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Kurzfassung

In der Komplexitätstheorie geht man davon aus, dass für zahlreiche zentrale Probleme
keine effizienten Algorithmen existieren. Einige dieser Probleme lassen sich in der Praxis
dennoch lösen, was üblicherweise damit begründet wird, dass praxisrelevante Instanzen
„Struktur” aufweisen, die von Lösungsverfahren ausgenutzt werden kann. Die vorliegende
Arbeit untersucht konkrete Ausprägungen dieses Strukturbegriffs für zwei äußerst schwie-
rige Probleme: das Erfüllbarkeitsproblem quantifizierter boolescher Formeln (QSAT) und
das Abzählproblem von Modellen aussagenlogischer Formeln (#SAT).

QSAT. Die Alternierung von Existenz- und Allquantoren im Präfix quantifizierter
boolescher Formeln erzeugt Abhängigkeiten unter Variablen, die von Lösungsverfahren
für QSAT berücksichtigt werden müssen. Gängige Verfahren gehen davon aus, dass alle
prinzipiell möglichen Abhängigkeiten tatsächlich bestehen. Oft ist jedoch nur ein Bruchteil
dieser Abhängigkeiten triftig, während die übrigen, „falschen” Abhängigkeiten lediglich
zu unnötigen Einschränkungen führen. Wir untersuchen Dependency Schemes als Mittel
zur Identifikation solcher falscher Abhängigkeiten, mit folgenden Resultaten.

• Wir zeigen, dass das Resolution-Path Dependency Scheme in Polynomialzeit be-
rechnet werden kann. Unter den derzeit bekannten Dependency Schemes erkennt
das Resolution-Path Dependency Scheme eine maximale Menge falscher Abhängig-
keiten.

• Wir definieren notwendige und hinreichende Bedingungen für den Einsatz von
Dependency Schemes in suchbasierten Algorithmen für QSAT und zeigen, dass
diese Bedingungen von den in DepQBF implementierten Dependency Schemes
sowie einer Variante des Resolution-Path Dependency Schemes erfüllt werden.

• Dependency Schemes waren ursprünglich zum Verschieben von Quantoren im Präfix
quantifizierter boolescher Formeln gedacht. Wir zeigen, dass gängige Dependency
Schemes eine allgemeinere Operation zur Manipulation des Präfixes erlauben, und
demonstrieren, wie diese Operation zur Minimierung der Alternierungstiefe von
Formeln verwendet werden kann.

#SAT. Das Zählen von Modellen aussagenlogischer Formeln ist nicht nur im Allgemei-
nen schwer, sondern selbst für Formelklassen, für die das zugehörige Entscheidungsproblem
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in Polynomialzeit gelöst werden kann, beispielsweise für Horn- oder 2CNF-Formeln. Wir
untersuchen den Effekt von strukturellen (über Graphenparameter definierten) Einschrän-
kungen auf die Komplexität von #SAT und bestimmen neue Formelklassen, die das
Zählen von Modellen in Polynomialzeit erlauben.

• Das Kontrahieren von Modulen in Graphen ist eine gängige Technik zur Verein-
fachung kombinatorischer Optimierungsprobleme. Wir definieren die modulare
Baumweite eines Graphen als seine Baumweite nach dem Kontrahieren von Mo-
dulen und zeigen, dass #SAT für Formeln, deren Inzidenzgraphen beschränkte
modulare Baumweite haben, in Polynomialzeit gelöst werden kann.

• Die symmetrische Cliquenweite ist ein Parameter, der sowohl Baumweite als auch
modulare Baumweite verallgemeinert. Wir zeigen, dass #SAT für Formelklassen,
deren Inzidenzgraphen beschränkte symmetrische Cliquenweite aufweisen, in Poly-
nomialzeit lösbar ist.



Abstract

Computational problems that are intractable in general can often be efficiently resolved
in practice due to latent structure in real-world instances. This thesis considers structural
properties that can be used in the design of more efficient algorithms for two highly
intractable problems: the satisfiability problem of quantified Boolean formulas (QSAT)
and propositional model counting (#SAT).

QSAT. The nesting of existential and universal quantifiers in quantified Boolean
formulas (QBFs) generates dependencies among variables that have to be respected by
QSAT solvers. In standard decision algorithms, it is assumed that all possible variable
dependencies exist. But often, only a fraction of these dependencies is realized, while
the remaining, “spurious” dependencies lead to unnecessary restrictions that inhibit
solver performance. We study dependency schemes as a means to identifying spurious
dependencies and establish the following results.

• Among dependency schemes considered in the literature, the resolution-path de-
pendency scheme identifies a maximal set of spurious dependencies. We prove that
the resolution-path dependency scheme can be computed in polynomial time.

• We state sufficient conditions for the sound deployment of dependency schemes
in search-based QSAT solvers and prove that these conditions are met by several
dependency schemes, including those implemented in the solver DepQBF and a
variant of the resolution-path dependency scheme.

• We show that known dependency schemes support a reordering operation that is
more powerful than quantifier shifting, and present an application to the reduction
of quantifier alternations of a QBF.

#SAT. The model counting problem (#SAT) asks for the number of satisfying assign-
ments of a propositional formula in conjunctive normal form. This problem is hard even
for classes that admit satisfiability testing in polynomial time, such as Horn or 2CNF
formulas. We prove the following results on the complexity of #SAT with respect to
structural parameters based on graph width measures, identifying new classes of formulas
amenable to efficient model counting.
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• Contraction of modules in a graph is a commonly used preprocessing step in combi-
natorial optimization. We define the modular treewidth of a graph as its treewidth
after contraction of modules, and prove that #SAT is polynomial-time tractable
for classes of formulas with incidence graphs of bounded modular treewidth.

• Symmetric clique-width is a graph parameter that generalizes treewidth as well as
modular treewidth. We show that #SAT is polynomial-time tractable for classes of
formulas with incidence graphs of bounded symmetric clique-width.
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Preface

The last decade has seen an impressive increase in the performance of propositional
satisfiability (SAT) solvers. Undeterred by NP-completeness, researchers have engineered
decision procedures to a point where they can solve real-world instances with millions of
variables. One can construct small formulas that bring these solvers to their knees, but
this hardly matters in practice, where SAT solvers are used as part of state-of-the-art
systems for formal verification and planning [13, 17, 84, 77], and “reduction to SAT” is
becoming a viable strategy for dealing with NP-complete problems. Theorists are still
struggling to explain this unexpected triumph of SAT solvers over intractability [121].

This success story warrants some optimism about the efficient resolution of even more
challenging problems. We consider two such problems: propositional model counting
(#SAT) and the satisfiability problem of quantified Boolean formulas (QSAT). Both
are generalizations of SAT, and both have offered more resistance in practice, where
the largest instances state-of-the-art procedures can deal with are significantly smaller
than those decided by SAT solvers. This is in line with results in complexity theory:
every problem in the polynomial hierarchy can be solved by a polynomial-time algorithm
with access to a #SAT oracle [116], and QSAT is complete for the class PSPACE which
contains the entire polynomial hierarchy [113]. By comparison, SAT is located at the first
level of the polynomial hierarchy. Efficient algorithms for #SAT and QSAT have many
potential applications that are beyond SAT, such as probabilistic reasoning, conditional
planning, and unbounded model checking [6, 105, 95, 75].

SAT solvers that perform well on real-world instances are typically slow on randomly
generated ones, indicating that the former exhibit latent structure that SAT solvers can
exploit [54]. This thesis studies structural properties of #SAT and QSAT instances that
can be used in the design of more efficient algorithms for these problems.

Part I: Dependency Schemes for QBF. Quantified Boolean formulas (QBFs) ex-
tend propositional formulas with existential and universal quantification over truth values.
Nested quantifiers give rise to dependencies among variables that must be respected
by decision procedures for QSAT, and standard algorithms deal with this by implicitly
making the most conservative assumption about variable dependencies: if x is in the
scope of y, then x depends on y. Part I explores dependency schemes as a means to
relaxing this assumption. Formally, a dependency scheme is a mapping that associates
a QBF (in prenex normal form) with a binary relation on its variables that indicates
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potential variable dependencies. This relation, which we call a dependency relation, is an
overapproximation that may contain spurious dependencies.

Dependency schemes can be used in practice only if they can be computed efficiently,
so a tradeoff has to be made between the time it takes to compute a dependency relation
and the number of spurious dependencies it contains. In Chapter 4, we prove that
the so-called resolution-path dependency scheme can be computed in polynomial time.
Among those introduced in the literature so far, this dependency scheme computes an
inclusion-minimal dependency relation.

Dependency schemes are best known for their integration in the QBF solver Dep-
QBF [15, 82]. Unfortunately, the resolution-path dependency scheme cannot be used in
DepQBF without modifications, due to a mismatch between the original definition of
dependency schemes and their intended use in QSAT solvers. We deal with this mismatch
in Chapter 5, which forms the core of Part I. We demonstrate that the original definition of
dependency schemes is not restrictive enough to warrant their use in solvers, and identify
sufficient conditions based on proof systems that generalize quantified resolution. We
then proceed to show that several dependency schemes do in fact satisfy these conditions,
including those implemented in DepQBF and a variant of the resolution-path dependency
scheme.

Chapter 6 revisits the original definition of dependency schemes, which requires
soundness of certain reorderings of a formula’s quantifier prefix [102]. We show that
known dependency schemes support a more general (and arguably, natural) reordering
operation and present an application in the (heuristic) reduction of quantifier alternations
of a formula, a measure closely tied to the complexity of QSAT.

Part II: Propositional Model Counting. #SAT asks for the number of satisfying
assignments of a propositional formula. This problem is hard even for classes of formulas
for which SAT is well-known to be easy, such as Horn and 2CNF formulas. Part II
presents new tractability results for #SAT with respect to structural parameters. These
go beyond known results on the tractability of #SAT parameterized by the incidence
treewidth (the treewidth of the incidence graph) or the signed incidence clique-width (the
directed clique-width of the signed incidence graph)1 and identify new classes amenable
to efficient model counting.

Specifically, we show that #SAT is tractable for formulas with incidence graphs of
bounded modular treewidth or bounded symmetric clique-width. The treewidth of a
graph measures how close it is to being a tree – a graph has treewidth 1 if it is a tree (or
forest), and the larger its treewidth the less it looks like a tree [18]. A module of a graph
is a set S of vertices which have the same neighborhood outside S. Contracting modules,
that is, replacing each module by a single vertex, is a common preprocessing step in
combinatorial optimization. Defining the modular treewidth of a graph as its treewidth

1The incidence graph has variables and clauses of a formula as its vertices and contains an edge
between a variable x and a clause C if x occurs in C. The signed incidence graph is a directed version
of the incidence graph where the orientation of an edge indicates whether a variable occurs negated or
unnegated.



after contraction of modules, Chapter 11 proves that #SAT is polynomial-time tractable
for formulas whose modular incidence treewidth (the modular treewidth of the incidence
graph) is bounded by a constant. The modular incidence treewidth of a formula is never
larger than its incidence treewidth, and the difference can grow arbitrarily large, so this
result yields tractability in cases that are out of reach of algorithms exploiting small
incidence treewidth.

Chapter 12 goes even further and shows that #SAT is polynomial-time tractable for
formulas of bounded symmetric incidence clique-width (the symmetric clique-width of
the incidence graph). Symmetric clique-width is a generalization of treewidth that is
equivalent to several other graph parameters such as clique-width or rank-width [69],
and our result can be equivalently stated in terms of these parameters. The symmetric
incidence clique-width of a class of formulas is bounded whenever its modular incidence
treewidth or signed incidence clique-width is bounded, but there are classes of unbounded
modular incidence treewidth or signed incidence clique-width but bounded symmetric
clique-width. As far as polynomial-time tractability of #SAT is concerned, our result
is currently the most general tractability result for a structural parameter based on a
graph width measure.

Assuming that readers will want to focus on the topic they are more interested in,
each part has been written so as to be self-contained. In particular, we chose to give each
part its own chapter on preliminaries, at the cost of introducing some redundancy.

Publications. This thesis is based on the following publications:

1. Friedrich Slivovsky and Stefan Szeider. Computing Resolution-Path Dependencies
in Linear Time. Theory and Applications of Satisfiability Testing - SAT 2012.
Lecture Notes in Computer Science, vol. 7317, pp. 58-71, Springer 2012.

2. Daniel Paulusma, Friedrich Slivovsky, and Stefan Szeider. Model Counting for CNF
Formulas of Bounded Modular Treewidth. Symposium on Theoretical Aspects of
Computer Science - STACS 2013. Leibniz International Proceedings in Informatics,
vol. 20, pp 55-66, 2013.

3. Friedrich Slivovsky and Stefan Szeider. Model Counting for Formulas of Bounded
Clique-Width. International Symposium on Algorithms and Computation - ISAAC
2013. Lecture Notes in Computer Science, vol. 8283, pp. 677-687, Springer 2013.

4. Friedrich Slivovsky and Stefan Szeider. Variable Dependencies and Q-Resolution.
Theory and Applications of Satisfiability Testing - SAT 2014. Lecture Notes in
Computer Science, vol. 8561, pp. 269-284, Springer 2014.
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CHAPTER 1
Introduction

Quantified Boolean Formulas (QBFs) enrich propositional formulas with quantification
over truth values. The satisfiability problem of QBFs (QSAT) offers natural and compact
encodings of problems that cannot be succinctly expressed in SAT, such as unbounded
model checking and conformant planning [50]. This increase in expressivity comes at
the cost of higher complexity: QSAT is PSPACE-complete [113]. The problem also
appears to be much harder to solve in practice than SAT, and—significant progress
notwithstanding—QSAT solvers have not yet reached the level of maturity of modern
SAT solvers.

To lift techniques from SAT to QSAT one must take into account dependencies among
variables generated by nested quantifiers. Consider the QBF

Φ = ∀x∃y.(x ∨ ¬y) ∧ (¬x ∨ y).

This formula is true: if x is set to true, the first clause is satisfied and the second clause
can be satisfied by setting y to true; if x is set to false, the second clause is satisfied
and the first clause can be satisfied by setting y to false. However, there is no single
truth assignment to variable y that is guaranteed to satisfy both clauses – the satisfying
assignment depends on the value assigned to x. Intuitively, this is what we mean by a
variable dependency.

Common decision algorithms and preprocessing techniques for QSAT implicitly make
the most conservative assumption about variable dependencies: if variable x is in the
scope of variable y, then x depends on y. In many cases, this is needlessly restrictive.
For instance, take the formula

Ψ = ∀x∀u∃y∃e.(x ∨ ¬y) ∧ (¬x ∨ y) ∧ (u ∨ ¬e) ∧ (¬u ∨ e).

This QBF consists of two variable-disjoint copies of Φ, with quantifiers moved to the
front so as to comply with the common Prenex Conjunctive Normal Form, or PCNF (a
formula in PCNF consists of a leading quantifier prefix, followed by a purely propositional
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formula, called the matrix, in conjunctive normal form). Again, it is not difficult to see
that Ψ is satisfiable: for any choice of truth values for x and u we simply assign y the
same value as x and e the same value as u. Such a strategy for choosing assignments in
a way that satisfies the matrix is called a model of Ψ. In this particular model, the value
assigned to y does not depend on the value of u, and the value assigned to e does not
depend on the value of x.

If we know that a formula has models with limited dependencies, we can apply more
aggressive techniques in pruning the search space of the corresponding QSAT instance.
This is of little practical use if, as in the above case, we already have a model and
know that the formula is true. Instead, we would like to determine in advance that, if a
formula has models at all, it has models whose dependencies satisfy certain restrictions.
Unfortunately, deciding questions of this kind is typically (at least) PSPACE-hard [102],
so obtaining information on variable dependencies seems to presuppose the existence of
the very solvers whose performance that information is intended to improve.

Dependency schemes offer a way out of this vicious circle by trading precision for
efficiency. Formally, a dependency scheme is a mapping that associates a PCNF formula
with a binary relation (called a dependency relation) on its variables. This dependency
relation is an overapproximation of variable dependencies. That is, a pair (x, y) in
this relation indicates that y may depend on x, but this dependency can be spurious.
Conversely, if the dependency relation does not contain a pair (x, y), then y definitely
does not depend on x. While dependency relations do not always provide the most
accurate representation of variable dependencies, they can be computed very efficiently.
For the formula Ψ presented above, the standard dependency scheme will detect that y
does not depend on u and that e does not depend on x based on a linear-time analysis
of Ψ. In the following chapters, we will survey dependency schemes and show how they
can be applied in QSAT solving.

Other things being equal, we prefer dependency schemes that compute smaller
dependency relations and induce fewer constraints in applications. Among the dependency
schemes considered in the literature, the resolution-path dependency scheme computes
a minimal (with respect to set inclusion) dependency relation. We prove that this
dependency scheme is still tractable, meaning that there is a polynomial-time algorithm
for computing its dependency relation for a given PCNF formula. The question of
whether such an algorithm exists was posed as an open problem in the original paper on
resolution-path dependencies [120].

Tractability of a dependency scheme is a minimal requirement for its application in
QSAT solvers such as DepQBF [15, 82]. DepQBF is a search-based solver that implements
an algorithm known under the acronym QDPLL [25]. QDPLL is a generalization of
the Davis-Putnam-Logemann-Loveland (DPLL) procedure for SAT, a clever brute-force
algorithm that branches on the assignments to propositional variables and prunes the
search space based on falsified clauses [36]. Perhaps somewhat surprisingly, state-of-the-art
SAT solvers are still largely based on DPLL [54]. One of the obstacles to QDPLL matching
their performance lies in constraints introduced to account for variable dependencies. In
DPLL, every unassigned variable can be used for branching, and sophisticated heuristics

4



for choosing the right variable are among the key features of modern SAT solvers [106].
In QDPLL, on the other hand, a variable can only be assigned if it appears in the
leftmost quantifier block (we will assume that formulas are in PCNF by default) that has
unassigned variables, a constraint that renders branching heuristics much less effective.

DepQBF uses dependency schemes to relax this constraint: a variable can be assigned
if it does not depend, according to the dependency relation computed by the refined
standard dependency scheme (see Chapter 3) on unassigned variables. This use of
dependency schemes is arguably the most distinctive feature of DepQBF and certainly
the most important application of dependency schemes, but it has not shown to be
sound. To be more precise: the original argument for soundness relies on an assumption
that does not hold in general, viz., that it is sufficient for a dependency scheme to
allow for quantifier reordering for its use in DepQBF to be sound (see Section 5.1 for a
counterexample).

We present a proof-theoretic argument for soundness of using selected dependency
schemes in DepQBF. Our point of departure is the correspondence between traces of
QDPLL solvers and proofs, or certificates, in a calculus known as Q-resolution [24, 51, 86].
More specifically, traces can be used to generate Q-resolution refutations of false formulas
and Q-term resolution proofs of true formulas. As a consequence of the way it uses
dependency schemes, DepQBF produces certificates that—in general—do not correspond
to Q-resolution proofs. To reason about these certificates, we introduce Q(D)-resolution
and Q(D)-term resolution, two families of proof systems that take a dependency scheme
D as a parameter. These systems differ from Q-resolution and Q-term resolution in
their use of more general versions of ∀-reduction and ∃-reduction, respectively. Although
DepQBF explicitly applies these generalized reduction rules in constraint learning [15,
p.7], and Q-resolution certificates are essentially read off from the sequence of learned
constraints [86], the fact that this leads to a departure from Q-resolution remained
implicit in the original works on DepQBF [15, 82]. Introducing Q(D)-resolution and
Q(D)-term resolution allows us to formally state (and answer) the question of whether
DepQBF is sound as a question about the soundness of these proof systems.

Dependency schemes were originally introduced for quantifier reordering [102]. In
this setting, a dependency relation is interpreted as a set of constraints on the relative
order of pairs of variables in the quantifier prefix – if quantifiers (and variables) are
rearranged in a way that satisfies these constraints, the resulting formula will have the
same truth value as the original formula. We prove that known dependency schemes
have this property. As an application of reordering, we combine (tractable) dependency
schemes of this kind with an algorithm that computes a quantifier prefix with the fewest
quantifier alternations among reorderings compatible with a given dependency relation.
This leads to a polynomial time preprocessing routine that may reduce the number of
quantifier alternations of a PCNF formula. As mentioned earlier, soundness of reordering
is not a sufficient condition for soundness of Q(D)-resolution or Q(D)-term resolution.
Finally, we show that Q(D)-resolution can simulate reordering plus Q-resolution and that
Q(D)-term resolution can simulate reordering plus Q-term resolution. It follows that
every dependency scheme for which Q(D)-resolution and Q(D)-term resolution are sound
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can be used for reordering.

Organization of Part I. After reviewing prerequisite notation and definitions in
Chapter 2, we introduce common dependency schemes and compare their dependency re-
lations in Chapter 3. In Chapter 4, we prove that there is a polynomial-time algorithm for
computing the resolution-path dependency relation for a given PCNF formula. Chapter 5
is concerned with the application of dependency schemes in search-based QSAT solvers.
There, we introduce Q(D)-resolution and Q(D)-term resolution and prove that these
systems are sound for particular dependency schemes. In Chapter 6, we show that known
dependency schemes can be used for quantifier reordering and present an application of
reordering to the problem of minimizing the number of quantifier alternations of PCNF
formulas. We conclude and give a brief overview of related work in Chapter 7.

Several results proved in the subsequent chapters have been presented at workshops or
published, in preliminary form, as part of conference proceedings:

• Tractability of the resolution-path dependency scheme (Chapter 4, Theorem 2) is
the main result of a paper published in the proceedings of SAT 2012 [107]. In the
same work, we show that the resolution-path dependency scheme is a cumulative
dependency scheme – this is entailed by our result stating that the resolution-path
dependency scheme is a permutation dependency scheme (Chapter 6, Theorem 9).

• We introduced Q(D)-resolution and showed that the system is sound for the standard
dependency scheme in a paper that was presented at the QBF 2013 workshop [109].

• Soundness of Q(D)-resolution for the reflexive resolution-path dependency scheme
(Chapter 5, Theorem 5) was originally proved in a paper published at SAT 2014 [111],
which also contains the simplified proof of tractability for the resolution-path
dependency scheme presented in Chapter 4.

• The proof of soundness of Q(D)-term resolution for the resolution-path dependency
scheme (Chapter 5, Theorem 6) is from a paper that was presented at the QBF
2014 workshop [110].
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CHAPTER 2
Preliminaries

We will denote the set of natural numbers (that is, positive integers) by N+. If n ∈ N+,
we write [n] for the set {1, . . . , n}.

Sequences. We write ε for the empty sequence. If s = s1, . . . , sk and r = r1, . . . , rl
are sequences then sr is the sequence s1, . . . , sk, r1, . . . , rl. If s and r are sequences and
there is a sequence t such that r = st then s is a prefix of r. If t 6= ε then s is a proper
prefix of r. The length of a sequence s1, . . . , sk is k.

Permutations. Let s = s1, . . . , sn be a sequence. By a permutation of s we mean a
sequence sf(1), . . . , sf(n), where f : [n] → [n] is a bijection. A transposition of s is a
permutation sf(1), . . . , sf(n) of s such that f(i) = f(i + 1) and f(i + 1) = i for some
1 ≤ i < n, and f(j) = j for every j 6= i.

Relations. Let R be a binary relation on a set S. For s ∈ S we write R(s) = { t ∈
S : (s, t) ∈ R }; for S′ ⊆ S we let R(S′) = ∪s∈S′R(s). By R∗ we denote the reflexive
transitive closure of R. That is R∗ denotes the smallest (with respect to set inclusion)
relation S such that (s, s) ∈ S for every s ∈ S, and such that (s, u) ∈ S whenever
(s, t) ∈ S and (t, u) ∈ S. Finally we let R = { (y, x) : (x, y) ∈ R } denote the inverse of R.

Graphs. A directed graph, or digraph, for short, is a pair G = (V,E), where V is a
finite set and E ⊆ V × V is an irreflexive binary relation. The elements of V and E
are called the vertices and edges of G, respectively. An edge (v, w) of G is an incoming
edge of w and an outgoing edge of v. Let W ⊆ V . The subgraph of G induced by W is
G[W ] = (W,E ∩ (W ×W )). A walk (from v1 to vn) in G is a sequence w = v1, . . . , vn of
vertices such that (vi, vi+1) ∈ E for each i ∈ [n−1]. The length of w is n−1. If the vi are
pairwise distinct then w is a path. A longest (shortest) path (from v to u) in G is a path
(from v to u) in G of maximum (minimum) length. A walk v1, . . . , vn is closed if v1 = vn.
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A digraph is acyclic if it does not contain a closed walk. The sets of out-neighbors and
in-neighbors of a vertex v of G are as defined as N+

G (v) = {w ∈ V : (v, w) ∈ E } and
N−G (v) = {w ∈ V : (w, v) ∈ E }, respectively. If E is symmetric, that is, if E = E, then
G is a graph. In this case, we may write vw to denote an edge (v, w) ∈ E. If G = (V,E)
is a graph and there is a path in G from v ∈ V to w ∈ W then v and w are connected
in G. A tree is a graph T = (V,E) such that T is acyclic and any two vertices v, w ∈ V
are connected in T .

Quantified Boolean formulas. A literal is a negated or unnegated variable. If x is
a variable, we write x = ¬x and ¬x = x, and let var(x) = var(¬x) = x. If X is a set of
literals, we write X for the set {x : x ∈ X }. A clause is a finite disjunction of literals,
and a term is a finite conjunction of literals. A CNF formula is a finite conjunction
of clauses. Whenever convenient, we treat clauses and terms as sets of literals, and
a CNF formula as a set of sets of literals. If S is a clause or term, we let var(S) be
the set of variables occurring (negated or unnegated) in S. For a CNF formula ϕ
we let var(ϕ) =

⋃
C∈ϕ var(C). A (quantifier) prefix is a (possibly empty) sequence

Q = Q1x1 . . . Qnxn, where Qi ∈ {∀,∃}, and the xi are pairwise distinct variables. The
set of variables occurring in the prefix Q is var(Q) = {x1, . . . , xn}. We let qQ(xi) = Qi
and define the relation RQ as RQ = { (xi, xj) : i < j }. We extend RQ to a relation
on literals in the obvious way, and drop the subscript from RQ and qQ whenever the
prefix is clear from the context. A quantifier block (of Q) is a maximal (sub)sequence
Qixi . . . Qkxk such that 1 ≤ i < k ≤ n and Qi = Qj for each j with i ≤ j ≤ k. Relative
to prefix Q, variable xi is called existential (universal) if Qi = ∃ (Qi = ∀). The set of
existential (universal) variables occurring in a the prefix Q is denoted var∃(Q) (var∀(Q)).
A literal ` is existential (universal) relative to a prefix Q if var(`) is existential (universal)
relative to Q. A PCNF formula is a pair Φ = Q.ϕ consisting of a prefix Q and a CNF
formula ϕ (called the matrix of Φ) such that var(ϕ) = var(Q). If Φ = Q.ϕ is a PCNF
formula, we let var(Φ) = var(Q), var∃(Φ) = var∃(Q), and var∀(Φ) = var∀(Q). Moreover,
we let lit(Φ) = var(Φ) ∪ var(Φ) and RΦ = RQ. We call a clause tautological (and a term
contradictory) if it contains the same variable negated as well as unnegated. We assume
that the matrix of a PCNF formula contains only non-tautological clauses. The size of a
PCNF formula Φ = Q.ϕ is defined |Φ| =

∑
C∈ϕ |C|.

For a set X of variables, a truth assignment (or simply assignment) is a mapping
τ : X → {0, 1}. We extend τ to literals by letting τ(¬x) = 1− τ(x). Let τ : X → {0, 1}
be a truth assignment. We define the application C[τ ] of τ to a clause C as follows.
If there is a literal ` ∈ C ∩ (X ∪ X) such that τ(`) = 1 then C[τ ] = 1. Otherwise, if
var(C) ⊆ X then C[τ ] = 0. Dually, the application T [τ ] of τ to a term T is defined
T [τ ] = 0 if there is a literal ` ∈ T such that τ(`) = 0, and T [τ ] = 1 if there is no such
literal and var(T ) ⊆ X. If τ : X → {0, 1} is a truth assignment and Y ⊆ X, then the
restriction of τ to Y , in symbols τ |Y , is the truth assignment τ ′ : Y → {0, 1} such that
τ ′(x) = τ(x) for each x ∈ Y . If τ : X → {0, 1} and σ : Y → {0, 1} are truth assignments
and X ∩Y = ∅, then the union of τ and σ is the truth assignment τ ∪σ : X ∪Y → {0, 1}
such that τ ∪ σ(x) = τ(x) if x ∈ X, and τ ∪ σ(y) = σ(y) if y ∈ Y .
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Models and countermodels. Let Φ = Q.ϕ be a PCNF formula. For a variable
x ∈ var(Φ), let LΦ

x = { y ∈ var(Φ) : (y, x) ∈ RΦ and q(x) 6= q(y) }. We call a partial
function fx : 2LΦ

x → {0, 1} a model function for x. Given an indexed family f = {fx}x∈X
of model functions for variables in X ⊆ var(Φ) and a truth assignment τ : Y → {0, 1} to
Y ⊆ var(Φ) \X, we define the truth assignment f(τ) as follows. Whenever fx(τ |LΦ

x
) is

defined we let f(τ)(x) = fx(τ |LΦ
x

), and otherwise leave f(τ)(x) undefined. An indexed
family f = {fx}x∈var∃(Φ) of model functions for the existential variables in Φ is called
a model of Φ if, for every assignment τ : var∀(Φ) → {0, 1} and every clause C ∈ ϕ,
C[τ ∪ f(τ)] = 1. If fx is a total function for each x ∈ var∃(Φ) then f is a complete
model of Φ. An indexed family g = {gx}x∈var∀(Φ) of model functions for the universal
variables in Φ is a countermodel of Φ if, for every assignment τ : var∃(Φ) → {0, 1},
there exists a clause C ∈ ϕ such that C[τ ∪ g(τ)] = 0. If gx is a total function for each
x ∈ var∀(Φ) then g is a complete countermodel of Φ. Complete models are sometimes
referred to as Skolem-function models, while complete countermodels are also known as
Herbrand-function countermodels [8]. A PCNF formula Φ is true if it has a model, and
false if it has a countermodel. Two PCNF formulas Φ and Ψ are equivalent, in symbols
Φ ≡ Ψ, if they are both true or both false.

Labeled trees. We will represent resolution derivations as labeled, rooted trees. A
labeled, rooted tree is a triple T = (T, r, λ), where T = (V,E) is a tree, r ∈ V is a
designated vertex, called the root of T , and λ is a mapping that associates each vertex or
edge x ∈ V ∪E with a label λ(x) that is either a literal or a set of literals. Let ≈ denote
the equivalence relation on labeled, rooted trees defined in the obvious way. We now
define operations for manipulating labeled, rooted trees whose result is unique up to ≈.

• If C is a set of literals then 4(C) is a labeled, rooted tree T = (T, r, λ) such that
T = ({r}, ∅) and λ(r) = C.

• Let T1 = (T1, r1, λ1) and T2 = (T1, r2, λ2) be labeled, rooted trees, and let T1 =
(V1, E1) and T2 = (V2, E2). We assume without loss of generality that V1 and V2
are disjoint. Given a literal `, we define T1 �` T2 to be the labeled, rooted tree
T = (T, r, λ), where r is a fresh vertex not in V1 ∪ V2,

T = (V1 ∪ V2 ∪ {r}, E1 ∪ E2 ∪ {r1r, r2r}),

and the labeling λ is defined as follows. If v ∈ V1 ∪ V2 ∪ {r}, then

λ(v) =


λ1(v), if v ∈ V1,
λ2(v), if v ∈ V2,
(λ(r1) \ {`}) ∪ (λ(r2) \ {`}), otherwise.
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If e ∈ E1 ∪ E2 ∪ {r1r, r2r}, then

λ(e) =


λ1(e), if e ∈ E1,
λ2(e), if e ∈ E2,
`, if e = r1r,
`, otherwise.

• Let T = (T, r, λ) be a labeled, rooted tree with T = (V,E), and let ` be a literal.
We define T ‖` to be the labeled, rooted tree T ′ = (T ′, r′, λ′), where r′ /∈ V is a
fresh vertex, T = (V ∪ {r′}, E ∪ {rr′}), and the labeling λ′ is defined as follows.
If v ∈ V ∪ {r′}, then λ′(v) = λ(v) if v ∈ V and λ′(v) = λ(r) \ {`} otherwise. If
e ∈ E ∪ {rr′} then λ′(e) = λ(e) if e ∈ E and λ(e) = ` otherwise.

In order to make statements about the structure of labeled trees without introducing
unwanted bound variables, we allow the use of the wild card ? in expressions involving
the ≈ relation. Below, let T and T ′ be labeled, rooted trees and let ` be a literal.

• T ≈ T ′ �` ? is true if there is a labeled, rooted tree T ′′ and T ≈ T ′ �` T ′′.
Symmetrically, T ≈ ?�` T ′ is true if T ′ �` ? is true.

• T ≈ ?‖` is true if there is a labeled, rooted tree T ′′ and T ≈ T ′′‖`.
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CHAPTER 3
Taxonomy of Dependency

Schemes

In this chapter, we provide definitions of dependency schemes used in later chapters
and determine which inclusions hold among their dependency relations. Syntactically,
dependency schemes are mappings that refine the trivial dependency scheme. The trivial
dependency scheme essentially computes the linear order induced by a quantifier prefix but
ignores “dependencies” between pairs of variables of the same type (i.e., both existential
or both universal).1

Definition 1. The trivial dependency scheme is the mapping Dtrv that associates each
PCNF formula Φ with the relation Dtrv

Φ = { (x, y) ∈ RΦ : q(x) 6= q(y) } called the trivial
dependency relation of Φ.

The definition of the trivial dependency scheme can be motivated by the following
two (related) facts:

1. The relative order of variables within a quantifier block can be changed without
this affecting the truth value of a PCNF formula.

2. A model function for an existential variable takes an assignment to universal
variables on its left as an argument, and a model function for a universal variable
takes an assignment to existential variables on its left as an argument.

For instance, if Φ is a formula with quantifier prefix ∃x∀y∃z then its trivial dependency
relation is Dtrv

Φ = {(x, y), (y, z)}. Prima facie, every refinement of the trivial dependency
1In the original definition of the trivial dependency scheme, only dependencies between variables in

the same quantifier block are ignored [102]. The definition given here is due to Biere and Lonsing [15].
Either definition can be used for our purposes, but we believe the latter is a better fit for the intended
interpretation(s) of dependency relations.
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scheme is a potential dependency scheme. We refer to such mappings as proto-dependency
schemes.

Definition 2. A proto-dependency scheme is a mapping D that associates each PCNF
formula Φ with a relation DΦ ⊆ Dtrv

Φ called the dependency relation of Φ with respect
to D. A proto-dependency scheme D is tractable if DΦ can be computed in polynomial
time for every PCNF formula Φ.

The trivial dependency relation is entirely determined by the quantifier prefix. A
simple syntactic analysis of formulas can often lead to additional information on (potential)
variable dependencies. As a somewhat contrived example, consider a formula obtained by
prenexing the conjunction of two variable-disjoint PCNF formulas Φ and Ψ. Intuitively,
in the resulting formula there is no semantic relation between two variables x ∈ var(Φ)
and y ∈ var(Ψ). The dependency schemes presented below make this intuition formal
by including a pair of variables in the dependency relation only if they are suitably
connected.

3.1 Standard Dependencies

We begin by giving the definition of the standard dependency scheme [102].

Definition 3 (X-path). Let Φ = Q.ϕ be a PCNF formula. An X-path, X ⊆ var(Φ),
between two clauses C,C ′ ∈ ϕ, is a sequence C1, . . . , Ck of clauses in ϕ with C = C1 and
C ′ = Ck such that var(Ci) ∩ var(Ci+1) ∩X 6= ∅ for all 1 ≤ i < n. Two clauses C,C ′ ∈ ϕ
are connected with respect to X ⊆ var(Φ) if there is an X-path between them.

Definition 4 (Dependency pair). Let Φ = Q.ϕ be a PCNF formula and let x, y ∈ var(Φ)
such that q(x) 6= q(y). An (x, y)-dependency pair with respect to X ⊆ var(Φ) is a pair
(C1, C2) ∈ ϕ × ϕ of clauses such that (1) C1 and C2 are connected with respect to X
and (2) x ∈ var(C1) as well as y ∈ var(C2).

Definition 5 (Standard dependency scheme). The standard dependency scheme is the
mapping Dstd that associates each PCNF formula Φ with the relation Dstd

Φ = { (x, y) ∈
Dtrv

Φ : Φ contains an (x, y)-dependency pair with respect to RΦ(x) \ var∀(Φ) }.

The standard dependency scheme is most well known for its implementation in the
PCNF solver DepQBF [15, 82]. Strictly speaking, DepQBF uses a refinement of the
standard dependency scheme defined as follows [82, p.49]. If Φ is a PCNF formula and
x ∈ var(Φ), we let R�Φ(x) denote the relation

R�Φ(x) = { y : ∃z ∈ RΦ(x) such that qΦ(z) 6= qΦ(x) and y ∈ RΦ(z) or y = z }.

That is, R�Φ(x) is the set of variables to the right of x in the prefix of Φ but not in the
same quantifier block as x.

12



Definition 6 (Refined standard dependency scheme). The refined standard dependency
scheme is the mapping Drst that associates each PCNF formula Φ with the relation Drst

Φ =
{ (x, y) ∈ Dtrv

Φ : Φ contains an (x, y)-dependency pair with respect to R�Φ(x) \ var∀(Φ) }.

Observe that the refined standard dependency relation coincides with the standard
dependency relation for pairs (x, y) where x is universal and y is existential. This fact
will be useful in Chapter 5, so we formally state it below.

Lemma 1. Let Φ be a PCNF formula and let (x, y) ∈ var∀(Φ)× var∃(Φ). Then (x, y) ∈
Dstd

Φ if and only if (x, y) ∈ Drst
Φ .

Proof. If (x, y) /∈ RΦ then (x, y) /∈ Dstd
Φ and (x, y) /∈ Drst

Φ . Otherwise, R�Φ(x) \ var∀(Φ) =
RΦ(x) \ var∀(Φ) and the lemma follows.

The relation Drst
Φ can be computed and represented very efficiently [82, Ch.4]. Here,

we only show that both Dstd
Φ and Drst

Φ can be computed in polynomial time using the
primal graph of a PCNF formula Φ.

Definition 7 (Primal graph). Let Φ = Q.ϕ be a PCNF formula. The primal graph of Φ
is the graph G = (V,E), where V = var(Φ) and E = {xy : there is a clause C ∈ ϕ such
that x, y ∈ var(C) }.

Lemma 2. Let Φ be a PCNF formula with primal graph G, let x, y ∈ var(Φ), and let
X ⊆ var(Φ). The following two statements are equivalent:

1. There are clauses C,C ′ ∈ ϕ such that x ∈ var(C), y ∈ var(C ′), and such that C
and C ′ are connected with respect to X.

2. There is a path connecting x and y in G[X ∪ {x, y}].

Proof. (1⇒ 2) Let C1, . . . , Ck be an X-path such that x ∈ var(C1) and y ∈ var(Ck). We
prove that there is a walk x1, . . . , xk in G[X ∪ {x, y}] such that x1 = x and xk = y by
induction on k. If k = 1 then x, y ∈ var(C1) and xy ∈ E(G) by definition of the primal
graph, so x, y is a walk in G[X ∪ {x, y}]. Let k > 1 and suppose the statement holds
for X-paths of length strictly less than k. Let z ∈ var(C1) ∩ var(C2) ∩X. The sequence
C2, . . . , Ck is an X-path such that z ∈ var(C2) and y ∈ var(Ck). By induction hypothesis,
there is a walk x2, . . . , xk in G[X ∪ {z, y}] = G[X ∪ {y}] such that x2 = z and xk = y.
Because x, z ∈ var(C1) there is an edge xz ∈ E(G), so the sequence x1, . . . , xk, where
x1 = x, is a walk in G[X ∪ {x, y}]. Clearly, there is a walk from x to y in G[X ∪ {x, y}]
only if there is a path connecting x and y.

(2 ⇒ 1) Let x1, . . . , xk be a path in G[X ∪ {x, y}] such that x1 = x and xk = y.
We prove by induction on k that there are clauses C,C ′ ∈ ϕ such that x ∈ var(C),
y ∈ var(C ′), and such that C and C ′ are connected with respect to X. If k = 1 then
there must be a clause C ∈ ϕ such that x, y ∈ var(C) and we simply let C ′ = C. Let
k > 1 and suppose the statement holds for paths of length strictly less than k. Because
x1x2 is an edge of G there must be a clause C ∈ ϕ such that x1, x2 ∈ var(C). If x2 = y
we again set C ′ = C. Otherwise, let x2 6= y. Since x1, . . . , xk is a path in G[X ∪ {x, y}]
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we must have x1 /∈ {x2, . . . , xk} and the sequence x2, . . . , xk is a path in G[X ∪ {y}]. In
particular, x2, . . . , xk is a path in G[X∪{x2, y}], so we can apply the induction hypothesis
to conclude that there are clauses C ′, C ′′ ∈ ϕ such that x2 ∈ var(C ′′), y ∈ var(C ′), and
such that C ′′ and C ′ are connected with respect to X. Let C1, . . . , Cl be an X-path
such that C1 = C ′′ and Cl = C ′. Since {x2, . . . , xk} ⊆ X ∪ {y} and x2 6= y we must
have x2 ∈ X ∩ var(C) ∩ var(C ′′), so the sequence C,C1, . . . , Cl is an X-path between C
and C ′.

From this, tractability follows easily.

Theorem 1. The (refined) standard dependency scheme Dstd (Drst) is tractable: for
each PCNF formula Φ the relation Dstd

Φ (Drst
Φ ) can be computed in polynomial time.

Proof. We describe a polynomial time algorithm for computing Dstd (or Drst). Given
a PCNF formula Φ, the algorithm first constructs the primal graph G of Φ. Then it
determines for each pair (x, y) ∈ Dtrv

Φ whether there is a path from x to y in G[X∪{x, y}],
where X = RΦ(x) \ var∀(Φ) for Dstd and X = R�Φ(x) \ var∀(Φ) for Drst. By Lemma 2,
this amounts to checking whether Φ contains an (x, y)-dependency pair with respect
to X, and thus to deciding whether (x, y) ∈ Dstd

Φ (respectively (x, y) ∈ Drst
Φ ).

3.2 Resolution-Path Dependencies
Next, we define the resolution-path dependency scheme [120, 107], as well as the reflexive-res-
olution path dependency scheme [111]. These dependency schemes rely on a notion of
connectivity through so-called resolution paths, defined as follows.

Definition 8 (Resolution Path). Let Φ = Q.ϕ be a PCNF formula and let X ⊆ var∃(Φ).
A resolution path (from `1 to `2k) via X (in Φ) is a sequence `1, . . . , `2k of literals satisfying
the following properties:

A) For all i ∈ [k], there is a Ci ∈ ϕ such that `2i−1, `2i ∈ Ci.

B) For all i ∈ [k], var(`2i−1) 6= var(`2i).

C ) For all i ∈ [k − 1], {`2i, `2i+1} ⊆ lit(X).

D) For all i ∈ [k − 1], `2i = `2i+1.

If p = `1, . . . , `2k is a resolution path in Φ via X, we say that `1 and `2k are connected
in Φ (with respect to X). For every i ∈ {1, . . . , k} we say that p goes through var(`2i).

Resolution paths are intimately related to resolution (see Section 5.1): whenever a
clause containing two literals can be derived from a formula by resolution, there has to
be a resolution path connecting these literals. For example, consider the PCNF formula

Φ = ∀x∃y∃z∃e.(x ∨ y) ∧ (¬y ∨ z) ∧ (¬z ∨ e).
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By resolving the first two clauses (on y), we obtain the clause (x ∨ z), which in turn
can be resolved with the third clause (on z) to derive the clause (x ∨ e). The sequence
x, y,¬y, z,¬z, e is the corresponding resolution path.

Alternatively, resolution paths can be defined so as to include the intermediate clauses
Ci mentioned in Condition A (cf. [107]), but we find the above definition more convenient
to work with. Connectivity through resolution paths is a stronger notion than connectivity
through X-paths, as witnessed by the following result.

Lemma 3. Let Φ = Q.ϕ be a PCNF formula, let `, `′ ∈ lit(Φ), and let X ⊆ var(Φ). If
there is a resolution path from ` to `′ in Φ via X then there are clauses C,C ′ ∈ ϕ such
that ` ∈ C, `′ ∈ C ′, and such that C and C ′ are connected in Φ with respect to X.

Proof. Let `1, . . . , `2k be a resolution path from ` to `′ via X. By Condition A of
Definition 8, there is a sequence C1, . . . , Ck of clauses such that `2i−1, `2i ∈ Ci, for each
i ∈ [k]. In particular, ` = `1 ∈ C1 and `′ = `2k ∈ Ck. Definition 8 also requires that
var(`2i) = var(`2i+1) ∈ X, for i ∈ [k − 1] (Conditions C and D). Setting xi = var(`2i),
we get xi ∈ var(Ci) ∩ var(Ci+1) ∩X, for i ∈ [k − 1]. That is, the sequence C1, . . . , Ck is
an X-path of Φ. Choosing C = C1 and C ′ = Ck, we obtain the desired clauses.

We will sometimes implicitly use the fact that a resolution path taken in inverse order
is a resolution path as well, which is easy to verify. Moreover, two resolution paths can
be concatenated if their first and last literals, respectively, are different polarities of the
same variable, as stated in the following lemma.

Lemma 4. Let Φ be a PCNF formula. Let p = `1, . . . , `2i, `2i+1, . . . , `2k be a sequence
of literals, let p′ = `1, . . . , `2i, and let p′′ = `2i+1, . . . , `2k. The following statements are
equivalent:

1. p is a resolution path in Φ.

2. p′ and p′′ are resolution paths in Φ and `2i = `2i+1.

Resolution-path dependency pairs are induced by a pair of resolution paths that
connects two literals and their negations, as follows.

Definition 9 (Resolution-path dependency pair). Let Φ be a PCNF formula and x, y ∈
var(Φ). We say {x, y} is a resolution-path dependency pair of Φ with respect toX ⊆ var(Φ)
if at least one of the following conditions holds:

• x and y, as well as ¬x and ¬y, are connected in Φ with respect to X.

• x and ¬y, as well as ¬x and y, are connected in Φ with respect to X.

The pair {x, y} is an irreflexive resolution-path dependency pair of Φ with respect to
X ⊆ var∃(Φ) if {x, y} is a resolution-path dependency pair with respect to X \ {x, y}.
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Definition 10 (Resolution-path dependency scheme). The resolution-path dependency
scheme is the mapping Dres that assigns to each PCNF formula the relation Dres

Φ defined
as Dres

Φ = { (x, y) ∈ Dtrv
Φ : {x, y} is an irreflexive resolution-path dependency pair of Φ

with respect to RΦ(x) \ var∀(Φ) }.

As we will see in Chapter 5, the resolution-path dependency scheme is not suited
for use in QDPLL solvers, in the sense that a proof system named Q(D)-resolution is
unsound when parameterized by Dres. This proof system turns out to be sound when
parameterized by the following, “reflexive” version, however [111].

Definition 11 (Reflexive resolution-path dependency scheme). The reflexive resolution-
path dependency scheme is the mapping Drrs that assigns to each PCNF formula the
relation Drrs

Φ defined as Drrs
Φ = { (x, y) ∈ Dtrv

Φ : {x, y} is a resolution-path dependency
pair of Φ with respect to RΦ(x) \ var∀(Φ) }.

The use of irreflexive resolution-path dependency pairs in Definition 10 has the effect
that resolution paths inducing a dependency of an existential variable y on a universal
variable x cannot go through y. As a consequence, the resolution-path dependency
scheme does not include some of the dependencies detected by its reflexive variant. Can
we introduce a variant of the standard dependency scheme in a similar manner? The
following claim shows that an analogue distinction between irreflexive and ordinary
dependency pairs collapses for connectivity defined in terms of X-paths.

Claim 1. Let Φ be a PCNF formula, let x, y ∈ var(Φ), and let X ⊆ var(Φ). The
following statements are equivalent:

1. Φ contains an (x, y)-dependency pair with respect to X.

2. Φ contains an (x, y)-dependency pair with respect to X \ {x, y}.

Proof. The second statement trivially entails the first, so it suffices to show that the
first statement entails the second. Let (C,C ′) be an (x, y)-dependency pair of Φ with
respect to X, and let C1, . . . , Ck be an X-path such that C1 = C and Ck = C ′. Let
i, j be indices such that 1 ≤ i ≤ j ≤ k, x ∈ var(Ci), y ∈ var(Cj), and such that the
difference j − i is minimized. Such indices must exist since x ∈ var(C) = var(C1)
and y ∈ var(C ′) = var(Ck). Then Ci, . . . , Cj is an X \ {x, y}-path, and (Ci, Cj) is an
(x, y)-dependency pair of Φ with respect to X \ {x, y}.

The question of whether resolution paths can be computed efficiently was stated as an
open problem by Van Gelder [120]. In Chapter 4 we provide an answer to this question
by showing that both Dres and Drrs are tractable.
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Dres

DrrsDrst

Dstd

Dtrv

Figure 3.1: Hasse diagram for proto-dependency schemes with respect to the partial
order ( of Definition 12.

3.3 Inclusions among Dependency Relations
For the applications of proto-dependency schemes discussed in Chapters 5 and 6, the
presence a pair (x, y) in a dependency relation represents a constraint – other things
being equal, we prefer dependency schemes that compute smaller dependency relations.
With this in mind, we define a pointwise partial order ( that allows us to compare
proto-dependency schemes.

Definition 12. We define relations ⊆ and ( on proto-dependency schemes as follows.
Let D1 and D2 be proto-dependency schemes. Then D1 ⊆ D2 holds if D1

Φ ⊆ D2
Φ for every

PCNF formula Φ. If D1 ⊆ D2 we say D1 is at least as general as D2. We define D1 ( D2

to be true if (a) D1 ⊆ D2 and (b) there is a PCNF formula Φ such that D1
Φ ( D2

Φ. If that
is the case we say that D1 is more general than D2. If neither D1 ⊆ D2 nor D2 ⊆ D1

then D1 and D2 are incomparable.

If D1 is more general than D2 while retaining the properties required for a particular
application, then the pairs in D2

Φ \ D1
Φ for a given formula Φ can be thought of as

spurious dependencies. With respect to the partial order (, the proto-dependency
schemes introduced above are ordered as follows.

Proposition 1.

1. The standard dependency scheme Dstd is more general than the trivial dependency
scheme Dtrv.

2. The refined standard dependency scheme Drst is more general than the standard
dependency scheme Dstd.

3. The reflexive resolution-path dependency scheme Drrs is more general than the
standard dependency scheme Dstd.

4. The resolution-path dependency scheme Dres is more general than the reflexive
resolution-path dependency scheme Drrs.
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5. The refined standard dependency scheme Drst and the (reflexive) resolution-path
dependency scheme Dres (Drrs) are incomparable.

Proof. We prove each statement separately:

1. The inclusion Dstd
Φ ⊆ Dtrv

Φ holds trivially, so Dstd ⊆ Dtrv. Consider the formula
Φ = ∀x∃y.(x) ∧ (y). Then (x, y) ∈ Dtrv

Φ but (x, y) /∈ Dstd
Φ .

2. For every formula Φ, variables x, y ∈ var(Φ), and sets X ⊆ X ′ ⊆ var(Φ), an
(x, y)-dependency pair of Φ with respect to X is an (x, y)-dependency pair of Φ
with respect to X ′. It follows that Drst ⊆ Dstd. Let Φ = ∃x∃y∀z.(x ∨ y) ∧ (y ∨ z).
Then (x, z) ∈ Dstd

Φ but (x, z) /∈ Drst
Φ .

3. Let Φ be a PCNF formula Φ and let (x, y) ∈ Drrs
Φ . Assume without loss of

generality that x and y, as well as ¬x and ¬y, are connected in Φ with respect to
RΦ(x) \ var∀(Φ). By Lemma 3, the formula Φ has an (x, y)-dependency pair with
respect to RΦ(x) \ var∀(Φ) and (x, y) ∈ Dstd

Φ . We conclude that Drrs ⊆ Dstd. Let
Φ = ∀x∃y.(x ∨ y). Then (x, y) ∈ Dstd

Φ but (x, y) /∈ Drrs
Φ .

4. An irreflexive resolution-path dependency pair is a resolution-path dependency
pair with respect to the same set of variables, so Dres ⊆ Drrs. Consider the PCNF
formula

Φ = ∀x∃y∃z.(x ∨ y) ∧ (¬x ∨ y) ∧ (¬y ∨ z) ∧ (¬z ∨ ¬y).

Verify that x and y, as well as ¬x and ¬y, are connected via RΦ(x) \ var∀(Φ), so
that (x, y) ∈ Drrs

Φ . On the other hand, every resolution path from x or ¬x to ¬y
goes through y, so {x, y} is not a resolution-path dependency pair with respect to
RΦ(x) \ (var∀(Φ) ∪ {x, y}) and thus (x, y) /∈ Dres

Φ .

5. Consider again the formula Φ = ∀x∃y.(x ∨ y). We have (x, y) ∈ Drst
Φ but (x, y) /∈

Drrs
Φ ⊇ Dres

Φ , so Drst * Dres and Drst * Drrs. On the other hand, take the formula

Ψ = ∃x∃y∀z.(x ∨ y) ∧ (¬y ∨ z) ∧ (¬x ∨ ¬y) ∧ (y ∨ ¬z).

It is straightforward to verify that (x, y) ∈ Dres
Φ ⊆ Drrs

Φ but (x, y) /∈ Drst
Φ , so

Dres * Drst and Drrs * Drst.

The Hasse diagram for the dependency schemes introduced in the previous section,
partially ordered by the relation (, is shown in Figure 3.1.

3.4 Further Dependency Schemes
This section covers additional dependency schemes studied in the literature that are
intermediate in generality between the standard and resolution-path dependency schemes.
Like the resolution-path dependency scheme, they test for connections between different
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polarities of variables, while relying on the notion of connectivity through X-paths, rather
than resolution paths.

The first of these dependency schemes is the triangle dependency scheme, which is
based on a generalization of dependency pairs to dependency triples [102].

Definition 13 (Dependency triple). Let Φ = Q.ϕ be a PCNF formula and let x, y ∈
var(Φ) such that q(x) 6= q(y). An (x, y)-dependency triple with respect to X ⊆ var(Φ) is
a triple (C1, C2, C3) ∈ ϕ× ϕ× ϕ such that

1. If q(x) = ∀ and q(y) = ∃, then

• C1 and C2 as well as C1 and C3 are connected with respect to X ∪ {x}
• x ∈ var(C1), y ∈ C2, and ¬y ∈ C3

2. If q(x) = ∃ and q(y) = ∀, then

• C1 and C2 as well as C1 and C3 are connected with respect to X ∪ {y}
• y ∈ var(C1), x ∈ C2, and ¬x ∈ C3

Definition 14 (Triangle dependency scheme). The triangle dependency scheme is the
mapping D4 that assigns to each PCNF formula Φ the relation D4

Φ = { (x, y) ∈ RΦ : Φ
contains an (x, y)-dependency triple with respect to RΦ(x) \ (var∀(Φ) ∪ {y}) }.

Using a generalization of Lemma 2, it is fairly straightforward to show that the
triangle dependency scheme is tractable. By means of a slightly more involved argument,
one can even prove the following result [102, Proposition 4].

Proposition 2. The triangle dependency scheme is tractable. Given a PCNF formula Φ
of size n and x ∈ var(Φ), we can compute D4

Φ (x) in time O(n).

Note the asymmetry between existential and universal variables in the definition of
dependency triples: the existential variable has to appear both positively and negatively,
while this is not required for the universal variable. By contrast, resolution-path de-
pendency pairs are symmetric with respect to existential and universal variables. Strict
standard dependencies relax resolution-path dependencies in a dual way, by demanding
triples of clauses in which the universal variable occurs both positively and negatively,
while the existential variable may appear in only one polarity. Finally, quadrangle de-
pendencies relax resolution-path dependencies by only demanding connectivity through
X-paths, rather than resolution paths. Both strict standard and quadrangle dependencies
were introduced along with resolution-path dependencies [120]. Though they naturally
lead to dependency schemes, they were not introduced as such since dependency schemes
require certain reordering operations on a formula’s quantifier prefix to be truth-value
preserving (see Chapter 6), and reordering was not the intended application of dependency
relations in [120].

Resolution-path dependencies, as well as quadrangle and strict standard dependencies,
were originally defined in terms of so-called depth-limited clause-literal graphs [120,
Definition 5.1].

19



Definition 15 (Quantifier depth). Let Φ = Q1x1 . . . Qnxn.ϕ be a PCNF formula. The
quantifier depth of a variable xi with respect to Φ, in symbols qdepthΦ(xi) where i ∈ [n],
is inductively defined as follows:

qdepthΦ(xi) =


1 if i = 1;
qdepthΦ(xi−1) if i > 1 and Qi−1 = Qi,
qdepthΦ(xi−1) + 1 if i > 1 and Qi−1 6= Qi.

As usual, we drop the subscript from qdepthΦ(x) and write qdepth(x) if the formula Φ
is clear from the context.

Definition 16 (Depth-limited clause-literal graph). Let Φ = Q.ϕ be a PCNF formula
and let k = max{ qdepth(x) : x ∈ var(Φ) }. For each i ∈ [k − 1], the depth-limited
clause-literal graph of Φ at depth i is the graph G = (U ∪ V ∪W,E), where

U = {C ∈ ϕ : ∃x ∈ var(C) such that qdepth(x) > i and q(x) = ∃ },
V = {x ∈ var∃(Φ) : qdepth(x) > i and there is a C ∈ U such that x ∈ C },
W = {¬x ∈ var∃(Φ) : qdepth(x) > i and there is a C ∈ U such that ¬x ∈ C },
E = {¬xx : x ∈ V,¬x ∈W } ∪ { `C : ` ∈ C, ` ∈ V ∪W,C ∈ U }.

Strict standard, quadrangle, and resolution-path dependencies are then defined as
follows [120, Definition 5.2].

Definition 17. Let Φ be a PCNF formula, let x ∈ var∀(Φ), and let y ∈ var∃(Φ), such
that qdepth(x) = i and qdepth(y) = i+ 1. Let G denote the depth-limited clause-literal
graph of Φ at depth i.

1. The pair (x, y) is a strict standard dependency of Φ if there are literals `x, `y, and `′y
with var(`x) = x and var(`y) = var(`′y) = y, as well as clauses C1, C2, C3, C4 ∈ V (G)
with `x ∈ C1, `x ∈ C2, `y ∈ C3, `

′
y ∈ C4, such that there are walks in G from C1

to C3 and from C2 to C4.

2. The pair (x, y) is a quadrangle dependency of Φ if there are literals `x, `y with
var(`x) = x and var(`y) = y, as well as clauses C1, C2, C3, C4 ∈ V (G) with `x ∈
C1, `x ∈ C2, `y ∈ C3, `y ∈ C4, such that there is walk in G from C1 to C3 that does
not go through `y, as well as a walk from C2 to C4 that does not go through `y.

3. The pair (x, y) is a resolution-path dependency of Φ if there are literals `x, `y
with var(`x) = x and var(`y) = y, as well as clauses C1, C2, C3, C4 ∈ V (G) with
`x ∈ C1, `x ∈ C2, `y ∈ C3, `y ∈ C4, such that there is a walk in G from C1 to C3
that does not go through `y, as well as a walk from C2 to C4 that does not go
through `y, subject to the following additional conditions:

a) If the walk arrives at a literal ` from a clause, the next vertex on the walk
must be `.
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b) If the walk arrives at a literal ` from `, the next vertex on the walk must be a
clause.

c) If the walk arrives at a clause C from `, the next vertex on the walk (if it
exists) must be a literal different from `.2

It is immediate from this definition that these three notions are in increasing order of
generality, as stated in the following claim.

Claim 2. Let Φ be a PCNF formula and let x, y ∈ var(Φ). Then the implications
3.⇒ 2.⇒ 1. hold among the following statements.

1. The pair (x, y) is a strict standard dependency of Φ.

2. The pair (x, y) is a quadrangle dependency of Φ.

3. The pair (x, y) is resolution-path dependency of Φ.

We now prove that the definition of the resolution-path dependency scheme is
conservative with respect to resolution-path dependencies, in the following sense.

Proposition 3. Let Φ = Q.ϕ be PCNF formula and let x ∈ var∀(Φ) and y ∈ var∃(Φ)
such that qdepth(x) = j and qdepth(y) = j+1. Then (x, y) is a resolution-path dependency
of Φ if and only if (x, y) ∈ Dres

Φ .

Proof. Let G denote the depth-limited clause-literal graph of Φ at depth j. Suppose
(x, y) is a resolution-path dependency of Φ. We will show that {x, y} is an irreflexive
resolution-path dependency pair of Φ with respect to RΦ(x) \ var∀(Φ). Let `x, `y be
literals and let C1, C2, C3, C4 ∈ V (G) be clauses satisfying the conditions specified in
Definition 17, and let p and p′ be the corresponding paths in G between, respectively, C1
and C3, and C2 and C4. Then

p = C ′1, `1, `1, C
′
2, `2, `2, . . . , C

′
k−1, `k−1, `k−1, C

′
k,

where C ′i ∈ ϕ for each i ∈ [k], and `i ∈ lit(Φ) for each i ∈ [k − 1]. We claim that
the sequence s = `x, `1, `1, `2, `2, . . . , `k−1, `k−1, `y is a resolution-path in Φ via RΦ(x) \
(var∀(Φ)∪{y}). Since `x ∈ C ′1 = C1 and `y ∈ C ′k = C3, and G contains an edge `C only if
` ∈ C, Condition A of Definition 8 is satisfied. It follows from Condition 3.c of Definition 17
that Condition B of Definition 8 is satisfied as well. By definition of the clause-literal
graph at depth j, each literal `i for i ∈ [k − 1] satisfies var(`i) ∈ R(x) \ var∀(Φ). If `y
would occur in p then `y would have to occur as well by Condition 3.a of Definition 17, but
this literal is avoided by the path p. So var(`i) ∈ R(x) \ (var∀(Φ)∪{y}) and Condition C
of Definition 8 (for X = R(x) \ (var∀(Φ) ∪ {y})) is met. Finally, Condition D is satisfied
by choice of p. So s is indeed a resolution path in Φ via R(x)\ (var∀(Φ)∪{y}). A parallel
argument shows that `x and `y are connected in Φ with respect to R(x)\(var∀(Φ)∪{y}), so

2This restriction is not mentioned in Definition 5.2 of [120], but it appears in Definition 4.1 of the
same paper.
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that {x, y} is a resolution-path dependency pair of Φ with respect to R(x)\(var∀(Φ)∪{y}).
Since x /∈ R(x), the pair {x, y} is even an irreflexive resolution-path dependency pair
of Φ with respect to R(x) \ var∀(Φ).

For the converse, let {x, y} be an irreflexive resolution-path dependency pair of Φ with
respect to R(x) \ var∀(Φ). We will show that (x, y) is a resolution-path dependency of Φ.
Assume, without loss of generality, that x and y, as well as ¬x and ¬y, are connected
in Φ with respect to R(x) \ (var∀(Φ) ∪ {x, y}). Let p = `1, . . . , `2k be a resolution path
from x to y via R(x) \ (var∀(Φ) ∪ {x, y}). Let C1, . . . , Ck be a sequence of clauses such
that `2i−1, `2i ∈ Ci, for each i ∈ [k] – such a sequence must exist by Condition A of
Definition 8. We claim that the sequence

s = C1, `2, `3, C2, `4, `5, . . . , Ci−1, `2k−2, `2k−1, Ck

is a walk satisfying the conditions stated in Definition 17. We first verify that every literal
or clause appearing in s is a vertex of G. Since `2k = y, for each i ∈ [k] the clause Ci
contains an existential literal `2i such that var(`2i) ∈ R(x). Because by assumption
x is a universal variable, the corresponding existential variable zi = var(`2i) satisfies
qdepth(zi) > j, so each clause Ci is a vertex of G. For i ∈ [k − 1], the literals `2i and
`2i+1 are in lit(X) for X = R(x) \ (var∀(Φ) ∪ {x, y}) by Condition C of Definition 8,
so they are existential literals whose associated variables have quantifier depth at least
j + 1, and they are contained in the clause Ci. It follows that `2i and `2i+1 are vertices
of G for each i ∈ [k − 1]. It also follows from the literals `2i and `2i+1 being in lit(X)
for X = R(x) \ (var∀(Φ) ∪ {x, y}) that s avoids the literal ¬y. It remains to prove that
Conditions 3.a-3.c of Definition 17 are satisfied. Condition 3.a holds since `2i = `2i+1
for each i ∈ [k − 1], by the Condition D of Definition 8. Condition 3.b is satisfied by
construction. Finally, Condition 3.c holds since var(`2i−1 6= var(`2i) for all i ∈ [k], by
Condition B of Definition 8. A parallel argument proves that there are clauses C and C ′
in V (G) such that ¬x ∈ C, ¬y ∈ C ′, and such that C and C ′ are connected by a path
avoiding y and satisfying the conditions specified in Definition 17. It follows that (x, y)
is a resolution-path dependency of Φ, as claimed.

The notions of strict standard and quadrangle dependencies can be generalized and
used to define dependency schemes by simply dropping the requirement that “dependent”
pairs of variables occur in neighboring quantifier blocks.

Definition 18. For every PCNF formula Φ, we define relations Dsst
Φ and Dqdr

Φ as follows.
Let (x, y) ∈ Dtrv

Φ , let qdepth(x) = i and let G denote the depth-limited clause-literal
graph of Φ at depth i.

• We let (x, y) ∈ Dsst
Φ if there are literals `x, `y, and `′y with var(`x) = x and

var(`y) = var(`′y) = y, as well as clauses C1, C2, C3, C4 ∈ V (G) with `x ∈ C1, `x ∈
C2, `y ∈ C3, `

′
y ∈ C4, such that there are walks in G from C1 to C3 and from C2 to

C4.

• We let (x, y) ∈ Dqdr
Φ if there are literals `x, `y with var(`x) = x and var(`y) = y, as

well as clauses C1, C2, C3, C4 ∈ V (G) with `x ∈ C1, `x ∈ C2, `y ∈ C3, `y ∈ C4, such
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Dtrv

Dstd

Drst Dsst D4

Drrs Dqdr

Dres

Figure 3.2: Extended Hasse diagram for proto-dependency schemes with respect to the
partial order ⊆ of Definition 12.

that there is walk in G from C1 to C3 that does not go through `y, as well as a
walk from C2 to C4 that does not go through `y.

The strict standard dependency scheme is the mapping Dsst that assigns to each PCNF
formula Φ the relation Dsst

Φ , and the quadrangle dependency scheme is the mapping Dqdr

that assigns to each PCNF formula Φ the relation Dqdr
Φ .

Including the strict standard and quadrangle dependency schemes in the Hasse
diagram of Figure 3.1 leads to the diagram shown in Figure 3.2. Given a PCNF formula Φ
and a pair (x, y) ∈ Dtrv

Φ , determining whether (x, y) ∈ Dsst
Φ or (x, y) ∈ Dqdr

Φ comes down
to to deciding a constant number of simple reachability problems in induced subgraphs
of a depth-limited clause-literal graph, so we obtain the following result.

Proposition 4 (Van Gelder [120]). The strict standard dependency scheme and the
quadrangle dependency scheme are tractable.

The quadrangle dependency scheme affords an efficient implementation in terms of
biconnected components of clause-literal graphs [120]. The original motivation for intro-
ducing quadrangle dependencies was a lack of polynomial-time algorithms for computing
the more general resolution-path dependency scheme. In the next chapter, we turn to
the problem of whether resolution paths can be found efficiently.

Summary

We introduced the notion of a proto-dependency scheme as a mapping that associates each
PCNF formula with a binary dependency relation on its variables. A dependency relation
is a subset of the so-called trivial dependency relation, which encodes the linear order of
variables in the quantifier prefix of a PCNF formula. We defined several proto-dependency
schemes, more specifically
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• the standard dependency scheme Dstd and the refined standard dependency scheme
Drst, as well as

• the resolution-path dependency scheme Dres and the reflexive resolution-path
dependency scheme Drrs.

For the applications discussed in later chapters, we prefer proto-dependency schemes that
compute smaller dependency relations. We proved that, among the proto-dependency
schemes considered, the refined standard dependency scheme Drst and the resolution-path
dependency scheme Dres compute minimal dependency relations (Proposition 1). Finally,
we briefly covered proto-dependency schemes that are intermediate in generality between
the standard and resolution-path dependency schemes: the triangle dependency scheme,
the strict standard dependency scheme, and the quadrangle dependency scheme.
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CHAPTER 4
Finding Resolution Paths

In this chapter, we prove tractability of both the resolution-path dependency scheme
and the reflexive resolution-path dependency scheme, answering a question posed by
Van Gelder [120]. Recall that a proto-dependency scheme D is tractable if there is a
polynomial-time algorithm that computes the dependency relation DΦ for each PCNF
formula Φ.

The proof presented below reduces the task of finding a resolution path to a simple
connectivity problem in a suitably defined digraph [111] and substantially simplifies our
original proof of tractability [107].

Definition 19 (Implication graph1). Let Φ = Q.ϕ be a PCNF formula. The implication
graph of Φ is the digraph G = (V,E) with vertex set V = lit(Φ) and edge set E = { (`, `′) :
there is a C ∈ ϕ such that `, `′ ∈ C and ` 6= `′ }.

Lemma 5. Let Φ be a PCNF formula and let `, `′ ∈ lit(Φ) be distinct literals. Let
X ⊆ var(Φ) and let G denote the implication graph of Φ. The following statements are
equivalent.

1. The literals ` and `′ are connected in Φ with respect to X.

2. There is a walk from ` to `′ in G[lit(X) ∪ {`, `′}].

Proof. Let s = `1, . . . , `2k be a resolution path from ` to `′ via X. Let `j1 , . . . , `jk be
the sequence obtained from s by taking every other element, so that ji = 2i for each
i ∈ [k]. We claim that the sequence w = `1, `j1 , . . . , `jk is a walk in G. By Definition 8,
for each i ∈ [k] there has to be a clause Ci such that `2i−1, `2i ∈ Ci. In particular we
have `1, `2 ∈ C1, so (`1, `2) is an edge of G. Moreover, `2i = `2i+1 for i ∈ [k− 1] and thus
`2i, `2(i+1) ∈ Ci for each i ∈ [k − 1]. It follows that (`2i, `2(i+1)) = (`ji , `ji+1) is an edge

1The implication graph was used to prove tractability of QSAT for PCNF formulas with 2CNF
matrices [3]. It also goes under the name of associated graph [78, p.75].
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of G for each i ∈ [k − 1]. This proves the claim. Since var(`2i) ∈ X for i ∈ [k − 1], the
walk w is even a walk in G[lit(X) ∪ {`, `′}].

For the converse, let p = `1, . . . , `k be a path in G[lit(X) ∪ {`, `′}] such that `1 = `
and `k = `′. We claim that the sequence

s = `1, `2, `2, . . . , `k−1, `k−1, `k

is a resolution path viaX. We have to verify that the conditions of Definition 8 are satisfied.
Because (`i, `i+1) is an edge of G, there must be a clause Ci ∈ ϕ such that `i, `i+1 ∈ Ci
for each i ∈ [k−1]; moreover, `i and `i+1 must be distinct by definition of the implication
graph, so var(`i) 6= var(`i+1) as Ci is non-tautological. This establishes the first and
second condition of Definition 8. Since p is a path the literals `i must be pairwise distinct.
In particular we have `, `′ /∈ {`2, . . . , `k−1}, so {`2, . . . , `k−1}∪{`2, . . . , `k−1} ⊆ lit(X) and
the third condition holds. Finally, the fourth condition is satisfied by construction.

The implication graph of a formula can be constructed in time quadratic in the
size of Φ and directed reachability can be decided in linear time. In combination with
Lemma 5, these observations yield tractability of the resolution-path dependency scheme
and the reflexive resolution-path dependency scheme.

Theorem 2. Both the resolution-path dependency scheme and the reflexive resolution-path
dependency scheme are tractable: given a PCNF formula Φ, each of the dependency
relations Dres

Φ and Drrs
Φ can be computed in polynomial time.

If the size of input clauses is bounded by a constant the implication graph can even
be constructed in linear time, since every clause contributes a constant number of edges.
If not, we can convert the input formula into an equivalent formula with bounded clause
size by splitting clauses [78, p.40]. The following lemma states that this transformation
preserves connectivity of literals.

Lemma 6. Let Φ = Q.ϕ be a PCNF formula and let C ∈ ϕ be a clause of Φ such that
C = C1 ∪C2 where C1 ∩C2 = ∅. Let Ψ = Q′.ϕ′ be a PCNF formula with Q′ = Q∃x and
ϕ′ = (ϕ \ {C}) ∪ {C1 ∪ {x}, C2 ∪ {¬x}} for a fresh variable x /∈ var(Φ). Two literals `, `′
are connected in Φ with respect to X ⊆ var(Φ) if and only if `, `′ are connected in Ψ with
respect to X ∪ {x}.

Proof. Let G and H denote the implication graphs of Φ and Ψ, respectively, and let
G′ = G[lit(X)∪ {`, `′}] and H ′ = H[lit(X ∪ {x})∪ {`, `′}]. We claim that there is a walk
from ` to `′ in G′ if and only if there is a walk from ` to `′ in H ′. The result then follows
from Lemma 5.

Let w = `1, . . . , `k be a walk in G′ from ` to `′. Suppose (`i, `i+1) is an edge of G′
but not of H ′ for any i ∈ [k − 1]. Then `i ∈ C1 and `i+1 ∈ C2, or `i ∈ C2 and `i+1 ∈ C1.
Assume without loss of generality that the first case holds. Then (`i, x) and (x, `i+1) are
edges of H ′. By inserting x between every such pair `i, `i+1 of subsequent literals in w we
obtain a walk from ` to `′ in H ′. For the converse, consider a walk w = `1, . . . , `k in H ′
from ` to `′. Note that x /∈ var({`, `′}) because x /∈ var(Φ). If var(`i) = x for 1 < i < k
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then (`i−1, `i+1) is an edge of G′, so we obtain a walk from ` to `′ simply by omitting
occurrences of x and ¬x from w.

Lemma 7. Given a PCNF formula Φ and a pair (x, y) of variables, one can decide
whether (x, y) ∈ Drrs

Φ (respectively, whether (x, y) ∈ Dres
Φ ) in linear time.

Proof. If (x, y) /∈ Dtrv
Φ the algorithm immediately rejects. Otherwise, it uses Lemma 6 to

split clauses of Φ and construct a PCNF formula Ψ such that each clause of Ψ contains at
most three literals and such that (x, y) ∈ Drrs

Φ if and only (x, y) ∈ Drrs
Ψ . This takes time

linear in the size of Φ. The algorithm then determines whether {x, y} is a dependency
pair with respect to RΨ(x) \ var∀(Ψ). By Lemma 5, this comes down to deciding at most
four instances of directed reachability in induced subgraphs of Ψ’s implication graph.
Since these subgraphs can be constructed in linear time, the overall runtime is linear in
the size of Φ. By checking whether {x, y} is an irreflexive resolution-path dependency
pair with respect to RΨ(x) \ var∀(Ψ), this algorithm can be also used to decide whether
(x, y) ∈ Dres

Φ .

It follows that, given a PCNF formula, the resolution-path dependency relation can
be computed in time cubic in the size of the formula.

Proof of Theorem 2. Given a PCNF formula Φ, the algorithm computes Dtrv
Φ and tests

whether (x, y) ∈ Dres
Φ ((x, y) ∈ Drrs

Φ ) for each pair (x, y) ∈ Dtrv
Φ . Since |Dtrv

Φ | ≤ | var(Φ)|2
and each test can be performed in linear time by Lemma 7, this takes O(|Φ|3) time in
total.

Formulas encountered in applications frequently have encoding sizes that render the
above algorithm ineffective. The main advantage of the refined standard dependency
scheme over the resolution-path dependency scheme is that it can be computed in linear
time [15, 82]. The characterization of resolution paths as directed paths in the implication
graph not only substantially simplifies the proof of Theorem 2 compared to our original
proof [107], but also points to relaxations of the resolution-path dependency scheme
based on strongly connected components of the implication graph that can be computed
in linear time. Whether such relaxations will be useful in practice is an open question.

Summary
In this short chapter we proved that both the resolution-path dependency scheme
and the reflexive resolution-path dependency scheme are tractable – that is, there are
polynomial-time algorithms that compute the corresponding dependency relations for a
given input formula. We showed that deciding whether a pair (x, y) is contained in one
of these relations can be reduced to checking whether there is a pair of directed paths
connecting literals over x and y in the so-called implication graph of a formula. Although
this graph can be quadratic in the size of the formula, we argued that the problem can
still be decided in linear time by splitting clauses in a preprocessing step.
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CHAPTER 5
Quantified Resolution

We now turn to the most important application of dependency schemes: their use in
search-based PCNF solvers. The integration of dependency schemes is arguably the main
feature of DepQBF [14, 15, 82], one of the best state-of-the-art QBF solvers. In its basic
form, the QDPLL algorithm implemented by search-based solvers is constrained by the
trivial dependency relation of the input formula [25]. DepQBF generalizes QDPLL by
replacing the trivial dependency relation with the dependency relation computed by a
proto-dependency scheme – QDPLL is just a special case of this algorithm running with
the trivial dependency scheme [15].

While the resulting algorithm cannot be correct for every proto-dependency scheme,
it has been suggested that it is correct for every cumulative1 dependency scheme [15],
which would include all dependency schemes introduced in Chapter 3. As we will see in
this chapter, things are not quite as simple, and proving correctness even for the standard
dependency scheme turns out to be non-trivial.

We will prove correctness of DepQBF (for specific dependency schemes) in the sense
that certain proof systems, implicitly used by DepQBF to generate certificates, are
sound. Applications typically use solvers not as mere QSAT oracles but require them to
generate certificates. This is the case in planning, where certificates correspond to plans,
or in model checking, where certificates encode proofs of—or counterexamples to—the
correctness of a given specification.

The traces of QDPLL solvers for PCNF formulas can be used to generate Q-resolution
certificates [24, 51, 86]. More specifically, traces yield Q-resolution refutations of false
formulas and Q-term resolution proofs of true formulas. As a consequence of the way
it uses dependency schemes (see Section 5.1.2), DepQBF produces certificates that—in
general—do not correspond to Q-resolution proofs. To reason about these certificates,
we introduce Q(D)-resolution and Q(D)-term resolution, two proof systems that are
parameterized by a (tractable) proto-dependency scheme D. In these systems, the

1See Section 6.1 for the definition of cumulative dependency schemes.
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dependency relation computed by D is used to define more powerful versions of the
∀-reduction and ∃-reduction rules of Q-resolution (respectively Q-term resolution) [15,
p.7]. We prove the following results:

1. Q(Dstd)-resolution and Q(Drst)-resolution are sound (Theorem 4).

2. Q(Drrs)-resolution is sound (Theorem 5).

3. Q(Drst)-term resolution is sound (Theorem 6).

4. Q(Dres)-term resolution is sound (Theorem 7).

To prove the first result (Section 5.2.1) we argue that Dstd-resolution and Drst-resolution
preserve a subset of the models of every true formula, and then apply a known result
about the existence of such models.

The second result (Section 5.2.2) is proved using an entirely different strategy that
relies on proof rewriting. We present an algorithm that turns Q(Drrs)-resolution refuta-
tions into Q-resolution refutations, though perhaps at the cost of an exponential increase
in size.

Our approach in proving the third (Section 5.3.1) and fourth (Section 5.3.2) result is
essentially dual to the one used to establish the first result: we show that Q(Dres)-term
and Q(Drst)-term resolution each preserve a (different) subset of countermodels and then
show how to construct such countermodels from (ordered) Q-resolution refutations.

Given soundness of Q(Dres)-term resolution, one may wonder why we “only” prove
soundness of the less general Q(Drrs)-resolution system and not soundness of Q(Dres)-res-
olution. The answer is given in the form of an example in Section 5.1 that demonstrates
that Q(Dres)-resolution in general is unsound.

5.1 Q-resolution and Q(D)-resolution

5.1.1 Q-resolution and term resolution

Q-resolution is a generalization of propositional resolution to PCNF formulas [24]. Its
derivation rules are displayed in Figure 5.1. Throughout this chapter, we refer to clauses
(or terms) above the inference line of a derivation rule as the premises, and to the clause
(or term) below the inference line as the conclusion of the derivation rule.

The dual of Q-resolution, operating on terms instead of clauses, is known as term
resolution. Term resolution yields a proof system for (true) prenex QBFs with matrices
in disjunctive normal form (DNF). One obtains a proof system for PCNF formulas
by adding the so-called model generation rule. This rule carries out the CNF to DNF
conversion, one term at a time [51]. We call the resulting proof system Q-term resolution.
Its derivation rules are shown in Figure 5.2.

Q-resolution and Q-term resolution are closely related to search-based QBF solvers
that implement the QDPLL algorithm [25]. The trace of a QDPLL solver can be used to
generate either a Q-resolution proof (if the input formula is false) or a Q-term resolution
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(input clause)
C

C1 ∨ x ¬x ∨ C2 (resolution)
C1 ∨ C2

An input clause C ∈ ϕ can be used as an axiom. From two clauses C1 ∨ x and ¬x ∨ C1, where x
is an existential variable of Φ (called the pivot variable), the resolution rule can derive the clause
C1 ∨ C2, provided that this clause is non-tautological.

C ∨ ` (∀-reduction)
C

The ∀-reduction rule derives a clause C from a clause C ∨ ` provided that ` is a universal literal
and (var(`), e) /∈ RΦ for every existential variable e ∈ var(C).

Figure 5.1: The rules of Q-resolution for a PCNF formula Φ = Q.ϕ.

(model generation)
T

T1 ∧ x ¬x ∧ T2 (resolution)
T1 ∧ T2

The model generation rule [51] can derive a non-contradictory term T such that T ∩ C 6= ∅ for
every C ∈ ϕ. The resolution rule for terms is dual to resolution for clauses. The pivot variable x
has to be a universal variable of Φ and T1 ∧ T2 must be non-contradictory.

T ∧ ` (∃-reduction)
T

The ∃-reduction rule can derive the term T from T ∧ ` if ` is an existential literal and (var(`), u) /∈
RΦ for every universal variable u ∈ var(T ).

Figure 5.2: The rules of Q-term resolution for a PCNF formula Φ = Q.ϕ.

proof (if the input formula is true) [51]. This correspondence is perhaps even more
immediate in the presence of constraint learning: every clause (term) learned by the
solver can be derived by Q-resolution (Q-term resolution) [51].

5.1.2 Dependency Schemes and DepQBF

QDPLL lifts the well-known DPLL procedure [36] from SAT to QSAT. In essence, DPLL
is a recursive algorithm that picks a variable of its input formula and calls itself for
both possible instantiations of that variable. Modern SAT solvers derived from the
DPLL algorithm delegate the choice of which variable to branch on to sophisticated
heuristics [106].

In QDPLL, these heuristics are constrained by the order of variables given by the
quantifier prefix: a variable may be assigned only if it occurs in the leftmost quantifier
block with unassigned variables. This is often much more restrictive than necessary.
For instance, two variables appearing in different, variable disjoint subformulas can be
assigned in any order. More generally, a variable can be assigned as long as it does
not depend on any unassigned variable. This is the insight underlying the algorithm
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C ∨ ` (∀(D)-reduction)
C

The ∀(D)-reduction rule derives the clause C from C ∨ `, where ` is a universal literal such that
(var(`), e) /∈ DΦ for every existential variable e ∈ var(C).

T ∧ ` (∃(D)-reduction)
T

The ∃(D)-reduction rule derives the term T from T ∧ `, where ` is an existential literal such that
(var(`), u) /∈ DΦ for every universal variable u ∈ var(T ).

Figure 5.3: ∀(D)-reduction and ∃(D)-reduction for Φ and a proto-dependency scheme D.

implemented in the solver DepQBF [15, 82]. DepQBF uses the dependency relation given
by a proto-dependency scheme D (in the current implementation, the refined standard
dependency scheme) to determine variables that can be branched on: if, for a given
variable y, there is no unassigned variable x such that (x, y) is in the dependency relation,
then y is considered ready for assignment. DepQBF also appeals to the dependency
relation to generalize the ∀-reduction and ∃-reduction rules used in constraint learning [15].
These derivation rules, which we refer to as ∀(D)-reduction and ∃(D)-reduction, are
shown in Figure 5.3.

5.1.3 Q(D)-resolution and Q(D)-term resolution

To study proofs generated by DepQBF in combination with different proto-dependency
schemes, we introduce two families of proof systems as follows. Let D be a tractable2

proto-dependency scheme. We define Q(D)-resolution as the proof system consisting of
resolution and ∀(D)-reduction, and Q(D)-term resolution as the proof system consisting
of (term) resolution, ∃(D)-reduction, and the model generation rule.

Derivations in these proof systems consist of repeated applications of the derivation
rules to derive a clause or term from an input formula. Derivations are customarily
represented as sequences of clauses (or terms) or as directed acyclic graphs (DAGs).
Given a derivation in the latter representation, the underlying DAG can be turned into a
tree, usually at the cost of increasing the size of the derivation.

For our purposes, it is most convenient to represent Q(D)-resolution derivations as
labeled trees (see Section 2); Q(D)-term resolution derivations, on the other hand, will
be represented simply as sequences.

Definition 20 (Q(D)-resolution derivation). Let D be a tractable proto-dependency
scheme and let Φ = Q.ϕ be a PCNF formula. The set of (tree-like) Q(D)-resolution
derivations from Φ is inductively defined as follows.

1. If C ∈ ϕ then 4(C) is a Q(D)-resolution derivation from Φ.
2Tractability of D ensures that Q(D)-resolution proofs can be checked in polynomial time.
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2. Let T1 = (T1, r1, λ1) and T2 = (T2, r2, λ2) be Q(D)-resolution derivations from
Φ. If ` ∈ lit(Φ) is an existential literal such that ` ∈ λ1(r1) and ` ∈ λ2(r2),
and (λ1(r1) \ {`}) ∪ (λ2(r2) \ {`}) is a non-tautological clause, then T1 �` T2 is a
Q(D)-resolution derivation from Φ.

3. Let T = (T, r, λ) be a Q(D)-resolution derivation from Φ. If ` ∈ lit(Φ) is a universal
literal such that ` ∈ λ(r) and there is no existential literal `′ ∈ λ(r) such that
(var(`), var(`′)) ∈ DΦ, then T ‖` is a Q(D)-resolution derivation from Φ.

If T = (T, r, λ) is a Q(D)-resolution derivation then λ(r) is a clause called the conclusion
of T , and T is said to be a derivation of λ(r). If T is a Q(D)-resolution derivation
of the empty clause ∅, then T is a Q(D)-resolution refutation of Φ. The size of a
Q(D)-resolution derivation T = (T, r, λ), in symbols |T |, is the number of vertices in T .

Observe that these construction rules are in accord with the rules of Q(D)-resolution
as displayed in Figure 5.1 and Figure 5.3. We will sometimes identify a derivation with
its final derivation step and say that T ≈ ?‖` is a ∀-reduction step or that T ≈ ?�` ? is
a resolution step.

We use sequences of literals, called positions, occurring as edge labels on paths from
the root of a derivation to address parts of a derivation.

Definition 21 (Position). Let D be a proto-dependency scheme, let Φ be a PCNF
formula, and let T be a Q(D)-resolution derivation from Φ. The set of positions of T is
inductively defined as follows.

1. The empty sequence ε is a position of T .

2. If T ≈ T ′ �` ? and π is a position of T ′, then `π is a position of T .

3. If T ≈ T ′||` and π is a position of T ′, then `π is a position of T .

If π is a position of T and there is no position π′ of T such that π is a proper prefix
of π′, then π is a leaf position of T .

Definition 22 (Subderivation). Let D be a proto-dependency scheme, let Φ be a PCNF
formula, and let T be a Q(D)-derivation from Φ. If π is a position of T , the subderivation
of T at position π, in symbols T [π], is defined as follows.

T [π] =


T if π = ε,
T ′[π′] if π = `π′ and T ≈ T ′ �` ?,
T ′[π′] if π = `π′ and T ≈ T ′‖`;

Definition 23 (Ordered Derivation). Let D be a tractable proto-dependency scheme
and let Φ be a PCNF formula. A Q(D)-resolution derivation T from Φ is ordered if for
every position π = `1, . . . , `k satisfies (`i, `j) ∈ RΦ for each pair of indices i, j ∈ [k] such
that 1 ≤ i < j ≤ k.
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Definition 24 (Q(D)-term resolution derivation). LetD be a tractable proto-dependency
scheme and let Φ be a PCNF formula. A Q(D)-term resolution derivation of a term T
from Φ is a sequence S = T1, . . . , Tk of terms such that T = Tk, and such that each term
is either derived by the model generation rule, or derived from terms appearing earlier
in the sequence by resolution or ∃(D)-reduction. The term T is called the conclusion
of S. If S is a Q(D)-term resolution derivation of the empty term then S is a Q(D)-term
resolution proof of Φ.

Verify that Q-resolution and Q-term resolution correspond to Q(Dtrv)-resolution and
Q(Dtrv)-term resolution, respectively. Accordingly, we define Q-resolution derivations
(refutations) as Q(Dtrv)-resolution derivations (refutations). Similarly, we define Q-term
resolution derivations (proofs) as Q(Dtrv)-term resolution derivations (proofs). The
following theorem states that Q-resolution and Q-term resolution are sound and complete
proof systems for false and true PCNF formulas, respectively.

Theorem 3 (Kleine Büning et. al. [24], Giunchiglia et. al. [51]). For every PCNF
formula Φ,

1. Φ is false if and only if there is a Q-resolution refutation of Φ, and

2. Φ is true if and only if there is a Q-term resolution proof of Φ.

Every Q-resolution derivation is a Q(D)-resolution derivation, and every Q-term
resolution derivation is a Q(D)-term resolution derivation (see Figure 5.1, Figure 5.2, and
Figure 5.3), so completeness of these systems follows immediately from Theorem 3. On
the other hand, it is easy to find proto-dependency schemes D for which Q(D)-resolution
or Q(D)-term resolution are unsound.

In fact, the following example (taken from [100]) demonstrates that Q(Dres)-resolution
is unsound.3 This is in spite of the fact that, as we will see in Chapter 6, Dres is a
permutation dependency scheme that supports strong reordering operations on the
quantifier prefixes of PCNF formulas.

Example 1. Let Φ = Q.ϕ, where

Q = ∀x∃z∀u∃y, and
ϕ = (x ∨ u ∨ ¬y) ∧ (¬x ∨ ¬u ∨ ¬y) ∧ (z ∨ u ∨ y) ∧ (¬z ∨ u ∨ ¬y) ∧ (¬z ∨ ¬u ∨ y)
∧ (z ∨ ¬u ∨ ¬y).

The formula Φ is true, but Figure 5.1.3 shows a Q(Dres)-resolution refutation of Φ, so
Q(Dres)-resolution is unsound. The pair (x, y) is not in Dres

Φ since every resolution path
from x or ¬x to y goes through y. As a consequence, one can derive the clause (u ∨ ¬y)
from (x ∨ u ∨ ¬y), and the clause (¬u ∨ ¬y) from (¬x ∨ ¬u ∨ ¬y) by ∀(Dres)-reduction.

3Actually, the example shows that already Q(D4)-resolution is unsound. See Section 3.4 for the
definition of the triangle dependency scheme D4.
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¬y

z¬z

x¬x

¬u u

¬y yy

(¬x � ¬u � ¬y)

(u � ¬y)

(z � u)

(z)(¬z)

(¬z � ¬u)

(¬u � ¬y)(¬z � ¬u � y) (z � u � y)

(x � u � ¬y)

Figure 5.4: Q(Dres)-refutation of Φ from Example 1.

The problem with Dres in Example 1 can be “fixed” if the resolutions paths ¬x,¬y and
x,¬y, y, z,¬z, y cause (x, y) to be in the dependency relation even though the second path
goes through y. This observation motivated our definition of the reflexive resolution-path
dependency scheme Drrs [111]. Soundness of Q(Drrs)-resolution is the main result of the
next Section.

5.2 Soundness of Q(D)-resolution

5.2.1 The (Refined) Standard Dependency Scheme

In this subsection, we prove that Q(D)-resolution is sound for the refined standard
dependency scheme. Recall that by Lemma 1, the relations Dstd

Φ and Drst
Φ coincide for

pairs (u, e) ∈ var∀(Φ)× var∃(Φ). It is an immediate consequence that Q(Dstd)-resolution
and Q(Drst)-resolution coincide.

Lemma 8. Let Φ be a PCNF formula. A labeled, rooted tree T is a Q(Dstd)-resolution
derivation from Φ if and only if T is a Q(Drst)-resolution derivation from Φ.

Soundness of Q-resolution can be proved by arguing that Q-resolution preserves every
complete model of a PCNF formula. That is, if a formula Φ has a complete model f and
σ is an assignment to the universal variables of Φ, then every clause that can be derived
from Φ by Q-resolution is satisfied by the assignment σ ∪ f(σ). Since the empty clause is
trivially unsatisfiable, no true PCNF formula can have a Q-resolution refutation.

To prove that Q(Dstd)-resolution is sound, we generalize this argument and show
that Q(Dstd)-resolution preserves a non-empty subset of models for every true PCNF
formulas. More specifically, we will show that this is the case for models satisfying certain
independence constraints.

35



Definition 25 (Independence). Let f : 2X → {0, 1} be a function and let x ∈ X. We say
f is independent of x if f(σ) = f(τ) for every pair of truth assignments σ, τ : X → {0, 1}
such that σ(y) = τ(y) for all y ∈ X \ {x}.

Definition 26. Let D be a proto-dependency scheme and let Φ be a PCNF formula. A
complete model f of Φ is a D-model of Φ if each function fe ∈ f is independent of every
universal variable u with (u, e) /∈ DΦ.

Lemma 9. Let D be a proto-dependency scheme and Φ = Q.ϕ a PCNF formula. Let f
be a D-model of Φ and let T be a Q(D)-resolution derivation of a clause C from Φ. Then
C[σ ∪ f(σ)] = 1 for every assignment σ to the universal variables of Φ.

Proof. We prove the lemma by induction on the structure of T . Let σ : var∀(Φ)→ {0, 1}
be an assignment.

1. If T ≈ 4(C) then C ∈ ϕ and C[σ ∪ f(σ)] = 1 since f is a model of Φ.

2. Let T ≈ T1 �` T2 and suppose the lemma holds for the conclusions C1 and C2 of
T1 and T2, respectively. We distinguish two cases. If C1 \ {`}[σ ∪ f(σ)] = 1 then
in particular C[σ ∪ f(σ)] = 1 since C1 \ {`} ⊆ C. Otherwise, we have f(σ)(`) = 1
and f(σ)(`) = 0, so we must have C2 \ {`}[σ ∪ f(σ)] = 1. This again implies that
C[σ ∪ f(σ)] = 1 as C2 \ {`} ⊆ C.

3. Let T ≈ T ′‖` and suppose the lemma holds for the conclusion C ′ of T . Suppose
towards a contradiction that C[σ∪f(σ)] = 0. Since C = C ′\{`}, and C[σ∪f(σ)] = 1
by assumption, this implies σ(`) = 1. Let u = var(`) and let σ′ : var∀(Φ) →
{0, 1} be the assignment such that σ′(`) = 0 and σ′(v) = σ(v) for every variable
v ∈ var∀(Φ) \ {u}. By definition of the ∀(D)-reduction rule, there cannot be an
existential variable e ∈ var(C ′) such that (u, e) ∈ DΦ. Because f is a D-model, it
follows that for each existential variable e ∈ var(C ′), the model function fe has
to be independent of u. It follows that fe(σ′|LΦ

e
) = fe(σ|LΦ

e
) for each existential

variable e ∈ var(C ′). From this, we get C ′[σ′ ∪ f(σ′)] = 0, contradicting our initial
assumption. We conclude that C[σ ∪ f(σ)] = 1.

Proposition 5. If D is a proto-dependency scheme such that every true PCNF formula
has a D-model, then Q(D)-resolution is sound: a PCNF formula Φ is false if and only if
there is a Q(D)-resolution refutation of Φ.

Proof. Let D be a proto-dependency scheme such that every true PCNF formula has
a D-model. The empty clause is trivially unsatisfiable, so by Lemma 9 no true PCNF
formula can have a Q(D)-resolution refutation. This proves the “if” part. The “only if”
part follows immediately from Theorem 3 and the fact that every Q-resolution refutation
is a Q(D)-resolution refutation.
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Accordingly, to prove soundness of Q(Dstd)-resolution it is sufficient to establish the
following result, which is due to Bubeck [20, Theorem 5.3.3].

Proposition 6. Every true PCNF formula has a Dstd-model.

Theorem 4. A PCNF formula Φ is false if and only if there is a Q(Dstd)-resolution
refutation (Q(Drst)-resolution refutation) of Φ.

Proof. Immediate from Proposition 5 in combination with Proposition 6. By Lemma 8,
the result can equivalently be stated in terms of Q(Drst)-resolution refutations.

5.2.2 The Reflexive Resolution-Path Dependency Scheme

In this subsection we show that Q(Drrs)-resolution is sound. Although we conjecture that
every true PCNF formula has a Drrs-countermodel, we currently do not know whether
this is the case. As a consequence, we cannot adopt the proof strategy used in the
previous subsection. Instead, we will show how to rewrite Q(Drrs)-resolution refutations
into ordinary Q-resolution refutations and prove the following result.

Proposition 7. Given a PCNF formula Φ and a Q(Drrs)-refutation T of Φ, one can
compute a Q-resolution refutation of Φ of size at most 3|T |.

Recall that ∀(D)-reduction is a generalization of ∀-reduction that can remove a
universal literal ` from a clause C provided that C does not contain an existential
literal `′ such that (var(`), var(`′)) ∈ DΦ. Thus ∀(D)-reduction can sometimes remove
a universal literal ` ∈ C even when there is an existential literal `′ ∈ C that blocks `
(that is, where (`, `′) ∈ RΦ). We refer to such an application of ∀(D)-reduction as a
strict ∀(D)-reduction. We suppress the proto-dependency scheme D in this notation and
simply speak of strict reductions when D is clear from the context.

Algorithm outline. To turn a Q(Drrs)-resolution refutation T of a PCNF formula Φ
into a Q-resolution refutation of Φ, Algorithm 3 recursively gets rid of strict reductions,
starting with what we call an outermost strict reduction. Relative to T , a strict reduction
is outermost if the universal variable u removed by this strict reduction is leftmost in the
quantifier prefix among the variables removed by strict reductions in T . Suppose ` is
the universal literal removed by an outermost strict reduction. We have to consider two
cases.

1. Suppose the complementary literal ` is not contained in any clause appearing as
a vertex label on the path from the strict reduction to the root of T . Then we
simply omit this strict reduction and add a ∀(Drrs)-reduction at the root of T . If
the conclusion of T does not contain any literals blocking `, the ∀(Drrs)-reduction
is in fact an instance of “ordinary” ∀-reduction. This condition is satisfied by a
refutation, and it will be maintained for subderivations and their outermost strict
reductions in the recursion step.
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2. Otherwise, it follows from the properties of Drrs that the derivation must contain
a resolution step ? �`′ ? on an existential literal `′ such that (`′, `) ∈ RΦ (see
Lemma 18). We “drop” a lowermost (i.e., one that is closest to the root) such
resolution step to the root of the derivation. This may introduce `′ or `′ to the
clauses on the path from the resolution step to the root. But since the strict
reduction picked in the first step is outermost, these literals will not interfere with
strict reductions. Moreover, because the resolution step is lowermost, every clause
on the path contains an existential pivot variable y such that y blocks u. Thus
every ∀(Drrs)-reduction on this path is in fact a strict reduction and the resulting
derivation is a Q(Drrs)-resolution derivation.

In this way, we obtain a Q(Drrs)-resolution derivation whose immediate subderivations
are (a) strictly smaller than the original refutation (although the overall size of the
refutation may increase) and which (b) do not contain “new” strict reductions (we will
define a preorder on derivations to make this notion precise). We get to a Q-resolution
refutation by running the algorithm on these subderivations to rewrite them into Q-reso-
lution derivations and adding a final resolution (or ∀-reduction step), if necessary. We
illustrate this rewriting procedure with the following example.4

Example 2. Consider the PCNF formula

Φ = ∃e1∀u∃e2∃e3 (u ∨ e2) ∧ (¬u ∨ e3) ∧ (e1 ∨ ¬e3) ∧ (¬e1 ∨ ¬e2)

The refutation T1 in Figure 5.5 is a Q(Drrs)-resolution refutation of Φ. Both ∀(Drrs)-re-
ductions are strict reductions, and both are outermost, so the algorithm can start by
removing either of them. Suppose the algorithm picks the strict reduction on the left.
The literal ¬u does not occur on the path from the root of the derivation to the strict
reduction, so the first of the above cases applies. We move the ∀(Drrs)-reduction to
the root, resulting in the derivation T2, and proceed with the subderivation rooted
immediately above the root. The ∀(Drrs)-reduction removing ¬u is the only (outermost)
strict reduction appearing in this derivation. Since the conclusion of the subderivation
contains the complementary literal u, the second of the above cases applies. We find
that the resolution with pivot e1 is a lowermost resolution step such that (e1, u) ∈ RΦ.
“Dropping” this resolution step to the root of the derivation leads to the Q-resolution
refutation T3.

Definition 27 (Strict Reduction). Let D be a proto-dependency scheme, let Φ be a
PCNF formula, and let T be a Q(D)-resolution derivation from Φ. If π is a position of

4Example 2 also demonstrates that known rewrite strategies for removing long-distance resolution
steps from Q-resolution proofs [8, 51] cannot be applied to remove strict reductions from Q(Drrs)-resolution
refutations. If a long-distance resolution step leads to a clause containing a universal variable u in both
polarities, one can assume that the pivot variable does not block u. In a refutation, the literals blocking u
have to be resolved out eventually, so one can remove the long-distance resolution step by successively
lowering it [8] or by (recursively) resolving out blocking literals using clauses resolved closer to the root
of the derivation [51]. Resolving the clauses (u ∨ e2) and (¬u ∨ ¬e2) in refutation T1 would amount to
a long-distance resolution step. But e2 is both the pivot variable and the variable blocking u in the
premises, so we cannot further lower this resolution step.
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Figure 5.5: Rewriting a Q(Drrs)-resolution refutation into a Q-resolution refutation
(Example 2).
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T such that T [π] = ?‖` and the conclusion of T [π] contains an existential literal `′ such
that (`, `′) ∈ RΦ, then T [π] is a strict ∀(D)-reduction of T (on literal `, with respect
to Φ). If T [π] = ?‖` is a strict ∀(D)-reduction of T and T does not contain a strict
∀(D)-reduction on a literal `′ such that (`′, `) ∈ RΦ, then T [π] is an outermost strict
∀(D)-reduction of T .

Rewriting a derivation may cause literals to disappear from its conclusion, so that
resolution or ∀-reduction steps with the original conclusion as a premise may become
inapplicable. To suppress explicit case distinctions needed for situations of this kind we
introduce “lazy” versions of the � and ‖ operations as follows (cf. [62]). Let T1, T2, and
T be Q(D)-derivations of clauses C1, C2, and C. We define

T1 �L` T2 =


T1 �` T2 if T1 �` T2 is defined,
T1 otherwise, if ` /∈ C1,
T2 otherwise, if ` /∈ C2;

T ‖L` =
{
T ‖` if T ‖` is defined,
T otherwise, if ` /∈ C;

In order to describe Algorithm 3 and prove its correctness (and termination) we are going
to define and characterize the following two rewriting operations:

1. Substitution (Definition 30 and Lemma 11).

2. Dropping a resolution step (Algorithm 2 and Lemma 15).

The second operation can in turn be represented by a successive “lowering” of a resolution
step (Algorithm 1, Lemmas 13 and 14).5

For the remainder of this subsection, let D be an arbitrary, but fixed proto-dependency
scheme, and let Φ be an arbitrary, but fixed PCNF formula. We would like to make
statements to the effect that rewriting operations do not create “new” strict reductions.
To make this idea formal we introduce the following relations on derivations.

Definition 28. Let T1 ≈ ?‖` and T2 ≈ ?‖` be Q(D)-resolution derivations from Φ
with conclusions C1 and C2, respectively. The derivation T1 `-subsumes T2, T1 ⊆` T2 in
symbols, if every literal in C1 that blocks ` is contained in C2. We say that T1 subsumes T2
and write T1 ⊆ T2 whenever C1 ⊆ C2.

Definition 29. Let T1 and T2 be Q(D)-resolution derivations from Φ. We write T1 � T2
if, for every position α of T1 such that T1[α] ≈ ?‖`, there exists a position β of T2 such
that T2[β] ≈ ?‖` and T1[α] ⊆` T2[β].

The relation � defines a preorder on Q(D)-resolution derivations from Φ with the
following properties.

5This lowering operation essentially corresponds to the rewrite rules presented in [8] for turning
long-distance resolution proofs into ordinary Q-resolution proofs, the only difference being that the (easy)
cases covered in lines 5–8 of Algorithm 1 are omitted in [8].
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Lemma 10. Let T and S be Q(D)-resolution derivations from Φ.

(1) T [α] � T for every position α of T .

(2) If T ≈ T1 �` T2, T1 � S, and T2 � S, then T � S.

(3) If S ≈ S ′‖` such that S ′ � T and there exists a position α of T such that S ⊆` T [α]
then S � T .

(4) If T [α] ≈ ?‖` is a strict reduction and T � S then there is a position β of S such
that S[β] ≈ ?‖` is a strict reduction.

Proof.

(1) The statement follows from the observation that T [α][β] = T [αβ] for any position
β of T [α].

(2) If T [α] ≈ ?‖`′ then α 6= ε and hence α = `β or `β for some position β. Assume
without loss of generality that α = `β. Since T1 � S there must be a position γ
of S such that S ≈ ?‖`′ and T [α] = T1[β] ⊆`′ S[γ].

(3) Let S[γ] ≈ ?‖`. There are two cases. If γ = ε then S[ε] ⊆` T [α]. Otherwise, γ = `β
for some position β. Then S[γ] = S ′[β] and since S ′ � T there must be a position
δ of T such that T [δ] ≈ ?‖` and S ′[β] ⊆` T [δ].

(4) Let T [α] ≈ ?‖` and let C be the premise of the corresponding ∀(D)-reduction. If
T � S then there is a position β of S such that S[β] ≈ ?‖` and T [α] ⊆` S[β].
Since T [α] is a strict reduction there must be a literal `′ ∈ C that blocks `. By
T [α] ⊆` S[β] the literal `′ must also be contained in the premise of S[β]. That is,
S[β] is a strict reduction.

Definition 30 (Substitution). Let T and S be Q(D)-resolution derivations from Φ.
Given a position α of T we define T [α← S] as follows.

T [α← S] =


S if α = ε,
T1[γ ← S]�L` T2 if T = T1 �` T2 and α = `γ,
T ′[γ ← S]‖L` if T = T ′‖` and α = `γ;

Let T be a Q(D)-resolution derivation from Φ, let α be a position of T , and let ` be
a literal. We say that T does not contain ` below α if, for every proper prefix γ of α, the
conclusion of T [γ] does not contain `.

Lemma 11. Let T be a Q(D)-resolution derivation from Φ of a clause C such that
T [α] ≈ T ′‖`. If T does not contain ` below α then T [α ← T ′] is a Q(D)-resolution
derivation of a clause C ′ ⊆ C ∪ ` and T [α← T ′] � T .
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Proof. The derivation T [α← T ′] simply omits the ∀(D)-reduction step on ` at position α,
introducing ` to clauses on the path from α to the root of the derivation (not necessarily all
the way to the root, as there may be another ∀(D)-reduction step on that may remove `).
By assumption, T does not contain ` below α, so the result will be a Q(D)-resolution
derivation.

Lemma 12. Let T and S be Q(D)-resolution derivations from Φ. Let α be a position of T
such that such that S ⊆ T [α] and S � T [α]. Then T [α← S] ⊆ T and T [α← S] � T .

Proof. The proof is by induction on the length of α. For α = ε the lemma holds trivially.
Assume it holds for positions of length up to k and let α = `β be a position of length
k + 1. We distinguish two cases.

1. If T ≈ T1 �` T2 then T [α← S] ≈ T ′1 �L` T2, where T ′1 ≈ T1[β ← S]. By induction
hypothesis T ′1 is a Q(D)-resolution derivation such that T ′1 ⊆ T1 and T ′1 � T1. It
follows that T ′1 �L` T2 ⊆ T . Moreover, T ′1 �L` T2 � T holds by Lemma 10 (2).

2. If T ≈ T ′‖` then T [α ← S] ≈ T ′[β ← S]‖L` . By induction hypothesis T ′[β ← S]
is a Q(D)-resolution derivation such that (a) T ′[β ← S] ⊆ T ′ and (b) T ′[β ←
S] � T ′. Using the induction hypothesis, it follows from (a) that T ′[β ← S]‖L` is
a Q(D)-resolution derivation such that T ′[β ← S]‖L` ⊆ T . To prove the second
part of the statement, we distinguish two cases. Suppose T [α ← S] ≈ T ′[β ←
S]‖L` ≈ T ′[β ← S], that is, the literal ` is not contained in the conclusion of
T ′[β ← S]. We have T ′ � T by Lemma 10 (1) and T ′[β ← S] � T ′ by (b), so
T [α ← S] � T by transitivity of �. Otherwise, the literal ` is actually reduced
and T [α ← S] ≈ T ′[β ← S]‖L` ≈ T ′[β ← S]‖`. Since T ′[β ← S]‖L` ⊆ T (proved
above), in particular T ′[β ← S]‖` ⊆` T ; moreover, T ′ � T by Lemma 10 (1)
and T ′[β ← S] � T ′ by (b), so T ′[β ← S] � T by transitivity of �. Applying
Lemma 10 (3), we conclude that T ′[β ← S]‖` � T .

For the lowering operation (Algorithm 1), we distinguish two cases based on whether
the resolution step is lowered past a ∀(D)-reduction step (Lemma 13) or another resolution
step (Lemma 14).

Lemma 13. Let T ≈ (? �a ?)‖b be a Q(D)-resolution derivation from Φ such that a
does not block b. Then lower(T , b) is a Q(D)-resolution derivation from Φ such that
lower(T , b) ⊆ T and lower(T , b) � T .

Proof. It is readily verified that lower(T , b) is a Q(D)-derivation with the same conclu-
sion as T , so lower(T , b) ⊆ T . It may contain new ∀(D)-reduction steps T1‖b and T2‖b,
but since a does not block b we have T1‖b ⊆b (T1�a T2)‖b as well as T2‖b ⊆b (T1�a T2)‖b
and we conclude that lower(T , b) � T .
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1 Function lower(T , b)
input : A Q(D)-resolution derivation T and a literal b.

2 if T ≈ (T1 �a T2)�b T3 then
3 let Ci be the conclusion of Ti for i ∈ {1, 2, 3}
4 if a /∈ C3 and a /∈ C3 then
5 return (T1 �Lb T3)�a (T2 �Lb T3)
6 else if a ∈ C3 then
7 return T1 �Lb T3
8 else
9 return T2 �Lb T3

10 else if T ≈ (T1 �a T2)‖b then
11 return T1‖Lb �a T2‖Lb
12 else
13 return T

Algorithm 1: Lowering a resolution step.

Lemma 14. Let T ≈ (T1 �a T2)�b T3 be a Q(D)-resolution derivation from Φ. Then
lower(T , b) is a Q(D)-resolution derivation such that lower(T , b) ⊆ T and lower(T , b) �
T .

Proof. Since every clause of Φ is non-tautological, the conclusion of every subderivation
of T must be non-tautological. Keeping this in mind, it is straightforward to check that
lower(T , b) is a Q(D)-resolution derivation from Φ and lower(T , b) ⊆ T . Moreover,
we have Ti � T for i ∈ {1, 2, 3} by Lemma 10 (1). In combination with Lemma 10 (2)
this yields lower′(T , b) � T .

1 Function drop(T , α, a)
input : A Q(D)-resolution derivation T , a position α of T , and a literal a.

2 if α = ε then
3 return T
4 else if α = bβ then
5 S := drop(T [b], β, a)
6 S ′ := T [b← S]
7 if S ≈ ?�a ? then
8 return lower(S ′, b)
9 else

10 return S ′

Algorithm 2: “Dropping” a resolution step.

Let T be a Q(D)-resolution derivation from Φ, let a be an existential literal, and
let α be a position of T . We say that a does not block in T below α if, for every prefix β
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of α, whenever T [β] = ?‖b for some literal b, then a does not block b. If a literal removed
by an application of resolution does not block below the resolution step, we can can
“drop” the resolution step by repeatedly lowering it (Algorithm 2).

Lemma 15. Let T be a Q(D)-resolution derivation from Φ, and let T [α] ≈ ? �a ?
such that a does not block in T below α. Then T ′ = drop(T , α, a) is a Q(D)-resolution
derivation from Φ such that T ′ ⊆ T , T ′ � T , and such that at least one of the following
conditions holds.

1. T ′ ≈ T1 �a T2 and |T1| < |T | as well as |T2| < |T |

2. |T ′| < |T |

Proof. We proceed by induction on the length of α. If α = ε then T ′ ≈ T and the
lemma holds. Now suppose α = bβ. By induction hypothesis S = drop(T [b], β, a) is a
Q(D)-resolution derivation such that S ⊆ T [b] and S � T [b]. We can apply Lemma 12
to conclude that S ′ ⊆ T and S ′ � T , where S ′ = T [b ← S]. We now distinguish two
cases. If S 6= ?�a ? then S must satisfy condition 2 by induction hypothesis, for it cannot
satisfy condition 1. That is, |S| < |T [b]|. It follows that |T ′| = |S| < |T | and T ′ satisfies
condition 2 as required. Moreover, S 6= ? �a ? implies T ′ = S ′ and so T ′ ⊆ T and
T ′ � T as claimed. Otherwise, S ≈ S1 �a S2 and |S1| < |T [b]| as well as |S2| < |T [b]| by
induction hypothesis. Suppose S ′ ≈ S‖b. Since a does not block in T below α it follows
from Lemma 13 that lower(S ′, b) = S1‖Lb �a S2‖Lb is a Q(D)-resolution derivation such
that lower(S ′, b) ⊆ T and lower(S ′, b) � T . Moreover, we must have T = T [b]‖b, so
that |T | = |T [b]| + 1. Since |Si| < |T [b]| and |Si‖Lb | ≤ |Si| + 1 this yields |Si‖Lb | < |T |
for i ∈ {1, 2}, and condition 2 is satisfied. Otherwise, S ′ ≈ S �b T ′′, where T ′′ = T [b].
Then T ′ = lower(S ′, b) is a Q(D)-resolution derivation such that T ′ ⊆ T and T ′ � T
by Lemma 14. To verify that one of the two conditions above is satisfied we have to
consider the three possible outcomes of the case distinction in lines 3 to 9 of the algorithm.
If T ′ = (S1 �Lb T ′′) or T ′ = (S2 �Lb T ′′) condition 2 is satisfied since |Si| < |T [b]| for
i ∈ {1, 2} and |T | = 1 + |T [b]|+ |T ′′|; otherwise, T ′ = (S1 �Lb T ′′) �a (S2 �Lb T ′′), and
condition 1 is satisfied.

We now establish a correspondence between the structure of Q(D)-resolution deriva-
tions and resolution paths. More specifically, we will show that under certain conditions,
literals appearing in a Q(D)-resolution derivation T are connected through resolution
paths via the set resvar(T ) of variables appearing as pivot variables in T . The following
result captures the key insight about this correspondence (cf. [120, 107]).

Lemma 16. Let T be a Q(D)-resolution derivation of a clause C from Φ. If a, b ∈ C
are distinct literals there is a resolution path from a to b via resvar(T ).

Proof. We proceed by induction on the height of T . If T has height 0 then C is a clause
of Φ and the sequence ab is a resolution path. Suppose the claim holds for derivations of
height up to k and let T have height k+1. There are two cases. If T ≈ T ′‖` then a and b
must already be contained in the conclusion C ′ of T ′. Because T ′ has height k, we can
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1 Function normalize(Φ, T )
input : A PCNF formula Φ and a Q(Drrs)-derivation T from Φ.

2 if T does not contain a strict reduction then
3 return T
4 else if T ≈ S‖a then
5 return normalize(Φ,S)‖La
6 else if T ≈ T1 �a T2 then
7 let T [α] ≈ T ′‖b be an outermost strict reduction of T
8 if T does not contain b below α then
9 S := T [α← T ′]

10 return normalize(Φ,S)‖Lb
11 else
12 let γ be a shortest position such that T [γ] ≈ ?�c ? and (c, b) ∈ RΦ
13 S := drop(T , γ, c)
14 if S ≈ S1 �c S2 then
15 return normalize(Φ,S1)�Lc normalize(Φ,S2)
16 else
17 return normalize(Φ,S)

Algorithm 3: Converting Q(Drrs)-derivations to Q-resolution derivations.

apply the induction hypothesis to conclude that there is a resolution path from a to b via
resvar(T ′) = resvar(T ). Otherwise, T ≈ T1�` T2. Let C1 and C2 denote the conclusions
of T1 and T2. Assume without loss of generality that a ∈ C1 and b ∈ C2. Since ` ∈ C1
and ` ∈ C2 and T1 and T2 both have height at most k, we can apply the induction
hypothesis to conclude that there must be a resolution path p′ from a to ` via resvar(T1)
and a resolution path p′′ from ` to b via resvar(T2). By Lemma 4, the sequence p′p′′ is a
resolution path from a to b via resvar(T1) ∪ resvar(T2) ∪ {var(`)} = resvar(T ).

Lemma 17. Let T be a Q(D)-resolution derivation of clause C from Φ. Let α be a
position of T and let C ′ be the conclusion of T [α]. If there are literals a, b such that
a 6= b, b ∈ C, a ∈ C ′, and a /∈ resvar(T ), then there exists a resolution path p from a
to b via resvar(T ). Moreover, if b /∈ C ′ then p goes through an existential variable
e ∈ var(C ′) ∩ resvar(T ).

Proof. The proof is by induction on the length of α. If α = ε then a, b ∈ C and we apply
Lemma 16 to obtain the desired resolution path. Since b ∈ C ′ = C this concludes the
proof the base case. Now let α = cβ. If c is a universal literal then T ≈ T ′‖c and the
conclusion of T ′ must already contain b. Moreover, the conclusion C ′′ of T ′[β] = T [α]
contains a and β is obviously shorter than α. We apply the induction hypothesis to
obtain the desired resolution path p from a to b via resvar(T ′) = resvar(T ). Otherwise,
c is an existential literal and T ≈ T1 �c T2. Let C1 and C2 denote the conclusions of
T1 and T2. If b ∈ C1 we can again apply the induction hypothesis to obtain the desired
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resolution path. Otherwise, we have b ∈ C2. Since a /∈ resvar(T ) we also have a 6= c.
Moreover, c ∈ C1. By induction hypothesis, there is a resolution path p′ from a to c via
resvar(T ). Because b ∈ C we also have c 6= b. Since c, b ∈ C2, we can use Lemma 16 to
get a resolution path p′′ from c to b via resvar(T2). By Lemma 4, the sequence p = p′p′′ is
a resolution path from a to b via resvar(T1)∪resvar(T2)∪{var(c)} = resvar(T ). If c /∈ C ′
then the resolution path p′ must go through an existential variable e ∈ var(C ′)∩resvar(T )
and obviously p goes through e as well. Otherwise, var(c) ∈ C ′ and p goes through
var(c) ∈ resvar(T ) by construction.

Lemma 18. Let T be a Q(Drrs)-derivation from Φ with conclusion C. If there is a
universal literal a ∈ C and there is a position α of T such that T [α] ≈ ?‖a then there is
a position β of T such that T [β] ≈ ?�b ? and (b, a) ∈ RΦ.

Proof. Assume for a contradiction that there is a universal literal a ∈ C and a position
α such that T [α] ≈ T ′‖a but there is no position β of T such that T [β] ≈ ? �b ? and
(b, a) ∈ RΦ. Since a 6= a, a ∈ C, and a ∈ C ′, where C ′ is the conclusion of T ′, we can
apply Lemma 17 to conclude that there is a resolution path p from a to a via resvar(T ).
Moreover, since a ∈ C we have a /∈ C, so p must go through an existential variable
e ∈ var(C ′) ∩ resvar(T ). That is, p = a, . . . , `e, `e, . . . , a for some literal `e ∈ {e,¬e}. By
Lemma 4, the sequences p′ = a, . . . , `e and p′′ = `e, . . . , a are resolution paths of Φ via
resvar(T ). In other words, the pair {var(a), e} is a resolution-path dependency pair with
respect to resvar(T ). Since there is no position β of T such that T [β] ≈ ? �b ? and
(b, a) ∈ RΦ we have resvar(T ) ⊆ RΦ(a) \ var∀(Φ). It follows that (var(a), e) ∈ Drrs

Φ . But
T [α] is a ∀(D)-reduction step and thus (var(a), e) /∈ Drrs

Φ , a contradiction.

For the next lemma, we generalize the notion of an existential literal blocking a
universal literal to a clause C blocking a universal literal b. By this we simply mean that
C contains a literal blocking u. Moreover, will speak of a literal (or clause) as blocking a
∀(D)-reduction step, meaning that the literal (or clause) blocks the literal removed by
the ∀(D)-reduction.

Lemma 19. Let T be a Q(Drrs)-derivation of C from Φ such that C does not block
a strict reduction of T . Then normalize(Φ, T ) (see Algorithm 3) is a Q-resolution
derivation of size at most 3|T | and normalize(Φ, T ) ⊆ T .

Proof. By induction on the size of T . If T has only one vertex it cannot contain a strict
reduction and the algorithm simply returns T (line 2). Suppose the lemma holds for deriva-
tions of size strictly less than |T |. If T does not contain a strict reduction it is already a
Q-resolution derivation (line 2). Otherwise, if T ≈ S‖a (line 5) we can apply the induction
hypothesis to conclude that the derivation S ′ = normalize(Φ,S) is a Q-resolution
derivation from Φ such that normalize(Φ,S) ⊆ S. It follows that normalize(Φ, T ) ≈
normalize(Φ,S)‖La is a Q-resolution derivation and normalize(Φ, T ) ⊆ T . Sup-
pose T ≈ T1 �a T2 (line 6). Let α be a position such that T [α] ≈ T ′‖b is an outermost
strict reduction of T (line 7). There are two cases. (a) If T does not contain b below α
(line 8) then it follows from Lemma 11 that S = T [α ← T ′] is a Q(Drrs)-resolution
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derivation of a clause C ′ ⊆ C ∪ b and S � T . By assumption, C does not block a strict
reduction of T . Since the clause C ′ only contains an additional universal literal, it does
not block a strict reduction of T , so in particular it does not block a strict reduction
of S � T . Moreover, |S| < |T |, so we can apply the induction hypothesis and conclude
that normalize(Φ,S) is a Q-resolution derivation and normalize(Φ,S) ⊆ S. It
follows that normalize(Φ, T ) = normalize(Φ,S)‖Lb is a Q-resolution derivation and
normalize(Φ, T ) ⊆ T (line 10). (b) If T contains b below α then by Lemma 18 there
must be a (shortest) position γ of T such that T [γ] ≈ ?�c ? and (c, b) ∈ RΦ (line 12).
We claim that c does not block in T below γ. Towards a contradiction assume that
there is a proper prefix β of γ such that T [β] ≈ ?‖d and (d, c) ∈ RΦ. Since T ≈ ?�a ?
and γ is the shortest position such that T [γ] ≈ ? �c ? and (c, b) ∈ RΦ, every clause
appearing as a label on the path from the root of T to the conclusion of T [γ] has to
contain an existential literal e such that (b, e) ∈ RΦ. In particular, the conclusion of T [β]
has to contain such a literal e. We thus have (d, c), (c, b), (b, e) ∈ RΦ and (d, e) ∈ RΦ
by transitivity of RΦ. That is, e blocks d and T [β] must be a strict reduction. But
T [α] ≈ T ′‖b is an outermost strict reduction of T and (d, b) ∈ RΦ, a contradiction. We
conclude that c does not block in T below γ. We can therefore apply Lemma 15 to
conclude that the derivation S = drop(T , γ, c) satisfies S ⊆ T and S � T (line 13).
Since T ′‖b is an outermost strict reduction of T , S � T , and (c, b) ∈ RΦ, neither c nor ¬c
block a strict reduction of S. If S ≈ S1�cS2 then |S1| < |T | and |S2| < |T | by Lemma 15
and the conclusions of S1 and S2 do not block strict reductions of S by choice of c. By
induction hypothesis normalize(Φ,S1) and normalize(Φ,S2) are Q-resolution deriva-
tions such that normalize(Φ,S1) ⊆ S1 and normalize(Φ,S2) ⊆ S2. We conclude
that normalize(Φ, T ) = normalize(Φ,S1) �Lc normalize(Φ,S2) is a Q-resolution
derivation and normalize(Φ, T ) ⊆ T (line 15). Otherwise, |S| < |T | by Lemma 15
and by induction hypothesis normalize(Φ, T ) = normalize(Φ,S) is a Q-resolution
derivation such that normalize(Φ, T ) ⊆ T (line 17).

It remains to prove that normalize(Φ, T ) satisfies the size bound claimed in the
statement of the lemma. Again we proceed by induction on the size of T . In the base
case T does not contain a strict reduction so normalize(Φ, T ) = T and the bound
holds. Suppose the bound holds for every Q(Drrs)-resolution derivations of size strictly
smaller than |T |.

• If T does not contain a strict reduction again normalize(Φ, T ) = T and the size
bound holds.

• Suppose T ≈ S‖a and normalize(Φ, T ) = normalize(Φ,S)‖La . Then by induc-
tion hypothesis |normalize(Φ,S)| ≤ 3|S|. Since |S| = |T | − 1 we obtain

|normalize(Φ,S)‖La | ≤ |normalize(Φ,S)|+ 1
≤ 3|S| + 1
= 3|T |−1 + 1
≤ 3|T |.
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• Let α be a position of T such that T [α] = T ‖b and let S = T [α ← T ′]. Sup-
pose normalize(Φ, T ) = normalize(Φ,S)‖Lb . We have |S| ≤ |T | − 1 and
|normalize(Φ,S)| ≤ 3|S| by induction hypothesis. Overall, we get

|normalize(Φ,S)‖Lb | ≤ |normalize(Φ,S)|+ 1
≤ 3|S| + 1
≤ 3|T |−1 + 1
≤ 3|T |.

• Finally, let γ be a position of T such that T [γ] ≈ ? �c ? and assume c does
not block in T below γ. Let S = drop(T , γ, c). We again consider two cases.
(1) If S ≈ S1 �c S2 then by Lemma 15 we have |Si| < |T | for i ∈ {1, 2}. By
induction hypothesis we have |normalize(Φ,Si)| ≤ 3|Si| for i ∈ {1, 2} and thus
|normalize(Φ,Si)| < 3|T | for i ∈ {1, 2}. As a consequence we get

|normalize(Φ,S1)�Lc normalize(Φ,S2)| ≤ 3|S1| + 3|S2| + 1
≤ 3 · 3|T |−1

= 3|T |.

(2) Otherwise, |S| < |T | by Lemma 15. Using the induction hypothesis, we conclude
that |normalize(Φ,S)| ≤ 3|S| < 3|T |.

Proposition 7 follows immediately from Lemma 19 and the observation that the empty
clause trivially does not block a strict reduction. We can now proceed to prove soundness
of Q(Drrs)-resolution at last.

Theorem 5. A PCNF formula Φ is false if and only if there is a Q(Drrs)-resolution
refutation of Φ.

Proof. If there is a Q(Drrs)-resolution refutation of Φ then by Proposition 7 there is a
Q-resolution refutation of Φ. By Theorem 3 that means the formula Φ is false. Conversely,
if Φ is false then there is a Q-resolution refutation of Φ by Theorem 3, and this refutation
is trivially a Q(Drrs)-resolution refutation of Φ.

Since Drrs is strictly more general than Dstd this result entails Theorem 4.

5.3 Soundness of Q(D)-term Resolution
To prove soundness of Q(Dres)-term resolution and Q(Drst)-term resolution, we follow a
strategy that is dual to the one adopted in proving soundness of Q(Dstd)-resolution and
show that these systems preserve a subset of a formula’s countermodels.
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Definition 31. Let D be a proto-dependency scheme and let Φ be a PCNF formula.
A complete countermodel f of Φ is a D-countermodel of Φ if each function fu ∈ f is
independent of every existential variable e with (e, u) /∈ DΦ.

The following two results are essentially dual to Lemma 9 and Proposition 5.

Lemma 20. Let D be a proto-dependency scheme and Φ = Q.ϕ a PCNF formula. Let f
be a D-countermodel of Φ and let S = T1, . . . , Tk be a Q(D)-term resolution derivation
of a term T from Φ. Then T [σ ∪ f(σ)] = 0 for every assignment σ to the existential
variables of Φ.

Proof. We prove the lemma by induction on k. If k = 1 then Tk = T must be derived
from Φ by the model generation rule, so T ∩C for every C ∈ ϕ. Let σ : var∃(Φ)→ {0, 1}.
Since f is a countermodel of Φ, there must be a C ∈ ϕ such that C[σ ∪ f(σ)] = 0. In
particular, (σ ∪ f(σ))(`) = 0 for every literal ` ∈ C ∩ T , so T [σ ∪ f(σ)] = 0. Suppose the
lemma holds for every k′ < k. There are three cases. (a) If T is derived from Φ by the
model generation rule we proceed as in the base case. (b) T = Tk is derived from Ti and Tj
by resolution, where i, j < k. By induction hypothesis Ti[σ ∪ f(σ)] = Tj [σ ∪ f(σ)] = 0.
Let u be the (universal) pivot variable. Assume without loss of generality that u ∈ Ti
and ¬u ∈ Tj . If (σ ∪ f(σ))(u) = 1 then there is a literal ` ∈ Ti with ` 6= u such that
(σ ∪ f(σ))(`) = 0. Then T [σ ∪ f(σ)] = 0 because ` ∈ T . Otherwise, (σ ∪ f(σ))(u) = 0 and
there must be a literal ` ∈ Tj such that (σ ∪ f(σ))(`) = 0. Again, ` is contained in T and
so T [σ∪ f(σ)] = 0. (c) T = Tk is derived from Ti = Tk∧ ` by ∃(D)-reduction, where i < k.
We distinguish two cases. (a) If σ(`) = 1 then it follows from the induction hypothesis
that there is a literal `′ ∈ Ti such that `′ 6= ` and (σ ∪ f(σ))(`′) = 0. Then `′ ∈ T and
T [σ ∪ f(σ)] = 0. (b) Otherwise, σ(`) = 0. Consider the assignment σ′ such that σ′(`) = 1
and σ′(e) = σ(e) for every existential variable e 6= var(`). By an argument parallel to the
one for case (a) there must be a literal `′ ∈ Ti such that `′ 6= ` and (σ′ ∪ f(σ′))(`′) = 0.
Let x = var(`′). Suppose x is existential. Then x 6= var(`) (since Ti is non-contradictory)
and σ(x) = σ′(x). So (σ ∪ f(σ))(`′) = 0 and thus T [σ ∪ f(σ)] = 0. Now suppose x is
universal. By definition of ∃(D)-reduction we must have (var(`), x) /∈ DΦ. Because f
is a D-countermodel of Φ the function fx must be independent of var(`). It follows
that fx(σ|LΦ

x
) = fx(σ′|LΦ

x
) and thus (σ ∪ f(σ))(`′) = (σ′ ∪ f(σ′)(`′) = 0, which implies

T [σ ∪ f(σ)] = 0.

Proposition 8. If D is a proto-dependency scheme such that every false PCNF formula
has a D-countermodel, then Q(D)-term resolution is sound: a PCNF formula Φ is true
if and only if there is a Q(D)-term resolution proof of Φ.

Proof. Let D be a proto-dependency scheme such that every false PCNF formula has a
D-countermodel. The empty term is trivially satisfied by any truth assignment, so by
Lemma 20 no false PCNF formula can have a Q(D)-term resolution proof. This proves
the “if” part. The “only if” part follows immediately from Theorem 3 and the fact that
every Q-term resolution proof is a Q(D)-term resolution proof.
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5.3.1 The Resolution-Path Dependency Scheme

To prove soundness of Q(Dres)-resolution, we are going to show that every false PCNF
formula has a Dres-countermodel (Proposition 9). Given a false PCNF formula Φ, we
will construct this countermodel from a Q-resolution refutation of Φ. To simplify the
construction, we will start from an ordered Q-resolution refutation – we can assume
that false formulas have ordered Q-resolution refutations without loss of generality: the
refutations used in the original completeness proof of Q-resolution are in fact ordered [24].
We first define a countermodel that is not necessarily complete (Lemma 22). Using
a connection between the structure of Q-resolution derivations and resolution-path
dependencies established earlier (Lemma 17), we then prove that the model function
of a universal variable u in this countermodel has the following property: it takes on
the same value for any two assignments that differ only on existential variables that u
does not depend on, according to Dres

Φ (Lemma 23). From there, it is straightforward to
extend the countermodel to a complete countermodel that is in fact a Dres-countermodel
of Φ (Lemma 24).

Given an ordered Q(D)-resolution refutation and an assignment, there is a unique
leaf position in the derivation such that every existential literal occurring in this position
is falsified by the assignment. To construct a countermodel, our goal is to set universal
variables in such a way as to also falsify universal literals occurring in this position.

Definition 32 (Extension). Let Φ be a PCNF formula, let T be an ordered Q-resolution
refutation of Φ, and let π be a position of T . For an assignment τ : E → {0, 1}, where
E ⊆ var∃(Φ), we define the τ -extension of π in T (with respect to Φ) as the (unique)
longest sequence ρ = `1, . . . , `k of literals such that πρ is a position of T and such that
τ(`i) = 0 or var(`i) ∈ var∀(Φ) for each i ∈ [k].

Lemma 21. Let Φ be a PCNF formula and let T be an ordered Q-resolution refutation
of Φ. Further, let τ : E → {0, 1} be a truth assignment, where E ⊆ var∃(Φ), and let π
be a position of T such that τ(`) = 0 for each existential literal ` in the conclusion of
T [π]. Then τ(`) = 0 for each existential literal ` in the conclusion of T [πρ], where ρ is
the τ -extension of π in T .

Proof. Let ρ = `1, . . . , `k, and let C and C ′ denote the conclusions of T [π] and T [πρ],
respectively. We have C ′ ⊆ C ∪ {`1, . . . , `k} and τ(`i) = 0 for each existential literal `i,
for i ∈ [k]. In combination with the assumption that τ(`) = 0 for each existential literal
` ∈ C, this proves the lemma.

For the remainder of this subsection let Φ = Q.ϕ be an arbitrary, but fixed, false
PCNF formula, and let E and U denote its sets of existential and universal variables,
respectively. Moreover, let T be an ordered Q-resolution refutation of Φ.
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Definition of the countermodel. We define a family f = {fu}u∈U of partial functions
fu : 2LΦ

u → {0, 1} as

fu(σ) :=


0 if u occurs in the σ-extension of ε in T ,
1 if ¬u, but not u, occurs in the σ-extension of ε in T ,
undefined otherwise;

Lemma 22. The set f is a countermodel of Φ.

Proof. Let σ : E → {0, 1} be a truth assignment, let π be the σ-extension of ε in T , and
let C denote the conclusion of T [π]. Because σ assigns every existential variable the
clause C must be an input clause. We claim that fu(σ|LΦ

u
) is defined for each universal

variable u ∈ var(C) and C[σ ∪ f(σ)] = 0. If C does not contain universal variables this
follows from Lemma 21. Otherwise, let ` ∈ C be a universal literal. The literal ` must
occur in π because T is a refutation. In fact, ` must occur in the σ′-extension of ε in T ,
where σ′ = σ|LΦ

u
, because T is ordered. We now distinguish two cases. (a) If ` = u then

fu(σ′) = 0 by construction of fu. (b) Otherwise, if ` = ¬u then u cannot occur in the
σ′-extension of ε in T , as T is ordered and each of its positions can contain at most one
of the literals u and ¬u. It follows that fu(σ′) = 1 by construction of fu. We conclude
that every universal literal of C is set to 0 by f(σ), so C[σ ∪ f(σ)] = 0 as claimed.

To show that f can be extended to a complete Dres-countermodel we introduce
auxiliary notation: for each u ∈ U we define a relation ∼u on the set of assignments with
domain LΦ

u by letting σ ∼u τ if σ(e) = τ(e) for every existential variable e such that
(e, u) ∈ Dres

Φ . Informally, if σ ∼u τ the assignments σ and τ agree on every existential
variable that u may depend on. Observe that ∼u is an equivalence relation.

Lemma 23. Let u ∈ U be a universal variable. If fu is defined for two assignments
σ, τ : LΦ

u → {0, 1} and σ ∼u τ then fu(σ) = fu(τ).

Proof. Let σ, τ : LΦ
u → {0, 1} be assignments such that fu(σ) = 0 and fu(τ) = 1. We have

to show that σ �u τ . By construction of f , the literal u has to occur on the σ-extension
π of ε in T and ¬u has to be on τ -extension π′ of ε in T . Because T is ordered, every
position can contain at most one of the literal u and ¬u, so there must be an existential
literal ` such that ` occurs in π but not in π′, and such that ` occurs in π′ but not in π.
Consider the prefix ρ of π ending with the literal `. Let T ′ = T [ρ], let C denote the
conclusion of T [ρ], and let C ′ denote the conclusion of T [π]. We have u 6= `, ` ∈ C, u ∈ C ′,
and u /∈ resvar(T ), so by Lemma 17 the literal ` and u are connected in Φ via resvar(T ′).
Let e = var(`). Because T is ordered we have resvar(T ′) ⊆ RΦ(e) \ (var∀(Φ)∪ {e, u}). A
parallel argument shows that ` and ¬u are connected in Φ via RΦ(e) \ (var∀(Φ) ∪ {e, u}).
Combining these statements yields (e, u) ∈ Dres

Φ . By choice of ` we have σ(`) = 0 and
τ(`) = 0, whence σ(e) 6= τ(e). That is, (e, u) ∈ Dres

Φ but σ(e) 6= τ(e), so σ �u τ .
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We now construct a family of functions g = {gu}u∈U which extends f to a complete
countermodel of Φ. For every u ∈ U and σ : LΦ

u → {0, 1} we define

gu(σ) =
{
fu(τ) if there is a τ ∼u σ and fu(τ) is defined,
1 otherwise;

Lemma 24. The set g is a Dres-countermodel of Φ.

Proof. It is immediate from Lemma 22 that g is a countermodel of Φ, and g is complete
by construction. Let u ∈ U and e ∈ E such that (e, u) /∈ Dres

Φ . Towards a contradiction,
let σ, τ : LΦ

u → {0, 1} be truth assignments such that σ(y) = τ(y) for each y ∈ LΦ
u \ {e},

but gu(σ) = 0 and gu(τ) = 1. By construction of g there has to be an assignment σ′ : LΦ
u

such that σ′ ∼u σ and gu(σ) = fu(σ′) = 0. Note that σ ∼u τ and recall that ∼u is an
equivalence relation. It follows that σ′ ∼u τ . Since gu(τ) = 1 this implies that there has
to be another truth assignment τ ′ such that τ ′ ∼u τ and gu(τ) = fu(τ ′) = 1. But σ′ ∼u τ ′
by transitivity of ∼u, so we can apply Lemma 23 to conclude that fu(σ′) = fu(τ ′), a
contradiction.

Since Φ was chosen arbitrarily, we obtain the following result.

Proposition 9. Every false PCNF formula has a Dres-countermodel.

Theorem 6. A PCNF formula Φ is true if and only if there is a Q(Dres)-term resolution
proof of Φ.

Proof. Immediate from Proposition 8 in combination with Proposition 9.

By Proposition 1 the resolution-path dependency scheme is more general than the
standard dependency scheme, so we obtain the following result as a corollary.

Corollary 1. A PCNF formula Φ is true if and only if there is a Q(Dstd)-term resolution
proof of Φ.

5.3.2 The Refined Standard Dependency Scheme

Recall that the refined standard dependency scheme and the resolution-path dependency
scheme are incomparable (Proposition 1). In particular, there are formulas Φ and pairs
(x, y) ∈ var∃(Φ) × var∀(Φ) such that (x, y) ∈ Dres

Φ but (x, y) /∈ Drst
Φ , so soundness of

Q(Dres)-term resolution does not imply soundness of Q(Drst)-term resolution.
To prove soundness of Q(Drst)-term resolution we will use the same proof strategy as in

the previous subsection and show that every false PCNF formula has a Drst-countermodel.
The starting point for constructing this countermodel is the canonical countermodel
extraction algorithm from Q-resolution proofs [8]. This algorithm defines a model function
fu for a universal variable u roughly as follows: for each application of the ∀-reduction
rule that removes a literal ` with var(`) = u, it makes sure that fu maps ` to false
whenever the remaining literals in the premise of the ∀-reduction step evaluate to false.
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For instance, if ∀-reduction is applied to a clause (e∨u), where e is an existential variable,
then the algorithm ensures that fu(τ) = 0 whenever τ(e) = 0, for an assignment τ
to existential variables. Since “ordinary” ∀-reduction can be applied only if a clause
contains no blocking existential variable, the definition of fu may use the values assigned
to existential variables occurring in the premise. The fact that the premise may contain
another universal variable v makes things slightly more complicated in that the behavior
of fv and fu must be coordinated. But this coordination can always be achieved due to
the nesting of quantifier scopes in the prefix: if u ∈ R(v) then fu can “see” the assignment
passed to fv as an argument and infer the value of fv; otherwise, v ∈ R(u) and fv can
infer the value of fu. In constructing a Drst-countermodel from a Q-resolution refutation
we cannot use the same coordination strategy since there may be an existential variable
e such that (e, v) is in the refined standard dependency relation but (e, u) is not, or vice
versa.

In order to concisely define our Drst-countermodel, we introduce additional notation.
Let Φ be a PCNF formula, let T be a Q-resolution refutation of Φ, and let π be a position
of T .

• We let clauseT (π) denote the conclusion of T [π], and write ∃-clauseT (π) for its
restriction to existential literals, that is

∃-clauseT (π) = clauseT (π) ∩ (var∃(Φ) ∪ var∃(Φ)).

• Moreover, we define ∀-prefixesΦ(π) as the set of prefixes of π that end in a universal
literal. Formally,

∀-prefixesΦ(π) = {σ` : σ` is a prefix of π and var(`) ∈ var∀(Φ) }.

• Finally, we let

∀-premisesT ,Φ(π) =
⋃

ρ∈∀-prefixesΦ(π)
∃-clauseT (ρ).

Lemma 25. Let Φ be a PCNF formula and let T be an ordered Q-resolution refutation
of Φ. Let π = σ`u be a position of T such that u ∈ var∀(Φ), where u = var(`u). Then
var(∀-premisesT ,Φ(π)) ⊆ Drst

Φ (u).

Proof. Let e ∈ var(∀-premisesT ,Φ(π)). Then there is a prefix ρ ∈ ∀-prefixesΦ(π) of π and
a literal `e with var(`e) = e such that e ∈ var(clauseT (ρ)). Let T ′ = T [ρ]. Because u is
universal we have u /∈ resvar(T ′) and `e 6= `u. Thus we can apply Lemma 17 to conclude
that the literals `u and `e are connected in Φ via resvar(T ′). It now follows from Lemma 3
that Φ contains an (e, u)-dependency pair with respect to resvar(T ′). We claim that
resvar(T ′) ⊆ R�Φ(e) \ var∀(Φ). Obviously resvar(T ′) ∩ var∀(Φ) = ∅, so we only have to
show that resvar(T ′) ⊆ R�Φ(e). Since ρ ∈ ∀-prefixesΦ(π) there is a position γ of T and
a literal `v (not necessarily distinct from `u) such that ρ = γ`v and v ∈ var∀(Φ), where
var(`v) = v. Since T is a refutation `e has to be resolved out eventually, and because T is
ordered we have (e, v) ∈ RΦ as well as resvar(T ′) ⊆ RΦ(v). That is, resvar(T ′) ⊆ R�Φ(e)
and the claim holds, so (e, u) ∈ Drst

Φ .
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For the remainder of this subsection, let Φ denote a fixed PCNF formula and let T be a
fixed, ordered Q-resolution refutation of Φ. To construct a Drst-countermodel, we define
a total order <T on the set of positions of T . Let Φ = Q1x1 . . . Qnxn.ϕ. We encode each
position π of T as an n-digit ternary numeral in the following way. For i ∈ [n], the ith
digit of the numeral associated with a position π is 0 if π does not contain an xi-literal, 1
if π contains the literal xi, and 2 if π contains the literal ¬xi. For each position π, let
value(π) be the value of the numeral associated with π. We define the relation <T on
positions of T by letting

π <T ρ⇐⇒ value(π) < value(ρ).

This relation is a total order on the set of positions of T . Additionally, it has the following
property.

Lemma 26. Let π1`1 and π2`2 be positions of T such that var(`1) = var(`2) and
π1`1 <T π2`2. If π1`1π

′
1 and π2`2π

′
2 are positions of T then π1`1π

′
1 <T π2`2π

′
2.

Definition of the countermodel. We define a family f = {fu}u∈var∀(Φ) of model
functions for the universal variables of Φ. For each u ∈ var∀(Φ) and τ : LΦ

u → {0, 1} we
define fu(τ) as follows. Let

positions(u) = {π : π = σ` is a position of T and var(`) = u }.

That is, positions(u) is the set of positions of Φ followed by a ∀-reduction step involving
variable u. The function fu first computes the set Πτ defined as

Πτ = {π ∈ positions(u) : ∀-premisesT ,Φ(π)[τ ] = 0 }.

If π ∈ Πτ and π′ is a prefix of π such that T [π′] is a ∀-reduction step, then every
existential literal in the premise of this ∀-reduction step is mapped to 0 by τ . Using the
set Πτ , we define fu as follows.

• If Πτ = ∅ we let fu(τ |LΦ
u

) = 0.

• Otherwise, if π` ∈ Πτ is the smallest (with respect to <T ) position in Πτ , then

fu(τ |LΦ
u

) =
{

0 if ` = u,
1 otherwise;

By Lemma 25 the set Πτ only depends on the restricted assignment τ |X , where X =
Drst

Φ (u), so the function fu is independent of variables in var∃(Φ)\Drst
Φ (u) by construction.

Lemma 27. The set f is a Drst-countermodel of Φ.
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Proof. We first show that f is a countermodel of Φ. Assume towards a contradiction that
there is an assignment τ : var∃(Φ)→ {0, 1} such that τ ∪ f(τ) satisfies ϕ. Let π be the
smallest (with respect to <T ) leaf position of T such that τ(`) = 0 for each existential
literal ` ∈ clauseT (π) and such that ∀-premisesT ,Φ(π)[τ ] = 0. The τ -extension of ε in T
satisfies this condition by Lemma 21, so such a position π must exist. By assumption,
the clause C ∈ ϕ is satisfied by τ ∪ f(τ), so there must be a universal literal `′ ∈ C
such that f(τ)(`′) = 1. Let u = var(`′). There has to be a position ρ ∈ positions(u)
such that ρ is a prefix of π, since T is a refutation and the literal `′ has to be removed
by ∀-reduction eventually. By choice of π we have ∀-premisesT ,Φ(ρ)[τ ] = 0. Since `′
evaluates to 1, by construction of fu there has to be another position ρ′ ∈ positions(u)
such that ρ′ <T ρ and ∀-premisesT ,Φ(ρ′)[τ ] = 0. Let α be the τ -extension of ρ′ in T ,
and let π′ = ρ′α. It follows from Lemma 21 that τ(`) = 0 for each existential literal
` ∈ clauseT (π′) and that ∀-premisesT ,Φ(π′)[τ ] = 0. Since ρ, ρ′ ∈ positions(u), ρ′ <T ρ,
and ρ′ and ρ are prefixes of π′ and π, respectively, we can apply Lemma 26 to conclude
that π′ <T π, a contradiction. So there cannot be an assignment τ : var∃(Φ)→ {0, 1}
such that τ ∪ f(τ) satisfies ϕ and f is a countermodel of Φ. Moreover, f is complete and
each function fu ∈ f is independent of variables in var∃(Φ) \Drst

Φ (u) by construction, so
f is even a Drst-countermodel of Φ.

Proposition 10. Every false PCNF formula has a complete Drst-countermodel.

Theorem 7. A PCNF formula Φ is true if and only if there is a Q(Drst)-term resolution
proof of Φ.

Proof. Immediate from Proposition 8 in combination with Proposition 10.

Summary
Motivated by the use of dependency schemes in the PCNF solver DepQBF, we introduced
and studied two families of resolution proof systems for PCNF formulas that take a
dependency scheme D as a parameter: Q(D)-resolution, a generalization of Q-resolution,
and Q(D)-term resolution, a generalization of Q-term resolution. We gave soundness
proofs for several instances of these proof systems:

• We showed that Q(Drst)-resolution and Q(Drst)-term resolution are sound. These
are the proof systems used for proof generation by DepQBF in its current version [82].
These results provide the first rigorous argument for correctness of the algorithm
implemented by this solver.

• Beyond that, we proved soundness of Q(Drrs)-resolution and Q(Dres)-term resolu-
tion. Since these systems are, respectively, stronger than Q(Drst)-resolution and
incomparable to Q(Drst)-term resolution, the implementation of these dependency
schemes could lead to performance gains in future incarnations of DepQBF.
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CHAPTER 6
Quantifier Reordering

Dependency schemes can be used to manipulate the order of variables in the prefix of a
PCNF formula while preserving its truth value. In fact, the notion of a dependency scheme
was originally defined with this application in mind [102]. This definition requires only
that dependency schemes support an operation called quantifier shifting (see Section 6.1).
Here, we will consider proto-dependency schemes that support a more general operation:
every reordering that does not change the relative order of pairs of variables occurring in
the dependency relation must be truth value-preserving. Calling dependency schemes of
this kind permutation dependency schemes, we prove the following results:

1. The resolution-path dependency scheme Dres is a permutation dependency scheme
(Theorem 9).

2. The refined standard dependency scheme Drst is a permutation dependency scheme
(Theorem 10).

Because every proto-dependency scheme that is less general than a permutation de-
pendency scheme is a permutation dependency scheme as well (Proposition 13), this
entails that every proto-dependency scheme introduced in Chapter 3 is a permutation
dependency scheme.

As an application, we will combine permutation dependency schemes with a linear-time
algorithm that computes a quantifier prefix with the smallest number of quantifier
alternations among reorderings compatible with a given dependency relation. The
number of quantifier alternations of a PCNF formula is an indicator of hardness for the
associated instance of QSAT, as witnessed by the following results:

a) QSAT is complete for the kth level of the polynomial hierarchy when restricted to
PCNF formulas with k alternations [112].

b) Without a bound on quantifier alternations, QSAT is PSPACE-hard even for
formulas of bounded pathwidth [4].
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c) QSAT is fixed-parameter tractable if both the treewidth and the number of quantifier
alternations are taken as parameters, but the function bounding the complexity in
the parameters is a tower of exponentials with height corresponding to the number
of quantifier alternations (unless P=NP) [90].

Paired with a tractable permutation dependency scheme, the alternation minimization
algorithm leads to a polynomial-time preprocessing procedure that may reduce the
number of quantifier alternations of a PCNF formula:

3. Let D be a tractable permutation dependency scheme. For every PCNF formula Φ,
a reordering Ψ of Φ satisfying the following two properties can be computed in poly-
nomial time: (A) Ψ is compatible with the dependency relation DΦ, and (B) among
reorderings with this property, Ψ has the fewest quantifier alternations (Theo-
rem 11).

The example in Section 5.1 proves that Q(D)-resolution need not be sound for a per-
mutation dependency scheme D. In Section 6.3, we prove that the converse holds,
however:

4. Let D be a proto-dependency scheme such that Q(D)-resolution and Q(D)-term
resolution are sound. Then D is a permutation dependency scheme (Proposition 15).

6.1 Permutation Dependency Schemes

For the purposes of this chapter, dependency relations can be interpreted as sets of
constraints on the relative order of variables: a pair (x, y) in the dependency relation
indicates that changing the relative order of x and y in the quantifier prefix may change
the truth value of the formula. We consider formulas obtained from a given PCNF
formula by reordering the quantifier prefix while observing these constraints.

Definition 33. Let D be a proto-dependency scheme, and let Φ = Q.ϕ and Ψ = Q′.ϕ
be PCNF formulas such that Q′ is a permutation of Q. If DΦ ⊆ RΨ we call Ψ a
D-permutation of Φ. If, in addition, Q′ is a transposition of Q then Ψ is a D-transposition
of Φ.

Definition 34 (Permutation Dependency Scheme). A permutation dependency scheme
(transposition dependency scheme) is a proto-dependency scheme D such that Φ ≡ Ψ for
every PCNF formula Φ and every D-permutation (D-transposition) Ψ of Φ.

Example 3. Consider the PCNF formula Φ = Q.ϕ, where

Q = ∀x1∃y1∀x2∃y2∀x3∃y3, and
ϕ = (¬x1 ∨ y1) ∧ (¬y1 ∨ x2) ∧ (¬x2 ∨ y2) ∧ (¬y2 ∨ x3) ∧ (¬x3 ∨ y3).
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The trivial dependency relation of this formula is

{(x1, y1), (x1, y2), (x1, y3), (x2, y2), (x2, y3), (x3, y3),
(y1, x2), (y1, x3), (y2, x3)},

so the only Dtrv-permutation of Φ is the formula Φ itself. On the other hand, for
the resolution-path dependency scheme the dependency relation Dres

Φ is empty and the
formula ∀x1∀x2∀x3∃y1∃y2∃y3.ϕ is an example of a Dres-permutation of Φ.

Permutation dependency schemes are a special case of so-called cumulative dependency
schemes which are defined in terms of quantifier shifting [102].

Definition 35 (Shifting). Let Φ = Q.ϕ be a PCNF formula and X ⊆ var(Φ). The
PCNF formula Ψ is obtained from Φ by (down)-shifting X, in symbols Ψ = S↓(Φ, X), if
Ψ = Q′.ϕ and Q′ is a permutation of Q such that the following conditions hold:

1. X = RΨ(x) for some x ∈ var(Φ) = var(Ψ),

2. (x, y) ∈ RΨ if and only if (x, y) ∈ RΦ for all x, y ∈ X, and

3. (x, y) ∈ RΨ if and only if (x, y) ∈ RΦ for all x, y ∈ var(Φ) \X.

Definition 36 (Dependency scheme). A proto-dependency scheme D is a dependency
scheme if Φ ≡ S↓(Φ, D∗Φ(x)) for every PCNF formula Φ and every x ∈ var(Φ).

Definition 37 (Cumulative). A dependency scheme D is cumulative if the equivalence
Φ ≡ S↓(Φ, D∗Φ(X)) holds for every PCNF formula Φ and X ⊆ var(Φ).

Cumulative dependency schemes were originally introduced in context with backdoor
sets of PCNF formulas [102]. A strong backdoor set of a PCNF formula is a set of
variables with the following property: for every assignment to the variables in this set,
the remaining formula belongs to a certain class (for example, the class of PCNF formulas
with Horn matrices). A strong backdoor set to a tractable PCNF class can be used
algorithmically by instantiating the input formula with every possible assignment of the
backdoor variables and solving the remaining (tractable) instance in polynomial time.
If the backdoor set is (upward) closed under the dependency relation computed by a
cumulative dependency scheme, we can first shift the corresponding variables towards
the front of the quantifier prefix and this evaluation strategy is sound. If these backdoor
sets can be found efficiently, this leads to a fast decision algorithm for PCNF formulas
with small backdoor sets.

Proposition 11. Every permutation dependency scheme is a cumulative dependency
scheme.

Proof. Let D be a permutation dependency scheme and Φ a PCNF formula. Let
X ⊆ var(Φ) and let Ψ = S↓(Φ, D∗Φ(X)). We claim that Ψ is a D-permutation of Φ. To
prove this, we have to show that (x, y) ∈ RΨ whenever (x, y) ∈ DΦ. Let (x, y) ∈ DΦ. If
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x ∈ D∗Φ(X) then also y ∈ D∗Φ(X) and so (x, y) ∈ RΨ by Condition 2 of Definition 35.
Suppose x /∈ D∗Φ(X). If y /∈ D∗Φ(X) then (x, y) ∈ RΨ by Condition 3. If y ∈ D∗Φ(X) then
there is a z ∈ var(Φ) such that D∗Φ(X) = RΨ(z) by Condition 1. We have x /∈ RΨ(z) and
thus (x, z) ∈ RΨ. Because RΨ is transitive and (z, y) ∈ RΨ this implies (x, y) ∈ RΨ. This
proves the claim. Since D is a permutation dependency scheme it follows that Ψ ≡ Φ.
So D is a cumulative dependency scheme.

Every permutation dependency scheme is trivially a transposition dependency scheme.
Even though transpositions are a very restricted subclass of permutations, a converse
can be proved in presence of the following property.

Definition 38 (Monotone). A proto-dependency scheme D is monotone if it satisfies
the following condition for every PCNF formula Φ, every D-permutation Ψ of Φ, and
every x ∈ var(Φ): if RΨ(x) ⊆ RΦ(x) then DΨ(x) ⊆ DΦ(x).

Proposition 12. Every monotone transposition dependency scheme is a permutation
dependency scheme.

Proof. Let D be a monotone transposition dependency scheme and let Φ = Q.ϕ and
Ψ = Q′.ϕ be PCNF formulas such that Ψ is a D-permutation of Φ. The prefix Q′ can be
obtained from Q by sorting subsequences of increasing length according to the order in Q′,
as follows. Assuming that the quantifier/variable pairs Qixi up to Qnxn are already
sorted according to Q′, we insert the pair Qi−1xi−1 at the correct position (according
to Q′) by moving it to the right. Let Qi denote the prefix where Qixi up to Qnxn are
already sorted according to Q′, let Φi = Qi.ϕ be the corresponding PCNF formula, and
let Ri = RΦi . Formally, Qi is the unique permutation of Q such that Ri = R′i ∪R′′i ∪R′′′i ,
where

R′i = RΦ ∩ ({x1, . . . , xi−1} × {x1, . . . , xi−1}),
R′′i = RΨ ∩ ({xi, . . . , xn} × {xi, . . . , xn}), and
R′′′i = {x1, . . . , xi−1} × {xi, . . . , xn}.

That is, the first part of Qi agrees with Q, but the second part is ordered according
to Q′. We now show that Φi ≡ Φi−1 for every 1 < i ≤ n. Since Φn = Φ and Φ1 = Ψ, the
proposition then follows. So pick any i such that 1 < i ≤ n. We can obtain Qi−1 from Qi
by moving Qi−1xi−1 to the right as far as necessary, and this operation can in turn be
represented as a sequence of transpositions where Qi−1xi−1 is moved one position to the
right. Suppose k is the number of transpositions needed. For 0 ≤ j ≤ k, let Q′j be the
prefix where Qi−1xi−1 has been moved j positions to the right in Qi, let Hj = Q′j .ϕ, and
let R′j = RHj . We claim that Hj ≡ Hj+1 for 0 ≤ j < k. Let 0 ≤ j < k, and let y be
the variable immediately to the right of xi−1 in Q′j , such that y trades places with xi−1
in Q′j+1. Then (y, xi−1) ∈ RΨ and so (xi−1, y) /∈ DΦ because Ψ is a D-permutation
of Φ. By construction of Q′j we have R′j(xi−1) ⊆ Ri(xi−1), and by construction of Qi
we have Ri(xi−1) = RΦ(xi−1). So R′j(xi−1) ⊆ RΦ(xi−1), and since D is monotone, this
implies D′j(xi−1) ⊆ DΦ(xi−1). In particular, (xi−1, y) /∈ DHj . It follows from D being
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a transposition dependency scheme that Hj ≡ Hj+1 . This proves the claim. Because
H0 = Φi and Hk = Φi−1, we conclude that Φi ≡ Φi−1.

We now apply this result to prove that the resolution-path dependency scheme is
a permutation dependency scheme. The following result is due to Van Gelder [120,
Theorem 4.7]. Since he offers two definitions of the resolution-path dependency scheme
and the theorem only holds for one of them (see Example 4), we include our own proof
below.

Theorem 8. The resolution-path dependency scheme is a transposition dependency
scheme.

Proof. Let Φ = Q.ϕ and let Ψ = Q′.ϕ be a Dres-transposition of Φ such that

Q = Q1x1 . . . Qi−1xi−1QixiQi+1xi+1 . . . Qnxn, and
Q′ = Q1x1 . . . Qi−1xi−1Qi+1xi+1Qixi . . . Qnxn.

We have to prove that Φ is false if and only if Ψ is false. We will assume that xi is universal
and xi+1 is existential and show that Φ is false if Ψ is false (the remaining cases are
immediate). It is sufficient to show that for every truth assignment τ : {x1, . . . , xi−1} →
{0, 1} the formula Φ[τ ] has a Q-resolution refutation if Ψ[τ ] has a Q-resolution refutation;
here, Φ[τ ] and Ψ[τ ] denote the PCNF formulas obtained from Φ and Ψ, respectively,
by applying the assignment τ to the matrix ϕ and omitting redundant variables from
the quantifier prefixes. Let τ : {x1, . . . , xi−1} → {0, 1} be an assignment and let T be
a Q-resolution refutation of Ψ[τ ]. Assume without loss of generality that T is ordered.
The only derivation step admissible in T that cannot occur in a refutation of Φ[τ ] is
∀-reduction that removes variable xi from a clause that contains xi+1 or ¬xi+1. If T
contains no such step, T is already a refutation of Φ[τ ] and we are done. Otherwise,
because T is ordered, the final derivation step has to be a resolution step on variable xi+1,
that is, T ≈ T1 �`i+1 T2 for a literal `i+1 with var(`i+1) = xi+1. If the derivation Tj
contains a ∀-reduction step on `i with var(`i) = xi, we must have Tj ≈ T ′j ‖`i since T
is ordered, for j ∈ {1, 2}. To show that we can get rid of this ∀-reduction, we have to
consider two cases.

1. If T1 ≈ T ′1‖`i such that var(`i) = xi but neither T2 ≈ ?‖`i nor T2 ≈ ?‖`i then
T ′ = (T ′1 �`i+1 T2)‖`i is a Q-resolution refutation of Φ[τ ].

2. Otherwise, if T1 ≈ T ′1‖`i such that var(`i) = xi and T2 ≈ T ′2‖`i then T ′ = (T ′1 �`i+1

T ′2 )‖`i is a Q-resolution refutation of Φ[τ ].

This case distinction is exhaustive – suppose T1 ≈ T ′1‖`i such that var(`i) = xi and
T2 ≈ T ′2‖`i . Then the conclusion of T ′1 contains the literals `i and `i+1, and the con-
clusion of T2 contains the literals `i and `i+1. Using Lemma 16 and the fact that T
is ordered, it would follow that the literals `i and `i+1 are connected in Ψ with re-
spect to resvar(T1) ⊆ RΨ(xi) \ var∀(Ψ), and the literals `i and `i+1 are connected
in Ψ with respect to resvar(T2) ⊆ RΨ(xi) \ var∀(Ψ). That is, {xi, xi+1} would be an
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irreflexive resolution-path dependency pair of Ψ with respect to RΨ(xi) \ var∀(Ψ). Since
RΨ(xi) ⊆ RΦ(xi) the pair {xi, xi+1} would also be an irreflexive resolution-path depen-
dency pair of Φ with respect to RΦ(xi) \ var∀(Φ) and (xi, xi+1) ∈ Dres

Φ , in contradiction
with our assumption that Ψ is a Dres-transposition of Φ.

Example 4. Consider the PCNF formula Φ = Q.ϕ, where

Q = ∀u∃e∃v∀x∃y∃z, and
ϕ = (u ∨ y)︸ ︷︷ ︸

C1

∧ (¬y ∨ ¬x ∨ v)︸ ︷︷ ︸
C2

∧ (¬v ∨ x ∨ z)︸ ︷︷ ︸
C3

∧ (¬z ∨ e)︸ ︷︷ ︸
C4

∧ (¬u ∨ ¬e)︸ ︷︷ ︸
C5

.

The sequence s = u, y,¬y, v,¬v, z,¬z, e is a resolution path in Φ via RΦ(u) \ (var∀(Φ) ∪
{e}) = {v, y, z}. In fact, it is the only resolution path via {x, y, z} connecting u and e.
The literals ¬u and ¬e are trivially connected, so {u, e} is a resolution path dependency
pair with respect to {v, y, z} and (u, e) ∈ Dres

Φ . This reflects a “real” dependency of e
on u: changing the relative order of u and e in the prefix of Φ results in a formula Ψ that
is unsatisfiable while Φ is satisfiable. By Condition A of Definition 8, if `1, . . . , `2k is a
resolution path there has to be a sequence C1, . . . , Ck of clauses such that `2i−1, `2i ∈ Ci
for each i ∈ [k]. Let us call such a sequence a witnessing clause sequence. For the
resolution path s we have c = C1, C2, C3, C4 as a unique witnessing clause sequence.
Suppose we were to restrict Definition 8 and require a resolution path to have a witnessing
clause sequence such that every pair of consecutive clauses has a non-tautological resolvent
(as in Definition 4.1 of [120]). The resulting proto-dependency scheme D would not be a
transposition dependency scheme: the clauses C2 and C3 do not have a non-tautological
resolvent, so s would not be a resolution path and (u, e) /∈ DΦ; thus Ψ would be a
D-transposition of Φ but Φ 6≡ Ψ.

Lemma 28. The resolution path dependency scheme is monotone.

Proof. The result follows from the observation that every resolution path in a PCNF
formula Φ via X is a resolution path in Φ via Y if X ⊆ Y ⊆ var(Φ).

Having proved Theorem 8 and Lemma 28, we can now apply Proposition 12 to obtain
the following result.

Theorem 9. The resolution path dependency scheme is a permutation dependency
scheme.

Owing to the following observation, this entails that every dependency scheme less
general than the resolution-path dependency scheme is a permutation dependency scheme
as well.

Proposition 13. Let D1 be a permutation (transposition) dependency scheme and let D2

be proto-dependency scheme such that D1 ⊆ D2. Then D2 is a permutation (transposition)
dependency scheme.
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Proof. Let Φ be a PCNF formula and let Ψ be a D2-permutation (D2-transposition) of Φ.
Since D1

Φ ⊆ D2
Φ by definition of ⊆ (Definition 12), the formula Ψ is also a D1-permutation

(D1-transposition) of Φ. But D1 is a permutation (transposition) dependency scheme, so
Φ ≡ Ψ.

We proceed to showing that the refined standard dependency scheme is a permuta-
tion dependency scheme. This result generalizes an observation to the effect that the
refined standard dependency scheme is a cumulative dependency scheme [102, Remark 3].
Unfortunately, we cannot use Proposition 12 because the refined standard dependency
scheme is not monotone, as illustrated by the following example.
Example 5. Consider the formula

Φ = ∃y1∃y2∀x1∃y3∀x2∃y4.(y1 ∨ y2) ∧ (y2 ∨ y3) ∧ (y3 ∨ x2) ∧ (x1 ∨ x2 ∨ y4).

The formula Φ contains a (y1, x2)-dependency pair only with respect to {y2, y3}. Since
y2 /∈ R�Φ(y1) it follows that (y1, x2) /∈ Drst

Φ . It is straightforward to verify that (y2, x1) /∈
Drst

Φ , so the formula

Ψ = ∃y1∀x1∃y2∃y3∀x2∃y4.(y1 ∨ y2) ∧ (y2 ∨ y3) ∧ (y3 ∨ x2) ∧ (x1 ∨ x2 ∨ y4)

is a Drst-permutation of Φ. As Ψ and Φ have the same matrix, Ψ also contains a
(y1, x2)-dependency pair with respect to {y2, y3}. But {y2, y3} ⊆ R�Ψ(y1), so (y1, x2) ∈
Drst

Ψ . At the same time, RΨ(y1) ⊆ RΦ(y1), so Drst is not monotone.
To prove that Drst is a permutation dependency scheme, we can instead make the

following observation.

Proposition 14. If D is a proto-dependency scheme such that every true PCNF formula
has a D-model and every false formula has a D-countermodel, then D is a permutation
dependency scheme.

Proof. Let D be a proto-dependency scheme and let Φ be a PCNF formula. Suppose Φ is
true and has a D-model f = {fe}e∈var∃(Φ). For each e ∈ var∃(Φ), let f ′e : 2DΦ(e) → {0, 1}
be a function defined as follows. Given an assignment τ : DΦ(e) → {0, 1} we let
f ′e(τ) = fe(τ ∪ σe), where σe : LΦ

e \ DΦ(e) → {0, 1} is an arbitrary truth assignment.
Because f is a D-model, each function fe ∈ f is independent of var∀(Φ) \ DΦ(e) and
the function f ′e does not depend on our choice of σe. Now let Ψ be a D-permutation
of Φ. For each e ∈ var∃(Ψ) = var∃(Φ), let ge : 2LΨ

e → {0, 1} be a model function defined
as ge(τ) = f ′e(τ |DΦ(e)) for τ : LΨ

e → {0, 1}. Because Ψ is a D-permutation of Φ we
have DΦ ⊆ RΨ and in particular DΦ(e) ⊆ LΨ

e for every e ∈ var∃(Ψ). We claim that
g = {ge}e∈var∃(Ψ) is a model of Ψ. Let τ : var∀(Ψ)→ {0, 1} be a truth assignment. Let ϕ
denote the matrix of Φ and Ψ and let e ∈ var∃(Ψ). Recall that the definition of f ′e is
independent of our choice of σe : LΦ

e \DΦ(e) → {0, 1}, so in particular we could have
chosen σe = τ |LΦ

e \DΦ(e). Then

f ′e(τ |DΦ(e)) = fe(τ |DΦ(e) ∪ σe) = fe(τ |LΦ
e

).
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We have ge(τ |LΨ
e

) = f ′e(τ |DΦ(e)) by construction, so ge(τ |LΨ
e

) = fe(τ |LΦ
e

). It follows that
g(τ) = f(τ). Since f is a model we have ϕ[τ ∪ f(τ)] = 1, so ϕ[τ ∪g(τ)] = 1 and g is indeed
a model of Ψ. A similar argument shows that if Φ is false and has a D-countermodel then
every D-permutation of Φ has a countermodel. We conclude that if every true formula
has a D-model and every false formula has a D-countermodel, then every D-permutation
of a PCNF formula Φ has the same truth value as Φ and D is a permutation dependency
scheme.

Using results from Chapter 5, this allows us to establish the following.

Theorem 10. The refined standard dependency scheme is a permutation dependency
scheme.

Proof. By Proposition 10, every false PCNF formula has a Drst-countermodel, and by
Proposition 6 and Lemma 8, every true PCNF formula has a Drst-model. This allows us
to apply Proposition 14 and conclude that Drst is a permutation dependency scheme.

6.2 Minimizing Quantifier Alternations
We define the alternation depth of a PCNF formula Φ, in symbols depth(Φ), as the
number of quantifier blocks minus one, that is

depth(Φ) = max
x∈var(Φ)

{qdepth(x)} − 1.

We will use dependency schemes to define a more general notion of alternation depth.
For this purpose, we interpret dependency relations as directed acyclic graphs in the
following way.

Definition 39 (Dependency DAG). Let Φ be a PCNF formula and let D be a proto-de-
pendency scheme. The dependency DAG of Φ with respect to D, denoted G(Φ, D), is
the directed graph with vertex set var(Φ) and edge set DΦ.

Observe that RΦ is a total order and DΦ ⊆ RΦ, so dependency DAGs are indeed
acyclic, as stated by the following lemma.

Lemma 29. Let D be a proto-dependency scheme and Φ a PCNF formula. The depen-
dency DAG of Φ with respect D is acyclic.

Definition 40 (D-Alternation depth). Let D be a proto-dependency scheme. The
D-alternation depth of a PCNF formula Φ is the length of a longest path in G(Φ, D).

We now show that the alternation depth of a formula is simply its Dtrv-alternation
depth.

Lemma 30. If Φ is a PCNF formula then depth(Φ) is equivalent to the Dtrv-alternation
depth of Φ.
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Proof. Let Φ be a PCNF formula with Dtrv-alternation depth l and depth(Φ) = k. By
definition of the alternation depth, there has to be a sequence x1, . . . , xk+1 of variables such
that for each i ∈ [k] we have xi ∈ var(Φ), q(xi) 6= q(xi+1), and (xi, xi+1) ∈ RΦ. It follows
that (xi, xi+1) ∈ Dtrv

Φ for each i ∈ [k], so x1, . . . , xk+1 is a path in G(Φ, Dtrv) and thus
k ≤ l. On the other hand, let y1, . . . , yl+1 be a path in G(Φ, Dtrv). Then q(yi) 6= q(yi+1)
for each i ∈ [l] and (yi, yi+1) ∈ RΦ. From this we get qdepth(yi) < qdepth(yi+1) for each
i ∈ [l] and thus l ≤ k.

The next result states that the D-alternation depth of a PCNF formula Φ is a lower
bound on the alternation depth of any D-permutation of Φ.

Lemma 31. Let Φ be a PCNF formula and D a proto-dependency scheme. If there is a
path x1, . . . , xk+1 in G(Φ, D), the alternation depth of a D-permutation of Φ is at least k.
If there is a path y1 . . . yk+1 in G(Φ, D) such that q(x1) 6= q(y1), the alternation depth of
a D-permutation of Φ is at least k + 1.

Proof. Let x1, . . . , xk+1 be a path in G(Φ, D) and let Ψ be a D-permutation of Φ. Since D
is a proto-dependency scheme we have DΦ ⊆ Dtrv

Φ , so (xi, xi+1) ∈ Dtrv
Ψ and thus (xi, xi+1)

is an edge of G(Ψ, Dtrv) for each i ∈ [k]. That is, x1, . . . , xk+1 is a path in G(Ψ, Dtrv),
so the alternation depth of Ψ is at least k by Lemma 30. Suppose there exists a path
y1, . . . , yk+1 in G(Φ, D) such that q(x1) 6= q(y1). Then y1, . . . , yk+1 is a path in G(Ψ, Dtrv)
as well. Assume without loss of generality that (y1, x1) ∈ RΨ. Then (y1, x1) ∈ Dtrv

Ψ and
(y1, x1) is an edge of G(Ψ, Dtrv), so y1, x1, . . . , xk+1 is a path of length k+1 in G(Ψ, Dtrv)
and Ψ has alternation depth at least k + 1 by Lemma 30.

We now present an algorithm (Algorithm 4) that matches this lower bound and com-
putes a D-permutation of minimum alternation depth. Starting with an empty quantifier
prefix, Algorithm 4 either removes all existential or all universal source vertices/variables
(vertices without incoming edges) from the dependency DAG, appending them to the
prefix in arbitrary order. If there are both existentially and universally quantified source
vertices/variables, the algorithm picks a quantifier type with a vertex that is the initial
vertex of a longest path. This way, it computes a topological ordering of the dependency
DAG with as few quantifier alternations as possible.

The dependency DAG can be constructed in linear time from the dependency relation.
The body of the while loop is executed at most | var(Φ)| times, and each line in the body
of the while loop can be implemented so as to run in polynomial time. Overall, we get a
polynomial-time algorithm. In fact, the algorithm even runs in linear time.

Lemma 32. Given a PCNF formula Φ and the relation DΦ for some proto-dependency
scheme D, Algorithm 4 runs in time O(n+m), where n = | var(Φ)| and m = |DΦ|.

Proof. Let D be a proto-dependency scheme and Φ be PCNF formula. Consider an
execution of Algorithm 4 on input (Φ, DΦ). We are going to assume that G(Φ, D)
is represented by separate adjacency lists for outgoing and incoming edges (such a
representation can be computed from Φ and DΦ in time O(n+m)). By processing the
vertices of G(Φ, D) in reverse-topological order, we can compute the number of incoming
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Input: A PCNF formula Φ = Q.ϕ and a dependency relation DΦ.
Output: A D-permutation of Φ.

1 G← G(Φ, D);
2 Q′ ← ε;
3 while V (G) 6= ∅ do
4 x← initial vertex of a longest path in G;
5 X ← { v ∈ V (G) : q(v) = q(x) and N−G (v) = ∅ };
6 Q′′ ← Qx1 . . . Qx|X| where Q = q(x) and X = {x1, . . . , x|X|};
7 Q′ ← Q′Q′′;
8 G← G[V (G) \X];
9 end

10 return Q′.ϕ

Algorithm 4: Computing a D-permutation of minimum alternation depth.

edges in(x), as well as the length l(x) of a maximum-length path in G(Φ, D) starting at x,
for each x ∈ var(Φ). This can be done in time O(n+m). We can then compute the sets
X∀ = {x ∈ var∀(Φ) : in(x) = 0 } and X∃ = {x ∈ var∃(Φ) : in(x) = 0 } of existentially
and universally quantified variables without incoming edges in time O(n).

For each vertex x, we also store a flag active(x) ∈ {0, 1} to encode the characteristic
function of V (G) for the remaining (induced) subgraph G of G(Φ, D). To check whether
V (G) 6= ∅, we maintain a counter c that we initially set to n. Initially, active(x) is set to 1
for each x ∈ var(Φ). Finally, we sort the variables in Φ with respect to l(x), in decreasing
order. Because 0 ≤ l(x) ≤ n − 1 for each x ∈ var(Φ), we can do this in linear time by
creating a bin Bl for each l with 0 ≤ l ≤ n − 1, putting each x ∈ var(Φ) in bin Bl(x),
and then emptying the bins in descending order. Let x1, . . . , xn be the corresponding
sequence of variables. We maintain a pointer p to an element in this sequence that we
set to 1 initially. After this initialization phase, the following properties hold:

(a) xp points to the initial vertex of a longest path in G.

(b) X∀ and X∃ are the sets of universally and existentially quantified variables without
incoming edges in G.

(c) The value of c is the number of vertices in G.

(d) The values of active encodes the characteristic function of V (G).

(e) If x ∈ V (G) then l(x) corresponds to the length of a longest path in G starting
from x.

(f) For each x ∈ var(Φ) the value of in(x) is the number of in-neighbors of x in G, that
is, in(x) = |N−G (x)|.
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To maintain these properties, we implement the while loop in the following way. Let
Q = q(xp). We set X := XQ as well as XQ := ∅. We then go through X in an arbitrary
order y1, . . . , y|X| and do the following for each yi. We set active(yi) := 0, P ′ := P ′Qyi,
and decrement the counter c by one. For each y ∈ N+

G (yi) we set in(y) := in(y) − 1.
Whenever in(y) reaches 0 we add y to Xq(y). Finally, if c > 0, we increase p until
active(xp) = 1. This implementation of the loop body maintains Conditions (c), (d),
and (f). Let G and G′ denote the remaining subgraphs before and after an execution
of the loop, respectively. Similarly, let α and α′ denote the values of variable α before
and after. Let ∃ = ∀ and ∀ = ∃. The set X ′

q(xp)
contains the vertices in X

q(xp) plus any
vertex in G all whose incoming edges are contained in X, which is just the set of vertices
of G′ without incoming edges. There cannot be a vertex x in G′ such that x has no
incoming edges and q(x) = q(xp) (since the ones in G are contained in X and removal
of X does not create new ones), so Xq(xp) is indeed the empty set and Condition (b) is
maintained. Moreover, if x ∈ V (G′), then l(x) is still the length of a longest path in G′
starting at x: since G′ contains no additional edges, the length of a longest path starting
from x cannot be bigger than l(x). Let x, y1, . . . , yl(x) be a path in G. By assumption,
x ∈ V (G′) ⊆ V (G), so each yi with i ∈ [l(x)] has an incoming edge in G and therefore
yi /∈ X. This means x, y1, . . . , yl(x) is a path in G′, so l(x) is indeed the length of a
longest path in G′ starting from x, and Condition (e) is preserved. Because l(xi) ≥ l(xj)
for 1 ≤ i < j ≤ n, the vertex xp′ is the initial vertex of a longest path in G′ (provided
that V (G) 6= ∅), so Condition (a) holds as well.

If G is acyclic then G′ – which is a subgraph of G – is also acyclic. Accordingly,
since G(Φ, D) is acyclic by Lemma 29, at any time during the execution the remaining
subgraph of G(Φ, D) is acyclic. Thus the set X computed in the loop body and then
removed from the digraph is always nonempty, so the algorithm must terminate. More
specifically, every vertex v ∈ G(Φ, D) is put into either X∀ or X∃ exactly once, and each
outgoing edge of v is considered once in updating in. The pointer p assumes each value
in {0, . . . , n− 1} at most once. We conclude that the overall runtime is in O(n+m).

The next lemma states that the algorithm is correct.

Lemma 33. Let Φ be a PCNF formula and let D be a proto-dependency scheme. On
input (Φ, DΦ), Algorithm 4 computes a D-permutation of Φ with minimum alternation
depth.

Proof. Let Φ = Q.ϕ. By Lemma 32, Algorithm 4 terminates and outputs aD-permutation
Ψ = Q′.ϕ of Φ. Let r > 0 be the number of times the while loop is executed. For i ∈ [r],
we let Xi be the set of vertices removed from the digraph during the i’th execution of the
loop, and set Vi = ∪ij=1Xj . Let Gi = G(Φ, D)[var(Φ) \ Vi]. Note that Gi is the digraph
remaining after i executions of the loop body.

We first prove that Ψ is a D-permutation of Φ. Let G′i = G(Φ, D)[Vi], let Ei = E(G′i),
let Q′i be the subsequence of Q′ constructed after i executions, and let Ri denote RQ′i . We
prove that Ei ⊆ Ri for i ∈ [r] by induction on i. The set E0 is empty so the claim trivially
holds for i = 0. Let 0 < i ≤ r and suppose the claim holds for every 0 ≤ j < i. Since
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Ri−1 ⊆ Ri we immediately get Ei−1 ⊆ Ri. Suppose there is an edge (v, w) ∈ Ei such that
(v, w) /∈ Ri. At least one of its endpoints must be in Xi since otherwise (v, w) ∈ Ei−1.
If v /∈ Xi and w ∈ Xi then v ∈ Xj for some j < i and (v, w) ∈ Ri, a contradiction. It
cannot be the case that both v ∈ Xi and w ∈ Xi since q(v) = q(w) by choice of Xi,
but G′i, being a subgraph of G(Φ, D), only contains edges between variables associated
with different quantifiers. The only case remaining is v ∈ Xi but w /∈ Xi. Then w ∈ Xj

for some 1 ≤ j < i. By choice of Xj , the variable w does not have any incoming edges
in Gj−1. But v /∈ Vj−1 and so (v, w) ∈ E(Gj−1), a contradiction. We conclude that
Ei ⊆ Ri for each 0 ≤ i ≤ r. In particular, Er = DΦ ⊆ Rr = RΨ, so Ψ is a D-permutation
of Φ.

For i ∈ [r], let li be the length of a longest path in Gi−1. We claim that for each
i ∈ [r], it holds that li = r − i if every variable that is the initial vertex of a longest path
in Gi−1 is existential or every initial vertex of a longest path in Gi−1 is universal, and
li + 1 = r − i otherwise. Consider the case i = r first. Since Xr is the last set removed
by the algorithm, all remaining variables must be of the same type, so we have to show
that lr = r − r = 0. Since Xr = V (Gr−1), for any two variables v, w ∈ V (Gr−1) we have
q(v) = q(w). But Gr−1 is a subgraph of G(Φ, D), which only contains edges between
variables of associated with different quantifiers. So Gr−1 must be edgeless and lr = 0.
Let 1 ≤ i < r and suppose the statement holds for all j such that i < j ≤ r. Assume
first (1) that any two initial vertices of a maximum-length path in Gi−1 are quantified in
the same way, and let x1, . . . , xli+1 be a path in Gi−1. Initial vertices of longest paths
in Gi−1 cannot have incoming edges, which in combination with (1) implies that they
must be contained in Xi. It follows that a maximum-length path in Gi must be strictly
shorter than li. The sequence x2, . . . , xli+1 is a path in Gi, so li+1 = li−1. Suppose there
is a path y2, . . . , yli+1 in Gi such that q(y2) 6= q(x2). That is, q(y2) = q(x1) and there
must be a y1 ∈ V (Gi−1) such that (y1, y2) ∈ E(Gi−1), since otherwise y2 ∈ Xi and the
vertex would not be contained in Gi. But then y1, . . . , yli+1 is a (longest) path in Gi−1
and q(y1) 6= q(x1), in contradiction with (1). So the initial vertices of any two longest
paths in Gi must be associated with the same quantifier and we can apply the induction
hypothesis to conclude that li+1 = r − (i + 1). In combination with li+1 = li − 1 this
yields r − i− 1 = li − 1 and thus li = r − i.

Now suppose (2) there are longest paths x1, . . . , xli+1 and y1, . . . , yli+1 in Gi−1 such
that q(x1) 6= q(y1). Without loss of generality assume that x1 ∈ Xi, so that Xi contains
all variables x ∈ V (Gi−1) without incoming edges and q(x) = q(x1). The sequence
y1, . . . , ylk+1 is still a path in Gi because none of its vertices can be in Xi, on pain of
contradiction. In fact, it is a longest path in Gi and li+1 = li. If Gi would contain a
path z1, . . . , zli+1 with q(z1) 6= q(y1) then this would have been a path Gi−1 such that
q(z1) = q(x1), which in turn implies z1 ∈ Xi, a contradiction. Applying the induction
hypothesis, we get li+1 = r − (i+ 1) and conclude that li + 1 = r − i. This proves the
claim.

The alternation depth of Ψ is r − 1 by construction. Let k be the maximum length
of a path in G(Φ, D). (a) If there are paths x1 . . . xk+1 and y1, . . . , yk+1 in G(Φ, D) such
that q(x1) 6= q(x2). By Lemma 31, the alternation depth of any D-permutation of Φ
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is at least k + 1, and by the above claim l1 + 1 = r − 1. Note that l1 is the length of
a longest path in G0 = G(Φ, D), so l1 = k. We conclude that r − 1 = k + 1 and Ψ is
a D-permutation of Φ with minimum alternation depth. (b) Otherwise, every length k
path in G(Φ, D) starts with a variable associated with the same quantifier. In that case,
the above claim yields l1 = r − 1, i.e. k = r − 1. By Lemma 31, the alternation depth of
any D-permutation of Φ is at least k, so again Ψ is a D-permutation of Φ with minimum
alternation depth.

In combination with a tractable permutation dependency scheme, we can use Al-
gorithm 4 to preprocess PCNF formulas and possibly reduce the alternation depth, as
stated in the following theorem.

Theorem 11. Let D be a tractable permutation dependency scheme. Given a PCNF
formula Φ, a D-permutation of Φ with minimum alternation depth can by computed in
polynomial time.

Proof. The algorithm first invokes a polynomial-time algorithm for computing DΦ and
then runs Algorithm 4 on (Φ, DΦ) in linear time (Lemma 32). By Lemma 33, this yields
a D-permutation of Φ with minimum alternation depth.

6.3 Reordering and Generalized Resolution

Example 1 of Section 5.1 shows that Q(D)-resolution is not always sound for permutation
dependency schemes: as we proved in this chapter, the resolution-path dependency scheme
is a permutation dependency scheme, but the example shows that Q(Dres)-resolution
is unsound. In other words, this shows that the combination of reordering according
to Dres and Q-resolution does not simulate Q(Dres)-resolution.

We now show that the converse holds: Q(D)-resolution simulates reordering with a
permutation dependency scheme plus Q-resolution, and Q(D)-term resolution simulates
reordering with a permutation dependency scheme plus Q-term resolution.

Lemma 34. Let D be a permutation dependency scheme and let Φ = Q.ϕ be a PCNF
formula. Let Ψ be a D-permutation of Φ and let T be a Q-resolution derivation from Ψ.
Then T is a Q(D)-resolution derivation from Φ.

Proof. By induction on the structure of T . If T ≈ 4(C) then C ∈ ϕ since Ψ and Φ
have the same matrix, so T is a Q(D)-resolution derivation from Φ. If T ≈ T1 �` T2
and T1 as well as T2 are Q(D)-resolution derivations from Φ, then T is a Q(D)-resolution
derivation from Φ. Finally, suppose T ≈ T ′‖`. Let C denote the conclusion of T ′ and let
x = var(`). By definition of Q-resolution, we must have (x, y) /∈ Dtrv

Ψ for each existential
variable y ∈ var(C), or equivalently, (x, y) /∈ RΨ for each existential variable y ∈ var(C).
Because Ψ is a D-permutation of Φ, this implies (x, y) /∈ DΦ for each existential variable
y ∈ var(C). Thus T ≈ T ′‖` is a ∀(D)-reduction step, and T is a Q(D)-resolution
derivation from Φ.
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Using a similar argument, one can also prove the following.

Lemma 35. Let D be a permutation dependency scheme and let Φ be a PCNF formula.
Let Ψ be a D-permutation of Φ and let T be a Q-term resolution derivation from Ψ.
Then T is a Q(D)-term resolution derivation from Φ.

When combined, these lemmas lead to the following result.

Proposition 15. Let D be a proto-dependency scheme such that a PCNF formula Φ
has a Q(D)-resolution refutation only if Φ is false, and a Q(D)-term resolution proof
only if Φ is true. Then D is a permutation dependency scheme.

Proof. Let Φ be a PCNF formula and let Ψ be a D-permutation of Φ. If Ψ is false, then
there exists a Q-resolution refutation of Ψ, which by Lemma 34 is a Q(D)-resolution
refutation of Φ. By assumption, this means Φ is false as well. If Ψ is true, then there
is a Q-term resolution proof of Ψ, which by Lemma 35 is a Q(D)-term resolution proof
of Φ. It follows from our assumption that Φ is true as well. We conclude that Ψ is true if
and only if Φ is true, so D is a permutation dependency scheme.

Summary
In this chapter, we studied proto-dependency schemes as a means to reordering the
quantifier prefix of a PCNF formula while preserving its truth value. With this application
in mind, we introduced the notion of a permutation dependency scheme and showed
that in fact, every proto-dependency scheme presented in Chapter 3 is a permutation
dependency scheme. We presented a linear-time algorithm that, given a dependency
relation, finds a compatible reordering with the smallest number of quantifier alternations.
When combined with a tractable permutation dependency scheme, this algorithm yields
a polynomial-time preprocessing routine that may reduce the number of quantifier
alternations of an input PCNF formula. Finally, we showed that every proto-dependency
scheme for which Q(D)-resolution and Q(D)-term resolution are sound is a permutation
dependency scheme.
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CHAPTER 7
Conclusion

In this part, we established a series of new results on dependency schemes for QBF: we
showed that the resolution-path dependency scheme is tractable, proved that the use
of several known dependency schemes in QDPLL solvers is sound, and presented an
application of dependency schemes to the problem of minimizing the number of quantifier
alternations of a PCNF formula. We conclude by sketching the most important challenges
for future research.

The main selling point for dependency schemes is their use in the solver DepQBF.
The implementation of the (refined) standard dependency scheme leads to increased
performance, but it introduces problems of its own. Our results show that the proof
systems used by DepQBF in certificate generation are sound, but verifying the correctness
of the answer produced by a solver is arguably not the main motivation for generating
certificates. In applications such as model checking or planning, QSAT solvers are expected
to return models of true formulas and countermodels of false formulas. Propositional
formulas encoding models or countermodels can be efficiently (in linear time) extracted
from ordinary Q-resolution proofs [8]. Unfortunately, the corresponding algorithm does
not work for Q(D)-resolution proofs – the presence of ∀(D)-reduction simply breaks the
correspondence between (counter)models and proofs.

One way of dealing with this problem is to convert a Q(D)-resolution proof into an
ordinary Q-resolution proof before running the extraction algorithm. For the reflexive
resolution-path dependency scheme this could be done using the rewriting algorithm
presented in Chapter 5. However, our current analysis only yields an exponential
upper bound on this algorithm’s runtime. From a theoretical perspective, we are faced
with the following dilemma: if we show that Q(D)-resolution proofs can be turned
into Q-resolution proofs by means of a polynomial-time algorithm, then the use of
this dependency scheme in DepQBF cannot pay off in terms of substantially shorter
proofs. If proofs in Q(D)-resolution are substantially shorter than Q-resolution proofs,
we spend the time saved in solving on proof rewriting. It is possible that rewriting can
be avoided altogether by developing fast model extraction algorithms that work directly
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on Q(D)-resolution proofs. The recent discovery of algorithms for model extraction from
long-distance Q-resolution shows that fast model extraction is possible for proof systems
even if they cannot be efficiently simulated in Q-resolution [117]. In general, we cannot
have both short proofs and fast model extraction, however [10].

Expansion of universally quantified variables is an operation that is used in QBF
preprocessing [21] as well as in standalone solvers [12, 83, 72]. Dependency schemes (and
related techniques) can be used to prune the set of existential variables that have to
be copied upon expansion. In particular, this is known to be the case for the standard
dependency scheme and a variant of the triangle dependency scheme [21, 20]. Whether
this is also possible for the reflexive resolution-path dependency scheme is currently open.
Recently introduced proof systems that capture the power of expansion [73, 71, 67] may
provide a starting point for generalizing our proof-theoretic argument for soundness of
Q(Drrs)-resolution.

The default input format for QSAT solvers is PCNF. Formulas that are not already
in this format have to be converted before they can be passed to these solvers, a process
that may result in a loss of structural information. While general QBFs are completely
symmetric with respect to truth and falsity, CNF representations are biased towards
detecting falsified clauses [1, 98]. This observation has lead to the development of several
techniques for symmetric reasoning about satisfiability and unsatisfiability [126, 98,
60, 79] that are often subsumed under the term dual propagation [59]. These include
dedicated non-CNF solvers [38, 60, 79] as well as approaches that rely on representations
that combine CNF and DNF encodings [126, 98]. The latter can be implemented in
PCNF solvers by a clever use of the constraint learning mechanisms already present in
most modern solvers [63]. Although formula structure can be partially reconstructed
from PCNF encodings [61], dual propagation works best when the original non-CNF
representation of a formula is available. The recent introduction of a standard encoding
format (QCIR) for general QBFs (in prenex normal form) may lead to a workflow
for QSAT solving where an input formula is transformed into a combined CNF-DNF
representation that is used to seed the constraint database(s) of a PCNF solver. Common
techniques for carrying out this transformation process generate PCNF formulas for
which the standard dependency relation and even (in the case of Tseitin conversion) the
resolution-path dependency relation coincides with the trivial dependency relation. It
looks like combining the use of a non-CNF input format with dependency schemes will
require new ideas.

Related work. The standard dependency scheme originated from techniques for re-
ducing the cost of Shannon expansion. Upon expanding a variable x in a formula Φ,
the formula Φ is replaced by two copies of itself: one where x is assigned 0, and one in
which x is assigned 1. This step can be repeated until every variable has been assigned, or
until the formula contains only one existentially quantified variables, at which point the
instance can be solved by an off-the-shelf SAT solver. To mitigate the increase in formula
size caused by quantifier expansion, one can perform anti-prenexing, or miniscoping,
to narrow the scope of the variable that is to be expanded [5]. For the special case of
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expanding an innermost universal variable x of a PCNF formula, Biere observed that
only existential variables that are suitably connected to x must be copied [12]. This was
generalized to universal variables of arbitrary depth by Bubeck and Kleine Büning [21].
Their definition of dependent existential variables coincides with those identified by the
standard dependency scheme, introduced independently by Samer and Szeider [101, 102].

There is a related line of work on offsetting the negative effects of prenexing [39, 9, 52].
Quantifier shifting can be applied to perform prenexing in a way that reduces the number
of quantifier alternations of the resulting PCNF formula [39], and information on the
nesting of scopes in a non-prenex formula can be used to increase the performance of
PCNF solvers for the prenexed version [52]. Alternatively, the structure of quantifier
scopes can be partially reconstructed from PCNF formulas [9]. For a detailed account of
how the standard dependency scheme generalizes this technique, see [14, 82].

Samer defined a variant of dependency schemes for the Quantified Constraint Satis-
faction Problem (QCSP), based on a notion of semantic independence [100]. Translated
back from QCSP to QSAT, a set Y of existential variables is independent, according
to his definition, from a universal variable x, if there is a model in which the model
function for each y ∈ Y is independent of the assignment to x. If this is the case, the
variables in Y need not be copied upon expanding x. Dependency schemes are mappings
D satisfying the following condition: if Φ is a PCNF formula, Y ⊆ var∃(Φ) is a set of
existential variables, and x ∈ var∀(Φ) is a universal variable, then DΦ(Y, x) ⊆ Y is a
set such that Y \DΦ(Y, x) is independent from x [100, p.518]. Samer proved that the
standard dependency scheme, suitably adapted to this setting, is a dependency scheme
according to this definition, while the triangle dependency scheme is not. He proposed a
variant of the triangle dependency scheme which is a dependency scheme in the above
sense, and used it as the base case in a hierarchy of dependency schemes of increasing
generality. Whether Q(D)-resolution is sound for these dependency schemes is an open
question.

One-sided dependencies as studied by Bubeck amount to a different relaxation of the
triangle dependency scheme where the relevant X-paths may go through the dependent
existential variable [20]. Stated in our terminology, he showed that every true PCNF
formula has a D-model, where D is the proto-dependency scheme that computes one-sided
dependencies.

Resolution-path dependencies, along with quadrangle and strict standard dependencies
(see Section 3.4), were introduced by Van Gelder – essentially, he proved that the
resolution-path dependency scheme is a transposition dependency scheme [120]. He
further made a claim to the effect that ∀(Dres)-reduction is sound (Theorem 4.9). However,
the counterexample to soundness of Q(Dres)-resolution presented in Section 5.1 can be
used to show that this claim does not hold: adding the clause (¬u ∨ ¬y) derived from
(¬x ∨ ¬u ∨ ¬y) by ∀(Dres)-reduction to the formula Φ from Example 1 results in a false
formula.
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Dependency Quantified Boolean Formulas (DQBFs) are a generalization of QBFs in
which every existential variable is annotated with a subset of universal variables [93].
A DQBF is satisfiable if there is a model in which the model function for each existen-
tial variable only depends on the assignment to universal variables in its annotation.
Balabanov, Chiang, and Jiang defined a generalization of Q-resolution to DQBF they
call DQ-resolution [7]. Like Q(D)-resolution, DQ-resolution uses a generalized version of
∀-reduction that can remove a universal variable x from a clause C as long as C does
not contain existential variables depending on x – that is, as long as x does not appear
in the annotation of any existential variable occurring in C.
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Part II

Propositional Model Counting

75





CHAPTER 8
Introduction

The propositional model counting problem (#SAT) asks for the number #F of satisfying
truth assignments of a propositional formula F in conjunctive normal form (CNF). Aside
from being a well-studied problem in theoretical computer science, the close relation of
#SAT to several problems in probabilistic reasoning has prompted research into efficient
algorithms for model counting. For instance, the probability of a formula F being true
under a uniform distribution of truth assignments can be computed as #F/2n, and
reasoning in probabilistic graphical models such as Bayesian networks [92] can be reduced
to a generalization of #SAT known as weighted model counting1 [6, 105].

Model counting is at least as hard as propositional satisfiability (SAT), and there
is strong evidence that the problem is in fact significantly harder. In practice, #SAT
has turned out to be much more difficult to solve than SAT, and the largest instances
whose model count can be feasibly determined are orders of magnitude smaller than
those handled by state-of-the-art SAT solvers [56]. This is the case for both exact model
counters [16, 74, 35, 104, 115] and the (randomized) approximation algorithms on which
research has focused in recent years [124, 55, 53, 81, 26, 41] (though the latter scale much
better).

The empirical hardness of model counting goes hand in hand with findings in com-
plexity theory. #SAT is complete for the class #P introduced by Valiant to study the
complexity of counting problems [119, 118]. Roughly speaking, a counting problem is in
#P if the number of solutions of an instance corresponds to the number of accepting
runs of a nondeterministic Turing machine for the associated decision problem [119].
The counting versions of most well-known NP-complete problems are complete for the
class #P. Surprisingly, there are problems which can be decided in polynomial time
whose counting versions are complete for #P, such as computing the number of perfect

1Weighted model counting is a variant of #SAT where each propositional variable x comes with a
weight w(x) ∈ [0, 1]. Under an assignment τ , a variable x has weight w(x) if τ(x) = 1 and 1− w(x) if
τ(x) = 0. The weight of an assignment is the product of the weights of individual variables, and the task
is to compute the sum over the weights of satisfying assignments.

77



matchings in a bipartite graph [118]. Here, completeness is defined with respect to
counting reductions. A counting reduction from problem A to problem B consists of
two parts: a polynomial-time algorithm that transforms an instance A of A into an
instance B of B, and another polynomial-time algorithm for retrieving the number of
solutions of A from the number of solutions of B.

In general, problems in #P are highly intractable. In a seminal paper [116], Toda
proved that any problem in the polynomial hierarchy can be solved by a polynomial-time
algorithm with access to a #P oracle – in fact, a single query to a #P oracle is sufficient.
For many applications, computing an estimate of the number of satisying assignments of
a formula would be good enough, but it is NP-hard even to approximate the model count
of a formula within a factor of 2n1−ε for any ε > 0 [97, 127]. Furthermore, unless NP
can be solved by probabilistic polynomial-time algorithms with one-sided error (that is,
unless NP = RP), #SAT does not admit a fully polynomial randomized approximation
scheme (FPRAS) [127].2

These results have inspired research into what restrictions make #SAT tractable.
Surprisingly, the problem remains hard for fragments for which SAT is in P or even
trivial, such as Horn, 2CNF, or monotone formulas [97]. Again, approximation offers no
relief, as it is NP-hard to approximate the number of satisfying truth assignments of a
formula with n variables to within a factor 2n1−ε for any ε > 0 for Horn and monotone
2CNF formulas [97, 127].

On the other hand, restrictions on structural parameters have led to a series of
positive results [6, 114, 44, 87, 103, 47, 49, 91, 108]. A structural parameter of a
formula F corresponds to a graph parameter (or invariant) of a graph associated with F ,
a paradigmatic example being the treewidth of the primal graph (the primal graph
contains a vertex for each variable of the input formula, and an edge between any pair of
variables that co-occur in a clause). #SAT admits efficient algorithms with respect to
several structural parameters, with runtime bounds of the form f(k)nc or nf(k), where, k
is the value of the structural parameter, c is a constant, and f is a function independent
of the instance. Bounds of both shapes yield polynomial-time tractability when k is
considered a constant, but algorithms with bounds of the former kind (so-called fixed
parameter tractable algorithms [37, 45]) perform better for large instances with small
parameter values.

Here, we focus on structural parameters defined in terms of graph width measures [69].
Width measures can be characterized through decompositions which organize graphs in a
tree-like structure. In the case of structural parameters, these decompositions correspond
to decompositions of an input formula. Given a decomposition witnessing small width,
one can sometimes efficiently solve #SAT by means of dynamic programming along the
following lines: the algorithm maintains a “table” for each node in the decomposition,
where an entry in the table corresponds to the cardinality of a class of partial assignments;
table entries are computed in a bottom up manner, starting from the leaves of the

2An FPRAS for a counting problem is an algorithm that, for any ε and δ, approximates the solution
count of an instance within a factor of 1− ε with probability 1− δ, and runs in time polynomial in ε, δ,
and the size of the instance.
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decomposition; the model count of the input formula can be computed from the table
associated with the root node. Choosing classes of partial assignments in such a way as
to keep tables small but store enough information to retrieve the model count at the root
is the main challenge in designing such algorithms.

Structural parameters can be partially ordered in the following way. We say that
a parameter p strictly dominates parameter q if there is a function f : R → R so
that p(F ) ≤ f(q(F )) for every formula F , but not vice versa. With respect to this
order, structural parameters based on width measures can be organized in a natural
hierarchy (see Chapter 10). We study the complexity of #SAT with respect to the
modular treewidth of the incidence graph (recall that the incidence graph of a formula
has variables and clauses as its vertices, and contains an edge joining a variable x with a
clause C if x occurs in C) and the symmetric clique-width of the incidence graph. The
main contribution of this part are dynamic programming algorithms running in time nf(k)

for computing the model count of formulas of size n and modular incidence treewidth k or
symmetric incidence clique-width k. This implies polynomial-time tractability of classes
of formulas for which these parameters are bounded by a constant.

The most general structural parameters in this hierarchy for which #SAT was
previously known to be tractable are incidence treewidth and signed incidence clique-width,
both of which admit algorithms with runtime bounds of the form f(k)nc. We prove
that such bounds cannot be obtained with respect to modular incidence treewidth or
symmetric incidence clique-width, subject to a well-established hypothesis in the area of
parameterized complexity [37, 45].

Modular incidence treewidth strictly dominates incidence treewidth and is incompa-
rable with signed incidence clique-width, while symmetric incidence clique-width strictly
dominates both, and our algorithms allow us to efficiently solve #SAT for classes of
formulas for which algorithms exploiting small incidence treewidth or signed incidence
clique-width require exponential time.

These results are obtained through a combination of dynamic programming and the
representation of truth assignments by their projections. By a projection of a truth
assignment τ onto a formula F we mean the subset of clauses of F satisfied by τ [76].
Observe that the projection of a satisfying assignment onto F is F itself, and that the
projection onto F of the union of assignments (that agree on the intersection of their
domains) is just the union of their individual projections onto F . We use these properties
to combine standard dynamic programming techniques [103, 47] with tables storing
information on partial assignments in terms of projections, and show that the size of these
tables is in O(mf(k)) for formulas with m clauses and modular incidence treewidth k or
symmetric clique-width k.

Organization of Part II. In Chapter 9, we review preliminaries and notation. Chap-
ter 10 surveys complexity results for #SAT with respect to structural parameters and
organizes these parameters according to a notion of strict domination. The main contri-
butions of this part are presented in Chapter 11 and Chapter 12, where we prove that
#SAT is polynomial-time tractable for classes of formulas of bounded modular incidence
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treewidth and classes of formulas of bounded symmetric clique-width, respectively. We
conclude and give an overview of related work in Chapter 13.

The main contributions of this part have been published, in preliminary form, as part of
conference proceedings:

• An algorithm for #SAT parameterized by modular incidence treewidth (with a
similar runtime bound as the one presented in Chapter 11) was published in the
proceedings of STACS 2013 [91].

• Tractability of #SAT for classes of formulas of bounded symmetric clique-width
(Chapter 12, Theorem 16), was proved in a paper published in the proceedings of
ISAAC 2013 [108].
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CHAPTER 9
Preliminaries

We write N to denote the set non-negative integers. If n > 0 is a non-negative integer,
we write [n] for the set {1, . . . , n}.

Graphs. A directed graph, or digraph, for short, is a pair G = (V,E), where V is a finite
set and E ⊆ V × V is an irreflexive binary relation. The elements of V and E are called
the vertices and edges of G, respectively. A subdigraph of G is a digraph G′ = (V ′, E′)
such that V ′ ⊆ V and E′ ⊆ E. The subdigraph of G induced by a subset V ′ ⊆ V of
vertices is the digraph G[V ′] = (V ′, E ∩ (V ′ × V ′)). If E is symmetric then G is a graph.
In this case, we may write vw to denote an edge (v, w) ∈ E. If G = (V,E) is a graph and
v ∈ V is a vertex of G, we let N(v) denote the set {w ∈ V : vw ∈ E } of neighbors of v
in G. Let G = (V,E) be a graph. A path (in G) from v to w is a sequence v1, . . . , vk such
that vi ∈ V for each i ∈ [k] and vivi+1 ∈ E for each i ∈ [k − 1]. If there is a path from v
to w for every pair of vertices v, w ∈ V then G is connected. The graph G is bipartite if
V can be split into (disjoint) subsets U and W such that for each edge uw ∈ E, u ∈ U
and w ∈W .

A tree (rooted at r) is a graph that can be constructed using the following rules.
The graph ({r}, ∅) is tree. If T = (V,E) is a tree, v ∈ V , and w /∈ V , then G′ =
(V ∪ {w}, E ∪ {vw}) is a tree. Let T = (V,E) be a tree rooted at r. We call r the root
of T . If vw ∈ E and v occurs on the (unique) path from w to r, then w is a child of v
in T . If v ∈ V does not have a child then v is a leaf. We write L(T ) to denote the set
of leaves of T . We call T a binary tree if every vertex that is not a leaf has exactly to
children. If v ∈ V occurs on the path from w to r in G we say w is below v. The vertices
of a tree are sometimes called nodes.

Let C be a class of graphs and let f be a mapping (invariant under isomorphisms) that
associates each graph G with a non-negative real number. We say C has bounded f if there
is a c such that f(G) ≤ c for every G ∈ C. Otherwise, we say that C has unbounded f .
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Formulas. A literal is a negated or unnegated variable. If x is a variable, we write
x = ¬x and ¬x = x, and let var(x) = var(¬x) = x. If L is a set of literals, we write L for
the set { ` : ` ∈ L }. For a set X of variables we let lit(X) = X ∪X. A clause is a finite
disjunction of literals. We call a clause tautological if it contains the same variable negated
as well as unnegated. A (CNF) formula is a finite conjunction of non-tautological clauses.
Whenever convenient, we treat clauses and terms as sets of literals, and a CNF formula
as a set of sets of literals. If C is clause, we let var(C) be the set of variables occurring
(negated or unnegated) in C. For a CNF formula F we let var(F ) =

⋃
C∈F var(C). The

length of a formula F is
∑
C∈F |C|.

Let F be a formula. The incidence graph of F the bipartite graph I(F ) with vertex
set var(F ) ∪ F and edge set {Cx : C ∈ F and x ∈ var(C) }. Two vertices are twins if
they have the same neighbors in I(F ). The equivalence classes of the twin relation are
called modules. If v and w are twins of I(F ), then either v, w ∈ var(F ) or v, w ∈ F , as
I(F ) does not contain isolated vertices. Accordingly, each module of I(F ) either contains
only variables or only clauses. If x ⊆ var(F ) is a module of I(F ), then x is a variable
module of F . If C ⊆ F is a module of I(F ), then C is a clause module of F . The modular
incidence graph of F is the bipartite graph I∗(F ) whose vertices are the variable and
clause modules of F , and which contains an edge Cx if Cx is an edge in the incidence
graph for C ∈ C and x ∈ x.

For a set X of variables, a truth assignment (or simply assignment) is a mapping
τ : X → {0, 1}. We extend τ to literals by letting τ(¬x) = 1 − τ(x). An assignment
τ satisfies a clause C if there is a literal ` ∈ C such that τ(`) = 1. The assignment
ε : ∅ → {0, 1} is called the empty assignment. If an assignment τ satisfies each clause C of
a formula F , then τ satisfies F . If F is a formula and τ : var(F )→ {0, 1} satisfies F , then
F is satisfiable and τ is a satisfying assignment of F . The satisfiability (SAT) problem is
that of testing whether a given formula has a satisfying assignment. Propositional model
counting (#SAT) is a generalization of SAT that asks for the number #F of satisfying
assignments of a given formula F .

If τ : X → {0, 1} is a truth assignment and Y ⊆ X, then the restriction of τ to Y ,
in symbols τ |Y , is the truth assignment τ ′ : Y → {0, 1} such that τ ′(x) = τ(x) for each
x ∈ Y . If τ : X → {0, 1} and σ : Y → {0, 1} are truth assignments and τ(x) = σ(x) for
each x ∈ X ∩Y , then the union of τ and σ is the truth assignment τ ∪σ : X ∪Y → {0, 1},
where (τ ∪ σ)(x) = τ(x) if x ∈ X, and (τ ∪ σ)(y) = σ(y) otherwise.

Tree decompositions. Let G = (V (G), E(G)) be a finite, undirected graph without
self-loops or multiple edges. A tree decomposition of G is a triple T = (T, χ, r), where
T = (V (T ), E(T )) is a tree rooted at r and χ : V (T )→ 2V (G) is a labeling of the vertices
of T by subsets of V (G) (called bags) such that the following three conditions hold:

1.
⋃
t∈V (T ) χ(t) = V (G),

2. for each edge uv ∈ E(G), there is a node t ∈ V (T ) with {u, v} ⊆ χ(t),

3. for each vertex x ∈ V (G), the set of nodes t with x ∈ χ(t) forms a connected
subtree of T .
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The width of a tree decomposition (T, χ, r) is the size of a largest bag χ(t) minus 1. The
treewidth of G is the minimum width over all possible tree decompositions of G. A tree
decomposition (T, χ, r) is nice if T is a binary tree such that the nodes of T belong to
one of the following four types:

A. a leaf node t is a leaf of T ,

B. an introduce node t has one child t′ and χ(t)\{v} = χ(t′) for some vertex v ∈ V (G),

C. a forget node t has one child t′ and χ(t′) \ {v} = χ(t) for some vertex v ∈ V (G),

D. a join node t has two children t1, t2 and χ(t) = χ(t1) = χ(t2).

Kloks [80] showed that every tree decomposition of a graph G can be converted in linear
time to a nice tree decomposition, such that the size of the largest bag does not increase,
and the corresponding tree has at most 4|V (G)| nodes.

Let F be a formula. We call the treewidth of the modular incidence graph I∗(F ) the
modular incidence treewidth of F . Let T = (T, χ, r) be a tree decomposition of I∗(F ).
For t ∈ V (T ), we write χc(t) and χv(t) to denote the sets of clause modules and variable
modules in χ(t), respectively. We further assume an arbitrary ordering of the variable
modules of I∗(F ), and let χv be the mapping which, for each node t of T , returns a tuple
containing the variable modules in χv(t) ordered accordingly. For each node t of T , we
let Ft denote the formula consisting of the union of clause modules appearing in bags
of nodes below t in T (this includes the bag of t). Similarly, Xt denotes the union of
variable modules appearing in bags of nodes at or below t. We further let Xb

t = ∪χv(t)
and F bt = ∪χc(t) denote the union of variable and clause modules appearing in the bag
of t, respectively.

Decomposition trees. We review decomposition trees following the presentation
in [23]. Let G = (V,E) be a graph. A decomposition tree for G is a pair (T, δ), where T is
a rooted binary tree and δ : L(T )→ V is a bijection. For a subset X ⊆ V let X = V \X.
We associate every edge e ∈ E(T ) with a bipartition Pe of V obtained as follows. If T1 and
T2 are the components obtained by removing e from T , we let Pe = (L(T1), L(T2)). Note
that L(T2) = X for X = L(T1). A function f : 2V → R is symmetric if f(X) = f(X)
for all X ⊆ V . Let f : 2V → R be a symmetric function. The f -width of (T, δ) is the
maximum of f(X) = f(X) taken over the bipartitions Pe = (X,X) for all e ∈ E(T ). The
f -width of G is the minimum of the f -widths of the decomposition trees of G.

Let A(G) stand for the adjacency matrix of G, that is, the V × V matrix A(G) =
(avw)v∈V,w∈V such that avw = 1 if vw ∈ E and avw = 0 otherwise. For X,Y ⊆ V ,
let A(G)[X,Y ] denote the X × Y submatrix (avw)v∈X,w∈Y . The cut-rank function
ρG : 2V → R of G is defined as

ρG(X) = rank(A(G)[X,V \X]),

where rank is the rank function of matrices over Z2. The row and column ranks of any
matrix are equivalent, so this function is symmetric. The rank-width of a decomposition
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tree (T, δ) of G, denoted rankw(T, δ), is the ρG-width of (T, δ), and the rank-width of G,
denoted rankw(G), is the ρG-width of G.

Let X be a proper nonempty subset of V . We define an equivalence relation ≡X
on X as

x ≡X y iff, for every z ∈ V \X, xz ∈ E ⇔ yz ∈ E.

The index of X in G is the cardinality of X/≡X , that is, the number of equivalence
classes of ≡X . We let indexG : 2V → R be the function that maps each proper nonempty
subset X of V to its index in G. We now define the function ιG : 2V → R as

ιG(X) = max(indexG(X), indexG(V \X)).

This function is trivially symmetric. The index of a decomposition tree (T, δ) ofG, denoted
index(T, δ), is the ιG-width of (T, δ). The symmetric clique-width of G, denoted scw(G),
is the ιG-width of G [29].

Symmetric clique-width and rank-width are closely related graph parameters. In fact,
the index of a decomposition tree can be bounded in terms of its rank-width.

Lemma 36. For every graph G and decomposition tree (T, δ) of G, rankw(T, δ) ≤
index(T, δ) ≤ 2rankw(T,δ).

Proof. Let G = (V,E) be a graph and X be a nonempty proper subset of V . For
every pair of vertices x, y ∈ X the rows of A(G)[X,V \ X] with indices x and y are
identical if and only if x ≡X y. So indexG(X) is precisely the number of distinct rows
of A(G)[X,V \ X], which is an upper bound on the rank of A(G)[X,V \ X] over Z2.
Symmetrically, indexG(V \ X) is the number of distinct columns of A(G)[X,V \ X],
which is also an upper bound on the rank. So ρG(X) ≤ ιG(X), which proves the left
inequality. The rank of A(G)[X,V \X] is the cardinality of a basis for the matrix’s row
(column) space. That is, each of its row (column) vectors can be represented as a linear
combination of ρG(X) row (column) vectors. Over Z2, any linear combination can be
obtained using only 0 and 1 as coefficients. Accordingly, there can be at most 2ρ(X)

distinct rows (columns) in A(G)[X,V \X]. So ιG(X) ≤ 2ρG(X), and the right inequality
follows.

Corollary 2. For every graph G, rankw(G) ≤ scw(G) ≤ 2rankw(G).

Runtime bounds for the dynamic programming algorithm presented below are more
naturally stated in terms the index of the underlying decomposition tree than in terms
of its rank-width. However, to the best of our knowledge, there is no polynomial-time
algorithm for computing decomposition trees of minimum index directly – instead, we
will use the following result to compute decomposition trees of minimum rank-width.

Theorem 12 ([40]). Let k ∈ N be a constant and n ≥ 2. For an n-vertex graph G, we
can output a decomposition tree of rank-width at most k or confirm that the rank-width
of G is larger than k in time O(n3).
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CHAPTER 10
Taxonomy of Structural

Parameters

This chapter gives an overview and comparison of structural parameters (more specifically,
structural parameters based on width measures) for #SAT.

Formally, a (structural) parameter of CNF formulas is a function p that maps each
formula to a non-negative real number. If C is a class of CNF formulas and p is a
parameter, we say C has bounded p if there is a constant c such that p(F ) ≤ c for each
F ∈ C; otherwise, if there is no such constant, C is said to have unbounded p.

In comparing parameters, we use the following terminology [103]. For parameters
p and q, we say that p dominates q if there is a function f such that p(F ) ≤ f(q(F ))
for every formula F . We say that p is strictly dominates q if p dominates q but not
the other way around. Two parameters are equivalent if they dominate each other, and
incomparable if neither dominates the other.

10.1 Treewidth
Definition 41. Let F be a CNF formula. The primal graph of F is the graph G = (V,E),
where V = var(F ) and E = {xy : there is a clause C ∈ F such that x, y ∈ var(C) }.

Primal treewidth. The primal treewidth of a formula is the treewidth of its primal
graph. #SAT can be solved in time O(2kkn2) for formulas with n variables and primal
treewidth k [103]. A bound of 2O(k)nO(1) can be obtained for formulas with n variables
and primal graphs of branchwidth k [6]. Branchwidth is a graph parameter essentially
equivalent to treewidth [96].

Incidence treewidth. The incidence treewidth of a formula is the treewidth of its
incidence graph. Recall that the incidence graph I(F ) of a formula F is the bipartite
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graph with vertices var(F ) ∪ F and edges {xC : C ∈ F and x ∈ var(C) }. The models of
a formula F of length l with incidence treewidth k can be counted in time O(4kl) [44]. A
different algorithm achieves a bound of O(2kks(n+m)) for formulas with n variables, m
clauses, maximum clause size s, and incidence treewidth k [103]. Bounds of the form
f(k) lc on the time complexity of #SAT for formulas of incidence treewidth k and length
l, where c is a constant and f is a function independent of the input, can also be obtained
using algorithmic meta-theorems of Courcelle, Makowsky and Rotics [31, 32], but the
function f is at least doubly exponential in k [44].

The following result is well known (see, for instance Gottlob and Pichler [58]).

Proposition 16. Incidence treewidth strictly dominates primal treewidth.

Proof. We first argue that incidence treewidth dominates primal treewidth. To see this,
let F be a CNF formula and consider a tree decomposition T = (T, χ, r) of its primal
graph of width k. For each clause C ∈ F , the set var(C) of variables occurring in C
forms a clique in the primal graph. It follows from the properties of a tree decomposition
that there has to be a node t of T such that var(C) ⊆ χ(t). By adding C to the bag of t,
we obtain a bag that covers every edge incident to C in I(F ). By doing this for each
C ∈ F (copying tree nodes if necessary), we get a tree decomposition of the incidence
graph of F of width at most k + 1.

Let Fn = {x1, . . . , xn} be the CNF formula consisting of a single clause on n variables.
The primal graph of Fn is an n-clique, whereas I(F ) is a tree, so the class C = {Fn : n > 0 }
has unbounded primal treewidth but bounded incidence treewidth. We conclude that
incidence treewidth strictly dominates primal treewidth.

Modular incidence treewidth. Recall that the modular incidence treewidth of a
formula F is the treewidth of the modular incidence graph I∗(F ), that is, the incidence
graph after contraction of modules. In Chapter 11, we will show that #SAT can be
solved in time O(l2k+7) for CNF formula of length l and modular incidence treewidth k
(Theorem 13).

It is not hard to see that modular incidence treewidth strictly dominates incidence
treewidth, as stated in the following proposition.

Proposition 17. Modular incidence treewidth strictly dominates incidence treewidth.

Proof. Let F be a formula. The modular incidence graph I∗(F ) is isomorphic to an
induced subgraph of I(F ), so the treewidth of I∗(F ) is at most the treewidth of I(F ).
That is, modular incidence treewidth dominates incidence treewidth. Now consider the
class C = {Fn : n ≥ 1 }, where the formula Fn consists of n clauses C1, . . . , Cn such that
var(Ci) = {x1, . . . , xn} for each i ∈ [n]. The set {x1, . . . , xn} is a variable module of F
and the set {C1, . . . , Cn} is a clause module of F , so I∗(Fn) consists of a single edge and
has treewidth 1. On the other hand, the incidence graph I(Fn) is a complete bipartite
graph of treewidth n. So C has unbounded incidence treewidth but bounded modular
incidence treewidth. We conclude that modular incidence treewidth strictly dominates
incidence treewidth.
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10.2 Clique-width

Signed incidence clique-width. Clique-width is a graph parameter based on graph
grammars [30]. Directed clique-width is a variant of clique-width for digraphs [33]. The
signed incidence graph is obtained from the incidence graph by orientating its edges so
as to indicate positive or negative occurrences of variables.

Definition 42. Let F be a CNF formula. The signed incidence graph of F is the digraph
G = (V,E), where V = var(F ) ∪ F and

E = { (x,C) ∈ V × V : x ∈ C } ∪ { (C, x) ∈ V × V : ¬x ∈ C }.

The directed clique-width of a digraph is defined as follows.

Definition 43 (Directed clique-width). Let S be a finite set. An S-labeled graph is a
pair (G,λ) where G is a directed graph and λ is a mapping λ : V (G) → S, called an
S-labeling of G. Let G = (G,λ) be an S-labeled graph and let a, b ∈ S with a 6= b. We
define the following two unary operations on labeled graphs:

• We let αa,b(G) = (G′, λ), where G′ is the graph obtained from G by introducing an
edge (v, w) for each pair of vertices v, w ∈ V (G) such that λ(v) = a and λ(w) = b.

• We let ρa→b(G) = (G,λ′), where λ′(v) = b if λ(v) = a and λ′(v) = λ(v) otherwise,
for v ∈ V (G).

For a set U ⊆ V (G) of vertices, we let G[U ] denote the S-labeled graph (G[U ], λ|U ),
where λ|U denotes the restriction of λ to U . The disjoint union G1⊕G2 of two S-labeled
graphs G1 and G2 is defined in the obvious way.

Let G = (G,λ) and G′ = (G′, λ′) be S-labeled graphs. We write G → G′ if
V (G′) = V (G) and one of the following conditions holds:

1. G = G1 ⊕G2,G′ = G1 ⊕ ρa→b(G2) or

2. G = G1 ⊕G2,G′ = G1 ⊕ αa,b(G2),

where G1,G2 are S-labeled graphs and a, b ∈ S with a 6= b. An S-construction[33]
of a labeled graph G is a sequence G0,G1, . . . ,Gn of S-labeled graphs satisfying the
following properties:

1. G0 = (G0, λ0) such that E(G0) = ∅;

2. Gi → Gi+1 for 0 ≤ i < n;

3. Gn = G.

The directed clique-width of a digraph G is the minimum cardinality of a set S such that
there is an S-labeling λ of G and an S-construction of (G,λ).
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The signed incidence clique-width of a formula is the directed clique-width of its signed
incidence graph. Given a CNF formula F of length l and signed incidence clique-width k,
its model count #F can be computed in time f(k) l3 [44].

To prove that signed incidence clique-width strictly dominates incidence treewidth, we
use the following lemma, which is a special case of a result by Courcelle and Olariu [33].

Lemma 37 (Courcelle and Olariu [33]). Signed incidence clique-width dominates inci-
dence treewidth.

We will prove that there is a class of formulas of bounded signed incidence clique-width
but unbounded incidence treewidth in Corollary 3 below. Jointly, these results imply the
following.

Proposition 18. Signed incidence clique-width strictly dominates incidence treewidth.

To prove that modular incidence treewidth and signed incidence clique-width are
incomparable, we first show that there are classes of formulas of bounded signed incidence
clique-width but unbounded modular treewidth. We define the formula ψm for each
m ≥ 1 as follows.
Example 6. Let x1, . . . , xm, y1, . . . , ym be 2m distinct variables. We let ψm consist
of the clauses Ci = {yi, x1, . . . , xm} for 1 ≤ i ≤ m, along with m singleton clauses
{x1}, . . . , {xm}.

Lemma 38. The class {ψm : m ≥ 1 } has bounded signed incidence clique-width but
unbounded modular incidence treewidth.

Proof. Let m ≥ 1. The incidence graph I(ψm) of ψm has no modules containing more
than one vertex, so the modular incidence treewidth and the incidence treewidth of ψm
coincide. Since I(ψm) contains the complete bipartite graph Km,m as a subgraph, its
treewidth is at least m, that is, the modular incidence treewidth of ψm is at least m.

For the second part of the statement, we show that there is an S-construction of
(Im, λ1), where Im denotes the signed incidence graph of ψm, λ1 is an S-labeling of Im
such that λ1(v) = 1 for each v ∈ V (Im), and S = {1, 2, 3, 4}. For i ∈ [m], let Di = {xi}.
Then

ψm = {Ci, Di : 1 ≤ i ≤ m },

V (Im) =
m⋃
i=1
{xi, yi, Ci, Di},

and
E(Im) =

m⋃
i=1
{(xi, Di), (yi, Ci)} ∪ { (xi, Cj) : 1 ≤ i, j ≤ m }.

Let G0 = (V0, E0) denote the digraph where V0 = V (Im) = V and E0 = ∅, and let λ
denote the S-labeling of G0 given by

λ(Di) = 1, λ(xi) = 2, λ(Ci) = 3, λ(yi) = 4,
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for 1 ≤ i ≤ m. The graph G0 = (G0, λ) will be the initial graph in our S-construction.
For 1 ≤ i ≤ m, the graph Gi is simply the graph obtained from Gi−1 by adding an edge
from xi to Di. This can be expressed as

Gi = Gi−1[V \ {xi, Di}]⊕ α2,1(Gi−1[{xi, Di}]). (10.1)

Under the assumption that

Gi−1 = Gi−1[V \ {xi, Di}]⊕Gi−1[{xi, Di}], (10.2)

this implies that Gi−1 → Gi. Condition (10.2) is satisfied initially since G0 does not
contain any edges, and (10.1) ensures that it remains true for 1 ≤ i ≤ m.

For m + 1 ≤ i ≤ 2m, we let Gi be the digraph obtained from Gi−1 by adding an
edge from yi to Ci. That is,

Gi = Gi−1[V \ {yi, Ci}]⊕ α4,3(Gi−1[{yi, Ci}]). (10.3)

Again, this implies that Gi−1 → Gi provided that

Gi−1 = Gi−1[V \ {yi, Ci}]⊕Gi−1[{yi, Ci}]. (10.4)

It follows from the construction of Gm and (10.3) that condition (10.4) is satisfied for
each m+ 1 ≤ i ≤ 2m. We let G2m+1 = (G2m+1, λ) = α2,3(G2m), introducing all edges
(xi, Cj) with 1 ≤ i, j ≤ m. Since G2m+1 = Im and Gi → Gi+1 for 0 ≤ i ≤ 2m, we find
that the sequence G0,G1, . . . ,G2m+1 is indeed an S-construction of (Im, λ).

Corollary 3. The class {ψm : m ≥ 1 } has bounded signed incidence clique-width but
unbounded incidence treewidth.

Proof. By Lemma 38, the class {ψm : m ≥ 1 } has bounded signed incidence clique-width
but unbounded modular treewidth. As modular incidence treewidth dominates incidence
treewidth by Proposition 17, it follows that this class has unbounded incidence treewidth.

Next, we show that there is a class of formulas of bounded modular incidence treewidth
but unbounded signed incidence clique-width.
Example 7. For m ≥ 1, let x1, . . . , xm be distinct variables. The formula ϕm is defined
as the set of clauses Ci,j for 1 ≤ i, j ≤ m and i 6= j, where

Ci,j = ({x1, . . . , xm} \ {xi, xj}) ∪ {¬xi,¬xj}.

Lemma 39. The class {ϕm : m ≥ 1 } has bounded modular incidence treewidth.

Proof. The incidence graph of ϕm corresponds to the complete bipartite graph Kn,m for
n =

(m
2
)
, which has treewidth m. Contracting all modules reduces Kn,m to a single edge,

so the modular incidence treewidth of ϕm is 1.
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Lemma 40 (Fischer, Makowsky, and Ravve [44]). The class {ϕm : m ≥ 1 } has
unbounded signed incidence clique-width.

In combination, Lemma 38, Lemma 39, and Lemma 40 prove the following.

Proposition 19. Modular incidence treewidth and signed incidence clique-width are
incomparable.

Symmetric incidence clique-width. Clique-width can be defined in a similar way
as directed clique-width, with an operation that adds undirected edges instead of directed
edges between vertex classes with distinct labels [30]. As in the case of treewidth, many
graph problems become tractable when restricted to graphs of bounded clique-width [31].
The clique-width analogue of a tree decomposition is called a k-expression. Unfortunately,
it is NP-hard to compute an optimal k-expression for a given graph – in fact, it is not
even known whether for fixed k ≥ 4, there is a polynomial-time algorithm for deciding
whether an input graph has clique-width at most k [43].

The difficulty of computing clique-width directly led to the introduction of rank-width (see
Chapter 9), a graph parameter that is bounded for a graph class C if and only if C has
bounded clique-width, but which can be computed efficiently [89]. There are several
other graph parameters that are equivalent to clique-width, in particular symmetric
clique-width [29], Boolean-width [23], and NLC-width [123]. We found that the dynamic
programming algorithm described in Chapter 12 is most naturally presented in terms
of symmetric clique-width (see Chapter 9), so we focus on this parameter. Defining
the symmetric incidence clique-width of a formula as the symmetric clique-width of its
incidence graph, we show that the model count of a formula F of length l and symmetric
clique-width k can be computed in time f(k) l3 + lO(2k) (Theorem 16), where f is a
function independent of F .

Symmetric incidence clique-width strictly dominates both modular incidence treewidth
and signed incidence clique-width.

Lemma 41. Symmetric incidence clique-width dominates signed incidence clique-width
and modular incidence treewidth.

Proof. A graph of treewidth k has clique-width at most 2k+1 + 1 and clique-width is
invariant under contraction of modules [33]. Moreover, a graph of clique-width k has
symmetric clique-width at most 2k [29]. It follows that symmetric incidence clique-width
dominates modular incidence treewidth.

If G is the graph obtained from a directed graph G′ by ignoring the directions of
edges in G′, then the clique-width of G is at most the directed clique-width of G′ [33]. We
conclude that symmetric incidence clique-width dominates signed incidence clique-width.

In combination with Proposition 19, this yields the following result.

Proposition 20. Symmetric incidence clique-width strictly dominates signed incidence
clique-width and modular incidence treewidth.

90



10.3 Hypertree-width
The most general structural parameters we consider are α-hypertree-width and β-hypertree-
width [58]. These parameters are based on a generalization of treewidth to hyper-
graphs [57].

Definition 44 (Hypergraph). A hypergraph is a pair G = (V, E), where V is a finite set
and E is a family of nonempty subsets of V . Elements of V and E are called vertices and
hyperedges of G, respectively. A hypergraph obtained from G by deleting vertices and
hyperedges is called a subhypergraph of G.

Definition 45 (Hypertree decomposition). Let G = (V, E) be a hypergraph. A hypertree
decomposition of G is a quadruple T = (T, χ, λ, r), where T = (V,E) is a tree, r ∈ V
is the root of T , and χ : V → 2V and λ : V → 2E are labeling functions satisfying the
following conditions:

(I) For every e ∈ E , there is a node t ∈ V such that e ⊆ χ(t).

(II) For every v ∈ V, the set { t ∈ V : v ∈ χ(t) } induces a connected subtree of T .

(III) For every node t ∈ V , χ(t) ⊆
⋃
λ(t).

(IV) For every node t ∈ V , if a vertex v ∈ V occurs in a hyperedge e ∈ λ(t) and v ∈ χ(t′)
for some node t′ below t (with respect to r), then v ∈ χ(t).

We define the width of a hypertree decomposition (T, χ, λ, r), where T = (V,E), as
max{ |λ(t)| : t ∈ V }. The hypertree-width of a hypergraph G, in symbols hw(G), is the
minimum width of a hypertree decomposition of G.

Ignoring the polarities of variable occurrences, we identify a CNF formula with a
hypergraph and define its α-hypertree-width as follows.

Definition 46 (Associated hypergraph). The associated hypergraph of a formula F is
H(F ) = (var(F ), { var(C) : C ∈ F }).

Definition 47 (α-hypertree-width). The α-hypertree-width of a CNF formula F is the
hypertree-width of its associated hypergraph H(F ).

Treewidth and clique-width are hereditary graph parameters. That is, for every
graph G, the treewidth (clique-width) of an induced subgraph of G is at most the
treewidth (clique-width) of G. If F ′ is a formula obtained from a formula F by deleting
variables or clauses of F , then I(F ′) is an induced subgraph of I(F ). It follows that the
incidence treewidth (clique-width) of F ′ is at most the incidence treewidth (clique-width)
of F .

The structural parameter just defined does not have this property. In fact, a
CNF formula F can easily be turned into an α-acyclic formula, that is, a formula
of α-hypertree-width 1, by adding a single clause containing all variables of F . This
observation can be used to show that bounds on the α-hypertree-width do not make
#SAT any easier.
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Proposition 21 (Samer and Szeider [103]). #SAT remains #P-hard when restricted to
α-acyclic formulas.

Proof. Let F be a CNF formula. Consider the formula F ′ = F ∪ {var(F )} obtained
by adding a single clause containing all variables of F . Verify that F ′ is α-acylic: the
quadruple (T, χ, λ, r) with T = ({r}, ∅) such that χ(r) = var(F ) and λ(r) = {var(F )} is
a hypertree-decomposition of F ′. Moreover, the number of satisfying assignments #F
can be computed from #F ′ as follows. If the assignment τ : var(F )→ {0, 1} such that
τ(x) = 0 for each x ∈ var(F ) does not satisfy F (which can be checked in polynomial
time), then #F = #F ′. Otherwise, #F = #F ′ + 1.

A hereditary version of hypertree-width can be defined as follows [58].

Definition 48 (β-hypertree-width). The β-hypertree-width of a hypergraph G is defined
max{ hw(G′ : G′ is a subhypergraph of G }. The β-hypertree-width of a formula F is the
β-hypertree-width of its associated hypergraph H(F ).

Proposition 22. α-hypertree-width strictly dominates β-hypertree-width.

Proof. It is trivial that α-hypertree-width dominates β-hypertree-width. We have already
seen that adding a single large hyperedge containing all vertices turns any hypergraph
into an α-acyclic hypergraph, so the result follows from the fact that there are classes of
hypergraphs of unbounded α-hypertree-width (see, for instance, Grohe and Marx [64],
Example 9).

While not as general as α-hypertree-width, the next two results prove that β-hypertree-
width strictly dominates incidence clique-width.

Lemma 42 (Gottlob and Pichler [58]). β-hypertree-width dominates incidence clique-
width.

Hypergraphs of β-hypertree-width 1 have been studied under the name of β-acyclic hy-
pergraphs in database theory [42]. One can show that even β-acyclic formulas, that is, for-
mulas whose associated hypergraphs are β-acyclic, can have arbitrary large clique-width.

Lemma 43 (Gottlob and Pichler [58]). The class of β-acyclic formulas is of unbounded
incidence clique-width.

Proposition 23. β-hypertree-width strictly dominates incidence clique-width.

One can show that satisfiability of β-acyclic formulas can be decided in polynomial
time [88]. This tractability result was recently generalized to #SAT [19]. However, it
is currently open whether #SAT is polynomial-time tractable for classes of formulas of
bounded β-hypertree-width.
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Figure 10.1: Hasse diagram of structural parameters ordered by strict domination. Regions
indicate complexity of #SAT for classes of formulas where the respective parameters are
bounded by a constant.

Summary

In this chapter, we surveyed structural parameters of CNF formulas based on width
measures for graphs and hypergraphs. Saying that parameter p strictly dominates
parameter q if p is bounded for any class of formulas for which is q is bounded, but not
the other way around, we ordered structural parameters by strict domination. For each
parameter, we further considered the complexity of #SAT for classes of formulas for which
this parameters is bounded by a constant. Together, the results comparing structural
parameters presented in this chapter yield the Hasse diagram shown in Figure 10.1.
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CHAPTER 11
Modular Treewidth

This chapter proves tractability of #SAT for formula classes of bounded modular incidence
treewidth. The modular incidence treewidth of a formula is the treewidth of its incidence
graph after contraction of modules. Recall that a module in a graph is a set S of vertices
such that for any vertex v /∈ S, every vertex in S is a neighbor of v or every vertex in S is
a non-neighbor of v. Contraction of modules, that is, replacing each module by a single
vertex, is an important preprocessing step for a wide range of combinatorial optimization
problems [66]. For #SAT, it allows us to show tractability of classes of formulas for
which dynamic programming algorithms on tree decompositions of the (uncontracted)
incidence graph would require exponential time. More specifically, we prove the following
result (Theorem 13):

#SAT can be solved in time O(l2k+7) on CNF formulas of modular incidence
treewidth k and length l.

The above time bound yields polynomial-time tractability of formulas whose modular
incidence treewidth k is bounded by a constant, but the order of the corresponding
polynomial is a (linear) function in k. The following result on SAT shows that under the
widely believed assumption that FPT6=W[1], this dependence on k cannot be avoided
(Theorem 14).

SAT is W[1]-hard, when parameterized by the modular incidence treewidth
of the input formula.

Theorem 14 can in fact be proven by using the same reduction as the one in the proof of
the result from Ordyniak et al. [88] that states that SAT is W[1]-hard when parameterized
by the β-hypertree-width.

We illustrate the notion of contracting modules with an examples. Let Fm,n be the
formula constructed as follows. Given a set {x1, . . . , xn} of variables, Fm,n that consists
of m distinct clauses, each containing n literals over {x1, . . . , xn}, so that every variable
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occurs in every clause. It is easy to see that Fm,n has exactly 2n −m satisfying truth
assignments. The vertices of the incidence graph of Fm,n (the bipartite graph whose
vertex classes consist of variables and clauses, and a variable is exactly adjacent to those
clauses it occurs in) can be partitioned into two modules. By contracting these modules,
the incidence graph of Fm,n reduces to a single edge, so the modular incidence treewidth
of Fm,n is one. The incidence treewidth of Fm,n, on the other hand, is min(m,n).

11.1 Projections and Modules

A key underlying idea for our algorithm is to classify assignments according to their
projections [76]. For an assignment τ : X → {0, 1}, the projection F (τ) of τ onto a set F
of clauses is just the set of clauses in F satisfied by τ , that is

F (τ) = {C ∈ F : C[τ ] = 1 }.

We write proj(F,X) for the set of projections of assignments τ onto F , that is

proj(F,X) = {F (τ) : τ : X → {0, 1} }.

Projections have the following simple properties, which we will use in proofs later on:

(I) An assignment τ : X → {0, 1} satisfies F if and only if F (τ) = F .

(II) Given two assignments τ : X → {0, 1} and σ : Y → {0, 1} such that τ(x) = σ(x)
for each x ∈ X ∩ Y , the projection of their union is simply the union of their
projections, that is

F (τ ∪ σ) = F (τ) ∪ F (σ).

(III) If τ : X → {0, 1} is an assignment and F, F ′ are sets of clauses, then

(F ∪ F ′)(τ) = F (τ) ∪ F ′(τ).

There is an algorithm for #SAT which runs in time polynomial in the number of
projections and the length of an input formula [76]. Since the number of projections of a
formula can be exponential in its length even if the incidence graph is a path, we cannot
directly use this algorithm for our purposes.

Example 8. To wit, consider the formula F defined as follows. Let n > 1 be a natural
number, let {x1, . . . , xn} be a set of variables, and let Ci = {xi, xi+1} for i ∈ [n− 1]. We
define F as

F = {Ci : 1 ≤ i < n }.

The incidence graph of F is path, but F has at least 2dn/2e projections: setting every
variable xi with an even index i ∈ [n] to 0, we are left with a formula consisting of dn/2e
distinct unit clauses, which has 2dn/2e projections.
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The algorithm presented in Section 11.2 relies on the fact that clause modules have
few projections and that formulas have few projections with respect to variable modules.
This essentially follows from the observation that a truth assignment τ : X → {0, 1} does
not satisfy a unique clause C with var(C) = X. For a set of clauses containing additional
variables, such a clause corresponds to an equivalence class of the following relation.

Definition 49. For a set X of variables, we define the relation ∼X on clauses as

C ∼X C ′ ⇐⇒ C ∩ lit(X) = C ′ ∩ lit(X).

It is straightforward to verify that ∼X is an equivalence relation. We now prove a
simple result about this relation which will allow us to establish a connection between
projections and equivalence classes of ∼X in Lemma 45.

Lemma 44. Let C be a set of clauses and X a set of variables such that X ∩ var(C) =
X ∩ var(C ′) for each pair C,C ′ ∈ C. Let τ : X → {0, 1} be an assignment and that does
not satisfy C ∈ C. Then τ does not satisfy a clause C ′ ∈ C if and only if C ∼X C ′.

Proof. Let τ : X → {0, 1} be an assignment and let C ∈ C be a clause not satisfied
by τ . Suppose C ′ ∈ C is not satisfied by τ . Let ` ∈ C ∩ lit(X) and let x = var(`). By
assumption, var(C)∩X = var(C ′)∩X, so x ∈ var(C ′). Let `′ ∈ C ′ such that var(`′) = x.
We have τ(`) = τ(`′) = 0 because C and C ′ are not satisfied by τ , so `′ = `. It follows
that C∩ lit(X) ⊆ C ′∩ lit(X). A symmetric argument shows that C∩ lit(X) ⊇ C ′∩ lit(X),
so C ∼X C ′. Conversely, if C ∼X C ′ then C ∩ lit(X) = C ′ ∩ lit(X) is not satisfied by τ ,
so C ′ is not satisfied by τ .

Lemma 45. Let C be a set of clauses and X a set of variables such that X ∩ var(C) =
X ∩ var(C ′) for each pair C,C ′ ∈ C. Then

proj(C, X) \ {C} = { C \ S : S ∈ C/∼X }.

Proof. If τ : X → {0, 1} does not satisfy C and S = C \ C(τ) is the set of clauses not
satisfied by τ , then S ∈ C/∼X by Lemma 44. Conversely, if S ∈ C/∼X and C ∈ S, then
an assignment τ : X → {0, 1} such that τ(`) = 0 for each literal ` ∈ C ∩ lit(X) does not
satisfy C, so its projection is C(τ) = C \ S by Lemma 44.

Lemma 46. Let C be a set of clauses and X a set of variables such that X ∩ var(C) =
X∩var(C ′) for each pair C,C ′ ∈ C. There is an algorithm that, given C and X, computes
the set proj(C, X) in time O(l2 + l|X|), where l denotes the length of C.

Proof. By Lemma 45 we have proj(C, X) \ {C} = { C \ S : S ∈ C/∼X }. The algorithm
first computes the set Y = X ∩ var(C). Assuming an order on variables such that the
variables in Y precede the remaining variables, it then creates a dictionary of clauses
of C, each of which is represented as a list of literals, ordered according to the order on
variables. This can be accomplished in time O(l log(l)). The set of equivalence classes
E = C/∼X can then be computed in time O(l|Y |). To compute proj(C, X) \ C, the
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algorithm computes the difference C \ S for each S ∈ E, which can be done in time
O(|E|l) = O(l2). Finally, to determine whether C ∈ proj(C, X), the algorithm determines
whether |E| < 2|Y |. Letting c = |E|+ |Y |, this can be done in time O(c log(c)).

The number of assignments to a variable module with a given projection is easy to
count. We now define a function fFx that does just that.

Definition 50. If x is a variable module of a formula F , we let

Fx = {C ∈ F : x ⊆ var(C) },

and define a function fFx : 2F → N as follows. For S ⊆ F , we let

fFx (S) =


2|x| − |Fx/∼x| if S = Fx,
1 if S ∈ proj(F,x) \ Fx,
0 otherwise.

We omit the formula F in the superscript and simply write fx if F is clear from the
context.

Lemma 47. For each variable module x of a formula F and each set S ⊆ F ,

fx(S) = |{ τ : x→ {0, 1} : F (τ) = S }|.

Proof. If S /∈ proj(F,x) then there is no assignment τ : x→ {0, 1} such that F (τ) = S.
By Lemma 45, S ∈ proj(F,x) \ Fx if and only if Fx \ S ∈ Fx/∼x. If τ, σ : x→ {0, 1} are
assignments such that F (τ) = F (σ) = S and S 6= Fx, then there is a clause C ∈ Fx\S not
satisfied by τ and σ. Then τ(`) = σ(`) = 0 for each ` ∈ C ∩ lit(x) and thus τ(x) = σ(x)
for each x ∈ var(C) ∩ x. Because C ∈ Fx we have x ⊆ var(C) and thus τ = σ. That
is, for each S ∈ proj(F,x) \ Fx, there is a unique assignment τ : x → {0, 1} such that
F (τ) = S. It follows that the remaining 2|x| − |Fx/∼x| assignments satisfy Fx.

11.2 Proof of Tractability
This section presents a dynamic programming algorithm for #SAT that runs on (nice)
tree decompositions of the modular incidence graph. In combination with a standard
algorithm for computing tree decompositions of small width, this algorithm allows us to
prove tractability of #SAT parameterized by modular incidence treewidth.

We begin by describing the quantities (the “records”) computed as intermediate
results by our algorithm.

Definition 51. Let F be a formula and let T = (T, χ, r) be a nice tree decomposition of
its modular incidence graph I∗(F ). Let t ∈ V (T ) be a node and let χv(t) = (x1, . . . ,xk).
If S is a subset of F and S = (S1, . . . , Sk) is a k-tuple of subsets of F , we define
nTt (S,S) = |NTt (S,S)|, where NTt (S,S) is the set of truth assignments τ : Xt → {0, 1}
with the following properties:
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(A) F (τ) = S,

(B) F (τ |xi) = Si for each i ∈ [k], and

(C) Ft \ F bt ⊆ F (τ).

We omit the superscript and simply writeNt(S,S) and nt(S,S) if the tree decomposition T
is clear from the context.

The following lemma establishes necessary conditions for the set Nt(S,S) to be
nonempty.

Lemma 48. Let F be a formula and let T = (T, χ, r) be a nice tree decomposition
of I∗(F ). Let t ∈ V (T ) and let χv(t) = (x1, . . . ,xk). If S is a subset of F and
S = (S1, . . . , Sk) is a k-tuple of subsets of F such that nt(S,S) > 0, then Ft \ F bt ⊆ S
and fxi(Si) > 0 for each i ∈ [k].

Proof. Let S be a subset of F and let S = (S1, . . . , Sk) be a k-tuple of subsets of F such
that nt(S,S) > 0. Let τ ∈ Nt(S,S) and let τi = τ |xi for i ∈ [k]. Then S = F (τ) by (A)
and Ft \ F bt ⊆ F (τ) by (C). Moreover, F (τi) = Si for each i ∈ [k] by (B), so fxi(Si) > 0
for each i ∈ [k] by Lemma 47.

11.2.1 Propagation Lemmas

Let F be a formula and let T = (T, χ, r) be a nice tree decomposition of I∗(F ). To
simplify the statements of results, we consider F and T to be fixed for the remainder of
this subsection. We prove a series of what we call “propagation lemmas” that show how
the values nt(S,S) can be obtained from the values nt′(S′,S′) for children t′ of t. Since T
is a nice tree decomposition, each node t ∈ V (T ) is either a leaf node, an introduce node,
a forget node, or a join node.

Owing to the properties of projections, assignments τ ∪ σ and τ ′ ∪ σ have the same
projections onto a formula F as long as F (τ) = F (τ ′). As a consequence, membership of
an assignment τ ∈ Nt(S,S) is robust under replacing the restriction τ |x with a different
assignment τ ′|x, as long as F (τ ′|x) = F (τ |x). This allows us to represent sets Nt(S,S)
as products of sets of the following form.

Definition 52. Let t ∈ V (T ) and let χv(t) = (x1, . . . ,xk). For a subset S of F and a
k-tuple S = (S1, . . . , Sk) of subsets of F , we define the set A−t (S,S) as

A−t (S,S) = {σ : Xt \Xb
t → {0, 1} : S =

k⋃
i=1

Si ∪ F (σ) }.

For each i ∈ [k], we further let Ait(Si) denote the set

Ait(Si) = { τi : xi → {0, 1} : F (τi) = Si }.
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Finally, we let

At(S,S) =
k∏
i=1

Ait(Si)×A−t (S,S).

We prove that the set At(S,S) is just an alternative representation of the set Nt(S,S).

Lemma 49. Let t ∈ V (T ) and let χv(t) = (x1, . . . ,xk). Let S be a subset of F such
that Ft \ F bt ⊆ S, and let S = (S1, . . . , Sk) be a k-tuple of subsets of F . Moreover, let
τ : Xt → {0, 1} be an assignment, let σ = τ |Xt\Xb

t
, and let τi = τ |xi for each i ∈ [k].

Then
τ ∈ Nt(S,S)⇐⇒ (τ1, . . . , τk, σ) ∈ At(S,S).

Proof. Suppose τ ∈ Nt(S,S). By (B), we have F (τi) = Si and thus τi ∈ Ait(Si) for each
i ∈ [k]. Using (A), we get

S = F (τ) =
k⋃
i=1

F (τi) ∪ F (σ) =
k⋃
i=1

Si ∪ F (σ),

so σ ∈ A−t (S,S) and (τ1, . . . , τk, σ) ∈ At(S,S). For the converse, suppose (τ1, . . . , τk, σ) ∈
At(S,S). Then τi ∈ Ait(Si) and thus F (τi) = Si for each i ∈ [k], so (B) is satisfied.
Moreover, σ ∈ A−t (S,S), so

F (τ) =
k⋃
i=1

F (τi) ∪ F (σ) =
k⋃
i=1

Si ∪ F (σ) = S

and (A) holds. By assumption, Ft \ F bt ⊆ S, so (C) holds as well. We conclude that
τ ∈ Nt(S,S).

Under conditions that are satisfied if Nt(S,S) is nonempty (Lemma 48), this allows
us to relate the sizes of sets A−t (S,S) and Nt(S,S) in the following way.

Lemma 50. Let t ∈ V (T ) such that χv(t) = (x1, . . . ,xk). Let S be a subset of F
such that Ft \ F bt ⊆ S, and let S = (S1, . . . , Sk) be a k-tuple of subsets of F such that
fxi(Si) > 0 for each i ∈ [k]. Then

|A−t (S,S)| = nt(S,S)
k∏
i=1

fxi(Si)
. (11.1)

Proof. It is immediate from Lemma 49 that |At(S,S)| = nt(S,S). In combination with
the definition of At(S,S), this yields

nt(S,S) = |At(S,S)| =
k∏
i=1
|Ait(Si)||A−t (S,S)|.

By Lemma 47,
k∏
i=1
|Ait(Si)| =

k∏
i=1

fxi(Si). By assumption,
k∏
i=1

fxi(Si) > 0 and (11.1)
follows.
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If P is a set and S = (S1, . . . , Sk) is a k-tuple of sets, we write S :P for the (k+1)-tuple
(S1, . . . , Sk, P ) obtained by appending P to S. To prove the propagation lemma for
variable introduce nodes, we first establish the following result.

Lemma 51. Let t ∈ V (T ) be a variable introduce node with child t′ ∈ V (T ), and let
χv(t′) = (x1, . . . ,xk) and χv(t) = (x1, . . . ,xk,x). If S and P are subsets of F and
S = (S1, . . . , Sk) is a k-tuple of subsets of F , then

|A−t (S,S :P )| =
∑

S′:S′∪P=S
|A−t′ (S

′,S)|. (11.2)

Proof. We first show that

A−t (S,S :P ) =
⋃

S′:S′∪P=S
A−t′ (S

′,S). (11.3)

Let σ ∈ A−t (S,S :P ). Then

k⋃
i=1

Si ∪ P ∪ F (σ) = S, (11.4)

or equivalently

(
k⋃
i=1

Si ∪ F (σ)) ∪ (P \ (
k⋃
i=1

Si ∪ F (σ))) = S.

Because the union on the left-hand side is disjoint, this gives
k⋃
i=1

Si ∪ F (σ) = S \ (P \ (
k⋃
i=1

Si ∪ F (σ))).

Let S′ = S \ (P \ (
⋃k
i=1 Si ∪ F (σ))). Then

k⋃
i=1

Si ∪ F (σ) = S′,

so σ ∈ A−t′ (S′,S), and

S′ ∪ P = (S \ (P \ (
k⋃
i=1

Si ∪ F (σ)))) ∪ P = S,

since P ⊆ S by (11.4). For the converse, let σ ∈ A−t′ (S′,S) such that S′ ∪ P = S. Then

P ∪
k⋃
i=1

Si ∪ F (σ) = P ∪ S′ = S,

so σ ∈ A−t (S,S). For each assignment σ : Xt′ \Xb
t′ → {0, 1}, there is a unique set S′ such

that σ ∈ A−t′ (S′,S), so the union on the right-hand side of (11.3) is disjoint and (11.2)
follows.
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For variable introduce and forget nodes, we will assume that the variable module x
introduced or forgotten is the last element in the tuple given by χv. The proofs below
can be easily adapted to cases where x is in a different position.

Lemma 52 (Variable introduce node). Let t, t′ ∈ V (T ) such that t′ is the child of t in T
and such that χv(t′) = (x1, . . . ,xk) and χv(t) = (x1, . . . ,xk,x). If S and P are subsets
of F and S = (S1, . . . , Sk) is a k-tuple of subsets of F , then

nt(S,S :P ) = fx(P )
∑

S′:S′∪P=S
nt′(S′,S). (11.5)

Proof. We distinguish two cases. First, assume that Ft \F bt ⊆ S and that fxi(Si) > 0 for
each i ∈ [k] as well as fx(P ) > 0. Then we can apply Lemma 50 and Lemma 51 to obtain

nt(S,S :P )
k∏
i=1

fxi(Si) fx(P )
= |A−t (S,S :P )| =

∑
S′:S′∪P=S

|A−t′ (S
′,S)|. (11.6)

By assumption, fx(P ) > 0, so it follows from Lemma 47 that P ∈ proj(F,x). Because T is
a tree decomposition of I∗(F ) we have x∩var(Ft \F bt ) = ∅, so an assignment to x cannot
satisfy a clause in Ft \ F bt . Because P is the projection of an assignment to x onto F ,
this implies P ∩ (Ft \ F bt ) = ∅. Combining this with the assumption that Ft \ F bt ⊆ S, we
conclude that Ft \ F bt = Ft′ \ F bt′ ⊆ S′ for any set S′ such that S = S′ ∪ P . This allows
us to use Lemma 50 again and write the sum in the rightmost expression of (11.6) as∑

S′:S′∪P=S
|A−t′ (S

′,S)| =
∑

S′:S′∪P=S

nt′(S′,S)
k∏
i=1

fxi(Si)

= 1
k∏
i=1

fxi(Si)

∑
S′:S′∪P=S

nt′(S′,S).

In combination with (11.6), we get

nt(S,S :P )
k∏
i=1

fxi(Si) fx(P )
= 1

k∏
i=1

fxi(Si)

∑
S′:S′∪P=S

nt′(S′,S).

Multiplying with
k∏
i=1

fxi(Si), we obtain (11.5).

Suppose the assumption for the first case does not hold. If Ft \ F bt * S then
nt(S,S :P ) = 0 by Lemma 48. Since Ft′ \ F bt′ = Ft \ F bt , we also have nt′(S′,S) = 0 for
every S′ ⊆ S, so both sides of (11.5) evaluate to 0 in this case. If fx(P ) = 0 then the
right-hand side of (11.5) is 0 and nt(S,S :P ) = 0 by Lemma 48, so again both sides
of (11.5) evaluate to 0. Finally, suppose there is an i ∈ [k] such that fxi(Si) = 0. It again
follows from Lemma 48 that nt(S,S :P ) = 0 and nt′(S′,S) = 0 for any S′ ⊆ F , so (11.5)
holds.
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Lemma 53 (Variable forget node). Let t, t′ ∈ V (T ) such that t′ is the child of t in T
and such that χv(t′) = (x1, . . . ,xk,x) and χv(t) = (x1, . . . ,xk). If S is a subset of F
and S = (S1, . . . , Sk) is a tuple of subsets of F , then

nt(S,S) =
∑
P⊆F

nt′(S,S :P ). (11.7)

Proof. We prove that Nt(S,S) = U , where the set U is defined as

U =
⋃
P⊆F

nt′(S,S :P ).

Let τ ∈ Nt(S,S) and let P = F (τ |x). Since Xt = Xt′ and Ft \ F bt = Ft′ \ F bt′ , it follows
from our choice of τ and P that τ ∈ nt′(S,S :P ). In particular, τ ∈ U . The converse is
immediate.

Lemma 54 (Clause introduce node). Let t, t′ ∈ V (T ) be nodes such that t′ is the child
of t in T and such that χc(t) = χc(t′) ∪ {C} for some clause module C of F . Then

nt(S,S) = nt′(S,S). (11.8)

Proof. Since χv(t) = χv(t′), Xt = Xt′ , and

Ft \ F bt = (Ft′ ∪ C) \ (F bt′ ∪ C) = Ft′ \ F bt′ ,

the conditions for membership in Nt(S,S) and Nt′(S,S) coincide.

Lemma 55 (Clause forget node). Let t, t′ ∈ V (T ) be nodes such that t′ is the child of t
in T and such that χc(t) = χc(t′) \ {C} for some clause module C of F . Further, let
χv(t) = χv(t′) = (x1, . . . ,xk). Let S be a subset of F and let S be a k-tuple of subsets
of F . Then

nt(S,S) =
{
nt′(S,S) if C ⊆ S,
0 otherwise.

(11.9)

Proof. Since C ⊆ Ft \F bt , it follows from Lemma 48 that nt(S,S) = 0 if C * S. Otherwise,
if C ⊆ S then Nt′(S,S) ⊆ Nt(S,S), since any assignment τ : Xt → {0, 1} such that
Ft′ \ F bt′ ⊆ F (τ) and S = F (τ) satisfies Ft \ F bt = (Ft′ \ F bt′) ∪ C ⊆ F (τ); the inclusion
Nt(S,S) ⊆ Nt′(S,S) is trivial, so Nt(S,S) = Nt′(S,S) in this case.

To simplify the proof of the propagation lemma for join nodes, we first establish the
following result.

Lemma 56. Let t, t′, t′′ ∈ V (T ) such that t′ and t′′ are the children of t in T , and let
χv(t) = χv(t′) = χv(t′′) = (x1, . . . ,xk). If S is a subset of F and S = (S1, . . . , Sk) is a
k-tuple of subsets of F , then

|A−t (S,S)| =
∑
S′,S′′:

S=S′∪S′′

|A−t′ (S
′,S)||A−t′′(S

′′,S)|. (11.10)
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Proof. We first show that

A−t (S,S) =
⋃

S′,S′′:
S=S′∪S′′

{σ′ ∪ σ′′ : σ′ ∈ A−t′ (S
′,S), σ′′ ∈ A−t′′(S

′′,S) }. (11.11)

Let σ ∈ A−t (S,S), and let σ′ and σ′′ denote the restrictions of σ to Xt′ and Xt′′ ,
respectively. Defining S′ =

⋃k
i=1 Si ∪ F (σ′) and S′′ =

⋃k
i=1 Si ∪ F (σ′′), we immediately

get σ′ ∈ A−t′ (S′,S) and σ′′ ∈ A−t′′(S′′,S). Moreover,

S′ ∪ S′′ =
k⋃
i=1

Si ∪ F (σ′) ∪ F (σ′′) =
k⋃
i=1

Si ∪ F (σ′ ∪ σ′′) =
k⋃
i=1

Si ∪ F (σ) = S,

where the last equality follows from σ ∈ A−t (S,S). This proves that the left-to-right
inclusion of (11.11). For the right-to-left inclusion, let σ′ ∈ A−t′ (S′,S) and σ′′ ∈ A−t′′(S′′,S)
such that S = S′ ∪ S′′. Then

k⋃
i=1

Si ∪ F (σ′ ∪ σ′′) = (
k⋃
i=1

Si ∪ F (σ′)) ∪ (
k⋃
i=1

Si ∪ F (σ′′)) = S′ ∪ S′′ = S,

that is, σ′ ∪ σ′′ ∈ A−t (S,S). We conclude that (11.11) holds. For assignments σ′ :
Xt′ \Xb

t′ → {0, 1} and σ′′ : Xt′′ \Xb
t′ → {0, 1}, the sets S′ and S′′ such that σ′ ∈ At′(S′,S)

and σ′′ ∈ At′(S′′,S) are unique. Accordingly, the union on the right hand side of (11.11)
is disjoint, and (11.10) follows.

Lemma 57. Let t, t′, t′′ ∈ V (T ) such that t′ and t′′ are the children of t in T , and let
χv(t) = χv(t′) = χv(t′′) = (x1, . . . ,xk). Let S be a subset of F and let S = (S1, . . . , Sk)
be a k-tuple of subsets of F such that Ft \ F bt ⊆ S and fxi(Si) > 0 for each i ∈ [k]. Then

nt(S,S) = 1
k∏
i=1

fxi(Si)

∑
S′,S′′:

S=S′∪S′′

nt′(S′,S) nt′′(S′′,S). (11.12)

Proof. From Lemma 50 and Lemma 56, we get

nt(S,S)
k∏
i=1

fxi(Si)
= |A−t (S,S)| =

∑
S′,S′′:

S=S′∪S′′

|A−t′ (S
′,S)||A−t′′(S

′′,S)|. (11.13)

We argue that the sum on the right-hand side of (11.13) can be restricted to pairs
S′, S′′ of sets such that Ft′ \ F bt′ ⊆ S′ and Ft′′ \ F bt′′ ⊆ S′′. Suppose both A−t′ (S′,S) and
A−t′′(S′′,S) are nonempty and S′ ∪ S′′ = S. Let σ′ ∈ A−t′ (S′,S) and let σ′′ ∈ A−t′′(S′′,S).
Then S′ =

⋃k
i=1 Si ∪ F (σ′), S′′ =

⋃k
i=1 Si ∪ F (σ′′), and S =

⋃k
i=1 Si ∪ F (σ′) ∪ F (σ′′). By

assumption, Ft \ F bt ⊆ S, so

Ft \ F bt = (Ft′ \ F bt′) ∪ (Ft′′ \ F bt′′) ⊆
k⋃
i=1

Si ∪ F (σ′) ∪ F (σ′′). (11.14)
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Because T is a tree decomposition of I∗(F ) we have (Xt′ \ Xb
t′) ∩ var(Ft′′ \ F bt′′) = ∅

and symmetrically, (Xt′′ \ Xb
t′′) ∩ var(Ft′ \ F bt′) = ∅. Thus, σ′ cannot satisfy a clause

in Ft′′ \ F bt′′ and σ′′ cannot satisfy a clause in Ft′ \ F bt′ , so (Ft′′ \ F bt′′) ∩ F (σ′) = ∅
and (Ft′ \ F bt′) ∩ F (σ′′) = ∅. In combination with (11.14), this implies Ft′ \ F bt′ ⊆⋃k
i=1 Si ∪ F (σ′) = S′ and Ft′′ \ F bt′′ ⊆

⋃k
i=1 Si ∪ F (σ′′) = S′′ as claimed. We can now use

Lemma 50 to write the right-hand side of (11.13) equivalently as∑
S′,S′′:

S=S′∪S′′

|A−t′ (S
′,S)||A−t′′(S

′′,S)| =
∑
S′,S′′:

S=S′∪S′′

nt′(S′,S)
k∏
i=1

fxi(Si)

nt′′(S′′,S)
k∏
i=1

fxi(Si)

= 1

(
k∏
i=1

fxi(Si))2

∑
S′,S′′:

S=S′∪S′′

nt′(S′,S) nt′′(S′′,S).

In combination with (11.13), we get

nt(S,S)
k∏
i=1

fxi(Si)
= 1

(
k∏
i=1

fxi(Si))2

∑
S′,S′′:

S=S′∪S′′

nt′(S′,S) nt′′(S′′,S).

Multiplying both sides with
k∏
i=1

fxi(Si), we obtain (11.12).

Lemma 58 (Leaf node). Let t ∈ V (T ) be a leaf node and with χv(t) = (x1, . . . ,xk).
If S is a subset of F and S = (S1, . . . , Sk) is a k-tuple of subsets of F , then

nt(S,S) =


0 if S 6=

⋃k
i=1 Si,

k∏
i=1

fxi(Si) otherwise.
(11.15)

Proof. Let S be a subset of F and let S = (S1, . . . , Sk) be a k-tuple of subsets of F .
Suppose Nt(S,S) is nonempty and let τ ∈ Nt(S,S). Let τi = τ |xi for each i ∈ [k]. We
have Si = F (τi) for each i ∈ [k] by (B), and S = F (τ) by (A), so

S = F (τ) =
k⋃
i=1

F (τi) =
k⋃
i=1

Si.

Now suppose S =
⋃k
i=1 Si. Since t is a leaf node we have Ft \ F bt = ∅ ⊆ S. If there is

an i ∈ [k] such that fxi(Si) = 0 then nt(S,S) = 0 by Lemma 48 and Πk
i=1fxi(Si) = 0.

Otherwise, Lemma 50 yields

|A−t (S,S)| = nt(S,S)
k∏
i=1

fxi(Si)
.

Since Xt \Xb
t = ∅, the empty assignment ε is the only assignment to Xt \Xb

t . We have
F (ε) = ∅ and S =

⋃k
i=1 Si by assumption, so ε ∈ A−t (S,S) and thus |A−t (S,S)| = 1.
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If t ∈ V (T ) is a leaf node and χv(t) = ∅, the empty assignment ε is contained in
Nt(∅, ()). The condition on S in (11.15) trivializes to S = ∅, and the empty product
correctly computes the cardinality of Nt(∅, ()) as 1.

Lemma 59 (Root node). Let χv(r) = (x1, . . . ,xk). We have

#F =
∑

S∈Fk

nr(F,S). (11.16)

Proof. We prove that the set of satisfying assignments of F is

U =
⋃

S∈Fk

Nr(F,S).

If τ ∈ Nr(F,S) then F (τ) = F and Xr = var(F ), so τ is a satisfying assignment of F .
For the converse, let τ : var(F )→ {0, 1} be a satisfying assignment of F , let Si = F (τ |xi)
for i ∈ [k], and let S = (S1, . . . , Sk). We have F (τ) = F and Fr \F br ⊆ F , so τ ∈ Nr(F,S).
The sets Nr(F,S) and Nr(F,S′) are disjoint for distinct S and S′, so

|U | =
∑

S∈Fk

nr(F,S).

11.2.2 The Algorithm

We now describe our dynamic programming algorithm MTW-ModelCount for com-
puting the number #F of satisfying assignments of an input formula F . MTW-Model-
Count takes as input a formula F and a tree decomposition T = (T, χ, r) of its modular
incidence graph I∗(F ).

Data structures. We assume the algorithm has access to a dictionary Mt for each
t ∈ V (T ). If χv(t) = (x1, . . . ,xk), Mt is addressed by pairs (S,S), where S is a subset
of F and S is a k-tuple of subsets of F . The value of Mt[S,S] is a non-negative integer.
The dictionary Mt implements three operations.

• One can create a new (zero-valued) entry Mt[S,S]. If the entry already exists, this
operation has no effect.

• One can search for an entry Mt[S,S] and retrieve its value. If the entry does not
exist, this operation returns 0.

• One can set the value of an entryMt[S,S]. If the entry does not exist, this operation
has no effect.

We further assume that for each variable module x of F , there is a dictionary representing
the function fx which lets the algorithm search for and retrieve the value fx(P ) for a
given projection P ∈ proj(F,x).
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Initialization. For each variable module x of F , the algorithm precomputes the set
proj(F,x) and the values fx(P ) for each projection P ∈ proj(F,x), and creates the
dictionary representing fx.

For each node t ∈ V (T ), it then initializes the dictionary Mt as follows. Let χv(t) =
(x1, . . . ,xd), and let χc(t) = {C1, . . . , Ce}. The algorithm computes the set proj(Cj , Xt)
for each i ∈ [e]. It then goes through all (d + e)-tuples (S1, . . . , Sd, S

′
1, . . . , S

′
e) with

Si ∈ proj(F,xi) for each i ∈ [d] and S′j ∈ proj(Cj , Xt) for each j ∈ [e], and creates the
entry Mt[S,S], where S = (S1, . . . , Sd), and

S = (Ft \ F bt ) ∪
e⋃
i=1

S′i ∪
d⋃
i=1

Si.

Processing phase. After initialization, the algorithm processes nodes of T in a
bottom-up manner, starting from the leaves. It finds a node t ∈ V (T ) whose chil-
dren have already been processed, and then processes t based on its type:

1. Let t be a leaf node with χv(t) = (x1, . . . ,xk). The algorithm goes through all
k-tuples S = (S1, . . . , Sk) such that Si ∈ proj(F,xi) for i ∈ [k], setting

Mt[
k⋃
i=1

Si,S] :=
k∏
i=1

fx(Si).

2. Let t be a variable introduce node with child t′, and let χv(t) = χv(t′) ∪ {x}. For
each projection P ∈ proj(F,x) and each entry Mt′ [S′,S], the algorithm

i. computes the set S := S′ ∪ P
ii. and sets

Mt[S,S :P )] := Mt[S,S :P ] + fx(P )Mt′ [S′,S].

3. Let t be a variable forget node with child t′. For each entry Mt′ [S,S :P ], the
algorithm sets

Mt[S,S] := Mt[S,S] +Mt′ [S,S :P ].

4. Let t be a clause introduce node with child t′. For each entryMt′ [S,S], the algorithm
sets Mt[S,S] := M ′t [S,S].

5. Let t be a clause forget node with child t′, and let χc(t) = χc(t′) \ {C} for a clause
module C of F . For each entry Mt′ [S,S] such that C ⊆ S, the algorithm sets
Mt[S,S] := Mt′ [S,S].

6. Let t be a join node with children t′ and t′′, and let χv(t) = (x1, . . . ,xk). The
algorithm goes through each pair Mt′ [S′,S], Mt′′ [S′′,S] of entries, where S =
(S1, . . . , Sk), and executes the following steps:

i. It computes the union S := S′ ∪ S′′
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ii. as well as the product p :=
k∏
i=1

fxi(Si) and quotient q := Mt′ [S′,S]
p ,

iii. and sets
Mt[S,S] := Mt[S,S] + qMt′′ [S′′,S].

Output. After all nodes have been processed, the algorithm computes and outputs∑
SMr[F,S].

11.2.3 Correctness

In this subsection, we will show that MTW-ModelCount correctly computes the
number of satisfying assignments. We begin by arguing that the algorithm creates an
entry Mt[S,S] in its initialization phase whenever nt(S,S) > 0. To this end, we first
establish the following result.

Lemma 60. Let F be a formula and let T = (T, χ, r) be a tree decomposition of I∗(F ).
Let t ∈ V (T ) with χv(t) = (x1, . . . ,xd) and χc(t) = {C1, . . . , Ce}. If S is a subset of F
and S = (S1, . . . , Sd) is a d-tuple of subsets of F such that nt(S,S) > 0, then there is a
projection S′i ∈ proj(Ci, Xt) for each i ∈ [e] such that

S = (Ft \ F bt ) ∪
e⋃
i=1

S′i ∪
d⋃
i=1

Si.

Proof. Let S be a subset of F and let S = (S1, . . . , Sd) be a d-tuple of subsets of F such
that nt(S,S) > 0. Let τ ∈ Nt(S,S). We can write F (τ) as

F (τ) = (F \ Ft)(τ) ∪ (Ft \ F bt )(τ) ∪ F bt (τ). (11.17)

The projection (F \ Ft)(τ) can be decomposed further into

(F \ Ft)(τ) = (F \ Ft)(τ |Xb
t
) ∪ (F \ Ft)(τ |Xt\Xb

t
).

Because T is a tree decomposition of I∗(F ), no variable from Xt \Xb
t occurs in F \ Ft,

so this simplifies to

(F \ Ft)(τ) = (F \ Ft)(τ |Xb
t
).

Inserting into (11.17), we get

F (τ) = (F \ Ft)(τ |Xb
t
) ∪ (Ft \ F bt )(τ) ∪ F bt (τ).

By (C), τ must satisfy (Ft \ F bt ), so we obtain

F (τ) = (F \ Ft)(τ |Xb
t
) ∪ (Ft \ F bt ) ∪ F bt (τ). (11.18)
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We can write F (τ) redundantly as

F (τ) = F (τ) ∪ F (τ |Xb
t
).

Inserting the right hand side of (11.18) for F (τ), we get

F (τ) = (F \ Ft)(τ |Xb
t
) ∪ (Ft \ F bt ) ∪ F bt (τ) ∪ F (τ |Xb

t
)

= (Ft \ F bt ) ∪ F bt (τ) ∪ F (τ |Xb
t
)

= (Ft \ F bt ) ∪
e⋃
i=1
Ci(τ) ∪

d⋃
i=1

F (τ |xi)

= (Ft \ F bt ) ∪
e⋃
i=1
Ci(τ) ∪

d⋃
i=1

Si.

Choosing S′i = Ci(τ) for i ∈ [e], the lemma follows.

Lemma 61. Let F be a formula and let T = (T, χ, r) be a tree decomposition of
I∗(F ). Let t ∈ V (T ) such that χv(t) = (x1, . . . ,xk), let S be a subset of F , and let
S = (S1, . . . , Sk) be a k-tuple of subsets of F . If nt(S,S) > 0 then MTW-ModelCount
creates an entry Mt[S,S] during its initialization phase given F and T as input.

Proof. Immediate from Lemma 60 and the definition of MTW-ModelCount.

Lemma 62. Let F be a formula and let T = (T, χ, r) be a tree decomposition of
I∗(F ), and let t ∈ V (T ). If MTW-ModelCount is executed on input F and T , then
Mt[S,S] = nt(S,S) for each subset S of F and each tuple S of subsets of F after the
algorithm is done processing t.

Proof. MTW-ModelCount starts processing a node t only if its children have already
been processed. To prove the lemma, we assume that it holds for the children of t and
show that it holds for t as well under this assumption. Keep in mind that Mt[S,S] = 0 if
the dictionary Mt has no entry for (S,S), and that entries are set to 0 initially.

1. Let t be a leaf node with χv(t) = (x1, . . . ,xk), let S be a subset of F , and let
S = (S1, . . . , Sk) be a k-tuple of subsets of F . If Si ∈ proj(F,xi) for each i ∈ [k]
and S =

⋃k
i=1 Si, then the entry Mt[S,S] is created during the initialization phase,

and

Mt[S,S] =
k∏
i=1

fx(Si) (by definition of the algorithm)

= nt(S,S) (by Lemma 58).

Otherwise, if Si /∈ proj(F,xi) for an i ∈ [k] then nt(S,S) = 0 by Lemma 48, and if
S 6=

⋃k
i=1 Si then nt(S,S) = 0 by Lemma 58. Moreover, the entry Mt[S,S] either

does not exist and in any case is not updated, so Mt[S,S] = 0.
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2. Let t be a variable introduce node with child t′, and let χv(t′) = (x1, . . . ,xk) as well
as χv(t) = (x1, . . . ,xk,x). Let S and P be subsets of F , and let S = (S1, . . . , Sk)
be a k-tuple of subsets of F . By assumption, the lemma holds for t′, so Lemma 52
yields

nt(S,S :P ) = fx(P )
∑

S′:S′∪P=S
Mt′ [S′,S]. (11.19)

We argue that the right-hand side of (11.19) is equal to Mt[S,S :P ] after the algo-
rithm is done processing t. If P ∈ proj(F,x) and there exists an entryMt′ [S′,S] > 0
such that S = S′ ∪ P , then nt(S,S :P ) > 0 by (11.19), so the entry Mt[S,S :P ]
must have been created during the initialization phase by Lemma 61. For a given
set S′, there is a unique set S such that S = S′ ∪ P , so the value of Mt[S,S :P ]
after processing matches the right-hand side of (11.19). If P /∈ proj(F,x) or there is
no entry Mt′ [S′,S] > 0 such that S = S′ ∪ P then nt(S,S :P ) = 0 by (11.19). The
algorithm does not update Mt[S,S], so Mt[S,S] = 0 holds after processing.

3. Let t be a variable forget node with child t′ with χv(t) = (x1, . . . ,xk) and χv(t′) =
(x1, . . . ,xk,x). Let S be a subset of F and let S = (S1, . . . , Sk) is a k-tuple of
subsets of F . By Lemma 53 and the assumption that the lemma holds for t′,

nt(S,S) =
∑
P⊆F

Mt′ [S,S :P ]. (11.20)

Accordingly, if there is an entry Mt′ [S,S :P ] > 0 then nt(S,S) > 0 and an entry
for (S,S) in Mt must have been created during initialization by Lemma 61. After
processing t, the value of this entry matches the right-hand side of (11.20). If there
is no non-zero entry Mt′ [S,S :P ] then the entry Mt[S,S] is not updated by the
algorithm if it exists at all, so Mt[S,S] = 0. By (11.20) we have nt(S,S) = 0, so
Mt[S,S] = nt(S,S) after processing.

4. Let t be a clause introduce node with child t′ and χv(t) = (x1, . . . ,xk). Let S be a
subset of F and let S = (S1, . . . , Sk) be a k-tuple of subsets of F . By assumption,
Mt′ [S,S] = nt′(S,S), and nt(S,S) = nt′(S,S) by Lemma 54. Thus if Mt′ [S,S] > 0
then nt(S,S) > 0, so the entryMt[S,S] must have been created during initialization
by Lemma 61, and it is updated correctly asMt[S,S] = Mt′ [S,S]. Otherwise, either
there is no entry for (S,S) in Mt or it satisfies Mt[S,S] = 0 = Mt′ [S,S] after
updating.

5. Let t be a clause forget node with child t′, and let χv(t) = (x1, . . . ,xk) as well
as χc(t) = χc(t′) \ {C}. Let S be a subset of F and let S = (S1, . . . , Sk) be a
k-tuple of subsets of F . By assumption, Mt′ [S,S] = nt′(S,S). By Lemma 55,
nt(S,S) = nt′(S,S) if C ⊆ S, and nt(S,S) = 0 otherwise. If Mt′ [S,S] > 0 and
C ⊆ S, then nt[S,S] > 0. Thus the entry Mt[S,S] must have been created during
initialization by Lemma 61, and it satisfies Mt[S,S] = Mt′ [S,S] after updating.
Otherwise, either Mt has no entry for (S,S) or it satisfies Mt[S,S] = 0 = Mt′ [S,S]
after updating.
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6. Let t be a join node with children t′ and t′′. Let χv(t) = (x1, . . . ,xk), let S be a
subset of F , and let S = (S1, . . . , Sk) be a k-tuple of subsets of F . If Ft \ F bt * S
or there exists an i ∈ [k] such that fxi(Si) = 0, then nt(S,S) = 0 by Lemma 48. By
definition of fxi we have Si /∈ proj(F,xi), so MTW-ModelCount does not create
an entry for (S,S) in Mt during initialization and Mt[S,S] = 0.
Otherwise, Ft \ F bt ⊆ S and fxi(Si) > 0 for each i ∈ [k], so by Lemma 57 and the
assumption that the lemma holds for t′ and t′′,

nt(S,S) = 1
k∏
i=1

fxi(Si)

∑
S,S′′:

S=S′∪S′′

Mt′ [S′,S]Mt′′ [S′′,S]. (11.21)

Accordingly, if there are non-zero entriesMt′ [S′,S] andMt′′ [S′′,S] with S = S′∪S′′,
then nt(S,S) > 0 and the entryMt[S,S] must have been created during initialization
by Lemma 61. Given subsets S′, S′′ of F , their union S = S′ ∪ S′′ is unique, so the
value of Mt[S,S] after processing matches the right-hand side of (11.21). Otherwise,
if there are no non-zero entries Mt′ [S′,S] and Mt′′ [S′′,S] such that S = S′ ∪ S′′,
then nt(S,S) = 0 by (11.21) and either there is no entry for (S,S) in Mt, or the
entry was created but not updated, and Mt[S,S] = 0 in either case.

Having established this lemma, correctness follows easily.

Lemma 63. Given a formula F and a tree decomposition T = (T, χ, r) of I∗(F ) as input,
the algorithm MTW-ModelCount computes the number #F of satisfying assignments
of F .

Proof. Let F be a formula and let T = (T, χ, r) be a tree decomposition of I∗(F ). It is
easily verified that the algorithm terminates. A more detailed runtime analysis is given in
Lemma 65 below. Let χv(r) = (x1, . . . ,xk). By Lemma 62 we have Mr[F,S] = nr(F,S)
for each k-tuple S of subsets of F once the algorithm has processed r. Using Lemma 59,
we conclude that value returned by MTW-ModelCount is #F .

11.2.4 Runtime Analysis

We now analyze the runtime of MTW-ModelCount. The number of satisfying assign-
ments of a formula can be exponential in the number of its variables, and we cannot
automatically assume that arithmetic operations on numbers of this size can be per-
formed in constant time. To account for this, we introduce constants δ(n) denoting the
time required for operations on (n+ 1)-bit integers (the number of models of an input
formula with n variables can be anywhere between 0 and 2n, so we need an additional
bit), and give runtime bounds including these constants. More specifically, we assume
that δ(n) is an upper bound on the time required for addition, subtraction, division,
and multiplication of two (n + 1)-bit integers. Using standard algorithms we obtain
δ(n) = O(n2), which is sufficient for our analysis.
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Lemma 64. Let F be a formula with n variables and let T = (T, χ, r) be a tree decom-
position of I∗(F ). Each arithmetic operation performed by MTW-ModelCount on
input (F, T ) requires time δ(n).

Proof. We argue that every operand of an arithmetic operation is an integer in the interval
[0, 2n]. By Lemma 62 and definition of nt(S,S), the value of Mt[S,S] is an integer in the
interval [0, 2n] after a node t ∈ V (T ) has been processed. For each variabe module x
of F and subset S of F , fx(S) is in the interval [0, 2|x|]. It is an easy consequence
that operands of arithmetic operations performed during initialization, as well as during
processing of leaf, introduce, and forget nodes, are in the interval [0, 2n]. The formula F
has at most 2n satisfying assignments, so the output can be computed using integers
in the interval [0, 2n] as well. Let t be a join node with χv(t) = (x1, . . . ,xk). Let S, S′,
and S′′ be subsets of F such that S = S′ ∪ S′′, and let S = (S1, . . . , Sk) be a k-tuple of
subsets of F . Since n is the sum of cardinalities of variable modules of F and fx(S) is in
the interval [0, 2|x|] for each variable module x of F , the product

p =
k∏
i=1

fxi(Si)

is in the interval [0, 2n]. By Lemma 62 and Lemma 50,

q = Mt′ [S′,S]
p

= Mt′ [S′,S]
k∏
i=1

fxi(Si)
= |A−t′ (S

′,S)|

is an integer in the interval [0, 2n]. We conclude that operands of assignments and
arithmetic operations performed by MTW-ModelCount are integers in the interval
[0, 2n], which can be represented using n+ 1 bits.

Lemma 65. Let F be formula with n variables, m clauses, and length l. Let T = (T, χ, r)
be a tree decomposition of I∗(F ) of width k. On input (F, T ) MTW-ModelCount runs
in time

O(|T |(m+ 1)2k+2l3 log(l)).

Proof. The dictionaries forMt, proj(F,x), and fx can be implemented (for instance, using
red-black trees [28]) so that each operation takes time O(K log(S) + V ), where K is the
maximum length of a key, V is the maximum length of the binary representation of a value,
and S is the maximum number of entries. By Lemma 64, V ≤ n+ 1. Assuming a fixed
order on the clauses of F , we can represent a subset S of F by its characteristic function
using m bits. The number of entries in the dictionaries for proj(F,x) and fx is at most
m+1. Thus operations on a dictionary for proj(F,x) take time O(m log(m)) = O(l log(l)),
and operations on a dictionary for fx take time O(m log(m) + n) = O(l log(l)). A pair
(S,S) consisting of a subset S of F and a d-tuple S of subsets of F can be represented
by the sequence of characteristic functions using (d + 1)m bits. Verify that for each
t ∈ V (T ), the number of entries Mt[S,S] created by the algorithm during initialization
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is at most (m + 1)k+1. To see this, let t ∈ V (T ) such that χv(t) = (x1, . . .xr) and
χc(t) = {C1, . . . , Cs}. Since |proj(F,xi)| ≤ m+ 1 for each i ∈ [r] and |proj(Ci, Xt)| ≤ m+ 1
for each j ∈ [s], MTW-ModelCount creates at most (m+ 1)r+s ≤ (m+ 1)k+1 distinct
entries Mt[S,S]. Since S can be a (k + 1)-tuple in the worst case, we conclude that each
operation on a dictionary Mt takes time O((k + 2)m(k + 1)log(m) + n) = O(l3log(l)).
We now give a bound on the time required for initialization.

• Let x be a variable module of F . The set proj(F,x) can be computed in time
O(l2 + nl) = O(l2) by Lemma 46. Filling the dictionary for proj(F,x) takes time
O((m+ 1)l log(l)) = O(l2 log(l)).
For each S ∈ proj(F,x)\{Fx}, we have fx(S) = 1. If Fx ∈ proj(F,x), it follows from
Lemma 45 that |Fx/∼x| = |proj(F,x)| − 1, and this number can be computed in
time O(m log(m)). As fx(Fx) = 2|x| − |Fx/∼x|, from there we can compute fx(Fx)
in time δ(n). Overall, populating the dictionary for fx takes time O(l2log(l) +
m log(m) + δ(n)) = O(l2log(l)).

• By Lemma 46, the set proj(C, Xt) can be computed in time O(l2) for each node
t ∈ V (T ) and clause module C ∈ χc(t). Since |χc(t)| ≤ k + 1, for a given t ∈ V (T )
we can compute all sets proj(C, Xt) for C ∈ χc(t) in time O(kl2). Given the
characteristic function of s subsets of F , we can compute the characteristic function
of their union in time O(sm). Thus for each t ∈ V (T ), filling the dictionary Mt

takes time

O(kl2 + (m+ 1)k+1((k + 1)m+ l3 log(l))) = O((m+ 1)k+1l3 log(l)).

Overall, initialization takes time

O(nl2 log(n) + |T |(m+ 1)k+1l3 log(l)) = O(|T |(m+ 1)k+1l3 log(l)).

We proceed to give bounds on the time required to process an individual node:

1. Let t be a leaf node with χv(t) = (x1, . . . ,xd). There are at most (m + 1)k+1

tuples S = (S1, . . . , Sd) such that Si ∈ proj(F,xi) for each i ∈ [d]. For each
such tuple S, we can compute the union S =

⋃d
i=1 Si in time O(lk). Using the

dictionaries for fxi , the product of the fxi(Si) for i ∈ [d] can be computed in time
O(kl log(l) + log(k)δ(n)). Updating Mt[S,S] takes time O(l3 log(l)). Since k, n ≤ l,
we conclude that the overall processing time for a leaf node is

O((m+ 1)k+1(l2 log(l) + log(k)δ(n) + l3 log(l)) = O((m+ 1)k+1l3 log(l)).

2. Let t be a variable introduce node with child t′, and let χv(t) = χv(t′) ∪ {x}.
There are at most (m + 1)k+1 pairs (P, (S,S)) consisting of a projection P ∈
proj(F,x) and an entry Mt′ [S′,S]. The union S = S′ ∪ P can be computed in
time O(l). The time required for retrieving fx(P ) and updating Mt[S,S] is in
O(l log(l) + l3 log(l) + δ(n)) = O(l3 log(l)). Thus the overall processing time for t is
in

O((m+ 1)k+1l3 log(l)).
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3. Let t be a variable forget node with child t′, and let χv(t) = χv(t′) \ {x}. There are
at most (m+ 1)k+1 non-zero entries Mt′ [S,S :P ]. Updating an entry Mt[S,S] takes
time O(l3 log(l) + δ(n)) = O(l3 log(l)). We conclude that processing t takes time

O((m+ 1)k+1l3 log(l)).

4. To process a clause introduce node, the algorithm has to go through at most
(m+ 1)k+1 non-zero entries Mt′ [S,S] and update the corresponding entry Mt[S,S],
which can be done in time O((m+ 1)k+1l3 log(l)).

5. Let t be a clause forget node with child t′, and let χc(t) = χc(t′) \ {C}. There are
at most (m + 1)k+1 non-zero entries Mt′ [S,S]. We can check whether C ⊆ S in
time O(l), and update the entry Mt[S,S] in time O(l3 log(l)). Overall, processing t
takes time

O((m+ 1)k+1l3 log(l)).

6. Let t be a join node with children t′ and t′′, and let χv(t) = (x1, . . . ,xr). There are at
most (m+1)2r ≤ (m+1)2k+2 pairs of entriesMt′ [S′,S] andMt′′ [S′′,S′]. Determining
whether S = S′ takes time O(kl). The union S = S′ ∪ S′′ can be computed in
time O(l). We can compute the product p in time O(kl log(l) + log(k)δ(n)) and
the quotient q in time δ(n). Updating Mt[S,S] takes time O(l3 log(l) + δ(n)) =
O(l3 log(l)). Overall, the time spent on t is in

O((m+ 1)2k+2l3 log(l). (11.22)

After all nodes have been processed, the algorithm computes the sum of at most (m+1)k+1

entries Mr[F,S] in time O((m + 1)k+1δ(n)). With (11.22) as an upper bound for the
processing time of individual nodes, we get an overall runtime bound of

O(|T |(m+ 1)2k+2l3 log(l)).

Theorem 13. #SAT can be solved in time O(l2k+7) on CNF formulas that have modular
incidence treewidth at most k and length l.

Proof. Let F be a formula with n variables, m clauses, length l, and modular incidence
treewidth at most k. We first construct I(F ) and then contract all its modules in order
to obtain I∗(F ). This can be done in O(l2) time. A tree decomposition of I∗(F ) of width
at most k can be obtained in time O(nk+2) = O(lk+2) [2]. This tree decomposition can
be converted in time O(l2) into a nice tree decomposition T = (T, χ, r) of width at most
k with at most 4(n+m) nodes [80]. Using the algorithm MTW-ModelCount with
input F and T , we can then compute #F in time

O(|T |(m+ 1)2k+2l3 log(l)) = O((n+m)(m+ 1)2k+2l3 log(l))
= O((m+ 1)2k+2l4 log(l))
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by Lemma 63 and Lemma 65. If l = m then each clause of F contains exactly one literal
and #F ∈ {0, 1} can easily be computed in linear time. Otherwise, m+ 1 ≤ l and we get
an overall runtime bound of

O(l2) +O(lk+2) +O(l2k+2l4 log(l)) = O(l2k+7).

11.3 W[1]-Hardness of SAT
To prove W[1]-hardness of SAT parameterized by modular incidence treewidth, we
can reuse a reduction for proving that SAT is W[1]-hard when parameterized by the
β-hypertree width [88].

Theorem 14. SAT is W[1]-hard when parameterized by the modular incidence treewidth
of the input formula.

Proof. A clique in a graph is a subset of vertices that are mutually adjacent. A k-partite
graph is balanced if its k partition classes are of the same size. A partitioned clique
of a balanced k-partite graph G = (V1, . . . , Vk, E) is a clique K with |K ∩ Vi| = 1 for
i = 1 . . . , k. We devise a parameterized reduction from the following problem, which is
W[1]-complete [94].

Partitioned Clique
Instance: A balanced k-partite graph G = (V1, . . . , Vk, E).
Parameter: The integer k.
Question: Does G have a partitioned clique?

Before we describe the reduction we introduce some auxiliary concepts. For any three
variables z, x1, x2, let F (z, x1, x2) denote the formula consisting of the clauses

{z, x1, x2}, {z, x1, x2}, {z, x1, x2}, {z, x1, x2}, {z, x1, x2}.

This formula has exactly three satisfying assignments, corresponding to the vectors 000,
101, and 110. Hence each satisfying assignment sets at most one out of x1 and x2 to
true, and if one of them is set to true, then z is set to true as well (“z = x1 + x2”).
Taking several instances of this formula we can build a “selection gadget.” Let x1, . . . , xm
and z1, . . . , zm−1 be variables. We define F=1(x1, . . . , xm; z1, . . . , zm−1) as the union of
F (z1, x1, x2),

⋃m−1
i=2 F (zi, zi−1, xi+1), and {{zm−1}}. Now each satisfying assignment of

this formula sets exactly one variable out of {x1, . . . , xm} to true, and, conversely, for
each 1 ≤ i ≤ m there exists a satisfying assignment that sets exactly xi to true and all
other variables from {x1, . . . , xm} to false.

Now we describe the reduction. Let G = (V1, . . . , Vk) be a balanced k-partite graph
for k ≥ 2. We write Vi = {vi1, . . . , vin}. We construct a formula F . As the variables of F
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we take the vertices of G plus new variables zij for 1 ≤ i ≤ k and 1 ≤ j ≤ n− 1. We put
F =

⋃k
i=0 Fi where the formulas Fi are defined as follows: F0 contains for any u ∈ Vi

and v ∈ Vj (i 6= j) with uv /∈ E the clause Cu,v = {u, v } ∪ {w : w ∈ (Vi ∪ Vj) \ {u, v } };
for i > 0 we define Fi = F=1(vi1, . . . , vin; zi1, . . . , zin−1). To prove the theorem it suffices to
show the following two claims.

Claim 1. The modular incidence treewidth of F is at most
(k

2
)

+ 1.

For 1 ≤ i ≤ k, let Di
1, . . . , D

i
n be the vertices in I(F ) with N(Di

1) = {zi1, vi1, vi2},
N(Di

j) = {zij , zij−1, v
i
j+1} for 2 ≤ j ≤ n − 1 and N(Di

n) = {zin−1}. In I(F ), the
set of vertices Cu,v can be partitioned into modules C1, . . . , Cm, where m ≤

(k
2
)
. By

deleting these modules, we obtain a graph I ′(F ) that consists of k connected components
corresponding to the subgraphs of I(F ) induced by {vi1, . . . , vin, zi1, . . . , zin−1, D

i
1, . . . , D

i
n}

for 1 ≤ i ≤ k. Note that these components are trees, so the treewidth of I ′(F ) is 1. Thus
the graph obtained from I ′(F ) by contracting modules has treewidth 1. We can turn
the corresponding tree decomposition into a tree decomposition of I∗(F ) that has width
m+ 1 ≤

(k
2
)

+ 1 by simply adding the set of m clause modules {C1, . . . , Cm} to each bag.

Claim 2. G has a partitioned clique if and only if F is satisfiable.

To prove Claim 2, we first suppose that G has a partitioned clique K. We define a
partial truth assignment τ : V → {0, 1} by setting τ(v) = 1 for v ∈ K, and τ(v) = 0 for
v /∈ K. This partial assignment satisfies F0, and it is easy to extend τ to a satisfying
truth assignment of F . Conversely, suppose that F has a satisfying truth assignment τ .
Because of the formulas Fi, 1 ≤ i ≤ k, τ sets exactly one variable viji ∈ Vi to true. Let
K = {v1

j1 , . . . , v
k
jk
}. The clauses in F0 ensure that viji and vi′ji′ are adjacent in G for each

pair 1 ≤ i < i′ ≤ k, hence K is a partitioned clique of G. This proves Claim 2.

Summary
Modular incidence treewidth combines treewidth and module contraction, a powerful
preprocessing technique used in combinatorial optimization. In this chapter, we proved
that there is an algorithm for #SAT that runs in time lO(k) on formulas of length l and
modular incidence treewidth k. This proves that in particular, #SAT is polynomial-time
tractable for classes of formulas of bounded modular incidence treewidth. We gave strong
evidence that this runtime bound cannot be improved to a bound of the shape f(k) lc,
where c is a constant and f is a computable function independent of the input, by showing
that already SAT is W [1]-hard when parameterized by the modular incidence treewidth.
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CHAPTER 12
Symmetric Clique-Width

In this chapter, we prove an upper bound on the complexity of #SAT parameterized
by symmetric incidence clique-width, that is, by the symmetric clique-width [29] of the
incidence graph. Specifically, we prove the following result (Theorem 16):

There is a function f : N → N such that #SAT can be solved in time
f(k) l3 + lO(2k) on CNF formulas of symmetric incidence clique-width k and
length l.

For classes of formulas of bounded symmetric incidence clique-width, we obtain a
polynomial-time model counting algorithm. Since symmetric incidence clique-width
strictly dominates modular incidence treewidth, this result entails the result on the
polynomial-time tractability of #SAT for classes of formulas of bounded modular in-
cidence treewidth from the previous chapter. Symmetric clique-width is a parameter
that is closely related to clique-width, rank-width, and Boolean-width: a class of graphs
has bounded symmetric clique-width iff it has bounded clique-width iff it has bounded
rank-width iff it has bounded Boolean-width. Our result therefore carries over to
incidence clique-width, rank-width, and Boolean-width.

The above result is obtained by means of dynamic programming on a decomposition
tree. As in the algorithm presented in the previous chapter, we represent truth assignments
by projections. However, we cannot afford to keep a record for each projection F (τ) of a
partial assignments τ onto the input formula F , as the number of distinct projections
can be exponential in the length of F . To deal with this, we pair information on partial
solutions with an “expectation from the outside” [22, 46, 47]. The underlying idea
is that the information that has to recorded for a partial solution can be reduced if
one includes an “expectation” about what this partial solution will be combined with
to form a complete solution. In our case, we do not record the projection Fp(τ) of a
partial assignment τ onto the subformula Fp already processed – instead, we keep track
of whether a partial assignment τ satisfies the subformula Fp when combined with an
assignment σ to the remaining variables with a particular projection Fp(σ). We show
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that the number of projections of outside variables onto a subformula with m clauses
is bounded by (m+ 1)k, where k is the symmetric incidence clique-width, so that the
number of cases to consider (and records to keep) is polynomial for fixed k.

Owing to the following result (cf. Theorem 14), we cannot expect to get k out of the
exponent of l in the runtime bound of our algorithm.1

Theorem 15 ([88]). SAT, parameterized by the symmetric clique-width of the incidence
graph of the input formula, is W[1]-hard.

Given a formula F and a decomposition tree T of I(F ), our dynamic programming
algorithm runs in time lO(w), where w is the index of T . We get O(2k) in the exponent of l
in the bound of Theorem 16 because we have to approximate the symmetric clique-width
of I(F ) through its rank-width. Efficient algorithms for computing decomposition trees
of (approximately) optimal index (matching the graph’s symmetric clique-width) would
allow us to obtain a better bound.

Below, we present an algorithm for counting the models of an input formula F
via dynamic programming on a decomposition tree of its incidence graph I(F ). To
simplify the statements of intermediate results, we fix a formula F of length l with
|F | = m clauses and a decomposition tree (T, δ) of I(F ) with index(T, δ) = k. For a node
z ∈ V (T ), let Tz denote the maximal subtree of T rooted at z. We write varz for the set
of variables var(F ) ∩ δ(L(Tz)) and Fz for the set of clauses F ∩ δ(L(Tz)). Moreover, we
write Fz = F \ Fz and varz = var(F ) \ varz.

The information maintained for each node z ∈ V (T ) of the decomposition tree is a
collection of shapes [47], along with the number of truth assignments σ : varz → {0, 1} in
each shape.

Definition 53 (Shape). Let z ∈ V (T ), let outz ⊆ Fz, and let inz ⊆ Fz. We call the pair
(outz, inz) a shape (for z), and say an assignment τ ∈ 2varz is of shape (outz, inz) if it
satisfies the following conditions.

(i) Fz(τ) = outz.

(ii) For each clause C ∈ Fz, the assignment τ satisfies C or C ∈ inz.

If outz ∈ proj(Fz, varz) and inz ∈ proj(Fz, varz) then the shape (outz, inz) is proper. We
denote the set of shapes for z ∈ V (T ) by shapes(z) and write Nz(s) to denote the set of
assignments in 2varz of shape s ∈ shapes(z). Moreover, we let nz(s) = |Nz(s)|.

An assignment can have multiple shapes, so shapes do not partition assignments into
equivalence classes. The model count of F corresponds to the number of assignments
with a particular shape at the root node.

1To be precise, the hardness proof in [88] is stated in terms of clique-width. But since the clique-width
of a graph is at most twice its symmetric clique-width [29], the result carries over to symmetric clique-width.
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Lemma 66. A truth assignment τ ∈ 2var(F ) satisfies F if and only if it has shape (∅, ∅).
Moreover, the shape (∅, ∅) is proper.

Proof. Observe that varr = var(F ), and let τ ∈ 2varr . Suppose τ satisfies F . Since Fr is
empty, we immediately get Fr(τ) = ∅, so τ satisfies condition (i). Moreover τ satisfies
every clause of F = Fr, so condition (ii) is satisfied as well. For the converse, suppose τ
has shape (∅, ∅). It follows from condition (ii) that τ must satisfy Fr = F . To see that
(∅, ∅) is proper note that Fr(σ) = ∅ for any σ ∈ 2varr , and that 2varr contains only the
empty assignment ε : ∅ → {0, 1} with Fr(ε) = ∅.

Let x, y, z ∈ V (T ) such that x and y are the children of z, and let sx, sy, sz be shapes
for x, y, z, respectively. The assignments in Nx(sx) and Ny(sy) contribute to Nz(sz) if
certain conditions are met. These are captured by the following definition.

Definition 54. Let x, y, z ∈ V (T ) such that x and y are the children of z. We say
two shapes (outx, inx) ∈ shapes(x) and (outy, iny) ∈ shapes(y) generate the shape
(outz, inz) ∈ shapes(z) whenever the following conditions are satisfied.

(1) outz = (outx ∪ outy) ∩ Fz

(2) inx = (inz ∪ outy) ∩ Fx

(3) iny = (inz ∪ outx) ∩ Fy

We write generatorsz(s) for the set of pairs in shapes(x) × shapes(y) that generate s ∈
shapes(z).

Lemma 67. Let x, y, z ∈ V (T ) such that x and y are the children of z, and let τx :
varx → {0, 1} be of shape (outx, inx) ∈ shapes(x) and τy : vary → {0, 1} be of shape
(outy, iny) ∈ shapes(y). If (outx, inx) and (outy, iny) generate the shape (outz, inz) ∈
shapes(z), then τx ∪ τy is of shape (outz, inz). Moreover, if (outz, inz) is proper then
(outx, inx) and (outy, iny) are proper.

Proof. Suppose (outx, inx) and (outy, iny) generate (outz, inz). Let τ = τx ∪ τy. We have

Fz(τz) = Fz(τx) ∪ Fz(τy) = (outx ∩ Fz) ∪ (outy ∩ Fz) = outz,

so τ satisfies condition (i). To verify that condition (ii) is satisfied as well, let C ∈ Fz =
Fx ∪ Fy. Assume without loss of generality that C ∈ Fx. Suppose τ does not satisfy C.
Then in particular τx does not satisfy C, so we must have C ∈ inx because τx is of shape
(outx, inx). But τy does not satisfy C either, so C /∈ outy. Combining these statements,
we get C ∈ inx \ outy. Because (outx, inx) and (outy, iny) generate (outz, inz) we have
inx = (inz ∪ outy) ∩ Fx by condition (2), so C ∈ inz.

The assignments τx and τy are of shapes (outx, inx) and (outy, iny), so outx ∈
proj(Fx, varx) and outy ∈ proj(Fy, vary) by condition (i). Suppose (outz, inz) is proper.
Then there is an assignment ρ : varz → {0, 1} such that inz = Fz(ρ). The shapes
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(outx, inx) and (outy, iny) generate (outz, inz), so inx = (inz ∪ outy) ∩ Fx, that is,
inx = (Fz(ρ) ∪ Fy(τy)) ∩ Fx. Equivalently, inx = (Fz(ρ) ∩ Fx) ∪ (Fy(τy) ∩ Fx). Since
Fx ⊆ Fz and Fx ⊆ Fy this can be rewritten once more as inx = Fx(ρ) ∪ Fx(τy). The
domains varz of ρ and vary of τy are disjoint, so Fx(ρ) ∪ Fx(τy) = Fx(ρ ∪ τy). Because
varz ∪ vary = varx it follows that inx ∈ proj(Fx, varx) and (outx, inx) is proper. A
symmetric argument shows that (outy, iny) is proper.

Corollary 4. Let x, y, z ∈ V (T ) such that x and y are the children of z in T , and let
s ∈ shapes(z) be proper. Suppose sx ∈ shapes(x) and sy ∈ shapes(y) generate s and both
Nx(sx) and Ny(sy) are nonempty. Then sx and sy are proper.

Lemma 68. Let x, y, z ∈ V (T ) such that x and y are the children of z, and let τ :
varz → {0, 1} be a truth assignment of shape (outz, inz) ∈ shapes(z). Let τx = τ |varx and
τy = τ |vary . There are unique shapes (outx, inx) ∈ shapes(x) and (outy, iny) ∈ shapes(y)
generating (outz, inz) such that τx has shape (outx, inx) and τy has shape (outy, iny).

Proof. We define outx = Fx(τx), outy = Fy(τy) and

inx = (inz ∩ Fx) ∪ Fx(τy), iny = (inz ∩ Fy) ∪ Fy(τx).

We prove that (outx, inx) and (outy, iny) generate (outz, inz). Since τ has shape (outz, inz)
by condition (i) we have outz = Fz(τ). We further have Fz(τ) = Fz(τx) ∪ Fz(τy) by
choice of τx and τy. Because Fz ⊆ Fx and Fz ⊆ Fy we get

Fz(τ) = (Fx(τx) ∩ Fz) ∪ (Fy(τy) ∩ Fz)

and thus
Fz(τ) = (outx ∪ outy) ∩ Fz.

That is, condition (1) is satisfied. From Fx ⊆ Fy and Fy ⊆ Fx it follows that Fx(τy) =
Fy(τy) ∩ Fx and Fy(τx) = Fx(τx) ∩ Fy. Thus Fx(τy) = outy ∩ Fx and Fy(τx) = outx ∩ Fy
by construction of outx and outy. By inserting in the definitions of inx and iny we get
inx = (inz ∩ Fx) ∪ (outy ∩ Fx) and iny = (inz ∩ Fy) ∪ (outx ∩ Fy), so conditions (2) and
(3) are satisfied as well. We conclude that (outx, inx) and (outy, iny) generate (outz, inz).

We proceed to showing that τx is of shape (outx, inx). Condition (i) is satisfied by
construction. To see that condition (ii) holds, pick any C ∈ Fx not satisfied by τx. If τy
satisfies C, then C ∈ Fx(τy) ⊆ inx. Otherwise, τ = τx ∪ τy does not satisfy C. Since τ is
of shape (outz, inz) this implies C ∈ inz. Again we get C ∈ inx as inz ∩ Fx ⊆ inx. The
proof that τy has shape (outy, iny) is symmetric.

To show uniqueness, let (out ′x, in′x) ∈ shapes(x) and (out ′y, in′y) ∈ shapes(y) generate
(outz, inz), and suppose τx has shape (out ′x, in′x) and τy has shape (out ′y, in′y). From
condition (i) we immediately get out ′x = Fx(τx) = outx and out ′y = Fy(τy) = outy. Since
the pairs (out ′x, in′x),(out ′y, in′y) and (outx, inx), (outy, iny) both generate (outz, inz), it
follows from condition (2) that in′x = inx and in′y = iny.
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Lemma 69. Let x, y, z ∈ V (T ) such that x and y are the children of z in T , and let
s ∈ shapes(z). The following equality holds.

nz(s) =
∑

(sx,sy)∈generatorsz(s)
nx(sx) ny(sy) (12.1)

Proof. Let M(s) =
⋃

(sx,sy)∈generatorsz(s)Nx(sx)×Ny(sy). We first show that the function
f : τ 7→ (τ |varx , τ |vary ) is a bijection fromNz(s) toM(s). By Lemma 68 for every τ ∈ Nz(s)
there is a pair (sx, sy) ∈ generatorsz(s) such that τ |varx ∈ Nx(sx) and τ |vary ∈ Ny(sy). So
f is into. By Lemma 67, for every pair of assignments τx ∈ Nx(sx), τy ∈ Ny(sy) with
(sx, sy) ∈ generatorsz(s) the assignment τx ∪ τy is in Nz(s). Hence f is surjective. It is
easy to see that f is injective, so f is indeed a bijection.

We prove that |M(s)| is equivalent to the right hand side of (12.1). Since |Nx(sx)×
Ny(sy)| = nx(sx) ny(sy) for every pair (sx, sy) ∈ generatorsz(s), we only have to show
that the sets Nx(sx) × Ny(sy) and Nx(s′x) × Ny(s′y) are disjoint for distinct pairs of
shapes (sx, sy), (s′x, s′y) ∈ generatorsz(s). Let (sx, sy), (s′x, s′y) ∈ generatorsz(s) and sup-
pose (Nx(sx)×Ny(sy))∩(Nx(s′x)×Ny(s′y)) is nonempty. Let (τx, τy) ∈ (Nx(sx)×Ny(sy))∩
(Nx(s′x) × Ny(s′y)). The function f is a bijection, so τx ∪ τy ∈ Nz(s). By Lemma 68
there is at most one pair (s′′x, s′′y) ∈ generatorsz(s) of shapes such that τx ∈ Nx(s′′x) and
τy ∈ Ny(s′′y), so (sx, sy) = (s′′x, s′′y) = (s′x, s′y).

Corollary 5. Let x, y, z ∈ V (T ) such that x and y are the children of z in T , and let
s ∈ shapes(z) be proper. Let P = { (sx, sy) ∈ generatorsz(s) : sx and sy are proper }. The
following equality holds.

nz(s) =
∑

(sx,sy)∈P
nx(sx) ny(sy) (12.2)

Proof. By Corollary 4 the product nx(sx)ny(sy) is nonzero only if sx and sy are proper,
for any pair (sx, sy) ∈ generatorsz(s). In combination with (12.1) this implies (12.2).

Corollary 5 in combination with Lemma 66 implies that, for each z ∈ V (T ), it is
enough to compute the values nz(s) for proper shapes s ∈ shapes(z). To turn this insight
into a polynomial time dynamic programming algorithm, we still have to show that the
number of proper shapes in shapes(z) can be polynomially bounded, and that the set
of such shapes can be computed in polynomial time. We will achieve this by specifying
a subset of shapes(z) for each z ∈ V (T ) that contains all proper shapes and can be
computed in polynomial time.

We define families neighz and neighz of sets of variables for each node z ∈ V (T ), as
follows.

neighz = {X ⊆ varz : ∃C ∈ Fz such that X = varz ∩ var(C) }
neighz = {X ⊆ varz : ∃C ∈ Fz such that X = varz ∩ var(C) }

The next lemma follows from the definition of a decomposition tree’s index.
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Lemma 70. For every node z ∈ V (T ), max(|neighz|, |neighz|) ≤ k.

Let z ∈ V (T ). For each X ∈ neighz, let FXz denote the set of clauses C ∈ Fz such
that X ⊆ var(C). Symmetrically, for Y ∈ neighz let FXz denote the set of clauses C ∈ Fz
such that Y ⊆ var(C). Let f be a function that maps every set X ∈ neighz to some
projection f(X) ∈ proj(FXz , X). We denote the set of such functions by outfunctions(z).
Symmetrically, we let infunctions(z) denote the set of functions g that map every set
Y ∈ neighz to some projection g(Y ) ∈ proj(F Yz , Y ).

Lemma 71. For every z ∈ V (T ), |outfunctions(z)| ≤ (m+1)k as well as |infunctions(z)| ≤
(m+ 1)k.

Proof. By Lemma 45 (proved in Chapter 11) the cardinality of proj(FXz X,) is bounded by
m+1 for every X ∈ neighz. In combination with Lemma 70 this yields |outfunctions(z)| ≤
(m+ 1)k. The proof of |infunctions(z)| ≤ (m+ 1)k is symmetric.

Let union(f) denote
⋃
X∈dom(f) f(X), where dom(f) is the domain of f . We define

the set of restricted shapes for z ∈ V (T ) as follows.

shapesres(z) = { (out, in) ∈ shapes(z) : ∃f ∈ outfunctions(z) s.t. out = union(f)
and ∃g ∈ infunctions(z) s.t. in = union(g) }

Every pair (f, g) ∈ outfunctions(z) × infunctions(z) uniquely determines a shape in
shapesres(z). Accordingly, Lemma 71 allows us to bound the cardinality of shapesres(z)
as follows.

Corollary 6. For any z ∈ V (T ), |shapesres(z)| ≤ (m+ 1)2k.

The following result states that every proper shape is a restricted shape.

Lemma 72. Let z ∈ V (T ) and let s ∈ shapes(z) be proper. Then s ∈ shapesres(z).

Proof. Let s = (out , in). We show that there are functions f ∈ outfunctions(z) and g ∈
infunctions(z) such that out = union(f) and in = union(g). Because s is proper we have
out ∈ proj(Fz, varz) and in ∈ proj(Fz, varz), so there are assignments σ : varz → {0, 1}
and τ : varz → {0, 1} such that out = Fz(σ) and in = Fz(τ). We define f as follows. For
each X ∈ neighz, let f(X) = FXz (σ|X). The assignment σ is defined on X ⊆ varz, so σ|X
has domain X and f(X) ∈ proj(FXz , X). That is, f ∈ outfunctions(z). Symmetrically,
we let g(Y ) = F Yz (τ |Y ) for each Y ∈ neighz. Since τ is defined on Y ⊆ varz, the
assignment τ |Y has domain Y and g(Y ) ∈ proj(F Yz , Y ), so g ∈ infunctions(z).

Pick an arbitrary clause C ∈ Fz and let X = var(C)∩ varz. We show that C ∈ out if
and only if C ∈ union(f). Suppose C ∈ out and keep in mind that out = Fz(σ). The
assignment σ has domain varz, so σ|X satisfies C because σ does. That is, C ∈ Fz(σ|X).
By choice of X we have C ∈ FXz , so C ∈ Fz(σ|X) ∩ FXz . Since FXz ⊆ Fz we get

Fz(σ|X) ∩ FXz = FXz (σ|X).
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So C ∈ FXz (σ|X) = f(X) and thus C ∈ union(f). For the converse, suppose C ∈ union(f).
That is, C ∈ f(Y ), where f(Y ) = F Yz (σ|Y ) for some Y ∈ neighz. Then in particular
C ∈ Fz(σ) = out . We conclude that union(f) = out . The proof of union(g) = in is
symmetric.

This shows that if we can determine the values nz(s) for every z ∈ V (T ) and
s ∈ shapesres(z), we can determine the values nz(s′) for every proper shape s′ ∈ shapes(z).
More specifically, as long as we can determine lower bounds for nz(s) for every s ∈
shapesres(z) and the exact values of nz(s) for proper s, we can compute the correct values
for all proper shapes for every tree node.

Definition 55. For z ∈ V (T ), a lower bounding function (for z) associates with each
s ∈ shapesres(z) a value lz(s) such that lz(s) ≤ nz(s) and lz(s) = nz(s) if s is proper.

Let x, y, z ∈ V (T ) such that x and y are the children of z. For each shape s ∈ shapes(z),
we write

restricedgenz(s) = generatorsz(s) ∩ (shapesres(x)× shapesres(y)).

Lemma 73. Let x, y, z ∈ V (T ) such that x and y are the children of z. Let lx and ly be
lower bounding functions for x and y. Let lz be the function defined as follows. For each
s ∈ shapesres(z), we let

lz(s) =
∑

(sx,sy)∈restricedgenz(s)
lx(sx) ly(sy). (12.3)

Then lz is a lower bounding function for z.

Proof. The inequality lz(s) ≤ nz(s) follows from the containments shapesres(x) ⊆
shapes(x) and shapesres(y) ⊆ shapes(y), in combination with (12.1) and the fact that lx
and ly are lower bounding functions for x and y. By Lemma 72 the set restricedgenz(s)
contains all pairs (sx, sy) ∈ generatorsz(s) such that sx and sy are proper. It follows
from Corollary 5 and lx(sx) = nx(sx), ly(sy) = ny(sy) for proper sx, sy that lz(s) ≥ nz(s)
and thus lz(s) = nz(s) for proper s. We conclude that lz is a lower bounding function
for z.

Lemma 74. There is a polynomial p (independent of F ) such that for any z ∈ V (T ),
the set shapesres(z) can be computed in time m2kp(l).

Proof. To compute shapesres(z), we compute all pairs (union(f), union(g)) for (f, g) ∈
outfunctions(z)× infunctions(z). To compute the set neighz, we run through all clauses
C ∈ Fz and determine var(C) ∩ varz. This can be done in time polynomial in l, and
the same holds for the set neighz. A function f ∈ outfunctions(z) maps each X ∈ neighz
to a set f(X) ∈ proj(FXz , X). By Lemma 46 (Chapter 11) the set proj(FXz , X) can
by computed in time polynomial in l for each X ∈ neighz. Going through all pairs
(f, g) ∈ outfunctions(z)×infunctions(z) amounts to going through all possible combinations
of choices of f(X) ∈ proj(FXz , X) for every X ∈ neighz and g(Y ) ∈ proj(F Yz , Y ) for each
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Y ∈ neighz, of which there are at most (m + 1)2k many. For each such pair (f, g) we
compute the sets union(f) and union(g), which can be done in time polynomial in l.

Lemma 75. Let x, y, z ∈ V (T ) such that x and y are the children of z. Let sx ∈ shapes(x),
sy ∈ shapes(y), and sz ∈ shapes(z). It can be decided in time O(l) whether sx and sy
generate sz.

Proof. We have to check conditions (1) to (3), which can easily be done in time linear
in l since the sets of clauses involved have cardinality at most m ≤ l.

Lemma 76. For any leaf node z ∈ V (T ) a lower bounding function for z can be computed
in time O(l).

Proof. Every leaf z ∈ V (T ) is either associated with a clause C ∈ F or a variable
v ∈ var(F ). In the first case, varz = ∅ and so neighz = ∅ if Fz = ∅ or neighz = {∅}. It
follows that the set outfunctions(z) only contains the empty function or the function f
with domain {∅} such that f(∅) = ∅. For the set neighz we get neighz = {var(C)} for the
unique clause C ∈ Fz. Since F var(C)

z = {C} we have proj(F var(C)
z , var(C)) = {{C}, ∅} and

thus infunctions(z) = {g, g′}, where g is the function with domain {var(C)} such that
g(var(C)) = {C} and g′ is the function with domain {var(C)} such that g′(var(C)) = ∅.
It follows that shapesres(z) only contains the shapes (∅, ∅) and (∅, {C}). The set varz is
empty, so 2varz contains only the empty assignment which does not satisfy any clause.
Hence nz((∅, ∅)) = 0 and nz((∅, {C})) = 1.

In the second case, varz = {v} for some variable v ∈ var(F ). Since Fz = ∅ we
have neighz = ∅ and so infunctions(z) only contains the empty function. The set neighz
contains {v}, and the empty set if there is a clause C ∈ F with v /∈ var(C). We
get proj(F {v}z , {v}) = {F+

v , F
−
v }, where F+

v is the set of clauses of F with a positive
occurrence of v, and F−v is the set of clauses F with a negative occurrence of v. Moreover,
proj(F ∅z , ∅) = {∅}. It follows that shapesres(z) = {(F+

v , ∅), (F−v , ∅)}. The set 2varz only
contains the assignments τ0 with τ0(v) = 0 and τ1 with τ1(v) = 1, and Fz(τ0) = F−v and
Fz(τ1) = F+

v . This implies nz((F+
v , ∅)) = 1 and nz((F−v , ∅)) = 1.

For both cases the set shapesres(z) and the values nz(s) for each s ∈ shapesres(z) can
be computed in time O(l). These values provide a lower bounding function for z.

Lemma 77. There is a polynomial p (independent of F ) such that for any inner node
z ∈ V (T ), a lower bounding function for z can be computed in time m6kp(l) from lower
bounding functions for the children of z.

Proof. By Lemma 74, there is a polynomial q (independent of z) such that the set
shapesres(z) can be computed in time O(m2kq(l)). Let x and y denote the children of z,
and let lx and ly be lower bounding functions for x and y. We compute a lower bounding
function lz for z as follows. Initially, we set lz(sz) = 0 for all sz ∈ shapesres(z). We then
run through all triples of shapes sx ∈ shapesres(x), sy ∈ shapesres(y), and sz ∈ shapesres(z)
and check whether sx and sy generate sz. If that is the case, we add lx(sx) ly(sy) to
lz(sz).
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Correctness follows from Lemma 73 and the fact that lx, ly are lower bounding
functions for x and y. The bound on the runtime is obtained as follows. By Corollary 6
there are at most (m+ 1)6k triples (sx, sy, sz) of shapes that have to be considered. For
each one, one can decide whether sx and sy generate sz in time O(l) by Lemma 75.
Depending on the outcome of that decision we may have to multiply two integers
lx(sx) and ly(sy), adding the result to lz(sz). These values are bounded from above
by 2| var(F )| ≤ 2l, so their binary representations have size O(l) and these arithmetic
operations can be carried out in time O(l2).

Lemma 78. There is a polynomial p (independent of F ) such that a lower bounding
function for z can be computed for every z ∈ V (T ) in time m6kp(l).

Proof. By Lemma 76, a lower bounding function for a leaf of T can be computed in time
O(l). The number of leaves of T is in O(l), so we can compute lower bounding functions
for all of them in time O(l2). By Lemma 77, we can then compute lower bounding
functions for each inner node z ∈ V (T ) in a bottom up manner. For each inner node z,
a lower bounding function can computed in time m6kq(l) by Lemma 77, where q is a
polynomial independent of z. The number of inner nodes of T is in O(l), so this requires
O(m6kl q(l)) time in total.

Proposition 24. There is a polynomial p and an algorithm that, given a formula F and
a decomposition tree (T, δ) of I(F ), computes the number of satisfying assignments of F
in time m6kp(l). Here, m denotes the number of clauses of F , l denotes the length of F ,
and k = index(T, δ).

Proof. By Lemma 78 a lower bounding function lr for the root r of T can be computed
in time m6k q(l), where q is a polynomial independent of F . By Lemma 66, the value
nr((∅, ∅)) corresponds to the number of satisfying total truth assignments of F , and
the shape (∅, ∅) is proper. Since lr is a lower bounding function for r it follows that
lr((∅, ∅)) = nr((∅, ∅)).

In combination with an algorithm for computing a decomposition tree of an input
formula’s incidence graph, we get an algorithm for #SAT.

Theorem 16. There is a function f : N → N such that #SAT can be solved in time
f(k) l3 + lO(2k) on CNF formulas of symmetric incidence clique-width k and length l.

Proof. It follows from Theorem 12 and Lemma 36 that there exist a function f : N→ N
and an algorithm that, given a graph G with n vertices and symmetric clique-width k,
computes a decomposition tree (T, δ) such that index(T, δ) ≤ 2k in time f(k)n3. Let F
be a CNF formula of symmetric incidence clique-width k and length l. We use this
algorithm to compute a decomposition tree (T, δ) of the incidence graph I(F ) in time
f(k) l3. From F and (T, δ), the number of satisfying total truth assignments of F can be
computed in time lO(2k) by Proposition 24.
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Summary
We have shown that #SAT is polynomial-time tractable for classes of formulas with
incidence graphs of bounded symmetric clique-width (or bounded clique-width, or bounded
rank-width). More specifically, we proved that the model count of a CNF formula of
length l and symmetric clique-width k can be computed in time f(k) l3 + lO(2k). Since
already SAT, parameterized by symmetric incidence clique-width, is W[1]-hard, we cannot
expect to get rid of the dependence on k in the exponent of l. However, fast algorithms
for computing (near) optimal decomposition trees for an input formula’s incidence graph
might allow us to replace the term lO(2k) in the runtime bound by lO(k).

Using a canonical transformation of tree decompositions into branch decompositions,
the algorithm presented in this chapter can also be used to show that the model count of
a formula of length l and modular incidence treewidth k can be computed in time lO(k),
albeit with a factor in the exponent that is worse than the one in the bound proved in
Chapter 11.
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CHAPTER 13
Conclusion

We proved new results on the complexity of #SAT with respect to structural parameters,
presenting algorithms that compute the model count of formulas F with modular incidence
treewidth k or symmetric incidence clique-width k in time nf(k). In particular, #SAT is
polynomial-time tractable for classes of formulas where these parameters are bounded by
a constant.

It appears that our techniques cannot be applied to prove tractability of #SAT
parameterized by the β-hypertree-width, and the complexity of #SAT with respect to
this parameter remains open, though polynomial-time tractability was recently proved
for the special case of β-acyclic formulas using a clever generalization of Davis-Putnam
resolution [19].

Our interest in the complexity of #SAT with respect to ever more general structural
parameters is mainly theoretical. In closing, we would like to point out an advantage of
symmetric incidence clique-width over less general structural parameters which may serve
as a more practical motivation. As mentioned in the introduction to this part, inference
in Bayesian networks can be reduced to (weighted) model counting. The underlying
undirected graph of a Bayesian network often has small treewidth, but this structure is
not preserved by standard reductions such as the one by Sang, Beame, and Kautz [105].
More precisely, the incidence treewidth of the resulting formula can be much larger than
the treewidth of the Bayesian network: for each conditional probability table of the
network, the reduction introduces a complete bipartite subgraph of essentially the same
size. On the other hand, one can show that the reduction preserves symmetric incidence
clique-width. More specifically, a decomposition tree of the Bayesian network can be
turned into a decomposition tree of the formula’s incidence graph without increasing its
width (index). Accordingly, it suffices to compute a good decomposition of the Bayesian
network. Observations of this kind may help tackle one of the main challenges in applying
these algorithms to real-world instances: computing good decompositions as a starting
point for dynamic programming [70, 11, 68].
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Recent advances in practical model counting are based on randomized approximation
algorithms [55, 81, 26, 41]. These algorithms use randomly generated parity constraints
to partition the space of satisfying assignments into small cells; using a SAT solver as an
oracle, the model count of an individual cell can be determined in order to obtain an
estimate of the number of satisfying assignments overall. For this approach to work, the
constraints must involve sufficiently many variables to ensure that models are distributed
evenly across cells, but large parity constraints can be detrimental to the performance of
SAT solvers. Finding suitable constraints is the fundamental problem in designing such
algorithms. Surprisingly, it was shown experimentally that constraints involving only a
few variables are often sufficient to obtain good estimates [53]. It would be interesting
to see whether restrictions on structural parameters can help explain this phenomenon,
and more generally, whether randomized approximation algorithms can benefit from
structural restrictions.

Related work. The signed rank-width of a formula is equivalent to its signed incidence
clique-width, in the sense that these parameters dominate each other. Ganian, Hlinený
and Obdrzálek proved that the models of a formula can be counted by an algorithm whose
runtime is single-exponential in the signed rank-width [47]. Since the signed rank-width
of a formula never exceeds its signed incidence clique-width but can be exponentially
smaller, this constitutes an improvement over the algorithm by Fischer, Makowsky, and
Ravve, whose runtime is single-exponential in the signed incidence clique-width [44].

Saether, Telle, and Vatshelle showed that our dynamic programming algorithm for
symmetric clique-width can be modified so as to precompute the set of proper shapes
(see Chapter 12) for each node in the decomposition tree [99]. The resulting algorithm
runs in time polynomial in the maximum number of proper shapes over all nodes, a
value that essentially corresponds to what they call the PS-width of a decomposition tree.
Defining the PS-width of a formula F as the minimum PS-width of a decomposition tree
of I(F ), they show that the model count of F can be computed in time polynomial in the
length and PS-width of F , assuming that a decomposition tree of this width is provided
as part of the input. They proceed to prove that formulas whose incidence graph are
interval bigraphs have small PS-width and that the corresponding decomposition trees
can be found in polynomial time, so that #SAT is polynomial-time tractable for such
formulas. They further showed that a formula with m clauses and an incidence graph of
MIM-width k has PS-width at most mk, where MIM-width is a parameter that strictly
dominates clique-width [122]. Since it is not known whether decomposition trees of small
PS-width or MIM-width can be computed efficiently, these results falls short of proving
tractability of #SAT parameterized by PS-width or incidence MIM-width.

There is an orthogonal family of structural parameters based on so-called back-
doors [48], a notion originally introduced to explain the heavy-tailed runtime distributions
of DPLL-style backtrack search methods [125]. A strong backdoor of a formula F for
a class C is a set S of variables such that for each assignment τ : S → {0, 1}, the
instance F [τ ] obtained by instantiating F with τ belongs to the class C. If #SAT is
polynomial-time tractable for formulas in C and the detection of strong backdoors for C is
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fixed-parameter tractable, then #SAT is fixed-parameter tractable parameterized by the
size of a smallest backdoor for C. Gaspers and Szeider proved that #SAT is fixed-param-
eter tractable when parameterized by the size of a smallest strong backdoor for a class of
bounded incidence treewidth [49]. A set S ⊆ var(F ) is a deletion backdoor of F for C
if the formula obtained by deleting the literals x,¬x for each x ∈ S is in C. Nishimura,
Ragde, and Szeider showed that #SAT is fixed-parameter tractable parameterized by
the size of a smallest deletion backdoor for the class of so-called cluster formulas [87].

Structural parameters as studied in this work can be analogously specified for the
constraint satisfaction problem (CSP), using constraints instead of clauses in the definition
of graphs (or hypergraphs) associated with an instance. The complexity of CSP with
respect to structural parameters is well understood. For a class H of hypergraphs, let
CSP(H) denote the class of instances of CSP with associated hypergraphs in H. If
the maximum edge size of hypergraphs in H is bounded, CSP(H) is polynomial-time
tractable if and only if H has bounded treewidth, subject to a standard assumption
from parameterized complexity [65]. A similar result can be proved for the counting
version of CSP, subject to a weaker hypothesis [34]. Boolean constraint languages of
bounded arity can be expressed as propositional formulas of bounded clause size with
constant overhead and without changing the associated hypergraph. Accordingly, these
results imply tractability of #SAT (respectively, SAT) for classes of bounded (primal)
treewidth and bounded clause size. For the case of unbounded arities, this correspondence
breaks down. In this case, CSP(H) is fixed-parameter tractable, parameterized by
the size of the query, if and only if H has bounded submodular width, assuming the
Exponential Time Hypothesis [85]. Submodular width is a parameter that strictly
dominates α-hypertree-width, but as we saw in Chapter 10, #SAT is #P-complete
already for α-acyclic formulas, and a similar reduction proves NP-hardness of SAT for
α-acyclic formulas [103]. This discrepancy is caused by the fact that clauses provide
a very succinct representation of (certain) constraint relations: represented explicitly,
a clause over n variables corresponds to a constraint of size 2n − 1. Chen and Grohe
classified the complexity of CSP for more succinct generalized DNF representations and
unbounded arity, showing that bounded incidence width modulo homomorphic equivalence
is a necessary and sufficient condition for tractability [27].
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