and (2) weight decay rate that does not remove the old yet significant connections.
Furthermore, we also observe that, some classes are relatively difficult to learn in dynamic
scenarios, especially in the case of retaining old information. For instance, in N400 case,
the accuracy for classifying digit-4 is low, as indicated by label- 1 in Figure 4.51(b.2). It is
because a considerable number of misclassification happens when the digit-4 is recognized
as another digit (i.e., digit-9), as indicated by label- 2 in Figure 4.52(b). The reason is
that, the learned features from digit-4 are gradually changed to represent the features
of digit-9 over a training period, due to their overlapped features and the sequence of
learning tasks. Therefore, some neurons that recognize digit-4 at the early of the training
period, are changed to recognize digit-9 at the end of the training period.
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Figure 4.52: Confusion matrices of the SpikeDyn for classifying the previously learned
tasks, which show the relation between the target labels and the predicted labels in (a)
N200 and (b) N400.

Non-dynamic Environments: Figure 4.51(c.1) and Figure 4.51(c.2) show the accuracy
over the presentation of training samples for N200 and N400, respectively. The results
show that our SpikeDyn achieves comparable accuracy to other techniques. The reason
is that, our SpikeDyn employs effective learning rates to potentiate and decrease the
weights, while reducing the spurious updates. In this manner, each weight update is
adjusted appropriately, and hence the accuracy is maintained. Such observations are
important, as SNN systems may have a different number of training samples available
from the environment. Therefore, the users can devise a strategy to define the minimum
training samples for achieving the targeted accuracy.

4.5.6.2 Reduction of Energy Consumption

Figure 4.53 shows that our SpikeDyn reduces energy consumption as compared to other
techniques, across different sizes of networks and different GPUs, for both dynamic and
non-dynamic environments. For N200, our SpikeDyn reduces the energy consumption
from the ASP by up to 59% (avg. 57%) for training, and by up to 54% (avg. 51%) for
inference. For N400, our SpikeDyn reduces the energy consumption from the ASP by up
to 66% (avg. 51%) for training, and by up to 54% (avg. 37%) for inference. The energy
savings in training come from the elimination of the inhibitory neurons, the reduction of
spurious updates as well as exponential calculations. Meanwhile, the energy savings in
inference mainly come from the elimination of inhibitory neurons. Furthermore, we also
observe the processing time of the SpikeDyn for the training and inference phases (see
Table 4.4). The results show that running an SNN model on the Embedded GPU (Jetson
Nano) requires a longer time than the GPGPUs, as the Embedded GPU has less number
of cores, memory size, and bandwidth. Therefore, the users should devise a strategy for
defining the number of samples in the training and inference phases, to comply with the
use-cases’ requirements, especially for the embedded applications.

178



4.6. lpSpikeCon: Enabling Low-Precision SNNs in Unsupervised Continual Learning Settings

0.00
0.50
1.00
1.50

Net200 Net400

0.00
0.50
1.00
1.50

Net200 Net400

0.00
0.50
1.00
1.50

Net200 Net400

Baseline ASP SpikeDyn

0.00
0.50
1.00
1.50

Net200 Net400
0.00
0.50
1.00
1.50

Net200 Net400

0.00
0.50
1.00
1.50

Net200 Net400

(a) Jetson Nano (b) GTX 1080 Ti (c) RTX 2080 Ti
(a.1)

(a.2)

(b.1)

(b.2)

(c.1)

(c.2)

Tr
ai

ni
ng

In
fe

re
nc

e

1.5
1.0
0.5

0

1.5
1.0
0.5

0

N200                  N400                   N200                  N400                   N200                  N400

N200                  N400                   N200                  N400                   N200                  N400
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inference phases, and across different sizes of networks and different GPUs.

Table 4.4: Processing tome of the SpikeDyn on full MNIST dataset.

Process Jetson Nano GTX 1080 Ti RTX 2080 Ti
N200 N400 N200 N400 N200 N400

Training (hours) 35.0 36.3 5.0 5.3 3.9 4.1
Inference (hours) 4.7 4.8 0.7 0.7 0.6 0.6

Inference of an image 1.71 1.74 0.25 0.25 0.2 0.2(seconds)

4.5.7 Summary of SpikeDyn Framework

We propose a novel SpikeDyn framework that supports a lightweight unsupervised
continual learning for SNNs while reducing their energy consumption, by optimizing the
SNN operations and improving the learning algorithm. The experimental results show
that our SpikeDyn incurs less energy consumption and improves accuracy, as compared to
the state-of-the-art in both dynamic and non-dynamic environment scenarios. Therefore,
our SpikeDyn may enable energy-efficient embedded SNNs with one-time deployment.

4.6 lpSpikeCon: Enabling Low-Precision SNNs in
Unsupervised Continual Learning Settings

This section aims at addressing Problem-5 with the solution for efficiently implementing
low-precision SNNs with unsupervised continual learning capabilities under tight memory
constraints.

4.6.1 Motivational Study

To understand the accuracy profile of SNNs with low-precision weights under dynamic
environment settings, we perform an experimental case study. Here, we perform experi-
ments that provide dynamic environment scenarios to the network by feeding consecutive
tasks/classes using training samples, train the network accordingly, then evaluate the
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Figure 4.54: (a) Weight memory of a 400-neuron network with different learning conditions:
No Unsupervised Continual Learning (No UCL) with 32-bit weights; Baseline UCL with
32-bit weights, adapted from [PS21b]; and Baseline UCL with 4-bit weights, using
quantization. (c) Accuracy of a 400-neuron network with different learning conditions.
In this work, we consider the UCL algorithm from the work of [PS21b].

trained network using the test samples for tasks/classes that have been fed so far.
Following are the steps of experiments using the MNIST dataset.

• First, we feed a stream of training samples for digit-0, and train the network accordingly.
Then, we evaluate the trained network using the test samples for digit-0.

• Second, we repeat the above steps but for training digit-1, then evaluate the trained
network using the test samples for digit-0 and digit-1.

• The above steps are repeated but for training another digit, and testing the digits
that have been learned so far, until all 10 digits in the MNIST dataset are used for
training and testing.

Our experiments consider the fully-connected network architecture shown in Figure 4.46(a)
and different learning conditions: (1) No Unsupervised Continual Learning (No UCL); (2)
Baseline UCL with 32-bit weights, adapted from [PS21b]; and (3) Baseline UCL with 4-bit
weights. Further details of the experimental setup are presented in Section 4.6.5. The
experimental results are shown in Figure 4.54(b)-(c), from which we make the following
observations.

• The unsupervised continual learning improves the accuracy under dynamic scenarios,
due to its carefully crafted weight potentiation/depression strategy to learn new
features, while retaining old yet important ones.

• Reduction of weight precision can significantly save the SNN weight memory, e.g.,
reducing precision from 32-bit to 4-bit weights enables 8x weight memory saving.
However, it may degrade the quality of unsupervised continual learning due to knowl-
edge/information loss.

• A network with 4-bit weights and continual learning may achieve higher accuracy
than a network with 32-bit weights but no continual learning, thereby showing the
potential of memory reduction for a network under dynamic scenarios.
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4.6.2 Scientific Research Challenges
These observations highlight the following key challenges to devise an efficient solution
for the targeted problem.

• Quantization should be performed judiciously to remove non-significant information in
each weight, hence retaining most of the important information and maintaining the
learning quality (i.e., high accuracy).

• The solution should employ simple yet effective enhancements to compensate for the
information loss due to weight quantization, thus enabling energy-efficient learning.

Required: An optimization technique that effectively performs unsupervised continual
learning for SNNs with quantized weights under dynamic environments, thus enabling
their implementation on tightly-constrained embedded systems (e.g., autonomous agents).

4.6.3 Novel Contributions
To address the above challenges, we propose lpSpikeCon, a novel methodology that enables
low-precision Spiking neural network processing for efficient unsupervised Continual
learning. To the best of our knowledge, this work is the first effort that aims at reducing the
weight precision of SNNs, while maintaining the quality of unsupervised continual learning
under dynamic scenarios. Following are the key steps of our lpSpikeCon methodology
(see an overview in Figure 4.55).

• Analyzing the characteristics of SNN accuracy profiles for each given task
under different quantization levels and unsupervised continual learning settings.

• Identifying the SNN parameters that have a significant impact on the
accuracy. It leverages the accuracy analysis to determine SNN parameters and their
adjustment rules to get better neuronal dynamics for unsupervised continual learning,
and hence the accuracy.

• Devising an algorithm for determining SNN parameter values that effectively
improve the learning quality. It leverages the parameter adjustment rules for guiding
the algorithm to refine the parameter values for achieving high accuracy in dynamic
scenarios/environments.

4.6.4 lpSpikeCon Methodology
lpSpikeCon methodology employs the following steps [PS22a] (overview in Figure 4.56).

1. Analyzing the SNN accuracy profiles (Section 4.6.4.1) through the following.
• Quantizing the weights of a given network.
• Training the network with quantized weights using unsupervised continual learning

under dynamic scenarios.
• Observing the accuracy of each given task/class under different quantization levels.
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2. Identifying the SNN parameters and their adjustment rules for unsuper-
vised continual learning (Section 4.6.4.2) through the following.
• Leveraging the accuracy analysis to select SNN parameters that have a significant

impact on accuracy.
• Devising the adjustment rules for the selected parameters (e.g., threshold potential

vth) to derive better neural dynamics for unsupervised continual learning.
3. Devising an algorithm that refines SNN parameter values for the learning

process (Section 4.6.4.3). It is done by leveraging the adjustment rules to gradually
increase/decrease parameter values that improve the learning quality.

Note, the lpSpikeCon-enhanced SNN systems need to be scheduled for updating their
offline-trained knowledge regularly at run time. The update is performed through online
training using data gathered from the operational environments. After completing the
training mode, the systems are back to the inference mode. Here, the online training can
be scheduled based on user-defined mechanisms (e.g., the online training is performed
with training samples each time the system has performed inference for a certain number
of input samples). In this manner, the SNN systems are expected to adapt better to
diverse operational environments than the offline-trained ones.

4.6.4.1 Analyzing the SNN Accuracy Profiles

To devise a lightweight solution that enables efficient unsupervised continual learning for
a quantized SNN, it is important to understand the characteristics of SNN accuracy for
each given task/class under different quantization levels and dynamic scenarios. To do
this, we perform the following steps.

• We quantize the weights of a given SNN model using the truncation approach, as
described in Section 2.5.1.

• Then, we train the quantized model using unsupervised continual learning under
dynamic scenarios. To do this, we feed consecutive tasks/classes using the training
samples, train the model accordingly, then evaluate the trained model using the test
samples for tasks/classes that have been fed so far. Pseudo-code of this step is also
presented in Algorithm 11.

182



4.6. lpSpikeCon: Enabling Low-Precision SNNs in Unsupervised Continual Learning Settings

Enhanced 
Low-Precision 

SNN Model with 
Continual Learning

Autonomous 
Mobile System 

(e.g., Drone)

Environment        

Analyze the SNN Accuracy Profiles 

… …

Dynamic 
Environments

Quantization
0 0 1 1 0 1 0 1

0 0 1 1 0 1 0 1

Accuracy 
Profiles 

Observation

Training

0

50

100

0 1 2 3 4 5 6 7 8 9

Identify the SNN Parameters 
and their Adjustment Rules

rules

Adjustment 
Rules

SNN Parameters Adjustment

params

0

50

100

0 1 2 3 4 5 6 7 8 9

adjust params

Explore the Adjustment Values

Parameter 
Selection

params

Adjustment 
Rules

Evaluate 
the SNN 
Accuracy

Dataset

Neural Coding

Learning Rule

Neuron Model

SNN Architecture

Quantization Levels 
for Weights

Trained & Quantized 
SNN Model

Figure 4.56: An overview of the lpSpikeCon methodology. The novel contributions are
highlighted in blue.

• Afterward, we observe the profiles of inference accuracy for each given task/class
under different levels of weight quantization, to understand the sources of accuracy
degradation and get insights on how to address it.

The experimental results are presented in Figure 4.57, from which we make the following
key observations.

• In general, reduced weight precision degrades the accuracy of unsupervised continual
learning due to information loss. The accuracy degradation is noticeable especially for
tasks that are learned at the later training sequence, as shown by labels 1 , 2 , and
3 in Figure 4.57.

• Lower weight precision also leads to lower accuracy for more tasks. For instance, a
model with 4-bit weights suffers from very low accuracy (≤ 20% accuracy) on four
tasks, i.e., digit-6, digit-7, digit-8, and digit-9 (see label 3 in Figure 4.57), while a
model with 8-bit weights suffers from very low accuracy only on task digit-9 (see label
1 in Figure 4.57).

These observations lead to several insights for devising an efficient solution for the targeted
problem, as discussed in the following.
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Algorithm 11 Training and testing under dynamic scenarios
INPUT: (1) SNN model (modelin);

(2) Dataset (D): dataset for class-i (D[i]), training set for class-i (D[i].train), testing set for
class-i (D[i].test);

OUTPUT: (1) Trained SNN model (modelout);
(2) Accuracy (acc)

BEGIN
Initialization:

1: modelout = modelin;
Process:

2: task = class(D)
3: for i ∈ task do
4: modelout ← train(modelout, D[i].train);
5: for k = 0 to i do
6: acc[i, k] = test(modelout, D[k].test);
7: return modelout;

END

• Reduced weight precision has a less memory capacity for storing unique information
from new tasks, thereby making the quantized SNN model difficult to recognize novel
features from new tasks.

• Different SNN models with different levels of weight precision have different accuracy
profiles. Hence, such models require specialized settings for achieving high accuracy.

The above discussion indicates that, the potential solution is employing parameter
adjustments that provide more available memories for storing novel information from new
tasks and consider specialized settings for different levels of weight precision. Hence, costly
additional components and/or operations can be avoided, leading to efficient learning.

4.6.4.2 Identifying SNN Parameters and Their Adjustment Rules

The analysis in Section 4.6.4.1 suggests that the efficient solution is by employing
parameter adjustments for the given quantized SNN model. Therefore, it is important to
identify SNN parameters that have a significant impact on accuracy, and their effective
adjustment rules for improving learning quality of the quantized model.

SNN Parameters: To identify SNN parameters that should be adjusted for better
learning quality, we leverage the analysis from Section 4.6.4.1. The analysis shows that
the reduced weight precision makes the model difficult to learn tasks that appear at the
later training sequence. This means that the weight bits are strongly associated with the
previously learned tasks, and not flexible enough to change their context to another task.
To address this, we adjust the neuronal dynamics so that the synaptic plasticity becomes
more flexible for learning new tasks, especially when low weight precision is employed.
To do this, we adjust two parameters to change the flexibility of neuronal dynamics
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Figure 4.57: The accuracy profiles of a 400-neuron network for the MNIST dataset under
different levels of weight precision (i.e., 32, 12, 8, 6, and 4 bits) and dynamic scenarios.
The colored line represents the accuracy for each task/class throughout the consecutive
training phases from digit-0 to digit-9. The grey bar represents the average accuracy
after each training phase of a task/class.

for learning activity: adaptive membrane threshold potential (vth) and weight decay rate
(wdecay). This selection is based on the following reasons.
• vth determines how far vmem should be increased to generate a spike, which then

triggers weight potentiation for learning. The distance between vth and vmem is
inversely proportional to the frequency for learning activity.

• wdecay determines how fast each synaptic weight is depressed for removing the learned
information, and providing available memory for storing novel information from new
tasks (classes).

Adjustment Rules: To properly adjust the selected SNN parameters (i.e., vth and
wdecay) for achieving better learning quality of a quantized SNN model, we propose the
following parameter adjustment rules.
• In the non-quantized model, vth is set with a value that prevents catastrophic forget-

ting [CL18, PKP+19, MC89, PS21b]. Therefore, to make vth more suitable for the
quantized model, its value should be less or equal (≤) than vth of the non-quantized
model. In this manner, each neuron is expected to reach vth faster and to generate
spikes more frequently, which triggers learning activity for any incoming tasks.
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• In the non-quantized model, wdecay is set with a value that provides available memory
for storing learned information from new tasks. Hence, to make wdecay more suitable
for the quantized model, its value should be greater or equal (≥) than wdecay of the
non-quantized model. In this manner, each weight is expected to decay faster, hence
providing available memory for storing learned features from any incoming tasks.

To justify these rules, we perform an experimental case study to see the impact of our
adjustment rules, i.e., “decreased vth” and “increased wdecay”. Experimental results are
provided in Figure 4.58. These results show that our adjustment rules improve the quality
of unsupervised continual learning for both “decreased vth” and “increased wdecay” cases,
since each case has less number of tasks with very low accuracy, i.e., ≤ 20% accuracy
(see labels 4 and 5 in Figure 4.58), as compared to the model with 4-bit weights and
baseline continual learning (see label 3 in Figure 4.57).
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Figure 4.58: The accuracy profiles of a 400-neuron network with 4-bit weights on the
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(baseline θ − 0.2). These adjustment values are manually selected to clearly see their
impacts on accuracy.

4.6.4.3 An Algorithm for Refining SNN Parameter Values

To properly adjust the values of the selected SNN parameters, a systematic mechanism
is required. Toward this, we propose an algorithm that leverages our adjustment rules to
refine the selected SNN parameter values (vth and wdecay) for achieving better learning
quality, especially under dynamic scenarios. This algorithm is developed based on the
following ideas, and the detailed steps are provided in Algorithm 12.
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• The range of values for each selected SNN parameter (vth or wdecay) should be defined
for guiding the design space exploration. The lower-bound value for vth is vl

th, while
the upper-bound value for wdecay is wu

decay.
• The accuracy for each task (acctask) should not be less or equal (≤) than the defined

value. Therefore, if we consider acclow as the borderline of low accuracy, then the
acceptable accuracy for each task is defined as follows.

acctask > acclow (4.16)

• The average accuracy of the lpSpikeCon-enhanced SNN model (acc∗
avg) should be

within an acceptable accuracy loss. Hence, if we consider accavg as the average accuracy
of the non-quantized SNN model with baseline unsupervised continual learning, and
accloss as the acceptable accuracy loss, then the acc∗

avg is defined as follows.

acc∗
avg ≥ (accavg − accloss) (4.17)

Algorithm 12 Adjustment steps for SNN parameter values
INPUT: (1) SNN: baseline non-quantized model (modelin), weight decay rate (wdecay), upper-

bound of wdecay (wu
decay);

(2) Exploration variables: investigated/evaluated model (modeleval), increasing step for
wdecay (step_w), decreasing step for vth (step_vth);
(3) Functions: accuracy for each task (acctask), average accuracy of the given model (acc),
acceptable accuracy loss (accloss);

OUTPUT: Trained SNN model (modelout);
BEGIN

Initialization:
1: modelout = modelin;

Process:
2: for (p = wdecay; p ≤ wu

decay; p = p + step_w) do
3: for (q = vth; q ≥ vl

th; q = q − step_vth) do
4: modeleval = modelin;
5: update the values of selected SNN parameters;
6: perform training and test on modeleval using Algorithm 11
7: if (acctask(modeleval) > acclow) and (acc(modeleval) ≥ (acc(modelin) − accloss))

then
8: if (acc(modeleval) ≥ acc(modelout)) then
9: modelout = modeleval

10: return modelout;
END

4.6.5 Evaluation Methodology
Figure 4.59 shows the experimental setup for evaluating the lpSpikeCon methodology.
We employ a Python-based framework [HSK+18] that runs on a multi-GPU machine
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(i.e., Nvidia RTX 2080 Ti) and an Embedded-GPU machine (i.e., Nvidia Jetson Nano) to
perform evaluations on different platforms with different memory and compute capabilities.
We employ a single-layer fully-connected network shown in Figure 4.46(a) with different
network sizes (i.e., 200 and 400 excitatory neurons), since it has shown the capabilities for
performing unsupervised continual learning under resource- and power/energy-constrained
embedded platforms [PS21b].

SNN model (.pt)
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Dataset
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Run on GPUPython-based Framework

Unsupervised 
continual 
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Quantization 
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Trained SNN
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Figure 4.59: The experimental setup for evaluating our lpSpikeCon methodology.

We consider the MNIST dataset as workload, since it has been widely used for evaluating
unsupervised continual learning in the SNN community [AR16, PARR18, AR20, PS21b].
For the baseline unsupervised continual learning, we consider the learning strategy from
SpikeDyn [PS21b]. The evaluation is performed under both non-dynamic and dynamic
environment scenarios. Non-dynamic environment scenario is provided by feeding the
network with training samples whose tasks/classes are randomly distributed. It aims at
simulating conventional offline training where all training samples are already available.
Meanwhile, dynamic environment scenario is provided by feeding the network with
consecutive tasks/classes, where each task/class has the same number of samples, and
without re-feeding previous tasks/classes. It aims at simulating an extreme condition
where the deployed SNN system receives training tasks in a consecutive manner from the
environment at run time for updating its learned information/knowledge.

4.6.6 Results and Discussion
4.6.6.1 Maintaining Accuracy under Quantized Weights

Dynamic Environment Scenario: We evaluate accuracy considering different network
sizes (i.e., 200 and 400 excitatory neurons) and different weight precision levels (i.e., 32,
16, 14, 12, 8, 6, and 4 bits). The experimental results are provided in Figure 4.60 and
Figure 4.61 for a 200-neuron network and 400-neuron network, respectively. These results
show that lower weight precision leads to lower accuracy for more recognition tasks due
to information loss. For instance, in a 200-neuron network, 6-bit weights lead to very low
accuracy (i.e., ≤ 20%) on one task (see label 1 ), while 4-bit weights lead to very low
accuracy on four tasks (see label 2 ). Such patterns are also observed in a 400-neuron
network, as shown by labels 5 and 6 .
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Figure 4.60: The accuracy profiles of a 200-neuron network under different levels of weight
precision and dynamic scenarios. The colored line represents the inference accuracy
for each task/class throughout the consecutive training phases. The grey-colored bar
represents the average accuracy after each training phase of a task/class. The pattern-
coded bar represents the average accuracy for all evaluated tasks/classes.

The experimental results also show that our lpSpikeCon methodology can improve the
accuracy of the quantized SNNs, which can be observed in two aspects. First, the
lpSpikeCon-enhanced SNNs do not suffer from very low accuracy (i.e., ≤ 20%) for
recognizing any tasks/classes; see labels 3 and 4 for a 200-neuron network, and labels
7 and 8 for a 400-neuron network. Second, the lpSpikeCon-enhanced SNNs also achieve
no accuracy loss on average when compared to the non-quantized SNNs with baseline
unsupervised continual learning, across different network sizes. For instance, in a 200-
neuron network, average accuracy for the 6-bit and 4-bit weights with lpSpikeCon is
65%, which is slightly higher than the 32-bit weights with baseline learning (i.e., 62%);
see labels A and B . A similar pattern is also observed in a 400-neuron network, as
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coded bar represents the average accuracy for all evaluated tasks/classes.

the average accuracy for the 6-bit and 4-bit weights with lpSpikeCon are 68% and 67%
respectively, which are slightly higher than the 32-bit weights with baseline learning (i.e.,
66%); see labels C and D . These accuracy improvements are due to proper adjustments
on the selected SNN parameters (i.e., vth and wdecay). These adjustments trigger the
neuronal dynamics in the SNN system to quickly provide available memory for learning
new tasks through the “increased wdecay” approach, and trigger learning activity for any
incoming tasks (including the new tasks) through the “decreased vth” approach. From the
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results, we also observe that in a certain case, the lpSpikeCon-enhanced model may have
lower average accuracy than the non-enhanced model under the same weight precision.
For instance, in the 200-neuron network with 8-bit weights, our lpSpikeCon-enhanced
model achieves 63% accuracy (see label E ), while the non-enhanced one achieves 65%
(see label F ). The reason is that, the lpSpikeCon considers the borderline of low accuracy
(acclow) as a constraint to determine the parameter adjustments and the output model.
Therefore, since the non-enhanced model has lower accuracy than the defined acclow for
one task, this model is not considered as the solution (see label 9 ).

Non-Dynamic Environment Scenario: We evaluate accuracy considering different
network sizes (i.e., 200 and 400 excitatory neurons) and different weight precision levels
(i.e., 32, 16, 14, 12, 8, 6, and 4 bits), and the experimental results are provided in
Figure 4.62. These results show that, our lpSpikeCon-enhanced SNNs can achieve
comparable accuracy to the non-enhanced SNN counterparts (i.e., SNNs that employ
baseline unsupervised continual learning under the same weight precision). For instance,
in the 400-neuron network with 6-bit weights, our lpSpikeCon-enhanced SNN achieves
78% accuracy and the non-enhanced one achieves 75% accuracy; while in the case of the
4-bit weight, the lpSpikeCon-enhanced SNN achieves 71% accuracy and the non-enhanced
one achieves 77% accuracy, as highlighted by label G . The reason is that, our lpSpikeCon
methodology performs exploration for parameter adjustments within a range of values
that is close to the baseline settings. In this manner, proper adjustment values can
be found fast, and these values are expected to preserve good characteristics from the
baseline settings of unsupervised continual learning, such as achieving high accuracy
under non-dynamic environment scenario.
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Figure 4.62: The accuracy of (a) a 200-neuron network, and (b) a 400-neuron network,
under different levels of weight precision and non-dynamic scenarios. Here, the non-
enhanced SNN refers to the model that employs baseline unsupervised continual learning.

4.6.6.2 Weight Memory Savings for Efficient SNN Systems

Figure 4.63 shows the memory requirements of different SNN models under different
levels of weight precision. These results show that weight quantization in our lpSpikeCon
methodology can significantly decrease the memory footprint, since fewer bits are required
to represent all weight parameters of an SNN model. For instance, a model with 8-bit
weights reduces the weight memory by 4x (as shown by label H ), while a model with
4-bit weights reduces the weight memory by 8x (as shown by label I ), as compared to the
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non-quantized model which employs 32-bit weights. This weight quantization also reduces
the memory access requirements, thereby decreasing the number of (off-chip and on-chip)
memory accesses. For instance, a non-quantized model requires a single DRAM-based
off-chip memory access for obtaining a 32-bit weight, while a quantized model with 8-bit
weight can access four weights from a single 32-bit DRAM access [PHS20, PHS21b]. This
reduction of memory access requirements is important to enable energy-efficient SNN
systems mainly for two reasons. First, memory accesses typically dominate the energy
consumption of SNN systems, i.e., about 50%-75% of the total energy consumption of
an SNN accelerator [KSVR19]. Second, online training with unsupervised continual
learning requires frequent data accesses to memory for updating the weight values at
run time. Therefore, reduction of memory access requirements can significantly save the
overall system energy, which is especially beneficial for memory- and energy-constrained
autonomous agents/systems.
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Figure 4.63: Weight memory requirements of SNN models with different sizes of the
network (i.e., 200 and 400 excitatory neurons) and different weight precision, which are
normalized to the non-quantized SNN model (i.e., 32-bit weights).

The above results and discussion highlight that our lpSpikeCon methodology provides
several benefits as compared to the baseline [PS21b], including better learning quality
under dynamic environments and lower weight precision, a smaller memory footprint,
and higher energy efficiency. Furthermore, our lpSpikeCon can be extended further by
incorporating network-specific parameters that have significant impacts on the accuracy.
For instance, networks with multiple layers may have additional parameters that should
be considered for better adjustments toward adapting to new/unseen features.

4.6.7 Summary of lpSpikeCon Methodology
We propose a novel lpSpikeCon methodology to enable low-precision SNN processing for
efficient unsupervised continual learning under tight memory budgets (e.g., autonomous
agents/systems), through three key steps: (1) analysis of the SNN accuracy profiles,
(2) identification of SNN parameters and their adjustment rules, and (3) refinements of
parameter values for learning process. As result, our lpSpikeCon significantly reduces the
weight memory of an SNN model, while maintaining accuracy in both dynamic and non-
dynamic scenarios, as compared to the non-quantized model. Therefore, our lpSpikeCon
methodology may enable memory- and energy-efficient autonomous agents/systems that
are adaptive to diverse operational environments.
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4.7 Summary of Energy-Efficient SNN Systems
This chapter discusses our novel methodology for enabling energy-efficient SNN systems.
It systematically addresses the targeted problems using our proposed HW/SW-level
design and optimization techniques. Specifically, it aims at optimizing the memory and
power/energy requirements for SNN processing in both training and inference phases
through the reduction of SNN operations, exploration of different quantization techniques
for multiple SNN parameters, and employment of approximate DRAM to substantially
reduce the dominating power/energy consumption on SNN accelerators while mitigating
the negative impact of approximation errors. Furthermore, our proposed techniques
also enhance the SNN capabilities to perform unsupervised continual learning for the
online learning process through the enhancements of learning rate and the adjustments of
multiple SNN parameters (e.g., weight decay and neurons’ threshold potential). In this
manner, the SNN systems can perform training and inference in tight memory and energy
budgets, including their online learning process to continually adapt to diverse operational
environments, thereby making such systems suitable for many resource-constrained AI
applications (e.g., Edge-AI and Smart CPS). Besides energy efficiency, the SNN systems
also need to have reliable processing in the presence of faults. Toward this, Chapter 5
discusses our novel methodology to enable fault-tolerant SNN systems and the respective
findings, thereby jointly enabling energy-efficient and fault-tolerant SNN systems.
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CHAPTER 5
Fault-Tolerant SNN Systems

This chapter discusses our novel methodology for achieving fault-tolerant SNN systems.
This chapter first identifies the problems toward enabling fault-tolerant SNN inference
systems in Section 5.1. Then, to systematically address the research problems, we propose
a novel methodology that employs our proposed HW/SW-level fault mitigation techniques
for fault-tolerant SNN systems. Specifically, the proposed design flow addresses HW-level
approximation-induced errors, permanent faults, and transient faults (i.e., soft errors) as
shown in Figure 5.1, and the details of novel contributions are described in the following
sections in this chapter. Section 5.2 discusses a framework for mitigating approximation-
induced errors and permanent faults in the off-chip and on-chip memories of neuromorphic
accelerators through fault-aware training and mapping. Section 5.3 discusses a methodol-
ogy for mitigating permanent faults in the compute engine of neuromorphic accelerators
through fault-aware mapping and the corresponding hardware enhancements without
costly retraining. Furthermore, Section 5.4 discusses a methodology for mitigating soft
errors that occur in the compute engine of neuromorphic accelerators through weight
bounding, neuron protection, and the corresponding hardware enhancements.

5.1 Problem Identification
Current trends show that large-sized SNN models are more favorable than the smaller
ones since they usually can achieve higher accuracy, but at the cost of higher memory
footprint and energy consumption [PS20], as illustrated in Figure 4.2. To address these
challenges, neuromorphic accelerators have been developed to improve the performance
and energy efficiency of SNN-based applications [BDFZ22]. However, these neuromorphic
accelerators may suffer from accuracy degradation when SNN processing is performed
under the presence of HW-induced faults in the off-chip and on-chip memories; see A
and B in Figure 5.2. The reason is that, faulty memories can alter the values of stored
data (e.g., through bit flips), thereby providing incorrect values for SNN computation
and leading to incorrect outputs.
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Figure 5.1: An overview of the design flow of this chapter.

These faults may come from different sources, as explained in Section 2.4.1 and briefly
described in the following.

• Manufacturing defects: The imperfections in the chip fabrication process can cause
defects in memory cells, hence degrading their functionality. Chips that contain faults
are typically discarded/unused, thereby reducing the yield of chips [KK98].

• Voltage-induced approximation errors: The operational voltage of memories can be
reduced to decrease the power and energy consumption, at the cost of increased fault
rates [GKTB15, CYG+17a].

The state-of-the-art works mainly proposed training-based fault-tolerance strategies
without considering the underlying SNN HW architectures. For instance, techniques
in [SESA+21] employed training with dropouts, neuron saturation detection, and TMR;
while techniques in [RLIS21] employed retraining with additional astrocyte units. There-
fore, the impact of bit-level faults in the off-chip and on-chip memories of neuromorphic
accelerators on the accuracy, as well as the respective fault mitigation techniques, are
still unexplored. Moreover, the existing fault mitigation techniques still rely on the costly
additional components and retraining process.

Problem-1: How can we efficiently mitigate bit-level faults in the off-chip and on-chip
memories of neuromorphic accelerators with minimum overheads.

Permanent faults can also affect the functionality of the compute engine of neuromorphic
accelerators, including the local weight registers (synapses) and neurons; see C and D in
Figure 5.2(a) and Figure 5.2(b). The reason is that, faulty synapses can corrupt the weight
values while faulty neurons can deteriorate the neuron behavior (i.e., membrane potential
dynamics and spike generation), thereby degrading the accuracy. Permanent faults can
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Figure 5.2: (a) The neuromorphic accelerator with faults in the off-chip and on-chip
memories: DRAM and weight buffer, as well as faults in the compute engine: synapses
(local weight registers) and neurons. (b) Permanent faults may exist in the form of
stuck-at 0 and stuck-at 1 faults. (c) High-energy particle strikes trigger soft errors as bit
flips in the HW layer, and result in incorrect output in the application layer.

come from different sources as explained in Section 2.4.1, i.e., manufacturing defects
during the chip fabrication process and transistors’ wear out and damages during the
run-time operation. These faults manifest as stuck-at 0 or stuck-at 1 at the HW layer (e.g.,
SNN compute engine), and can propagate to the application layer, resulting in incorrect
outputs (e.g., misclassification). Simply discarding the faulty chips at design time will
lead to low yield and increased per-unit cost of non-faulty chips, while stopping the
executions on faulty chips at run time will lead to a short operational lifetime. Therefore,
alternate low-cost solutions for mitigating permanent faults in the SNN compute engine
are required. Mitigating permanent faults in the compute engine is important as it may
significantly improve the reliability of SNNs, considering that this engine is responsible
for computing all SNN parameters which dominantly affects the outputs of processing.

The state-of-the-art works proposed fault-aware training with the support of neuron
saturation detection and TMR [SESA+21], and additional astrocyte units [RLIS21],
without considering the underlying SNN HW architectures. Therefore, the impact of
permanent faults in the SNN compute engine on the accuracy, and the respective low-cost
fault mitigation techniques, are still unexplored.

Problem-2: How can we efficiently mitigate permanent faults in the compute engine
of neuromorphic accelerators with minimum overheads.
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5. Fault-Tolerant SNN Systems

The neuromorphic accelerators may also suffer from accuracy degradation when SNN
processing is performed under the presence of transient faults (i.e., soft errors) in the
SNN compute engine, including the local weight registers (synapses) and neurons; see C
and D in Figure 5.2(a) and Figure 5.2(c). These soft errors occur due to high-energy
particle strikes which can come from cosmic rays or packaging materials [Bau05], as
discussed in Section 2.4.1. These errors manifest as bit flips at the HW layer, and can
propagate to the application layer, resulting in incorrect outputs [Bau05]. Soft errors in
the local weight registers (synapses) and the neurons can affect the functionality of the
SNN compute engine, e.g., by corrupting the weight values and the behavior of neuron
operations including operations for membrane potential dynamics and spike generation.
Therefore, alternate low-cost solutions for mitigating soft errors in the SNN compute
engine are required. Mitigating soft errors in the compute engine is important as it may
significantly improve the reliability of SNNs, considering that this engine dominantly
affects the outputs of processing. However, state-of-the-art works have not studied the
SNN fault tolerance considering soft errors in the underlying hardware. Therefore, the
impact of soft errors in the compute engine (i.e., local weight registers and neurons) on
the accuracy, and the respective lightweight mitigation techniques are still unexplored.

Problem-3: How can we efficiently mitigate soft errors in the compute engine of
neuromorphic accelerators with minimum overheads.

Benefits: The solution to these problems will enable reliable SNN processing even in the
presence of permanent and transient faults in the memories and compute engine of neu-
romorphic accelerators for energy-constrained embedded platforms and their applications
for Edge-AI and Smart CPS. The solution will also enable wafer-scale chips for SNNs
where embracing permanent faults is important to maintain the yield, and reduce the
per-unit cost of the neuromorphic chips.

Proposed Solution: To systematically address the above problems, we propose a
comprehensive solution which is discussed in several sections. Specifically, Problem-1,
Problem-2, and Problem-3 are addressed in Section 5.2, Section 5.3, and Section 5.4,
respectively.

5.2 ReSpawn: Energy-Efficient Fault-Tolerance for SNNs
considering Unreliable Memories

This section aims at addressing Problem-1 with the solution for efficiently mitigating
bit-level faults in the off-chip and on-chip memories of the SNN neuromorphic accelerators.

5.2.1 Motivational Study
To understand the impact of faults in the memories of neuromorphic accelerators on the
accuracy, we perform experiments that explore different fault rates in the DRAM-based
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Figure 5.3: (a) Impact of faults in the DRAM and the weight buffer on the accuracy. (b)
Increasing fault rates in weight memories lead to accuracy degradation, and fault-aware
training (FAT) can improve the SNN fault tolerance.

off-chip memory and the SRAM-based on-chip weight memory (i.e., weight buffer), while
considering the typical architecture of neuromorphic accelerators shown in Figure 2.14.
Here, we consider 256x256 synapses with 8-bit precision of weights, 256 neurons, a 2Gb
DDR3-1600 DRAM, a 32 KB weight buffer, and a uniform random distribution of faults
on each bank of the DRAM and the weight buffer in the form of bit flips. For the network,
we consider the FC-based SNN in Figure 4.8(a) with 900 excitatory neurons. Further
details on the experimental setup are presented in Section 5.2.6. The experimental results
are presented in Figure 5.3, from which we make the following key observations.

• Different fault rates in the DRAM and the weight buffer cause an SNN system to
obtain different accuracy scores. Higher fault rates in the DRAM and the weight
buffer typically lead to lower accuracy.

• Faults in the weight buffer have a relatively higher impact on the accuracy degradation
than the DRAM since its size is significantly smaller than the DRAM, and thereby
having a higher probability to affect more weights, as shown in Figure 5.3(a).

• Fault-aware training (FAT) techniques with progressive fault injection for neural
networks [KOY+19, PHS21c] can improve the SNN fault tolerance while incurring
high training time and energy consumption, as such techniques considers a wide range
of fault rates for the injection.

5.2.2 Scientific Research Challenges
The above observations expose key challenges that need to be solved for addressing the
targeted research problem, as discussed in the following.

• The fault-mitigation technique should minimize the impacts of faults in both, the DRAM
and the weight buffer , thereby improving the SNN fault tolerance.

• It should employ a technique that does not rely on retraining, as retraining needs a
full training dataset, which may not be available due to restriction policies (e.g., a
company releases an SNN model, but makes the training dataset unavailable).
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5. Fault-Tolerant SNN Systems

• It should incur low energy overhead at run time, as compared to the baseline (without
fault-mitigation technique) to enable energy-efficient SNN applications.

Required: A low-cost technique for mitigating the negative impact of faults in the off-chip
and on-chip weight memories of neuromorphic accelerators, thus enabling reliable SNN
inference in an energy-efficient manner.

5.2.3 Novel Contributions
To address the above challenges, we propose ReSpawn, a novel framework that enables
energy-efficient fault-toleRance for Spiking neural networks considering unreliable mem-
ories. To the best of our knowledge, this work is the first effort that mitigates the
negative impacts of faults in the off-chip and on-chip weight memories of neuromorphic
accelerators. Following are the key steps of the ReSpawn framework, and its overview is
shown in Figure 5.4.
1. Analyzing the fault tolerance of the SNN model to characterize the accuracy

values under the given fault rates. It is performed by adjusting the fault rates in the
memories, while checking the obtained accuracy.

2. Improving the fault tolerance of the SNN model whose strategies depend on
the availability of the training dataset.
• If the training dataset is not fully available, then the Fault-aware Mapping (FAM)

is employed through simple bit-shuffling techniques, that prioritize placing the bits
with higher significance in the non-faulty memory cells.

• If the training dataset is fully available, then the Fault-aware Training-and-Mapping
(FATM) is employed by including the information of the faulty memory cells in the
data mapping and training processes. Here, the data mapping strategy follows the
proposed FAM technique.
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Figure 5.4: An overview of our novel contributions, which are shown in blue boxes.

200



5.2. ReSpawn: Energy-Efficient Fault-Tolerance for SNNs considering Unreliable Memories

0

2

4

6

8

1.025 1.125 1.225 1.325

Supply Voltage [V]

10-2

10-4

10-6

10-8

0
1.025     1.125     1.225     1.325

Bit-level fault 
rate increases 
as the voltage 

decreases 

(a)

1.0E-16
1.0E-14
1.0E-12
1.0E-10
1.0E-08
1.0E-06
1.0E-04
1.0E-02
1.0E+00

0.3 0.4 0.5 0.6 0.7 0.8 0.9
Supply Voltage [V]

100

10-4

10-8

10-12

10-16

Pr
ob

ab
ili

ty
of

SR
AM

Ce
ll

Fa
ilu

re

Cell failure 
probability 

increases as the 
voltage decreases 

(b)
Fa

ul
tR

at
e

of
th

e
DR

AM

Figure 5.5: (a) DRAM fault rates and the corresponding DRAM voltage values, based on
the study in [CYG+17a]. (b) SRAM cell failure probability (Pcell) and the corresponding
SRAM voltage values for a 28 nm CMOS technology, based on the study in [GKTB15].
The yield of non-faulty cells is defined as Y = (1 − Pcell)M with M denotes the total
memory bit-cells.

5.2.4 Fault Modeling for Memories
We focus on the fault modeling for the DRAM and the SRAM weight buffer, since we aim
to accurately explore the impacts of hardware-induced faults in weight memories across the
hierarchy of a neuromorphic accelerator, as indicated by A and B in Figure 5.2. These
faults can come from manufacturing defects due to the imperfections in the fabrication
process [KK98, THG17, HKP+18, ZLK+19, SNT+20b], and reduced-voltage operation
which is performed for decreasing the operational power/energy [CYG+17a, GKTB15].

Faults from Manufacturing Defects: The neuromorphic HW accelerators are fab-
ricated using a sophisticated manufacturing process. Therefore, there is a chance of
imperfections that result in defects in the fabricated chips. Moreover, the technology
scaling (which is employed for improving the performance and efficiency of the chips)
may increase fault rates related to permanent faults at random locations of a chip.
Therefore, the faults from manufacturing defects can be modeled using a uniform random
distribution and can manifest in the form of bit flips, which has also been considered in
previous works [ZGBG18, HS20].

Faults from Reduced-Voltage Operations: The reduction of operational voltage is a
widely-used approach to reduce the operational power/energy of DRAM and SRAM-based
buffer, at the cost of increased fault rates, as shown in Figure 5.5. For DRAM, we follow
the fault model from [KOY+19], i.e., the faults are modeled by considering the weak
cells (i.e., cells that fail when the DRAM voltage is reduced), and the probability of a
fault in any weak cell. These faults typically have a uniform random distribution across
a DRAM bank and manifest in the form of bit flips. Meanwhile, for SRAM, we follow
the fault model from [GKTB15], i.e., the faults have a uniform random distribution
across an SRAM bank. The selection of the uniform random distribution as the fault
model for DRAM and SRAM, is motivated by the following reasons: (1) it produces
faults with high similarity to the real reduced-voltage DRAM [KOY+19] and the real
reduced-voltage SRAM [GKTB15]; and (2) it offers fast software-based fault injection.
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5. Fault-Tolerant SNN Systems

5.2.5 ReSpawn Framework
We propose the ReSpawn framework [PHS21a] to enable energy-efficient fault-tolerance
for SNN inference on unreliable off-chip and on-chip weight memories. The key steps of
our ReSpawn are shown in Figure 5.6 and discussed in the following sections.

1. Analyzing the SNN fault tolerance (Section 5.2.5.1): It aims at understanding
the interaction between the fault rates and the accuracy, by exploring different
combinations of fault rates in DRAM and weight buffer, while observing the accuracy
scores. This information is then leveraged for improving the SNN fault tolerance.

2. Improving the SNN fault tolerance through different strategies, depending on
the availability of the training dataset.

• Fault-aware Mapping (Section 5.2.5.2): This strategy is performed if the
training dataset is not fully available. It employs efficient bit-shuffling techniques,
that map the significant bits to the non-faulty memory cells and the insignificant
bits to the faulty ones. We propose two FAM techniques to offer accuracy-energy
trade-offs.
– FAM1: It considers the fault map from each memory as an individual fault

map, and devises a mapping pattern for each fault map.
– FAM2: It merges multiple fault maps from off-chip and on-chip memories to an

integrated fault map, and devises a mapping pattern for it accordingly.
• Fault-aware Training-and-Mapping (Section 5.2.5.3): This strategy is per-

formed if the training dataset is fully available. It uses the information of the faulty
memory cells in the data mapping and training processes. Here, the data mapping
strategy also follows the proposed FAM techniques (i.e., FAM1 and FAM2).

5.2.5.1 SNN Fault Tolerance Analysis

Understanding the fault tolerance of the given SNN model is important, because the
information from the analysis will be beneficial, especially for performing efficient fault-
mitigation techniques. Therefore, our ReSpawn framework analyzes the fault tolerance
of the SNN model to observe the interaction between memory faults and accuracy. It
is performed by exploring different combinations of fault rates in the DRAM and the
weight buffer, while observing the obtained accuracy. For instance, if we consider a
network with 900 neurons, our ReSpawn will explore different combinations of fault
rates in DRAM and weight buffer, and the experimental results are shown in Figure 5.7.
These results show two different regions, i.e., where fault rates in memories cause the
network to achieve acceptable accuracy, as shown by label- A , and where fault rates in
memories cause the network to suffer from notable accuracy degradation, as shown by
label- B . These regions provide insights regarding the tolerable fault rates that should
be considered to effectively improve the SNN fault tolerance.
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5.2.5.2 Fault-aware Mapping (FAM)

Faulty cells in memories that come from manufacturing defects and reduced-voltage
operations, can be characterized at design time. Therefore, their locations are known
before the deployment. Our ReSpawn leverages the information of faulty cells in the
DRAM and the weight buffer to effectively map the weights to memory fabrics, thereby
minimizing the impact of faulty cells on the significant bits. It is performed through
FAM that employs simple bit-shuffling techniques for placing the significant bits in the
non-faulty memory cells and the insignificant bits in the faulty ones.
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Furthermore, we observe that, a data word may have a single faulty bit or multiple
faulty bits, depending on whether this word occupies a memory segment that has a
single faulty cell or multiple faulty cells, as illustrated in Figure 5.8(a). Therefore, we
propose a mapping strategy that can address both, the single fault-per-word and multiple
faults-per-word scenarios.
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Figure 5.8: (a) Illustration of possible locations of faulty cells in memories. (b) The
proposed bit-shuffling technique, which is based on the right circular shift.

The proposed memory mapping strategy is performed by the following steps, which are
also illustrated in Figure 5.8(b).

• Step-1: Identifying the faulty cells in the given memories. This step aims at obtaining
information regarding faulty cells in each memory, such as fault rate and fault map.
The faulty cells in the on-chip buffer from manufacturing defects can be detected
using the standard post-fabrication testing [ZGBG18], and the faulty cells in the
DRAM can be detected through measurements, e.g., using SoftMC tool [HVK+17].
Meanwhile, the faulty cells from reduced-voltage operations can also be detected
through measurements on the DRAM [HVK+17] and on the on-chip buffer [GKTB15].
In this manner, collecting the faulty cell information is feasible as it follows the
standard post-fabrication testing and measurements.

• Step-2: Identifying the maximum fault rate allowed in a data word. This step aims at
determining which memory cells can be used for storing a data word, by considering
fault rates and accuracy from the SNN fault tolerance analysis in Section 5.2.5.1. For
instance, we allow a maximum of 2 faulty bits for an 8-bit data word.

• Step-3: Identifying the memory segment with the highest number of subsequent non-
faulty cells for storing a data word. It aims at maximizing the possibility of placing
the significant bits in the non-faulty cells. Therefore, we also examine the corner
case (i.e., the left-most memory cell with the right-most memory cell) as possible
subsequent non-faulty cells, as shown in the second row of Figure 5.8(b).
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• Step-4: Performing circular-shift technique for each data word. It efficiently performs
bit-shuffling by employing the right circular shift, and hence simplifying the control.

Since the FAM technique leverages the information of fault maps from multiple memories,
we propose two variants of FAM techniques to offer different accuracy-energy trade-offs,
which are discussed in the following.

FAM for Individual Fault Map (FAM1)

This technique considers an individual fault map from each memory (i.e., DRAM or
weight buffer). Therefore, the FAM1 devises multiple mapping patterns, i.e., one pattern
for DRAM, and another one for weight buffer, as illustrated in Figure 5.9. This FAM1
technique offers high resiliency against faults from each memory, as each mapping pattern
minimizes the negative effect of faults on the significant bits. However, it needs to perform
a specialized data mapping for each memory.

… … … … … … …

…

Ro
w

De
co

de
r

Sense Amplifier

(a) DRAM (b) Weight Buffer

… … … … … … … …

Ro
w

De
co

de
r

Sense Amplifier

Mapping using FAM technique

Individual Fault Map

0 7 6 5 4 3 2 1

2 1 0 7 6 5 4 3

1 0 7 6 5 4 3 2

… … … … … … …

…

Ro
w

De
co

de
r

Sense Amplifier

2 1 0 7 6 5 4 3

7 6 5 4 3 2 1 0

3 2 1 0 7 6 5 4

… … … … … … …

…

Ro
w

De
co

de
r

Sense Amplifier

Mapping using FAM technique

Individual Fault Map

Non-faulty cell Faulty cell

data-1

data-2

data-3

data-1

data-2

data-3

data-1

data-2

data-3

data-1

data-2

data-3

Figure 5.9: (a) For DRAM, the FAM1 only considers the DRAMs’ fault map. (b) For
the weight buffer, the FAM1 only considers the buffers’ fault map.

FAM for Integrated Fault Map (FAM2)

This technique merges multiple fault maps from multiple memories (i.e., DRAM and
weight buffer) as an integrated fault map. Therefore, the FAM2 only devises a single
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mapping pattern for both, DRAM and weight buffer, as illustrated in Figure 5.10. This
FAM2 technique potentially offers better efficiency than the FAM1, due to its simpler
mapping technique. However, it is less resilience than FAM1 as the generated mapping
pattern may be sub-optimal for each memory, because some insignificant bits may be
placed in non-faulty cells and some significant bits in faulty ones.
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Figure 5.10: The FAM2 technique considers the integrated fault map for devising the
mapping pattern for both, DRAM and weight buffer.

ReSpawn also considers optimizing the energy of DRAM and SRAM buffer accesses
to maximize the energy efficiency potential, since memory accesses typically dominate
the total energy of SNN processing [KSVR19]. The DRAM mapping is performed by
maximizing the DRAM row buffer hits [GLH+19], multi-bank burst feature [PHS21b],
and subarray-level parallelism [KSL+12, PHS20], while considering the proposed FAM
techniques (the algorithm is presented in Algorithm 13). Meanwhile, the SRAM buffer
mapping is performed by maximizing the bank-level parallelism [PHS21b] while consider-
ing the proposed FAM techniques (the algorithm is presented in Algorithm 14).

Note that the proposed FAM techniques (i.e., FAM1 and FAM2) do not require retraining,
thereby making them suitable for energy-efficient and fault-tolerant SNN processing,
especially in the case where the training dataset is not fully available. Consequently,
these techniques can also improve the yield and reduce the per-unit cost of neuromorphic
accelerators/chips.
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Algorithm 13 The proposed mapping for a DRAM chip
INPUT: (1) DRAM (DRAM), number of bank-per-chip (Dba), number of subarray-per-bank

(Dsu), number of row-per-subarray (Dro), number of column-per-row (Dco);
(2) Fault rate of a DRAM column (Drate_col), maximum tolerable fault rate for a DRAM
column (Drate_colmax);
(3) Weight bits (weight_b);
(4) Fault-aware mapping (FAM); // either FAM1 or FAM2

OUTPUT: DRAM (DRAM);
BEGIN

Process:
1: for ro = 0 to (Dro − 1) do
2: for su = 0 to (Dsu − 1) do
3: for ba = 0 to (Dba − 1) do
4: for co = 0 to (Dco − 1) do
5: if Drate_col ≤ Drate_colmax then
6: DRAM [ba, su, ro, co] ← FAM(weight_b);
7: return DRAM ;

END

Algorithm 14 The proposed mapping for SRAM buffer
INPUT: (1) SRAM (SRAM), number of bank (Sba), number of row-per- bank (Sro); // the

number of column-per-row = the bitwidth of a word
(2) Fault rate of an SRAM row (Srate_row), maximum tolerable fault rate for an SRAM
row (Srate_rowmax);
(3) Weight bits (weight_b);
(4) Fault-aware mapping (FAM); // either FAM1 or FAM2

OUTPUT: SRAM (SRAM);
BEGIN

Process:
1: for ro = 0 to (Sro − 1) do
2: for ba = 0 to (Sba − 1) do
3: if Srate_row ≤ Srate_rowmax then
4: SRAM [ba, ro] ← FAM(weight_b);
5: return SRAM ;

END

5.2.5.3 Fault-aware Training-and-Mapping (FATM)

If the training dataset is fully available, users can decide if they want to perform fault
mitigation without training, like our FAM techniques (Section 5.2.5), or fault-aware
training (FAT). Note, FAT is a widely used technique for improving the fault-tolerance
of neural networks, by incorporating the information of faults in the training process
[KOY+19, PHS21c, ZGBG18]. Our experimental results in Figure 5.3(c) show that, the
FAT technique can improve the SNN fault tolerance. Toward this, ReSpawn framework
also provides FAT-based solutions to improve the SNN fault tolerance on top of the proposed
FAM techniques; so-called fault-aware training-and-mapping (FATM). For conciseness,
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the FAT with FAM1 mapping is referred to as the FATM1, and the FAT with FAM2
mapping is referred to as the FATM2. The proposed FATM is performed through the
following mechanisms.
1. We employ the FAM techniques (FAM1 or FAM2) on the SNN model, to minimize

the negative impacts of faults on the weights. This results in the model whose weights
have been minimally affected by the faults (i.e., the FAM-improved SNN model).

2. Then, we perform training on the FAM-improved SNN model through the following.
• Step-1: The faults are generated for different rates, based on the SNN fault

tolerance analysis in Section 5.2.5.1.
• Step-2: The generated faults are injected into locations in DRAM and weight

buffer, thereby causing the weight bits stored in these locations to flip.
• Step-3: We train the SNN model while considering fault rates that do not cause

accuracy drop (fault rates from region- A in Figure 5.7) and are close to region- B .
It makes the model adaptive to high fault rates safely, without causing accuracy to
decrease, and with less training time, since smaller fault rates are not considered.

• Step-4: Afterward, we carefully train the SNN model while considering fault rates
that cause notable accuracy drop, i.e., fault rates from region- B , by incrementally
increasing the fault rates of DRAM and weight buffer, after each training epoch.

• Step-5: Training is terminated when the network faces accuracy saturation or
degradation. The final SNN model is selected from the trained model that is saved
in the previous training epoch.

The proposed FAM (FAM1 and FAM2) and FATM (FATM1 and FATM2) techniques are
applicable to different memory technologies (like CMOS, RRAM, etc.) since they consider
bit-level fault mitigation, which is suitable for bit-level data storage in each memory
cell. Therefore, the possible extension to the ReSpawn framework is by considering the
multi-level cell characteristics in its optimization process.

5.2.6 Evaluation Methodology
The experimental setup for evaluating ReSpawn framework is illustrated in Figure 5.11.
Following is detailed information on the evaluation methodology, comprising the scenarios
for experiments and comparisons. For the network architecture, we use the fully-connected
SNN, like the network in Figure 4.8(a), with a different number of neurons (i.e., 100,
400, 900, 1600, 2500, and 3600) to show the generality of the ReSpawn, which we
refer them to as Net100, Net400, Net900, Net1600, Net2500, and Net3600, respectively.
We consider this network as it provides robustness when performing different variants
learning rules [DC15], thereby it is representative for the evaluation. Meanwhile, for the
comparison partners, we consider two designs: (1) the baseline SNN model without any
fault-mitigation technique, and (2) the SNN model with the FAT technique. We compare
these designs against our ReSpawn techniques (i.e., FAM1, FAM2, FATM1, and FATM2)
on the MNIST dataset.
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Figure 5.11: Experimental setup and tool flow.

Fault Injection: We generate memory faults based on the fault modeling described in
Section 5.2.4. Afterward, we inject these faults into the locations in DRAM and weight
buffer to represent the faulty memory cells, and the data bits in these cells are flipped.
For the ReSpawn, we employ mapping policies from Algorithm 13 and Algorithm 14,
while for the baseline, we store the weights in the subsequent addresses of a DRAM bank.

Accuracy Evaluation: To evaluate the accuracy of SNNs, we use Python-based
simulations [HSK+18] that run on GPGPU machine, i.e., Nvidia RTX 2080 Ti, while
considering an SNN accelerator architecture that follows the design in Figure 2.14 with
8-bit precision of weights, a DDR3-1600 2Gb DRAM, and a 32KB weight buffer. We use
8-bit precision as it has a sufficient range of values to represent the SNN weights [PS20].

Energy Evaluation: We consider the approach in [HMD16] for estimating the SNN
processing energy of an SNN model, i.e., by leveraging the information of processing
power that is obtained through nvidia-smi utility, and its processing time. We perform
the energy evaluation for different scenarios, i.e., the fault-mitigation techniques without
retraining (i.e., FAM1 and FAM2) and with retraining (i.e., FAT, FATM1, and FATM2).

5.2.7 Results and Discussion
5.2.7.1 Mantaining the Accuracy

Figure 5.12 presents the experimental results on the accuracy of different fault-mitigation
techniques, i.e., baseline, FAT, our FAM techniques (i.e., FAM1 and FAM2), and our
FATM techniques (i.e., FATM1 and FATM2).

We observe that the baseline is susceptible to accuracy degradation when the SNN is run
under the presence of faults, as these faults alter the weights and affect the output of the
SNN model. The accuracy degradation is more evident in the scenarios where high fault
rates are observed, as shown by label- 1 . The FAT technique improves the SNN fault
tolerance compared to the baseline across all evaluation scenarios, as the FAT-improved
SNN model has a better capability for adapting to the presence of faults, as shown by
label- 2 . However, the FAT technique may offer limited accuracy improvements since
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Figure 5.12: Accuracy achieved by different techniques, across different sizes of networks:
(a) Net100, (b) Net400, (c) Net900, (d) Net1600, (e) Net2500, and (f) Net3600, as well as
different fault rates in DRAM and weight buffer.

it does not substantially eliminate the negative impact of faults on the significant bits
of weights, and its performance depends on the effectiveness of the training strategy.
On the other hand, our FAM techniques (FAM1 and FAM2) can achieve comparable
accuracy compared to the FAT without retraining, as shown by label- 3 . They improve
the accuracy by up to 61%, 70%, 70%, 67%, 53%, and 43% for Net100, Net400, Net900,
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Net1600, Net2500, and Net3600 respectively, as compared to the baseline. The reason is
that, the main idea of our FAM1 and FAM2 is to eliminate the impact of faults on the
significant bits of weights through simple bit-shuffling, thereby maintaining the value
of weights as close as possible to the weights that are trained in an ideal condition, i.e.,
environment without faults. These results show that our FAM techniques (FAM1 and
FAM2) are effective for fault-mitigation techniques in SNNs, especially in the case where
the training dataset is not fully available. Moreover, these techniques can enhance the
yield, thereby decreasing the per-unit cost of SNN chips.

We also observe that the FAM1 has better performance than the FAM2, as it consistently
obtains high accuracy across all evaluation scenarios, while the performance of the FAM2
may still be affected by cases that have high fault rates, as shown by label- 4 . The reason
is that, the FAM1 minimizes the impact of faults on the significant bits of weights from
each memory. Meanwhile, the FAM2 minimizes the impact of faults on the significant
bits of weights considering the integrated fault map from multiple memories, which may
be sub-optimal for each memory. We also observe that our FATM techniques can further
improve the SNN fault tolerance from the FAM techniques (shown in label- 5 ), since
the training is performed on the model whose weights are already minimally affected by
the faults. The FATM techniques improve the accuracy by up to 61%, 70%, 76%, 67%,
53%, and 53% for Net100, Net400, Net900, Net1600, Net2500, and Net3600 respectively,
as compared to the baseline. These results show that, our FATM techniques (FATM1
and FATM2) can further improve the SNN fault tolerance if the training dataset is fully
available.

5.2.7.2 Reducing the Energy Consumption

Figure 5.13 presents the experimental results on the energy consumption of different
fault-mitigation techniques, i.e., the baseline, the FAT, our FAM1, FAM2, FATM1 and
FATM2. For the training-based solutions (FAT, FATM1, and FATM2), the energy
consumption is evaluated when performing one training epoch over 60K samples from
the full MNIST training set. For the solutions without training (FAM1 and FAM2), the
energy consumption is evaluated when performing a test over the 10K samples from the
full MNIST test set. This evaluation scenario aims at showing how much energy the
training-based solutions incur, as compared to the solutions without training.

We observe that, the FAT technique consumes high energy across different network sizes,
since it requires the training process. Moreover, a larger-sized network incurs higher
power and processing time, and thereby higher energy. If we consider one training epoch
(i.e., running 60K samples from the full MNIST training set), the FAT incurs about
6x-20x energy for Net100-Net3600, as compared to the baseline. This condition can be
exacerbated by the fact that energy consumption is increased if the FAT requires multiple
training epochs. Here, the FATM1 and FATM2 techniques face the same issues due to the
training-based approach. On the other hand, our FAM1 technique only incurs 1.03x-1.12x
energy, and our FAM2 technique only incurs 1.02x-1.09x energy for Net100-Net3600
as compared to the baseline, when running 10K samples from a full MNIST test set.
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Figure 5.13: Normalized energy consumption of different fault-mitigation techniques (i.e.,
the baseline, the FAT, our FAM1 and FAM2, as well as our FATM1 and FATM2) across
different sizes of network: (a) Net100, (b) Net400, (c) Net900, (d) Net1600, (e) Net2500,
and (f) Net3600.

Moreover, the energy efficiency of the FAM1 and the FAM2 can be better if the number
of samples in the inference phase is higher. The reason is that, the mapping patterns in
the FAM1 and the FAM2 need to be generated only once, before running the inference,
therefore the energy overhead is negligible considering the huge number of samples to
be processed in the inference phase. We also observe that the FAM2 incurs slightly less
energy compared to the FAM1, as the FAM2 only considers one integrated fault map for
its mapping operations while the FAM1 considers multiple fault maps for its mapping
operations, thereby incurring fewer operations and processing energy. These results show
that, our FAM techniques (FAM1 and FAM2) have high potential as the energy-efficient
fault-mitigation techniques for SNNs, as they maintain high accuracy with minimum
energy overhead.

5.2.8 Further Discussion

Our ReSpawn methodology leverages the SNN fault-tolerance analysis considering the
given fault model, before applying the FAM or FATM technique. Therefore, the impact
of any fault models for modern memory devices on the SNN fault-tolerance will be
investigated and analyzed before applying the curative action/solution (i.e., FAM or
FATM). Moreover, the most recent studies that apply reduced-voltage technique for
modern memory devices also show that, the fault rate increases as the voltage is re-
duced [CYG+17a, CYG+17b, SSUCK18, YSE+22], whose trends are similar to the fault
models considered in this work. These facts corroborate that our proposed methodology
is applicable for any fault models of modern off-chip and on-chip memory devices.
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The algorithm complexity of ReSpawn can be derived from its mapping solution. Here,
the bit-shuffling operations are performed when storing weights on the faulty memory
cells. Such bit-shuffling operations have constant time and space complexity. There-
fore, the algorithm complexity of ReSpawn mapping solution can be stated as O(n)
for time complexity with n denotes the number of SNN weights, and O(1) for space
complexity. Here, optimal solutions that mitigate faults to maintain accuracy without
incurring overheads are not feasible, as ReSpawn employs faulty memory cells to allow
errors/approximations in computation that lead to a slightly reduced yet acceptable
accuracy, while maintaining throughput and incurring minimum overheads (e.g., in energy
consumption).

5.2.9 Summary of ReSpawn Framework

We propose a novel ReSpawn framework for mitigating the faults in the off-chip and
on-chip weight memories for SNN-based systems through SNN fault tolerance analysis,
fault-aware mapping, and fault-aware training and mapping. The experimental results
show that, ReSpawn with fault-aware mapping improves the accuracy without retraining
(e.g., by up to 70% for a 900-neuron network) by minimizing the changes in weight values
when storing weight bits in the off-chip and on-chip weight memories. Therefore, our work
enhances the SNN fault tolerance with minimum energy overhead, thereby potentially
improving the yield of SNN hardware chips.

5.3 RescueSNN: Enabling Reliable Executions on SNN
Accelerators against Permanent Faults

This section aims at addressing Problem-2 with the solution for efficiently mitigating
permanent faults in the compute engine of SNN neuromorphic accelerators.

5.3.1 Motivational Study

To understand the impact of permanent faults in the synapses (local weight registers)
of neuromorphic accelerators on the accuracy, we perform experiments that explore
different fault rates in the local weight registers while considering the typical architecture
of neuromorphic accelerators shown in Figure 2.14. We consider 256x256 synapses with
8-bit precision of weights, and 256 neurons. We assume all neurons are not faulty, and
inject permanent faults (i.e., stuck-at 0 or 1) into the weight registers with random
distribution and different rates of faulty memory cells, to see the significance of faulty
registers on accuracy. For the network, we consider the FC-based SNN architecture in
Figure 4.8(a) with 400 excitatory neurons. Further details on the experimental setup are
presented in Section 5.3.6. The experimental results are presented in Figure 5.14, from
which we make the following key observations.
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• Classification accuracy decreases as the rate of faulty memory cells increases for both
stuck-at 0 and stuck-at 1 scenarios, thereby showing the negative impact of permanent
faults in the synapses.

• In the stuck-at 0 case, the stored weight value will either stay the same or decrease
from the original value. In the case of decreased weight value, the corresponding
neuron will require more stimulus (input spikes) to increase its membrane potential
and reach the threshold potential for generating a spike, which represents recognition
of a specific class. However, in an SNN model, multiple neurons may be responsible
to recognize the same class. Therefore, if the neuron with faulty weight bits cannot
recognize the input class, then other neurons may recognize it. As consequence, the
accuracy degradation caused by stuck-at 0 in memory cells is relatively small and
negligible in some cases.

• In the stuck-at 1 case, the stored weight value will either stay the same or increase from
the original value. In the case of increased weight value, the corresponding neuron will
require less stimulus (input spikes) to increase its membrane potential and reach the
threshold potential for generating a spike, which represents recognition of a specific
class. Therefore, this neuron may become more active to generate more spikes for any
input classes, which leads to more misclassification. As consequence, the accuracy
degradation caused by stuck-at 1 in memory cells is more significant/noticeable than
the stuck-at 0 case.

• Combinations of fault types and fault rates lead to different accuracy, which represents
different fault patterns in real-world chips, rendering it unpredictable at design time.

5.3.2 Scientific Research Challenges
Based on these observations, we outline the following research challenges to devise an
efficient solution for the targeted problem.

• The mitigation technique should not employ retraining, as retraining needs huge
compute and memory costs, processing time, and a training dataset that may not
be available in certain cases due to the restriction policies. Moreover, retraining is
not a scalable approach considering a large number of fabricated chips, as it needs to
consider a unique fault map from each chip thereby retraining per chip. Note, the fault
map information can be obtained through the standard wafer/chip test procedure
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after fabrication, hence this test does not introduce new cost and only incurs a typical
cost for chip test [XZLZ20, FCT22].

• The mitigation should have minimal performance or energy overhead at run time as
compared to that of the baseline design without fault mitigation technique, thereby
making it applicable for energy-constrained embedded systems.

• The technique should not avoid the use of faulty SNN components (i.e., synapses and
neurons), as it means omitting the entire computations in the respective columns of
the SNN compute engine, which leads to throughput reduction.

• SNNs require a specialized permanent fault mitigation technique as compared to other
neural network computation models (e.g., deep neural networks), since SNNs have
different operations and dataflows.

Required: A low-cost technique for mitigating the negative impact of permanent faults
in the compute engine of neuromorphic accelerators, thus enabling reliable execution of
SNN inference in an energy-efficient manner.

5.3.3 Novel Contributions
To address the above challenges, we propose RescueSNN, a novel methodology that
enables reliable executions on SNN accelerators under permanent faults. To the best of
our knowledge, this work is the first effort that mitigates permanent faults in the SNN
accelerators/chips. Following are the key steps of the RescueSNN methodology (the
overview is shown in Figure 5.15).

1. Analyzing the SNN fault tolerance to understand the impact of faulty components
(i.e., synapses and neurons) on accuracy considering the given fault rates.

2. Employing the fault-aware mapping (FAM) techniques to safely map SNN
weights and neuron operations to the faulty compute engine, thereby maintaining
accuracy and throughput. Our FAM techniques leverage the fault map of the compute
engine to perform the following key mechanisms.

a) Mapping the significant weight bits on the non-faulty memory cells of the synapses
(weight registers) to minimally pollute/change the weight values.

b) Selectively employing faulty neurons that do not cause significant accuracy degra-
dation at inference, based on the behavior of their membrane potential dynamics
and spike generation.

3. Devising simple hardware enhancements to enable efficient FAM techniques.
Our enhancements shuffle the weight bits from the synapses by employing simple
combinational logic units (such as multiplexers), so that these weight bits can be used
for SNN computations.
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5.3.4 Permanent Fault Modeling
Overview: An SNN compute engine consists of two main components, i.e., synapses
and neurons, which have different hardware circuitry. Therefore, we need to define a
fault model for each component to achieve fast design space exploration.

1. Synapses: Each synapse hardware uses a register to store a weight value. Therefore,
each permanent fault in a synapse can affect a single weight bit in the form of either
a stuck-at 0 or a stuck-at 1 fault.

2. Neurons: Each neuron hardware depends on the neuron model to facilitate its
operations. Therefore, permanent faults can manifest in different forms depending
on the type of operation being executed on the neuron hardware, as discussed in the
following (see an overview in Figure 5.16).

• Faults in the ‘Vmem increase’ operation make the neuron unable to increase its
membrane potential. As a result, this neuron cannot generate any spikes (i.e., a
dormant neuron).

• Faults in the ‘Vmem leak’ operation make the neuron unable to decrease its membrane
potential. Hence, this neuron acts like the Integrate-and-Fire (IF) neuron model.

• Faults in the ‘Vmem reset’ operation make the neuron unable to reset its membrane
potential. As a result, this neuron will continuously generate spikes.

• Faults in the ‘spike generation’ make the neuron unable to generate spikes (i.e.,
dormant neuron).

Fault Generation and Distribution: Previous studies have shown that perma-
nent faults occur in random locations of a chip, thereby leading to a certain fault
map [ZGBG18, RFZJ13, WNL16, MKK+20, SSL11]. Following are the key steps to
generate and distribute permanent faults on the SNN compute engine; see an overview
of the steps in Figure 5.17.

1. We consider a weight memory cell and a neuron operation as the potential fault
locations.
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Figure 5.16: Overview of different faulty LIF neuron operations: (a) faulty ‘Vmem increase’,
(b) faulty ‘Vmem leak’, (c) faulty ‘Vmem reset’, and (d) faulty ‘spike generation’.

2. We generate permanent faults based on the given fault rate and distribute them
randomly across the potential fault locations. The fault rate represents the ratio
between the total number of faulty weight memory cells and neuron operations to the
total number of potential fault locations (i.e., the total number of weight memory
cells and neuron operations).

3. If a fault occurs in a local weight memory cell, then we randomly select the type of
stuck-at fault (i.e., either stuck-at 0 or stuck-at 1). Meanwhile, if a fault occurs in a
neuron operation, then we randomly select the type of permanent faulty operation.

A weight 
memory cell ……

Potential 
fault locations

Original 
compute engine

Fault map after 
fault injection

… … … …

A neuron 
operation

Figure 5.17: The key steps of permanent fault generation and distribution in the SNN
compute engine.

5.3.5 RescueSNN Methodology

We propose the RescueSNN methodology [PHS23] to mitigate permanent faults in the
SNN compute engine with the following key steps; see an overview in Figure 5.18.

1. SNN fault tolerance analysis (Section 5.3.5.1): It aims at studying the impact
of permanent faults in the compute engine components (i.e., synapses and neurons).
Here, we perform experiments that inject the faults into the investigated components
with different fault rates. Observations from these experiments are used for devising
our fault mitigation technique.
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2. Fault-aware Mapping (FAM) in the SNN compute engine (Section 5.3.5.2):
It leverages the fault map of the compute engine to safely map SNN weights and
operations. Our FAM technique employs the following key mechanisms.

• The significant weight bits are prioritized to be mapped to the non-faulty registers
through a bit-shuffling technique, thereby protecting the significant bits from
corruption.

• The faulty neurons can be employed if their behavior does not significantly degrade
the final accuracy. These neurons can be selected by observing their membrane
potential dynamics and spike generation.

We leverage these mechanisms to propose three different mapping strategies (i.e.,
FAM1, FAM2, and FAM3).

• FAM1: It maps weights and operations to the columns of compute engine that do
not have faulty neurons.

• FAM2: It is similar to FAM1 strategy, but it also employs a bit-shuffling technique
to map the significant weight bits to the non-faulty weight registers.

• FAM3: It shuffles the weight bits to map their significant bits to the non-faulty
weight registers, and selectively employs faulty neurons that have tolerable behavior.

3. Efficient hardware enhancements design (Section 5.3.5.3): It enables efficient
FAM techniques by shuffling the weight bits from the faulty synapses through simple
combinational logic units (such as multiplexers), hence these weight bits can be used
for SNN computations.
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5.3.5.1 SNN Fault Tolerance Analysis under Permanent Fault

SNN fault tolerance analysis is important to understand how a given SNN model will
behave considering a specific operating condition (e.g., a combination of certain fault rates,
the type of stuck-at fault, the architecture of the compute engine, etc.). This analysis
provides information that can be leveraged for devising an efficient fault mitigation
technique. Therefore, our RescueSNN methodology investigates the interaction between
the faulty components (i.e., synapses and neurons) and the obtained accuracy. To do this,
we perform the following experimental case studies while considering an FC-based SNN
with 400 excitatory neurons, as shown in Figure 4.8(a).
• We study the accuracy under faulty weight registers, by injecting a specific stuck-at

fault (i.e., either stuck-at 0 or stuck-at 1) into the weight registers, while considering
fault-free neurons. Experimental results are shown in Figure 5.14. We observe that
both stuck-at 0 and stuck-at 1 faults can degrade accuracy. Therefore, the mitigation
technique should address both stuck-at faults.

• We study the accuracy under faulty neuron operations, by injecting faults into the
neuron hardware to generate faulty neuron operations, while considering fault-free
weight registers. Experimental results are shown in Figure 5.19, from which we make
the following observations.
1. Faulty ‘spike generation’, ‘Vmem increase’, and ‘Vmem leak’ operations have tolerable

accuracy, since their faulty behavior does not dominate the spiking activity, and/or
the function of the corresponding faulty neurons for classification may be substituted
by other neurons that recognize the same class. Therefore, these neurons can still
be used for SNN processing.

2. Faulty ‘Vmem reset’ operations cause significant accuracy degradation, since these
operations make the corresponding neurons dominate classification. Therefore,
these neurons should not be used for SNN processing.

A 400-neuron network
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Figure 5.19: Impact of faulty neuron operations on accuracy. Different faulty neuron
operations have a different impact on accuracy. Notable accuracy degradation happens
when faulty ‘Vmem reset’ operations are employed.

Note, complex SNN models with multiple layers and different computational architec-
tures (e.g., convolutional and fully-connected) may have different observation results as
compared to results in Figure 5.19. However, previous work has observed similar trends
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to our study, i.e., neurons with faulty ‘Vmem reset’ operations continuously generate
spikes (so-called saturated neurons) and cause the most significant accuracy degrada-
tion than other types of faulty neuron operations [SESA+21]. It also identified that,
saturated neurons affect classification accuracy at any layer of SNN models, as these
faulty neurons always dominate the classification activity which results in a significant
accuracy degradation. This finding is consistent with the insights provided by our study.
However, it is still challenging to achieve high accuracy when employing STDP-based
learning on complex SNN models [RCK+23], thereby hindering their applicability for
diverse applications, such as systems with online training and unsupervised learning
requirements (e.g., autonomous mobile agents). Therefore, in this work, we consider
the FC-based SNNs shown in Figure 4.8(a) to enable multiple advantages, such as high
accuracy, unsupervised learning capabilities, and efficient online training.

5.3.5.2 Our Proposed Fault-Aware Mapping (FAM)

Permanent faults in SNN chips can be identified at the design time and at the run time.
The post-fabrication test can be employed to find a set of fault locations (fault map) due to
manufacturing defects in the SNN compute engine at the design time [ZGBG18, PHS21a].
Meanwhile, the online test strategy like the Built-In Self-Test (BIST) technique can
be employed to obtain the fault map (due to device wear out or physical damages) at
the run time [BBD19, WEH+19, MKK+22]. Our RescueSNN methodology leverages this
fault map to safely map the SNN weights and operations to the compute engine, thereby
minimizing the negative impact of permanent faults. To do this, the RescueSNN employs
Fault-Aware Mapping (FAM) techniques that mitigate the faults in synapses and neurons
through the following key mechanisms.

1. FAM for Synapses: The significant weight bits are placed in the non-faulty weight
memory cells, while the insignificant bits are placed in the faulty ones, by performing
a simple bit-shuffling technique. The significance of weight bits can be identified
by experiments that observe the accuracy after modifying a specific bit [PHS21a].
In general, previous studies have observed that the significance of a weight bit is
proportional to its bit location. For instance, in 8-bit fixed-point precision, bit-7 has
the highest significance than other bits. Furthermore, a synapse may have a single
faulty bit or multiple faulty bits. Therefore, we propose a mapping strategy that can
address both cases using the following steps (see an overview in Figure 5.20).

• We identify the faulty weight bits (e.g., through the post-fabrication testing) to
obtain information regarding the fault map and fault rate in each synapse hardware.

• We identify the maximum fault rate in each synapse hardware for safely storing
a weight. In this work, we consider a maximum of 2 faulty bits from an 8-bit
weight, based on the fault rates that offer tolerable accuracy from analysis in
Section 5.3.5.1.

• We identify the segment in each synapse with the highest number of subsequent non-
faulty memory cells. This information is leveraged for maximizing the possibility of
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storing the significant bits in the non-faulty cells. Hence, we also examine the corner
case (i.e., the right-most and left-most cells) as possible subsequent non-faulty
memory cells; see the third row of Figure 5.20(b) with data-3.

• We perform a circular-shift technique for each data word to efficiently implement
bit-shuffling.

…

7 6 5 4 3 2 1 0  

7 6 5 4 3 2 1 0  

MSB LSB
data-1

data-2
data-3

8-bit word

(a)

…

2 1 0 7 6 5 4 3  

5 4 3 2 1 0 7 6  

data-1

data-2
data-3

(b)

Shuffled Significance

3 2 1 0 7 6 5 4  7 6 5 4 3 2 1 0  

Non-faulty weight memory cell Faulty weight memory cell

Proposed 
bit-shuffling 
technique

Figure 5.20: (a) Illustration of possible fault locations (fault map) in weight registers.
(b) The proposed circular-shift bit-shuffling technique for the corresponding fault map.

2. FAM for Neurons: The use of neurons should be avoided if they have faulty ‘Vmem

reset’ operations, as these faulty operations cause significant accuracy degradation.
Meanwhile, neurons with other types of faults can still be used for SNN processing, as
their faulty behavior does not dominate the spiking activity. Different SNN operations
that aim at recognizing the same input class are mapped to both the faulty and
fault-free neurons for maintaining throughput, while compensating the loss from the
faulty ‘Vmem increase’, ‘Vmem leak’, and ‘spike generation’ operations.

Furthermore, we leverage these mechanisms for devising three mapping strategies, as the
variants of our FAM technique (i.e., FAM1, FAM2, and FAM3), which provide trade-offs
between accuracy and mapping complexity, as discussed in the following.

• FAM1: It avoids mapping the SNN weights and operations to the columns of compute
engine that have faulty neurons, as shown in Figure 5.21(a), as faulty neurons can
reduce the accuracy more than faulty registers, especially in the case of faulty ‘Vmem

reset’. However, FAM1 does not mitigate the negative impact of faults in the registers,
hence the accuracy improvement is sub-optimal. The benefit of FAM1 is due to its
simple mechanism which enables a low-complexity control mechanism.

• FAM2: It maps the SNN weights and operations to the columns of compute engine that
have fault-free neurons (just like FAM1) and employs a bit-shuffling technique to map
the significant weight bits to the non-faulty memory cells, as shown in Figure 5.21(b).
Therefore, FAM2 can improve the SNN fault tolerance at the cost of a more complex
control mechanism than FAM1.

• FAM3: It selectively maps the SNN weights and operations to the columns of compute
engine that do not have faulty ‘Vmem reset’ operations, as well as maps the significant
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Figure 5.21: Our FAM strategies: (a) FAM1, (b) FAM2, and (c) FAM3.

weight bits to the non-faulty memory cells using a bit-shuffling technique, as shown in
Figure 5.21(c). Therefore, FAM3 can enhance the SNN fault tolerance as compared
to FAM1 at the cost of a more complex control mechanism, and can improve the
throughput as compared to FAM1 and FAM2.

Information regarding how to map the SNN weights and operations to the compute engine
is provided through software program (e.g., firmware), thereby enabling the applicability
and flexibility of the proposed FAM technique (e.g., FAM1, FAM2, or FAM3) for different
possible fault maps in the compute engine. The metadata of this information is stored in
the on-chip buffer, which can be accessed for operations in the compute engine.

5.3.5.3 Our Hardware Enhancements for FAM

Our FAM2 and FAM3 strategies may make the weight bits stored in a shuffled form.
Therefore, an additional mechanism is required for converting these weight bits into the
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Figure 5.22: The architecture of the proposed enhancements, including the hardware
enhancement blocks (HEBs) and the enhancement control unit (ECU), for accommodating
FAM strategies.

original order, so that they can be used for SNN executions. Toward this, we propose
lightweight hardware enhancements to support the re-shuffling mechanism to undo the data
transformation, i.e., through a simple 8-bit barrel shifter. The key idea is to re-shuffle the
order of output wires from each synapse into the original order, so that the corresponding
weights can be used directly for neuron operations. To optimize the overheads (e.g., area),
we share the hardware enhancement block (HEB) with all synapses in the same column
of compute engine, and different synapses will access the enhancement block at different
times; see Figure 5.22. In this manner, the number of HEBs is equal to the number
of columns in the SNN compute engine. Furthermore, to control the functionality of
HEBs, we employ an enhancement control unit (ECU). This ECU stores the bit-shifting
information and uses it for controlling the barrel shifter in HEBs. For each column of
the compute engine, the ECU employs (1) a dedicated selector signal sel to determine
which weight should be processed in the HEB at a time, and (2) a set of registers that
stores bit-shifting information shuffle[2:0] for all weights in the same column.

5.3.6 Evaluation Methodology

For evaluating the RescueSNN methodology, we employ the experimental setup shown in
Figure 5.23. We use the FC-based network shown in Figure 4.8(a) with a different number
of neurons, to evaluate the generality of our RescueSNN methodology. For conciseness,
we represent a network with i-number of neurons as Ni. We use the MNIST and Fashion
MNIST datasets as the workloads, and adopt the same test conditions as used widely
by the SNN community [DC15]. For comparison, we consider the SNN without fault
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Figure 5.23: Overview of the experimental setup and tools flow.

mitigation as the baseline.

Fault Generation and Injection: Permanent faults are generated based on the fault
modeling in Section 5.3.4. To do this, we first generate binary values (i.e., 0 and 1)
based on the given fault rate while considering the potential fault locations (shown in
Figure 5.17). Here, ‘0’ represents a non-faulty memory cell in synapses or a non-faulty
operation in neurons; while ‘1’ represents a faulty memory cell in synapses or a faulty
operation in neurons. These binary values are then randomly distributed into an array
that represents the potential fault locations, so that each value corresponds to a specific
weight memory cell or a specific neuron operation. Figure 5.24 shows the potential
locations/components that can be affected by permanent faults to cause faulty memory
cells as well as faulty ‘Vmem increase’, ‘Vmem leak’, ‘Vmem reset’, and ‘spike generation’
operations. For each fault in the weight memory cells (synapses), we randomly determine
the type of fault (either stuck-at 0 or stuck-at 1). In stuck-at 0 case, value 0 is injected into
the corresponding memory cell; while in stuck-at 1 case, value 1 is injected. Meanwhile,
each fault in neurons corresponds to either faulty ‘Vmem increase’, ‘Vmem leak’, ‘Vmem

reset’, or ‘spike generation’ operation. Each faulty behavior in the corresponding neuron
is realized through different approaches as described in the following.

• Faulty ‘Vmem increase’ operation: It is mainly caused by faulty addition in the ‘Vmem

increase’ part, hence Vmem is not increased despite there are incoming spikes.
• Faulty ‘Vmem leak’ operation: It is mainly caused by faulty subtraction in the ‘Vmem

leak’ part, hence Vmem is not decreased despite there are no incoming spikes.
• Faulty ‘Vmem reset’ operation: It is mainly caused by faulty comparison in the ‘Vmem

reset’ part, hence the spike generator is activated to continuously generate spikes.
• Faulty ‘spike generation’ : It is mainly caused by faulty multiplexing in the ‘spike

generation’ part, hence the spike generator is always deactivated and no output spikes
are produced.

Accuracy Evaluation: We use the Python-based simulations [HSK+18], which run on
Nvidia RTX 2080 Ti GPUs, while considering the SNN accelerator shown in Figure 2.14.
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faults to cause faulty memory cells as well as faulty ‘Vmem increase’, ‘Vmem leak’, ‘Vmem

reset’, and ‘spike generation’ operations.

Hardware Evaluation: We evaluate the area, energy consumption, and throughput of
both the original compute engine (without enhancements) and the enhanced compute
engine using our RescueSNN methodology. To do this, we design RTL codes for both the
original and enhanced compute engines, then synthesize them using the Cadence Genus
tool considering a 65 nm CMOS technology to obtain their area, power consumption, and
timing (i.e., a clock cycle latency for SNN processing on the compute engine). Afterward,
we calculate the required number of cycles and computation latency for processing an
input sample (i.e., latency-per-sample), considering the timing from synthesis and the
mapping strategy on active synapses and neurons in the compute engine. Then, we
estimate the throughput by computing the number of samples that can be processed
within one second of SNN inference based on the information of latency-per-sample.
Furthermore, we also estimate the energy consumption by leveraging the information
regarding the power consumption from synthesis and the latency-per-sample for SNN
inference. The estimation of throughput and energy consumption is also performed on
top of the Python-based simulation framework.
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5.3.7 Results and Discussion

5.3.7.1 Maintaining the Accuracy

Figure 5.25 presents the experimental results for the accuracy of different fault mitigation
techniques, i.e., the baseline and our FAM-based strategies including FAM1, FAM2, and
FAM3. We observe that the baseline suffers from a significant accuracy degradation
as shown by 1 , because it does not mitigate faults in synapses and neurons, thereby
leading to unreliable SNN executions. The significant accuracy degradation is mainly
due to the fault model for faulty ‘Vmem reset’ operation that makes the corresponding
neuron generate spikes continuously once its membrane potential Vmem reaches the
threshold potential Vth, thereby dominating the classification activity and leading to
high misclassification. We also observe that FAM1 significantly improves the SNN fault
tolerance as compared to the baseline, because FAM1 avoids the use of faulty neurons,
especially for faulty ‘Vmem reset’ operations, as shown by 2 . Our FAM2 improves the
SNN fault tolerance even more as compared to FAM1, since FAM2 also mitigates faults
in the weight registers in addition to avoiding the use of faulty neurons, as shown by 3 .
Meanwhile, our FAM3 also significantly improves the SNN fault tolerance from baseline
and FAM1, and obtains comparable accuracy to FAM2, since FAM3 mitigates faults
in weight registers and selectively uses faulty neurons. It achieves up to 80% accuracy
improvement as compared to the baseline for the MNIST dataset, as shown by 4 . We
also observe that the same reasons are also applicable to different workloads, thereby
leading the accuracy profiles for the Fashion MNIST to have similar trends to the accuracy
profiles for the MNIST. These results show that our FAM strategies (FAM1, FAM2, and
FAM3) are effective for mitigating permanent faults in the SNN compute engine without
retraining, across different model sizes, fault rates, and workloads.

5.3.7.2 Maintaining the Throughput
Figure 5.26 presents the experimental results for the throughput of different mitigation
techniques, i.e., the baseline and our FAM strategies (FAM1, FAM2, and FAM3). We
observe that the baseline has the highest throughput across different model sizes and
fault rates, as it uses all synapses and neurons for performing SNN executions, as shown
by 1 . Meanwhile, FAM1 and FAM2 may suffer from throughput reduction because
they avoid the use of faulty neurons, thereby omitting the corresponding columns of the
SNN compute engine. For instance, FAM1 and FAM2 may suffer from 30% throughput
reduction for N1600 with 0.1 fault rate, as shown by 2 . Meanwhile, our FAM3 can
maintain the throughput close to the baseline (e.g., keeping the throughput reduction
below 25% in a 0.5 fault rate), thereby improving the throughput significantly as compared
to FAM1 and FAM2. The reason is that, FAM3 omits the columns of compute engine
only if the corresponding neurons have faulty ‘Vmem reset’ operations. For instance,
FAM3 has less than 15% throughput reduction for N1600, as indicated by 3 . These
results show that our FAM3 is effective for maintaining the throughput of SNN compute
engine with permanent faults across different model sizes, fault rates, and workloads.
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Figure 5.25: Accuracy profiles for different mitigation techniques (i.e., baseline, FAM1,
FAM2, and FAM3), different model sizes (i.e., N400, N900, N1600, N2500, and N3600),
different fault rates, and different workloads: (a) MNIST and (b) Fashion MNIST.

5.3.7.3 Energy Consumption and Area Overheads

Figure 5.27 shows the experimental results for the energy consumption of different
mitigation techniques, i.e., the baseline and our FAM strategies (FAM1, FAM2, and
FAM3). We observe that different techniques have comparable energy for small fault
rates, as shown by label- 4 . The reason is that small fault rates have a low probability of
faulty neurons, hence the resource utilization for different techniques is similar. For large
fault rates, FAM1 and FAM2 have higher energy consumption than the baseline and
FAM3, as shown by label- 5 . The reason is that large fault rates have a high probability
of faulty neurons, hence the resource utilization for different techniques is different, i.e.,
FAM1 and FAM2 avoid the use of faulty neurons, thereby incurring higher compute
latency and energy consumption. The baseline and FAM3 have comparable energy since
FAM3 employs simple hardware enhancements: (1) multiplexing operations in each HEB
which are shared for all synapses in the same column of the compute engine, and (2)
registers accesses in ECU, thereby minimizing the energy consumption overhead for FAM3
(i.e., within 30%). For area footprint, the original compute engine consumes around
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Figure 5.26: Throughput across different mitigation techniques, different model sizes,
and different fault rates for both the MNIST and Fashion MNIST datasets, as they have
a similar number of SNN weights and operations.

6.27 mm2 of area, while the one with proposed enhancements consumes around 8.56
mm2 of area. Hence, the proposed enhancements incur about 36.5% of area overhead,
which encompasses about 36.2% of ECU and about 0.3% of HEBs. The area of ECU
dominates the total area of enhancements since it mainly employs a set of 3-bit registers
(i.e., 256x256 registers), which incurs a larger area as compared to HEBs (i.e., 256x25
multiplexers). These results show that our FAM3 achieves minimum overheads in terms
of energy consumption and area for the SNN compute engine across different model sizes,
fault rates, and workloads.

In summary, the above discussions show that our RescueSNN methodology can effectively
mitigate permanent faults in the SNN chips without retraining. Since our RescueSNN
addresses permanent faults during both the design time and the run time, it increases the
yield of SNN chips, as well as enables efficient and reliable SNN executions during their
operational lifetime. Furthermore, our RescueSNN also avoids carbon emission as it does
not need any retraining, thus offering an environment-friendly solution [SGM19, SGM20].

5.3.7.4 Further Discussion

In general, we observe that a faulty ‘Vmem reset’ operation can cause significant accuracy
degradation as it deteriorates the neuron from the expected behavior. The reason is that,
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Figure 5.27: Energy consumption across different mitigation techniques, different model
sizes, and different fault rates for both MNIST and Fashion MNIST, as they have a
similar number of SNN weights and operations.

the generated (faulty) spikes will affect how the SNN model understands the information,
since an SNN model typically employs a certain spike coding scheme, i.e., rate coding
in this work. Therefore, a neuron with faulty ‘Vmem reset’ operation will generate a
high number of spikes and dominate the classification activity, thereby leading to high
misclassification and significant accuracy degradation. We also observe that, a higher
number of spikes generated by faulty ‘Vmem reset’ operation also indicates that the SNN
model performs more frequent neuron operations that correspond to spike generation.
This condition leads to higher power/energy consumption for SNN processing, which has
been observed and studied in previous works [KSVR19, PKNY20, PS23b].

Comparison with Retraining Technique: In a standard chip fabrication process,
manufactured chips are evaluated in a wafer/chip test procedure (i.e., wafer acceptance
test and chip probing test). This test procedure aims at evaluating the quality of each
chip, including any faults in the chip [XZLZ20, FCT22]. In this step, the permanent faults
and the corresponding fault map information from manufacturing defects are identified.
Therefore, this step does not introduce new cost, and only requires a typical cost for a
standard wafer/chip test procedure [XZLZ20, FCT22]. In the retraining technique, the
fault map information is then incorporated in the retraining process considering how the
weights and neuron operations are mapped on the SNN compute engine, i.e., so-called
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fault-aware training (FAT). In this manner, the SNN model is expected to adapt to the
presence of faults, hence maintaining high accuracy. This indicates that, the retraining
technique requires (1) fault map information from the chip test procedure, and (2) a full
training dataset, which may be unavailable due to restriction policy. Furthermore, each
chip has a unique fault map which requires its own retraining process, thereby incurring
huge time and energy costs. Otherwise, the retraining technique will not be effective.
Meanwhile, our proposed FAM technique in RescueSNN methodology leverages the fault
map information to safely map the weights and neuron operations on the SNN compute
engine. It ensures that the SNN processing is not negatively affected by permanent faults,
thereby maintaining high accuracy. Although each chip has a unique fault map which
requires a specific mapping, the cost of devising the mapping strategy is significantly
lower than the cost of retraining. Furthermore, our FAM technique does not require any
training dataset, hence it is highly applicable to a wide range of SNN applications.

Benefits and Limitations of Pruning: Neurons in the FC-based SNN architecture
shown in Figure 4.8(a) can be pruned while keeping the accuracy close to that of the
original network, considering that a high rate of faulty ‘Vmem increase’ operations does
not significantly degrade accuracy. The benefits of pruning in FC-based architecture have
been demonstrated in previous work [RPR19], including reduction of memory footprint
and energy consumption. The pruning technique is suitable if we rely on offline training,
i.e., an SNN model is trained offline with the training dataset, and the knowledge learned
from the training phase is kept unchanged during inference at run time. However, the
pruning technique is not suitable if we consider SNN-based systems that need to update
their knowledge regularly at run time to adapt to different operational environments (i.e.,
dynamic environments) such as autonomous mobile agents (e.g., UGVs). The reason is
that, SNN-based systems may encounter new input features in different environments and
the offline-trained knowledge may not be representative for recognizing the corresponding
classes, thereby leading to low accuracy at run time and requiring online training to
update their knowledge [PS21b, PS22a]. Therefore, SNN models with unpruned neurons
and unsupervised learning capabilities are beneficial for learning and recognizing new
features in (unlabeled) data samples from the operational environments during online
training. In summary, the users can select which SNN model to employ depending on
the design requirements. An alternative is employing the FC-based SNNs shown in
Figure 4.8(a) with/without pruning since they can enable multiple benefits, such as high
accuracy when employing STDP-based learning under unsupervised settings, and efficient
online training capabilities.

Algorithm Complexity: The algorithm complexity of RescueSNN can be derived
from its mapping solution. Here, the bit-shuffling operations are performed when
storing weights on the faulty synaptic registers, and the selective mapping operations
are performed when storing neuron parameters on the faulty neurons. Such bit-shuffling
and selective mapping operations have constant time and space complexity. Therefore,
the algorithm complexity of RescueSNN mapping solution can be stated as O(n) for
time complexity with n denotes the number of SNN parameters (i.e., weight and neuron
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parameters), and O(1) for space complexity. Here, optimal solutions that mitigate faults
to maintain accuracy without incurring overheads are not feasible, as RescueSNN employs
faulty memory cells and faulty neurons to allow errors/approximations in computation
that lead to a slightly reduced yet acceptable accuracy, while maintaining throughput
and incurring minimum overheads (e.g., in area and energy consumption).

5.3.8 Summary of RescueSNN Methodology

We propose a novel RescueSNN methodology for mitigating permanent faults in the
compute engine of SNN accelerators/chips. Our RescueSNN leverages the fault map of
the compute engine to perform fault-aware mapping for SNN weights and operations, and
employs efficient hardware enhancements for the proposed mapping technique. The results
show that RescueSNN effectively improves the SNN fault tolerance against permanent
faults without retraining. As a result, faulty SNN chips can be rescued and used for
reliable SNN processing during their operational lifetime.

5.4 SoftSNN: Low-Cost Fault Tolerance for SNN
Accelerators against Soft Errors

This section aims at addressing Problem-3 with the solution for efficiently mitigating
soft errors in the compute engine of SNN neuromorphic accelerators.

5.4.1 Motivational Study

To understand the impact of soft errors in the compute engine of neuromorphic accelerators
on the accuracy, we perform experiments with the typical architecture of neuromorphic
accelerators shown in Figure 2.14. We first perform fault injection into the local weight
registers (synapses) of different neurons with random distribution, while considering
different fault maps and different fault rates. Here, we consider 256x256 synapses with
8-bit precision of weights, and 256 neurons. For the network, we consider the FC-based
SNN architecture in Figure 4.8(a) with 400 excitatory neurons. Further details on the
experimental setup are presented in Section 5.4.6. The experimental results are presented
in Figure 5.28, from which we make the following key observations.

• Different combinations of fault maps and fault rates (which represent different possible
soft error patterns in real-world conditions) lead to diverse accuracy profiles, even
for the same SNN model and workload, indicating its unpredictable nature at design
time; see A in Figure 5.28(a).

• A potential solution is to employ redundant executions (i.e., re-execution) as it does not
require hardware modification, but at the cost of huge latency and energy overheads;
see Figure 5.28(b).
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Figure 5.28: Results of a 400-neuron network on the MNIST for (a) accuracy, considering
different fault locations (fault maps) and fault rates in the weight registers of the compute
engine, and (b) latency and energy for different designs.

5.4.2 Scientific Research Challenges
Based on these observations, we highlight the following research challenges in devising
solutions for the targeted problem.

• The mitigation technique should recognize any faulty components (weight registers and
neurons operations) at run time, to cope with unpredictable run-time scenarios of
different soft error profiles.

• The mitigation should not employ re-execution, because it requires huge latency and
energy overheads.

• The mitigation should have minimal latency and energy overheads compared to that
of the “SNN without mitigation”, thereby making it applicable for latency- and
energy-constrained applications.

Required: A lightweight mitigation technique for soft errors in the compute engine of
neuromorphic accelerators, thereby enabling reliable execution of SNN inference in an
energy-efficient manner.

5.4.3 Novel Contributions
To address the above challenges, we propose SoftSNN, a novel methodology that enables
reliable SNN processing on hardware accelerators under soft errors without re-execution.
To the best of our knowledge, this work is the first effort that studies the impact of soft
errors in the SNN accelerators, and develops a cost-effective mitigation technique. Our
SoftSNN employs the following key steps; see an overview in Figure 5.29.

1. Analyzing the SNN fault tolerance under soft errors to understand the impact
of faulty SNN components (i.e., synapses and neurons) on the accuracy under different
fault rates.

2. Employing different Bound-and-Protect (BnP) techniques to bound the weight
values within a safe range, and protect the neurons from performing faulty operations,
based on the information from the SNN fault tolerance analysis.

232



5.4. SoftSNN: Low-Cost Fault Tolerance for SNN Accelerators against Soft Errors

3. Employing lightweight hardware support for the BnP techniques to efficiently
identify when faulty weight values and neuron operations occur, then perform weight
bounding and generate safe neuron behavior that does not cause significant accuracy
degradation.
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Figure 5.29: Overview of our novel contributions, which are highlighted in blue.

5.4.4 Transiet Fault Modeling
Overview: The SNN compute engine consists of synapse and neuron parts, each having
specialized hardware circuitry. Therefore, we need to define the transient fault modeling
for each part.

1. Synapse Part: A fault in a synapse hardware only affects a single weight bit in the
form of a bit flip. This faulty bit persists until it is overwritten with a new bit value.

2. Neuron Part: Soft errors in the neuron hardware can manifest in different forms
depending upon the type of operation being executed on the neuron hardware, as
discussed in the following (see an overview in Figure 5.30).
• Soft errors in the ‘Vmem increase’ operation make the neuron unable to increase

Vmem, hence this neuron is unable to reach Vth and does not produce any spikes.
• Soft errors in the ‘Vmem leak’ operation make the neuron unable to decrease Vmem.
• Soft errors in the ‘Vmem reset’ operation make the neuron unable to reset Vmem,

hence this neuron continuously produces spikes.
• Soft errors in the ‘spike generation’ make the neuron unable to produce any spikes.
• These faulty operations persist until the neuron parameters are replaced with a

new set of parameters.

Soft Error Generation and Distribution: Soft errors typically occur in random
locations of a chip [Bau05], leading to a certain fault map. Following are the steps for
generating and distributing soft errors (see an overview in Figure 5.31).
• We consider each weight memory cell and neuron operation as the potential fault

locations.
• We generate soft errors considering the given fault rate, and distribute them randomly

across the potential fault locations.
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Figure 5.30: Overview of different faulty LIF neuron operations: (a) faulty ‘Vmem increase’,
(b) faulty ‘Vmem leak’, (c) faulty ‘Vmem reset’, and (d) faulty ‘spike generation’.
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Figure 5.31: Our steps for conducting soft error generation and distribution in the SNN
compute engine.

• If a fault occurs in a memory cell, we flip the stored bit, which persists until it is
overwritten by a new value. If an error occurs in a neuron operation, we randomly
select the type of faulty operation, which persists until new parameters are set for the
respective neuron.

5.4.5 SoftSNN Methodology
We propose the SoftSNN methodology [PHS22b] to mitigate soft errors in the SNN
compute engine with the following key steps; see an overview in Figure 5.32. A description
of each step is then provided in the subsequent sections.

1. Analysis the SNN fault tolerance under soft errors (Section 5.4.5.1). It
aims at understanding the impact of faulty synapses and/or faulty neurons on the
accuracy across different fault rates. Here, we perform experiments that inject the
faults into the investigated components with different fault rates. Observations from
these experiments are used for devising our fault mitigation technique.

2. Employment of different BnP techniques (Section 5.4.5.2). The key ideas of
BnP techniques are bounding the weight values within a safe range, and protecting
the neurons from performing faulty operations, based on the information from the
SNN fault tolerance analysis. We leverage these mechanisms to propose three different
strategies (i.e., BnP1, BnP2, and BnP3).
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• BnP1: It replaces the weights that are greater or equal to the threshold with zero.
• BnP2: It replaces the weights that are greater or equal to the threshold with the

maximum weight value from clean SNN.
• BnP3: It replaces the weights that are greater or equal to the threshold with a

highly probable value from the weight distribution of clean SNN.
• For All BnP Techniques: We continuously monitor the neuronal dynamics,

and if the faulty ‘Vmem reset’ operation occurs, we disable the respective spike
generation.

3. Employment of efficient HW enhancements for the BnP techniques (Sec-
tion 5.4.5.3). It aims at identifying when faulty weight values and neuron operations
happen. If so, it will perform weight bounding and generate safe neuron behavior that
does not cause significant accuracy degradation.
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Figure 5.32: An overview of the SoftSNN methodology. The novel contributions are
highlighted in blue.

5.4.5.1 SNN Fault Tolerance Analysis

Our SoftSNN first performs SNN fault tolerance analysis by characterizing the behavior of
a given SNN model under different soft error profiles for the underlying hardware, which
provides beneficial information for devising lightweight soft error mitigation techniques.
To do this, we perform experimental case studies for a 400-neuron network with the MNIST
dataset since its size enables fast exploration for SNN fault tolerance analysis. Here, each
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Figure 5.33: Soft errors can increase weight values, which may surpass the maximum
weight value (i.e., wghmax) from pre-trained SNN without soft errors (i.e., clean SNN).

SNN input has the same time range and coding for its spike train representation, and
the employed STDP learning limits the weights in a certain range of positive values (e.g.,
wgh = [0, 1]), thereby making any workloads representative for the analysis. Following
are the key steps of the experiments.

Impact of faulty synapses: We inject soft errors into the weight registers by randomly
flipping the stored weight bits. The experimental results are shown in Figure 5.28 and
Figure 5.33, from which we derive the following observations.

• Soft errors may increase or decrease weight values, and the increased ones have a
more severe impact on accuracy since they trigger the neurons to generate spikes more
frequently, thereby dominating classification.

• Increased weights may be recognized by employing the maximum weight value
(wghmax) of the pre-trained SNN without soft errors (i.e., clean SNN) as a threshold.

Impact of faulty neurons: We inject soft errors into the neuron hardware by randomly
generating faulty neuron operations. The experimental results are shown in Figure 5.34(a),
from which we obtain the following observations.

• Inference with faulty ‘Vmem increase’, ‘Vmem leak’, and ‘spike generation’ can achieve
tolerable accuracy, as their faulty behavior does not make the neurons dominate
classification, and the function for classifying the same input class may be substituted
by other (non-faulty) neurons. Therefore, these faulty neurons can still be employed
for SNN processing.

• Inference with faulty ‘Vmem reset’ can decrease the accuracy significantly, as this
faulty behavior makes the neurons’ membrane potential stays greater or equal to
the threshold potential (Vmem ≥ Vth), thereby generating (faulty) burst spikes and
dominating classification. Therefore, these faulty neurons should not be employed for
SNN processing.

Impact of faulty synapses and neurons: We inject soft errors by randomly flipping
bits in the weight registers and generating faulty neuron operations. The experimental
results in Figure 5.34(b) show that the faulty compute engine can severely decrease
accuracy, thereby emphasizing the importance of soft error mitigation.
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5.4.5.2 Our Bound-and-Protect (BnP) Techniques

To detect and mitigate soft errors at run time, we develop the Bound-and-Protect (BnP)
technique, which bounds the weight values within a safe range that does not make neurons
hyperactive (i.e., weight bounding), and protects the neurons from performing faulty
operations that can significantly decrease accuracy (i.e., neuron protection).
Weight Bounding: This mechanism clips the weight values that are greater or equal
to the weight threshold (wgh ≥ wghth), and replaces them with a pre-defined value
(wghdef ), as stated in Equation 5.1. Hence, each weight has the bounding value (wghb)
that does not trigger neurons’ hyper-activity. To define wghth, we leverage the SNN fault
tolerance characteristics from Section 5.4.5.1. We consider the range of weight values from
the pre-trained SNN without soft errors (clean SNN) as the safe range, and employ its
maximum value as the weight threshold (wghth = wghmax), as shown in Figure 5.33(a).

wghb =
�

wghdef if wgh ≥ wghth

wgh if otherwise
(5.1)

Neuron Protection: This mechanism focuses on mitigating faulty ‘Vmem reset’ oper-
ations, as suggested by analysis in Section 5.4.5.1. We detect the faulty ‘Vmem reset’
operation in each neuron by monitoring the comparison output of Vmem ≥ Vth. If the
output is ‘true’ for multiple clock cycles (e.g., ≥ 2 clock cycles in this work), then it
indicates that the ‘Vmem reset’ operation does not work properly. To efficiently address
this, we disable the spike generation to prevent the corresponding neuron from generating
burst spikes.
We leverage these mechanisms for devising three variants of BnP techniques (i.e., BnP1,
BnP2, and BnP3), which provide trade-offs in terms of accuracy, latency, and energy for
soft error mitigation.

• BnP1 Technique: It replaces the weights that are greater or equal to the wghth

with zero. Therefore, the BnP1 can be stated as Equation 5.1 with wghdef = 0.

• BnP2 Technique: It replaces the weights that are greater or equal to the wghth

with the maximum weight value from clean SNN (wghmax). Therefore, the BnP2 can
be stated as Equation 5.1 with wghdef = wghmax.
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• BnP3 Technique: It replaces the weights that are greater or equal to the wghth with
a highly probable value from the weight distribution of clean SNN (wghhp). Therefore,
the BnP3 can be stated as Equation 5.1 with wghdef = wghhp.

• For All BnP Techniques: We continuously monitor the neuronal dynamics, and if
the faulty ‘Vmem reset’ operation occurs, we disable the respective spike generation.

5.4.5.3 Our Hardware Support for BnP Techniques

Performing the BnP techniques on the SNN accelerators at run time is challenging,
as these accelerators typically have fixed dataflows. Therefore, we propose lightweight
self-healing hardware enhancements to support the deployment of our BnP techniques on
the SNN accelerators without changing the dataflows, as described in the following.

Synapse Part: The synapse enhancements aim at enabling the weight bounding, and
they depend on the type of BnP technique.

• In the case of the BnP1 Technique, we add (1) a radiation-hardened register for
storing the weight threshold wghth, which is used for all synapses in the compute
engine, and (2) the hardened combinational logic units for performing a comparison
and multiplexing in each synapse; see Figure 5.35(a).

• In case of the BnP2 and BnP3 Techniques, we add (1) two radiation-hardened
registers for storing the weight threshold wghth and the pre-defined weight value
wghdef respectively, which are used for all synapses in the compute engine, and (2)
the hardened combinational logic units for performing a comparison and multiplexing
in each synapse; see Figure 5.35(b).

Neuron Part: To recognize faulty ‘Vmem reset’ operation, we monitor the comparison
output of Vmem ≥ Vth. If the output is ‘true’ for ≥ 2 clock cycles, then the ‘Vmem reset’
operation is faulty. To ensure that such faulty operations do not result in burst spikes,
we add an AND logic and a multiplexer to leverage the current and upcoming outputs
for determining if the neuron should generate a spike in the next cycle, as shown in
Figure 5.35(c).

Radiation Hardening: Since our hardware enhancements can also be affected by soft
errors, we consider radiation-hardened components for all the new hardware extensions
to make them resistant to high-energy particle strikes. To do this, the hardening
techniques that improve the fabrication process (e.g., re-sizing transistor and insulating
substrates [GJKC09, HJ19]) are employed. Here, we only need to harden the additional
components, since they will provide correct values which can replace the corrupted bits
in the subsequent circuits. Hence, the overhead of the hardening process is relatively low
as compared to the full architecture of the SNN hardware, and will be discussed further
in Section 5.4.7.2 (i.e., area overhead).
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Figure 5.35: The proposed synapse architectures for (a) BnP1, and (b) BnP2 and BnP3
techniques. (c) The proposed neuron architecture for mitigating faulty ‘Vmem reset’
operation. All circuit enhancements are highlighted in blue. Note, the reference of SNN
accelerator architecture is shown in Figures 2.14-2.15.

5.4.6 Evaluation Methodology

We deploy the experimental setup presented in Figure 5.36 for evaluating our SoftSNN
methodology, and adopt the same evaluation conditions as employed widely by the SNN
community. We use the FC-based network as shown in Figure 4.8(a) with a different
number of neurons for evaluating the generality of our SoftSNN methodology. For
simplicity, we refer a network with i-number of neurons to as Ni. We employ the MNIST
and Fashion MNIST datasets as workloads. For comparison partners, we consider (1)
the SNN without mitigation (i.e., No Mitigation), and (2) the SNN with 3x redundant
executions and majority voting (i.e., Re-execution in TMR mode).

Accuracy Evaluation: We use a Python-based framework [HSK+18], which run on
multi-GPU machines (i.e., Nvidia RTX 2080 Ti), while considering the SNN accelerator
architecture in Figures 2.14-2.15.

Hardware Evaluations: We implement the SNN compute engine illustrated in Fig-
ure 2.14(b) and Figure 2.15 with a 256x256 synapse crossbar. Its timing, power, and area
are obtained through hardware synthesis using the Cadence Genus with a 65 nm CMOS
technology library. We estimate the latency of compute engine for both with and without
hardware enhancements, by leveraging the computation time for an inference of a single
input sample. Afterward, we leverage the obtained latency and power to estimate the
energy consumption of the compute engine.
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Figure 5.36: The experimental setup and tools flow.

5.4.7 Results and Discussion
5.4.7.1 Accuracy Comparisons

Figure 5.37 presents the experimental results for the accuracy of different mitigation
techniques across various test scenarios. The re-execution technique can achieve high
accuracy as shown by 1 , since it employs redundant executions to ensure consistent
outputs, which indicates that the executions are minimally affected by soft errors. Mean-
while, our BnP techniques (BnP1, BnP2, and BnP3) achieve comparable accuracy to the
re-execution, and significantly improve accuracy compared to the SNN without mitiga-
tion, i.e., by up to 80% and 47% for the MNIST and the Fashion MNIST, respectively;
see 2 . The reason is that, our techniques employ safe weight values and safe neuron
operations to avoid faulty neuronal dynamics that can significantly decrease accuracy.
We observe that the BnP2 has slightly lower accuracy compared to the BnP1 and the
BnP3, as it employs wghmax as wghdef , whose values have low probability in the weight
distribution of the clean SNN; see 3 . Hence, the generated neuronal dynamics do not
closely match the neuronal dynamics of the clean SNN. We also observe that the BnP1
and the BnP3 have comparable accuracy, as their wghdef are relatively close to each
other in the weight distribution of clean SNN; see 4 . Hence, the neuronal dynamics
of the BnP1 and the BnP3 are similar. However, the BnP3 has better applicability for
diverse applications than the BnP1, since the wghdef in the BnP3 can be updated for
different weight distributions. These results show that our BnP techniques are effective
for mitigating soft errors in the SNN compute engine at run time without re-execution.

5.4.7.2 Latency, Energy Consumption, and Area Overheads
Besides accuracy, we also evaluate the design overheads (i.e., latency, energy consumption,
and area) incurred by different mitigation techniques.

Latency: Experimental results for latency are shown in Figure 5.38(a). We observe
that the re-execution technique incurs ∼3x latency as compared to the SNN without
mitigation, as it employs redundant executions for loading parameters on the compute
engine and performing SNN operations. Meanwhile, our BnP techniques only incur less
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Figure 5.37: Results on accuracy across different mitigation techniques, network sizes,
fault rates, and workloads: (a) MNIST and (b) Fashion MNIST. Detailed accuracy
profiles on MNIST are shown for (c) N400 and (d) N900.

than 1.06x latency as compared to the SNN without mitigation, and reduce latency by up
to 3x as compared to the re-execution, due to our efficient hardware modifications that
minimally affect the latency (i.e., a small number of registers and combinational logic
units without noticeably affecting the critical path). In this manner, our BnP-enhanced
compute engine preserves the existing processing dataflow, and enables reliable SNN
executions in the presence of soft errors for latency-constrained (real-time) applications.
Energy Consumption: Experimental results for energy consumption are shown in
Figure 5.38(b). We observe that, the re-execution technique incurs 3x energy consumption
overhead as compared to the SNN without mitigation, due to its redundant executions.
Meanwhile, our BnP techniques incur less than 1.6x energy consumption when compared
to the SNN without mitigation, and reduce the energy consumption by up to 2.3x
as compared to the re-execution. Note, compared to the original hardware executing
SNN without mitigation, the slight increase in the energy consumption of our BnP-
enhanced hardware is due to the additional hardware components to enable reliable
SNN execution without incurring noticeable latency/performance overheads. Moreover,
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Figure 5.38: Comparisons across different techniques and network sizes on (a) latency
and (b) energy for an inference of a single input, and (c) area. Results for the MNIST
and the Fashion MNIST are similar, as these workloads have the same input dimension.

since redundant executions are completely avoided, our techniques substantially optimize
energy consumption as compared to the re-execution-based mitigation technique.

Area: Experimental results for the area are shown in Figure 5.38(c). We observe
that our BnP-enhanced compute engine incurs tolerable area overhead (i.e., 14% for
the BnP1, and 18% for the BnP2 and the BnP3) as compared to the compute engine
without enhancements. These area overheads mainly come from additional components
in synapses, as the synapse crossbar dominates the area of compute engine. Furthermore,
the area overhead also represents the cost of the new radiation-hardened components to
ensure reliable SNN execution. Note, we only need to harden the additional components
for providing correct bits to the subsequent circuits, thereby correcting the corrupted
bits and ensuring reliable executions in the respective circuits with low overhead.

In summary, all these results show that our BnP techniques effectively mitigate soft errors
in the SNN compute engine, while significantly reducing the latency and the energy of
SNN executions as compared to the re-execution-based mitigation techniques.

5.4.7.3 Algorithm Complexity

The algorithm complexity of SoftSNN can be derived from its mapping solution. Here,
the weight bounding operations are performed to limit the weight values on the faulty
synaptic registers, and the neuron protection operations are performed to avoid harmful
neuron behavior on the faulty neurons. Such weight bounding and neuron protection
operations have constant time and space complexity. Therefore, the algorithm complexity

242



5.5. Summary of Fault-Tolerant SNN Systems

of SoftSNN mapping solution can be stated as O(n) for time complexity with n denotes
the number of SNN parameters (i.e., weight and neuron parameters), and O(1) for space
complexity. Here, optimal solutions that mitigate soft errors to maintain accuracy without
incurring overheads are not feasible, as SoftSNN employs faulty synaptic registers and
faulty neurons to allow errors/approximations in computation that lead to a slightly
reduced yet acceptable accuracy, while maintaining throughput and incurring minimum
overheads (e.g., in latency, area, and energy consumption).

5.4.8 Summary of SoftSNN Methodology
We propose the novel SoftSNN methodology for mitigating soft errors in the compute
engine of SNN accelerators/chips without re-execution. Our SoftSNN analyzes the SNN
characteristics under soft errors, performs weight bounding and neuron protection, and
devises efficient hardware enhancements to enable the proposed techniques. The results
show that, our SoftSNN maintains high accuracy while reducing latency and energy
consumption, as compared to the re-execution-based mitigation techniques, thereby
enabling reliable SNN executions against soft errors for real-time and energy-efficient
SNN-based systems and applications.

5.5 Summary of Fault-Tolerant SNN Systems
This chapter discusses our novel methodology for enabling reliable SNN systems. It
systematically addresses the HW-induced faults in the (off-chip and on-chip) memories
and the compute engine of SNN neuromorphic accelerators using our proposed HW/SW-
level fault mitigation techniques. Specifically, it aims at mitigating faults in the DRAM
and weight buffer parts through fault-aware mapping if the training dataset is not fully
available, and through fault-aware training-and-mapping if the training dataset is fully
available. Besides faults in memories, our methodology also mitigates faults in the SNN
compute engine. It employs fault-aware mapping and lightweight HW enhancements
to safely map SNN weights and operations to the faulty SNN compute engine, thereby
minimizing the negative impact of permanent faults on the accuracy while maintaining
the processing throughput. Our methodology also employs weight bounding, neuron
protection, and lightweight HW enhancements to identify anomaly behavior of SNN
operations due to soft errors in the SNN compute engine, then efficiently mitigate
them without re-execution. In this manner, our SNN fault-tolerant techniques can be
coupled with our SNN optimization techniques in Chapter 4 to enable energy-efficient
and reliable SNN processing for many AI applications with tightly-constrained memory
and power/energy budgets (e.g., Edge-AI and Smart CPS).
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CHAPTER 6
Conclusion and Future Outlook

6.1 Thesis Summary
Bringing the powerful capabilities of NN algorithms (DNNs and SNNs) for solving data
analytic tasks in resource- and energy-constrained embedded applications is highly desired
since it has huge potential to provide better quality of services, higher efficiency, lower
latency, better security, and better privacy, thereby improving the productivity of human
life. However, embedded implementation of NN algorithms is a challenging task due to
(1) memory- and compute-intensive nature of NNs that may violate the memory and
energy constraints, and (2) possible HW-induced faults that may degrade the accuracy.
Therefore, energy efficiency and fault tolerance aspects are considered important as they
ensure that the NN processing can be performed in the given computing platforms to
produce reliable outputs. Toward this, the research goal of this thesis is to achieve high
energy efficiency and high fault tolerance in NN-based systems.

This research goal imposes scientific research challenges. In DNN systems, the challenges
are about leveraging the DRAM access characteristics and the dataflow of DNN processing
to minimize the DRAM access energy, which dominates the DNN systems’ total energy.
Meanwhile, in SNN systems, the challenges are about optimizing the memory and
energy requirements of SNN processing, devising a lightweight unsupervised learning
mechanism considering dynamic and non-dynamic environments, and developing cost-
effective techniques for mitigating HW-induced faults, such as approximation errors,
permanent faults, and soft errors.

To systematically address these research challenges, this thesis breaks down the research
goal into several key research objectives, as summarized in the following.

• Memory access energy optimization for DNN systems: Previous works observe that
optimizing the data partitioning and scheduling is effective to reduce the DRAM
accesses and improve the energy of DNN accelerators. However, they do not optimize
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the redundant DRAM accesses for the overlapping data partition and the DRAM
energy-per-access. Therefore, we aim at optimizing the redundant DRAM accesses for
the overlapping data partition and the DRAM energy-per-access of the DNN systems.

• Memory access energy optimization for SNN systems: Previous works employ pruning,
quantization, and data bundling to optimize the memory access energy. However,
they incur high overheads for data encoding, may suffer from information loss, and do
not optimize the inhibitory operations which incur considerable memory and energy.
Therefore, we aim at minimizing the memory requirement of SNNs by optimizing
the inhibitory operations, employing quantization, while improving the STDP-based
learning mechanism.

• HW-level optimization for SNN systems: Previous works typically employ HW acceler-
ators to improve the performance efficiency of SNN processing. However, this solution
incurs high design time. Therefore, we aim at employing approximate hardware (e.g.,
DRAM) in SNN HW accelerators to substantially reduce the operational power/energy
of SNN systems, while meeting the design constraints (e.g., accuracy).

• Unsupervised continual learning for SNN systems: Previous works typically incur high
memory and energy requirements due to their large model (e.g., inhibitory neurons and
additional components) and complex exponential computations. Therefore, we aim at
understanding the impact of network components (e.g., inhibitory layer) and SNN
parameters (e.g., weight decay) on the accuracy, and then leverage this information to
determine how the learning process should be performed efficiently.

• Fault mitigation techniques for SNN systems: Previous works still focus on studying
different types of faults in SNNs and the impact of random faults on accuracy, without
considering detailed fault models and the underlying SNN HW architecture. Therefore,
we aim at understanding the impact of HW-induced faults in SNN systems, and then
leverage these studies to develop cost-effective fault-mitigation techniques.

This thesis fulfills the research objectives through several novel scientific contributions,
as summarized in the following.

• HW/SW-level DRAM optimization for energy-efficient DNN systems: We
perform DRAM access optimization through an exploration to find data partitioning
and scheduling that achieve the minimum number of DRAM accesses while minimizing
redundant DRAM accesses for the overlapping data partition. We also develop a
generalized DRAM data mapping policy to further optimize the DRAM energy-per-
access for any given DRAM architecture in DNN systems (e.g., commodity DRAMs
or new DRAM architectures from the literature).

• HW/SW-level design and optimization for energy-efficient SNN systems:
We optimize SNN operations through the removal of an inhibitory layer and simplifi-
cation of the weight update mechanism. Then, weight quantization is performed to
reduce the memory footprint. We also exploit approximate DRAM to significantly
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reduce the operational power/energy of SNN HW accelerators, while minimizing the
impact of approximation errors on accuracy through fault-aware training. To make the
SNN systems adaptive to different environments (i.e., dynamic or non-dynamic), we
use the spiking activity to develop an adaptive unsupervised learning mechanism and
parameter enhancements (e.g., weight decay). Here, memory and energy estimation
can be utilized to quickly find an SNN model that meets the memory and energy
budgets, thereby providing appropriate SNN model for the given operational settings.

• Cost-effective HW/SW-level fault tolerance for SNN systems: We mitigate
faults in the off-chip and on-chip memories through fault-aware mapping, especially
when the training set is not fully available (e.g., due to IP and privacy reasons), and
may employ fault-aware training-and-mapping if the training set is fully available
to further improve the SNN resilience. Then, we mitigate permanent faults in the
compute engine of SNN accelerators through fault-aware mapping techniques to safely
map weight bits to the faulty synapses and selectively utilize faulty neurons without
any retraining. Here, lightweight HW enhancements are devised to accommodate data
transformation due to the mapping technique. We also mitigate soft errors in the
compute engine of SNN accelerators through weight bounding and neuron protection
using lightweight HW circuits to ensure that the weight values and neuron behavior
do not lead to significant accuracy degradation.

In summary, this thesis proposes a design methodology that employs novel techniques
to enable high energy efficiency and high fault tolerance for NN-based systems, thereby
making it suitable for diverse resource- and energy-constrained embedded applications.

6.2 Future Works
The field of NNs (DNNs and SNNs) is progressing fast. New network models, hardware
platforms (e.g., GPUs, accelerators), application use-cases for NNs, and techniques for
improving the performance and efficiency of NNs are proposed and published on a daily
basis. Therefore, several opportunities and potential directions of future works can be
explored based on the techniques proposed in this thesis, as discussed in the following.

• Enhance the techniques in this thesis for new network models and hardware
architectures: The development of DNNs and SNNs is typically driven by the target
of achieving higher accuracy, hence leading to the proliferation of new network models
and hardware architectures. Therefore, a possible direction is to explore the memory
and energy requirements as well as the resilience of new DNN and SNN models
considering new underlying hardware architectures and different types of faults. Here,
the design, optimization, and fault-mitigation techniques in this thesis can be enhanced
and fine-tuned to properly improve the energy efficiency and fault tolerance of newly
developed NN-based systems.
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• Low-cost techniques for mitigating the negative impact of device aging:
Aging in nano-scale electronic devices happens because of physical phenomena such
as TDDB, HCI, BTI, and EM. Aging causes timing errors in the early stages of
occurrence, and later it can transform into permanent faults. Therefore, a possible
direction is to explore low-cost techniques for mitigating the negative impact of aging
before it transforms into permanent faults.

• Developing SNN models that can learn complex features efficiently: The
accuracy of SNNs with bio-plausible learning rules (e.g., STDP) for complex input
features is usually lower than DNNs, hence may limit the applicability of SNNs.
However, SNNs bear the potential to achieve ultra-low power/energy for both learning
and inference due to their sparse spike-based computations. SNNs also have the
potential to enable smart systems with tight memory and energy budgets to adapt
to changing operational environments due to their unsupervised learning capabilities.
Therefore, a possible direction is to develop new SNN models with bio-plausible
learning rules that can achieve high accuracy for complex input features considering
diverse operational environments.

• Developing highly efficient and fault-tolerant SNN accelerators for Edge-AI:
Edge-AI applications require ultra-low-power/energy computing platforms to run their
workloads. Toward this, SNNs have the potential to meet the memory and energy
requirements of such applications. However, the existing SNN accelerators for Edge-AI
only support limited networks and limited quality of online learning. Therefore, a
possible direction is to develop SNN accelerators that incorporate efficient dataflows
for diverse spiking networks, ultra-low-power memory and compute units, efficient
online learning mechanisms, and lightweight fault mitigation mechanisms. Here, an
experimental platform that can apply different voltage settings and capture the map of
approximation-induced errors for off-chip and on-chip memories is required, as it helps
in characterizing memories for developing the accurate models of SNN accelerators.

• Defending SNN accelerators from adversarial attacks for Edge-AI: Edge-AI
applications require secured computing platforms to run their workloads. However,
the existing SNN accelerators for Edge-AI have not considered the security aspect
in their designs, including the adversarial attacks and their defense mechanisms.
Therefore, a possible direction is to study the impact of different possible adversarial
attacks on SNN accelerators (e.g., Rowhammer attacks [KPY+20]), and then develop
cost-effective defense mechanisms.

• Implementation of NNs on Processing-in-Memory (PIM): Technological
advancements like PIM may open new opportunities and avenues for realizing highly
efficient NN-based systems. In PIM systems, the dot-product operations are performed
in the analog domain (e.g., using ReRAM devices), which suffers from several issues
such as limited precision and IR drop, hence making it difficult to realize reliable HW
accelerators (for both DNNs and SNNs). Therefore, a possible direction is to improve
both hardware and software parts, including by leveraging the knowledge and insights
learned from research in this thesis.
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