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Kurzfassung

Data Engineering (DE) gewinnt in der Systems Engineering (SE)-Praxis zunehmend
an Bedeutung, um Entscheidungen zu unterstützen und voranzutreiben. Gleichzeitig
werden Model-Driven Engineering (MDE)-Methoden angewandt, insbesondere im Model-
Based Systems Engineering (MBSE), um der steigenden Komplexität moderner Systeme
gerecht zu werden. Allerdings bieten MBSE-Methoden nicht genügend Unterstützung für
die Datensammlung und -verarbeitung zur Gewinnung von Erkenntnissen und Wissen.
Obwohl DE-Methoden vielversprechend sind, um diese Herausforderungen zu bewältigen,
spiegelt sich ihr Einsatz in der Praxis und Forschung nicht ausreichend wider. Die Gründe
dafür sind mangelndes Wissen über die Möglichkeiten von DE in der Praxis, unzureichende
Ausarbeitung der Anforderungen für die Integration in bestehende Prozesse und technische
Umgebungen, unklarer Nutzen der Integration von DE und Kommunikationsprobleme
zwischen verschiedenen Disziplinen sowie hohe Implementierungskosten von DE-Lösungen.

Um diese Probleme zu lösen, wird in dieser Arbeit eine vierstufige Methode zur Integrati-
on von DE in SE vorgeschlagen. Der erste Schritt beinhaltet partizipative Workshops,
um relevante Interessengruppen einzubeziehen, Wissen zu sammeln, die interdisziplinäre
Kommunikation zu fördern und die Ergebnisse mit grafischen Modellierungsmethoden zu
validieren. Im zweiten Schritt wird die Integration der gewünschten DE-Implementierung
in bestehende Prozesse unterstützt. Der dritte Schritt beinhaltet die Formalisierung
von DE-Aufgaben mit Hilfe von MDE-Techniken, um die Implementierung von DE-
Anwendungen zu fördern und die interdisziplinäre Kommunikation während der Defini-
tion zu verbessern. Im vierten Schritt werden die formalisierten DE-Aufgaben zerlegt,
um Codegenerierung zu ermöglichen, vorhandenes Wissen wiederzuverwenden und die
Implementierungszeit zu reduzieren.

Die vorgeschlagene Methode erweitert bestehende State-of-the-Art-Methoden und wird
anhand von zwei Anwendungsfällen validiert. Dabei wird die Anwendbarkeit in der
Praxis und die Notwendigkeit der Einbeziehung verschiedener Disziplinen als Wissens-
quellen hervorgehoben. Zusätzlich wird in einer Benutzungsstudie die Anwendbarkeit
und Nutzbarkeit für Nicht-Informatiker:innen, wie beispielsweise Maschinenbauer:innen
und Datenwissenschaftler:innen demonstriert. Die vorgeschlagene Methode trägt zur Wei-
terentwicklung des modellgesteuerten Ansatzes für die Implementierung und Integration
von DE-Lösungen im Systems Engineering bei.
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Abstract

Data Engineering (DE) is gaining importance recently due to its ability to guide and
drive decisions, e.g., by increasing efficiency and effectiveness in Systems Engineering
(SE). At the same time, Model-Driven Engineering (MDE) methods are applied to SE,
referred to as Model-Based Systems Engineering (MBSE), to manage the increasing
complexity of modern systems in product development using models as primary artifacts.
However, MBSE methods lack sufficient support for collecting and processing data to gain
insights and knowledge, respectively. Although DE is promising to solve data collection
and analysis challenges of MBSE, current state of practice and state of the art do not
reflect the opportunities of DE in SE. Reasons for the gap are: first, a lack of knowledge
in practice about the opportunities of DE and insufficient precondition elaboration to
integrate with existing processes and technological environment. Second, unclear benefits
of integrating DE into SE and communication issues among various disciplines lead
to divergent expectations and missing acceptance in practice. Third, high efforts to
implement DE applications lead to long duration and a bottleneck of available data
scientists.

In response to these issues, this thesis proposes a method with four steps for integrating
DE into SE by leveraging MDE techniques. The first step focuses on participative
workshops involving relevant stakeholders to gather knowledge, promote interdisciplinary
communication, and validate findings using graphical modeling methods. The second
step supports the integration of a desired DE implementation into existing processes.
The third step supports the formalization of DE tasks using MDE techniques, aiming
to drive the implementation of DE applications while fostering communication. The
fourth step decomposes formalized DE tasks to enable code generation, reuse existing
knowledge, and reduce implementation time.

The proposed method extends existing state of the art methods, consolidated through a
Systematic Literature Review. The underlying methods are validated in two use cases,
highlighting the applicability in practice and the necessity to involve various disciplines
as knowledge sources. Further, a user study indicate applicability and usability for
non-programming engineers, e.g., mechanical engineers, and data scientists in practical
samples. This method contributes to various research disciplines by introducing and
evaluating a model-driven approach to facilitate the implementation and integration of
Data Engineering in Systems Engineering.
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CHAPTER 1
Introduction

The application of Data Science (DS) has emerged in various industries to support
decision-making [Pow16, PF13], gain additional insights in manufacturing [DB21] or
predict specific behavior in future [Sar21]. DS is an umbrella-term to unify various
concepts from statistics, data analytics and informatics with the goal to extract infor-
mation and respectively knowledge by analyzing data to derive for example patterns
or trends and report them as human-understandable insights [SLC18], e.g., via text or
images generated by Machine Learning (ML) algorithms. The term DS today is mostly
used in the context of the intersecting field of ML, aiming to solve a specific problem
without the need for being explicitly programmed [KBAK96], but by learning from past
data [MRT18]. However, to enable improvement through experience, data is required
in a machine-readable format with traceable data relationships. In this context, Data
Engineering (DE) includes the steps of collecting, storing, and processing data so that
algorithms such as those in the field of ML can be applied to it.

At the same time, Model-Driven Engineering (MDE) is gaining relevance for the engineer-
ing of complex systems, such as the design of aerospace systems [MS18]. A key reason for
the growing interest of MDE and the related Model-Based Systems Engineering (MBSE),
which focuses on support for the engineering of systems, is the rising complexity of sys-
tems in development by its number of components, functions, interactions and involved
disciplines [BOF+14, MS18]. Recently, the International Council on Systems Engineering
(INCOSE) published an updated Systems Engineering (SE) vision for 2035, highlighting
that system complexity is not just raising, it will explode in the upcoming years due to
additional factors, such as environmental sustainability, interconnected systems and the
digital transformation that changes products and product development [DFM+22].
SE is a transdisciplinary and integrative approach, enabling to design, integrate and man-
age complex systems among the Product Lifecycle Management (PLM), while addressing
the needs of various disciplines and processes [HdFV19, Mad18, SMM+19]. MBSE is
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state of the art and holds promise for improving design performance and addressing the
complexity of multidisciplinary systems by providing methods and tools for communicat-
ing and managing data related to system development by utilizing models as primary
artifacts [HS19, HS21, MP19]. In this regard, key challenge of SE is to improve perfor-
mance in the collection and analysis of data, information and knowledge, and achieving
effective communication between various stakeholders and disciplines at different stages
of (technical) product development to present shared information as a common context
for discussion [MS18].

Although MBSE and DE for technical product development are both aiming to support
an efficient and effective product development, the means of the two branches of methods
to achieve this goal is substantially different. MBSE aims to integrate knowledge of
various engineering disciplines in product development to establish an authoritative
source of truth by formalizing system requirements, behavior, structure and parametric
relations of a system using models as primary artifacts. Contrary, DE aims to collect and
utilize use-case oriented data to guide and drive decisions, e.g., during the development
process of systems, by enabling data-driven decision making. However, as of today, there
is no method in literature that supports the integration of DE into MBSE. Additionally,
opportunities of DE in technical product development practice are often unknown and
the integration in daily operations is cumbersome [RR22]. This lack of integration of DE
into MBSE and the lack of awareness of the opportunities of DE in technical product
development practice defines the motivation of this research.

In literature, the integration of DE capabilities to guide and drive decisions in the (techni-
cal) product development process, e.g., to foster performance in the product development,
has been defined as a framework called Data-Driven Engineering (DDE) [TSOO+20]. Due
to the entanglement of the terms SE and technical product development [AZ13, SMM+19],
in the following, DDE is used as a synonym for the integration of DE into SE, more
specifically into the state of the art methods of MBSE. Reasons for the cumbersome
application of DDE in practice can be broken down into the following aspects:

First, the elaboration of DDE requires the involvement of multiple disciplines, such as
certain domain experts being aware of day-to-day processes and shortcomings in the daily
business, data scientists knowledgeable about implementing DE applications, and soft-
ware engineers experienced to integrate with Information Technology (IT) infrastructure
and processes [HSM+19]. Consequently, methodological support must reflect each stake-
holder’s perspective to allow the identification of DE opportunities in practice. However,
in today’s practice, the technical understanding of domain-specific processes and the
collection of data from the perspective of data scientists is rarely reflected in data mining
methodologies [BVR21]. Additionally, a lack of knowledge regarding the elaboration of
DE can be observed in practice [RR22]. Therefore, methodological support must reflect
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the necessary knowledge of all relevant stakeholders so that potential use cases for DDE
can be identified and the development of DDE can be streamlined. Particular focus is
required on systematic knowledge gathering and support for data scientists regarding
requirements definition and implementation support of DDE in practice.

Second, practitioners, most of whom are not data scientists, report that in day-to-day
business, the benefits of DE are unclear and a lack of business models to gain benefit
from DE can be observed, leading to issues including financial problems and reduced
acceptance [RR22]. Among others, low acceptance originates from divergent (unrealistic)
expectations on DE capabilities [Ana22], misleading communication and knowledge
issues [Hag21, HPH22], e.g., through different background knowledge, or because DE is
often a blackbox for users and therefore, not understandable or trustworthy [KURD22,
Shi21]. Consequently, methodological support requires consolidating knowledge and
methods from different disciplines and helping to communicate DE problems aligned with
the targeted or elaborated support in a neutral format that does not require expertise in
a specific domain to be understood.

Third, the implementation of DDE requires considerable effort to achieve sufficient data
quality and data availability before implementation, which is often not given from the
early development due to missing interfaces, missing sensor specifications to gather data
or data acquisition strategies [DB21, RMR22, RR22, WWIT16]. In this context, the
definition of data interfaces, data attributes and interconnection of data with respective
level of detail must be determined and described before implementation to improve the
potential to succeed in the elaboration of DDE. Additionally, automated data collection
and analysis must be integrated in actual processes to support the implementation and
allow algorithms to be tested on actual data, which can reduce, e.g., concept drifts, which
are statistical changes in target variables or data [Tsy04]. Consequently, communication
overhead and time-consuming manual data collection are reduced [RMR22]. Additionally,
DE knowledge and experiences of data scientists is required from early elaboration of
DDE, which leads to an increasing demand for data scientists in practice [MCO16, MH17].
However, the number of available data scientists is too little to meet the demand of
the industry [Ana22, RR22]. Therefore, methodological support requires supporting
other disciplines to take over tasks, which lead to reduced effort by data scientists and
potentially lead to a reduction of the implementation duration. Eventually, taking over
responsibility by domain experts leads to increased project support and acceptance. Thus,
focus needs to be put on knowledge reuse and communication to foster the understanding
and allow to transfer knowledge among involved disciplines.

1.1 Objectives
The goal of this work is to methodologically support the integration of DE into MBSE to
increase the usage of ML and other data-driven capabilities in industry and therefore,
increase efficiency and effectiveness of SE. The methodological support focuses on support
prior to and during the implementation of DDE, whereas the maintenance of the resulting
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DDE tool is considered a minor goal. This leads to the following objectives:

First, to allow the successful elaboration of DDE in practice, a systematic decomposition
of actual processes, related IT infrastructure and data interfaces of a product or produc-
tion environment is necessary to integrate elaborated tool support in the development
environment/processes of a company. With respect to this, a consolidation of DE and
MBSE methodologies is aimed to allow a comprehensive analysis and identification of
potentials and opportunities in a use-case oriented development of tool support. Particu-
larly, methodological support requires to focus on collaboration and communication to
provide a comprehensive and understandable overview of existing opportunities of DE to
practitioners of involved domains.

Second, to enable an efficient and effective development of DDE, prerequisites for the
implementation of DE capabilities need to be elaborated to reduce delays during im-
plementation. In this respect, a method is required to identify and define prerequisites
from a DE point of view with additional focus on the integration of the developed tool
support into daily use. Therefore, focus is put on actual and required data interfaces
and the level of detail with the potential to interconnect data artifacts among systems,
e.g., if a production process measures a quality attribute of a product, it is necessary
to trace the data so to connect one production piece with all generated data among
the manufacturing. Consequently, the method requires to take various Cyber-Physical
System (CPS) components, such as smart sensor systems, into concern, which can be
seen as a key-enabler for digitization and automatic data collection in paradigms such as
Industry 4.0 [AH17, MV18].

Third, to allow the definition of DE interfaces and the integration into early product
development, the integration of DE into MBSE needs to be elaborated. Due to the
collaborative character of the DDE development, focus is put on the integration of
DE implementation knowledge into existing modeling languages used in MBSE, such
as Systems Modeling Language (SysML). This DE implementation knowledge is also
called formalized knowledge about DE. With the representation of different engineering
viewpoints and the DE viewpoint using a General-Purpose Modeling Language (GPML),
improved collaboration and communication between disciplines is expected [JSD+22].
Additionally, an increase in the acceptance of the solutions and an improved leveraging
of the potentials due to the explicit integration of solutions into current processes as well
as through the potentially increased understanding is expected.

Fourth, in order to decompose formalized knowledge about DE, the application of MDE
techniques, in particular partial and full code generation based on code snippets and
formalized DE implementation knowledge will be integrated. With code generation, a
reduction of costs and implementation time is expected, while knowledge transfer among
various disciplines is fostered.
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Research Clarification

Identify Use Cases

Clarify Data-Driven Engineering

Clarify Systems Engineering

Clarify Data Science
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Develop Impact Model
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Descriptive Study I (DS-I)

Systematic Literature Review

Industry Survey
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Method for Data Engineering
Code Generation using Model-
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Method for Identifying Data-
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Engineering Tasks using
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Descriptive Study II (DS-II)

Use Case for Cost Optimization
of Engineering Tolerances

Use Case for Weather Station
Forecasts

Figure 1.1: Overall research method aligned with [BC09].

1.2 Research Method
The overall research method follows the descriptive-prescriptive-descriptive approach
proposed in the Design Research Methodology (DRM) by [BC09]. Figure 1.1 presents the
embedded research method in the four-step methodology of the DRM. Each step of the
applied research method is represented by a single swim-lane. In each step, main tasks
are defined, which can either be processed in parallel or have to be executed sequentially.
Although the steps of the research method are sequentially represented, cycles have to
be made and various tasks, such as Descriptive Study I (DS-I) and Prescriptive Study I
(PS-I) are partly executed in parallel.

The research clarification aims to get a grasp idea of the research topic and to sharpen

5



1. Introduction

the research topic towards research questions and expected contributions. Following
this, the DS-I is conducted to elaborate on requirements and current state of the art of
the research topic. The literature review aims at collecting alternative approaches and
sharpen the vision of the aimed support for DE integration in MBSE. With an industry
survey, the outcome of the research is expected to be more concise and the focus driven
more by practitioner problems, which promises to increase practical applicability.

Based on the results of DS-I, the intended methodological support for DDE is elaborated
as a four-step method in PS-I, which are presented as sub-methods due to the possibility
of performing the various sub-methods independently. Therefore, in the following, each
sub-method is treated as a single method. The first two and the second two methods
can be grouped due to their characteristics. Particularly, the first two methods can be
characterized as preconditions, requirement and initial preparation steps. The second
two methods are implementation support for DE. Due to the interleaving of the first two
and the second two methods, the two groups of methods can be developed in parallel.

The developed methods are evaluated in initial case studies during the Descriptive Study
II (DS-II). Due to the grouping of the method development, also the evaluation is split
in two case studies.

1.3 Research Questions
According to [BC09], the initial step of the DRM supports the research clarification,
aiming to derive Research Questions (RQs) and sharpen the scope of research using
an impact model to contextualize influences and measurable criteria. The impact
model illustrated in Figure 1.2 contextualizes the developed support (blue) with the
influencing factors on the overall Research Goal (RG), depicted as success factor. From
a methodological perspective, first, factors influencing the success factor were identified
based on literature [GET19, PBBA23, SYS20] and discussions with experts from the
field of DE and MBSE. These experts have been part of the Austrian Center for Digital
Production (ACDP) and participants of the industry study, see chapter 4. Next, arrows
are drawn to represent influence, with the "+" and "-" at the end and tip of the arrow
showing how one factor influences the others, e.g., if the factor at the end of the arrow
increases (+), the factor at the tip of the arrow also increases (+) or decreases (-). If
a tip of an arrow is not indicated by a "+" or "-" but with a "0", it shows that there is
an influence but it cannot be said whether it is generally positive or negative. Finally,
measurable success factors and key factors were identified to further focus the research
interests.

In order to achieve the main objective of this thesis, which is to increase the efficiency
and effectiveness in SE, the main objectives of MBSE and DE must be consolidated.
In this respect, the rate of decisions based on DE capabilities in SE is required to be
promoted. To increase the rate of DE in SE, three key factors are identified:

The first key factor is the necessity to increase the acceptance of DDE in practice. To
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enable an increasing acceptance, the quality of provided support needs to be improved,
which is influenced by the level of integration in the processes of the domain experts,
the number of identified and valid use cases and the quality of data. However, quality
of data is beyond the scope of this thesis due to the complexity and extent required
to methodically support, assess, and improve data quality. To increase the number of
identified and valid use cases, knowledge on obstacles hindering the implementation
and knowledge on DE capabilities is required. Moreover, the level of integration in
actual processes can be fostered by collecting knowledge on data attributes and data
relationships, e.g., how are data attributes connected with downstream process data
artifacts? Particularly, the integration with actual processes in manufacturing is required
to enable contextualized data utilization in DDE.

The second key factor supporting the rate of DDE is the maturity of integration of
DE into MBSE processes and methodologies. Since MBSE is state of the art in SE,
the knowledge regarding DE tasks needs to be formalized through models, to enable
integration within existing methods and foster validation of knowledge. To increase the
amount and degree of validated knowledge, the effort for knowledge formalization requires
to be minimized. Consequently, a reduced effort in knowledge formalization increases the
rate of validated knowledge, which further supports the level of DE integration in MBSE.

The third key factor is the influence of costs on the rate of DDE usage. Particularly, the
higher the costs for the DE implementation, the less the rate of DDE. Among others,
the cost for the implementation is determined by the effort for the implementation itself,
which can be reduced by knowing preconditions, data artifacts, and hindering obstacles.
Furthermore, with a systematic decomposition of formalized and validated knowledge
using automatic code generation, the development effort is potentially reduced.

As result of the research impact model, the following main RQ can be stated:

Main RQ What means are required to support the implementation and integration
of Data Engineering in Systems Engineering?

With respect to the objectives of this thesis and the impact model, the following refined
RQs can be posed (Note, RQ1 was formulated as input to the Systematic Literature
Review (SLR), which marks the first phase of this thesis work, see Chapter 3. The
term Artificial Intelligence (AI) has been used in the broadest sense covering also Data
Engineering (DE).):

RQ1 What is the current state of the art of Model-Driven Engineering with
extensions to formalize Artificial Intelligence methods and applications?

RQ2 What obstacles hinder the application of Data-Driven Engineering in practice?

RQ3 What is required to promote the integration of Data-Driven Engineering in
practice?
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Figure 1.2: Research impact model describing influences on the rate of Data Engineering
in Systems Engineering (Data-Driven Engineering).

RQ4 What are appropriate methods to identify use cases for Data-Driven Engi-
neering?

RQ5 What are the prerequisites in a company so that manufacturing data can be
leveraged for Data-Driven Engineering?

RQ6 What extensions to graphical modeling languages such as SysML are needed to
integrate Data Engineering tasks comprehensively into Systems Engineering
processes, to formalize product and process knowledge as well as data artifacts
such as data attributes, interfaces, and data transformations?

RQ7 Given a system model that represents data attributes, interfaces, and the
formalization of Data Engineering tasks: What model properties can be
used to automatically derive an executable Data Engineering model using
Model-Driven Engineering techniques?

1.4 Publications
Parts of the described results of this dissertation have been published in peer-reviewed
scientific venues, another part is currently under reviewing. Due to the evolution of
the thesis and the particular focus of the publishing venues, the term ML used in
the publications is referring to the newly adapted terms DE and DDE as depicted in
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Section 2.1.4 and Section 2.3.5. To indicate which publications are used as basis in which
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1.5 Thesis Structure
The remainder of this thesis is divided into the following chapters:

Chapter 2 introduces relevant background on utilized methods to enable the understanding
of the proposed method. Chapter 2 deals with Step 1 in Figure 1.1 called Research
Clarification. First, relevant background from DE is defined with particular focus on
the high-level concepts of Data Mining (DM), ML and the used definition of DDE.
Furthermore, the Cross Industry Standard Process for Data Mining (CRISP-DM) is
introduced. Second, the basic concepts of MDE, namely model, metamodel, model
transformation, the differences between Domain Specific Modeling Language (DSML)
and General-Purpose Modeling Language (GPML) are presented. Third, an introduction
to Systems Engineering (SE), Model-Based Systems Engineering (MBSE) and its defacto
standard language SysML is provided. Finally, various used methods, such as from Lean
Six-Sigma toolset, and Enterprise Architecture (EA) are introduced, relevant for the
elaboration of use cases for DDE.

Chapter 3 and Chapter 4 cover Step 2 in Figure 1.1 called Descriptive Study I (DS-I).

Chapter 3 covers the finding of a SLR on the intersection of MDE and AI. The SLR aims
to collect and assess the overlap with AI and related terms instead of DE, as there are few
publications that use DE to consider MDE approaches related to AI. Within the SLR,
methods with focus on Model-Driven Engineering for Artificial Intelligence (MDE4AI) are
collected and assessed with regard to MDE and AI concerns. MDE concerns are assessed
regarding language engineering characteristics of DSML/GPML, e.g., introduction of
metamodel, usage of model transformation and transformation intent or concrete syntax
representation. AI concerns are assessed with respect to implementation support of the
methods, aligned with the CRISP-DM methodology, e.g., are capabilities of MDE used
to describe the data preparation or are means of MDE used to describe the integration of
e.g., ML algorithms with relevant hyper-parameters.

Chapter 4 introduces the findings of a conducted industrial survey, aiming to collect the
current state of practice on obstacles hindering the implementation of DS capabilities
in practice and the motivational factors of using DS. Furthermore, the experiences on
conducted DS projects are collected. In this chapter, DS is used as the core term, as DE
is rarely used in practice.

Chapter 5 overviews the developed four-step method. Additionally, the two primary case
studies for evaluating the subsequent methods are introduced. Note that each step is
presented as independently as possible to enable the application without applying the
entire method. However, dependencies and pre-conditions due to the iterative fashion of
the method exist. For each method, first, a general context and introduction to related
work or research gaps are introduced, followed by main steps of the method. Furthermore,
evaluation using the core case studies is given with a compelling discussion highlighting
implications for industry and research. The subsequent steps of the method are depicted
in the following chapters.
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Chapter 6 to Chapter 9 cover Step 3 and 4 in Figure 1.1 called Prescriptive Study I
(PS-I) and Descriptive Study II (DS-II).

Chapter 6 presents a method that enables the elaboration of use cases in a realistic envi-
ronment by leveraging the knowledge of relevant stakeholders in participatory workshops.
The chapter shows the integration of participative workshops and the formalization
of validated knowledge using model-based approaches, e.g., EA modeling or EA-based
modeling of Value-Stream Mapping (VSM).

Chapter 7 builds upon the previous chapter and supports the elaboration of target
EA integration of required applications, e.g., integration of automated data collection
mechanisms to enable the systematic collection of data using various interfaces of PLM
systems or integration of DDE applications in existing processes and IT artifacts.

Chapter 8 facilitates the implementation of DE by extending means of SysML with
stereotypes to enable the formalization of implementation relevant knowledge. To
incorporate DE-relevant knowledge into MBSE, processes and guidance from CRISP-DM
are used to structure required DE knowledge.

Chapter 9 presents a method that builds on the previous chapter to reuse the formaliza-
tion of DE knowledge by using model transformation to generate code. In particular,
the approach builds on template-based code generation that integrates the formalized
knowledge of the SysML model into predefined code snippets.

Chapter 10 summarizes the contributions of this thesis aligned with the work’s objectives
and aims. Furthermore, the applied research method is discussed, the implications for
industry and research are highlighted, and relevant future research is proposed.
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CHAPTER 2
Background

This section presents relevant background on the two core topics, namely Data Engineering
(DE) and Model-Driven Engineering (MDE). Additionally, side-topics and relevant
methods from the toolset of Lean Six-Sigma are introduced. The chapter is organized
as follows: First, an overview of the key concepts and the relationship between DS/DM
and ML is given. Second, the concept of MDE and the implementation with SysML is
presented. Next, Lean Six Sigma methods used in the elaborated methods are introduced.
Finally, preliminary knowledge on EA is given.

2.1 Data Science, Data Mining, Data Engineering and
Machine Learning

Artificial Intelligence (AI) in the broadest sense marks the data-driven and knowledge-
driven area of science with numerous practical applications, ranging from image/voice
recognition to recommendation systems and self-driving cars [RN21]. Although the
topic seems relatively new due to the media presence of AI and especially the emerging
trend of chatbots like ChatGPT [Ope23], AI was defined several decades ago and has
been expanded and redefined by the evolution of the topic [Eur20]. A side effect of the
evolution of the topic is that different definitions are used depending on the underlying
methods and the area of application. Similarly, not only the definitions of AI, but also
the various terms associated in the literature have various definitions. For example, terms
such as Machine Learning (ML), Data Science (DS), and Data Mining (DM) are used
differently depending on the application area [ED19].

In this respect, in the following, the terms DS, DM, ML and the de facto standard
methodology for supporting the implementation of DS/DM projects, CRISP-DM are
defined as they are required to be understood for the particular applied domains of this
thesis.
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2.1.1 Data Science
The term DS acts as an umbrella term referring to the interdisciplinary field of collecting
data, extracting information and knowledge by analyzing data to derive patterns [FPS96],
trends, etc., and report them as human-understandable insights that are beneficial for
various areas, such as manufacturing [DB21, SLC18, SS18]. In today’s applications,
DS heavily relies on the application of ML algorithms with its sub-fields such as Deep
Learning (DL).

2.1.2 Data Mining
DM is the actual extraction of knowledge from datasets, and processes [PF13]. Due to
the growing size and complexity of data, DM became one step within a more holistic DS
process [MCF+21]. However, due to the intense entanglement of the terms DM and DS,
they will be used interchangeable in this thesis.

2.1.3 Machine Learning
Machine Learning (ML) is a sub-field of the broader area of AI, and allows computer
programs to automatically learn from existing data [MRT18]. The whole (pre-)processing
of the data is part of DS, and thus ML is intersecting with DS [KD18]. ML algo-
rithms aim to solve a specific problem by eliminating the need for being explicitly
programmed [KBAK96]. In today’s practice, the application of ML is becoming increas-
ingly important due to the growing amount of available training data and enhanced
accuracy [GBC16]. For the rest of this thesis, we do not distinguish between the com-
monly used categorization of ML, namely supervised, unsupervised, semi-supervised, and
reinforcement learning [MRT18].

2.1.4 Data Engineering
As previously introduced, the terms DS, DM, and ML refer to the extraction of valuable
insights from existing data. Consequently, the data must be available, sufficiently inter-
connected, and most likely pre-processed, before they can be used by any ML algorithm.
These steps are separate within an upstream process called DE [RH22]. According to
[RH22], the DE lifecycle consists of Generation, Storage, Ingestion, Transformation
and Serving. The ingestion, transformation and serving of data is equally to the well
established term Extract, Transform, Load (ETL). Thus, DE can be characterized as
necessary prerequisite to ML, since ML should apply an algorithm only on pre-processed
data.

2.1.5 Cross Industry Standard Process for Data Mining (CRISP-DM)
Regardless of the applied methods enabling decision support, standard procedural models
for data handling exists [AS08].
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The de facto standard methodology for data handling in the industry is CRISP-DM [MSMF09].
The first version of CRISP-DM was elaborated in 1999 based on funding from the Euro-
pean Union by an expert team from industry [CCK+00]. The CRISP-DM methodology
consists of guidance on four levels: phases (steps), generic tasks, specialized tasks and
process instances [CCK+00]. The six phases are executed sequentially but also iteratively
and flexibly, and it is not essential to perform all steps in one project. The six phases of
CRISP-DM can be summarized as follows:

1. Business Understanding: Project objectives, requirements, and an understand-
ing from a business level is achieved. Based thereon, a data mining problem is
defined, and a rough roadmap is elaborated.

2. Data Understanding: Data is collected to understand the situation from a data
point of view.

3. Data Preparation The construction of the final dataset for the learning algorithm
based on raw data and data transformations.

4. Modeling: Various algorithms are selected and applied to the elaborated dataset
from the previous step. In this step, so-called hyper-parameter tuning is applied to
varying parameter values and achieve the most valuable result.

5. Evaluation: The result of the algorithm is evaluated against metrics and the
objectives from the first step.

6. Deployment: The achievements are presented so that a customer or an imple-
mentation team can use them for further integration.

Although CRISP-DM is commonly used in DE projects in recent years [MCF+21], there
are several weaknesses, most notably that the methodology has not been updated since
1999 [Sal21].

However, the strengths of CRISP-DM are, among others, the common sense, the flexibility,
and the initial focus on business understanding [Sal21]. Given the weakness of being
obsolete, several methods have been proposed in the literature to replace CRISP-DM.
However, it is still considered the most complete methodology concerning the needs of
industrial projects [MCF+21].

As discussed in [MCF+21], CRISP-DM can be readily extended to meet specific new
requirements of today’s industry. Additionally, CRISP-DM comprises the basic phases of
DE. Thus, it will be used as a basic method structuring the methods introduced in this
thesis.
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2.2 Model-Driven Engineering
Model-Driven Engineering (MDE) uses models as central artifacts in software engineering,
enabling the creation and execution of software systems based on models [RDS15]. The
core of MDE includes the concepts model, metamodel, and model transformation [BCW17,
RDS15].

2.2.1 Model
Models are considered machine-readable artifacts representing an abstraction of one or
multiple concerns of interest of a system under study [BCW17]. According to [RDS15],
a model is a "system that helps to define and to give answers of the system under study
without the need to consider it directly”. Based on [Sta73], a model is a replication of
some system under study with its characteristics. First, it is a mapping and not identical
with the original. Second, it is an abstraction covering only relevant characteristics of
the original. And third, there is always some pragmatics behind, i.e., what the model is
used for.

2.2.2 Metamodel
Metamodels define the modeling concepts and their relationships without defining any
concrete representations. The intentional description of all possible models that must
correspond to the associated metamodel is given. Therefore, a metamodel can also be
described as a model of models. The metamodel defines the structure of a modeling
language [RDS15]. From a language engineering perspective, a metamodel represents
the abstract syntax of a modeling language [BCW17]. The concrete syntax of a language
assigns graphical or textual elements to metamodel elements that users can understand
and, possibly, edit through model editors [BCW17, RDS15].

2.2.3 Model Transformation
As models in MDE are considered machine-readable artifacts, so-called model transforma-
tions apply to modify existing or generated new modeling artifacts. These artifacts then
are used for particular purposes, realizing the steps of the envisioned engineering process
toward the partial or full generation of the software system, most commonly known as
code generation in software engineering. In literature, frameworks exist to frame the
intent and properties of model transformations [LAD+16]. Furthermore, classifications
of existing model transformation tools are given in [KBC+19].

2.2.4 Stereotypes and Model Extension
As defined above, independent of the level of automation and the focus of the modeling
language, a metamodel defines the modeling concepts, and their relationships of a
modeling language. Models are instances of metamodels describing a specific system and
the model characteristics must match all aspects of the associated metamodel.
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To support a kind of "light-weight" extrusion of models, still conforming to the given
metamodel, so-called stereotype have been introduced in Unified Modeling Language
(UML) [BCW17, SSHK15]. A stereotype is a means of modeling to extend metaclasses by
defining additional semantics to the concept represented by a metaclass [BCW17]. The
use of stereotypes in modeling approaches has been proven to support the understanding
and standardization of a model [KSW04]. Therefore, stereotype extensions for a specific
purpose are common in practice.

2.2.5 General-Purpose and Domain-Specific Modeling Language
In the modeling community, there is controversy and ongoing debate regarding the
classification of modeling languages into General-Purpose Modeling Language (GPML)
and Domain Specific Modeling Language (DSML) [Fow10, MHS05, KOM+10, RDS15,
SCL+21].

A GPML is characterized by more general constructs that can be used for multiple pur-
poses [KOM+10]. Most prominent GPML languages are the Unified Modeling Language
(UML) and the Systems Modeling Language (SysML), which are both providing a wide
range of constructs and notations allowing to specify and document software systems
(UML), and even entire systems (SysML) [RDS15]. The advantages of these modeling
languages are their applicability in a broad domain and their understandability by system
engineering disciplines [RDS15]. Furthermore, extendability using stereotypes allows to
adapt these modeling languages with their toolset to specific domains without inhibiting
the properties of the original elements [RDS15].

In contrast to the widespread application of GPMLs, DSMLs are tailored to a specific
domain. Therefore, each modeling concept necessary is precisely defined towards support-
ing a specific concern of interest. Additionally, DSMLs are said to be more expressive,
resulting in productivity gains and savings in maintenance costs [KOM+10]. Furthermore,
due to the expressive power of few domain concepts, understanding, validation, and
reliability is improved [HPv09, RDS15]. However, if only a subset of GPML capabilities
are used then DSMLs should not create constructs again and again [BCW17].

2.2.6 MDE4AI
The term MDE intelligence or MDE4AI has been defined recently with a series of
workshops [BBGW21, BKWZ21]. The focus of the MDE intelligences workshop refers
to both capabilities that support modeling by leveraging AI (Artificial Intelligence for
Model-Driven Engineering (AI4MDE)) and applying modeling capabilities to integrate
AI concerns in the development process (MDE4AI). MDE4AI focuses on facilitating the
AI development by leveraging DSMLs and GPMLs to allow domain experts to design
AI artifacts themselves while providing an auditable conversion pipeline [BBGW21,
BKWZ21], which contributes to the goals of the European Commission to define ethics
guidelines for trustworthy AI [Hig19, Hig20].
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Temperature_Sensor
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Humidity_Sensor

attributes
 + Humidity_Percentage: Real
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attributes
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attributes
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attributes
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Figure 2.1: Product family sample using the Variant Modeling with SysML (VAMOS) method by [Wei14].
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«Block, VariationConfig»
Weather_System_01

attributes

«Block»
Weather_System

«Block, Variation»
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attributes
 + Date: String
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attributes
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attributes
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attributes
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1
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Figure 2.2: Specific configuration of a product using the VAMOS method by [Wei14].

2.3 Systems Engineering

According to INCOSE, "Systems Engineering (SE) is a transdisciplinary and integrative
approach to enable the successful realization, use, and retirement of engineered systems,
using systems principles and concepts, and scientific, technological, and management
methods" [WI23]. Although the definition of INCOSE is often used to define SE, there
are various definitions in the literature with slightly different meanings [Möl16]. SE
processes are defined in the ISO-152881 standard and basically consist of Agreement
Processes, Enterprise Processes, Technical Processes and Project Processes. Usually,
the SE method itself consists of requirements analysis, functional definition, physical
definition, and design validation [KSFB20].

2.3.1 Systems Engineering versus Software Engineering

SE and software engineering are distinct yet interrelated disciplines within the broader field
of engineering. SE encompasses the comprehensive management and integration of entire
systems, encompassing hardware, software, processes, and human elements, from inception
to decommissioning. Software engineering, on the other hand, is concerned with the design,
development, testing, and maintenance of software applications, with a particular focus
on programming, software architecture, and software life cycle management[PAA+15].

1https://www.iso.org/standard/81702.html
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2.3.2 Model-Based Systems Engineering
MBSE aims to integrate various engineering disciplines in product development to
establish an authoritative source of truth by formalizing system requirements, behavior,
structure and parametric relationships of a system using models as primary artifacts for
system development [KB19]. MBSE focuses on development support for the discipline of
SE, characterized as the collection of system related processes, methods, and tools [Est07].
The main difference between MBSE and conventional SE is that conventional SE focuses
on storing artifacts in several documents maintained in case of changes. The main
disadvantage of conventional SE approaches is the lack of synchronization and the
missing authoritative source of truth or authoritative source of knowledge [KB19]. In a
model-based approach, the relevant information to describe an abstract system is stored
in models [MS18].

Depending on the degree of automation of model management activities, "model-based"
is referred to as a lighter version of "model-driven". However, in practice the difference
between the terms Model-Based Systems Engineering (MBSE) and Model-Driven Systems
Engineering is blurring. Consequently, the terms are often used interchangeable as
discussed in relevant communities2.

Although MBSE became a major research field [WVMB19], the values and benefits of
MBSE are mainly discussed in literature rather than observed, and measured [HS21].
Benefit claims are mainly related to a better communication and an increased traceabil-
ity [HS21]. The literature concerning graphical MBSE methods promises to increase
design performance while supporting the communication of relevant stakeholders of a
system [HS19, HS21].

Interestingly, the integration of DE capabilities either for modeling support or the
modeling support for the integration of DE capabilities in the context of engineered
systems is not available yet [DFM+22, RBGM21]. The challenges to integrate MBSE in
the development of DE-enabled systems are among others [RBGM21]:

Availability of data: Restricted access or insufficient amount of data.

Type of data: Necessity to label or pre-process data so that it is usable.

Integration of Processes: Implementation of a process that allows to curate data and
define DE in SE

In literature, various methods exist to implement MBSE in practice [Est07, KK16, RFB12,
ST18]. A core similarity of the approaches is the integration of SysML as means for
modeling. Hence, SysML acts as a de facto standard for MBSE.

2See https://modeling-languages.com/clarifying-concepts-mbe-vs-mde-vs-mdd-
vs-mda/ for a discussion.
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2.3.3 Systems Modeling Language (SysML)
In MBSE, SysML is the most prominent modeling language [AZ13]. SysML is based
on the UML standard with a special focus on the modeling of whole systems. The
language supports the formalization of structural, behavioral and functional properties
[HP13]. Structural diagrams describe the composition of systems and subsystems with
their attributes and relationships [BCW17, HP13].

To illustrate the basic concepts of SysML, Figure 2.3 depicts a sample application of core
elements of a Block Definition Diagram (BDD) realized in the Eclipse-based open-source
software Papyrus3. Particularly, the illustration with a sample is chosen here, as it is
required in subsequent chapters to follow the elaborated methods closely. On top of
Figure 2.3, a Block with the name Mammal is defined, consisting of one attribute of type
String with the attribute name Mother and the visibility public indicated by the plus
(+). Other elements of a block are, e.g., operations, ports, etc. However, these elements
are not shown, since they are irrelevant for this work. The name of the Mammal-Block
is written in italics because it is an abstract class that cannot be instantiated without
further derivation. Underneath the Mammal-Block, two inheriting elements are defined
using white arrows connecting the blocks. The attribute Mother is inherited from the
parent block, where the arrow head points to. The Dolphin child has an additional
property Age, which only affects this block as long as no further inheritance is modeled in
another view. The second block Human consists of a subsystem, indicated by the black
diamond being a part association (a.k.a. composition). A part association determines
that a block describes the whole element and a part of the whole element is additionally
described in another element. The 1 and the 0..2 indicate the multiplicity, allowing to
define the number of elements. This sample describes that one element Human consists
of zero, one or two legs, and that each leg is connected to only one Human. The white
diamond between Leg and Shoe indicates a shared association, which is a weaker form of
the part association. It refers to a relationship where the part element is still valid if the
whole element is deleted, e.g., if the element Leg is not valid anymore, the Shoe is still
valid. The multiplicity * indicates that a Leg can have arbitrary number of shoes.

In SysML, the execution of multiple activities is modeled using state diagrams. A state
diagram requires an entry point and an exit point. Figure 2.4 illustrates a sample state
diagram. The arrow between the states indicates a transition and describes that one
state has been completed and another is active. Behind a state, the execution of one
or multiple activities can be triggered, whereas an activity is a sequential execution of
single actions [OMG19].

2.3.4 Variant Modeling
In the SE/MBSE process of developing complex systems, different product lines can
be developed. Product lines consist of product families, whereby a family consist of
variation that are composed to a system variation. Within a family, various components

3https://www.eclipse.org/papyrus/index.php
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«Block»
Mammal

attributes
 +/ Mother: String

«Block»
Dolphin

attributes
 + Age: Integer
 +/ Mother: String [1]

«Block»
Human

attributes
+/ Name: String
+/ Mother: String
+ Age: Integer

«Block»
Leg

attributes
+ Length: Integer

«Block»
Shoe

attributes
 + Size_UK: Real 1

0..2
1

 *

Figure 2.3: Block Definition Diagram sample.

StateMachine

State1 State2 EntryPoint  ExitPoint

Figure 2.4: State Diagram sample.

are connected so that a specific system is configured. Each system configuration produces
various outputs in terms of format, interface or composition.

In literature and practice, different approaches to managing the diversity of product lines
during product development are available [EW22, Wei14]. One approach that supports
the modeling of variants in the MBSE environment is the VAMOS method [Wei14].

The VAMOS method provides a metamodel to reflect the composition and specification
of single subsystems of a complex system model. The approach is mainly based on SysML
features like blocks, ports and connections, used to represent the structural differences
but also the differences in the components of a system.

Figure 2.1 illustrates an example of a variant model based on [Wei14]. In the figure,
the definition of a product family is shown, based on the use case in Section 5.2.1.
The product family is indicated by a VariationPoint stereotype. Each of the potential
variations of the system is indicated by the stereotype Variation. As a result of the
definition, all possible variants of a product are defined.

A specific configuration of a system is modeled using the VariationConfig stereotype,
as shown in Figure 2.2. The variation configuration is inherited from the basic system
Weather_System and the configuration composes a specific subset of Variations.
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2.3.5 Data-Driven Engineering
Using the result of a DE process to improve product development through decision support
is defined by various terms in literature, such as Data-Driven Decision Making [PF13,
TSOO+20], and Data-Driven Engineering Design [FZZ+20, LC17, VKPV22]. A similar
definition to Data-Driven Engineering Design is found in the literature as Data-Driven
Engineering (DDE) and is defined as follows [TSOO+20]:

"Data-Driven Engineering is a framework for technical product development in which the
use case-oriented collection and utilization of sufficiently connected product lifecycle data
guides and drives decisions and applications in the product development process."

Technical product development processes can be read as a synonym for Systems Engi-
neering (SE) [SMM+19]. Additionally, "use case-oriented collection and utilization of
sufficiently connected product lifecycle data" can be summarized under the term DE.
Therefore, DDE is the application of DE for SE to enable the application of any algorithm
that "guides and drive decisions", which is basically a kind of ML algorithm, respectively.

Consequently, the definition of DDE can be refined as follows:

"Data-Driven Engineering is a framework that enables Data Engineering in
Systems Engineering to guide and drive decisions and applications in Systems
Engineering processes."

With respect to this, in this thesis, DDE refers to the application of DE and any kind of
algorithm that guides and drives decisions in SE.

2.4 Lean Six Sigma Methods
Six Sigma is a set of tools and methods allowing to structure the development and
delivering of defect-free products and services by improving a product’s value and
quality in the design stage [SN12, YE09]. Complementary, lean product development
aims to improve product development efficiency and effectiveness by decreasing product
development lead time [MLC11, YE09]. Lean Six Sigma combines the advantages of
Six Sigma and Lean Management [MJSR13]. Within the context of this thesis, the
toolset of Lean Six Sigma is taken into concern since the concepts of Six Sigma and
Lean Management have been perceived beneficial for SE and MBSE, respectively [Mul13,
ST15, YE09]. Consequently, the methods used from Lean Six Sigma are presented
below [Tag10, YE09].

2.4.1 Supplier-Input-Process-Output-Customer
The techniques and tools used in Six Sigma either aim to improve an existing situation
or to design a new system by applying Six Sigma methods called Design For Six Sigma
(DFSS) [YE09]. As a part of the DFSS, the Supplier-Input-Process-Output-Customer
(SIPOC) method is used in the initial definition phase to summarize inputs and outputs
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Table 2.1: Supplier-Input-Process-Output-Customer sample using table representation.

Supplier Input Process Output Customer
• Information Supplier 1
• Information Supplier 2

• Input A
• Data B

• Task A
• Task B Output AB Information

Receiver

related to one or more processes in a comprehensive form. Table 2.1 depicts a generic
template of a SIPOC.

A SIPOC consists of an information supplier (S) that provides certain input data (I) to
a process (P) that produces an output (O) for a customer (C). As a rule of thumb, a
comprehensive SIPOC constitutes four to five key steps of a process4. The main purpose
of a SIPOC is to clearly delineate the processes in a process chain and capture an overall
process with the actors involved. In literature, approaches exist leveraging the Enterprise
Architecture (EA) method to formalize a SIPOC using model-based techniques [RSS22].

2.4.2 Product Development Value Stream Mapping

The Lean Management method VSM aims to identify value streams lacking efficiency
and to increase productivity [HR97]. Although the method is typically associated
with manufacturing, it can be applied to sources of waste on an information level in
engineering [McM05]. In [McM05] the types of waste adapted from VSM to Product
Development Value Stream Mapping (pdVSM), which allows to assess waste in information
and knowledge. Table 2.2 depicts sources of information waste based on [McM05].

2.4.3 Waste Failure Mode Effect Analysis

To more qualitatively assess the causes and effects of errors, e.g., information waste
from the VSM method, the application of Failure Mode and Effect Analysis (FMEA) is
proposed in literature [Sta03]. Particularly, in product development, the application of
Design Process Failure Mode and Effect Analysis (DP-FMEA) is recommended [CI06].
With respect to the reduction of information waste, Waste Failure Mode and Effect
Analysis (W-FMEA) is proposed in the literature, taking VSM into concern [dC14].

To allow the interpretation of an FMEA, the impact of the waste requires to be assessed
and prioritized with respect to Occurrence (O), Severity (S) and Detection (D) [Sta03].
Each waste is rated on a scale of one to ten with respect to the three dimensions mentioned
above. The resulting ranking are multiplied, with the highest number representing the
waste with the most impact that must be addressed first. A guideline for the ranking of
the individual dimensions can be taken from the literature [dC14] or defined by the user.
For further guideline on conducting FMEA, please refer to literature [CI06, Sta03, dC14].

4https://www.isixsigma.com/tools-templates/sipoc-copis/sipoc-diagram/
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Table 2.2: Value-Stream Mapping (VSM) dimensions of information waste based on
[McM05].

Type Explanation
Waiting Late delivery of information; Delivery too early -> leads to

rework
Inventory Lack of control; Too much in information; Complicated

retrieval; Outdated, obsolete information
Over-Processing Unnecessary serial processing; Excessive/custom formatting;

Too many iterations
Over-Production Creation of unnecessary data and information; Information

over-dissemination
Transportation Information incompatibility; Software incompatibility; Com-

munications failure
Unnecessary Movement Lack of direct access; “Walking” the process
Defective Products Haste; Lack of reviews, tests, verifications; Lack of interpre-

tation (raw data delivered when information or knowledge
needed)

2.5 Enterprise Architecture
This section introduces the concepts of the EA method on a level required as preliminary
to understand the here presented method. For a comprehensive introduction to EA,
please refer to [BNS03, GP11, Lan09]. Furthermore, in this section, an introduction on
the EA To-Be architecture modeling state of the art and methods is given.

2.5.1 Enterprise Architecture Method
The EA principles describe business processes aligned with IT artifacts to enable a more
holistic view of an enterprise. The holistic view and the principles of EA support the devel-
opment of a corporate strategy using the enterprise architecture initiative [GP11, Lan09].
Over the years, several supporting methods and standards emerged, with the Zachman
Framework [Zac87] and the TOGAF [TOGAF18] as representative samples [EW22]. The
ArchiMate5 software implements the ArchiMate graphical modeling language, which
complements the TOGAF framework [Archi23, Archi22]. ArchiMate is proven beneficial
for integration and interoperability of business process with related application and
technology layer [IJ07, WC18]. Matching business processes with associated IT artifacts
is one of the core differences with other model-driven architecture methods, such as
Business Process Model and Notation (BPMN) [WM08].

Figure 2.5 depicts the basic layers of the EA modeling using ArchiMate with representative
relationships and used modeling elements. Each layer (e.g., business layer, application
layer, etc.) is connected to the underlying layer using links, e.g., by realization links.

5https://www.archimatetool.com/
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Figure 2.5: The EA model with business process (yellow), related applications (blue) and
the artifacts and technologies (green).

To exploit the entire potential of the modeling method, more elements of each layer
requires to be modeled, e.g., Application Interaction in the application layer. However,
only elements relevant to this thesis are introduced in the model to limit the scope,
complexity and effort of the modeling. For further details on the modeling of EA, please
refer to [Lan09] and [GP11].

2.5.2 Enterprise Architecture To-Be Architecture Modeling
An enterprise’s architecture evolves over time to adapt to the market or implement new
technologies [MP03]. The enterprise transformation from actual to target architecture is
referred to as Assess-Aim-Act approach [GP11]. Using EA, current (As-Is) architecture,
target (To-Be) architecture and migration plan from current to target architecture of a

26



2.5. Enterprise Architecture

company can be represented [ST06]. The To-Be architecture is also known as desired,
future, or target architecture [RMNN13]. In the modeling of EA, there is no visual or
standardized distinction between As-Is and To-Be architecture [BRJ17]. For this reason,
the method of [BRJ17] introduces a color code aligned with text annotations to identify
changed architecture.

However, the modeling of To-Be architecture is still time-consuming and error-prone due to
the required knowledge of the As-Is architecture and the prescriptive nature of inventing
new processes. Therefore, [NAR+17] introduced a checklist to support the quality
assurance for EA To-Be modeling. The checklist consists of various questions on a coarse-
grained granularity, e.g., "Is the desired business approach clearly described?" [NAR+17].
Based on the checklist, the readiness for the implementation of a To-Be architecture is
theoretically assessed.
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CHAPTER 3
State of the Art - MDE4AI

This section aims to present the actual state of the art on Model-Driven Engineering
(MDE) approaches aiming to support the implementation of Artificial Intelligence (AI)
capabilities. With respect to this, recently, a series of AI and MDE workshops was
initiated, focusing on using MDE techniques for defining AI methods (MDE4AI) and AI
support for MDE (AI4MDE) [BBGW21, BCWZ22, BKWZ21]. The adoption of MDE
practices to support AI capabilities of the system under study promises to support
the development through degrees of automation of the engineering activities, e.g., code
generation, and, therefore to increase the number of industrial applications. Still, to
the best of our knowledge, the current state of practice and state of the art is not fully
elaborated regarding MDE approaches supporting the implementation of AI capabilities.

In this respect, in the following, an SLR is conducted to achieve the RG defined in
Table 3.1. The RG definition is aligned to the Goal-Question-Metric approach [BCR94].

Table 3.1: The overall research goal of the conducted SLR.

Purpose Collection and comparison of studies on
Issue model-driven approaches that explicitly address the engineering of
Object artificial intelligence applications
Viewpoint from the point of view of researchers.

According to the guidelines set out by [KB13], an SLR is conducted to gather and assess
existing literature to address the identified research questions [PVK15]. Particularly, this
work focuses on the state of the art for MDE approaches that enable the formalization of
AI use cases.

A selection of text, figures and tables within this chapter is based on the publications
in box „Publications 2: State of the Art“ (It should be noted that an expanded and
improved version of this chapter has been published in the Software and Systems Modeling
(SOSYM) journal):
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Publications 2: State of the Art

[RBW+23] S. Rädler, L. Berardinelli, K. Winter, A. Rahimi, and S. Rinderle-Ma,
“Model-Driven Engineering for Artificial Intelligence – A Systematic Literature
Review,” Jul. 2023, doi: 10.48550/arXiv.2307.04599.

[RBW+24] Simon Raedler, Luca Berardinelli, Karolin Winter, Abbas Rahimi, and
Stefanie Rinderle-Ma. Bridging MDE and AI: A systematic review of domain-
specific languages and model-driven practices in AI software systems engineering.
Software and Systems Modeling, Sept. 2024. doi: 10.1007/s10270-024-01211-y.

The remainder of this section is organized as follows. Section 3.1 introduces the research
method, i.e., the paper search and selection process. Section 3.2 presents the approaches
aligned with the data extraction strategy of the SLR protocol in Section 3.1. Section 3.3
answers the RQs, discusses the key findings, and depicts implications and future research.
Section 3.4 assesses the quality and limitations of the current SLR using threats to
validity analysis. Finally, Section 3.5 summarizes the findings of the SLR.

3.1 Research Method
This section introduces the SLR method applied in this work. The SLR study protocol
is based on the guidelines by [KB13, KC07, PVK15], introducing the main steps of SLRs
to be performed in the Software Engineering domain.

Figure 3.1 depicts an activity-like diagram of the implemented search and selection
process protocol workflow. The workflow consists of the following steps:

1. Identifying the Research Goals and the Research Questions (RG/RQ): The objective
of this work and the research questions are defined to guide the SLR (Section 3.1.1
shows the result of the RG/RQ elaboration)

2. Search Process: The literature search is conducted on selected databases collecting
scientific publications via the execution of queries based on a search string suitably
designed according to the given RGs and RQs (Section 3.1.2).

3. Study Selection: The authors define the Inclusion Criteria (IC) and Exclusion
Criteria (EC) and apply them to the papers collected in the databases by reading
their titles and abstracts. Subsequently, the selected papers are evaluated based on
their content (Section 3.1.3).

4. Data extraction: Given a set of selected studies that passed the IC and EC
application, detailed data are extracted throughout a full-text reading. In the
SLR, papers’ detailed information is collected in evaluation tables. If a publication
is relevant, snowballing is applied to add referenced papers or the one citing the
selected publication (see Section 3.1.4).
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Figure 3.1: SLR method overview.

5. Results Analysis and Discussion: Collected results are analyzed, and a discussion
occurs among the authors to answer the stated RQs.

The execution of the protocol is documented in a spreadsheet, and bibliographic entries
are collected in Zotero Library, published online1.

3.1.1 Research Questions
The overarching RQ based on the defined RG is the following:

RQ1 What is the current state of the art of Model-Driven Engineering with
extensions to formalize Artificial Intelligence methods and applications?

To address these research question RQ1, various refined RQs are defined as follows:

RQ1.1 What Model-Driven Engineering aspects are addressed in the approaches, e.g.,
abstract syntax (metamodel), concrete syntax etc.?

This RQ aims to assess the pillar concepts of MDE languages concerning compre-
hensiveness (of modeling) and applicability (maturity).

RQ1.2 Which phases of Artificial Intelligence development aligned with the CRISP-DM
methodology are covered by the approaches?

This RQ assesses the extent to which the development phases of CRISP-DM are
covered. As a result, implications can be made about the extent of support.

RQ1.3 Which industrial domains are supported by MDE4AI approaches?

This RQ enables finding industries that are using MDE in the context of AI and thus
driving the development of MDE4AI using domain-specific tools and methodologies
towards the needs of the specific industry.

RQ1.4 What are the used methods and the supporting Model-Driven Engineering tools
the proposed approaches rely on?

1https://github.com/sraedler/Model-Driven-Engineering4Artificial-
Intelligence
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This RQ allows assessing the underlying methods and the related tool support,
including further development leveraging these underlying technologies to gain
maturity.

RQ1.5 To what extent is communication between different stakeholders supported by
Model-Driven Engineering?

Communication and business knowledge elaboration are two of the core pitfalls in
the development of AI solutions [PPW+21]. Therefore, this question aims to assess
the contribution to support fostering AI in the industry.

RQ1.6 Which challenges and research directions are still open?

This RQ will lead to future research directions and challenges for the model-based
engineering of AI applications due to a collection of limitations in the proposed
approaches based on respective authors or our obtainment.

3.1.2 Search Process
This section describes the search activity in Figure 3.1. According to [KB13], defined
search queries are executed on dedicated search engines. In this research, the queries are
performed on the following bibliographic sources:

• ACM Digital Library: http://dl.acm.org/

• dblp Computer Science Bibliography: https://dblp.org/

• IEEE Xplore Digital Library: http://ieeexplore.ieee.org

• Google Scholar: https://scholar.google.com

• Springer: https://link.springer.com

To select suitable terms for the search, keywords from known studies, the MDE4AI
workshop series2 [BBGW21, BKWZ21] and the International Journal on Software and
Systems Modeling (SoSyM)3 were selected.

The selected keywords for the search terms are the following:

S1(MDE) = {MDE; Model − Driven Engineering; DSL; DomainSpecific Language;
Metamodeling; Domain Modeling}
S2(AI) = {AI; Artificial Intelligence; ML; Machine Learning; Deep Learning; Intelligence}
Each keyword ki from the set S1 and S2 has been combined in conjunctive logic proposition
p ∈ P .

2https://mde-intelligence.github.io/
3https://www.sosym.org/
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Table 3.2: IC and EC.

Type ID Type

IC 1 We include system-level DSML (metamodel) with AI extensions
2 We include data-driven/model-driven approaches with AI extensions

EC

1 We exclude simulation-based (only) approaches
2 We exclude algorithm-based (only) approaches
3 We exclude secondary studies
4 We exclude review papers, but include them in snowballing
5 We exclude study available only in form of abstract
6 We exclude study not in English language

7 We exclude papers with focus on software architecture
for MDE4AI, e.g., Hadoop integration in infrastructure

8 We exclude vision only papers and proposals

P = {p|p = si ∈ S1 ∧ sj ∈ S2}

i = 1, 2, 3, 4, 5, 6, j = 1, 2, 3, 4, 5, 6

The resulting set P of 36 propositions (pi) includes the final search strings. According
to [KB13], the propositions (pi) should be combined as OR statements. However, for
some search engines, a single search term is too complicated, as some search engines limit
the length of the search term or do not generate results correctly due to nested search
terms. Therefore, each search string is executed as a single query.

The automated search was executed in November 2022. In total, 703 papers have been
collected. The search terms and results are archived and are online available4. If a result
file is unavailable, the search query on the specific search engine did not retrieve any
results.

3.1.3 Paper Selection
The IC and EC as outlined in Tab. 3.2 are employed for the paper selection. The IC
and EC have been evaluated for each paper collected by queries executed on the selected
databases by reading its title and abstract. Additionally, doctoral theses are excluded
due to the extensiveness, but the referenced publications of the author are included in
snowballing. Although review papers are not considered for the survey, we presented
relevant related work in the original publication [RBW+23, RBW+24].

Following the IC and EC application, a full-paper read is applied to select the final
papers. Additionally, snowballing is accomplished as suggested by [KB13] to retrieve
further results. The relevant papers from the list of snowballing papers were selected

4https://github.com/sraedler/Model-Driven-Engineering4Artificial-
Intelligence
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Table 3.3: List of selected publications with type of publication incl. snowballing results.
Item Type Year Author Title
Conference Paper 2020 [Al-20] Model Driven Approach for Neural Networks
Conference Paper 2019 [BBK+19] STRATUM: A BigData-as-a-Service for Lifecycle Manage-

ment of IOT Analytics Applications
Journal Article 2020 [VGZS20] Lavoisier: A DSML for increasing the level of abstraction

of data selection and formatting in data mining
Journal Article 2022 [GGC22] A domain-specific language for describing machine learning

dataset
Conference Paper 2017 [HMFl17] The next Evolution of MDE: A Seamless Integration of

Machine Learning into Domain Modeling
Conference Paper 2019 [HMS+19] Meta-Modelling Meta-Learning
Conference Paper 2019 [HMR+19] Model-based design for CPS with learning-enabled compo-

nents
Conference Paper 2019 [KMS19] Realization of a Machine Learning Domain Specific Mod-

eling Language: A Baseball Analytics Case Study
Conference Paper 2019 [KPRS19] On the Engineering of AI-Powered Systems
Journal Article 2021 [MPN21] AdaptiveSystems: An Integrated Framework for Adaptive

Systems Design and Development Using MPS JetBrains
Domain-Specific Modeling Environment

Conference Paper 2022 [MRC+22] A Model-Driven Approach for Systematic Reproducibility
and Replicability of Data Science Projects

Journal Article 2021 [MCBG22] A MDE Approach to Machine Learning and Software Mod-
eling

Journal Article 2022 [MCC22] Towards a DSML for AI Engineering Process Modeling
Conference Paper 2021 [RGJ21] An MDE Method for Improving Deep Learning Dataset

Requirements Engineering using Alloy and UML
Conference Paper 2020 [Zd20] Arbiter: A Domain-Specific Language for Ethical Machine

Learning

with the same procedure as the query results. Table 3.3 lists the final list of selected
papers. Particularly, 11 papers are added by query selection, and four are added due to
snowballing.

3.1.4 Data Extraction
Each selected paper presented in Table 3.3 underwent a data extraction process following
the data extraction template in Table 3.4. Additionally, the publication type is assessed
as Exploratory (without evaluation, e.g., a pure concept or vision) or Technical (with
evaluation).
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Table 3.4: Data extraction template.

RQ Concern Assessment Description

RQ1.1 MDE

Metamodels The metamodel of the approach is either depicted as a diagram in a referenced repository or
clearly mentioned and textually described.

Concrete Syntax The concrete syntax is given in figures, listings, or tables to illustrate an implementation/use
case excerpt or it is indicated whether textual or graphical modeling is applied for a specific
aspect.

Arbitrary Constraints The approach or the underlying modeling framework (e.g., SysML) allows the specification of
arbitrary constraints.

Model Transformation The approach uses or introduces model transformation to generate engineering artifacts of any
kind.

RQ1.2,
RQ1.5 AI

Business Understanding The model contributes to the understanding of the underlying business. Particularly, the
creation of the data and aspects from other disciplines are introduced, such as requirements
modeling for AI.

Data Understanding The model supports at least two of the following aspects: data description, data attribute
relationship, data background, data quality, and data composition.

Data Ingestion The model clearly depicts the origin of data and how to load it.
Feature Preparation The model allows an understanding of how data needs to be transformed, connected, or

preprocessed.
Model Training The model depicts the used algorithm with input and output values and potential hyperpa-

rameters.
Metrics/Evaluation The model depicts metrics for the AI approach or introduces evaluation criteria.

RQ1.3 Others Problem Domain The domain of the case study or the mentioned area of application.
RQ1.4 Frameworks The method and tools used in the approach, e.g., WebGME, Xtext, Xtend, etc.
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The extracted data mainly address two concerns of interest, i.e., MDE and AI. Modeling
concerns refer to the evidence of sound knowledge and application of model founda-
tions [BCF+19] (e.g., abstract syntax/grammar/metamodel, textual/graphical concrete
syntax, constraints, model transformations) and supporting tools (e.g., modeling language
frameworks). AI concerns [ASX+20] indicate to which extent the publications support
ML modeling aligned with the dimensions of the CRISP-DM methodology [WH00].
It should be noted that the assessment dimensions do not correspond exactly to the
phases of CRISP-DM to allow for a more detailed categorization of concerns; e.g., in
CRISP-DM, Data Ingestion is part of the Data Understanding phase but separated in
the given assessment. An aspect of a concern of interest is assessed as available (✓) if the
aspect is presented in the approach, or aa underlying principle is typically offered by the
environment (e.g., constraint modeling might not be presented but is typically offered by
the underlying MDE tooling). Finally, it is worth noting that there is no evaluation of
the deployment phase of CRISP-DM as it is beyond the scope of this work.

3.2 Literature Assessment
The result obtained from the data extraction process described in the previous section is
presented in Tables 3.5, 3.7 and 3.8.

In [Al-20], Al-Azzoni proposes a model-driven approach to describe ML problems ad-
dressed by artificial neural networks. The approach enables the description of datasets
as well as the consuming Multi-Layer Perception (MLP) Neuronal Networks (NN). With
templates and code generators, executable Java programs can be generated. The approach
is validated using the Pima Indians Diabetes dataset.

In [BBK+19], Bhattacharjee et al. introduce STRATUM, a model-driven tool that enables
dealing with the lifecycle of intelligent component development. The platform addresses
design-related concerns such as modeling the ML algorithm pipeline, accessing data
streams, allocating and properly sizing cloud-based execution platforms, and monitoring
the overall system’s quality of service. The primary goal of this work is to support
deploying and maintaining various cloud-based execution platforms. The MDE part of
this work is minor and less detailed.

In [VGZS20], De La Vega et al. introduce a DSML that describes datasets to select
sufficient data on a high level. The approach uses a SQL-like textual language to select,
combine and filter various data on an attribute level. The approach aims to increase a
dataset’s abstraction level to reduce complexity and make using data mining technologies
easier.

In [GGC22], the DescribeML DSML is proposed to define ML datasets. From a De-
scribeML model, a template with basic information is automatically generated, based on
a given dataset. The provided DSML allows the definition of metadata, data attributes
with statistical features and provenance, and social concerns.
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Table 3.5: Result of the data extraction for the MDE and AI concerns.
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Sum

General Technical or
Exploratory Paper T T T T T E T E T T T T E T T 12 T

3 E

RQ1.1 MDE

Metamodels ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 14
Concrete Syntax ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 14
Arbitrary
Constraints ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Model
Transformation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 12

RQ1.2,
RQ1.5 AI

Business
Understanding ✓ ✓ ✓ ✓ 4

Data
Understanding ✓ ✓ ✓ ✓ ✓ ✓ ✓ 7

Data Ingestion ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 10
Feature
Preparation ✓ ✓ ✓ ✓ ✓ 5

Model Training ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 11
Metrics/
Evaluation ✓ ✓ ✓ ✓ 4
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This approach aims to improve the understanding of datasets and thus support the
replicability of AI projects. Currently, this work is limited to the dataset description.
Future work aims to describe AI models and other elements of an AI pipeline.

In [HMFl17], Hartmann et al. present an approach based on so-called micro-learning
units at a language definition level. This work proposes to weave the learning units into
domain modeling, due to the high entanglement of learning units and domain knowledge.
For this purpose, the approach allows the definition of DSMLs with learned attributes
(i.e., what should be learned), how (i.e., algorithm and parameters), and from what (i.e.,
other attributes and relationships).

Hartmann et al. leverage the previous study for meta-learning in [HMS+19]. This
study proposes two generic metamodels for modeling i) ML algorithms and ii) meta-ML
algorithms (i.e., algorithms to learn ML ones).

In [HMR+19], a comprehensive modeling environment for learning-enabled components
in CPS development is introduced. The approach supports training, data collection,
evaluation, and verification. It integrates Goal Structuring Notation (GSN) to support
assurance and safety cases. The publication is, among others, part of a research project5

facilitating MDE.

In [KMS19], a DSML is introduced with the goal of proving the plausibility of using
MDE approaches to create ML software. The DSML, conceptually sketched by another
research group in [Bre14], is realized and applied to a case study in the sports domain.
The approach integrates model transformation to generate executable code.

In [KPRS19], an approach describing deep learning using MDE is presented. The
approach combines two DSMLs, namely MontiAnna, and EmbeddedMontiArc. The
former is a textual modeling framework for designing and training Artificial Neural
Networkss (ANNs). It also embeds another DSML, MontiAnnaTrain, for describing
the training procedure. The latter, EmbeddedMontiArc, is an architectural description
language. It supports the definition of components and connectors, with a particular focus
on embedded, automotive, and cyber-physical systems. The frameworks are intended to
define deep artificial neural networks, e.g., convolutional neural networks, for processing
traffic images to learn how to drive a car in a simulator.

In [MPN21], Meacham et al. propose a set of DSMLs and toolset implemented on
top of the Meta Programming System (MPS) language workbench for the design and
development of adaptive systems offering MAPE-K and AI in context capabilities. The
approach describes an extension and composition of DSMLs that are extended with
application-specific concepts.

In [MRC+22], Melchor et al. propose an MDE approach to formalizing ML projects and
the associated infrastructure in which the resulting tool will be deployed. The approach
aims to increase the reproducibility and replicability of data science projects. Hence a
key feature of the approach is to describe processes and datasets in detail.

5https://modelbasedassurance.org/
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In [MCBG22], Moin et al. present an MDE approach based on ThingML6 to support
the development of IOT devices with the extension of data analytics and ML. The
ThingML framework supports defining software parts and components using UML. The
communication between the components (things) is defined using ports, messages, and
state machines. The approach supports the transformation of the model into executable
code.

In [MCC22], Morales et al. provide a DSML to model AI-related processes using
Eclipse-based technologies. The approach aims to describe AI processes within an
organization and thus contribute to the structured designing, enacting, and automating
of AI engineering processes.

A MDE approach for defining dataset requirements is introduced in [RGJ21]. It focuses
on the structural definition of requirements using semi-formal modeling techniques.

In [Zd20], Zucker et al. present a very preliminary version of a declarative DSML for
ethical AI addressing transparency, fairness, accountability, and reproducibility concerns
of ethical machine-learning datasets. The approach describes datasets in a SQL-fashioned
language and provides a notation to record how ML models will be trained.

3.2.1 MDE Concerns

In this section, we report the contributions of the selected studies with respect to MDE
techniques and practices [BCW17, BCF+19], i.e., metamodels/grammars, graphical/tex-
tual concrete syntax, constraints, and model transformations. In particular, we consider
whether the proposed approaches leverage language workbenches [ICM+20] to create
DSMLs adopted in the presented approaches.

Abstract Syntax

In 14 out of 15 approaches, the abstract syntax of one or more DSMLs is defined by
metamodels or grammars. The only exception is [Zd20], where the authors explicitly
remark that the proposed DSML is a preliminary ad-hoc implementation for the proposed
case study and does not provide any grammar or metamodel specifications.

In the following, we classify the selected studies based on the technologies used to specify
the abstract syntax of DSMLs used in the proposed approaches [ICM+20]. A large major-
ity of the selected studies, i.e., eleven, adopt a metamodel-centric language design [Al-20,
BBK+19, VGZS20, HMFl17, HMS+19, HMR+19, KMS19, MRC+22, MCBG22, MCC22,
RGJ21] by leveraging Eclipse Modeling Framework (EMF) and WebGME language frame-
works, two adopts a grammar-centric approach [GGC22, KPRS19] by leveraging Langium
and Monticore language workbenches, and one a projectional [MPN21] approach, based
on JetBrains MPS.

6https://github.com/TelluIoT/ThingML
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EMF-based In eight studies, the metamodel is based on EMF [Al-20, VGZS20, GGC22,
KMS19, MRC+22, MCBG22, MCC22, RGJ21]. Several EMF metamodels focus on the
description of datasets [Al-20, VGZS20, GGC22, RGJ21]. Other studies additionally
describe algorithms [Al-20, KMS19, MRC+22] or even further steps of the implemen-
tation [MCBG22, MCC22]. In [KMS19], the conceptual metamodel presented as an
entity-relationship diagram in [Bre14] is realized as a UML profile, i.e., a lightweight
extension of the UML metamodel in Papyrus UML, which leverages EMF.

KMF/Greycat-based Two studies [HMFl17, HMS+19] of the same research group
are based on the Kevoree Modeling Framework (KMF) and its successor GreyCat, which
results from a research project to create an alternative to the EMF based on Ecore.
In [HMFl17], the capabilities of the Greycat metalanguage are presented. In particular,
it allows the definition of microlearning units by explicitly declaring learned attributes
as part of the domain-specific metamodels. In [HMS+19], two metamodels for ML and
meta-learning are proposed. The former contains definitions for datasets, metadata, and
learning algorithm with hyper-parameters.

WebGME-based Two studies [BBK+19, HMR+19] define metamodels using the
WebGME metamodeling framework. While UML and profiles cannot provide the lan-
guage engineering support typically offered by language workbenches, WebGME allows
specifying DSMLs creating a class diagram-based metamodel from which the DSML
infrastructure is automatically generated. In [BBK+19], the so-called Stratum approach
for BigData-as-a-Service provides a DSML consisting of several metamodels built on top
of WebGME (metamodel for ML algorithms, metamodel for data ingestion frameworks,
metamodel for data analytics applications, metamodels for heterogeneous resources).
In [HMR+19], the metamodel is based on existing metamodel libraries: SEAM, DeepForge,
and ROSMOD.

Langium-based In [GGC22], the DescribeML DSML is the only work leveraging the
recent Langium open-source language workbench enabling domain-specific languages in
VS Code, Eclipse Theia, and web applications, leveraging the Language Service Protocol
(LSP)7. In [GGC22], three metamodels are described i) metadata model, ii) composition
model, and iii) provenance and social concerns model. Such metamodels are then
implemented as grammars8.

MontiCore-based In [KPRS19], all DSMLs, i.e., MontiAnna, MontiAnnaTrain, and
EmbeddedMontiArc, are all defined using the MontiCore language workbench [RH18].
One of the main benefit is the reuse of existing C++ code generators for neural network
frameworks (MxNet, Caffe2, and Tensorflow).

7https://microsoft.github.io/language-server-protocol/specifications/lsp/3.
17/specification/

8Based on Chevrotain, https://chevrotain.io/docs/.
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MPS-based In [MPN21], five different DSMLs are created with JetBrains MPS, an
open-source projectional language workbench that allows direct changes to the abstract
syntax tree through an editor, without the need for a grammar or parser. [MPN21]
leverages MPS’ language extension and composition capabilities to deal with domain-
independent (e.g., using the AdaptiveSystems DSML to structure the system according
to MAPE-K loop by IBM) and domain-specific concerns (e.g., AdaptiveVLE to model
concerns of virtual learning environments).

Concrete Syntax

This section assesses the proposed approaches’ notations or concrete syntax. A concrete
syntax is explicitly mentioned by 13 out of 15 approaches.

Seven studies [VGZS20, GGC22, HMFl17, HMS+19, MPN21, MCBG22, Zd20] provide a
textual (or tabular) notation; five studies [BBK+19, HMR+19, KMS19, MCC22, RGJ21]
adopt a graphical notation; one [KPRS19] offers both a textual and a graphical notation.

No Concrete Syntax Available Two studies [Al-20, MRC+22] do not provide a
DSML-specific concrete notation. In particular, Al-azzoni [Al-20] left the definition of
a complete DSML as future work while [MRC+22] is conceived to reuse the notations
offered by tools defining data science pipelines. However, by leveraging EMF, a tree-based
notation is possible by automatically generated editors, and, potentially, compatible
technologies can provide textual or graphical concrete syntax options (e.g., via Xtext
and Sirius, respectively).

Textual Notation In [VGZS20], De La Vega et al. provide a textual concrete syntax
for the Lavoisier DSML defined by an Xtext-based grammar. Similarly, in [MCBG22],
the approach is built on top of ThingML and, as such, it provides an Xtext-based
textual editor. In [GGC22], the textual concrete syntax is defined by a recent language
workbench, Langium. In [HMFl17] and [HMS+19], an Emfatic-inspired textual modeling
language is defined. In [MPN21], five different interwoven DSMLs, are proposed, mixing
textual and tabular projections, created with JetBrains MPS. In [Zd20], a SQL-like
textual notation is proposed. However, they do not provide any grammar, and then the
textual notation is just a proposal.

Graphical Notation In [BBK+19] and [HMR+19], the graphical concrete syntax is
defined through capabilities offered by the WebGME language framework. [KMS19]
implements the metamodel as a UML profile in Papyrus. The UML Class Diagram is
chosen as graphical notation since all the stereotypes inherit from the Class metaclass.
No DSML-specific customization of the UML graphical notation is offered. [MCC22]
provides a web-based graphical editor realized using Sirius Web9. In [RGJ21], the DSML

9https://www.eclipse.org/sirius/sirius-web.html
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provides a graphical concrete syntax and editor realized in Sirius10. However, the paper
does not discuss or show its graphical elements.

Multiple Notation In [KPRS19], Kushmenko et al. are the only ones proposing a mix
of textual and graphical concrete notations to represent AI concerns. However, it is worth
noting that the SVG-based hierarchical representation of components and connectors is
made for visualization purposes and is not editable11.

Model Transformation

Twelve selected studies include model transformations as part of the proposed ap-
proaches. These model transformations are classified based on their intents, as described
in [LAD+16], and the technology they use, as described in [KBC+19]. Table 3.6 sum-
marizes the intents of the model transformation for each paper, as well as the main
model-driven technologies used. It is important to note that none of the papers explicitly
list or classify their model transformations. The identification of existing transformations
and their intents is part of the SLR work to increase possibilities for comparison.

Nine studies leverage model-to-code transformations [Al-20, BBK+19, HMFl17, HMS+19,
HMR+19, KMS19, KPRS19, MPN21, MCBG22] to perform refinements on involved
artifacts to generate executable code. Three studies [HMFl17, HMR+19, RGJ21] aim at
executable models by defining translational semantics for their DSMLs. Five approaches
[VGZS20, HMS+19, HMFl17, HMR+19, MPN21] provide more than one transformation
with different intents. Two approaches [VGZS20, GGC22] translate artifacts across
different modeling languages

The rightmost column in Table 3.6 mentions the main model-driven technology leveraged
by the studies to implement model transformations.

10https://www.eclipse.org/sirius
11https://github.com/EmbeddedMontiArc/Documentation
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Table 3.6: Model transformation intent category and concrete intent.

Paper Intent Category Concrete Intent Tool
[Al-20] Refinement Model to Code Epsilon Generation Language (EGL)
[BBK+19] Refinement Model to Code JS Implementation

[VGZS20] Language Translation Translation XtendAbstraction Restrictive Query

[GGC22] Language Translation Translation Typescript
(Visual Studio Code)

[HMS+19] Refinement Refinement n.a.Refinement Model to Code

[HMFl17] Refinement Model to Code KMF/GreyCatSemantic Definition Translational Semantics

[HMR+19]
Refinement Model to Code

n.a.Semantic Definition Translational Semantics
Analysis Safety Analysis (added)

[KMS19] Refinement Model to Code
EGL Co-Ordination Language (EGX)/
EGL/
Epsilon Object Language (EOL)

[KPRS19] Refinement Model to Code EmbeddedMontiArc
/EMADL2CPP

[MPN21] Refinement Model to Code Jetbrains MPSModel Composition Model Merging
[MCBG22] Refinement Model to Code Xtend
[RGJ21] Semantic Definition Translational Semantics Xtend
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The most commonly used platform among the studies is Eclipse, with Epsilon12 and
Xtend13 being the most popular tools. For example, in [Al-20], the EGL is used in
conjunction with templates to define model transformations that generate Java code.
Similarly, [KMS19] uses EGL to generate C# code for making predictions on test data.
In [BBK+19], WebGME’s code generation capabilities are extended with templates
for each sub-task. In [VGZS20], two intents of model transformations are reflected:
language translation and abstraction using a restrictive query. The model transformation,
based on Xtend, transforms dataset descriptions into tabular datasets using low-level
data transformation operations, which can then be used in data mining algorithms.
In [HMFl17], the GreyCat framework, built on the KMF, provides code generation
toolsets for building object-oriented applications. In [HMS+19], the concept of using code
generators to generate ML code is mentioned. In [HMR+19], the ALC toolchain enables
code generation for data collection or training exercises of learning-enabled components,
as well as translational semantics for configuring an embedded Jupyter Notebook that
executes the learning model. The approach also allows for the construction of safety cases.
In [KPRS19], the MontiAnna2X code generator generates MxNet, Caffe2, or Tensorflow
code. In [MPN21], JetBrains MPS language is used to generate Java code. In [MCBG22],
Java and Xtend are used to generate Python code. Finally, in [RGJ21], model-to-code
transformation is used to complete formal specifications using the Alloy Analyzer.

3.2.2 Artificial Intelligence Concerns

Same as for the MDE concerns, the findings regarding AI development characteristics
are presented in the following.

Business Understanding

Industry often faces the problem of missing business understanding and shortcomings
in elaborating business values [RR22, BPR21, BPR22, SWZ20]. Therefore, modeling
business understanding is essential for mature and comprehensive approaches, e.g., by
defining requirements. The assessment revealed that four of the 15 approaches foster
business understanding by integrating system-relevant modeling or processes.

In [HMR+19], the business understanding is fostered due to requirements and components
modeling using SysML. Particularly, a GSN approach is used to define and structure
requirements.

In [MCC22], business-relevant information is modeled through the integration of Roles,
leading to increased business understanding. Additionally, the metamodel reflects means
to model requirements. However, details are currently missing on how the modeling is
defined.

12https://www.eclipse.org/epsilon
13https://www.eclipse.org/xtend
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In [Zd20], requirements on ethical ML can be formalized. Particularly, transparency,
accountability and fairness are taken into account so that specific attributes are protected
during the implementation, e.g., attributes consisting of values such as ’race’ or ’age’.

In [RGJ21], a method to describe ML datasets from an requirements engineering per-
spective is presented. Notably, functional and non-functional requirements are integrated
to describe dataset structural requirements.

Data Understanding

The data understanding fosters the downstream processes of CRISP-DM. Additionally,
it allows assessing dataset quality and streamlining to form hypotheses for hidden
information [WH00]. In the selected literature, seven approaches support modeling some
aspects of the data understanding.

[VGZS20] contextualizes dataset properties and improves data understanding by implicitly
applying rules on how to select data. In [GGC22], a detailed description of a dataset
and data composition is given that fosters the overall data understanding. In [KMS19],
data understanding is enhanced due to the input data’s graphical representation and the
variables’ composition. In [MRC+22], data understanding is promoted by describing data
attributes such as the data type. Furthermore, the type of ML algorithm is described,
allowing the reproduction of an ML project.

In [HMFl17, HMS+19], the enrichment of properties on a metamodel-level is enabled,
which contributes to further description of the properties and, therefore, increases data
understanding. Moreover, the interconnection of the data properties is highlighted by
the underlying principle. Still, the description of the attributes is not very detailed,
leading to no support in understanding a single property and its origin. In [RGJ21], the
advanced requirements modeling allows for better understanding datasets with specific
properties and structured data elements.

Data Ingestion

Ten of the given 15 approaches describe the loading and ingestion of data. Data ingestion,
in this sense, refers to the loading or referencing of the input datasets.

In [MPN21], the implementation of data ingestion using a DSML is described. Six
other approaches support the specification of a file path, URI, URL, etc., to reference
data [MRC+22, Zd20, HMR+19, Al-20, VGZS20, MCC22]. In [VGZS20], the loading
of the dataset is described by specifying the name and path of the file or SQL server
in combination with SQL selection scripts. Therefore, this approach supports both file
and database-related data. In [MCC22], data loading from various sources, such as SQL
servers, is supported.

In contrast, to fix data sources, the loading from edge devices or sensors is supported by
three approaches [BBK+19, KPRS19, MCBG22]. In [BBK+19], data loading from various
edge devices is presented using technologies such as RabittMQ or Kafka. In [KPRS19],
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data loading is provided with tagging schemas for EMADL ports. In [MCBG22], two
approaches are given, first a black-box approach, where the ML model is imported from
a pickle, and second, the paths or URLs of the dataset(s) are passed to the training,
validation, and testing of the algorithm.

Feature Preparation

The preparation of features for certain ML algorithms is supported by five of the 15
approaches.

In [BBK+19], the feature preparation is defined in the metamodel. Unfortunately, details
on the specific methods, parameters, or the order of execution are missing. In [Al-20],
normalization of dataset features is supported. However, other pre-processing methods
are not supported in the metamodel. In [MRC+22], data operations contain one or more
input or output ports. Each data operation is an atomic operation on the input data to
produce certain output data. In [MCBG22], each state allows executing functions. The
keyword DA_Preprocess is used to apply data preparation methods on a specific dataset.
In [MCC22], features can be prepared with specific feature extraction techniques, and
data can be transformed with data engineering techniques, e.g., Regression substitution.

Model Training

The specification of an algorithm and the related training of the model is depicted in 11
of the 15 approaches. The types of algorithms can be separated in Inference [KMS19],
ML [HMFl17, HMS+19, MPN21, MRC+22, MCC22] and Deep Learning using Neural
Networks [Al-20, BBK+19, HMR+19, KPRS19, MCBG22].

Inference [KMS19] extended the approach of [Bre14] with the required implementation
using SysML and Papyrus modeling framework. Within the original approach [Bre14],
model training is given by an assignment for each variable, whether it is an observed
variable, a random variable, or a standard variable. Details on hyper-parameter tuning
are not given.

Machine Learning In [HMFl17, HMS+19], various algorithm models can be used
with specific input (learning) and output attributes. In [MPN21], the algorithm (referred
to as approach) is specified aligned with various hyper-parameters, e.g., Random Forest
Cross Validation Folds. In [MRC+22], the algorithm type, e.g., Random Forest, with
a specific task type, e.g., Classification can be described. Hyper-parameters are not
presented in the metamodel. In [MCC22], hyper-parameters and performance criteria
can be specified for each AI model.

Deep Learning In [Al-20], the training is defined using an MLPDescription block with
certain learning rules like Backpropagation. Further details on other hyper-parameters
or the output’s facilitation are not given. In [BBK+19], an algorithm for the training
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is defined in the metamodel. Moreover, hyper-parameters are defined and applied to a
specific algorithm in the editor. In [HMR+19], an experimental model defines the model
training. The details of the implementation can be found in the Jupyter Notebooks.
In [KPRS19], the training of NN is given with possibilities to specify the network layers
and connections. In [MCBG22], state diagrams are used to define various steps of the
algorithm. With the state keyword DA_Train, various training-related settings are made,
and with DA_Predict, the trained model can be applied to data.

Metrics/Evaluation

To assess the validity of an algorithm, four of the 15 approaches integrate the modeling
of metrics.

In [HMR+19], the metrics are applied directly in the Jupyter Notebooks, which is not
actually a modeling approach. Nevertheless, the Jupyter Notebook is integrated into the
model. So it can be considered as part of the model.

In [BBK+19], metrics are integrated into the metamodel and can be applied to the
training output. In [KPRS19], the evaluation metrics are selected using the name of the
metrics, e.g., Mean Squared Error (MSE).

In [MCBG22], basic metrics such as Mean Absolute Error (MAE) or MSE can be applied
to the algorithms, such as regression algorithms.

3.2.3 Frameworks (Methods & Tools)
Most of the approaches are based on frameworks and tools. Table 3.7 depicts each
approach’s used frameworks and tools. Most of the approaches do not particularly
mention the underlying methods. Still, similarities can be seen.

3.2.4 Available Artifacts and Domain of Application
Artifacts are a means to enable the replication of research results. Table 3.8 shows
whether artifacts are part of the publication, represented as a reference to an online
resource, or not given at all. Additionally, the type of application mentioned in the
publication or inherently given through the evaluation sample is depicted in the table. If
no specific domain is mentioned or derivable, Unknown is annotated.

As a result, eight approaches work with datasets, which can originate from any domain.
The processing of IOT data is presented in five approaches, whereas one is more specific
for image data.

3.3 Results and Discussion
The discussion is organized according to the research questions in Section 3.1.1.
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Table 3.7: Used methods and tools (RQ1.4).

Tool or Method
Paper

[A
l-2

0]

[B
BK

+
19

]

[V
G

ZS
20

]

[G
G

C
22

]

[H
M

Fl
17

]

[H
M

S+
19

]

[H
M

R
+

19
]

[K
M

S1
9]

[K
PR

S1
9]

[M
PN

21
]

[M
RC

+
22

]

[M
C

BG
22

]

[M
C

C
22

]

[R
G

J2
1]

[Z
d2

0]

Alloy ✓
BPMN ✓

DeepForge ✓
EMF-based ✓ ✓ ✓ ✓

Epsilon ✓ ✓
GSN ✓

GreyCat ✓ ✓
Jetbrains MPS ✓

Jupyter Notebook ✓ ✓
Langium ✓

MontiCore Workbench ✓
Papyrus ✓ ✓
Python ✓ ✓

ROSMOD ✓
SEAM ✓
SQL ✓ ✓
Sirius ✓ ✓

ThingML ✓
WebGME ✓ ✓

Xtext ✓ ✓ ✓

Table 3.8: Availability and type of artifacts aligned with the type of application.

Publication In the
Publication

Online
(Git, Server) No Artifacts Type of Application

[Al-20] ✓ Datasets
[BBK+19] ✓ IOT
[VGZS20] ✓ Datasets
[GGC22] ✓ Datasets
[HMFl17] ✓ IOT
[HMS+19] ✓ Unknown
[HMR+19] ✓ IOT (CPS)
[KMS19] ✓ Datasets
[KPRS19] ✓ IOT (Image)
[MPN21] ✓ Adaptive Systems
[MRC+22] ✓ Datasets
[MCBG22] ✓ IOT
[MCC22] ✓ Unknown
[RGJ21] ✓ Datasets
[Zd20] ✓ Datasets
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3.3.1 RQ1.1 - What Model-Driven Engineering aspects are addressed
in the approaches, e.g., abstract syntax (metamodel), concrete
syntax etc.?

From a language engineering perspective, each dimension is reflected in most approaches.
As for concrete syntax, sometimes an example with concrete syntax is given, but the
whole definition of the syntax is not presented.

The description of constraints is rarely used. A reason might be that constraints are
often rule-based terms, which can be eliminated with specific parameters or algorithms
from the AI domain.

Although not all approaches define a model transformation, most artifacts generate
execution code in Python or Jupyter Notebooks from the models.

The review revealed that current approaches are quite diverse from a language technology
perspective. In addition, most approaches rely on textual rather than graphical modeling.

3.3.2 RQ1.2 - Which phases of Artificial Intelligence development
aligned with the CRISP-DM methodology are covered by the
approaches?

The CRISP-DM development cycle’s supported phases are less balanced than the MDE
perspectives. More than half of the approaches support the early phases, such as business
understanding. The feature preparation is often not mentioned or integrated with only
simple features, e.g., normalization of variables is given but not the subsequent processing
of pre-processing tasks. The main focus of the approaches lays in the formalization of
model training. However, most of the approaches only support a small range of algorithms.
Therefore, the applicability might be very case specific and less flexible.

In summary, it can be seen that multiple approaches depict a specific aspect of the
CRISP-DM development cycle, but only a few support more than half of the phases.

3.3.3 RQ1.3 - Which industrial domains are supported by MDE4AI
approaches?

Most approaches support processing datasets in specific file formats or using data from
SQL servers. Since these datasets can originate from any domain, no focus on a domain
can be determined in these approaches.

However, some approaches are rather based on IOT/CPS or sensor data, supporting the
integration of production systems or data from the use of e.g., CPS products. Nevertheless,
no domain can be clearly defined here since collecting sensor data is possible in any
domain.
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3.3.4 RQ1.4 - What are the used methods and the supporting
Model-Driven Engineering tools the proposed approaches rely
on?

The present works are based on a wide variety of tools and methods. One reason for
this could be the application domain, e.g., SysML would rather be used as a basis if
the integration into a mechanical engineering environment is intended since SysML is
used anyway. The advantages and disadvantages of the individual methods and tools
are therefore considered application-dependent, and no statement can be made about
the quality of the underlying methods. Furthermore, there is a trend towards Eclipse
and its products (Papyrus, Sirius, Epsilon, etc). The use of EMF for the definition of
metamodels or as a basic modeling construct can also be identified as state of the art.

3.3.5 RQ1.5 - To what extent is communication between different
stakeholders supported by Model-Driven Engineering?

Communication in an AI project can be fostered by unifying the language of communi-
cation, potentially leading to a better understanding and reduced unknown knowledge
among team members. With less unknown knowledge, unrealistic expectations might be
reduced, being one of the categories of why AI projects fail [WSS22]. The intersection
with other domains is mainly in the initial phases of an AI project, mainly the business,
and data understanding. Still, the documentation of other phases of the CRISP-DM
cycle supports communication among other AI experts. With respect to interdisciplinary
communication, only three approaches support the documentation and integration of
business understanding, leading to further research needs. Data understanding and the
downstream processes of the CRISP-DM are more often supported. However, still, further
integration of MDE techniques is required due to the early development of some of the
approaches.

3.3.6 RQ1.6 - Which challenges and research directions are still open?

The researchers’ observation selected the direction of future research and open challenges.
The first observation is that business understanding needs to be more supported. In
literature, experts report needing more business values for AI as a challenge, which
potentially originates from the missing understanding of AI experts in the specific
business. As a result, the experts may not propose suitable approaches that are realistic
and relevant for a particular business use case. Aligned with the business understanding,
the requirements of a project need to be formalized to allow the derivation of project
metrics and further assess the impact of the computational support [RVSS19]. Considering
that the second largest group of supported applications in the existing works is IOT.
Therefore, Systems Engineering requires to be considered more in MDE4AI approaches.
The definition of requirements or the modeling of the environment could also be borrowed
and adapted from these approaches.
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Another future work that supports the maturity of MDE4AI is consolidating the ad-
vantages of the existing approaches and extending these approaches to fit various use
cases. The combination of various approaches to a comprehensive methodology regarding
MDE4AI could streamline the research topic and foster the development of MDE4AI
toolboxes.

Apart from combining the research workforces, future research needs to focus on the
collaboration of engineers using methods designed for concurrently working on models.
As of the review’s findings, the approaches mainly focus on supporting single editors and
do not support collaborative work on a single model. With respect to more extensive
or interdisciplinary projects, the live and collaborative work on a single model could
increase the development performance and the benefit and acceptance of MDE4AI.

Next, the output of MDE4AI is often a derivation of Python code, etc., based on
model transformation. Python is an easy-to-understand, well-known, daily-used language
of AI experts that might lead to changes in the Python code rather than the model.
Consequently, full code generation is not applied, leading to no single source of information
because partial truth of information is stored in the model and partial in the Python
code [BCW17]. In this context, it is necessary to elaborate a closed-loop process that
feeds the results of the executed algorithm back into the model or adjusts the model in
case of changes in the code, e.g., in Python. With this closed-loop approach, the model
is always up-to-date, and further, the collaboration with others potentially improves
because of the abstracted representation of the actual changes.

Finally, only a few approaches mention user studies to assess the impact and benefits of
MDE4AI. For this, user studies are required to identify unused potentials and further
streamline the development towards a user-centered MDE4AI methodology.

3.4 Threats to Validity
The study’s validity describes the extent to which the results are trustworthy and
how biases arising from the subjective views of the researcher are avoided during the
analysis. Validity must be considered at all stages of a study, and several approaches
have been proposed in the literature. Following [KC07], the following threats to validity
are considered:

• Construct Validity: Construct validity describes the validity of the concept or
theory behind the study design such that the results are generalizable [WRH+12].
In this SLR, construct validity refers to the potentially subjective analysis of the
studies and the different ways in which data extraction is conducted. Following
the guidelines [KC07], each study analysis is conducted independently by at least
two researchers. If the researchers cannot agree on a conclusion, a third researcher
evaluates and discusses the literature until there is no disagreement. In addition,
each selected literature was evaluated using the quality criteria suggested by [LFB20].
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A protocol based on [KC07] was defined for performing the extraction protocol,
which was discussed by the performing researchers after each step. Additionally,
construct validity relates to the selection of keywords. In particular, keywords
related to AI are used without specific reference to DE, which is the main focus of
this thesis. However, during the study, it turned out that DE is rarely reflected in
literature and yet not a well-known term.

• Internal Validity: Internal validity describes the causal relationships of the
researcher’s investigation of whether a factor influences an aspect under study.
The particular danger is that a third factor has an unknown effect or side effect.
To avoid this danger, the same behavior as for construct validity applies, that
more than one researcher assesses the causal relationships. In addition, the tactic
suggested by [KC07] was followed.

• External Validity: External validity exists when a finding in the selected literature
is of interest to others outside the case under study. In this regard, the SLR uses
a quality assessment based on [LFB20], so included papers are published in peer-
reviewed. Therefore, third-party investigators pre-assessed the selected studies, and
the validity of the initial publication is the responsibility of the external authors.

• Conclusion Validity: The validity of the conclusion relates to concerns about
the reproducibility of the study. The concerns in this paper relate to the possible
omission of studies. In this regard, the concerns are mitigated by the carefully
applied search strategy using multiple digital libraries in conjunction with the
snowballing system as of [KC07]. In addition, the researchers followed the detailed
search protocol as defined in Section 3.1 and applied the quality ratings. However,
some concerns might exist due to the interdisciplinary nature of the fields involved
and the various definitions of modeling and AI. These were minimized, however, by
the background introduction in Section 2.1 and Section 2.2.

3.5 Conclusion
AI is emerging in several disciplines today and has recently attracted the interest of the
MDE community, with several workshops being held on the subject. The development
of AI requires several development phases, which potentially can be supported using
MDE approaches. Currently, the support of AI by MDE is still at an early stage of
development. Therefore, it is necessary to understand the existing approaches to support
AI to streamline future research and build on existing knowledge.
We conducted an SLR to investigate the existing body of knowledge in MDE approaches
to formalize and define AI applications. To this end, we followed a rigorous SLR protocol,
selected 15 approaches, and evaluated them for several dimensions of interest, from MDE
and AI.
The result showed that the language engineering perspective of MDE4AI is already
mature, and some approaches seem applicable in industrial case studies. The MDE
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approaches focus on the training phase of the AI approaches, while time-consuming tasks
such as data pre-processing are often not considered. Additionally, the focus is not on
improving communication, collaboration, or understanding of the business processes to
be supported, which is reported in the literature as a core problem in AI development
projects. Finally, the review showed that the approaches are case-specific and lack general
applicability.
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CHAPTER 4
State of Practice

This section aims to depict the actual state of practice regarding DE implementation
and integration in engineering and engineering-related industries. The quantitative study
results aim to streamline the elaboration of new methods and achieve a more significant
impact on practical applications.

To enable alignment of industrial practice with state of the art, an industrial survey is
conducted to capture the status and identify obstacles hindering the implementation of
digital engineering in industry. Digital engineering is a concept that implements digital
technologies to support the engineering design process by taking the entire product
lifecycle into account [HGH+20, TDS18]. Particularly, various approaches such as digital
twins [TCQ+18], design automation [RVSS19], and data science methods [DB21] are
used to incorporate data from PLM and extend engineering methods. The extension
of engineering methods is, among others, realized using SE and particularly MBSE
techniques [HS21].

Due to the scope of this doctoral thesis, only DS related findings are presented in
this section. Findings related to Digital Twins and Design Automation can be found
in the original publication [RR22]. Additionally, note that in the original publication,
participants are asked about DS rather than DE or DDE. However, due to the development
of the thesis, the term DE appeared to be more suitable than DS. Nevertheless, the
terms DS and DE are used synonymously in this chapter for the sake of correctness of
the presentation of the survey results. The following RQs are defined and answered with
the findings of the survey:
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RQ2 What obstacles hinder the application of Data-Driven Engineering in prac-
tice?

RQ3 What is required to promote the integration of Data-Driven Engineering in
practice?

A selection of text, figures and tables within this chapter is based on the publication in
box „Publications 3: State of Practice“:

Publications 3: State of Practice

[RR22] S. Rädler and E. Rigger, “A Survey on the Challenges Hindering the
Application of Data Science, Digital Twins and Design Automation in Engineering
Practice,” Proceedings of the Design Society, vol. 2, pp. 1699–1708, May 2022,
doi: 10.1017/pds.2022.172.

In the following, first, the applied research method is introduced with details on the
design of the online questionnaire and the experimental setup. Second, the findings of
the study are presented in Section 4.2 with particular focus on relevant findings to this
thesis. Next, the findings of the survey are discussed. Finally, a conclusion summarizes
the findings aligned with the RQs.

4.1 Research Method
This section first presents the survey questions used to answer the RQs. Next, the
method, including the experimental set-up, is explained.

4.1.1 Survey Questionnaire
The questionnaire consists of 24 closed questions, which are based on a literature review
in collaboration with the IWI1 Institute. To gain additional insights, some questions
allow for open answers. Digital Engineering, as it is defined for the study, consists of
concepts regarding Digital Twins, Design Automation and Data Science. In this respect,
the participants are asked about the relevance of the topics in their respective companies
so to only answer questions related to their interests. Additionally, participants are
only asked questions about their previous experience if they respond positively to an
initial question about whether experience has already been gained. Consequently, the
response rate varies for each topic and question and also the actual number of asked
questions. Due to the focus of the doctoral project, only relevant questions regarding DS
are outlined below:

1. To what extent is DS used in your company?
1Industriewissenschaftliches Institut - IWI: https://iwi.ac.at/
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2. What is the motivation behind your company’s (planned) application of DS?

3. What are the biggest challenges in elaborating and applying DS in your organization?

4. How would you rate your experience with projects using DS in your company?

4.1.2 The Experimental Setup

The method applied for this research is a mixed-methods study [Cre14]. The chosen
strategy is called sequential explanatory survey, characterized by the strong quantitative
learning and explained with the insights from the qualitative part [Cre14, Pat02]. The
quantitative survey is executed as an online survey with closed-answers based on literature
review, extended with experts from DS domain and industry. Additionally, some of
the questions allow additional open-answers to enable more precise results and insights.
However, participants could also omit a question and not give any answer. At the
beginning of the questionnaire, the following definition for DS is given so that each of
the participants has the same understanding and answers the questions with the same
perspective:

Data science refers to the extraction of information and knowledge from unstructured
and structured data. The procedure to analyze and understand the data is based on
methods and theories from many fields like mathematics, computer science and statistics.
The application results in opportunities to develop solutions based on (large) amounts of
data, such as predicting production costs or machine maintenance.[Cao17]

The online survey allowed gathering answers from more companies compared to an
offline questionnaire and thus, enables to identify trends in the industry. To support the
interpretation of the given answers, a single-person interview was conducted after the
survey. The single-person interview was conducted by an expert for interview studies with
a background in market research and myself. Not all participants of the questionnaire were
interviewed, but only a small random group. The participants of the study are selected
based on NACE2 categorizations. The selected categories are related to engineering
products, e.g., aerospace industry, and industries with a high demand for engineering
products, e.g., food companies using machines to produce and fill goods.

4.2 Results

This section presents the findings of the study, starting with study relevant metrics, e.g.,
response rate or characteristics of the participants. Next, the most important results of
the individual survey questions are listed.

2The Statistical Classification of Economic Activities in the European Community (short NACE from
French) is a system that enables the classification of industries in the European Union.
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4.2.1 Response and Participants’ Characteristics

The questionnaire was sent to 1842 participants in companies that are either working in
the domain of engineering or companies that make heavy use of engineering solutions,
such as an airline. The total set of companies is composed as follows: 3,4% of companies
with more than 1000 employees, 27,5% between 250 and 1000 employees and 69,1% less
than 250 but more than 80 employees. 81 participants answered the survey, yielding
a response rate of 4,4% and a margin error of 10,5% [Tan11]. However, in DS only 51
participants were interested. The respondents’ positions of the DS interested participants
are categorized as CEO (1), CTO (1), CDO (2), CFO (1), Business Unit Manager (3),
Head of Department (Research (2), Technical/Engineering (4), Digitalization (4), IT (3),
Unspecified (15)), Process Manager (1), and others (3). The survey was comprehensively
submitted by 66%, 16% partly and 15% after the first question of interest and 3%
without any answer. The survey data is analyzed as a single dataset using univariate
analysis [BC09]. Further analysis based on separate economic sectors shown to be not
significant (p-value > 0.4). The second, qualitative part of the survey was conducted
with 7 companies (4 with more than 1000 employees; 3 with less than 250). The interview
guide for the qualitative data was created based on the quantitative survey findings.
Although a definition for each domain was given prior to the interviews, respondents were
sometimes unable to assign their projects to a single domain, e.g., a CAD configurator
with AI correspond to data science and design automation? One reason might be the
possible overlapping of the areas, e.g., engineers are increasingly adopting data science
for design automation applications [CHR+20, JHWL21].

4.2.2 Implementation Status

Figure 4.1 depicts the implementation status of DS in practice. About a quarter are using
DS in daily operation and similar amount are planing to integrate DS within the next 5
years. It should be noted that the survey was conducted before the media breakthrough
of chatGPT. Close to 50% of the companies are in early pilots or concepts. However,
it was not clear from the study to what extent DS is used, e.g., sales forecasting could
be considered a standard function of Enterprise-Resource-Planning (ERP) software and
daily used DS, or the use of custom software as a decision support. Consequently, the
level of application and integration of daily used DS is dependent on the software tools
and definition of DS support. Nevertheless, the responses indicate that companies plan
to integrate DS in a short period of time rather than in the long term (only 4%).

4.2.3 Motivation

Figure 4.2 illustrates the companies’ motivational aspects for applying DS. Half of the
companies or more use or plan to use DS to optimize solutions, solve complex tasks or
ensure quality. Optimizing solutions is a general term that can be mapped to arbitrary
problems. However, in the in-depth interviews, participants related the optimization of
solutions to manufacturing and optimizing during the design phase of products. After the
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22%

47%

27%

4%

Daily Opera�ons Pilot or Concept

Planned in next 5 Years Planned in next 10 Years

Figure 4.1: To what extent is DS used in your company? (Multiple answers possible;
n=51)

three main motivations, the reduction of errors was named most frequently, which is also
related to quality assurance in third place. Cost reduction in general is a motivational
factor for about 44% of the companies.

4.2.4 Challenges

Figure 4.3 depicts the challenges faced in industry. The main challenges are the the lack
of knowledge within the company, shortcomings in data quality and availability as well as
the effort of implementation. The problem of sufficient accuracy and integration into the
daily processes of the production machines was cited as the reason for the implementation
effort. In general, the first challenge with lack of knowledge influences the other top 5
challenges, e.g., lack of knowledge leads to lack of understanding of the existing situation
and thus unclear benefits.

Although the collection of sufficient data is a challenge for the companies, the infrastruc-
ture requirements, both internal and external, and the lack of suitable tools seem to be
no problematical factors. Consequently, data collection and quality also depend on the
knowledge of the person using it.
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Figure 4.2: What is the motivation behind your company’s (planned) application of DS?
(Multiple answers possible; n=48)

1. Lack of Know-How in the Company

2. Data (Quality, Availability, ... )

3. Effort/Duration of Implementation
(Proof of Concept to Production)

4. Unclear Benefit/Lack of Business Model

5. Lack of Standards/Interface Problems
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IT-lnfrastructure (Interna!)
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9. Lack of Technical Requirements/lT-lnfrastructure
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Figure 4.3: What are the biggest challenges in elaborating and applying DS in your
organization? (Multiple answers possible; n=46)
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Figure 4.4: How would you rate your experience with projects using DS in your company?
(Likert Scale; n=27)

4.2.5 Experiences

A five-point Likert scale from very negative to very positive is used to rate the com-
panies’ experiences. Figure 4.4 shows the overall impression on the implementation
and integration of DS in practice. Generally, a positive or neutral experience can be
recognized except the satisfaction with available experts on the market. Satisfaction with
the availability of skilled staff is correlated with cost/Return of Investment (ROI), which
might be a reason why the ROI is also not very positive. Consequently, if availability is
rated less positively, the cost rating is also less positive.

4.3 Discussion

This section discusses the findings of the industrial survey with respect to open research
gaps and potential to foster the applicability of DS in practice. The findings of the survey
show that the company’s motivation focuses on optimizing solutions, solving of complex
tasks and ensure quality. Still, topics such as reducing errors or costs are relevant topics,
too.

In contrast to the motivating factors, the companies observe problems with unclear
benefits and a lack of business model. Additionally, a lack of data quality and availability
is recognized. Both challenges can be traced back to a lack of knowledge about the
current situation and the resulting possibilities and potentials of a planned integration.
Accordingly, methods must be developed to identify possible use cases and derive business
models from them.

Furthermore, human-driven factors like the effort/duration of implementation and the lack
of knowledge requires to be solved. The implementation effort and knowledge required to
program a DS solution promises to be solvable by integrating non-programming interfaces,
e.g., by applying graphical modeling using MDE principles. Additionally, based on the
modeling, means of model transformation can be applied to automatically derive DE
artifacts. By formalizing knowledge using modeling, knowledge is made reusable, which is
not the core focus of companies, but a valuable side effect. Consequently, a step towards
standardization of DS interfaces can be achieved by reusing knowledge formalization. On

61



4. State of Practice

top, the little number of qualified employees is reduced, if non-programming engineers
are empowered to formalize a DS problem using graphical guided modeling tools.

The number of available qualified employees on the market is a challenge that is not just
present for DS. Nevertheless, the field of DS is young, which leads to less experience of
the employees, as a developer survey conducted by Stack Overflow with about 80,000
participants shows that only students have even less experience on average than data
scientists [Sta21]. Additionally, 60% of experts learn programming online, which may
require the introduction of best practices to promote and improve the learning of data
science methods.

4.4 Conclusion
In this chapter, the current state of DS practice in industry has been discussed based on
quantitative and qualitative surveys with Austrian enterprises.

The answer to RQ2 "What obstacles hinder the application of Data-Driven Engineering
in practice?" is that a lack of knowledge within the companies leads to unclear benefits
and shortcomings in the quality and availability of data. Furthermore, the effort for the
implementation in practice is too high and therefore not done. In addition, qualified
employees are barely available on the market, which leads to a knowledge gap.

In this respect, RQ3 "What is required to promote the integration of Data-Driven
Engineering in practice?" can be answered that methods need to be developed that enable
companies to derive use cases from practice and make benefits explicit. Furthermore,
the implementation of DS applications requires a methodological and tool support to
enable a lower implementation effort. Additionally, methods need to be developed to
foster the systematic collection of data with available interconnections to PLM to enable
the improvement of data quality in practice. Moreover, the availability of data can be
increased through automatic data collection.
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CHAPTER 5
Method for Integrating Data

Engineering into Systems
Engineering

In response to the needs highlighted in Chapter 3 and 4, this section presents a method
to support the integration of Data Engineering (DE) into Systems Engineering (SE).
Section 5.1 presents an overview of the developed four-step method. It highlights key
features, and links to the introduced RQs in Section 1.3 as well as links to the respective
method descriptions in Chapter 6 to 9. Section 5.2 industrial use cases from two different
application areas, used for evaluating the four-step method.

5.1 Overview of the Method
Figure 5.2 depicts an overview of the four-step method, represented using the ArchiMate
modeling language. From top to bottom, there are three levels depicted. The first
level depicts the single steps of the elaborated method. The second level highlights the
subsequent method to support the respective step, which is related to the values in level
three.

Prior to the first step, a system or a process is selected that overlaps with the product
life cycle of a system, further referred to as System of Interest (SoI).

The main focus of the method is to support the improvement of an existing SoI within
conceptually well-established processes and environments, which is often the case for
mature products in industrial practice [WC18]. Although the method focuses on well-
established processes and environments, it is still applicable in the early (conceptual)
development of systems or production lines to define the integration of DE at an early stage,
which allows generating new use cases and strengthening the integration by developing
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Figure 5.1: Overview of research objectives, implications, challenges as well as the chapter
of realization in this thesis.

data interfaces that specifically suite for DE capabilities, e.g., via contextualized data
collection [MPRE19].

In terms of focus, the method developed concentrates on communication and the in-
volvement of the various stakeholders to improve collaboration and increase acceptance
in practice. The focus is on graphical knowledge representations, as these have proven
advantageous over textual knowledge representations [JSD+22].

The objectives, research implications, challenges, and implemented solutions of the four-
step method are highlighted in Figure 5.1. At the beginning of each method chapter,
Figure 5.1 is depicted and the relevant information are highlighted.

In the following sections, the four steps are briefly introduced, focusing on key character-
istics, used/adapted methods and the link to the identified RQs.
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Figure 5.2: Overview of the method for integrating DE into SE.
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5.1.1 Step 1 - Identifying Data-Driven Engineering Use Cases

The initial step of the method supports to identify use cases for DDE related to a specific
SoI. The selection of a SoI is an adjacent topic that is not covered in the scope of this
work and is briefly described in Section 5.1.5.

After an SoI is selected, the first step of the developed method is executed. The
first step aims to gather knowledge of actual business processes, data interfaces and
relationships as well as issues that are potentially supportable with DDE. In this respect,
a Method for Identifying Data-Driven Engineering Use Cases in the context of
SE is developed. The method builds, among others, on methods from the field of SE,
Lean Six-Sigma and SysML. The focus of the method is to increase interdisciplinary
communication and promote acceptance in practice by conducting participative workshops
with various stakeholders from the disciplines involved in the respective scope of the
SoI, e.g., mechanical or electrical engineers. Furthermore, the participative workshops
are used to enable a collaborative elaboration of potential use cases and therefore allow
to validate the findings during the elaboration/workshops. To enable the validation of
the findings and to improve communication, graphical modeling methods are used to
formalize the gathered knowledge during workshops.

The details of the method to identify use cases based on participative workshops is
presented in Chapter 6. Additional information on the evaluation use case can be found
in Section 5.2.1. The findings of step 1 answer RQ4 and contribute to answer RQ3.

5.1.2 Step 2 - Integrating Data-Driven Engineering into Actual
Processes

The second step of the method enables the elaboration of prerequisites for the integration
of automated data collection mechanisms and the integration of the resulting DDE
implementation in existing processes. In this respect, a Method for Integrating
Data-Driven Engineering into Actual Processes is developed. The method mainly
builds upon the EA method and SysML. The focus of the method is to increase the
amount of defined prerequisites, such as the automatic collection of data as well as the
definition of sufficient level of detail of the data collection. Furthermore, changes on actual
processes and IT infrastructure with respect to the integration of the elaborated DDE
tool is supported. The findings of step 2 aim to support communication, implementation
performance and contribute to a reduction of misleading expectations. Furthermore,
the transition from current processes to desired processes enables a documentation that
allows traceability of changing processes.

The detailed method is presented in Chapter 7. The evaluation use case is discussed in
Section 5.2.1. The findings of step 2 answer RQ5 and contribute to RQ2 and RQ3.
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5.1.3 Step 3 - Formalizing Data Engineering Tasks using SysML
The previous two steps are preparation steps for the integration of DDE capabilities
in an enterprise. The third step enables to formalize DE capabilities and support the
implementation of DE tools, being a core step of DDE support. In this respect, a
Method for Formalizing Data Engineering Tasks using SysML is developed.
Within this step, SysML is utilized and extended to enable the formalization of DE
tasks on a fine-grained level. With the use of SysML, validated knowledge formalized in
MBSE methods becomes accessible and is extendable. Furthermore, the integration of
the method in MBSE promotes transfer between different stakeholders and disciplines,
aims to improve communication, and creates a pillar for an authoritative source of truth.
Additionally, this method lays the foundation for automatic code generation, discussed
in the next method step.

The method is evaluated by examining two case studies, and the feasibility and applica-
bility is validated by conducting a user study.

The detailed method is presented in Chapter 8. The evaluation use case is given in
Section 5.2.2. The findings of step 3 answer RQ6 and contribute to RQ3.

5.1.4 Step 4 - Data Engineering Code Generation using Model-Driven
Techniques

The fourth step of the DDE method utilizes the formalized DE knowledge to generate
executable code. With respect to this, a Method for Data Engineering Code
Generation using Model-Driven Techniques is developed. The method focuses
on extendability and maintainability of the code generation using open file formats to
reduce blackbox knowledge defined in the source code of the generation engine. To
enable extension, the code generation relies on a mapping configuration using JavaScript
Object Notation (JSON) file format and text-based templates with placeholders that are
exchanged with necessary properties from the model during code generation.

The detailed method is presented in Chapter 9. The evaluation use case is discussed in
Section 5.2.2. The findings of step 4 answer RQ7 and contribute to RQ3.

5.1.5 Adjacent Steps not Addressed in this Thesis
The first step of the proposed method aims to identify a system or process that requires
to be supported by DDE. However, it is not part of the method to identify an SoI that
has potential for improvement, nor is it part of the method to develop a business value.
Accordingly, prior to applying the method, an identification of the rough processes is
required to narrow down the scope.

Furthermore, at the end of the four-step method, the integration and maintenance of
the implemented tool is expected, but out of scope of this thesis. The second step of
the proposed four-step method supports the conceptual integration of the solution into
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actual processes. However, comprehensive support for the integration of DDE tools into
actual processes and IT infrastructures very much dependent on the situation at hand
and therefore outside the scope of this thesis.

5.2 Industrial Evaluation Use Cases
The method developed in this thesis can be described as a deductive approach, as it
combines several steps that aim to build on the predecessor steps and thus deepen
the results of the previous steps [BC09]. In a deductive approach, each method step
is evaluated independently of the other method step and the overall evaluation of the
elaborated method is deduced from this. In this thesis, the evaluation is divided into two
case studies due to the dependency of the two groups of methods. Particularly, method 1
is foundation for method 2, and method 3 is foundation for method 4. Therefore, two
major use cases are defined for the evaluation of the overall method. The first case study
aims to evaluate the preparation for the implementation, and the second case study aims
to evaluate the implementation support. The case studies used to evaluate the method
steps are described in the following subsection.

5.2.1 Use Case 1 - Cost Optimization of Engineering Tolerances
The purpose of the first use case is to evaluate the elaboration of a DDE use case including
the definition of the integration of a target DDE application in existing processes. The
proposed use case aims to support the production and design of manufactured metal
parts based on data of an existing product in a manufacturing environment. This use case
is utilized for the evaluation of the method steps steps 1 an 2 as presented in Chapter 6
and 7. The use case is introduced in the following.

In industry, achieving profits and the associated reduction in costs is a key factor for
success. In the manufacturing of engineered products, around 70% of product costs are
determined in the design phase [EKL07]. Therefore, informed decisions must be made at
this stage of product development, taking into account all available data and information.

In typical product development processes, the flow of information is directed towards
downstream processes. The systematic data backflow, related information and knowledge
about the designed product is still manual and requires a lot of effort [CGY+12, SLR17].

For this reason, this use case aims to evaluate the identification of information and data
sources that can be utilized by DDE capabilities to contribute to informed decisions
in the design phase based on data collected in downstream processes. In addition, the
requirements for automatic data collection and the integration of the desired supporting
tool shall be planned.

The aimed support is a tool that contributes to make informed decisions in the design of
manufactured metal products with special focus on the reduction of manufacturing costs.
The design features of the product shall not be changed, e.g., cost reduction due to the
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(a) CAD part of the manufacturing part.
(b) CAD part with MBD dimensions and
tolerances.

Figure 5.3: CAD part of the use case.

omission of a borehole. The manufacturing cost reduction particularly focuses on the
turning process. Further process steps such as the measurement of the finished part or
the assembly can be taken into concern but shall not be optimized.

The selected manufacturing part of this use case is a rotary part with various outside
turning features, such as different types of grooves, face features or profiles. Figure 5.3
depicts the Computer-Aided Design (CAD) drawing of the turning part of this study
without Model-Based Definition (MBD) (Figure 5.3a) and with MBD (Figure 5.3b)
dimensions. MBD is a strategy for using CAD models as primary artifacts containing
all relevant information required for e.g., manufacturing, to enable the elimination of
two-dimensional paper-based drawings for Geometric Dimensioning and Tolerancing
(GD&T) [RZH+17]. From an engineering point of view, the part is not particularly
complex and requires little experience for manufacturing.

Depending on the product to be manufactured, various machines are used to produce a
part, e.g., milling machine, turning machine, drilling machine. Additionally, arbitrary
number of sub-tasks must be performed to produce a specific part. For the manufacturing
of the selected part, only a turning machine is required. However, further machines are
necessary to measure the result and compare it to the design. Figure 5.4 depicts the
case study’s infrastructure at the pilot factory of the Technical University of Vienna (TU
Wien Pilot Factory Industry 4.0) [HRT+19]. On the right, an EMCO MaxxTurn45
turning machine is shown making the actual parts. All parts are produced out of
bars, which are feed manually into the machine. The measurement of the parts is made
using a Keyence LS-7000 digital micrometer measuring machine, depicted in
Figure 5.4b with a red colored manufacturing part as specified in Figure 5.3. An ABB
IRB2600 robot on the left side automatically takes the final parts from the turning
machine and place them on a table in the middle of the measurement machine. The
table in the middle of the measurement machine is slowly feeding the part through the
measurement laser to create a raw point-cloud with a 0.01 micron resolution, at 2400
samples/second. This enables a close-to-machining measuring system without additional
programming specific for a single part.
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(a) Overview of the infrastructure of the use
case in the Pilot Factory at TU Vienna.

(b) Detail view of the manufactured part
within the quality assurance.

Figure 5.4: The infrastructure in the Pilot Factory at TU Vienna consisting of a ABB
IRB2600 robot on the left, a EMCO MaxxTurn45 turning machine on the right and a
Keyence LS-7000 digital micrometer measuring machine in the front with a red colored
manufacturing part.

In literature, various approaches are considered for the cost estimation of engineering
products, such as parametric, analogous, analytical or bottom-up approaches [CKCR03,
HGZ19, HZZ18]. According to the rapid cost model [KCCR02], manufacturing cost
components can be categorized as material, manufacturing, assembly and support costs
(e.g., rework), amortization of non-recurring and miscellaneous costs. Due to the scope of
the case study, the relevant factors are manufacturing and material. The material costs can
be determined by the approximated size and the material type of the manufacturing part,
which is already known in the conceptual design phase [CKCR03]. The manufacturing
costs can be determined by the sum of shopfloor hours multiplied by the wage rate and
an additional factor for quality and a factor for contingencies [CKCR03].

However, this is a high-level estimation that does not allow to support the decision
making during the product design. Therefore, further assumptions are made as described
in the following.

In turning, key parameters affecting the manufacturing are the feed rate, depth of cut and
cutting speed apart from fixed costs such as material type or the selected tool [AE12].

These three parameters affect the properties of the yielded output as follows:

1. Time of production - important

2. Dimensional accuracy - important

3. Surface finish - important

4. Tool life - less important

5. Required power by machine tool - less important
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Varying the parameters affect the time of production. An improvement of the production
time always leads to a degradation in the other properties and vice versa. The outcome
varies greatly, again depending on specific (brands of) machines, tools and materials. The
evaluation of the properties of the output is performed with regard to the manufactured
product. Therefore, tool life and required power are less important than product
characteristics and the time needed for production.

Based on the important factors, the following hypotheses are made: Experienced CAD
designers and experienced machine operators are rarely the same person and their
interaction is time consuming and potentially error inducing. CAD designers tend to set
tolerances defensively to give machine operations some wiggle room, or very strictly to
ensure that the functionality of the part is given even if the tolerance would not affect
the functionality (local knowledge outweighs system knowledge). Machine operators have
their own agenda and will strive for a local optimum regarding tool life and production
time.

To enable cost-effective product design, production time must be optimized, which requires
optimization of dimensional accuracy, i.e., the widest possible margin for manufacturing
to allow fast machining, and to meet the required surface finish of the design. Therefore,
the goal of the first use case is to identify data that allows to make informed decisions in
the design of products in terms of surface roughness and dimensional accuracy without
knowing the actual manufacturing costs. Particularly, data from (other) parts that have
already been produced will be used to support a designer’s decisions in the product
development of new or improved products in order to design a cost-efficient product.

5.2.2 Use Case 2 - Weather Station Predictions

The second use case aims to evaluate the formalization of DE concerns using means of
MDE. Particularly, means of DE are used to utilize data collected by weather stations to
enable weather predictions. The use case enables to validate the method steps 3 and 4 as
presented in Chapter 8 and 9.

DE is used among others to analyze data and support informed decision-making in
product development, as targeted by the first use case in Section 5.2.1. However, the
use of data generated by complex systems, such as Cyber-Physical System (CPS) or
Cyber-Physical Production System (CPPS), requires knowledge of various disciplines
to collaborate with data scientists, to purposefully use the data and apply it through
the resulting algorithms. While the interfaces in CPS systems may be generic, the data
generated for custom applications must be transformed and merged in very specific ways
so that systems engineers can properly interpret them and gain insights.

To enable efficient collaboration between systems engineers and data scientists, systems
engineers must create a fine-grained specification that describes (a) all parts of the CPS,
(b) how they might interact, (c) what data is exchanged between them, and (d) how
the data relates to each other. CPS and CPPS are just one type of data source. More
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generally, any system involved in the product lifecycle of a product and thus part of the
PLM is subject to the above considerations.

Even today, the communication of these specifications is complicated due to the strong
intertwining with technical and business understanding.

In this respect, surveys show that a third of the data scientists observe a lack of (data)
engineering and communication skills [Ana22]. Additionally, data science methods such
as CRISP-DM are not able to integrate the technical understanding required for complex
technical problems, e.g. in the field of tribology. [BVR21].

For this reason, this use case aims to validate the integration of DE in the context of
CPS/PLM data, a system development process that requires the involvement of several
disciplines. Consequently, the use case involves multiple interrelated data sources to
increase the complexity and potentially lead to necessary data operations such as merging
of data-sets. Additionally, support for existing methodologies such as CRISP-DM to
enable the transition of knowledge from various disciplines is evaluated.

The system of evaluation in this use case is a weather station equipped with multiple
sensors and the purpose of the DE approach is to predict weather conditions. Although
the use case is aimed at evaluating a weather station, it can be linked to the first use
case regarding tolerance-related costs in manufacturing, since one influencing factor
in the manufacturing of milled components is the ambient and material temperature
during manufacturing. For this reason, this use case is relevant for evaluating DE tasks.
Additionally, in manufacturing, various sensors and data can be used, which in this use
case is represented as a composition of weather station sensors.

The selected use case requires the integration of DE for weather predictions based on
historical meteorological data. The data used in this study originates from a public
weather dataset, collected by a weather station in Seattle. The dataset is contained in
a single file, with each line representing the cumulative weather conditions for a single
day, e.g., average temperature, maximum temperature, etc. Additionally, a reference
implementation of a DE solution is used to compare the result of the formalization as
well as the code generation with a ground truth.

As the data was summarized for publication, a single file with all measurements is
available. However, to decrease complexity and to represent the original data as much as
possible, the single weather data file is split into two source files that contain the same
data as the original measurement files. Another reason is that the data originally stems
from a local system collecting weather conditions and a second system given by an online
Application Programming Interface (API), which must ultimately be two files.

Figure 5.5 illustrates the two CPSs that generate the data for the weather prediction.
On the left, the local station is depicted, equipped with various sensors collecting data
continuously. However, the weather data is stored only once per day in a file with
cumulative values. Similarly, weather prediction for a single day are collected once a day
to serve as a marker for the planned supervised learning approach.
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Figure 5.5: Overview of the weather station use case.

The focus of this use case is to show increased communication of business and data
understanding among various disciplines by demonstrating the integration of DE into
MBSE and facilitate CRISP-DM integration. Build upon the formalization of the DE
approach, automatic code generation shall be demonstrated, allowing to reduce the effort
and duration for the implementation of DE capabilities.

With the integration of DE task formalization into MBSE, the understanding, support
and acceptance of DDE in practice is improved. Finally, with the formalization of DE
concerns, knowledge can be reused, maintained and an automatic documentation of
sources and DE internal and adjacent processes, such as a DE pipeline, can be reviewed
on a conceptual level.

Based on the aforementioned factors, the following hypotheses are made: Integrating
the task formalization of DE into MBSE improves the understanding and support
of engineers as well as the acceptance of DDE in practice. Furthermore, the use of
graphical modeling languages allows formalization and replication of DE knowledge
without profound programming knowledge. By automatically decomposing the formalized
knowledge, code snippets can be leveraged for code generation, leading to a reduction in
implementation effort. Finally, formalizing DE concerns allows knowledge to be reusable,
and enables maintenance. Moreover, automatic documentation of the sources and internal
processes of DE pipelines can be verified at a conceptual level. Eventually, the lead time
of DDE implementations decreases.
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CHAPTER 6
Identifying Data-Driven

Engineering Use Cases

This chapter addresses the research objective 1 in Figure 6.1 related to the identification
of use cases for DDE. As the figure shows, several research implications, such as the
identification of business processes, data attributes and interfaces, and the quantification
of the impact of the intended DDE support can be deduced.

Right after a system or process that shall be supported by DDE is selected, the iden-
tification of potential use cases is performed. A key reason for this method is the
lack of business understanding and shortcomings in the elaboration of business val-
ues [BPR21, BPR22, RR22, SWZ20]. The lack of business understanding originates
among others by lack of knowledge regarding DE [ACMA20, BPR21, RR22]. Conse-
quently, a correlation between knowledge in DE and identification of DDE use cases can
be drawn. According to [BPR22], top-down derivation of use cases is beneficial from a
business perspective because it has a high degree of alignment with the business and
data, resulting in immediate business impact and rapid piloting. However, the proposed
approaches lack sufficient integration of data understanding that is a substantial step in
the CRISP-DM methodology. Furthermore, there is a lack of focus on communicating
business understanding, which can lead to misinterpretation and support unwanted by
potential users. Finally, a lack of methodological support with respect to the engineering
domain of systems can be observed that have been shown as a shortcoming of the
CRISP-DM methodology [BVR21].

In this respect, the following overall RQ is answered by step 1 of the developed method:

RQ4 What are appropriate methods to identify use cases for Data-Driven Engi-
neering?
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Figure 6.1: Overview of research objectives, implications and challenges addressed in
Chapter 6.

Subsequently, the following detailed RQs have been identified:

RQ4.1 How to identify relevant data sources in an enterprise for Data-Driven
Engineering approaches?

RQ4.2 How to identify and assess potentials for Data-Driven Engineering based on
existing processes and IT infrastructure?

RQ4.3 How to support communication between the involved stakeholders and foster
knowledge validation and documentation?

RQ4.4 How to enable the integration of various involved stakeholders in the investi-
gation of Data-Driven Engineering use cases?

Based on the identified RQs, first related work and research gaps are discussed. Second,
the elaborated method with a focus on existing process and IT infrastructure is introduced.
Next, an evaluation of the approach based on the described use case in Section 5.2.1 is
given. Finally, the findings are discussed and summarized.

A selection of text, figures and tables within this chapter is based on the publication in
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box „Publications 4: Identifying Data-Driven Engineering Use Cases“:

Publications 4: Identifying Data-Driven Engineering Use Cases

[RR20] S. Rädler and E. Rigger, “Participative Method to Identify Data-Driven
Design Use Cases,” in Product Lifecycle Management Enabling Smart X, vol. 594.
Cham: Springer International Publishing, 2020, pp. 680–694, doi: 10.1007/978-3-
030-62807-9_54.

6.1 Related Work and Research Gaps
The identification of potential use cases for DDE has mainly been discussed in literature
by developing processes to support the development of data-driven applications. One
sample is a collaboration framework supporting deciding whether DE is sufficient to
support a specific use case [HSM+19]. However, the approach starts with discussing
whether DE can solve a specific problem without support for identifying potential use
cases.

Another approach is proposed to support the identification of so-called intelligent features
in conventional mechatronic systems [IGBD15]. The approach is based on SysML and
considers methods such as FMEA or Fault Tree Analysis [Eri05]. However, the approach
lacks support for the systematic collection and analysis of processes and data gathered
among multiple (cyber-physical) systems such as production lines.

In [HJP+20], a five phase approach is proposed consisting of preparing, discover-
ing, understanding, designing and implementing AI use cases. The approach is built
on the Technology-Organization-Environment (TOE) framework [Bak12]. According
to [HJP+20] there are two possibilities of use cases, first, addressing existing problems
and second, finding unknown potentials in the company with the help of AI. Although,
the approach considers business understanding for the selection of AI algorithms, only in
the last step it is said that "if the required data is not yet available, the organization
must plan data acquisition or adapt its data strategy" [HJP+20]. To select a sufficient
algorithm, the type and interconnection of data is necessary, which is considered too late
and therefore, the approach lacks sufficient knowledge on data in early phases.

In [SFB21], the use cases are either purpose-driven or data-driven. In an purpose-driven
approach, the use case is derived by initial identification of potential problems and further
existing processes can be revised with AI supported solutions. The data-driven approach
builds on existing data that needs to be exploratory investigated. However, both paths
of identification lack in sufficient guideline and details on the application.

In [BPR21], two approaches for the identification of use cases based on the business and
data understanding phases of CRISP-DM are proposed: a systematic top-down and an
exploratory user-centered approach. In the top-down approach, business goals, processes,
tasks and decision points are analyzed so to allow the identification of potentials for AI.
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Following CRISP-DM Steps

1. Business Understanding

2. Data Understanding

Goals SIPOC EA VSM / wFMEA SysML

Figure 6.2: Embedding of the use case identification method into the CRISP-DM
methodology.

The exploratory approach is based on Design Thinking [HMU+20] and aims to identify
potential based on problem formulation of domain experts. Both approaches of [BPR21]
are located in the business understanding of CRISP-DM. The authors propose that after
use cases are identified, prioritizing and data understanding needs to be achieved to
assess the data quality and prioritize the approaches whether they are realistic. However,
if multiple use cases are identified in the business understanding, the data understanding
phase might be extensive for little available data science experts [RR22], which further
lead to long and time consuming processes.

In [DSL21], a study is conducted to identify common use cases in automotive industries.
In the survey, experts are asked about existing and conducted AI use cases. The survey
is conducted using face-to-face interviews. However, the study does not provide any
support for the elaboration of use cases. Additionally, the relevance of the identified
common use cases in each company needs to be assessed based on the available data.

6.2 Method
In response to the needs highlighted in Section 6.1 and the fact that AI use case
identification requires collaborative work [FMS19], this section proposes a participative
method for identification of DDE use cases in engineering processes while comprehensively
taking the PLM into account with its technological environments as well as related data
and data interfaces. The method builds upon the CRISP-DM methodology and extends
its first two steps for business and data understanding as illustrated in Figure 6.2 to
make it applicable in an (systems) engineering context.

As shown in Figure 6.2, defining goals is proposed as the first step to create an initial
business understanding and formalize the need to improve the existing situation. The
target definition forms the basis for the subsequent steps of the identification and enables
the streamlining of related processes and thus the evaluation of DDE use cases. Although
a goal is defined in the first step, the subsequent steps still requires to be executed
independent of the goal to not bias the identification of potentials, e.g., if the goal
is defined to narrow, one might specifically search for problems related to the goal
instead of other more valuable problems that have to be solved. In this respect, one or
multiple SIPOC analyses are conducted in participative workshops to define the processes,
stakeholders, and necessary experts for the further steps. Typical workshop participants
are engineers, product designers and a workshop leader who guides the re-engineering of
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the process steps related to the defined goal. The workshop leader has to be familiar with
the here presented method as well as the modeling of EA. The yielded SIPOCs are then
further refined using EA modeling to investigate the processes as well as the supporting
technological environments and related data with data interfaces. To identify sources
of waste and potential to improve the existing processes, pdVSM is executed. Next,
W-FMEA is used to quantify the findings and allow to implement the most valuable DDE
use case first. W-FMEA additionally enable to derive metrics that lead to an improved
evaluation of the defined goal [RV18]. Finally, relevant data objects are identified and
contextualized with the identified goal and use case. Particularly, SysML is used to
fine-grain model data attributes and enable to interconnect the attributes of data objects
with respect to semantic relationships. With the SysML formalization, necessary data
understanding can be achieved which is required for the further subsequent steps of the
method presented in this thesis. In the following, each step of the proposed CRISP-DM
extension is detailed.

6.2.1 Step 1: Definition of Operative Goal
Once a system or a process to optimize is selected, a goal needs to be defined to guide the
subsequent steps for identification of use cases for DDE. The definition of the goal is in
line with existing approaches to metrics definition, which state that goals must be defined
before metrics and corresponding measures are selected, e.g., the Goal-Question-Metric
(GQM) [BCR94] method. Hence, goals can refer to specific design artifacts such as
"improve lifetime of feature XY" or more generally to (parts of) the design process, e.g.,
"define less narrow tolerances in the design without losing functionality". Additionally,
the desired goal specifies whether DDE can rely on previous design revisions and related
PLM data or other designs that feature similar characteristics.

The formalization of the goal is aligned with the GQM proposed by [BCR94]. Table 6.1
depicts the subparts of the goal definition with samples of terms that can be used.

In literature, an approach exists using EA to formalize GQM [CNdST+13]. However, the
use of a table seems to be easier to understand and thus contributes to the applicability.
Furthermore, the application of EA to formalize GQM requires to be investigated and
tested in a user study. Depending on the goal, it might be necessary to formulate more
than one goal. Nevertheless, the goal should not be formulated too complex or extensive,
otherwise the application of the further methods will become more complex and thus the
goal will be more difficult to achieve.

6.2.2 Step 2: Supplier-Input-Process-Output-Customer Analysis
Based on the goal formulation in the previous step, identification of the processes that
are related is initiated. More precisely, all aspects of the product lifecycle that impact or
are impacted by the investigated artifacts/processes need to be assessed. To acquire the
knowledge about the related processes, a SIPOC [YE09] is elaborated within participative
workshops to gain a high-level overview of processes and define the scope of investigations.
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Table 6.1: Goal definition aligned with the Goal-Question-Metric (GQM) approach
[BCR94].

Purpose Reducing / Improving / Analyzing / Predicting
Issue manufacturing costs / lead time/quality
Object (Process) manufacturing process / design process / quality assurance process
Viewpoint CEO / Department Head / Quality Manager.

With respect to the interdisciplinary nature of the workshop, the participants consist of
an expert for modeling who leads the workshop, an expert for the processes adjacent to
the defined target, and an expert for data-driven application development, e.g., a data
scientist. The necessity for participative workshops originates from the interdisciplinary
nature of DDE, a reduction of siloed work and the higher potential to find use cases that
benefit to the organization [FMS19]. If more than one process is adjacent, multiple process
experts are integrated to create each an SIPOC. To foster the workshop performance,
graphical modeling is applied to enable direct validation of the generated models by
the participants. The SIPOC process captures the process in three to five main tasks
(P), the related input (I) and output data (O). The main suppliers (S) and recipients
(C) are connected considering read and/or write access with the input/output data.
Within the workshop, typically the process steps (tasks, P) are identified first, since the
participants typically are involved in various processes and the focus needs to be clearly
stated. Following this, the identification of necessary input (I) and information supplier
(S) is conducted, followed by the output (O) and information receiver (C). However, the
order can be swapped by the workshop lead as well as the team if another order seem to
be beneficial, e.g., the information receiver (C) first, to enable a more customer oriented
view [RKR15].

Figure 6.3 shows a generic SIPOC template using the ArchiMate software. The template
consists of one process with two subtasks structured according to the SIPOC schema.
Additionally, two input, two output, one information receiver and two information supplier
are integrated to visualize the composition of the parts using EA syntax. The dashed
arrows between the model elements, e.g., actor (Information Supplier 1 ) and business
objects (Input Data 1 ) indicate an access relationship, which means that an active element
(actor) either delivers or receives information, depending on the direction of the dashed
arrow. The arrow between the two tasks indicates a causal dependency, e.g., Task 2 is
executed after Task 1 is done.

6.2.3 Step 3: Analysis of Actual Processes, Data Interfaces and IT
Infrastructure

The results from the SIPOC analysis are used as a basis to further detail the processes
by a step-wise decomposition of the tasks to yield single activities [OD05]. Same
as for the SIPOC modeling, the ArchiMate modeling language [Archi19] realized as
ArchiMate software is applied to graphically model details of the business processes,
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Figure 6.3: Template for SIPOC analysis depicting two generic tasks with respective
supplier, input, output and information consumer (customer).

related applications as well as infrastructure including all relationships. To elaborate
the detail processes with related applications, the modeling expert guides the workshops
by successive detailing of the main tasks from the SIPOC analysis based on a directed
question-answer-talk. The workshop leader, asks the question in a fashion that allows to
dig deeper in the processes and activities of the experts with a special focus on potential
shortcomings, such as the ones proposed in Table 2.2. Still, the workshop leader needs to
keep the goal in mind to not overload the model and stay focused on relevant processes
and activities related to the defined goal. With respect to the related applications, focus
is put on the interaction of the applications within the process. Therefore, questions are
posed related to the integrated tools, the used features and interfaces, e.g., API or user
interface, as well as the generated and consumed data. The generated and consumed
data are presented in a high-level representation only, and may be refined in the final
step of the method described in section 6.2.6. To represent a comprehensive model of the
EA [Lan09], the relevant infrastructure behind the applications need to be modeled. If
an activity is out of the knowledge of the workshop participants, relevant experts requires
to be integrated into the modeling process of the specific activity.

Figure 6.4 depicts a sample decomposition of the SIPOC template of Figure 6.3. On
top, the business process of the SIPOC is extended with arbitrary subtasks. Similarly,
other modeling elements of the ArchiMate language can be integrated if necessary.
Underneath the business layer, the application layer is depicted with relevant connections
to the business objects and processes. Each application is additionally connected to its
technology. The template aims in guiding the decomposition, reducing time in creating
a first model of the SIPOC, and providing guidelines on which elements are necessary
and how to arrange them. However, other templates provided by the workshop leader
(modeling expert) are valid, too.
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Figure 6.4: Template for modeling a detailed process with IT artifacts based on a SIPOC model.
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Figure 6.5: Template for Product Development Value Stream Mapping (pdVSM) based
on ArchiMate.

The yielded result of this model is the input for the prerequisites elaboration, presented
in Chapter 7.

6.2.4 Step 4: Product Development Value Stream Mapping
To further strengthen the business understanding, information wastes are identified within
the previously yielded model of the EA using a pdVSM. Particularly, a workshop is
conducted with the domain experts to define information wastes as depicted in Table 2.2.
To connect information wastes with the EA model, Figure 6.5 depicts assessment templates
using the ArchiMate language. The template is used to connect potential wastes in the
process. Particularly, the workshop lead asks the participants each dimension of waste
and whether a task might be related to one of these issues.

Figure 6.6 depicts the integration of an information waste into the template of the detailed
processes using purple assessment objects from Figure 6.5. As depicted, the template
content is adjusted so to describe the issue that it can be further used in Section 6.2.5.
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Figure 6.6: Sample integration of the Product Development Value Stream Mapping (pdVSM) Templates.
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6.2.5 Step 5: Waste Failure Mode Effect Analysis
To assess the effects and causes of the identified sources of information waste, W-FMEA
is conducted based on the result of the previous section. To conduct a FMEA, various
templates are proposed in literature [BCJS92, PP14, Pri96, dC14]. To enable a connection
between the ArchiMate model and the W-FMEA, a template is created with the following
columns (based on [dC14]):

• Process - The process related to the information waste.

• Business Task/Object - The specific task or business object with information
waste.

• Reference to ArchiMate View - Where to find the information waste in the
ArchiMate model.

• Waste Mode - The identified waste mode based on Table 2.2

• Waste Description - The description of the identified waste in the ArchiMate
model.

• Cause of Waste Mode - The cause of the waste.

• Occurance (O) - Scoring of occurance from 1-10 as suggested in [dC14].

• Detection (D) - Scoring of detection from 1-10 as suggested in [dC14].

• Effect of Waste Mode - Description of the effect on the company/department.

• Severity (S) - Scoring of severity from 1-10 as suggested in [dC14].

• Waste priority number (WPN) - Result of the multiplication of occurance,
detection and severity.

• Cause priority number (CPN) - The sum of WPN with the same cause of
waste.

• Priority - The priority based on WPN, taking CPN into concern.

• AI Supportable - An identifier that indicates whether AI support is possible or
not.

In preparation for the W-FMEA workshop, the table is filled in as comprehensively as
possible. The remaining columns, except for the Potentially AI Supportable column, are
filled in by a DE expert. The result of the assessment is an ordered list of potential
issues to be solved. Based thereon, a DE expert assesses each column with respect to
potential to be supported using data-driven algorithms and adds a Yes if supportable,
No if not supportable and ? if further information on the available data, its quality and
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amount as well as the relationships between the data is required. If a question-mark is
set, the assessment of AI possibilities requires the method step 6 in Section 6.2.6 to be
conducted first. In addition to Yes or No, justification is desirable so that decisions can
be understood later.

6.2.6 Step 6: Detailed Data Analysis
Based on the EA model established in Section 6.2.3 and the identified potentials in
Section 6.2.5, details on the data understanding is elaborated next. Particularly, one or
multiple potential use cases from Section 6.2.5 are selected and influencing input and
output data objects are refined to represent a fine-grained level of detail and reflect
attributes and their relationships using SysML BDDs [OMG24]. The elaboration of the
knowledge regarding data attributes is established by conducting an workshop with an
expert that is daily involved in the respective application use. Additional information are
collected based on API documentation and other data description documents available.

Based on the BDD with the modeled data attributes, dependencies within the data can
be highlighted based on data dependency relationships. Explicitly, the focus is put on
the semantic dependencies within data objects with respect to the selected use case,
e.g., the machining program of a milling machine in the production phase is dependent
on the CAD drawing in the design phase. These data relationships are visualized by
adding information flows using the SysML Item flow relationship to the BDD. The
semantic connection of the attributes are double-checked with domain experts as well as
an software engineer or administrator that is knowledgeable with the IT infrastructure.
As a result of this step, the influencing data sources can be identified to build the basis
for the systematic implementation of DDE. The result of the modeling acts also as basis
for the DE task formalization introduced in Chapter 8 as well as for the definition of
further preconditions, such as the need for another data interface in Chapter 7.

Figure 6.7 depicts a sample SysML model with data attribute level description of the
data objects depicted in Figure 6.6. The figure of the SysML model shows a BDD with
data attributes and data types. The PLM block on top is used as binding element among
the entire product lifecycle. Each element connected to the PLM is available in the
Internal Block Diagram (IBD) that is used to describe semantic connections.
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«Block»
Task Library

attributes
+ TaskNr: Integer
+ Name: String
+ Description: String

«Block»
Output Data Object 1

attributes
+ Name: String
+ Path: String
+ LatestUpdate: DateTime
+ TaskNr: Integer

«Block»
Output Data Object 2

attributes
+ Task_Name: String
+ ValidUntil: DateTime

«Block»
PLM

«Block»
Input Data Object

attributes 1

1

Figure 6.7: Sample of SysML Block Definition Diagram (BDD) with detail data attributes.

87



6.
Id

en
ti

fy
in

g
D

at
a-

D
ri

ve
n

E
ng

in
ee

ri
ng

U
se

C
as

es

«Block»
PLM

+ task library: Task Library [1..*]

+ TaskNr: Integer

 + Name: String

 + output data object 1: Output Data Object 1 [1..4]

+ Name: String

+ LatestUpdate: DateTime

+ TaskNr: Integer

 + output data object 2: Output D...

+ Task_Name: String

+ ValidUntil: DateTime

+ input data object: Input Data Object [0..1]

+ Id: Integer

Requirement <Not Linked>

Name of selected Task

Select one of the up to four objects.

TaskNumber

Update_Date

Preselection of task library based on previous selected tasks

Update_Date

Name of selected Task

TaskNumber

Preselection of task library based on previous selected tasks

Select one of the up to four objects.

Requirement <Not Linked>

Figure 6.8: Sample of SysML Internal Block Diagram (IBD) indicating item flows.
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(a) CAD rendering of the use case bishop
chess figure.

(b) Manufactured bishop chess figure using
turning process.

Figure 6.9: The chess figure in CAD format and as final manufactured part.

The IBD in Figure 6.8 connects the data attributes on a semantic level using item flow
feature of SysML. The color of the flows indicate either the flow that is already established
(blue) or the potential flow (magenta) of data using tool support such as intended by
DDE. The label of an item flow indicates the semantics of the information flow, which
can also be described in somewhat more general terms. As a sample, CAD attribute
influence various downstream process data but are not directly interrelated, e.g., CAD
attribute correlation with the feed rate of the Computerized Numerical Control (CNC)
program.

As a result of this step, the interim result of the W-FMEA in Section 6.2.5 can be
complete. Furthermore, the findings serve as a basis for the definition of the targeted
EA integration of DDE support with necessary interfaces for the collection of data in
sufficient quality and quantity as described in Chapter 7.

6.3 Evaluation
This section validates the introduced method using a case study presented in Section 5.2.1.
The use case involves several steps, including the design and manufacturing of a turned
part, more specifically the turning of a Bishop chess figure. The Bishop chess figure
manufactured is depicted in Figure 6.9a as CAD and in Figure 6.9b as manufactured
part.

6.3.1 Step 1: Definition of Operative Goal
The goal of the evaluation project is to reduce the manufacturing costs of a bishop chess
figure during the turning process without changing the functional specifications, the
shape of the product or the material using DE techniques. To enable the reuse of the
application for other manufacturing parts with the involvement of similar process steps
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Table 6.2: The goal definition for the DDE supported reduction of the turning process
costs.

Purpose Supporting the selection of design parameters in product development
Issue to reduce manufacturing costs
Object (Process) during the turning process
Viewpoint from a product manager’s point of view.

and applications, the aim is to support the design parameter definition rather than focus
on the manufacturing parameters. Consequently, the goal can be posed as shown in
Table 6.2.

6.3.2 Step 2: Supplier-Input-Process-Output-Customer Analysis
The pilot factory of the Technical University of Vienna aims to demonstrate demo
scenarios for smart manufacturing [HRT+19]. The definition of product designs is not
explicitly provided due to the scope of the pilot factory and therefore, no processes are
formalized or defined. Consequently, generic processes for product improvement have
to be defined and integrated into the factory. In this case study, a process is developed
according to the specifications in the literature [PB13]. Additionally, insights from various
company projects are used to mimic a realistic process. The applications related to the
artificial process are embedded in the pilot factory. The workshop is conducted with the
shop floor manager and an engineer programming the manufacturing floor. Figure 6.10
depicts the corresponding SIPOC as specified in Section 6.2.1.
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Figure 6.10: SIPOC of the product optimization process with relevant stakeholders.

91



6. Identifying Data-Driven Engineering Use Cases

6.3.3 Step 3: Analysis of Actual Processes, Data Interfaces and IT
Infrastructure

To further detail the SIPOC elaborated in Section 6.3.2, a workshop is conducted at the
pilot factory with the same participants as in the SIPOC elaboration. To accomplish
a detail process model, first, the shopfloor was visited to achieve a grasp idea of the
manufacturing facilities and potentially allow the modeler to ask specific questions. The
main process tasks and related tools were identified using the question-answer-talk with
the experts and the subjective worker view was modeled using EA. The result of the
workshops yields in a EA model describing the current adaptive design process with the
related application as illustrated in Figure 6.11. Similar as in the template in Figure 2.5,
the three layer are vertically depicted to define a well-structured process. Since the
structuring and refinement of the EA model is time-consuming, the modeling expert
applies a post-processing session to refine the model. The result is discussed with the
expert in a second workshop to validate the model and eliminate missing information,
such as the location of the file storage or the interfaces of certain applications. To not
overload the model, only the most relevant steps of the process are depicted in Figure 6.11.
Particularly, the main design and manufacturing processes and corresponding application
with respect to the manufacturing are depicted. The identified applications are SolidWorks
for CAD, HyperMill for Computer-Aided manufacturing (CAM) and an PDF report for
quality measurement protocols (blue layer) which are both stored on the network drive
(green layer).
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Figure 6.11: The detail Enterprise Architecture (EA) model with relevant processes and applications.
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6.3.4 Step 4: Product Development Value Stream Mapping
The modeling expert, a design expert and a shop floor manager participated in a workshop
to identify sources of waste using pdVSM method based on the result of the EA model in
Section 6.3.3. To guide the workshop, the modeling expert asks each of the waste types in
Figure 6.5 and whether one can relate the posed information waste to a process activity
or objective in the model. If one identifies a process with the specific information waste
that is actually not modeled but closely related to the current processes, the modeling
expert decides whether to add the process to the model or not. The workshop yields to
the result in Figure 6.12 with certain assessment flags (purple).
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Figure 6.12: Product Development Value Stream Mapping (pdVSM) integration in the detail Enterprise Architecture (EA)
model with relevant processes and applications.
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6.3.5 Step 5: Waste Failure Mode Effect Analysis
The waste assessment flags in Figure 6.12 indicate sources of information waste. To
quantify these information wastes and allow to streamline the development of potential
DDE support, a W-FMEA is conducted within a workshop to identify causes and effects
as well as assessing whether a use case is relevant and potentially solvable using DE
methods. Aligned with the template proposed in Section 6.2.5, a table is prepared before
the workshop to guide the assessment. Table 6.3 illustrates the identified sources of
waste with additional details that are modeled in EA but not visible in Figure 6.11.
Table 6.4 depicts the result of the workshop. The identifier (ID) connects the two tables.
In practice, the two tables might also be merged. The result in Table 6.4 shows the
priority based on the estimations of the workshop participants. The use case with ID
two has a lower detection rate and the severity is higher than the first use case, it is not
desired as the most impacting since the occurrence is lower. Consequently, use case one
has the highest impact and thus is prioritized to be the first to be implemented.
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Table 6.3: Waste-FMEA to assess the causes and effects.

ID Process Business Task ArchiMate Reference Waste Type Waste Description
1 Adaptive Design Detail Design Eval-DetailProcess-VSM Inventory Lack of information;

static tolerances lead to
increased costs in pro-
duction

2 Adaptive Design / Man-
ufacturing

Manufacturing Plan-
ning / Turning Process

Eval-DetailProcess-VSM Transport Information from man-
ufacturing not usable
for CAM programming
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Table 6.4: Waste-FMEA assessment to prioritize the identified information wastes.

ID Cause of
Waste

Effect of
Waste Occurance Detection Severity WPN CPN Priority AI Supportable

1 Rules are defined
once and never
updated.

Potentially too
narrow toler-
ances and no
case specific
improvement

8 9 7 504 504 1 Yes

2 Data is not pro-
cessed and ana-
lyzed so that it is
usable in the de-
sign.

CAM engineers
are not aware of
the costs related
to a specific de-
cision, e.g., selec-
tion of a specific
tool causes time
consuming tool-
changes.

6 10 8 480 480 2 Yes
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6.3.6 Step 6: Detailed Data Analysis
With the developed ranking of use cases, the selection of the targeted DDE support can
be performed. The selection is not necessarily the highest ranked use case, as the highest
ranked use case may be too complex to implement, out of budget or the realization is
from a management perspective less important. In this evaluation, the detailed data
analysis is similar for both problems. Therefore, no specific use case is selected in this
method step. The selection is made in Chapter 7 due to demonstration purpose. With the
formalization of the business processes and corresponding software artifacts, a detailed
data analysis is performed. With respect to this, SysML BDD and IBD are used to
represent the attributes of the data and to connect the attributes among various data
formats.

Figure 6.13 depicts the BDD with all involved applications and their respective data
formats. The connection of the elements to the PLM can be interpreted as "corporate
infrastructure" and is relevant for the modeling in Chapter 8.
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«Block»
3D CAD Model with MBD

attributes
 + Name: String

«Block»
CAM Model
attributes

 + Name: String
 + G-Code: String

«Block»
Manufacturing Plan

attributes
 + Name: String

«Block»
PLM

«Block»
Feature

attributes
+ FeatureID: Integer
+ Description: String
+ Name: String

«Block»
Dimension

attributes
+ Callout Value: Real
+ Tolerance_Upper: Real
+ Tolerance_Lower: Real
+ Unit Precision: Real
+ Tolerance Precision: Real
+ Tolerance Classification: Complex
+ Tolerance Type: DimXpertLibrary

«Block»
Sketch Spline Feature

attributes
+ Spline Point Number: Integer
+ X-Coordinate: Real
+ Y-Coordinate: Real
+ Tangent Radial Direction: Real
+ Tangent Polar Direction: Real
+ Radius of Curvature: Real

«Block»
Tool

attributes
+ Name: String
+ Tool Properties: Complex

«Block»
Turn Feature
attributes

+ Feed Rate: Real
+ Step Size: Real
+ Spindle Speed: Integer

«Block»
Measuring Protocol

attributes
 + Name: String

«Block»
Subprocess

attributes
+ Process Name: String
+ Id: Integer
+ Planned Time: Real

«Block»
DimXpertLibrary

attributes
+ Dimension Type: DimensionType [1]
+ UpperTolerance: Real [1]
+ LowerTolerance: Real [1]

«Enumeration»
DimensionType

Diameter
Length (Slot/Notch)
Counterbore_Diameter
...

«Block»
Measure Feature

attributes
+ ID: Integer
+ Name: String
+ Actual Value: Real

1

3

 1 3

 1  1..*

 1

1..*

 1

1

 1

1..*

1

 1..*

 11

1

1..*

Tool selection based on Turn Feature

1
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1
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Figure 6.13: Excerpt of a SysML Block Definition Diagram (BDD) with detailed data attributes for evaluation use case.
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6.3. Evaluation

Based on the PLM in Figure 6.13, an internal data representation is created as shown in
Figure 6.14. The item flows in the IBD are depicted in blue and magenta respectively as
introduced in subsection 6.2.6, indicating whether the relationship is already available or
not. It is important to note that an item flow from a parent property to an attribute
means that all underlying properties have an effect on the child element, such as all
properties of dimensions have an effect on turning features or tools.
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«Block»
PLM

 + cad model (sldprt): 3D CAD Model with MBD

 + Name: String

+ feature: Feature [1..*]

+ dimension: Dimension [3]

 + Tolerance_Upper: Real

+ Tolerance_Lower: Real

 + Tolerance Classification: Complex

+ Tolerance Type: DimXpertLibrary

 + cam model: CAM Model

+ turn feature: Turn Feature

+ Feed Rate: Real

 + Step Size: Real

 + Spindle Speed: Integer

+ tool: Tool [1..*]

 + Tool Properties: Complex

 + dimxpertLibrary: DimXpertLibrary

+ Dimension Type: DimensionType

 + UpperTolerance: Real

+ LowerTolerance: Real

 + qs model: Measuring Protocol

+ measure feature: Measure Feature [1..*]

+ Name: String

 + Actual Value: Real

 + cad model (sldprt): 3D CAD Model with MBD

+ Name: String

Feature-specific costs based on actual manufacturing costs
Dynamic adaptation of DimXpertLibrary based on actual measurement valuesDynamic adaptation of DimXpertLibrary based on actual measurement values

Feature-specific costs based on actual manufacturing costs

Figure 6.14: Excerpt of a SysML Internal Block Diagram (IBD) with semantic connections of data attributes.
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6.4. Discussion

6.4 Discussion

In the following the advantages and disadvantages of the elaborated method are discussed
and assessed with respect to future research. In addition, the implications both for
industry and research are highlighted.

6.4.1 Validity of the Method

The evaluation of the method has yielded several insights into the benefits and potential
pitfalls of the method. In the following, the individual steps of the method are discussed,
followed by general implications to evaluate the method comprehensively.

Step 1: The goal definition provided an advantage for streamlining the workshops and
following a common plan. The GQM method guided the goal definition, but resulted in
very precise goals. This proved to be a disadvantage in the course of the workshop, as the
workshop participants kept providing information that further justified the goal, although
for some expert a different, more important goal emerged in the course of the workshop.
For this reason, the granularity of the goal definition should be examined through a user
study, e.g., will better or more use cases be identified if the goal is described in very
general terms?

Step 2 & 3: The modeling steps SIPOC and EA are assessed jointly as they are
closely related. The participative modeling of the process and IT infrastructure using
graphical modeling has proven to be advantageous due to the direct validation and the
associated increase in communication between the individual stakeholders. Additionally,
the graphical representation encouraged participants to share and discuss their knowledge
that further contributes to valid knowledge representation.

However, this led to a somewhat time-consuming evaluation of which processes were
appropriate for the goal. Likewise, a discrepancy of processes as well as applications
could be observed due to the different levels of knowledge. For this reason, it should be
validated in the future whether an expert-separated, sequential workshop would be more
advantageous. In this way, the granularity could also be refined step by step.

Step 4 & 5: The evaluation of potentials by means of VSM and FMEA was considered
advantageous. In particular, data scientists are assisted in assessing feasibility by
evaluating use cases prior to implementation based on high-level specifications, and
furthermore, various stakeholders can define the level of importance themselves by
evaluating each use case. In contrast to EA modeling, the discussion and joint development
or negotiation of a number for the individual criteria was considered beneficial. In this
way, the participants were able to justify their assessment once again and a proven
evaluation is yielded.
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6. Identifying Data-Driven Engineering Use Cases

Step 6: The SysML modeling is an advantage for the development of the DE tool and
also for the elaborated method in the downstream methods. Nevertheless, the modeling
is strongly dependent on the experience of the modeler and thus wrong correlations can
be modeled, which can lead to misinterpretations afterwards. Likewise, the level of detail
of the modeling is very difficult to estimate, since it is not known what data are actually
available and how they can be integrated. Additionally, missing objects to realize a
new information flow might be identified but not modeled in this step, e.g., analysis of
actual manufacturing costs requires machining time. Nevertheless, the method offers an
advantage with respect to the integration and application definition in Chapter 7, since
further information is known, which is normally only knowable after some implementation
cycles. Future work consists of evaluating the integration of a validation step to prove
that an SysML model corresponds to the actual data attributes and to prove the validity
of the formalized knowledge.

General: In general, the method appears to be simple to apply in industry, as little prior
knowledge is required and the benefit for companies is given. The method also supports
the direct validation of knowledge, including the development of possible use cases that
might have remained undiscovered. Through the successive revision and refinement of
the models, knowledge is continuously enriched and a consistent documentation of the
results is given using a model-based representation. In addition, the communication and
quantification of results is made possible. Nevertheless, there are some unresolved pitfalls,
which have already been discussed in the previous paragraphs. Furthermore, the method
is mainly applicable to existing processes and not evaluated for the integration in the
development of new products and processes. For use in the product development of a new
product, method steps may need to be adapted. Future work consists of evaluating the
method in different industries and conducting user studies to exploit the full potential of
the method and to determine all advantages and disadvantages.

6.4.2 Implications for Industry

The method contributes to the industry from several perspectives. First, the participa-
tive and descriptive approach allows for consideration of different perspectives of the
stakeholders involved. As a result, there are fewer unrealistic expectations about the
outcome of a project, while understanding of the complexity of tasks associated with
the project, such as data distribution, increases. Furthermore, communication increases
through the sharing of knowledge during elaboration, which is only made possible by
the use of graphical modeling languages. Additionally, the graphical formalization of
knowledge allows to evaluate the degree of knowledge formalization in a company and
thus contributes to the documentation, validation and standardization of processes during
the elaboration of tools.
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6.4.3 Implications for Research

A main implication of the method for research consists of the consolidation of knowledge
from different scientific communities like data science, engineering and lean management.
Furthermore, the consolidation features the development of shared methods among the
involved research domains and promises to improve communication. Due to the clear
guidance and readily applicability, a transition of methods from academia to the industry
is fostered.

6.5 Summary
This chapter contributes with a new method to identify DDE use cases based on existing
processes and well-established graphical modeling languages. The method is presented
and validated using a case study in a pilot factory with respect to the design and
manufacturing of a turned chess figure. The method builds on a systematic decomposition
of the associated PLM-processes using SIPOC-analysis and EA-modeling to analyze the
business processes and the associated infrastructure. Additionally, a systematic analysis
of systems and related data features is conducted using the graphical modeling language
SysML. The elaboration of the knowledge formalization is conducted using participative
workshops so to directly validate the graphically formalized knowledge with the engineers.

The findings from the evaluation of the method lead to the answer to RQ4.1 "How to
identify relevant data sources in an enterprise for Data-Driven Engineering approaches?"
is that stakeholders need to communicate relevant processes with underlying applications
to enable experts to describe data relationships at the attribute level. In this respect, the
application of participative workshops to build EA models reflecting business processes
and related IT applications appears beneficial.

Based on the knowledge decomposition using EA, the identification of information waste
using pdVSM and W-FMEA is conducted. The pdVSM contributes by categorization
and guidance for the identification of information waste. Based thereon, the W-FMEA
allows to assess the identified information waste and further describe the potentials with
its impact. The assessment of the feasibility by an data science expert allows to categorize
the potential use cases and further select the most promising approach.

Consequently, the answer to RQ4.2 "How to identify and assess potentials for Data-Driven
Engineering based on existing processes and IT infrastructure?" is that stakeholders have
to be guided to apply quantitative assessment methods so that the potential use cases
are validated with respect to the impact based on the knowledge of involved disciplines.

Due to the participative fashion of the workshops, knowledge of various experts is captured
and validated during the modeling. The result of the modeling acts as a documentation
and the communication is fostered due to the shared knowledge acquisition. Hence, this
method establishes a shared business and data understanding required to successfully
identify and implement DDE in industry.
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6. Identifying Data-Driven Engineering Use Cases

Therefore, RQ4.3 "How to support communication between the involved stakeholders and
foster knowledge validation and documentation?" can be answered with the integration
of participative elaboration of knowledge in a graphical modeling environment so that
a domain independent representation of knowledge is given and the validation can be
made implicitly during the workshops. Additionally, the graphical modeling acts as a
documentation without extra effort.

Finally, RQ4.4 "How to enable the integration of various involved stakeholders in the
investigation of Data-Driven Engineering use cases?" is implicitly answered by the present
workshops, which are conducted in the context of participative modeling workshops and
domain-independent representation using graphical models.
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CHAPTER 7
Integrating Data-Driven

Engineering into Actual Processes

This chapter addresses the research objective 2 in Figure 7.1 related to defining pre-
requisites and integrating automated data collection. Figure 7.1 depicts the research
implications, such as the definition of required data associations among processes, auto-
mated data collection mechanisms, and the integration of the intended DE tool support
in actual processes. Additionally, integrating data collection mechanisms is elaborated,
to allow the collection of data on a fine-grained level and enabling to interconnect data,
e.g., a single manufacturing part with various production steps must be traceable to
enable the merging of the generated data. The integration of data collection mechanisms
and the integration of the DE application are part of the integration of DDE into actual
processes.

The requirements definition and prerequisites determination are based on the use case
identified in Chapter 6. The method in Chapter 6 supports analyzing current processes and
applications. However, existing processes and applications might not support sufficient
data collection interfaces or do not represent the relationships between the data for the
desired use case. In this respect, an adaptation of currently implemented processes might
be necessary.

This method integrates the targeted DE application and the associated definition of
preconditions such as new data interfaces. The literature supports the definition of target
architectures by describing that changing processes significantly support the chances of
successful AI projects [RKK+20], respectively DE projects.

With respect to the defined method goals, the following overall RQ is answered by step 2
of the developed method:
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Select System or 
Product Lifecycle 

Process

Use Cases 
Identification

Prerequisites 
Definition

Formalization
and 

Code Generation

Integration and 
Maintenance

1

2

3

4

Objectives Research Implications Challenges Realization
Identify use cases for Data-Driven 
Engineering

• Identify relevant business processes
• Identify data attributes and data interfaces
• Identify potential in actual processes

• Diversity of processes
• Distributed knowledge sources
• Ambiguity of communication

Chapter 6

Define prerequisites for 
integrating Data-Driven 
Engineering

• Define data associations
• Define automatic data collection
• Integrate desired tool in actual processes

• Diversity of processes
• Legacy hardware support
• Diverse data level of detail

Chapter 7

Formalize Data Engineering tasks 
using SysML

• Formalize validated knowledge
• Reuse of knowledge from MBSE
• Enhanced interdisciplinary communication

• Ambiguous modeling
• Complex formalization
• Level of detail of formalization

Chapter 8

Automatic Code Generation for 
Data Engineering based on SysML

• Reuse validated and formalized knowledge
• Enable flexibility and maintainability

• Decomposition of knowledge
• Generation of executable code

Chapter 9

1

2

3

4

Figure 7.1: Overview of research objectives, implications and challenges addressed in
Chapter 7.

RQ5 What are the prerequisites in a company so that manufacturing data can be
leveraged for Data-Driven Engineering?

Subsequently, the following detailed RQs have been identified:

RQ5.1 What are the requirements to enable the traceability of data relationships
where the respective data are gathered in different stages of the product
lifecycle?

RQ5.2 What data collection mechanisms and architectures can be used to automate
data gathering required for rapid iterations in Data-Driven Engineering
development?

RQ5.3 What means of graphical modeling can facilitate the integration of data
collection mechanisms into current business processes and applications?

RQ5.4 What means of graphical modeling can facilitate the integration of Data-
Driven Engineering applications into current business processes and applica-
tions?
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7.1. Related Work and Research Gaps

Based on the identified RQs, related work for the systematic data collection is introduced.
Second, the elaborated method for identifying and defining prerequisites is presented,
which integrates the automatic data collection mechanism and the intended application
in actual processes. Furthermore, an evaluation based on the use case described in
Section 5.2.1 and Chapter 6 is given. Finally, the results are discussed and the answers
to the posed RQs are given.

A selection of text, figures and tables within this chapter is based on the publications in
box „Publications 5: Integrating Data-Driven Engineering into Actual Processes“:

Publications 5: Integrating Data-Driven Engineering into Actual Pro-
cesses

[RMR22] S. Rädler, J. Mangler, and E. Rigger, “Requirements for Manufacturing
Data Collection to Enable Data-Driven Design,” Procedia CIRP, vol. 112, pp.
232–237, Jan. 2022, doi: 10.1016/j.procir.2022.09.077.
[RR20] S. Rädler and E. Rigger, “Participative Method to Identify Data-Driven
Design Use Cases,” in Product Lifecycle Management Enabling Smart X, vol. 594.
Cham: Springer International Publishing, 2020, pp. 680–694, doi: 10.1007/978-3-
030-62807-9_54.

7.1 Related Work and Research Gaps
Integrating DDE into existing processes requires systematic data collection to enable
rapid iteration cycles, support the traceability of relationships between data that might
be distributed among multiple processes, and enable further improvement of the desired
DE application based on up-to-date data.

In this respect, recent trends such as Industry 4.0 [AH17, MV18, MYK+09] are pushing
enterprises towards the implementation of smart factories to enable the collection of
data from Industrial Internet of Things (IIOT) [Gil16] devices during the manufacturing
process [CWS+18]. Particularly, the integration of CPS [WTO15] and CPPS [Mon14] are
an enabler for Industry 4.0 [LO20]. However, challenges regarding the collection of data
from multiple CPPS across various processes of the PLM with multiple levels of detail
remain open [Ger17]. In this respect, the orchestration of data collection and related
processes appears beneficial [GMM+22]. Existing solutions for the orchestration of data
collection typically depend on the hierarchy level in the automation pyramid [DIN03].
For orchestration of processes on control level, graphical languages are used as a basis.
Graphchart [Årz96] is one example for a graphical language for sequential supervisory con-
trol of systems. It is based on Sequential Function Charts (SFC), one of the programming
languages for Programmable Logic Controller (PLC) described in IEC 61131-3 [DIN03].
Other languages like BPMN or Business Process Execution Language (BPEL) are used
on higher organization levels. For lower levels, traditional programming is prevalent. One
requirement of CPS based automation is the need to orchestrate different services, which
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is implemented, e.g., by the Manufacturing Service Bus (MSB) [Min13], a specialization
of the Enterprise Service Bus (ESB). Currently, only one implementation [SHS+18] exists,
and the MSB requires extensive tooling for managing its set-up and evolution due to the
tight semantic coupling it imposes on its components.

The BPMN process orchestration-based approach tries to balance the rigidly structured
and monolithic implementation of traditional approaches based on the automation
pyramid, and the CPS approach with an interacting bag of adapter and translation
services. Approaches such as centurio.work [MPRE19, PM18] and the open source tool
Cloud Process Execution Engine (CPEE) [MR14, MR22], build centralized interaction
models and fully decoupled adapters. Data formats such as IEEE eXtensible Event
Stream (XES) [AVDS+17, GMM+22], allows for the utilization of common data analysis
tools such as Celonis [VGM+17].

In this work, the focus is put on the integration of automated data collection using
CPEE. The core reasons for selecting CPEE is the lightweight integration of any data
source using Representational State Transfer (REST) services and the graphical modeling
using BPMN, which is similar to process modeling using EA, as used in the previous
method. Figures 7.2 depict an executable process’s BPMN notation. Figure 7.2a shows
the steps involved from the viewpoint of the cell orchestration, e.g., how the machines
and the robot interact with each other (further called Cell View). As shown in the Cell
View, task a8 spawns the Part View as a sub-process, which then runs in parallel. The
Part View is depicted in Figure 7.2b and involves steps required to produce a single
part. The two sample views interact through the exchange of signals, e.g., tasks a4 and
a6 in Figure 7.2b. With the separation of the views, each process or sub-process data
is collected in its own logging artifact (e.g., a log-file). Thus, the Part View contains
all the machining and measuring data for exactly one part, the information does NOT
have to be collected from individual data tanks connected to the machines themselves.
Also, while the production and measurement of different parts run in parallel in the Cell
View, in the Part View, everything is a sequence. All the measuring and machining data
collected during the production is pushed to a logging facility, compliant with the IEEE
XES standard [AVDS+17] facility. +

110



7.1.
R

elated
W

ork
and

R
esearch

G
aps

Shuffle Params a6

data.from.to_i <= data.to.to_i 18

Next QR a7

Get Machine State a9 ~T = 0.03m

exclusive

data.state == 'Cancelled' 100%

Spawn Production a8 ~T = 0.01m

Create Program a3

Set Program MT45 a5
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(a) BPMN for the cell orchestration; automatic NC-program
generation, robot handling of parts and automatic keyence
measuring.

Turn a1 ~T = 3m

Signal Machining End a4

Measure with Keyence a2 ~T = 3m

Signal Keyence End a6

Measure with MicroVu - Upright a3 ~T = 4.5m
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s

s

(b) BPMN for producing a work piece.

Figure 7.2: BPMN notation of an execution process of CPEE.
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7.2 Method
This section presents a new method to elaborate prerequisites for the application and
integration of DDE into existing processes. The method is based on the findings of
Chapter 6 and contributes by utilizing means of EA to define the integration of the desired
DE application into existing processes and applications. Additionally, the integration of
automated data collection mechanisms is modeled using EA. Furthermore, desired data
relationships are modeled by extending the existing SysML model. In the following, the
different steps of the developed method are introduced.

7.2.1 Step 1: Define Goal, Requirements and Assumptions
The first step of the introduced method is to define the desired goal of the DE appli-
cation aligned with assumptions and requirements that have to be made to enable the
implementation of DDE.

The goal is derived or refined from the target definition and the identified use case in
Chapter 6. Again, the goal is formalized using GQM to support understanding and
structuring of the goal definition. The definition of the goal can also be modeled using EA
means of requirements modeling [TIK+21]. The purpose of the refined goal is to update
contributing experts and streamline the elaboration and integration of the intended DDE
approach into existing processes.

Assumptions aim to narrow down the scope of the investigation and allow to define
prerequisites so that the implementation potentially can be realized, e.g., the task library
in the sample in Figure 6.8 is only derivable from existing output objects, if templates are
defined and applied to the output object. Based on the assumptions, the project scope
can be reduced and potential risks can be assessed a priori, e.g., by applying FMEA.

Requirements are categorized as functional and non-functional requirements. Functional
requirements define what the system does, whereas non-functional requirements describe
global requirements, such as costs, performance, reliability etc. [AFG+21, CNYM12]. The
requirements are hierarchically organized and modeled using ArchiMate software. A main
reason for the implementation using ArchiMate is the potential to link requirements in the
EA model with other elements and further allow for evaluation during the implementation.
Figure 7.3 depicts a sample hierarchy for the organization of the requirements.

Further details on the definition of non-functional requirements is well defined in litera-
ture [AFG+21].

7.2.2 Step 2: Identify Data and Interface Prerequisites
The second step of the method aims to assess the traceability of data attributes. Missing
traceability harms data linking and is a core issue in manufacturing data analytics use
cases [BB22]. Traceability is the "ability to access any or all information relating to
that ’which’ is under consideration, throughout its entire lifecycle, by means of recorded
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Figure 7.3: Template of hierarchical organized requirements.

identifications" [OB13]. Consequently, in this step, all identified and for the use case
potentially relevant data sources are assessed with respect to forward and backward
traceability. It is sufficient if one attribute of a data source enables the identification of
predecessor and successor data objects. All other attributes can be traced through the
association within a data source, similar to foreign key relationships in SQL.

The proposed approach is based on EA and is depicted in Figure 7.4b. The example of
Figure 7.4b is based on Section 6.2.

The traceability model can be read as follows: From top to bottom, the upstream and
downstream process objects are presented in a causal process aligned order. Between data
objects, composition relationships indicate existing traceability, labeled with attributes
enabling the tracing. If downstream objects enable to trace backward, compositions
are modeled from bottom to top, respectively. Horizontal composition relationships
depicts more fine-grained data necessary for tracing, e.g., a CAD file consists of CAD
features. Dependencies between data objects are represented using association connections.
Particularly, directed and undirected associations are applicable, e.g., Task_Impl_Detail
is dependent on Task_Impl but not vice-versa. Furthermore, specializations are used to
indicate inheritance or more detailed representation. Figure 7.4a depicts the different
types of modeling elements.

If specific data attributes are not traceable forwards or backward, the integration of a new
data object allowing to interconnect the data object needs to be desired, e.g., Input Data
Object in Figure 7.4b is not traceable among the process, which leads to the necessity to
integrate a new data object or attribute, to allow tracing. Particularly, integrating a data
collection mechanism that links the data is potentially necessary. The newly introduced
relationships are highlighted using magenta color code. The integration of potentially
integrated data collection mechanism is depicted in the following method step.
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Composition
relationship

New relationship

Composition with
attribute specification

Specialization

Interdependence

Dependency

From -> To

(a) Traceability modeling elements. (b) Sample EA view to assess traceability.

Figure 7.4: Traceability elements and sample application.

7.2.3 Step 3: Integration of Data Collection Mechanisms

Automated data collection mechanisms are required to link data among processes and
in-time data processing. For this, integrating a framework with capabilities to integrate
arbitrary sources with various interfaces is necessary. The framework of choice is the
lightweight orchestration framework CPEE, shown in the literature to be beneficial for
industrial data collection [PMRE21, RMR22]. The integration of CPEE potentially
replaces and changes existing data objects to allow the integration. Consequently, related
business objects must be updated to achieve a valid EA model. Therefore, the integration
of CPEE into actual processes requires the modeling of a target architecture with
adaptation of the existing EA modeling. In this respect, a template is created with a
standard representation of CPEE, allowing to improve modeling performance. Figure 7.5
depicts the framework template with related artifacts.

Since changes from the current model to the target model cannot be highlighted with
EA, a transition model is created, depicting grayed-out applications and the new CPEE
integration with connections to the process (magenta) and serving connections between
the old application and CPEE to indicate replacement as proposed in literature [BRJ17].
Figure 7.6 illustrates an example of the transition with magenta-colored frames around
new elements.

In addition to the transition model, integrating the CPEE framework in the actual
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Figure 7.5: Reference model depicting the CPEE application used to integrate various
data sources automatically.

processes requires to be modeled. Figure 7.12 depicts a sample of integrating CPEE into
the EA model. Changes are highlighted by magenta-colored frames, too.

The result of this step comprises the integration of CPEE into existing processes and
enables the collection of all necessary data for in-time data processing.

7.2.4 Step 4: Update of Semantic Connections
The penultimate step of the method aims to incorporate the data collection mechanism
integrated in the previous step into the SysML model elaborated in Section 6.3.6. Semantic
links are changed, and a target data representation is presented at an attribute level.
Aligned with the EA model, changes in the SysML model are graphically highlighted
using magenta color code.

Figure 7.7 illustrates an example integration of the CPEE workflow engine into the
sample from Figure 6.7.

Similarly, Figure 7.8 illustrates the magenta colored changes in the semantic relationships
based on Figure 7.8.
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Figure 7.6: Sample of model transition model indicating replaced and extended models.
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«Block»
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attributes
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 + Name: String
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«Block»
Output Data Object 1

attributes
 + Path: String
 + Name: String
 + LatestUpdate: DateTime
 + TaskNr: Integer

«Block»
Output Data Object 2

attributes
 + Task_Name: String
 + ValidUntil: DateTime

«Block»
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IEEE 1849-2016 XES Log File
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 + TimeStamp: String

«Block»
Event

attributes
 + ID: Integer
 + Name: String

«Block»
Data

attributes
 + Name: String
 + Value: String

«Block»
Input Data Object

attributes
 + Id: Integer

Figure 7.7: Sample of updated SysML Block Definition Diagram (BDD) integrating automated data collection mechanism.
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+ output data object 2: Output Data Object 2 [0..1]

 + Task_Name: String

 + ValidUntil: DateTime

 + output data object 1: Output Data Object 1 [1..4]

+ Name: String

+ LatestUpdate: DateTime

 + TaskNr: Integer

 + task library: Task Library [1..*]

+ TaskNr: Integer

 + Name: String

 + ieee 1849-2016 xes log file: IEEE 1849-2016 XES Log File [0..1]

+ TimeStamp: String

 + event: Event [0..1]

+ data: Data [0..1]

+ Name: String

 + Value: String

 + input data object: Input Data Object [0..1]

+ Id: Integer

TaskNumber

Part of Name

Update_Date

Reflected in Value

Name of selected Task

Associated in Value

Preselection of task library based on previous selected tasks

Select one of the up to four objects.

Part of Name

Associated in Value

TaskNumber

Name of selected Task

Select one of the up to four objects.

Update_Date

Reflected in Value

Preselection of task library based on previous selected tasks

Figure 7.8: Sample of updated item flows using SysML Internal Block Diagram (IBD).
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Figure 7.9: Template for the modeling of DE applications.

7.2.5 Step 5: Integrate Data-Driven Engineering Application
Based on the newly accessible data collected through an automated data collection
mechanism, all data required for the implementation of the DE application is available
in the required contexts so that the integration of the DE application can be carried out.

The following step comprises modeling and integrating the DE application into existing
business processes and IT applications. To support the implementation, Figure 7.9 depicts
a template highlighting necessary information for integrating the DE application. On the
right of the template, the input for the DE tool is defined. Particularly, arbitrary data
objects from the existing EA model necessary for the DE approach are connected with the
input data object using part of associations. The data object with the result/prediction
is linked to the business object or function it is desired to be beneficial.

In literature, approaches are describing the modeling of DE (AI) more precisely using
EA [TINI21]. In practice, however, it turned out that the specific details did not support
the implementation as much as the additional effort would have been worth. Still, the
approach from literature can be applied if more extensive and detailed modeling is
necessary.

The result of this step is the To-Be integration architecture of the DE application.

7.2.6 Step 6: Quality Assurance
The application of quality assurance in the modeling of To-Be architecture is a complex
task and requires guidance. Therefore, this method integrates a checklist for To-Be
architecture assessment based on literature [NAR+17]. The actual checklist for the
method is an adapted version and is based on the findings from the evaluation of the
method. Still, the checklist is not comprehensive and requires to evolve form project to
project. Table 7.1 depicts the actual checklist.
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Table 7.1: Checklist for the integration of DDE into existing processes.

□ Is the DE application integrated into the data structure?
□ Is the DE application integrated into the business process with sufficient descrip-

tion?
□ Is the data required for the DE application collected using automated mechanisms?
□ Is all data necessary data interconnected with the DE application?
□ Is all data semantically linked to allow traceability?
□ Is the goal of the DE application understandable without further explanation?
□ Are all application function transitions documented and colored in the model?
□ Is the integration of the DE application aligned with the requirements and as-

sumptions?

Table 7.2: The goal definition for the DDE supported reduction of the turning process
costs.

Purpose Support to make informed decisions for tolerance-related costs of
design features

Issue to reduce manufacturing costs
Object (Process) based on design decisions
Viewpoint from the designer’s perspective.

If all items of the checklist are sufficiently fulfilled, the elaboration of the prerequisites for
the implementation of the application is completed and the implementation, as suggested
in Chapter 8, may start.

7.3 Evaluation
The newly introduced method is validated in this section using the case study presented
in Section 5.2.1. The evaluation builds upon the results presented in Section 6.3.

In the following, each step of the method is applied separately for evaluation purpose.

7.3.1 Step 1: Define Goal, Requirements and Assumptions
Table 7.2 depicts the refined goal of the aimed DDE support. It builds upon the GQM
method aligned goal in Table 6.2.

Following the goal definition, the aligned requirements are depicted in Figure 7.10.
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Figure 7.10: Requirements on the intended DDE approach.
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To enable implementation, several assumptions are defined with domain experts. The
assumptions support the understanding of domain relevant knowledge from the perspective
of DE experts.

In the following, the assumptions for the DDE approach:

• The design of a turned part is composed of several CAD features

• CAD features have fixed characteristics that cannot be changed, e.g., depth, width,
diameter, etc.

• Each CAD feature has an identifier that does not change among parts

• Each CAD feature is created through a predefined sequence of manufacturing steps,
e.g., a thread is first drilled, then phased and finally machined by a tap

• The sequence of manufacturing steps are reflected in CAM and depend on the fix
characteristics of a CAD feature as well as on tolerance-specific aspects, e.g., deep
holes require two drilling steps or a hole with fitting requires additional steps

• The sequence of manufacturing steps is always executed in the same order

• A CAD feature can be mapped to a quality assurance feature using a unique
identifier

7.3.2 Step 2: Identify Data and Interface Prerequisites
Based on the requirements in the previous step, the traceability analysis of the data
artifacts is conducted. Figure 7.11 depicts the data traceability based on Figure 7.4.

The data objects framed with magenta indicate additional data objects, required for
linking CAD features with the actual values of the quality assurance and the actual
machining time. Since the machining time is yet not measured in the implemented
process, an additional integration of the processing timestamp is necessary to enable time
tracking. The following step illustrates the integration of the CPEE with the collection
of machining time.
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Figure 7.11: Traceability analysis from CAD features to quality assurance based on the existing process.
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7.3.3 Step 3: Integration of Data Collection Mechanism
The integration of CPEE into existing processes is defined using EA. Figure 7.5 depicts the
template of CPEE which is integrated in existing processes as illustrated in Figure 7.12.

To further reduce the scope of information, Figure 7.13 depicts only changed and added
elements. For example, the production plan will in future be displayed via workflows
instead of via a PDF file. Additionally, the results of the measurement data will in
future be collected by the workflow engine and not in the form of an excel output. Thus,
the collected data can be directly processed and linked to the manufacturing times of a
feature.

With the results of this step, the To-Be architecture of the data collection mechanism
is defined and necessary additional data artifacts to allow the connection of data are
integrated. Following this, the actual SysML model with relationships is updated to align
with the integrated data collection mechanism.
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Figure 7.12: Integration of data collection mechanisms and additional required data objects.
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Figure 7.13: Transition model to indicate which applications have been replaced and newly integrated.
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7.3.4 Step 4: Update of Semantic Connections
The update of data relationships is intended to support the implementation of the DE
application. In this respect, the actual model from Section 6.3.6 is extended.

Figure 7.14 depicts the updated PLM with integrating the data collection mechanism.
Parts without magenta color code are not changed.

Figure 7.15 illustrates the newly elaborated relationships on an attribute level. Remark-
ably, there is a part of the element flow at the bottom right indicating that the Value
property of the data collection mechanism contains, but is not limited to, the Actual
Value of the measurement.
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CAM Model
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 + ProcessLabel: String
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+ X-Coordinate: Real
+ Y-Coordinate: Real
+ Tangent Radial Direction: Real
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+ LowerTolerance: Real [1]

«Enumeration»
DimensionType

Diameter
Length (Slot/Notch)
Counterbore_Diameter
...

«Block»
Event

attributes
 + ID: Integer
 + Name: String

«Block»
Measure Feature

attributes
+ ID: Integer
+ Name: String
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Figure 7.14: SysML BDD with updated data sources and integration of automated data collection mechanism.
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«Block»
PLM

 + cad model (sldprt): 3D CAD M...

+ dimension: Dimension [3]

 + Tolerance_Lower: Real

 + Tolerance Classificat...

+ Tolerance Type: Dim...

 + Tolerance_Upper: Real

+ cam model: CAM Model [0..1]

+ turn feature: Turn Feature [1..*]

 + Feed Rate: Real

 + Step Size: Real

 + Spindle Speed: Integer

 + tool: Tool [1..*]

 + Tool Properties: Complex

 + dimxpertLibrary: DimXpertLibrary [0..1]

+ Dimension Type: DimensionType

 + UpperTolerance: Real

 + LowerTolerance: Real

 + bpmn model: BPMN Model [0..1]

 + bpmn model: IEEE 1849-2016 XES log [1..*]

+ TimeStamp: String [1]

+ event: Event [1..*]

 + data: Data [*]

 + measure feature: Measure Feature [0..1]

+ Name: String

 + Actual Value: Real

+ Name: String

 + Value: String

Figure 7.15: SysML IBD with updated relationships between the data artifacts with integration of automated data collection
mechanism.
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With the updated SysML model representing traceability information between data, all
prerequisites are defined for the implementation of the DE application.

7.3.5 Step 5: Integrate Data-Driven Engineering Application
With the integration of the CPEE workflow engine, data is interconnected and readily
available for further integration in various use cases for DDE. Still, the integration of
the intended DE application into existing processes and the data integrated into the
DE application are not explicitly depicted in the models. In this respect, Figure 7.16
illustrates the integration of the defined template in Figure 7.9 into the To-Be EA model
representation. Particularly, the defined input and output objects of the application are
integrated and aligned with a business object that is either created for this purpose, as
shown in Figure 7.9, or an existing one is reused. In case the business object is newly
created, it is linked to a business function to enable integration into an existing process.
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Figure 7.16: Integration of the new DE application into existing processes and applications.
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This step wraps up the modeling of the To-Be architecture and initiates the quality
assurance process.

7.3.6 Step 6: Quality Assurance
The final step of the method presented is quality assurance based on the data in Ta-
ble 7.1. The entire checklist is assessed based on the models elaborated during the
previous steps and no other sources of knowledge are required. Additionally, another
reviewer assesses some items on the checklist to avoid bias, e.g., "Is the goal of the DE
application understandable without further explanation?". With the review of all quality
assurance features, the development of prerequisites is completed. Further support for
the implementation of the DE application is given by the MDE method presented in
Chapter 8.

7.4 Discussion
This section critically discusses the newly introduced method. First, the validity of the
method itself is discussed in terms of potentials and pitfalls. At the end of the validity
assessment, future work is presented. Finally, implications for industry and research are
highlighted to show the method’s contribution.

7.4.1 Validity of the Method
The evaluation of the method and the method development progress yielded insights
into the benefits and pitfalls of the method. In the following, each step is separately
discussed, followed by a general discussion with future work.

Step 1: Adjusting the originally defined goal of a use case supports the refinement of the
scope definition and the achievement of a common, updated understanding of the planned
DDE integration. Aligned with defined requirements and assumptions, this step enables
to derive metrics to assess the success of the resulting implementation. A hierarchical
definition of requirements allows templating necessary dimensions of requirements, while
the modeling using ArchiMate enables connecting the requirements with related processes
and achieved architecture. However, the requirements itself are not traceable in the
current setup. Therefore, the integration of application lifecycle management systems
such as Polarion1 or Jira2 might be necessary.

Same for the definition of assumptions. Currently, assumptions are documented by
bullet points in the text. Therefore, the traceability of assumptions or the linking of
assumptions is not possible. Future work requires elaborating a method to integrate
requirements and assumptions in a model or framework that enables traceability.

1https://polarion.plm.automation.siemens.com/
2https://www.atlassian.com/de/software/jira
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7.4. Discussion

Step 2: The elaboration of traceability is beneficial to define interconnections on a data
level. The application of this method step initially was made with SysML (see [RMR22]).
However, it turned out that the representation using EA is easier for non-software engineers
and thus promotes communication and enables to validate traceability. Additionally, the
traceability on an attribute level with explicit definitions of influences turned out to be
complex with several methods and data objects. Therefore, in this updated method,
the modeling is based on EA to improve modeling performance and applicability in
practice. Still, future work is required to extend and improve the approach, e.g., the
modeling of relationships between data entities might be to high-level. Particularly,
certain behaviors besides dependencies, subgroupings, or derivations, such as information
influence, i.e., a certain attribute of an object influences the decisions of another attribute,
might be necessary. In addition, the modeling of traceability associations between objects
is modeled similarly to part of associations, which may lead to misinterpretation.

Step 3: The integration of a visual representation of changed elements is advantageous
to highlight changes in the EA model without extensive effort. Additionally, omitting
unchanged elements to visualize a transition model improves the focus of the integration
without a heavy model. The adaptation of the method described in the literature [BRJ17]
with colored frames around added elements supports the distinction between existing,
unchanged elements relevant for understanding, and newly integrated elements. Fur-
thermore, integrating an automated data collection mechanism is considered beneficial
for analyzing data in-time. However, the integration of data collection mechanisms can
also be overloaded, resulting in large data lakes with terabytes of unused data. In this
regard, the method needs improvement to support the selection of the data collected by
the automated mechanisms.

Step 4: The integration of To-Be representation of data relationship supports to guide
the implementation of the DE application. In particular, it enables the pre-selection
of input variables and also supports the evaluation of the DE tool based on the formal
representation of data connections. Additionally, an increase in the understanding of
the DE application is expected. Nevertheless, the model is not entirely unambiguous.
For example, the representation does not clearly show why the connection between two
attributes exists. Likewise, the development of the model is not comprehensible, which
is harmful to the documentation. In terms of improved documentation, future work is
to develop enriched semantics that provides further details about the relationships and
support for subsequent implementation.

Step 5: The contribution of this method step is two-fold. First, it validates the
previous step by linking relevant input data to the DE application. Second, it represents
the integration of the DE application into the existing processes and data objects and
allows (1) documenting the integration, (2) distribution of the required implementation
effort, and (3) simulate the integration, thus enabling the identification of potential
pitfalls of the application before the integration started. However, integrating the DE
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application with data objects is again done at a data level and not at an attribute level.
Therefore, validation of data and potentially missing data is not guaranteed. Additionally,
a model with omitted elements could be useful not to overload the model and improve
understandability, maintainability and validity.

Step 6: A first validation of the integrated automated data collection mechanism is
given with the integration of the DE application in the previous step. Still, applying
a checklist is beneficial to evaluate whether all necessary steps are comprehensively
completed. In practice, the checklist proves to be a useful tool, even though it has some
pitfalls. The key pitfall is that the granularity of the checklist elements is too high to
prove that all steps are correctly completed. Additionally, the checklist does not evaluate
the content of the various steps. Therefore, the integration of a participative workshop
with relevant stakeholders is proposed for validity checking, as done in the first method,
see Chapter 6. By involving workshops, several stakeholders who are not familiar with
the development have to prove that the To-Be architecture is promising, and everyone
can judge whether certain aspects are still missing or lack in detail.

General and Future Work: Same as for the previous method in Chapter 6, the
method is applicable in industry and allows for immediate validation of knowledge due to
the communication aspects of the EA modeling. With the explicit definition of a target
implementation, the approach supports documentation, maintainability, and reproducibil-
ity for future users and developers of the DE integration. Furthermore, communication
and the involvement of several stakeholders is potentially fostered. Nevertheless, the
maturity of the method is improvable by conducting the following future work: First,
method step one must be adapted so that requirements and assumptions are traceable
and metrics can be derived. Secondly, the modeling and assessment of data traceability
requires further work regarding related approaches in the literature as well as an ex-
tension of the representation of dependencies. Third, the validation of the formalized
knowledge requires to be validated within participative workshops so that the result of
the six-step method is proven. Next, integrating the derivation of metrics, as proposed in
related design automation literature [RVSS19], could be beneficial to validate the impact
of the DE application. Finally, industrial case studies must be conducted to validate
applicability, comprehensiveness and benefits in practice.

7.4.2 Implications for Industry
The here presented method contributes to industry by fostering the integration of DE
application in actual processes. Additionally, communication and documentation is
improved with validated knowledge. Due to the simplicity of the application and little
DE knowledge required for the application, most of the steps can be conducted by
non-experts in DE that reduces the impact of missing available experts on the market,
and missing knowledge in the companies [Ana22, RR22]. Moreover, a step-by-step guide
for integrating DE applications is given, potentially leading to increased practical use
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of DDE. Finally, these steps are done prior to implementation, leading to increased
knowledge of the potential implementation and thus promises to reduce the number of
failing implementations.

7.4.3 Implications for Research

The method presented here contributes to the consolidation of the different scientific
communities and to the development of common methodologies for the involved scientific
fields. Especially for the DE community, tools are made available which have not been
integrated so far. Furthermore, the accurate documentation of the application promotes
the transition of methods from academia to industry.

7.5 Summary

This chapter proposes a new method to support the elaboration and formalization of
DDE integration into existing processes. The method builds on the modeling of EA and
extends it to include modeling of (1) data traceability, (2) transition of applications and
processes into the planned architecture within a EA model, and (3) templates to drive the
integration of automated data collection mechanisms and DDE into the planned processes.
Furthermore, a definition of goals is proposed that is aligned with the elaboration in
Chapter 6, which is completed by a formulation of requirements and assumptions.

Hence, the answer to RQ5.1 "What are the requirements to enable the traceability of
data relationships gathered in different stages of the product lifecycle?" is that data needs
to be collected at a feature (attribute) level to allow the semantic connection of data.
Particularly, each data attribute must be assessed regarding traceability among the
lifecycle. Additionally, data object collection needs to be automated. It is not particularly
necessary to allow the tracing of any data object to each other object forward and
backward. Still, it is necessary to enable tracking through the product lifecycle (PLM),
even if this requires several steps.

Based on the finding of RQ5.1 that automated data collection mechanisms are required,
the answer to RQ5.2 "What are the requirements to enable the traceability of data
relationships where the respective data are gathered in different stages of the product
lifecycle?" is that a modular, simple, and lightweight architecture is required to enable
the integration in any subprocesses or devices. Modular means extending and adapting
to integrate any data source, e.g., legacy hardware, SQL servers or other systems. Simple
describes the integration of a new data source and the processing of data. The evaluation
showed that potentially multiple systems and data sources must be integrated using the
workflow engine. If the application of a data collection mechanism requires much effort,
it will not be automated even if it is necessary. Lightweight is related to integrating small
systems that might be unable to execute heavy systems. In this method, the evaluation
is based on the open-source workflow engine CPEE due to the readily integration of any
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data source by using REST services for communication. However, the method is still
applicable for other workflow engines.

To allow the integration of arbitrary frameworks and data sources, the answer to RQ5.3
"What means of graphical modeling can facilitate the integration of data collection
mechanisms into current business processes and applications?" is that the data collection
mechanism has to be integrated using EA while changes on business processes, objects
and data artifacts need to be highlighted. Particularly, changes and the data transition
need to be documented to assess the effort before the integration.

The answer to RQ5.4 "What means of graphical modeling can facilitate the integration of
Data-Driven Engineering applications into current business processes and applications?"
is that the DDE capabilities need to be integrated into existing processes using EA
to visualize the impact on actual processes and highlight used data sources. To foster
the understanding of the To-Be integration, changes need to be highlighted to enable
documentation. Moreover, means of SysML BDD and IBD are needed to represent the
various relationships between data and hence, streamline the implementation, which
further leads to a reduced effort of the scarce resource of DE experts.
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CHAPTER 8
Formalizing Data Engineering

Tasks using SysML

This chapter addresses the research objective 3 in Figure 8.1 related to the formalization
of DE tasks using SysML. As the figure shows, several research implications, such as the
formalization of validated knowledge, reuse of formalized knowledge or enhancement of
interdisciplinary communication can be deduced.

The need for a more comprehensive method that incorporates the entire development
cycle of the CRISP-DM methodology is highlighted in the results of the SLR presented in
Section 3. For example, the integration of business understanding is not reflected in state
of the art methods due to the focus on DSMLs, which leads to a reduced level of integration
into existing MBSE methodologies. Additionally, the lack of generalization and use case
specific applicability requires special focus on maintainability and extendability. Although
the previous methods introduced in Chapter 6 and 7 are beneficial as prerequisites for
this method, it is applicable independently from the aforementioned methods as well.

The general RQ for this method is as follows:

RQ6 What extensions to graphical modeling languages such as SysML are needed
to integrate Data Engineering tasks comprehensively into Systems Engineer-
ing processes, to formalize product and process knowledge as well as data
artifacts such as data attributes, interfaces, and data transformations?

Subsequently, the following detailed RQs have been identified:
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Select System or 
Product Lifecycle 

Process

Use Cases 
Identification

Prerequisites 
Definition

Formalization
and 

Code Generation

Integration and 
Maintenance

1

2

3

4

Objectives Research Implications Challenges Realization
Identify use cases for Data-Driven 
Engineering

• Identify relevant business processes
• Identify data attributes and data interfaces
• Identify potential in actual processes

• Diversity of processes
• Distributed knowledge sources
• Ambiguity of communication

Chapter 6

Define prerequisites for 
integrating Data-Driven 
Engineering

• Define data associations
• Define automatic data collection
• Integrate desired tool in actual processes

• Diversity of processes
• Legacy hardware support
• Diverse data level of detail

Chapter 7

Formalize Data Engineering tasks 
using SysML

• Formalize validated knowledge
• Reuse of knowledge from MBSE
• Enhanced interdisciplinary communication

• Ambiguous modeling
• Complex formalization
• Level of detail of formalization

Chapter 8

Automatic Code Generation for 
Data Engineering based on SysML

• Reuse validated and formalized knowledge
• Enable flexibility and maintainability

• Decomposition of knowledge
• Generation of executable code

Chapter 9

1

2

3

4

Figure 8.1: Overview of research objectives, implications and challenges addressed in
Chapter 8.

RQ6.1 What means of SysML can be used to represent a sequence of Data Engi-
neering statements?

RQ6.2 What means of SysML can be used to represent the order of execution?

RQ6.3 What stereotypes and associated structure need to be defined to enable reuse,
extensibility and simplicity?

RQ6.4 What means of graphical modeling can be used to represent and guide the
development of Data Engineering tasks?

To address the identified RQs, the elaborated method enabling graphical formalization
of DE tasks is presented in the following section. For evaluation purpose, the method
is applied to a use case that facilitates sensor data to represent a weather station as
illustrated in Section 5.2.2. Finally, the findings are assessed with respect to benefits and
shortcomings. For related work and state of the art approaches, please refer to Section 3.

A selection of text, figures and tables within this chapter is based on the publication in
box „Publications 6: Formalizing Data Engineering Tasks using SysML“:

138



8.1. Method

Publications 6: Formalizing Data Engineering Tasks using SysML

[RRMR22] S. Rädler, E. Rigger, J. Mangler, and S. Rinderle-Ma, “Integra-
tion of Machine Learning Task Definition in Model-Based Systems Engineer-
ing using SysML,” in 2022 IEEE 20th International Conference on Indus-
trial Informatics (INDIN). Perth, Australia: IEEE, Jul. 2022, pp. 546–551,
doi: 10.1109/INDIN51773.2022.9976107.
[RMR23] S. Rädler, J. Mangler, and S. Rinderle-Ma, “Model-Driven Engineering
Method to Support the Formalization of Machine Learning using SysML,” Jul.
2023, doi: 10.48550/arXiv.2307.04495.

8.1 Method
In response to the need highlighted in Section 3 and the identified RQs, this section
describes a method to formalize DE tasks based on SysML and the application of an
extended metamodel. Particularly, the metamodel of SysML is extended with specific
stereotypes and functions to interpret the modeling. Apart from SysML, the method is
aligned with CRISP-DM to allow the structuring of the implementation.

In the following, first, the extension of the SysML metamodel using stereotypes is de-
scribed. Special attention is given to the package structure for organizing the stereotypes,
extensibility for different purposes, and generalization so that stereotypes can be used for
multiple use cases. Second, a package structure aligned with the CRISP-DM methodology
is presented, enabling to guide the application of the newly defined stereotypes. Next, a
syntax and definition of functions is introduced, allowing to interpret the formalized DE
model enriched with the introduced stereotypes. Finally, means of SysML state diagram
is used to define the tasks’ execution order.

8.1.1 Metamodel Extension using Stereotypes
In the following subsections, six packages are introduced, which allow to group stereotypes
that semantically describe required functionalities. Subsequently, an exemplary stereotype
hierarchy for defining higher-order functions for domain-specific data transformation
purposes is described in detail.

8.1.1.1 Stereotype Package Structure

SysML packages are used to group and organize a model and to reduce the complexity of
system parts. Similarly, it can be applied for the organization of stereotypes, as depicted
in Figure 8.2.

The organization of the newly introduced stereotypes is as follows: in Common, general
stereotypes are defined that are used in other packages as basis, e.g., a stereotype DE is
defined in Common, each defined stereotype related to DE inherits from this stereotype
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Algorithms

PreProcessingDataStorage

Common

AlgorithmWorkflow

Attributes

Figure 8.2: SysML package structure to organize stereotypes for DE concerns.

to indicate that it is a DE stereotype. Additionally, stereotypes can be defined allowing
to categorize other stereotypes, e.g., a Pre-Processing stereotype allows to identify that
all inheriting stereotypes are introduced for the data preparation step of the CRISP-DM
methodology.

In Attributes, stereotypes for a more detailed definition of attributes are defined. These
attribute stereotypes cannot be applied to blocks, only to attributes of a block. Thus,
the stereotypes extend primitive data types such as Integer or Float. The purpose of the
extension are additional characteristics to describe the data, e.g., valid ranges of a value
or the format of a datetime property or a regular expression to collect or describe a part
of a text value.

The package DataStorage defines available data interfaces from a general perspective
required for the loading and processing of data from various data sources, e.g., SQL
servers, API or other file formats (e.g., CSV). The purpose of the stereotypes are to
support the data understanding of the CRISP-DM methodology. Additionally, it allows
to bridge the gap between business and data understanding due to the explicit definition
of data. Further details in Section 8.1.3.

In the Algorithm package, various ML algorithms are defined and grouped with respect
to types of algorithms, e.g., regression or clustering algorithms. Particularly, the focus is
put on key characteristics of an algorithm implementation, such as mandatory hyper-
parameter or the stereotype description. Optional algorithm parameters are not described
in the stereotype, but can be added during the modeling, as illustrated in Figure 8.5.

The PreProcessing package (a.k.a. as data preparation) is the most complex and extensive
package due to the number of functionalities required. Additionally, a survey revealed
that computer scientists spend the most effort in preparing and cleaning data [Ana22].
Within this package, functions are defined allowing to transform data so that a cleaned
and applicable dataset for the DE algorithm is defined.

Finally, the AlgorithmWorkflow package, consisting of stereotypes for states of a state
diagram, allowing to define the implementation order of the DE tasks. Typically in
SysML, states are connected to activities, which are a sequence of execution steps.
However, in practice, it turned out that it is very time consuming to prepare activities
first. Additionally, a function abstracted as a single block can be considered as a set of
activities. Consequently, state diagrams are used instead of activity diagrams to reduce
the implementation effort and complexity.
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8.1.1.2 Stereotypes Hierarchy

As mentioned in Section 8.1.1.1, each package represents a specific hierarchy of stereotypes,
allowing to describe various aspects of DE subtasks. An example definition of stereotypes
related to data pre-processing is depicted in Figure 8.5. As introduced in Section 2.3.3,
stereotypes can be hierarchically composed to describe specific attributes only once for a
set of stereotypes. On top, the de stereotype defined in the Common package is depicted,
indicating that all inheriting stereotypes are related to DE. Formalizing a DE task is
intended to be iteratively, which is why some stereotypes are abstract, illustrated by italic
letters. If a stereotype is abstract, it means that the stereotype requires further details or
that a child stereotype with additional information is required, e.g., DataTransformation
cannot be used without further details as it can be arbitrary transformation of data.
The purpose of abstraction is to support the early definition of tasks in the product
development without details already known, e.g., the final file-format used to store the
data.

From top to bottom in Figure 8.3, the level of detail increases and the task is more
fine-grained. Consequently, leaves are the most fine-grain stereotypes. The inheritance
additionally allows to group functions of a specific kind, e.g., functions regarding outlier
detection etc. Due to the grouping of functions, the composition of stereotypes strongly
depends on the preferences of the implementing expert and the purpose of the composition
in terms of inheritance of attributes. However, note that attributes defined in a parent
stereotype are also available in a child stereotype, respectively. Therefore, each level
should only represent mandatory attributes. This especially applies for algorithms with
a lot of hyper-parameters, e.g., logistic regression with more than 20 parameters and
attributes1. In case a parameter is not defined in the stereotype, it sill can be added
during the modeling and application of the stereotypes. A sample can be found in Section
8.2.

Additionally, it is possible to add a set of values using Enumerations for a single attribute,
e.g., MissingValueFunction highlighted in green. In this respect, modeling is more precise
and guided by a fixed set of valid options. Similarly, specific stereotypes can be used
as an attribute, which means that only blocks or attributes that apply the specific
stereotype can be assigned, e.g., Method_Attribute_Input indicating that only properties
with a stereotype defined in the package Attributes can be applied because each attribute
stereotype inherit from that specific stereotype.

Finally, the application of the keyword BlackBox can be used if a function shall be hidden
due to security reasons or the implementation is unknown, e.g., BlackBox_Outliers on
the right side of Figure 8.3.

1https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.
LogisticRegression.html
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«Stereotype»
PreProcessing

«Stereotype»
BlackBox_Outliers

«Stereotype»
MissingValues

«Stereotype»
DataTransformation

«Stereotype»
DataframeOptions

«Stereotype»
Aggregation
 + Func: String
 + axis: Integer

«Stereotype»
Normalization

 + Method: Scaler_Method

«Enumeration»
Scaler_Method
MinMaxScaler
MaxAbsScaler

«Stereotype»
DataFrame_Merge

 + MergeOn: ML_Attribute_Input [2..*]
 + How: String

«Enumeration»
MissingValueFunction
DropNa
FillNa
Interpolate

«Stereotype»
DateConversion

 + Output_Format: String

«Stereotype»
Encoding

+ ToEncode: ML_Attribute_Input

«Stereotype»
DE

Figure 8.3: Example hierarchy of stereotypes related to data pre-processing/preparation.
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8.1.2 Package Structure Guiding the Implementation

CRISP-DM as described in Section 2.1.5 consists of six steps, each describing a specific
aspect required for the development of a DE project. Figure 8.4 illustrates the package
structure aligned with the CRISP-DM methodology. Business Understanding consists of
BDDs describing the system under study with the composition from a system configuration
point of view. In this respect, the VAMOS method [Wei14] is integrated to describe a
specific system configuration. The integration of the VAMOS method focuses on the
data interfaces and attributes of a particular configuration of a system, as different
configurations of a system might lead to changed data output. In this method, the
VAMOS method is used to focus on data interfaces. Therefore, other SE knowledge is
presented in other diagrams, which is out of the scope of this work. Still, the knowledge
modeled in other diagrams is connected to the instance of a block used in the VAMOS
method and therefore, multiple disciplines are enabled to work on the same model.
Assuming that collaborative working is supported by the underlying modeling tool.

The second step, Data Understanding, details the Business Understanding with the
definition of delivered data on an attribute and data format level. Particularly, the data
type and the name of the delivered data attribute are described using BDDs. Additionally,
attribute stereotypes are used to describe the data in detail as described in Section 8.1.1.1.
With the application of stereotypes on a block level, the type of data interface is defined,
e.g., CSV files or SQL servers. As a result of the formalization of the interfaces in this
package: The information exchange between the SE and the data engineering can be
considered as completed.

Based on the Data Understanding, the Pre-Processing is applied to transform and prepare
the data in a final dataset that can be used in the Modeling. In the Pre-Processing,
the most effort is required due to the possible number of required data transformations
to create a dataset usable for DE. The result of the Pre-Processing is a final dataset,
considered to be ready for the ML algorithm.

Within the Modeling package, algorithms are applied to the final dataset. Additionally,
train-test-splitting and other required functions on the ML algorithm are applied. In
the Evaluation package, various metrics are used to asses and prove the validity of the
algorithm result of the Modeling package.

Finally, the Workflow package, which describes the execution order of the formalization
in the previous packages using state diagrams. For each state, a custom stereotype is
applied allowing to connect a block that is connected to a stereotype inherited from
de. The method to assign blocks to states allows to overcome the necessity to define
activities, making the method less heavy for the application and reduces time for the
formalization of the DE.

Typically in CRISP-DM, the very last step is the deployment. However, the deployment
is considered out of scope in this work and therefore the method ends with the workflow.
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1. Business Understanding 2. Data Understanding 3. Pre-Processing

4. Modeling 5. Evaluation 6. Workflow

Figure 8.4: The implementation structure aligned with CRISP-DM.

8.1.3 Functional Interpretation
For the purpose of implementing DE functionalities, the functional programming paradigm
is used [GM23]. It utilizes higher order functions, invoked on (data-)objects which are
returning objects. This allows for a step-by-step decomposition, filtering and transfor-
mation of data, without side-effects, i.e., changes to variables, in comparison to the
imperative programming paradigm.

This sequence of function invocation aligns well with how UML and other modeling
languages implement abstraction-levels to reflect a relevant selection of properties to
focus on the aspects of interest [BCW17]. Functions are blackboxes with processing
capability that are associated with (data-)artifacts upon which they can be called, and
are associated with data-artifacts they produce as output. The abstraction is realized
by describing functions or a set of functions with a single stereotype and instances with
blocks.

A class in UML is defined among others by attributes, stereotypes, operations (methods),
constraints and relationships to other classes. In SysML, a block describes a system or
subsystem with a similar definition as a class in UML. A DE task and the respective
subtasks can be seen as a system with subsystems. Therefore, each subtask is modeled
using blocks, aligned with the syntax described in Section 2.3.3. Particularly, only input
values represented as attributes of a block and the relationship to other blocks are modeled.
The operations (methods) are defined as stereotypes with abstracted implementations.
Attributes defined on the stereotype are mandatory input values for the definition of a
DE subtask. The attributes defined on a block itself are optional for documentation or
to extend the stereotype with fine-grained details, e.g., utc attribute in the Format_-
Date2 block in Figure 8.5. The output of a subtask (block) is implicitly defined in the
implementation of the code snippet related to a stereotype and not explicitly depicted in
the model. The output of a block can be used as input for other blocks, e.g., CSV_1
block as input for the Format_Date block.

Figure 8.5 depicts a few samples of the aforementioned concepts. On top right, a date
conversion subtask is modeled as Format_Date. The date conversion stereotype has a
mandatory attribute to define the format of the output of the conversion. The input for
the date conversion is the block CSV_1, connected using a part association.

In this sample, the date attribute is the only input value matching due to the stereotype
Datetime. However, if the input is ambiguous because the datetime is stored for instance
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as integer or multiple attributes of the connected block are in the correct input format,
it is necessary to add additional attributes to the date conversion to select the particular
input, e.g., with a new attribute, whose value is the particular input attribute from the
connected block.

The block Format_Date2 inherits from Format_Date. Therefore, the input and the
attributes are the same except of manual overwritten values, e.g., changes on the output
datetime format or the added additional attribute utc.

Another example in Figure 8.5 shows the integration of multiple inputs. The Merge_DF
block consists of two input blocks and the attributes on which the merging function shall
be applied are defined using an attribute that consists of two values (MergeOn). The
MergeOn attribute is mandatory and therefore defined on the stereotype.

Although the implicit execution order of the subtasks is defined by the associations and
the necessity to compute first inputs, the execution order might be ambiguous, e.g.,
execute first the Format_Date or the Merge_DF. As described in Section 2.3.3, structural
diagram elements, such as blocks, require the integration of behavioral diagrams to allow
the definition of an execution order [BCW17].

To enable the connection of a block with a state in a state diagram, custom stereotypes
are applied. The stereotypes for the states consist of a single mandatory attribute. The
mandatory attribute references a block with a stereotype that inherits from the root
stereotype DE.

8.2 Evaluation
This section presents two case studies, i.e., a weather system that predicts weather
conditions based on sensor data (details in Section 5.2.2), and an image similarity check
that makes it possible to assess whether the actual print of a 3D model with a 3D printer
corresponds to the desired output. As a result, the printing process can be stopped
prematurely, saving filament and time.

8.2.1 Weather Prediction based on Sensor Data
Figure 8.6 illustrates the composition of the weather system that is split in two parts.
On the left side, a local station is equipped with various sensors, delivering a CSV file
with sensors for measuring and on the right side, a weather prediction that additionally
delivers a CSV file with weather predictions over the internet.

From an SE perspective, the weather system is a CPS and can be configured with
various sensors. Figure 8.7 depicts the SysML model of the weather system with a
specific configuration aligned with Figure 8.6. Particularly, Figure 8.7 depicts a method
aligned with [Wei14] that allows to formalize variations. Additionally, the modeling of
the system from an business perspective is the first step of the method. Focus is put on
the values of interest, which are the output values of the subsystems, to keep the business
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«Block, CSV»
CSV_1

Delimiter=, 
SkipNrOfLines=0
GenerateTimestamp=false 
Encoding=utf-8 
Path=\path\to\CSV_1.csv 
Online_Accessable=false

attributes
«Datetime» + date: String
«Float» + wind: Real
«Float» + temp_min: Real
«Float» + temp_max: Real
«Float» + precipitation: Real

«Block, CSV»
CSV_2

Delimiter=;
SkipNrOfLines=0 
GenerateTimestamp=false 
Encoding=windows-1252 
Path=\path\to\CSV_2.csv
Online_Accessable=false 

attributes
«String»  + weather: String
«Datetime»  + date_date: String

«Block, DataFrame_Merge»
Merge_DF

MergeOn=[date, date_date] 
How=inner 

attributes

«Block, DateConversion»
Format_Date

Output_Format=%Y-%m-%d 

attributes

«Block, DateConversion»
Format_Date2

Output_Format=%d %B %Y 

attributes
+ utc: Boolean = true

Figure 8.5: DE data pre-processing based on a sample in Section 8.2.

understanding as concise as possible. In the middle of the figure, the core weather system
configuration is depicted. The surrounding subsystems are sensors or subsystems, e.g.,
an API (right side). The attributes of the sensors are output values of each subsystems
to align with the CRISP-DM business understanding that aims to get a general idea of
the system and from where data originates.

To transform the business understanding in valuable data understanding, connections
between the system in the business understanding and output data formats are established.
Particularly, a realization connection between the CPS and blocks describing the data
format using stereotypes inheriting from DE are modeled. In the blocks, each attribute
has a type representing the actual data type in the data source and a stereotype with a
DE attribute describing the representation in the DE method, e.g., CSV_2 attribute
date_date is of type String and is mapped to the stereotype Datetime that considers
aspects such as the datetime format. Additionally, stereotype attributes are defined such
as the Encoding or the Delimiter to describe the composition of the CSV file.
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Precipitation
Sensor

Remote StationLocal Station

Anemometer
Sensor

Temperature
Sensor

Weather 
ForecastMachine Learning

Figure 8.6: Illustration of the weather system use case.

«Block, VariationConfig»
Weather_System_01

attributes

«Block»
Weather_System

«Block, Variation»
Weather_Online_API

attributes
 + Date: String
 + Weather: String

«Block, Variation»
Temperature_Sensor_Celsius

attributes
+ Temperature: Real

«Block, Variation»
Wind_Sensor
attributes

+ Windspeed: Real

«Block, Variation»
Temperature_AVG_Sensor

attributes
+ Max_Temperature: Real
+ Min_Temperature: Real
+ Interval: Integer

«Block, Variation»
Precipitation_Sensor

attributes
+ Precipitation_mm: Real

 1

 1

 1

1

1
1  1

1

 1
 1

Figure 8.7: Business Understanding of the weather system.
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«Block, VariationConfig»
Weather_System_01

«Block, CSV»
CSV_1

Delimiter=,
SkipNrOfLines=0 
GenerateTimestamp=false 
Encoding=utf-8 
Path=\path\to\CSV_1.csv
Online_Accessable=false

attributes
«Datetime»  + date: String
«Float»  + wind: Real
«Float»  + temp_min: Real
«Float»  + temp_max: Real
«Float»  + precipitation: Real

«Block, CSV»
CSV_2

Delimiter=;
SkipNrOfLines=0 
GenerateTimestamp=false 
Encoding=windows-1252 
Path=\path\to\CSV_2.csv
Online_Accessable=false 

attributes
«String»  + weather: String
«Datetime»  + date_date: String

Figure 8.8: Data Understanding of the weather system.

Figure 8.5 depicts a set of subtasks applied to the data sources defined in Figure 8.8. For
and explanation of Figure 8.5, please refer to Section 8.1.

Figure 8.9 illustrates the application of a train-test-split and the integration of the split
data into two different regression algorithms, which are specified in a mandatory attribute.
As of the definition of the stereotypes, no further parameters are mandatory. For the
RandomForestRegressor, the optional hyper-parameter max_depth is defined.
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«Block, DataFrame_Merge»
Merge_DF

«Block, Regression»
Algo_1

Algorithm=RandomForestRegressor

attributes
+ max_depth: Integer = 4

«Block, Regression»
Algo_2

Algorithm=DecisionTreeRegressor 

«Block, Train_Test_Split»
TrainSplit

Figure 8.9: Modeling of algorithms.
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«Block, Regression»
ML_2

Algorithm=DecisionTreeRegressor 

«Block, Regression»
ML_1

Algorithm=RandomForestRegressor

attributes
 + max_depth: Integer = 4

«Block, MeanAbsoluteError»
MAE1

Text=Mean absolute error: 

«Block, Predict»
Predict_ML1

«Block, Predict»
Predict_ML2

«Block, MeanAbsoluteError»
MAE2

Text=The result of the prediction
resulted in a mean absolute error
of: 

 1

 0..1

 1

 0..1

 1

 0..1

1
 0..1

Figure 8.10: Evaluation of the weather prediction.

Learning Workflow

«DE_Block_Connection»
Load_CSV1

«DE_Block_Connection»
Load_CSV2

«DE_Block_Connection»
Convert_Date

«DE_Block_Connection»
Merge_DFs

«DE_Block_Connection»
SplitInTrainTest

«DE_Block_Connection»
Model_DecisionTreeRegressor

«DE_Block_Connection»
Model_RandomForestRegressor

«DE_Block_Connection»
Predict_DecisionTree

«DE_Block_Connection»
MAE

«DE_Block_Connection»
Predict_RandomForest

«DE_Block_Connection»
Encode

 Start

Done

Figure 8.11: Sample integration of the workflow.

Figure 8.10 depicts the prediction and the application of metrics such as mean absolute
error (MAE). The mandatory parameter text is a placeholder allowing to add text that
shall be implemented with the evaluation result.

The method’s final step is integrating the blocks into an execution workflow. Figure 8.11
illustrates the execution order of the algorithm steps. As can be seen, the Format_Date2
block modeled in Figure 8.5 is not depicted in the workflow, meaning that it is not taken
into concern during the implementation and is left out as an artifact unnecessary over
the formalization evolution. The state’s name is to readily understand the workflow and
the blocks connected with the DDE_Block_Connection stereotype.

As the scope of this work is to formalize DE tasks and not to improve the executable
code or to derive the code automatically, the result of the DE and the implementation
itself are not depicted. The automatic code derivation is described in Chapter 9.
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8.2.2 3D Printer Success Evaluation during Printing
The purpose of the second use case is to evaluate the application to detect faulty 3D prints
during the printing process by comparing the actual status of the printed model with the
intended model. This use case illustrates the method’s applicability to other data sources,
such as image data, and the integration of the method into an executable workflow engine.
Additionally, the integration of pre-trained models is depicted by integrating TensorFlow
Hub. The idea of image similarity checking is based on an image similarity tutorial2.

The use case process is described below and illustrated in Figure 8.12. In this respect,
CPEE [MR14, MR22] is adopted to orchestrate the application process, as CPEE provides
a lightweight and straightforward user interface to orchestrate any application that allows
interaction via REST web services. Figure 8.12 shows the workflow of the application,
consisting of image generation and printing. The first three process steps define the
slicing of a STL file and the generation of the reference images. Particularly, a Python
script is called that generates the slices based on a given STL file and stores the generated
reference images for later comparison and similarity check. The second part of the process
consists of a loop that prints a slice, takes a photo with a camera from the top center
of the working area, and calls a similarity script to compare the intended and actual
printed model. The image similarity algorithm is defined using the DE formalization
method, proposed here. The defined algorithm provides a similarity index compared to a
threshold value. If the threshold is exceeded, the printing process is aborted, otherwise,
the process steps are repeated.

2https://towardsdatascience.com/image-similarity-with-deep-learning-
c17d83068f59
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Code

Call
STL2PNG

Script
Store

PNG Files
Load STL

File
Print
Slice

Take
Photo of
Printed

Slice

Call
Image

Similarity
Script Similarity Threshold > 80%

AND Next Slice
Available for Printing
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Figure 8.12: Workflow Integrating the formalized DE method to early stop 3D printing.
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«Block, Image_File»
Image_Printer

Height=1080 
Width=1920 
Imagetype=png
Path=/printer 
Online_Accessable=false 

«Block, Image_File»
Image_STL_Slice

Height=2000 
Width=2000 
Imagetype=png
Path=/sliced 
Online_Accessable=false 

«Block»
DE_Properties

Figure 8.13: Image definition used for the similarity prediction.

The DE model integrated into the printing process is formalized below. Figure 8.13
depicts input data consisting of two images: the image sliced from the STL file and the
photo from the 3D printer camera. In contrast to the first use case, the data attributes are
not further detailed with stereotypes because the input data do not show any variations,
i.e., the format and resolution of the images do not change.

Figure 8.14 depicts the scaling of the images such that they have the same dimension.
The conversion parameter L allows comparing the images on a black-and-white basis.
Normalization of the pixels and colors between 0 and 1 is also applied. The normalization
in the block Convert_PixelsAndNormalize should be defined as a new stereotype. In this
case, the application of the CustomCode stereotype is shown, allowing for the injection
of program code, which allows rapid prototyping. However, flaws, such as vulnerability
or hijacking of the method might lead to reduced understanding and reproducibility.
Additionally, it is not the purpose of the method to use a single block that represents
a complex solution that is programmed within the SysML block. As a sample, Figure
8.15 depicts on top the use of the model to represent the programming in a single block.
Underneath, the recommended use of the model is illustrated, representing the same
functionality. For further discussion on potential issues, see Section 8.4.3.
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«Block, Image_File»
Image_Printer

Height=1080 
Width=1920
Imagetype=png 
Path=/printer 
Online_Accessable=false 

«Block, Image_File»
Image_STL_Slice

Height=2000 
Width=2000
Imagetype=png 
Path=/sliced 
Online_Accessable=false 

«Block, Resize»
Image_Scaling

Convert=L 
Height=1000
Width=1000 

«Block, CustomCode»
Convert_PixelsAndNormalize

Code=file = np.stack(($input,)*3, axis=-
1)\r\n$output=np.array(file)/255.0

1

0..1

1

2

1..*

0..1

Figure 8.14: Image scaling and normalization used for data preprocessing.

15
4



8.2.
Evaluation

«Block, CustomCode»
Convert_PixelsAndNormalize

Code=file = np.stack(($input,)*3, axis=-1)\r\n$output=np.array(file)/255.0  

«Block, Stack»
Converting the image into a color representation for each pixel

«Stack»
Axis=-1 
Arrays=($input,)*3 

«Block, Normalization»
NormalizeValues

Method=MinMaxScaler 

attributes
 + data_max: Integer = 255

Figure 8.15: On top the wrong application of the method and below correct use.
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Furthermore, the two images are fed to the classification algorithm, as illustrated in
Figure 8.16. The input value Model describes a TensorFlow Hub input, a pre-trained
model to classify images. Finally, the result is measured using cosine distance metrics.
The threshold for canceling the printing is implemented in the workflow and can be
adjusted by the user. Finally, Figure 8.17 depicts the execution sequence of the algorithm.
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«Block, Sequential_HUB»
Model

layers=[] 
Name 
Hub_URL=https://tfhub.dev/
tensorflow/efficientnet/lite0/
feature-vector/2 
input_shape=[1000, 1001, 3] 

«Block, CustomCode»
Convert_PixelsAndNormalize

Code=file = np.stack(($input,)*3,
axis=-1)\r\n$output=np.array(file)/
255.0  

«Block, Distance»
SpatialDistance

metric=cosine 
Text=The image similarity index
between 0 and 1 is: 

«Block, Predict, CustomCode»
predict

Code=embedding_np =
np.array($output_predict)
\r\n$output=embedding_np.flatten() 

1

2

 1
1

 1

 2

Figure 8.16: Integration of a pre-trained model and prediction with cosine distance to express the similarity of the images.
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Similarity_Check_Images_Tensorflow

«DE_Block_Connection»
Load_Actual_STL_Slice_Image

«DE_Block_Connection»
Load_Actual_Printer_Image

«DE_Block_Connection»
Scaling_of_the_Images

«DE_Block_Connection»
Convert_Images_to_Normalized_Array

«DE_Block_Connection»
Load_Pre-Trained_Model

«DE_Block_Connection»
Predict_and_Stack

«DE_Block_Connection»
Calculate_Similarity

Start

 Stop

Figure 8.17: The execution workflow of the TensorFlow-based prediction algorithm.
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8.3 User Study
This section presents a user study to assess feasibility and applicability of the method.
Typical users of the presented method are computer scientists and engineers from various
disciplines, depending on the application area. Therefore, this study aims to assess and
compare computer scientists’ and mechanical engineers’ subjective workload and user
experience regarding understanding, modifying, and creating DE tasks in a model-based
method. Furthermore, the time required for applying changes or creating constructs
in SysML is assessed to allow a comparison of the participants based on previous
experiences, e.g., programming or modeling prior knowledge. Since the study and the
modeling is conducted using the SysML modeling tool Papyrus3, it is impossible to
eliminate distortions due to the usability of the underlying tool, e.g., “How to model
a block”. Therefore, the study director will provide verbal assistance if a participant
requires support due to the tool’s usability.

Large sample sizes are necessary to enable quantitative evaluation, which is not applicable
due to resource constraints. Therefore, discount usability principles are applied to test
only a small group of customers and identify key usability issues by conducting small
qualitative user studies with three to five users in a detailed scenario and a think-aloud
method [Nie93]. According to [Nie93], a 70% chance to find 80% of the usability issues
is given with five users. However, in literature, there are reports that the increase of
five participants to ten significantly changes the amount of found issues [Fau03]. In this
respect, a total number of 12 users were tested, equally distributed among the two groups,
Computer Scientists (CSs) and Mechanical Engineers (MEs).

In the following, the experimental setting is illustrated. Next, an introduction to the
evaluation procedure is given, followed by an introduction of the test cases in Section
8.3.3. Finally, the results of the user studies are depicted in Section 8.3.4. A discussion
on the implications from the user study is given in Section 8.4.4.

8.3.1 Experimental Setting

The user study was conducted with 12 participants. Each participant has a university
degree (B.Sc., M.Sc., or Ph.D.) and received a basic introduction to programming at
university. Half of the participants are CSs, and half of the participants MEs. Other
engineers can serve as potential users and equally valid test users, as well. However, to
obtain a more homogeneous group, engineers are limited to MEs.

Due to the participants’ different knowledge in modeling, programming, and data science,
a self-assessment of their experience was made at the beginning of the user test. Table
8.1 summarizes the knowledge levels of the participants based on their highest university
degree, years of experience, position at the current job, and self-assessment on the three
relevant dimensions.

3https://www.eclipse.org/papyrus/
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Table 8.1: Participants of the user study aligned with self-assessment of experience.

User Univ.
Degree

Years of
Experience Position Programming

Skills
Data Science
Skills

UML/
SysML
Skills

CS-1 B.Sc. 5 Software
Engineer 7 3 6

CS-2 M.Sc. 3 Software
Engineer 8 6 7

CS-3 M.Sc. 1 Ph.D.
Student 7 6 3

CS-4 M.Sc. 2 Ph.D.
Student 6 7 6

CS-5 M.Sc. 1 Ph.D.
Student 6 7 8

CS-6 B.Sc. 1 Application
Manager 7 4 4

ME-1 M.Sc. 6 Project
Manager 4 1 2

ME-2 B.Sc. 11 Project
Manager 2 3 1

ME-3 Ph.D. 10
Digital
Engineering
Manager

6 4 8

ME-4 B.Sc. 2 Simulation
Engineer 2 2 1

ME-5 M.Sc. 3 Expert
Powertrain 2 1 3

ME-6 M.Sc. 1 Manufacturing
Engineer 1 2 1

8.3.2 Evaluation Procedure

The study started with a basic introduction to SysML and an overview of the method
introduced in this work, taking approximately 10 minutes and involving the presentation
of two predefined BDDs as samples with a focus on the modeling and understanding of a
BDD and the application of the introduced stereotypes.

Following this, the users had to perform three tasks, i.e., (1) showing that they understand
the purpose of the modeling and the basic idea of the method by describing the modeled
methods in Figure 8.5, (2) replacing a CSV stereotype with Text-file stereotype and
redefining the attribute properties of the text file, and (3) adding a new function by
inserting and connecting a new block with a particular stereotype to an existing block.
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Table 8.2: The three main tasks to be performed by the participants, with subtasks that
can be used to assess whether the task has been completed.

Main Task Subtask
Task 1 Understanding Identification of input files

Description of values stored in CSV_2 input file
Description of attributes of the data stereotype of CSV_2 values
Identification of stereotype properties, e.g., path of CSV_2 file

Task 2 Changes Stereotype identified
Stereotype removed
Stereotype added
Stereotype attribute identified
Stereotype attribute value set

Task 3 Modeling Block added to view
Block associated with input
Stereotype added
Stereotype attribute value set

Each of the tasks (1) – (3) is subdivided into sub-activities to allow fine-grained evaluation
of the tasks and the performance achieved by the participants. The sub-activities are
presented with their tasks in Table 8.2.

For each participant, the time taken to perform the tasks is recorded. After each of
the three tasks, NASA Task Load Index (NASA-TLX) [Har06, HS88] and the Systems
Usability Scale (SUS) [Bro96]) questionnaire are filled out by the users to assess the
participants’ subjective workload and usability. Before filling out the questionnaire, the
users were explicitly told to evaluate the method’s usability, not the usability of Papyrus.

8.3.3 Test Cases
Table 8.2 depicts the subtasks to accomplish the tasks of the user study. Therefore, each
subtask is assessed by the study leader to determine whether they are completed correctly
or not. If a user could not find a specific button due to the usability of Papyrus, but
could justify why it is being searched for, e.g., “I need to remove a stereotype and add a
new one so that a new function is defined”, the task is evaluated as correct.

To achieve reproducibility, the tasks were set exactly with the following wordings:

Task 1 Understanding: Please describe what can be seen in the currently displayed
diagram and what function it fulfills. Additionally, please answer the following
questions:

a) What are the two input files, and in which format?
b) What values are stored within CSV_2?
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Figure 8.18: The time required by the participants per task and training direction.

c) What is the type of date_date, and how is it represented in the DE model?
d) What are the path and encoding of the two input files?
e) What are the properties of DataFrame_Merge Stereotype?

Task 2 Function Exchange: Behind the here presented TextFile function, a CSV stereo-
type is defined. However, the type is incorrect. Please change the file type to
Text-File. Additionally, set the encoding to UTF-8 and the path to C:/file.txt.

Task 3 Adding a Function: In the following view, you can see two input files connected
to a merge block. Additionally, a normalization of the merge block is required.
Please add the function for Normalization and set the value of the normalization
method to MaxAbsScalar .

8.3.4 Survey Results
Figure 8.18 shows boxplots of the required times for the individual tasks grouped per
task and education of the participants (CSs or MEs).
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Figure 8.19: The degree of correct performance of the tasks.

For Task 1, the time required is higher than for Task 2 and Task 3, whereas Task 2
and Task 3 shows a comparable average and distribution. One reason for the higher
time for Task1 is that the users had to describe a model by speaking which is a more
time-consuming task. It was also observed that repetitive tasks made the users faster,
which also came as feedback from the participants. Furthermore, the dispersion of Task
1 for MEs is higher compared to CSs. This scatter might be explained because of the
varying experience levels of the participants with respect to modeling and data science.
However, there was no correlation between the time spent and the correctness of the
execution of the sub-activities. Regarding the dispersion of CSs, interestingly, Tasks 2
and 3 vary more than Task 1. This can mainly be explained by the familiarity with the
Papyrus modeling environment. Thus, participants with more Papyrus experience had
completed the tasks much faster than those who used Papyrus for the first time.

Figure 8.19 shows the result of the individual tasks in terms of correctness in relationships
to the subtasks of Table 8.2. CSs perform better for Task 1 and Task 2, which can
be explained by the extended prior experience regarding UML of CSs obtained during
university education. In Task 3, however, MEs perform better. This can be explained
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Figure 8.20: Result of the NASA-TLX questionnaire.

by an outlier value for CSs that performs significantly below the average. The overall
accuracy of MEs increased with the evolving tasks although the average of Task 2 is
lower than for Task 1.

The results of the applied NASA-TLX test to indicate the perceived workload of the
participants for the specific tasks are presented in Figure 8.20. The lower the value
of a dimension of the NASA-TLX, the lower the perceived workload. Consequently, a
low scale value is seen as positive. The Effort dimension shows, for example, that with
increasing experience or task, the perceived effort decreases. Furthermore, the frustration
increases and the performance decreases compared to Task 1. For Task 3, the standard
error is larger than for Task 1 and Task 2. Both might be justified due to the increasing
complexity of the tasks. However, it is in contrast to the achieved accuracy in Figure
8.19.

The raw overall scores of the tasks are depicted in Table 8.21. According to [HNM88,
PBU19], the workload is categorized as ‘medium’, which is the second best score and
ranging from 10 to 29 points. The cumulative results of CSs and MEs shows a decreasing
workload among the evolving tasks. For CSs, the workload appears to be higher than for
MEs, especially for Task 3. As of the user feedback, no justification can be given on the

164



8.3. User Study

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

Overall CS ME

T1 T2 T3

Figure 8.21: NASA-TLX overall score.

Figure 8.22: Boxplot of the SUS score.

difference between CSs and MEs.

The results of the SUS test with different rating scales are shown in Table 8.3 based on
[BBP22].

165



8.
Fo

rm
al

iz
in

g
D

at
a

E
ng

in
ee

ri
ng

T
as

ks
us

in
g

Sy
sM

L

Table 8.3: SUS analysis results.

Variable
SUS
Score
(mean)

Percentile SD Min Max 1. Quartile Median 3. Quartile Adjective
Scale

Quartile
Scale

Acceptability
Scale

Task1 - CS 75.0 72.77 10.7 60.0 92.5 67.5 71.25 86.875 Good 3rd Acceptable
Task1 - ME 71.25 60.08 7.03 62.5 82.5 64.375 70.0 78.75 Good 3rd Marginal
Task2 - CS 72.5 64.38 18.65 37.5 92.5 56.25 76.25 90.625 Good 3rd Marginal
Task2 - ME 71.25 60.08 16.12 50.0 97.5 55.625 68.75 88.125 Good 3rd Marginal
Task3 - CS 72.08 62.95 13.8 47.5 92.5 60.625 73.75 83.125 Good 3rd Marginal
Task3 - ME 77.08 79.24 13.1 62.5 97.5 62.5 75.0 91.875 Good 3rd Acceptable
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Figure 8.23: Percentile curve of the SUS questionnaire.

Figure 8.22 presents the SUS score as boxplot, prepared with an online tool for analyzing
SUS questionnaire results [BBP22].

The adjective scale score in the boxplot is aligned with [Jef18], which is based on [BKM08].
The figure highlights that each task achieves the rating good for both CSs and MEs.
The standard error of CSs is slightly higher than for MEs, which can also be seen in
Table 8.3. The values of quartile scale shown in Table 8.3 are according to [BKM09] and
acceptability scale according to [BKM08]. MEs increased the score in Task 3. Task 1
and Task 2 are equal. CSs decreased the score among the tasks. However, the changes in
the scores are little and therefore not justifiable.

Figure 8.23 depicts the percentile scale based on [SL16]. Since the percentile score is not
uniform or normally distributed, a percentile score was created based on 5000 SUS studies.
In this respect, the comparison shows that the tests achieved a percentile between 60 and
79. Task 3 is over performed by MEs with 79. For CSs and MEs the average percentile
is 66. Task 1 and Task 2 for MEs have exactly the same value, which is why they are
shown as one color in the figure.

8.4 Discussion
This section discusses advantages and potential flaws of the newly introduced method to
formalize DE tasks. The structure of the section is as follows: First, the metamodel’s
extension and the stereotypes’ proposed structure are discussed. Next, the benefits
and shortcomings of relationship modeling are assessed with a particular focus on the
applicability and potential ambiguous interpretation. Next, potential risks of DE and
future work are presented. Finally, the implications of the user study are presented and
discussed.
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8.4.1 Stereotypes and Structure of the Custom Metamodel

The integration of custom stereotypes has been proven beneficial in the literature [KSW04].
In this method, the use of stereotypes to encapsulate and abstract knowledge about DE
tasks is beneficial as implementation details are hidden, thus supporting communication
between different engineers not necessarily experienced in DE or programming. With
structuring the stereotypes using packages, a stereotype organization aligned to the
CRISP-DM methodology is given, supporting refinements and extension in a fine-grained,
hierarchical manner. Particularly, the definition of blackbox and abstract stereotypes
allows the description of various functions without the necessity to specify each DE
function in detail. In the custom metamodel, custom Enumerations are defined to
limit the number of attribute values, which reduces the model’s wrong specifications.
Another opportunity to reduce the scope of possible selections is to reduce the number
of allowed stereotypes, e.g., only inheritance of the abstract stereotype PreProcessing
can be assigned as a value for a specific attribute. However, the filtering of stereotypes
requires specific rules that have not yet been integrated or elaborated. Although various
methods are defined using stereotypes, the level of detail might be too little for practical
application. DateConversion, for example, can be applied to manifold input values and
various outputs, e.g., output representation as a string or Coordinated Universal Time
(UTC). Adding multiple DateConversion stereotypes for each case is possible. Still, with
a growing number of stereotypes, the complexity of selecting the correct, unambiguous
stereotype increases while the maintainability decreases. Similarly, if too many stereotype
attributes have to be set, the complexity and the effort for the application increases. With
respect to these uncertainties at the level of detail required for fine-grained definition of
DE tasks, industrial case studies have to be conducted to elaborate and validate sufficient
degree of detail and additionally define future work.

8.4.2 Interpretability of Functional Specification

Defining an implementation structure that is consistent with the CRISP-DM methodology
and ranges from business understanding to the definition of evaluation and workflows
promises to be useful because of the integration of a comprehensive and mature method
into an MBSE method. In addition, more experienced computer scientists who are
familiar with CRISP-DM can draw on experience and the advantages of CRISP-DM.
Furthermore, in practice, one-third of data scientists lack business understanding and
communication skills [Ana22], which can be supported by CRISP-DM’s model-based
method. Although there is room for interpretation in the modelling approach, the model
can be used as a basis for implementation. A more stringent definition of the modelling
regarding output definition, and the potential extension by a model checker makes it even
more suitable for widespread use. The modeling further enables reusability by defining
building blocks representing a specific concern of interest. Based thereon, the reuse
enables the preservation of knowledge and contributes to standardisation in modelling and
implementation, which in turn leads to a reduction in costs and risks in the design and
maintenance of applications. The use of model transformations on structured modeling
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is shown in Chapter 9.

8.4.3 Potential of Model-Driven Machine Learning

The given proposal to describe DE tasks using a model-based method has some benefits
but also disadvantages. A core disadvantage is the initial effort to introduce stereotypes
and formalize the model. In this respect, traditional programming might be less time
consuming and therefore, users might use the CustomCode stereotype to inject code.
However, it is not the purpose of the method to insert code injection due to vulnerability
risks and the reduced documentation and understanding by others. Consequently, future
work is required to investigate an extension of the method that allows to generate code
from the model but with limitations so that code injections like described in the second
use case are not possible. Another disadvantage of the stereotypes is the potential effort
for maintenance if interfaces are proprietary or rapidly changing, e.g., due to configuration
changes or replacement of machines. Closely related, for huge projects, the complexity
of the resulting models might be very high, including potential errors in the model or
ambiguous associations, which might be very hard to find and thus lead to additional
communication effort. Nevertheless, the shortcoming of a complex ramp-up might also
be a benefit in the end due to the possibility of introducing model libraries containing
well-defined models, leading to standardized parts that can be reused. Furthermore, the
method allows to use the formalization as documentation of the implemented technologies
that improve the maintainability and extendability for various engineers. Additionally,
with further investigations regarding model validation and model debugging features,
errors in the semantics can be found and repaired without actually implementing the DE
application. However, to use this efficiently, the integration into advanced model lifecycle
management [FNF+14] might be necessary to allow collaborative working.

Due to the non-programming description of DE tasks, the method is promising to increase
the communication among various disciplines. In particular, with the integration of the
general-purpose language SysML and the intersection of CRISP-DM and MBSE, the
heterogeneous communities are broadly supported, which favors the implementation of
DE in industrial practice and supports to shift knowledge in enterprises regarding data-
driven supporting solutions. The integration of different disciplines and integration in
MBSE methods is additionally an advantage over visual workflow modelers for ML, which
typically address DE needs exclusively, such as RapidMiner4, DataIKU5 or KNIME6.
Furthermore, the method can be integrated into early product development due to the
abstract definition that allows to foresee various data interfaces which might have been
forgotten during the development. This potentially leads to increased accuracy of the DE
applications and might reduce e.g., failing DE projects, which is a well-known problem
in industries [RR22].

4https://rapidminer.com/
5https://www.dataiku.com/
6https://www.knime.com/
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Finally, a major advantage of formalized knowledge is the use of machine-readable
artifacts (models). The use of model transformations enables the automatic generation
of executable code using programming languages such as Python. This promotes the
implementation of DE in practice. More details on the generation of code based on the
model are given in Chapter 9.

8.4.4 Implications from the User Study

The user study was conducted with two groups that are representative for using the
method presented in this work in practice. The results show that the majority of the
tasks were successfully accomplished. From a study perspective, the users could perform
each task without additional guidance on the modeling method. Still, problems occurred
with the user-interface of Papyrus, e.g., expanding a group of elements to select a block
element for modeling. However, learning effects could be observed with both CSs and
MEs.

The assessment of the NASA-TLX showed that the mental demand for each task is
comparable. A similar observation can be made for the level of frustration, which is
slightly lower for the first task. Contrary to expectations, the participants perceived the
effort as decreasing. With regard to the task, the effort for modeling should have been
higher than for understanding a model. Nevertheless, it can be implied that both CSs
and MEs can use the method in terms of task load without being more strained.

From an usability perspective, the method achieved good results. Users rated especially
the consistency of the method as very high. Comparing the method with others using
the percentile curve, it achieved a rank over 66.

However, the first positive results could be due to some shortcomings in the study
design. In particular, the demand for rating Papyrus might have a larger impact on the
study design than expected. The usability feeling of the users is more dedicated to the
experience with Papyrus than to the method, although it was said before to focus on the
method. In this respect, a paper prototype where users had to move paper snippets on
the table might have been more valuable. Furthermore, most of the participants reported
their data science knowledge as low and yet were able to explain what happens in a given
model or create a model building block themselves. However, modeling their own data
science application might not be possible, as the general understanding of data science is
too low.

Nevertheless, it can be seen as a result of the study that the modeled knowledge can be
used as a communication medium. Therefore, it should also be possible for non-data
scientists to perform a plausibility analysis, as they can gain an understanding of the
process without understanding programming.

However, this would need to be evaluated in a further study. Similarly, an evaluation of
the results with the help of a larger study should be sought.
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8.4.5 Implications for Industry
The method to formalize DE tasks using SysML promotes the integration of DE capabil-
ities into MBSE and fosters the understanding of DE and particularly the concept of
DDE in practice. Thus, an increased awareness of DE capabilities in a SE-related field is
expected. Moreover, with the formalization of knowledge, validation and verification of a
DE system is enabled, leading to further integration in complex environments, such as
aviation [RBGM21]. By integrating methods from SE and DE, different sources of knowl-
edge are brought together, enabling non-programmers to support the development of DE
tasks. Hence, the formalization can be used as requirements and guide for implementing
DE capabilities. Furthermore, through the integration of CRISP-DM, a method from
the DE community is used, which supports the alignment with existing DE elaboration
processes and thus existing processes can be used to a certain extent.

8.4.6 Implications for Research
The method presented here contributes to the consolidation of the different scientific
communities of such as DE and engineering. With the integration of the GPML SysML,
support for the elaboration of DE integrating methods in the field of MBSE is given.
Additionally, with the formalization of knowledge, a contribution is made to the re-
search branch of trustworthy AI. Finally, the accurate documentation of the application
potentially promotes the transition of methods from academia to industry.

8.5 Summary
In this chapter, a method for DE task formalization using means of SysML is introduced.
Particularly, the metamodel of SysML is extended with stereotypes to reflect functions
from the DE domain. To guide the development of DE applications, the CRISP-DM
methodology is used as basis for the structure of the models to organize the development
with specific viewpoints. The method is evaluated in a case study showing the integration
of DE task definition in a CPS as well as in a case study where a workflow engine is
integrated for the interruption of a 3D printer task if the aimed result cannot be achieved.
Additionally, a user study is performed to collect an overview of the perceived workload
using NASA-TLX questionnaire and to check usability of the system using the SUS
questionnaire. The findings of the evaluation showed that the entire workflow of a DE
solution can be reflected using SysML and hence, guide the implementation of a DE
application. Furthermore, the connection between the domain relevant knowledge for the
implementation of (mechanical/electrical) engineers and DE experts is shown. With the
MBSE integration and the involvement of various stakeholders from different disciplines,
an improvement in communication is expected as shown in a user study. The user
study implies that non-experts in DE can use the method as medium of communication.
However, future work is required to validate the improvement of communication rather
than referencing it as benefit [HS21]. Additionally, a case study is necessary to develop a
minimum level of detail required to sufficiently define a DE model that can be used for
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communication, and thus guide the implementation of the executable code through the
formalization of the DE model.

Due to the findings of the method evaluation, the answer to RQ6.1 "What means of
SysML can be used to represent a sequence of Data Engineering statements?" is that
means of metamodel extension allows to define stereotypes that encapsulate a sequence
of DE statements that can be specified using BDDs.

Closely related to the answer of RQ6.1 is the answer to RQ6.2 "What means of SysML
can be used to represent the order of execution?". To allow sequential execution of the
sequence of DE task statements, activity diagrams are extended with a stereotype to
associate a state with a block.

Based on the created stereotypes, the answer to RQ6.3 "What stereotypes and associated
structure need to be defined to enable reuse, extensibility and simplicity?" is that a
hierarchical composition of stereotypes enables the definition of small reusable DE
functions. In particular, for each stereotype, a specific behavior must be defined that
can be applied to a specific set of supplied information, e.g., date conversion is only
applicable to a dataset with a date format and the only behavior of the stereotype is
to convert a specific date to another format. Due to the hierarchical structure and the
small separated stereotypes, the extension of the metamodel by various new stereotypes
is possible. Even if a particular stereotype does not fit into the given hierarchy, it can be
added, since DE stereotypes need only be derived from the root stereotype DE and the
hierarchy only aims to support organizing the stereotypes.

In terms of organization, it was not only the composition of the stereotypes that was
considered supportive. Therefore, the answer to RQ6.4 "What means of graphical modeling
can be used to represent and guide the development of Data Engineering tasks?" is that
the integration of a DE methodology such as CRISP-DM is beneficial to separate concerns
of interest, e.g., the business understanding that is potentially modeled by engineers, and
the data understanding, which is the first CS viewpoint.
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CHAPTER 9
Data Engineering Code

Generation using Model-Driven
Techniques

This chapter addresses the research objective 4 in Figure 9.1 related to the automatic
code generation based on DE formalization using SysML as introduced in Chapter 8. As
the figure shows, several research implications, such as reuse of validated and formalized
knowledge to enable generation of code based on SysML formalization of DE tasks, and
flexible and maintainable code generation can be deduced.

Based on the formalization of DE, this method aims to facilitate the implementation
by leveraging MDE techniques, namely model transformation to automatically generate
code for DE.

In this respect, the following general RQ is identified:

RQ7 Given a system model that represents data attributes, interfaces, and the
formalization of Data Engineering tasks: What model properties can be
used to automatically derive an executable Data Engineering model using
Model-Driven Engineering techniques?

To address the identified RQ, the elaborated method to generate code based on model
transformation is presented in the following. For evaluation purpose, the method is
applied to the formalization of a use case facilitating sensor data to predict weather station
data as illustrated in Section 5.2.2. The remainder of this chapter is organized as follows:
First, a method is introduced, allowing to derive DE code using model transformation
techniques. Next, an evaluation based on an open dataset regarding weather prediction is
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• Define data associations
• Define automatic data collection
• Integrate desired tool in actual processes

• Diversity of processes
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Chapter 7
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Figure 9.1: Overview of research objectives, implications and challenges addressed in
Chapter 9.

presented. Finally, the results are discussed, future work is highlighted, and a conclusion
is presented.

A selection of text, figures and tables within this chapter is based on the publication in
box „Publications 7: Data Engineering Code Generation using Model-Driven Techniques“:

Publications 7: Data Engineering Code Generation using Model-Driven
Techniques

[RRRR24] S. Rädler, M. Rupp, E. Rigger, and S. Rinderle-Ma, “Model-Driven
Engineering for Machine Learning Code Generation using SysML” March 2024,
doi: 10.18420/MODELLIERUNG2024_019.

9.1 Method
In the previous Chapter 8, a method to describe relevant information for implementing a
DE task using SysML is introduced [RRMR22]. Particularly, the SysML model represents
all information concerning the composition of various relevant systems, their related data
interfaces and the formalization of relevant data transformation and DE-related tasks on
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a single step (subtask) level. Additionally, the execution order of the DE tasks during the
implementation is formalized using state diagrams. Each state of the diagram describes
a set of sub-activities, e.g., a sequence of Python functions with a dedicated purpose,
such as the transformation of Datetime into another format.

To enable code generation from the defined SysML model, the presented method relies on
templates, defined as code snippets in a dedicated programming language, such as Python,
and a mapping configuration that allows to identify a template based on a stereotype. The
purpose of the template-based approach is to enable extendability and maintainability
without the necessity to make changes in the model transformation. Hence, the underlying
templates can be exchanged to allow the generation of a documentation for the SysML
model. Additionally, an exchange of the template can be used to derive code in another
programming language, such as JAVA1, Python2 or R3. Figure 9.2 depicts the generic
method to generate DE code based on templates in a flow diagram aligned workflow with
a sample model transformation depicted as images on top of the figure.

The transformation applies the following sequential steps:

1. A state diagram is provided as input, referencing each DE subtask formalized using
stereotypes and blocks

2. For each of the states, which are provided in ascending order, the DE blocks are
identified.

3. Based on the unique stereotype name, a template is selected.

4. Stereotype and block attributes 1 are mapped to the template 3 using a mapping
configuration 2 to generate a code snippet 4 (see Figure 9.2)

5. A file is generated representing the executable code snippets in the correct execution
order. In the actual prototype implementation, a Jupyter Notebook4 is generated.

1https://www.java.com/de/
2https://www.python.org/
3https://www.r-project.org/
4https://jupyter.org/
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Figure 9.2: A sample model transformation to load a CSV file.
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The model transformation in Figure 9.2 is slightly simplified to show the overall process
of code generation. Therefore, the step of an intermediate transformation is omitted in
the figure and introduced in Section 9.1.1. Next, the composition of the templates with
placeholders is discussed. Finally, the mapping configuration is presented, focusing on
model commands.

9.1.1 Intermediate Model
The purpose of the intermediate model is to extract information from the SysML model
and to merge the state diagram information with the linked blocks. The source metamodel
is a SysML profile, and the target metamodel is a custom one, referred to as “block
context” in the following. The block context consists of the following parts:

First, a reference to the original block in the SysML model to allow change tracking
and to potentially enable synchronizing changes in the generated code with the original
model.

Second, a list of rich-text blocks that can be rendered as text before a code block, modeled
as so-called owned comments in the SysML model. Note that rich text annotations are
represented as text block cells in the current implementation. This is a special feature
of Jupyter Notebooks and must be considered separately for other environments or
programming languages, e.g., by representing the rich text as comments above the
generated code.

Third, references to connected block contexts based on the qualified name, a unique
identifier for named SysML elements. Due to the uniqueness of the qualified name, it
can be used as an identifier for attributes or blocks.

Fourth, a list of block and stereotype attributes with their values. If a value is a primitive
type, the value is used. Otherwise, the qualified name is stored and translated to a value
during the assignment.

Finally, an integer value is defined in the state diagram stereotype to describe the
execution order of the code snippets. The transformation is executed for each block
connected to a state and for each adjacent block. Care is taken to prevent the multiple
execution of the transformation for the same block by tracing the unique identifiers of a
block.

9.1.2 Code Snippet Template Definition
The code snippets templates are defined in textual editors. Particularly, a template
consists of formatted plain-text with various placeholders filled with property values from
the stereotypes during the code generation. The marker 3 in Figure 9.2 depicts a sample
of a template with all possible types of variables, which are:

1. Standard variables highlighted with ${variable name}. In this case, the attribute is
mandatory and has to be set in the model.
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2. Optional variables: set with a default value in the variable definition, ${(variable
name, default value)}.

3. Arbitrary other attributes.

Since a function in a code snippet potentially consists of countless attributes, not all
attributes must be defined in a stereotype, and it would not make sense due to the
complexity for the user. Therefore, additional properties can be added to a block instance
without being defined in the stereotype. These additional properties are added to a
specific position in the template indicated by an anchor-indicator **kwargs. For an
additional property to be used for the template function, the name of the additional
property must be similar to the parameter name of the corresponding programming
language function, but with two asterisks before. For example, if a parameter of a chart
printing function in Python calls X-Axis Name, the attribute in the block must be named
**X-Axis Name. The double-asterisks attributes are rendered to the template in the
following format attribute_name = attribute_value without the double-asterisks.

9.1.3 Mapping Configuration
A mapping configuration in 3 in Figure 9.2 illustrates the content of a mapping between
a stereotype and a code snippet template using the JSON5 file format. The definition of
the JSON mapping is depicted in Listing 9.1.

The mapping configuration is defined as follows:

First, the mapping allows defining whether empty lines shall be trimmed during the
generation of the Jupyter Notebook (Line 2 in Listing 9.1). Second, the definition of
constant values allows reusing specific strings as static text, e.g., as a global variable for
all templates (Line 3-6 in Listing 9.1). The stereotype mapping (Line 7-18 in Listing 9.1)
allows specifying which template to use for a stereotype. The stereotype mapping (Line
10-13 in Listing 9.1) defines the mapping of stereotype properties to template variables.

A command can be defined (Line 14-17 in Listing 9.1) and mapped to a variable by using
the following keywords to collect information:

1. THIS: the information can be found in the block with the stereotype

2. CONNECTED[Name="", Nr=0, StereotypeName="", AttributeValue=
{"AttributeName": ""}, OUTPUT_Name=""]: the information can be found
on an associated block based on a search query, e.g., CONNECTED[Name="CSV_-
1"] to get attributes of the "CSV_1" block from the perspective of the block
Format_Date in Figure 8.5

3. BLOCK: the information is stored on the block directly
5https://www.json.org/
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1 {
2 "trimEmptyLines": <true||false>,
3 "constants": {
4 "<TemplateVariableName>": "<ConstantValue>",
5 ...
6 },
7 "stereotypeMappings": {
8 "<StereotypeName>": {
9 "template": "<TemplateName>",

10 "properties": {
11 "<stereotypeAttributeName>": "<TemplateVariableName>",
12 ...
13 },
14 "modelCommands": {
15 "<ModelCommandKeywordCombination>": "<

�→ TemplateVariableName>",
16 ...
17 }
18 },
19 "nameMappings": {
20 "<BlockName>": {
21 "template": "<TemplateName>",
22 "properties": {
23 "<PropertyOrStereotypeAttributeName>": "<

�→ TemplateVariableName>",
24 ...
25 },
26 "modelCommands": {
27 "<ModelCommandKeywordCombination>": "<

�→ TemplateVariableName>",
28 ...
29 }
30 }
31 }
32 }

Listing 9.1: JSON mapping structure.
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4. STEREOTYPE["StereotypeName"]: the information is stored on a specifically
applied stereotype (blocks can inherit from multiple stereotypes)

5. NAME: the information is the name of the block specified by the preceding
keywords

6. ATTRIBUTES: the information is a list of attributes defined in a specific block

7. STEREOTYPEofATTRIBUTE["AttributeName"]: the information is stored
in a data stereotype of an attribute, e.g., STEREOTYPEofATTRIBUTE["date"] to
get the stereotype Datetime of the "date" attribute of the block CSV_1 in Figure
8.5

8. OUTPUT: the information is the last declared variable name of the template,
which refers to the block specified by the preceding keywords

The command’s syntax consists of at least three keywords, separated by a period. The
first keyword is either THIS or CONNECTED with a selector to choose the correct
connected block. The second keyword is either BLOCK if the information is directly
stored on the block or STEREOTYPE with a parameter specified for the stereotype
name if it does not belong to the block itself. The third parameter is depicted in the
enumeration list of keywords above with the item numbers 5-8. After the last keyword,
it is always possible to select a value if the result is a list using square selector [Nr.].
After the ATTRIBUTES and STEREOTYPEofATTRIBUTE, optionally ATTRIBUTES
or STEREOTYPEofATTRIBUTE can be defined again to dig deeper into specific
information. The OUTPUT value is one of the essential values to connect a code block
with the result of a previous one.

If a specific mapping is only applied to a specific block, name mapping can be used (Line
19-31 in Listing 9.1). Name mapping is similar to stereotype mapping, but it specifies
the input model block via the block name instead of the stereotype name. The only
difference is that properties can also be defined on the block without being defined on
the stereotype. Name mappings take precedence over stereotype mappings if both apply
for a block.

9.1.4 Composition of Code Snippets
Based on the generated code snippets and the defined execution order of the snippets,
an executable file can be generated. The method presented in this work is implemented
as an example for Jupyter Notebook. For this, the following steps for composition are
conducted:

1. Rich-text information modeled as owned or applied comment is directly converted
to a Jupyter rich-text cell.
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2. The generated templates are put in a source-code cell. Each block context (inter-
mediate model) from the state machine gets one source code cell and, optionally,
one rich-text cell.

The code snippets are analyzed for "from ... import ..." or "import ..." lines of code to
increase the readability and reduce potential errors due to multiple inputs of modules
required. These lines are cut out and inserted in the first code cell on top of the Jupyter
Notebook file.

After all block contexts are iterated over, the cells are put together as a single file, leading
to an executable Jupyter Notebook file. Finally, the syntax is validated using specific
tools such as runipy6, so the execution is ensured. If the syntax is incorrect, the user
is notified by the script. Still, the task is evaluated as completed, since also a partial
code generation is considered valid, if only parts of the program are formalized. The
validation for semantics is considered out of scope due to the high complexity.

9.2 Evaluation
The evaluation of the presented method aims to assess the feasibility and applicability of
the method for generating executable DE code. As of [BCW17], two approaches can be
followed to implement a model transformation, 1) using current high-level programming
languages, APIs, and frameworks or 2) relying on MDE principles and dedicated lan-
guages such as ATL Transformation Language (ATL)7, and Epsilon7. This evaluation uses
traditional programming paradigms and the well-known high-level programming language
JAVA. The JAVA implementation that enables code generation was programmed in a
master’s thesis that I supervised, and is available online8. The concept and methodology
of code generation was developed and conceptually evaluated by me as part of this disser-
tation. The master’s thesis extended the conceptual work to include software engineering
topics such as extensibility, necessary fallbacks during generation and integration into
Jupyter Notebooks.

In the following, a case study used for the evaluation is presented with the used artifacts
from an open dataset. Additionally, an excerpt of the generated artifact is presented.

9.2.1 Case Study and Artifacts
The dataset for the evaluation is based on an open dataset9 for weather prediction based
on sensor data from a weather station. The scenario of a weather prediction based on
weather station data is suitable for application in the engineering domain because the data
comprises multiple sensors with different timestamps and sampling rates. Additionally,

6https://pypi.org/project/runipy/
7https://www.eclipse.org/atl/
8https://github.com/sraedler/MDE_for_ML_Generation/
9https://www.kaggle.com/datasets/ananthr1/weather-prediction
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«Block, DataFrame_Merge»
Merge_DF

MergeOn=[date, date_date]
How=inner 

«Block, Train_Test_Split»
TrainSplit

TrainTestSplitSize=0.7
Features_X=[precipitation, temp_max, temp_min, wind] 
Prediction_Y=weather 

### Train-Test-Split
Here a comment on the train and test splitting.

1

 0..1

Figure 9.3: Sample input model.

the use of temperature or humidity sensors is also relevant in manufacturing specific
components and their resulting quality. The model transformation concept is decoupled
from DE in the SE domain and could therefore be evaluated for any DE problem.

9.2.2 Example Transformation
This section depicts the results from the model transformation applied to the model
in [RRMR22].

Figure 9.3 to Figure 9.6 depict the four parts of the developed model transformation.

Figure 9.3 depicts two blocks with stereotype properties defined, and a block comment
connected to a block, which is further used in the final Jupyter Notebook as Rich-Text
Cell. The TrainSplit block is defined only by stereotype attributes. Additional attributes
for hyper-parameter tuning, etc. are not defined. The composition indicates that the
Merge_DF block is an input value for the TrainSplit function. Therefore, it is accessible
through the modelCommand functionality defined in Listing 9.1.

To enable the mapping from the input model in Figure 9.3 to the output in Figure 9.6,
a mapping configuration as defined in Figure 9.4 and a template as depicted in Figure
9.5 is required. The mapping configuration assigns a stereotype Train_Test_Split to
a template with a name and, potentially, a path if sub-folders are used in the given
structure. Each stereotype property is defined within the template’s properties, whereas
the left side of the assignment is the original variable in the stereotype and the right side
is the placeholder in the template. The mapping defines two modelCommands, i.e., the
first to get the name of the actual block and the second one to collect the output variable
of the first connected block.

Figure 9.5 illustrates a sample code snippet for a DE function, more precisely, a template
for the train-test-split. Within each template, necessary imports must be defined, and
arranged at the end of the code generation, as defined in Section 9.1.4.

Figure 9.6 depicts the generated code based on the template and the input model
attributes. As it can be seen, the formatting is aligned with the template in Figure 9.5.
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Figure 9.4: Mapping configuration.

Figure 9.5: Template for the Train_Test_Split stereotype.

Figure 9.6: Result of the code generation.
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9.3 Discussion
This section discusses the introduced code generation method for DE based on model
transformation utilizing a SysML model with stereotypes. First, general advantages
and disadvantages are discussed. Next, quality attributes of model transformation are
discussed to allow an assessment of code generation. Finally, potential future work is
presented.

9.3.1 Advantages and Disadvantages
Using model transformation to decompose formalized DE tasks is beneficial in several
ways. First, it reduces the programming effort required for DE due to a substitution
with modeling. Therefore, we assume that the effort for rarely available data scientists
reduces [RR22] due to the decomposition of a model that partly can be elaborated by
non-programmers, see Section 8.3.4. In addition, it allows the formalized knowledge in the
model to be validated from an implementation point of view. Particularly, the correctness
of the formalization in the SysML model can be validated by checking the sequence
of statements in the generated code. Furthermore, generating code based on validated
knowledge enables the creation of a proven DE model library, leading to potential
standardization of DE implementation within an organization’s infrastructure. This
potentially favors the creation of DE tasks without profound programming knowledge.

However, the method can be very costly due to the initial effort required to create
and validate templates. Still, the resulting templates lead to standardization and can
thus be reused in multiple projects, which becomes an advantage in future projects.
Another disadvantage of the example implementation is the complexity of the JAVA
implementation. Particularly, means of ATL might fit better for attribute and type
mappings. Furthermore, the approach leads to an overwhelming number of templates due
to the number of algorithms and functions available for specific programming languages.
Therefore, the integration of a component-based approach such as Orange Data Mining 10

would be fruitful. Finally, it should be mentioned that the transformation is currently
only directional and does not allow changes in the generated code to be synchronized
with the model. Thus, model transformation does not yet contribute to an authoritative
source of truth in the sense of MBSE.

9.3.2 Quality Attributes of Model Transformation
Quality attributes of model transformation can be distinguished in direct assessment,
which is the actual assessment of the model transformation and its properties, and
indirect by analyzing the input and output artifacts, e.g., metamodels [van10, van12].
Furthermore, a distinction is made between internal quality, which focuses on development
and maintenance, and external quality, which focuses on compliance with requirements
and performance[van10, van12]. In the following, direct internal quality attributes are

10https://orangedatamining.com/
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discussed. Although various metrics are available to assess these quality dimensions, a
qualitative discussion is chosen. The metrics are adapted to the transformation language
used, which is not applicable here as the implementation is not based on a transformation
language, but on a general purpose programming language[vdBN10].

Understandability: The effort required to understand the purpose of the model
transformation [vLv08].

From an computer scientist’s perspective, the model transformation is easy to understand
because a high-level programming language is used for the implementation, which can be
adopted by most programmers. In contrast, the use of specific transformation languages
such as ATL or Epsilon is less common for -MDE experts and therefore, easier to be
adapted. Additionally, it is not trivial to perform model transformations in JAVA,
precisely why transformation languages were developed. Furthermore, the overall concept
of mapping model artifacts using a configuration in JSON file format is a simple technique
with typical concepts known from programming. Still, the integration of different modules
to build the whole model transformation is arguable compared to the integration of the
mapping within the JAVA implemenation for code generation.

Modifiability: The effort required to adapt a model transformation to provide other
or additional functions [vLv08].

The effort for modifications is potentially small because 1) the input metamodel can
be adapted, and the concept of mapping attributes to a template is simple 2) the
mapping configuration is highly customizable and can be adapted without profound
programming experience, and 3) the output templates are small code snippets that can
be formulated in any programming language. In addition, any functions can be added
from the programming perspective by adding additional templates or stereotypes without
touching the JAVA implementation. The mapping already provides modelCommands,
allowing the collection of specific attributes or related information. Even if more complex
extensions are required, such as inserting security-related code to authenticate users, this
can be adapted due to the use of the high-level language JAVA.

However, to enable mapping from a stereotype to a template, one needs to become
familiar with weaving techniques, which is less easy for MDE experts compared to a
standard model transformation language, as MDE experts are already familiar with it.

Reusability: The extent to which parts of a model transformation can be reused by
other model transformations [vLv08].

Due to the possibility to exchange the output templates, the transformation can be
applied to any textual programming language that enables to be assembled from small
code fragments and has abilities for DE capabilities, e.g., data pre-processing or ML
algorithms. Similarly, the concept of transformation can be used for any other model-to-
code generation that can be broken down into small fragments, as it is simply a mapping
mechanism between input stereotype and output template, e.g., automatic documentation
generation by exchanging templates.
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Modularity: The extent to which a model transformation is systematically separated
and structured[vLv08].

Modularity is given in two aspects. First, stereotypes can be arbitrarily organized as long
as they inherit from the core DE stereotype. Second, output templates can be stored
in folders to structure the organization of templates. However, the method does not
allow defining a mapping only for a specific subset of functions. Therefore, always a
single JSON is required to represent the mapping configuration of a single stereotype.
Nevertheless, extending the method to include the ability to parse multiple JSON files
for mapping configuration is possible with little effort, allowing for complete separation
and modularization of certain aspects of transformation.

Completeness: The extent to which a model transformation is fully derived from the
requirements [vLv08].

Completeness is executed concerning two kinds of requirements, functional requirements
and non-functional requirements of the model transformation.

The functional requirements for the model transformation can be summarized as the
ability to generate executable DE code, which is given as of the first evaluation.

From a non-functional perspective, aspects such as generation performance must be
evaluated. Due to the early stage of development, the non-functional requirements are
not yet assessed.

Consistency: The extent in which a model transformation is implemented in a uniform
manner [vLv08].

Because of the few programming code lines that compile the input with the mapping
configuration and templates to executable code, consistency in the sense of [vLv08] is
not a major issue of the developed model transformations.

Conciseness: The extent to which a model transformation is free of superfluous
elements [vLv08].

Due to the high entanglement of the mapping configuration and the code templates,
superfluous elements are barely available. Additionally, the functionality to add arbitrary
attributes to the generation using **kwargs reduces the number of superfluous elements.
Furthermore, elements can be created during the modeling, and unnecessary templates
may be defined. However, these expressions are part of the nature of the application
rather than a weakness of the model transformation.

9.3.3 Implications for Industry
With the application of model transformation, the modeling of DE tasks is streamlined
by using automatic code generation based on a decomposition of the DE formalization.
Furthermore, with an increasing application of code snippets used for the code generation,
DE standardization and the building of a standard procedure within a company is
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fostered. In this respect, the efficiency of DE elaboration and a reduction of costs for the
implementation are expected, leading to an increased amount of use cases supported by DE
capabilities. Furthermore, the amount of data-driven decisions in MBSE environments is
potentially fostered due to an increasing amount of implemented DE capabilities. Finally,
automated code generated on the basis of validated knowledge can support the validation
of DE applications. In this respect, the method supports industries with a high demand
for proven, secure and maintainable applications [RBGM21].

9.3.4 Implications for Research
With the application of model transformation, a contribution to the MDE community is
made by generating DE code based on the SysML. Additionally, the scientific research
field of MDE is made visible in the DE domain, which potentially leads to further methods
and applications of MDE4AI. Furthermore, the benefits of MDE for practitioners will
be clarified, possibly leading to a greater awareness of MDE capabilities. Finally, a
contribution to the transfer of methods from academia, especially from the field of MDE,
to industry is expected.

9.3.5 Future Work
Future work involves implementing improvements and validating the method within user
studies to prove its applicability in industrial projects. Furthermore, the systematic
backflow of results from DE to the SysML model requires to be implemented to allow to
use the yielded results in further Model-Based Engineering (MBE) methods. Similarly, it
is beneficial if changes in the Jupyter Notebook can be traced back to the model so that
synchronization and an authoritative source of truth11 can be achieved. With respect to
this, the actual transformation traces the model elements, allowing the identification of
the origin, and within the Jupyter Notebook, unique block markers can be used to map
the changes to the model elements. However, profound changes require a mechanism to
generate further blocks or adapt templates.

Additionally, a comparable implementation using MDE languages such as ATL is desired
to compare benefits and flaws. Particularly, a use study will be conducted to assess
the advantages of the approach in combination with the method to formalize DE using
SysML presented in Chapter 8.

9.4 Summary
This chapter presented a model transformation to facilitate DE applications using model-
based techniques based on SysML. The goal of the code generation is to streamline the
implementation of DE code within a company, enable to decompose formalized knowledge
on DE tasks and prove feasibility of DE code generation based on SysML formalization.

11https://www.omgwiki.org/MBSE/doku.php?id=mbse:authoritative_source_of_
truth
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The code generation is enabled by generic templates providing concise code snippets that
are mapped using a mapping configuration defined in the JSON file format to stereotypes
or specific blocks in the SysML formalization. The generated executable code enables
the validation of the formalized DE tasks in the SysML model from an implementation
perspective.

Hence, the answer to RQ7 "Given a system model that represents data attributes, inter-
faces, and the formalization of Data Engineering tasks: What model properties can be
used to automatically derive an executable Data Engineering model using Model-Driven
Engineering techniques?" is that specific task-related templates are created with a rela-
tionship to defined stereotypes and attributes. The properties of the stereotypes, as well
as the attributes and values of the model instance, are used to generate code snippets,
which are organised in an execution order formalised using state diagrams. Additionally,
small mutable templates are integrated with placeholders that are used to generate the
final implementation code snippet. This also allows the templates to be transformed
into other programming languages or adapted for a different purpose, such as generating
documentation. By extending stereotypes and adapting or adding new templates, the
method can be extended without changes to the code generation.
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CHAPTER 10
Summary and Open Issues

The work presented in this thesis aims to support the integration and implementation
of DE in engineering domains thus leveraging the advantages of DE in SE. This chap-
ter summarizes the developed method to support the integration of DE in SE from
the following perspectives. First, the applied research method based on Blessing and
Chakrabarti [BC09] is discussed. Second, the implications of the elaborated method
for industry and its contribution to research are highlighted. Finally, the limitations of
the work are presented and future research is highlighted to promote the integration of
MDE4AI and foster the application of DDE.

Applied Research Method
This work follows the descriptive-prescriptive-descriptive approach proposed in the Design
Research Methodology (DRM) [BC09]. The first descriptive study (DS-I) consists of two
parts, an SLR and an industry survey. The SLR allowed the identification of research
gaps, becoming familiar with MDE4AI approaches, getting to know underlying modeling
frameworks (e.g., WebGME, Monticore) and intents, and comparing different methods
for the formalization of DE tasks. Within the first iteration of the SLR, few results
were found due to the novelity of the research area [BBGW21, BKWZ21]. Still, the few
identified publications could support and guide the development of the method in the
prescriptive phase (PS-I) in terms of the tools and underlying frameworks used, the
respective intentions and the values required to define DE tasks for code generation.
To enable an updated SLR, the SLR protocol was re-executed during the course of the
work to collect current approaches and compare the contributions of the work. The
results were compared with the identified research gaps and have further supported the
development of the methods from a scientific perspective.

From the industry’s point of view, valuable insights on obstacles hindering the application
of DE in practice could be obtained by an online survey. The results influenced the
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development of the method in such a way that no further DSML was developed, but an
extension of SysML has been developed that allows the integration with MBSE and thus,
the integration in the state of the art methods of SE. Remarkably, the extension might
be viewed as a DSML but still, it enables the integration in arbitrary SysML related
methods.

Based on the results of the first descriptive study, a four-step method is developed in
the prescriptive study (PS-I). The elaborated four steps can be grouped into two parts,
first, preconditions for the formalization and integration of DDE, and second, the actual
formalization of DE tasks with subsequent code generation. The first and second part are
evaluated in separate case studies suitable for validating feasibility and applicability. Due
to the division of the method, each part is evaluated separately. The two sub-methods of
the two parts are elaborated and evaluated sequentially due to their internal dependence,
whereas the evaluation of the two parts is executed concurrently.

In the second descriptive study (DS-II), the four-step method is evaluated against the
use cases. The evaluation of the preconditioning steps was carried out in an industrial
use case at the pilot factory of the TU Wien. The focus of the use case is to elaborate
on existing data and processes and identify shortcomings that could be addressed using
DDE capabilities.

The evaluation of DE task formalization with code generation is performed based on
an open-source dataset for forecasting weather conditions. The use case demonstrated
the feasibility of modeling DE tasks using SysML. Sill, a larger DDE use case is needed
to evaluate whether the approach scales for complex tasks. Then, particular attention
should be paid to the formalization of DE tasks, because a detailed formalization supports
both automatic code generation and manual implementation.

Implication for Industry
The presented method builds upon graphical modeling languages to enable the formal-
ization of relevant DE knowledge for the implementation and integration of existing
processes.

A toolbox is elaborated to support domain experts’ awareness on the opportunities of
DDE in actual applied processes and IT applications. Particularly, the use of EA in
combination with participative workshops enables the involvement of relevant stakeholders
and supports the representation of various viewpoints in a graphical formalization of actual
business processes with IT infrastructure. Based thereon, data attributes and interfaces
are elaborated using graphical modeling, which again aims to support the understanding
of potentials and opportunities of the involved domain experts. With the application of
Value-Stream Mapping (VSM) and target integration modeling, the vision is made more
tangible and can thus be discussed with management and other relevant stakeholders.
The evaluation results revealed that the graphical formalization of the relevant knowledge
enabled maintenance of the model when changes are required, e.g., if the validation of the
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knowledge during the workshops shows shortcomings in data acquisition. Additionally, the
graphical overview of the knowledge supports communication with relevant stakeholders.
Consequently, the methods are favored as a medium for communication with external
experts, e.g., to support the implementation of DE tools in the SE context. Furthermore,
the toolbox might be used as basis for the integration of DDE capabilities within certain
processes by formalizing the requirements of the aimed solution.

For integrating DE tasks into the overall MBSE ecosystem, SysML is chosen. With
the integration of a SysML-based method to formalize DE capabilities, a medium for
communication, documentation, and maintenance is fostered. In practice, the evaluation
results showed that engineers unfamiliar with DE could use the modeling environment,
after a short introduction, to understand and change entities of DE tasks. Therefore, the
method is promising to allow the involvement of domain experts from the early concept
phases until the implementation phase. Furthermore, with the application of stereotypes,
standardization and reuse of the modeling is achieved, aiming to increase applicability
and performance. Finally, the derivation of code snippets based on DE task formalization
enables implementation performance and reuse modeled knoweldge.

Generally, the method promises to favor the transition from academia to industry, as it
can be easily applied to existing processes and promotes an understanding of the need for
DDE capabilities. This also makes it possible to increase the rate of supported decisions
based on DDE, as shown in the impact diagram in Figure 1.2.

Contribution to Research
Based on the findings of the elaborated method and its evaluation using two use cases,
the overall research question "What means are required to support the implementation
and integration of Data Engineering in Systems Engineering?" is answered as follows:

Contribution 1: Consolidation of knowledge regarding DE task formalization using
MDE techniques (MDE4AI).

An SLR is conducted to systematically collect and analyze literature from the field
of MDE with a particular focus on support for the development of AI applications,
which is called MDE4AI. From an MDE point of view, the interesting concerns are
related to details on a language engineering level, e.g., metamodel, concrete syntax, and
model transformation. DE concerns are assessed using typical implementation phases of
CRISP-DM to enable comparability on the phases of development. With the collection
and comparison of the addressed MDE4AI methods, the identification of commonalities
and common research gaps regarding MDE4AI could be derived.

Particularly, the supported phases of CRISP-DM and the shortcomings of existing
methods concerning the implementation support of DE could be uncovered. Existing
implementation support focuses on the formalization of algorithm application rather than
supporting early phases, such as CRISP-DM with its business understanding that relates
to the understanding of the actual situation and integration with domain knowledge, and
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the data preparation aiming to prepare datasets such that they are applicable for DE
algorithms.

Concerning MDE, weaknesses in the adaptivity of the approaches for generalization and
applicability in other use cases were identified. Particularly, less attention is paid to the
extensibility of the approaches in terms of integrating algorithms or extending the model
transformation.

Contribution 2: Indication of opportunities of DE capabilities in SE.

In SE, the literature reveals a demand for AI capabilities, in particular DE capabil-
ities [BBGW21, BKWZ21, DFM+22]. In this regard, the method proposes to use
model-based methods such as EA to identify potential use cases in current processes.

To facilitate the definition of DE tasks, means of SysML stereotypes are extended,
allowing the description of DE functions and workflows. With SysML being the de facto
standard for MBSE, the integration of DE capabilities in a model-based definition of
SE is given. Furthermore, MBSE methods, such as the VAMOS method for variation
modeling, are integrated, allowing to apply DE tasks on a particular configuration of a
system.

Contribution 3: A method that enables the identification of DDE opportunities and
integration into current processes, reflects the needs of different stakeholders and viewpoints
in practice and promotes the development of DE capabilities using model-based techniques.

To favor the model-based development of DDE, means of EA and SysML are used to define
current and target processes and allow the identification of shortcomings, potentially
solvable using DDE. Particularly, the formalization and documentation of actual business
processes and related IT artifacts allow for deriving use cases related to shortcomings
and various stakeholders’ viewpoints. Furthermore, the application of VSM and FMEA
enables quantifying the identified use cases and promote the implementation of potentially
most impacting DDE solutions first. Additionally, the target integration of the DDE
solution and related data collection mechanisms allow for evaluating a DE application
before implementation starts.

In summary, the goals and objectives of the thesis have been achieved and evaluated
in case studies. By interpreting DE into MBSE, a step has been made regarding true
MDE4AI. Furthermore, methods that can be used in practice have been developed, thus
enabling a transition from research to industry.

Limitations and Future Work

This section summarizes the limitations of the developed method and the conducted work.
These limitations might be used as starting point for potential future work. Aspects to
be improved are the following:
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1. The proposed method to support the implementation of DDE use cases focuses on
the improvement of shortcomings embedded in existing processes. However, the
application on newly introduced processes or during the development of a system
is not evaluated. Hence, future research requires to focus on the applicability on
early product design integration and the application on less known processes.

2. The group of the first two and the second two sub-methods were each evaluated
sequentially in two separated use cases. Hence, it was assumed that the transition
from the first two sub-methods to the second two sub-methods can be executed
seamless without bigger shortcomings. Therefore, in future work, the entire method
must be evaluated based on a single use case to validate that the transition of the
sub-method groups is smoothly integrated.

3. The granularity of the modeling methods with respect to process decomposition
using EA, and the formalization of DE tasks using SysML requires to be assessed
and defined so to reduce unnecessarily complex formalization and effort during the
elaboration. Furthermore, the method might be an overkill for small processes or
small projects. Hence, future work requires to refine the method with a lightweight
version that can be applied with less heavy methods and fewer effort doable for
small projects.

4. The integration of DE formalization within the processes of MBSE requires the
collaborative working on a single model. Currently, the software used assumes
that only one engineer works on a model and collaborative work is not supported.
Additionally, changes in the model are not automatically propagated or validated.
Hence, inconsistent models might be formalized. Therefore, a method to enable
the collaborative working, propagating of changes and automatic validation of the
model is required.

5. The validation of the model requires manual work and no model-checker is imple-
mented. Accordingly, the correctness of the generated artifacts is not given and
only the Jupyter Notebook checking mechanisms are applied. Therefore, in future
work, the correctness of the modeling in terms of the relationships of the blocks, as
well as the syntax checking of the generated artifacts, must be investigated.

6. In the current approach, a code snippet must be prepared so that it can be used
in the model transformation. This code snippet creation is purely manual and
text-editor based, which means that syntactical errors cannot be eliminated and
a potentially high effort in the creation can be expected. Accordingly, an editor
should be created in future work that supports the generation of code snippets
based on existing code and libraries. The syntactical correctness of snippets should
also be checked.

7. The developed method was evaluated in two use cases, 1) in the pilot factory of the
TU Wien and 2) using a weather station based weather forecast. Unfortunately,
the approach was never evaluated in its entirety in a single use case, which would
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10. Summary and Open Issues

have clearly demonstrated the consistency of the methods. Furthermore, the first
use case was not evaluated in an industrial environment but in a pilot factory.
Accordingly, in future work the entire method is to be implemented in a single
industrial use case.
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Overview of generative AI tools
used

During the writing of this thesis, the tools DeepL and Grammarly were used to achieve
improved grammar and spelling.
Grammarly is an AI-based tool for identifying possible grammatical or spelling improve-
ments.
DeepL is a translation program that helps with the translation or reformulation of certain
text passages.
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