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      Abstract

The aim of the work is to realize an architecture that is ecologically and socially sustainable, that 
addresses the improvement of the urban climate and resource-efficient building, and that can 
change  places. This is achieved through the study of a construction method that is very rare. The 
edifices built so far are spatially unique and structurally demanding. Designs whose basic geometry 
corresponds to that of minimal surfaces are under investigation.

We begin with example projects that were built with the same intention for the future. Consequently, 
we consider the concepts from two scientific fields that explain the form with the smallest possible 
area. We focus on the geometric derivation in order to unfold its exceptional suitability for building 
structures. 

After studying four types, we decide on a module that will serve as the building block for the pavilion 
construction in full scale. In this part we devote ourselves to the architectural design and structural 
performance of the selected minimal surface. We then focus on the architectural design and 
performance of the selected minimal area. The modules will have the same geometry and size and 
can be assembled in various ways.

Finally, we examine different typologies. As more and more becomes possible, we aim to provide a 
broader perspective on what could still be spatially realizable.

The last two pages are dedicated to the summary of the work. The results and insights are 
substantiated and discussed. This leads to new thoughts and ideas around the topics of economy 
and elegance, environment and future, modularity and resources in construction.

      Kurzfassung

Das Ziel der Arbeit ist, eine Architektur ökologisch und sozial nachhaltig zu realisieren, die für die 
Themen Verbesserung des urbanen Klimas und ressourcengerechtes Bauen steht und wandeln 
kann. Dies geschieht mithilfe der Studie einer Bauweise, die sehr selten ist. Es sind Strukturen, 
deren Basisgeometrie einer Minimalfläche entsprechen, die nach wie vor zu der Forschung gehören. 
Die bisher realisierten Bauten sind räumlich einzigartig und konstruktiv anspruchsvoll.

Wir beginnen mit Beispielprojekte, die mit der gleichen Intention für die Zukunft gebaut wurden. 
Folglich ziehen wir die Begriffe zweier Wissenschaftsgebiete in Betracht, die die Form mit 
kleinstmöglichem Inhalt erklären. Wir konzentrieren uns auf die geometrische Herleitung, um die 
hervorragenden Eignungen der baulichen Strukturen zu entfalten.

Nach unserer Studie von vier Arten, entscheiden wir uns für ein Modul, das der Baustein für den 
Pavillonbau im echten Maßstab sein wird. Danach widmen wir uns der architektonischen Gestaltung 
und Performance der ausgewählten Minimalfläche. Die Module werden die gleiche Geometrie und 
Größe aufweisen und können in unterschiedliche Art und Weise zusammengebaut werden.

Zum Schluss schauen wir uns unterschiedliche Typologien an. Da immer mehr und mehr möglich 
ist und um eine umfangreichere Vorstellung geben zu können, was räumlich noch realisierbar wäre.

Die zwei letzten Seiten widmen sich der Zusammenfassung der Arbeit. Die Ergebnisse und 
Erkenntnisse werden daraus belegt und diskutiert. Es kommt zu neuen Gedanken und Ideen rund 
um die Themen Wirtschaftlichkeit und Eleganz, Umwelt und Zukunft, Modularität und Ressourcen 
beim Bauen.
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Fig.4 Minimal surfaces, examples of main curvature lines and asymptotic curves at selected points Fig.3  Minimal surfaces, examples of main curvature lines and asymptotic curves at selected points 
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1.   References
This section shows examples of innovative projects in structural, material, spacious and aesthetical 
point of view, projects "doing more with less".

          

Fig.5 Diagrams of the reference projects
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1.1 Frei Otto
Together with his team Frei Otto was doing experiments with forming bubbles for decades. It has 
been shown that self-generating and self-optimising structures, such as the soap films (fig.6) can 
be very efficient when designing with the minimal possible material. The way he realised such a 
natural edifices was to sometimes do microscope experiments, simulations, calculations, research 
throughout different disciplines and building of models.1  In other words, to observe and analyse 
nature in order to repeat its principles.

The work of the pioneer of lightweight construction gave access and understanding of previously 
hardly explored areas of construction. Three example projects follow, where the structural 
behaviour of minimal surfaces were only able to be comprehended only by building physical models. 
These projects are analyzed by Martin Schuster in his coursework: "Designgeschichte: Frei Otto". 
Before delving into this, it is important to note that, strictly speaking, classic membrane structures do 
not adhere to an ideal minimum geometry because they have two primary load-bearing directions 
(warp and weft).
‘Der Musikpavillon’ (fig.7) was build 1955 for “Bundesgartenschau“ in Kassel and it is his first 
experimental project with the geometry of minimal surfaces. 1mm thick cotton fabric, 18m in length. 
Extremely durable even in the strongest gusts of wind. Furthermore, the stretched membrane had 
very good acoustic properties.
‘Der Eingangsbogen’ (fig.8) or the Entrance arches spanned 34m wide and covered an area of 
698m². The construction of 19cm thick steel pipe was stabilized by a glass silk fabric that was 
divided in two parts on both vault sides. Its ends were stretched over two 3m high cable trestles at 
a distance of 12m on both sides of the arch. This weightless structure had to be cut and processed 
with the greatest precision because any kind of wrinkles cannot be removed by tensioning due to 
the fabric`s lack of elasticity.
Initially the Dance pavilion (fig.9) was planned to remain only for one season. Six 10m long 
construction masts support a 1000 m2 cotton sailcloth membrane. The 12 segments are arranged 
around a central ring and mirror each other in pairs so that their outer borders undulate. The 28 m2 
central opening is held fast with a cable tension ring that is suspended from the masts with ridge 
cables. Tow cables secure the placement of the ring and prestress the membrane. 3

Fig.6 Experiments with soap films at IL Stuttgart (reference: Bach, et.al.,Seifenblasen Forming Bubles)2

Fig.7 The musicpavilion (reference: Meissner, et al., Frei Otto- forschen, bauen, konstruieren,15)4 

Fig.8 The entrance arches (reference: Meissner, et al., Frei Otto- forschen, bauen, konstruieren, 41)5

Fig.9 The dance pavilion (reference: Meissner, et al., Frei Otto- forschen, bauen, konstruieren, 41)6
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1.2 Richard Buckminster Fuller 
Richard Buckminster Fuller worked on problems such as global transportation, communications 
and power transmission. As such he needed a two-dimensional representation of the Earth. Sphere 
or spherical surfaces are not easy to develop, but he found a way to create a map with very little 
distortions. He used a kind of polyhedral map projection of the continents onto a developed 
icosahedron. This is one example of his obsession with the world map and the globe. Fuller`s 
most famous design has also something in common with the Platonic solids and the Earth`s form.7 
The convex polyhedrons named by the ancient philosopher inherit congruent regular polygons as 
faces and at each vertex the same number of faces meet. We will look at more of their properties 
in chapter three: "Case studies" and five: "Excursus:...". It is important during the research phase 
that their natural beauty and intrinsic logic serve as an optimal scaffolding for the innovative project.

Buckminster Fuller extrapolated the geometry from the solids by truncating one solid and dividing its 
sides. In the example of the icosahedron by dividing each side of each triangle by two, a 
2-frequency dome is created (fig.11). By dividing it by three a 3-frequency dome and so on. By 
counting the number of struts between the centers of each pentagon the frequency of any dome 
can be determined. The higher the frequency, the more spherical the dome is.8   

Paul Robinson is researching and providing information about building of geodesic domes:

truncation

one edge divided by two
icosahedron

tetrahedron cube dodecahedronoctahedron icosahedron

Fig.10 The platonic solids; side and perspective viuw

Fig.11 Truncating of an icosahedron and dividing each edge by two (redrawn from reference: https://www.
youtube.com/watch?v=zpfql-Be5rA&t=91s)9 

Fig.12 The Montreal Biosphere - sixteen frequency icosahedronbased dome

Fig.13  The Eden Project- nine frequency icosahedronbased dome

Fig.14 The Epcot Theme park- pentakis dodecahedron (page reference:                                                         
https://www.youtube.com/watch?v=Ub86TsNBuC8&t=220s )10

9
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Such a dome encloses the most volume for a given surface area and the circle-footprint - the most 
area for a given perimeter. They are also very structurally efficient. Due to their spherical shape and 
the pattern that constitutes them, the geodesic domes inherit self-support with remarkable 
resistance. Triangles are rigid shapes regardless of the connections at the vertices.13 The efficient 
distribution of stress across the interlocked struts creates a structure that is lightweight, yet provides 
free open space inside. Fuller`s design covers vast spaces and spans great distances using minimal 
materials.

As everything in the world the domes also had imperfections.  They were not suitable for crowded 
urban spaces because of echoes. Odours or fires spread evenly inside the hemispheres. Because 
of the many joints and connections of the elements, leaks were a problem.14 After years of designing 
many geodesic domes for industry and the military, in 1966  he began something new. Together 
with a specialist in fiberglass and the architect Norman Foster he designed the Fly`s Eye Dome 
(fig 17). 11,5m x 15.2m x 15.2m lightweight fiberglass construction with circular openings.  Thanks 
to the pre-cast pieces, or in other words modules, the problems described improved significantly.15

2 Frequency Dome 3 Frequency Dome 5 Frequency Dome

1 2 3 1 2 3 4 51 2

Fig.15 Dome frequencies (redrawn from: https://www.youtube.com/watch?v=zpfql-Be5rA ) 11 

Fig.17 Buckminster Fuller and a Fly's Eye Dome                                                                                     (reference: 
https://www.fullerdome.org/blog/tag/fly+eye+dome)16

edge to edge

The three ways for polygons to align towards each other

point to point twisted

Fig.16 Possible polygon joints (reference: https://www.youtube.com/watch?v=Ub86TsNBuC8&t=220s) 12

1.3 Versatile spaces continuity
The work of Frei Otto and Richard Buckminster Fuller is innovative. They invented new architecture 
with a minimal manner. Of course they didn't start from scratch and relied on some established 
building principles. Their constructed edifices are outstanding, because of the facts explained in 
the previous two chapters. Some may call into question the functionality of the architecture. For 
various reasons it is not habitual for us to live, use, or experience curved spaces. Possibly because 
it is just not common for us to imagine how to do that? Since summer term 2021 students and 
tutors of the design studio ‘versatile spaces‘ (Research Unit of Building Construction and Design 
2 and Research Unit Structural Design and Timber Engineering at TU Wien) are developing the 
intentions described in the previous pages. With the addition of more flexibility in the architecture 
plus the reusing of materials. Bellow you can see a very brief explanation about the geometrical 
development of the project sequence because I dedicated my time on this part. Double curved 
structures were created by using initially straight elements that were interwoven together into a 
pattern (fig.18 left). The stripes are following the asymptotic curves, describing the minimal surface. 
To make the construction method faster, to minimize the material consumption even more and to 
create further variable and easily changeable design, the pattern was divided into modules. (fig.18 
right, fig.19, fig.20)

Fig.18  Left: asymptotic gridshell, right: the gridshell divided into modules (ressource: Versatile spaces SS2022)

Fig.19 Variant A with modules (ressource: Versatile spaces WS2023)

Fig.20 Variant B with modules (ressource: Versatile spaces WS2023)
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In summer term 2023 the design studio team built ve.sh with modules. Addressing current 
discourses and areas of tension, the project is the first modular architecture built with reused 
materials that follows the geometry of minimal surfaces. With 22 building units and between 70.00 
kg - 1400.00 kg CO2-emissions saved, the pavilion embodied its programme.17 During nine days 
lunch dialogues were held, where the role of architecture in creating sustainable future was the 
main topic. Thanks to the concept it was very straightforward to reassemble the geometry. It took 
about 3 hours of work for 5 students to deconstruct the pavilion completely (unscrewing 900 screws, 
planting its flowers on Karlsplatz, relocating 262 kg of foundation stones and modules to a distant 
city district). It is important to note that the rebuilding of one variation into another was not working 
smoothly, five joint types and tolerances were needed (fig.21). The desire to examine new variations, 
building units and details remained left in the air. A proposal of enhancing the ve.sh pavilion is 
studied during the work on the following diploma project.

1.4 Ve.sh pavilion

Fig.22 The opening of ve.sh in front of the TU Wien (ressource: Versatile spaces SS2023)

Fig.23 View of Ve.sh in front of the Otto Wagner Pavillon Karlsplatz (ressource: Versatile spaces SS2023)                                                                      Fig.21 Up: way to build geometries via the modules; bottom: the connections of the variants

1.25m

1.77m

one module with the
 bounding tetrahedron

building principle with modules 

the five 
joint types

the variation "Passage" 
and its joints

the variation "Scene"
and its joints
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1.5 Summary of the references
The reference projects showed examples of how to build experimental, minimalistic and beautiful. 
Obviously, on our round planet, curved architecture is structurally and functionally outstanding. 
When it comes to aesthetics, they look more natural to the eye. What is completely straight in 
nature? Following the motives of the projects, we now start to investigate and work with minimal 
surfaces in architecture.

1.-1.5 Chapter references: 

1Bach, et.al. , Seifenblasen Forming Bubles, IL, Stuttgart ,Karl Krämer Verlag, (1988) 7,11 (400)

2Bach, et.al. , Seifenblasen Forming Bubles, IL, Stuttgart ,Karl Krämer Verlag, (1988) 79,81,83,87 (400)

3 Schuster, Seminararbeit Designgeschichte: Frei Otto, 2.Projekte Frei Ottos und des Instituts für Leichte 
Flächentragwerke,http://www.aspekt1.net/ms/fo_ref/projekte.html (10.2024)

4 Meissner, et al., Frei Otto- forschen, bauen, konstruieren , Edition Detail 1 (2015) 15 (128) 

5 Meissner, et al., Frei Otto- forschen, bauen, konstruieren , Edition Detail 1 (2015) 41 (128)

6 Meissner, et al., Frei Otto- forschen, bauen, konstruieren , Edition Detail 1 (2015) 43 (128)

7 Ananthasuresh, Buckminster Fuller and his Fabulous Designs, Resonance (2015) 9 (25)

8 Pacific Domes, Geodesic Dome Frequencies Explained, https://www.youtube.com/watch?v=zpfql-Be5rA&t=91s 
(12.2024) 

9 Pacific Domes, Geodesic Dome Frequencies Explained, https://www.youtube.com/watch?v=zpfql-Be5rA&t=91s 
(12.2024) 

10 Robinson, How to work out the geometry of any geodesic dome, 
https://www.youtube.com/watch?v=Ub86TsNBuC8&t=220s (12.2024)

11 Pacific Domes, Geodesic Dome Frequencies Explained, https://www.youtube.com/watch?v=zpfql-Be5rA&t=91s 
(12.2024) 

12 Robinson, How to work out the geometry of any geodesic dome, 
https://www.youtube.com/watch?v=Ub86TsNBuC8&t=220s (12.2024)

13 Laila, et.al., The Constructive Advantages of Buckminster Fuller’s Geodesic Domes and Their Relationship to 
the Built Environment Ergonomics, Advantages in Ergonomics in Design, Springer (2018) 358 (588)

14 Ananthasuresh, Buckminster Fuller and his Fabulous Designs, Resonance (2015) 21 (25)

15 Crystal Bridges Museum of American Art, Fly's Eye Dome | Research Guide (2023) 1 (2)

16 Courtesy, the Estate of R. Buckminster Fuller, Dome, Bucky's Daughter & Granddaughter to visit the Dome, 
https://www.fullerdome.org/blog/tag/fly+eye+dome  (10.2025)

17 Climate Action, Carbon Footprint of Recycled Aluminium, https://www.climateaction.org/news/carbon-footprint-
of-recycled-aluminium (10.2024)

Versatile spaces SS2022: Integratives Entwerfen trespassing grounds - creating versatile spaces
Lecturers: Dr.Ing. DI Sandra Häuplik-Meusburger, Univ. Prof. DI Peter Bauer , DI Marilies Frei, DI Lukas Zeilbauer; 
Students: Mikhail Danilenko, Clarissa Fabri, Ekaterina Mihaylova, Martina Zalevska

Versatile spaces WS2023: Entwerfen Constructing Versatile Space(s)
Lecturers: Dr.Ing. DI Sandra Häuplik-Meusburger, Univ. Prof. DI Peter Bauer , DI Marilies Frei, DI Lukas Zeilbauer; 
Students: Almas Azzahra, Sara Borjanovic, Valentin Burtscher, Till Caspary, Eralba Jonuzi, Marcos Luis Aleman , 
Ekaterina Mihaylova, Milomir Vincent Milenkovic, Uros Miletic, Edna Nineska, Johannes Pelz, Tura Bou Rissech, 
Peter Schandl, Susanna Cara Schmadalla 

Versatile spaces SS2023: Entwerfen Prototyping Versatile Space(s)
Lecturers: Dr.Ing. DI Sandra Häuplik-Meusburger ( Sandra Haeuplik-Meusburger ), Univ. Prof. DI Peter Bauer , DI 
Marilies Frei; Students: Raphael Auffarth, Yoan Avramov, Peter Babos, Antonia Behr, Sara Borjanovic, Dan Pavel 
Bucur, Emily Marlena Fuchs, Elsa Gjinaj, Vanessa Jäger, Eralba Jonuzi, Gergely Juhasz, Marija Klisanin, Anja 
Krnetic, Krystina Masilevich, Johannes Matthes, Ekaterina Mihaylova, Uros Miletic, Cathal O’Brien, Dylan Reilly, 
Rok Zidar

2    Minimal surfaces 
To find a better, quicker, faster, easier way and to find an optimum, is something people long for. 
Every day we are trying to find the shortest distance to a goal, or to finish a task in the least amount 
of time. Minimal surfaces inherit the smallest possible area for a given boundary. No other geometry 
exists with smaller surface area. Therefore the amount of material and weight are reduced to a 
minimum. Because of their physical and geometric properties, they can often be found in the 
universe (fig.24).

Fig.24 minimal surfaces as bone implants, in a molecular system, DNA, triply periodic minimal surface 
(bone reference: Myaing, Skeletal system)3

The double helix structure of DNA
(single periodic minimal surface)

triply periodic minimal surface- 
gyroid structures

Atoms molecular and 
minimal molecular systems 2

Discrete minimal typologies 
suitable for bone implants 1
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2.1 In science
"In 1760 the versatile mathematician Joseph-Louis de Lagrange (1736-1813),..., recognized that 
the problem of area minimizing is a characteristic model problem for many practical phenomena 
and that a detailed study of its properties would lead to far-reaching insight into many other 
so called variational problems. He opened up the mathematical investigation of minimal surfaces".4 

One easy and very popular method to visualize them is to create a soap film between boundaries 
of wire (fig.6). They have, by their nature, zero mean curvature, i.e. the maximum and the minimum 
values of the curvature at this point are zero. Nowadays, they are a primary element in the physical 
simulation of compound polymers, black holes, protein folding or general relativity.  "In engineering 
mechanics, for instance, the torsional stress of a bar or tube may be determined using a soap bubble 
above a similar plan in combination with the membrane analogy described by Prandtl.  In electrical 
engineering equipotential surfaces are of importance and have the form of minimal surfaces." 5 

The complex geometries also have diverse range of applications in nanotechnology, molecular 
engineering, medicine, design and architecture. Light roof construction, form-finding models and 
pavillons are built following the geometry of minimal surfaces. 

2.2 In architecture
According to the work of Vitruvius (Roman architect and engineer known for his multi-volume work 
De architectura) there are three principles that good architecture should have- strength, utility and 
beauty. How do minimal surfaces respond to this thriad?
When it comes to strength, we firstly see double curvature of the same magnitude. So, they inherit 
balanced surface tension that is stabilising the construction at each point. As geometric entities 
they can be described with curves, circles, lines, ect. Beams following the asymptotic curves of the 
geometry consist of initially straight boards. In order to follow the geometry they need to be bent 
and torsioned to form the right network. This kind of reshaping of the beams can have stiffening 
effect for the structure. E.g. when normal forces are applied to it, or materials with non-linear elastic 
behaviour are in use. The beams meet orthogonally,  joints of 90-degree angle can be advantageous. 
Taking into account all the geometric and static factors can reduce realization costs.
Light roof construction, form-finding models, headwalls, sidewalls and pavillons are build following 
the geometry of minimal surfaces. No other geometry exists with smaller surface area, therefore the 
amount of material and weight are theoretically reduced to a minimum. Some kinds can be 
self-organizing, e.g. the building principle of ve.sh, what makes the building principle 
simultanious. When building with modules, different variations for diverse functions are possible. 
 
As we have seen so far in this diploma thesis, curved architecture inherits natural aesthetics. Curves 
soften the view and in my opinion they reduce psychological stress. Interestingly, static arches 
distribute loads by transferring weight along a curve, a load path that helps reduce tensile stress6 

There are not many built examples of edifices with the smallest possible area. Therefore, the 
spaces and atmospheres that they create inherit new qualities. If we go into nature, we can see 
spirals, twists, waves, optimum shapes and we feel good there. 

2.-2.2 Chapter references:

1 Begley, et.al., Architected implant designs for long bones: Advantages of minimal surface-based topologies, 
Materials & Design (2021) 1 (14)   
 
2 Bates, et.al., Minimal Molecular Surfaces and Their Applications,Journal of Computational Chemistry (2007) 
386(391)

3 Myaing, Skeletal system, Chapter VI, University of Medicine, Magway (2019) 15 (149)  

4 Polthier, et.al. , Touching Soap Films, Plateau Problem, http://page.mi.fu-berlin.de/polthier/booklet/plateau.html 
(04.2024)

5 Bach, et.al. , Seifenblasen Forming Bubles, IL, Stuttgart ,Karl Krämer Verlag (1988) 7,11 (400)

6 Kaarwan, Structural Dynamics of Arches: A Comprehensive Guide, https://www.kaarwan.com/blog/architecture/
structural-dynamics-of-arches-comprehensive-guide?id=567

“When a soap film is formed between wire edges, they are bent towards each other by the action 
of the surface tension.... the bending curvature is determined by the relative strength of the surface 
tension to the tension of the wire.” 2  Because of these properties, soap films are excellent toy, but 
also models used for flow and energetic analysis.

The strength of the bubbles depends on the solution proportion. A recipe for “super bubbles”
investigated by Fred Juergens, Dept. of Chemistry, University of Wisconsin-Madison, calls for a 
proportion even without water, namely 4:2:1 = glycerine : liquid : syrup.3  When there is a boundary 
curve, the pressure on the concave surface will always be greater than the one on the convex 
surface due to the surface tension.4

Following the example that nature gives us, we can conclude, that every minimal area can be 
designed by fastening a isotropic fabric onto a suitable surface edge. Under the influence of the 
edge forces, due to fastening it tightly, a homogeneous skin in equilibrium is possible. The relative 
strength of the surface tension to the tension of the wire determinates the bending curvature.5

Fig.25 Chemical structure of the soap film

Chemistry and mathematics explain minimal surfaces in different languages. If we understand the 
basics we can build them fast and properly. There are forces and theorems that generate the 
surface and the interaction between its components is exceptional.

2.3 Chemical reaction
"A thin sheet of water packed between two layers of detergent solution is what a soap film is. 
Detergent molecules are amphipathic, meaning they have hydrophilic (attracted to water) heads and 
hydrophobic (avoiding water) tails. The last tend to crowd to the surface of the soap film and stick 
out away from the layer of water. As a result, H2O molecules separate from each other (fig.25). The 
increased distance between the water molecules causes a decrease in surface tension, enabling 
soap films to form" 1. They take a spherical shape, because the volume with the smallest surface 
area is a sphere.

hydrophobic tails 
(departs water)

water 
molecules

soap
molecules

hydrophilic heads
(attracted to water)
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plane curve

spatial curve

2.4  Mathematical explanation
The matematical explanation of minimal surfaces is not so tangible and easy visualisable as the 
chemical one, but it gives us the knowledge how to build structures in human scale with the smallest 
amount of material. Somethimes we use more algebra in order to be faster in programming minimal 
surfaces. A good visual understanding, of the geometric entities explained in the next pages, is 
needed in order to be able to build them correctly and so to profit from their advantages. All this 
because of the distinctive curvature behaviour of minimal surfaces. 

      1 point
A point is an idealization of an exact position in R3 , without size. One-dimensional curves, two-
dimensional surfaces, and higher-dimensional objects consist out of points. A point can also be 
determined by the intersection of two curves or three surfaces, called a vertex or corner.6

      

Fig.26 Plane and spatial curve

      2 curves
A curve can be explained as a connected series of points. They all can lay on a plane or be positioned 
in R3, in other words curves can be planar or spacial. To know their properties will prepare us to 
understand the theory regarding surfaces. Namely, curves can span and describe surfaces. The 
degree of deviation from being straight can be measured via curvature. For calculating it we study 
the theory of osculating plane and osculating circle.

      3 osculating plane and circle

In the book "Architectural geometry" from Bentley Institute Press the authors explain the  construction 
of osculating plane and osculating circle in the following way: let Pc be a discrete spacial curve and 
c a spatial curve. We will refine Pc into c by fixing C2 at its place and redrawing the other vertices 
of Pc . The consecutive vertices C
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  and C

3
. The bisecting planes B12 of C1C2 and B23  of C2C3 intersect each other at the 

axis a2, (fig.27). We refine Pc  by intersecting B12 and B23 with curve c at points C1` and C3`. Points C1` 

and C3`are the vertices of the refined discrete spacial curve Pc`. The same is done for each of the 
vertices. At the last step the refined Pc coincide with the spatial curve c. (fig.29)
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Fig.29 Constructed osculating plane and osculating circle

Fig.27 First step of constructing osculating plane and osculating circle

Fig.28 Second step of constructing osculating plane and osculating circle



28 29

As a result the circle k passes through curve c at point C2 and so it becomes the osculating circle 
of c. If the (curvature) radius of the osculating circle is r, the curvature k of the curve c at the point 
C2 is defined as the reciprocal value of the radius. 

There are different ways to prove the equality - via trigonometry, via refining a discrete curve, or via 
the parametric representation of the curve plus calculation with its derivatives. It is important that the 
curvature measures the local directional change of the tangent. Further control and design of the curve`s 

behaviour is possible when knowing the value k. 7

      4 Frenet-Serret frame 
When working with space curves, we can describe the points that they inherit not only by tangent 
line and curvature. In three dimensional space three vectors describe a position on a curve at a 
selected point. Let's consider the normal plane n that intersects the tangent line T at curve point P 
at right angle. The normal plane n and the osculating plane o cross each other along the principle 
normal N of the curve c. A straight line normal to o at point P is parallel to the axis a and intersects N 
and T at right angle. We call it the binormal B of the curve c at point P. 8 The tangent T, the principle 
normal N and the binormal B define the Frenet frame of the curve at point P. The unit vector T  is 
pointing in the direction of motion, it tells us the direction in which the geometry is going. The normal 
unit vector n is the derivative of T and captures the way in which the tangent vector is itself changing. 
The  aforementioned two vectors - T and N - define a plane. The binormal vector B is normal to that 
plane, because it is the cross product of T and N. The plane is constantly changing along the curve. 
This movement in captured via B.9 The Frenet frame is constantly rotating along the curve,  depicting 
positions (points) on the geometry.  Not only T and N define a plane. T and B, N and B as well (fig.30).
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Fig.30 Frenet-Serret frame
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Fig.31 Frenet-Serret frames on selected points

      5 Osculating curves

The authors from Bentley Institute Press explain further in the book "Architectural geometry" the 
theory about osculating curves and osculating parabola. "There are many curves that touch the 
given curve c at a chosen point P and have the same curvature k and osculating circle there... the 
osculating circle itself is one example, but there are infinitely many osculating curves."  The Taylor`s 
theorem proves that if two curves c and d meet at point P they have the same tangent at point P. 
This information help in understanding the curvature of surfaces, where again infinitely many curves 
intersect each other at one point.  

      6 Osculating parabola
If a parabola y=(1/2)X2 is given, than the osculating circle at its vertex (0,0) has radius of 1 (fig.30). 
Meaning the curvature value at (0,0) is also 1 (k = 1/r =1/1). Following the equation we can say that 
the curvature value of a parabola y=(k/2)X2 at its origin is k. Interestigly k is the second derivative 
of the function g(X)=(k/2)X2. ( first derivative =2(k/2)X = kX, second derivative = X-1kX=k) . For this 
case the second derivative gives us the value of the curvature at the origin point.10  Knowing the  

aforementioned fact we can start the discusion of surface curvature.

      7 Osculating paraboloid
We select point P of surface s and make P be the origin of a coordinate system (X,Y) , such as 
(X,Y) is a tangent plane of s at point O (fig.31). The surface P(a) obtained by the straight line l and 
the parabola q is an osculating paraboloid of s at P with an equation form of: Z = aX2 + bXY + cY2 

All paraboloid surfaces have two symetry planes. We choose the XY-plane so that XY and XZ are 
the symetry planes of P(a).  This removes bxy from the sum above.  We denote a = k1/2, c= k2/2 
and now surface P has the simple equation Z = (k1 / 2) X2 + (k2 / 2) Y2 These curvatures k1and k2 
are called principal curvatures of P and s at point P. The X- and the Y- axes are called principle 
directions at P.11 (Fig.32)
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Fig.33 Finding normal curvature

      8 Normal surface curvature 
To investigate along which directions does the surface bend the least or the most we study normal 
surface curvature.12 The normal surface curvature kn measures how much a surface is curving. The 
value can be positive, negative, or zero. Let us have a look on fig.33 again. surface s is given. Plane 
r intersects s through the normal vector of point P. We make P the orirgin of a coordinate system, 
where the Z-axis is the normal vector of point P at surface s. We may use the osculating paraboloid 
instead of s.The plane r can be defined by its angle a against the X-axis. At fig.33 we see the 
trigonometric relation X=u.cosa and Y=u.sina. We can insert this into the previous equation from 
point 7 (osculating parabola).               
Z= (k1/2)X2 + (k2/2)Y2  and get for the parabola  p(a): Z = 1/2 [ k1(cos a)2 + k2(sin a)2 ] u2 . It curvature 
at the origin is the normal curvature kn (a): kn(a) = k1(cos a)2 + k2(sin a)2."Hence, knowing the 
principle curvatures k1 and k2 we can compute the normal curvature kn (a) to any given direction 
angle (a)." 13  

Knowing the theory explained so far, we can plan networks on surfaces, following the 
principle curvature which implemented correctly,  can have many advantages when building. 
More about this topic can be found in the next chapter: "Special curves on surfaces". 
Furthermore, from the principal curvatures k1 and k2 we can derive two important quantities — the 
Gaussian curvature and the Mean curvature for the curvature analysis of surfaces.
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Fig.34 Analysis of Curvatures on Synclastic, Monoclastic, and Anticlastic Surfaces14
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      9 Gaussian curvature
The Gaussian curvature calculates the geometric mean of the principal curvatures: H = k1 x k2 . It 
"is a property intrinsic to a given surface. The curvature encodes information about how the surface 
"unfolds", responds to stresses and shears, and how a particle moves across the surface." 15 It is 
good for identifying inflections and for locating saddle surfaces (blue/purple colours). 16 (FIg.34)

      10 Mean curvature
The Mean curvature calculates the arithmetic mean of the principal curvatures: H=(k1  + k2)/2 . If 
H = 0 we have a minimal surface, that " has vanishing Mean curvature in each of its points. It is 
equivalent to k1  = -  k2 .Unless we have a flat point (k1  =   k2 = 0), the two principle curvatures have 
different signs. Therefore a generic surface point of a minimal surface must be a hyperbolic point 
(saddle-like)." 17 (FIg.34)

      11 Umbilic points

The authors from Bentley Institute Press explain that if k1= k2  we have a surface point called an 
umbilic. Directions of principle curvature are not uniquely determined here. Network of curvature 
lines has a singularity at that point. The osculating paraboloid at an umbilic is either a paraboloid 
of revolution or a plane, resulting in the same curvature behavior as that of a sphere or a plane. 
Consequently, the network of principal curvature lines also exhibits a singularity at this point.18 

Fig.35 Umbilic point

umbilic point at the surface center 

Asymptotic network

1 2

1 + 2Network of principle curvature lines

Fig.36 Networks on a minimal surface

      12 Minimal surfaces 

On page 648 from the book "Architectural geometry" are listed the most fundamental properties of 
minimal surfaces: "(1) A minimal surface has vanishing mean curvature in each of its points....
(2)The two principle curvatures have different signs. Therefore, a generic surface point P of a 
minimal surface must be a hyperbolic point... (3)We see that in each point of a minimal surface the 
asymptotic directions are orthogonal. In other words, the bisecting lines of the always orthogonal 
principal directions are the asymptotic directions. The asymptotic curve network and the network of 
principal curvature lines can form the basis for realisation of minimal surfaces as frameworks of rigid 
straight rods with flexible connections. Applying appropriate forces at the boundary vertices, such 
frameworks may be brought into static equilibrium." 19

2.5 Summary of the definitions
The mathematical explanation requires an understanding of some geometric entities. A brief 
explanation based on the chapters 2.2-2.4 can be described as follows: 
A point represents an exact position in three-dimensional space, and a curve can be thought of as 
a smoothly connected series of points. 

If two two-dimensional geometric objects (such as lines, circles, or polygons) intersect, they 
generally do so at a finite number of points. For example, two distinct non-parallel lines in a plane 
intersect at exactly one point, while two circles can intersect at zero, one, or two points. More 
generally, infinitely many geometric objects can pass through the same position in space, each with 
different orientations or curvatures.

Geometric objects can also osculate at a point, meaning they touch smoothly without crossing. In 
osculation, two shapes share not only a common point but also the same tangent direction and 
curvature at that location. A key example is the osculating circle, which approximates a curve at a 
given point by matching its curvature. The construction of an osculating circle naturally leads to the 
Frenet-Serret frame, which consists of three vectors: the tangent (T), normal (N), and binormal (B). 
These vectors provide a complete local description of how the curve evolves in space.

The concept of osculating geometries extends to surfaces, where curvature plays a fundamental 
role in understanding their behavior. This is especially useful for planning and designing networks 
on surfaces. A three-dimensional surface can be characterized using different types of curvature, 
such as normal curvature, Gaussian curvature, and mean curvature, each providing valuable 
geometric insights.
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2.6 Special curves on surfaces
An infinitely number of surface-curves exist. Three kinds with special properties are exceptional 
when designing special models. They show great potential to be build from a developable strips 
and are explained as follows:

Fig.37 Curves on minimal surface- geodesic (purple), principal curvature line (blue), assymptotic curve(coral)

2.3-2.5 Chapter references: 
 
1 Pepling, et.al., Soap bubles, Chemical & Engineering News 2003, https://pubsapp.acs.org/cen/
whatstuff/stuff/8117sci3.html (03.2024)

2 Sane, et.al., Surface tension of flowing soap films (2017) 12 ff (14)

3 Katz, et.al.,The Chemistry (and a little physics) of Soap Bubbles (2020) 8 (15) 

4 testbook, surface tension, https://testbook.com/question-answer/the-pressure-inside-the-soap-bubble-is-more-
than-o--6021727bb73f0d40159b51ec (03.2024)

5 Sane, et.al., Surface tension of flowing soap films (2017) 9 (14)
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       1 Geodesic curves
          Explanation
A geodesic curve stands for the shortest path between two points on a surface. The term comes 
from the science concerned with measurements of the earth’s surface- geodesy.1 

          Construction and facts
By laying a straight strip of paper over a smooth surface a geodesic curve is obtained. Hence, they 
can be described as fair curves on surfaces. The mathematical formulation of geodesic cruves 
involves calculus of variations (field of mathematical analysis to find maximal and minimal of 
functionals). There the geodesic is the curve that minimizes the distance integral between two 
points. Every surface`s line or curve can be parametrized so that it is geodetic.They 'move' with 
constant speed on the underlying geometry and its geodetic curvature is zero kg everywhere.2  For 
other curves, kg measures how far the curve is from being a geodesic and stands for "tangential 
curvature of a curve ". It quantifies the deviation from straightness." Zero for straight, positive for 
right turn and negative for left turn in the tangential plane." 3 Girders following geodetic curves can 
bend vertically and twists, but they cannot be displaced laterally. B 

          Practical use
The connection to the general notion of distance has found extensive applications in science, 
engineering, art, architecture and structural design (e.g., domes). For instinctive segmentation into 
patches in use come geodetics. They are commonly used in buildings as beam layouts, support 
structures, panelization techniques, cladding systems, segmentation and shape analysis. 4 Another 
practical application of geodesic principles is, for example, the fact that airplanes use curved routes 
to minimize travel distance and time.5 The idea of combining minimal surfaces and geodesic 
boundaries may appear attractive- the approximation of minimal surfaces from geodesics, for 
applications in order to minimize material consumption.

1 1 points on the curve

2 Darboux frame at the points

3 oriented profile sections

4 girder on the surface
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4

Fig.38 Fig.36 Behavoiur of 
profile following geodesic 
curve B

Fig.39 Geodetic girder with Darboux frames (background) Fig.40  Constructing steps of a geodetic girder on an Enneper surface 
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       2 Principle curvature lines
          Explanation
A principal curvature curve is a curve on a surface that follows the direction of maximum or minimum 
curvature at each point. Their tangents are always in the direction of principle curvature. That is the 
reason, why we do not see the T axes of the Frenet frames at the presented surface. For each non-
umbilical point there are two principal directions. They are orthogonal to each other. When having 
surface of revolution every line of curvature is a geodesic.

          Construction and facts
The principle curvatures k1,k2  can be retrieved at any point on the surface via calculation consisting 
the coefficients of the first and second fundamental form of the surface. Girders following principle 
curvature lines can distort along their main directions, but they cannot twist. Perfect profile sections 
would be pipe-profiles. B

          Practical use
Orthogonal nets following the principal curvature lines are advantageous both for manufacturing 
reasons and structural efficiency. For example, planar cladding panels and structure connections can 
be prefabricated. " Principal meshes in equilibrium under vertical loads are discrete representations 
of membrane surfaces where principal stress and principal curvature directions agree. There they 
follow these principal directions." The most efficient method of bearing loads in a framework is 
through axial forces. In such a way the beam cross section is used to the highest capacity and it offers 
the highest stiffness. For this reason, principal stress and curvature directions should coincide. 6

Fig.41 Behaviour of 
profile following principle 
curvature line B

Fig.43 Constructing steps of a principle girder on an Enneper surface Fig.42 Principle girder with Darboux frames (background) 
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Fig.44 Behavoiur of profile 
following asymptotic curve B

Fig.46 Constructing steps of an assymptotic girder on an Enneper surface Fig.45 Asymptotic girder with Darboux frames (Background) 
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       3 Asymptotic curves

          Explanation
An asymptotic curve is a curve on a surface where the normal curvature is zero at every point. In 
general, in mathematics an asymptote is a straight line that approaches a given curve, but does not 
meet it. Similarly, a asymptotic curves on surfaces are tangents to the corresponding asymptotic 
direction of the underlined surfaces. 

          Construction and facts
As for the principle curvatures lines, asymptotic curves can be retrieved at any point on the surface 
via calculation consisting the coefficients of the first and second fundamental form of the surface. 
Another way to design such a network is via the Euler's formula: " kn(a) = k1(cosa)2 + k2(sina)2  can 
be used to compute the angles a between the principle direction and the asymptotic direction. We 
have to solve kn(a) = 0. " 7 Meaning that if we have k1 and k2 we can derive the asymptotic directions 
at surface points. Girders following asymptotic curves can distort laterally, they can be twisted in the 
weak axis, but cannot bend in the strong axis.B

          Practical use
One fascinating construction method is that we can assemble slender, flat girders on the ground 
and afterwards deform them into an asymptotic doubly curved network. It offers simplification of 
fabrication and construction. This kind of reshaping of the beams is having stiffening effect on the 
structure, when normal forces are applied to it, or materials with non-linear elastic behaviour are in 
use. The girders meet orthogonally and joints of 90-degree angle can be advantageous.
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Fig.47 Girders oriented on minimal surface following the geodesic curve (purple), principal curvature line (blue), 
asymptotic curve (coral)

Fig.48 The four casestudies
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2.7 Summary of the special curves
Constructing flat strips into a spatial geometry is a smooth movement that can stop when the initial 
parts are accurately interwoven together. By working with only three examples of the three curve types 
we clearly see their behviour. They can meet at one point and share one binormal vector (asymptotic 
curve and principal curvature line), but they follow different directions. They can start and end at the 
same point (asymptotic curve and geodetic line), but travel across the surface distinctively. This is due 
to the construction principles of each of them. Sometimes they can coincide. Surfaces of revolution, 
such as the Enneper surface below, have the property that every line of curvature is a geodesic one.  
Depending on the profiles we design on the three types of curves, we can influence the equilibrium 
state in which a grid made out of the curves will naturally stay.8 The elastic deformation of the initial 
flat materials enables the creation of doubly-curved structures.

2.6-2.7 Chapter references: 

B Bauer, Introductory lecture, Studio Trespassing grounds - creating versatile spaces (2022) TU Wien

1,2,4 Jia, Geodesics (2024) 1 ff (9)

3 Narasimham, https://math.stackexchange.com/questions/3948561/the-meaning-of-geodesic-curvature-for-a-
geodesic-curve (01 2025)

5 GISGeography, Why Are Great Circles the Shortest Flight Path?, https://math.univ-lyon1.fr/~alachal/
diaporamas/diaporama_cartographie3/Great_Circles.htm (02.2025)

6 Pellis, et.al., Aligning principal stress and curvature directions (2018) 1,2,6,7 (15) 

7 Pottmann, et.al., Architectural geometry (2007) 491 (724)

8 Computer Graphics at TU Wien, Eike Schling (University of Hong Kong) - Geometry Design Structure, https://
www.youtube.com/watch?v=U-TbUt74d9k (01.2025) 28:25 to 29:50 minutes

3.   Casestudies
In order to present general properties in context, the following chapter examines four different 
cases of geometry: the Möbius strip (3.1), the Enneper surface (3.2), the Batwing surface (3.3), and 
a minimal surface formed by tetrahedron edges (3.4). For each of these surface geometries, the 
history, characteristics, and aspects of modularity are considered. In addition, a possible building 
definition is described.
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3.1 Möbius strip
      History
The first source of a Möbius strip , band or loop is dated to 200–250 CE. Since then it has inspired 
artists, graphic designers, architects, writers, ect.  A mosaic portrays Aion, from a Roman villa in 
Sentinumi, holding a Möbius strip (the work is located at the Glyptothek Museum in Munich). A lot 
of art pieces from ancient Rome present a coiled ribbon with different number of twists. August 
Ferdinant Möbius made the rediscovery of it in 1858. He published it first and nowadays the 
geometry is named after him.1

      Characteristics 
A Möbius strip, as shown in Figure 58, is a very special kind of loop that has only one surface and 
one edge. If we start moving around the surface, by the time we get back to where we started, we 
have been flipped over. The geometry has only one closed boundary curve (fig.49). The saying 
‘there are two sides to everything’ is irrelevant for this example. There is an 'inside' and 'outside' of 
the surface. The following observation may be also interesting: Every flat surface (set of points lying 
on a plane) is a minimal surface. A piece of paper lying on a table is also a minimal surface. If we
take a strip, twist it half, one, or more times, then join the ends together we create a Mörbius strip.
So, this even twist-movement spans a minimal surface in three dimensional space. F. López-one-
ended Klein Bottle, the Kusner’s spheres with planar ends, the López-Martín slab surface and the 
Henneberg surface are examples of a non- orientable surfaces.2

      Modularity
A possibility is to divide the strip into segments of same geometry (triangles, rectangles ect.) and 
then assemble them following the twist of the surface (fig.51,fig.52). The Euler characteristic of the 
Möbius strip is zero. For any subdivision of the strip the numbers V of vertices, E for edges, and F 
for faces satisfy: V − E + F = 0 3 

Fig.51 Divisions of the surface

Fig.49 Non-orientable surface

Fig.50 Perspective of the Möbius strip with 4*Pi turns Fig.52 Top and side views of variations



Fig.53 Building definition of the Möbius script in Grasshopper with explanations Fig.54 Building definition of the Möbius script in Grasshopper with explanations
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Fig.55 Grasshopper legend of the components- first part Fig.56 Grasshopper legend of the components-second part
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3.2 Enneper surface 
            History
It is named by the mathematician Alfred Enneper who discovered it in 1863 and introduced it in 
1864 in connection with the minimal surface theory. 

      Characteristics 
The Enneper surface is extraordinary among minimal surfaces because of its symmetry and 
possibility for self-intersection. The geometry can extend infinitely in all directions, but it is usually 
visualized within a finite boundary for having a better overview (fig.57). It doesn’t have a distinct 
“inside” or “outside” like a sphere does. It can resemble a saddle or a series of undulating waves.4 
"It can be geometrically defined as the envelope of the mediatrix planes of two points located on two 
homofocal parabolas (i.e. parabolas the planes of which are perpendicular and such that the vertex 
of one passes by the focus of the other one;...)".5 The classic Enneper surface is of order 2. It has 
four waves, two by two in opposite directions (fig.57).

      Modularity
Modularity depends on how many elements are repeated around a circle. Some module`s 
geometries makethe building process of real structures easier, so we divide the surface along the 
symmetry axis.

Fig.57 Up: side views; middle: perspective and top view; bottom: perspective and division of the Enneper surface Fig.58 Perspectives of variations
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Fig.59 Building definition of the Ennepers script in Grasshopper 
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3
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Fig.60 Explanations of the building definition Fig.61 Explanations of the building definition
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Fig.64 Enneper plugin in Grasshopper; middle: surfaces of different parameters; modules

One very simple way nowadays of visual programming the surface is given from "LunchBox", a 
Grasshopper plug-in, that travels over mathematical shapes, paneling systems and structures. 

Fig.65 Perspectives of variations, top views

divisions in the surface ‘u‘ direction

the math surface

create a parameter Enneper surface

Enneper surface

rotating the module of surface with ‘R parameter 5’ four times in 36°

R parameter = 2 

variation ‘rose’

variation ‘cross’

variation ‘in contact’

R parameter = 3 R parameter = 4

R parameter = 6R parameter = 5

divisions in thesurface ‘v‘ direction

form parameter

form scale parameter

domain in the ‘u‘ direction

domain in the ‘v‘ direction



60 61

Fig.66 One modulein a unit cell; Batwing surface in a cube; Name Origin Fig.67 Batwing surface inscribed in two pyramids

3.3 Batwing

      History
It was introduced by Alfred Enneper in 1864 in connection with minimal surface theory. The Batwing 
Surface is more complex than the Enneper surface and does not self-intersect, leading to shape 
that resembles a stretched, curved "wings"(fig.65).

      Characteristics 
It is a triply periodic minimal surface, in the sense of repeating themselves in three dimensions
It has a crystalline structure. Two fundamental regions, in other words two modules, placed next to 
each other look like “batwings” and fit in a tetrahedron. Twelve surfaces can be arranged in a cube, 
or slightly flattened octahedron (fig.60). Brakke’s Pseudo-Batwing Surface, Schoen’s Batwing-41 
Surface (higher genus version of the surface), Schoen’s Batwing-57 Surface. They are higher genus 
version of the surface, respectively with genus 41 and 57.6  It is a cubic minimal surface, straight 
lines or holes are connecting elements.

      Modularity
Being triply periodic means that it is appearing at intervals in three dimensions and a finite module
can be bounded by a solid. Diving the intervals from each other could be a division in itself. There
are many possibilities: splitting up one by one, two by two, three by three and so on (fig.69).

module and 1/8 unit cell fundamental region and a full unit cell

The reason for the name: two fundamental regions looking like batwings.
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Fig.70 Evolution of the Schoen’s Batwing surface drawn in Rhinoceros
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Fig.68 Relations of the surface out of six modules

Fig.69 Perspective of modules



64 65

There are four ways for one module to meet the ground: with 2 edges, 1 edge, 2 vertices, 1 vertex

3.4 Minimal surface from tetrahedron

      History
All Platonic solids were well known to the ancient Greeks, described by Plato in his works ca. 350 
BC. Predating him, the neolithic people of Scotland developed the five solids a thousand years 
earlier. Archaeological artifacts in a form of a stone models are kept in the Ashmolean Museum in
Oxford (Atiyah and Sutcliffe 2003).7 Minimal surfaces with a bounding hexahedron (cube) geomerty
were investigated for first time while doing the reference project ve.sh (fig.21).

      Characteristics 
A tetrahedron is a regular triangular pyramid whose base is also a triangle. The only Platonic solid
where all four vertices are equidistant from each other. It can be folded into three dimensional 
geometry by using a two dimensional geometric net (fig.71). All the interior angles of a tetrahedron
are 60° each which results in a minimal surface with 60° corner angles as well. 8 Its edges are four
neighbouring edges of the tetrahedron, so two others remain. The area of the minimal surface 
multiplied by 2.7 gives the area of the tetrahedron.

      Modularity
Similar to ve.sh by rotating the bounding tetrahedron along one edge the geometry grows. The 
tetrahedron is the dual of the cube. When needed one can profit from both bounding boxes. While 
rotating the diagonal of the box, or the edge of the tetrahedron, the bounding geometries create 
sculptures. 

two distinct nets 

Fig.71 Left: tetrahedron in a hexahedron; right: the planar geometric nets 

Fig.72  Left: minimal surface from tetrahedron edges; right: edges as a rotational axes 

Fig.73 Two variants made with three modules

Fig.74 Variant made with five modules

Fig.75 The four ways for one module to meet the ground
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Fig.76 Building steps of the variants "lace" and "elan" Fig.77 Transforming steps from "elan" into, "shelter" and  "lilium"

start with two opposite edges

2.  rotation of the first edge in 180o

5.  rotation of the whole model in 90o

6.  moving the middle part on the ground 

3.  rotation of the second edge in 180o

4.  end result1.  initial patches

start with two adjacent edges
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Fig.78 Transforming steps from "shelter" into "approaching" , "silhouette" , "throne" and "flower" Fig.79 Building steps of the variants "wings" and "bird"

7.   starting with the variation "shelter"

8.   adding one new module to get the variation "approaching"

9.   moving closer and forming the "silhouette" 

10.   adding one new module and forming the "throne" 

11.   adding one new module and forming the "flower" 

12.  transforming the variation "lace" plus two modules into the variation "wings" 

13.  transforming into the "bird" 
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Four neighborhood edges of the tetrahedron are selected (black) and two other remain. We span 
a minimal surface from the edges using the Grasshopper plugin 'milpede'. The output is a mesh- a 
collection of vertices and polygons that define the shape of the object. Next step is to deconstruct 
the mesh into its component parts. The vertices are sorted in four lists. They are the four inputs of 
the component "4 point surface" (fig.80,fig.81).
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Fig.80 Building definition of a minimal surface from edges in Grasshopper

Fig.81 Explanational graphics for building of a minimal surface from edges in Grasshopper Fig.82 Grasshopper legend
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Fig.83 Visualisation of Mörbius strip, Enneper and the Batwing surface

3.5 Summary and Outlook
After exploring various spatial transformations with distinct building logics, the choice is clear—case 
number four presents a minimal surface that stands robustly upright. Unlike other configurations, 
this surface does not need to be divided into parts; instead, it remains embedded as a whole. 
 
Its design is easy to replicate due to consistent lengths, angles, and inherited straight 
lines. The surface outlines align with four of the six tetrahedral edges, allowing for modular 
rearrangement. By rotating the initial module 180°, new variations can be created. The attachment 
system functions along the edges, where two modules meet, enabling flexible connections. 
 
Despite this promising solution, curiosity remains about minimal surfaces in architecture and how 
the other three case studies behave in space. The following pages explore these concepts further, 
with visualized ideas and proposed functions inspired by the models

3.-3.6 chapter references: 
1 Ristov S., The endless ribbon, https://takeinmind.com/the-endless-ribbon/ (08.2024)

2 WordPress, Non-orientable, https://minimalsurfaces.blog/home/repository/non-orientable/ (11.2024)

3 Wikipedia, Möbius strip, https://en.wikipedia.org/wiki/M%C3%B6bius_strip (01.2025)

A script reference for generating a Möbius strip (pages 46-47):
Piker, Generating a Möbius strip with different parameters, https://discourse.mcneel.com/t/generating-a-mobius-
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3.6 Example designs           1 Möbius recess 

Fig.84 Möbius recess as a water attraction place

The Möbius strip as an attraction to a restful place in nature. It is built out of aluminium plates. The
first perspective is showing the version with separated from each other five modules arranged 
around a lake. The alumimium sheets are crossing each other. The geometry curvature is inviting
visitors to lean on the minimal surface and to contemplate the surroundings. At the second perspective 
the stripes are rebuild so they can assemble the whole Möbius strip. This time the geometry twists, 
which can be compared with waves, surrounding the water. Guests can swim around the geometry, 
following its shape. Why not even climb on the structure and jump into the water?



Fig.85 Möbius recess as a water attraction place in nature
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       2 Enneper flower 

Fig.86 Enneper flower around more flowers

A flower surrounded by flowers. Waves are transmitting energy. Here the surface waves that look
like rose petals are transferring the energy of nature. In form of a verdures- vertically, horizontally -
on a human eye level. The vertical gardens serve as screen plants, to look at or take from. It is not
taking any space on the ground at all. Some parts could be covered and used as a screen- for an
outdoor cinema or for a colourful light show on the surface. The second variation is a more enclosed
one, also having one small, sheltered part.



Fig.87 Enneper flower as a flower garden
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       3 Batwings play

Fig.88 Batwings play as a children playground (six modules)

A rendering depicting children experiencing the doubly curved surface through playing. An interesting 
and challenging geometry for kids to climb, slide and hop around. Possible materials are wood or 
fabrics. There are six modules of the first variation, followed by 12 at the second. Of course, swings, 
hanging ropes or membranes could be fastened to the facility. Minimal surface as a space, creating 
a harmonious, aesthetical and durable area for curious minds
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Fig.89 Batwings play as a children playground (all modules)



Fig.93 Cleaning with rain and afterwards with high-pressure water
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Fig.91 Tools used for building The ‘raw’ material, four packages each with 22 blinds

Fig.90 Tools used for building 

Fig.92 Taking off the tilting mechanism, unriveting the brackets

       1 Picking up 
The material was picked up from Materialnomaden (arvestMAP Genossenschaft zur Vermittlung 
von ReUse-Bauteilen eG; 2017). There was no requirement for the tilting-mechanism, so it was 
removed, partly because of its weight. The length of the blinds (1.1m) allows to encase one set of 
twenty two pieces in two plastic bags of a 60-litre volume (fig.91 right). Four such sets fit effortlessly 
in a normal car boot. Conveying by carrying them, using a trolley and taking the bus or the suburban 
railway is also possible. 

Tools: flathead screwdriver

4.   Building process 
The following pages are presenting a chronologically ordered list of the events that happened, after 
the decision of which module to build was made. The main rules followed to solve the probems 
were to create clean, simple, beguiling details, that are allowing the straightforward modularity of 
the structure. We start with the equipment used while building:

4.1 Logistic

rivet gun x1

hammer x1

tin snips x2

screwdriver 
flathead and torx x2

screwdriver bit holders
cordless screwdriver
3 , 3.2 , 3.5 , 4 mm
+ spare battery, charger

wooden blocks

wooden poles

clamps x4

scotch tape x5

safety gloves x2

tape measure  x2

saw x2

pliers x2

stanley knife x2
        2 Cleaning 
Following the project concept for conserving the natural resources as much as possible, blinds were 
firstly cleaned up under the rain or by hand. Subsequently a high pressure water machinе did the 
final touch of washing the raw material, reclaimed froma building scheduled for demolition. The final 
preparation step was to get rid of the brackets and the rubber strip.

Tools: gloves, drill, maker knife

drill

blind

4 roller blinds sets each 22 pieces

1
1

2
2

3 4

tilting-mechanism

5 blinds under the rain

high pressure 
water mashine 

2 roller blind sets 
each 22 pieces
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To orient the non-symmetrical blind profile we compute the binormal vector and the normal vector 
at each vertex and at the middle of the edges. Afterwards we orient the profile, so that the binormal 
vector at the mentioned points coincide with the z-axis of the profile. We do the same alignment 
with the normal vectors.

z

15
 m

m

25 mm

55 m
m

30 mm

0.8 mm

125o

125o

125o

4.2 Module frames

After computing the minimal surface, it is time to orient the material along the module edges. The 
aluminium sunblinds used for the building of ve.sh come into use. With length of 1100 mm and 
thickness of 0.8 mm they are easy to work with. Most importantly reused building materials are 
used. The aluminum blind slats from the demolition of the former OMV building in Vienna were 
repurposed. By reusing these slats, a sustainable design solution is created, and a resource-
efficient construction approach is being investigated.

Fig.94 One aluminium blind - frontside

Fig.95 One aluminium blind - backside

Fig.96 Orientation of the blind profile at selected points

Fig.97 Twist of a half module`s edge

Fig.99 Blind`s profile with measurements, profile of one module`s edge, profiles of adjacent modules 

Fig.98 Blind`s profile with measurements, profile of one module`s edge, profiles of adjacent modules 

 0.58 kg/lm 1.16 kg/lm

13.75 m
m

13.75 m
m

13.75 m
m

13.75 m
m

M3 screw

M3 screw

rivets 
   3.2mm

rivet 
   3.2mm

13.75 m
m

13.75 m
m

13.75 m
m

14.25 m
m

24.60 m
m

15.00 m
m

n

 0.29 kg/lm
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53 cm 56 cm

Fig.101 Down and upper part of a module`s corner

A

A B

B

We build one module frame in the following way: the size of one module is chosen in relation to the 
blind size and to the inner pavilion’s height of the roofed variation 'Bird', namely 2.35m. The same 
thickness and strength of each edge, along with minimal possible blind corrections were preferred. 
These criteria resulted in an edge length of 2.20 m - the length of two blinds. Two layers of material, 
four folded in the middle blinds and twenty unchanged blinds are the constitutive elements of one 
frame. The inner pieces overlap the outer ones until the middle of each element and vice versa 
(see fig.100 ). Four 1.10m long blinds were bended in the middle in 60o degree in order to build the 
corners. That means that one angle side is 55 cm long. 

According to the Rhino drawing, the distance between the upper profile`s end points (A) of the 
folded blind and its bottom ones (B) is respectively 53cm and 56cm. This applies only for two 
opposite corners of a module. The other two were built the other way around - the distance 
between the end points (B) of the folded blind and the end points (A) is respectively 53cm and 
56cm.  In this way the frame`s twisting is correct. The span is not the same (3cm difference), 
because of the non-symmetric beam profile. (see fig.101) 
The other whole-size blinds are riveted to the folded one in the middle. The aluminium piece 
automatically follows the twist without any resistance at all. The middle inside blind is the one that 
connects the outer whole-size blinds together. It takes place between the two angles.(see fig.100 
middle) 

53 cm

53 cm

56 cm

56 cm

1

1+2

56 cm

56 cm

53 cm

2

5.07 kg/frame
16 blinds of 
1.1m length  

8 inner blinds:
4 folded at the corners + 
4 straight in the middle

8 outer straight blinds

For building the correct twisting of the 
edge the corner dimensions (53cm 
and 56cm) should be built exact !

53 cm

Fig.100 Up: inner eight blinds, bottom: outer eight blinds, middle: all blinds in two layers

53
 c

m

A

B

Fig.102 Four corners twisted in the same way, prepared for two modules; B-A orientation of the angles

56
 c

m
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1.the four corners with 
the bounding tetrahedron

As we can see one module is not stable on its own and two different bracing systems were designed.

2.the outer eight blinds

3.the middle four blinds

Fig.103 The sequence of attaching the blinds together

Materials for one module: 16 aluminium blinds, rivets: 3x4 corners DM4mm + 4x8 outer blinds
DM3.2mm +4x4 middle inner blinds DM3.2mm = 52 rivets;  Tools:  rivet gun, hammer before riveting 
the angles, tin snips, screwdriver, wooden blocks, wooden poles for the tetrahedrons - scaffolding, 
clamps, tape measure, pliers

Fig.104 A finished frame

Fig.105 A finished frame with supporting rods forming a tetrahedron.
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4.3 Two experimental models
The one that connects the middle points of each edge is following the asymptotic curves that are 
describing the surface. The blinds are oriented upright on the underlying surface. This bracing type 
was more difficult to be built because of the blind’s asymmetric profile. (see fig.107) To carry it 
through a door with a width of 90cm was manageable if there was at least 2.5 m2  free space before 
and after the opening so that one can rotate the module while passing it through.

Fig.106 Left: half a bracing; right: three quarters

Fig.107 Reshaped end of a bracing element; right: built experiment. 

While doing the second bracing-system experiment, the search was for something more  
elegant and easier. The pattern was chosen because of the need to connect 2x2 edges as well as 
the stripe`s length. First the inner pattern was screwed together on the ground then its ends are 
connected to two points of the surface edges (see fig.109). With 2 500 mm length, 25 mm width and 
2 mm thickness, the aluminium belts were not steadily holding  the  sunblinds. The module itself 
was not standing in the right position, meaning it was not possible to fit it in a regular tetrahedron. If 
the inner squares are triangulated with tension-elements (e.g. membrane) it would do so. 

Fig.108 Inner stripes riveted for the frame. Attaching them together was not possible; right: bracing pattern 
successfully fixed to the frame

Fig.109 Left: First tryout with a steel cable and a footing; right: the aluminium stripes screwed together on the 
ground



Fig.112 All nine frames
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Fig.110 The two experimental models connected through aluminium stripes together 

Fig.111 Selected bracing system and mass of the model in Karamba

Fig.113 Computing the bracing in Karamba 

The connection between the modules can be seen as a continuation of both experiments of bracing 
geometries. A structure which proceeds through all modules, that is removable, but arrangeable, 
that can be stiff in one direction, but flexible in others was to be designed and dimensioned. 
The support at the middle edge points plus two more looked promising. The profile design of the 
second built experiment was simple, clear and beautifully following the minimal surface typology. 
At Fig. 110 aluminium stripes flow from one patch to another, connect the modules to each other 
and stabilizing the structure. The aluminium stripes are just tied to the modules. They are the long 
middle part of the blind's profile - cut out from the folded parts. 1.1m long piece plus 1.1m long piece 
overlap for 5 cm and lengthen together via two screws M3
. 
Tools: rivet gun, hammer, tin snips, drill, screwdriver flathead and torx, wooden blocks, clamps, 
scotch tape, safety gloves, tape measure, pliers

The connection and the exact dimensions of everything in the module was first discussed with the 
tutors, then proved in Karamba. The Finite element models were done similarly to the programmed 
structural models of ve.sh in SS2023. The three tasks that were done in Karamba were: 1. 
Examination of other materials as possible connections; 2. Positions at the module`s edges; 
3.Bracing layout.

4.4 New seven frames
To build the new seven frames took fourteen hours of work for two people. The most time consuming 
step was to build the angles. Marking where to connect the blinds and attaching them together 
followed; 

Tools: rivet gun, hammer before riveting the angles,tin snips, screwdriver, wooden blocks, clamps, 
scotch tape, safety gloves, tape measure, pliers
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4.5 Foundation
The form of the inner angle`s space is taken. Thus, the foundation design follows the natural form of 
the pavilion and fits slightly in one module. At the corners of one module we had singularity points. 
The side walls of the footing are again made out of bent in the middle blinds. So, at the ground, the 
angles have three layers of aluminium. The upper and bottom triangular sides are from four peaces  
of flattened blinds, cut out in triangular and trapezoid shapes. The aluminium profile is flattened very 
easily using pliers. They are placed tightly next to each other and riveted to the side foundation`s 
walls. Inside of the shape could be placed weights such as gravel, stones and bricks ect. The 
pavilion`s base follows the form of minimal surfaces, staying true to the materiality and idea of the 
project. They can change positions- by unscrewing and moving them from one module to another 
when reassembling the pavilion`s variations. 

Improvement ideas:  Using screws instead of rivets, levels of the triangular face`s position providing 
the places for fixing the elements together with long holes.

Materials: around four aluminium blinds,  rivets DM3.2mm;  for the filling: crushed stones, gravel; 
Tools: rivet gun, tin snips, hammer, drill, wooden blocks, scotch tape, tape measure, pliers; 

Fig.114 Foundation positioned in a module ant its inner room

Fig.115 Both sides of a foundation

A

AB

B

4.6 Membrane
A membrane is designed to cover and protect from the weather. Modules can be covered with 
cotton fabric, shielding the space from direct sunlight. The first tryout was done with rectangular 
textiles fastened between the inner and outer layers of blinds at the module edges. Of course, there 
was a gap between the actual surface and the improvised membrane at the center area of the 
geometry. The tailor from “Mode Atelier Mass- und Änderungsschneiderei” at Berggasse 27, 1090 
Wien explained how to create a fabric piece that follows the desired curved typology. The whole 
surface has to be divided in segments (fig.116). Their exact measurements plus 2 cm offset at every 
piece`s border have to be pinned to the fabric and cut out with scissors. Last step is to stitch them 
together using a sewing machine. Firstly, a model in 1:10 was made. 

Fig.117 The membrane and the ‘twist‘ variation of the pavilion.

Fig.116 The membrane on the second bracing experiment 

Improvement ideas: Perhaps next time when designing a membrane, I would read the chemical 
definition of minimal surfaces and rethink how to use the formula from page 24 in order to 
improve the design.

Materials: fabric triangular pieces: 2.20 m hypotenuse, 0.78 height, 1.39 m cathetus, thread, 
eyelets DM10x19mm, rope; Tools: sewing kit, hammer, setter, anvil, scissors; Improvement idea: 
a membrane, that not only serves as a weather protection, but also interacts with the supporting 
structure, could be approached. The minimal surfaces can be materialized with thin membranes 
carrying only tension. They can span large distances while requiring little material.

2. 
segment

1. 
segment

3. 
segment

4. 
segment



100 101

4.7 Building the bracing
The modules 3x3x1 were assembled together and prepared for the building of the biggest variation 
‘bird‘ with seven modules. The steel cables length span is 1.55m (single module on the ground), 
two times 3.10m (three modules on the ground.....) and 4.65m ( for the three upper modules  in a 
line). Scotch Aluminium Tape fixed the edges of individual modules so they can lay (friction)-tight 
next to each other without fixing them entirely. One module is not stable by itself because of its 
dimensions (2.20m x 2.20m x 2.20m x 2.20m). Supporting objects such as chairs or tables came 
into use. Consequently, the steel cables were not stretched.  Around 30% of the wood stripes were 
connected to the modules. The result was promising, the modules started to straighten themselves 
up. 

Tools: rivet gun, tin snips, hammer, drill, flathead and torque screwdriver, wooden blocks, scotch 
tape, tape measure, pliers

Fig.118 Three modules connected together only with scotch tape (leaning on a chairs) 

Fig.119 Three modules partially connected together via wood stripes Fig.121 Left: transportation of the three partially connected bottom modules (variation 'bird'); right: transportation 
of the three upper modules

Fig.120 Left: transportation of the three partially connected bottom modules (variation 'bird'); right: 
transportation of the three separated modules

        1 Transportation
After partially building the bracing, a transportation of the models followed. Two people moved 
the three single modules (the two working modules of the bracing system and the other one left 
alone) stacked up on each other. The other six, connected together via the steel cables, were split 
into two groups, each consisting of  three modules and were transported by three people when 
the car traffic on the streets was very light. It was possible because the three openings (entrance 
door in Paniglgasse 12, entrance of the corridor to TFVA, entrance door of TFVA), through which 
assembled together modules had to go, have a width of 1.25m , 2.10m , 2.45 m. The space before 
& after the openings have the width dimensions of: 3.00 & 3.00m , 3.40 & 2.20m , 3.40 & 3.40m . 
The other key point that made passing through the openings possible was the modules were
partially built so it was feasible to pull or bend them into the required direction.

Tools: rope to tie up thе single modules together.
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Fig.122 Three modules tied up together via steel and wood

       2 Angles - preparation for attaching the bracing

Fig.124 Angles in a completed modules

Fig.123 Process of building the angles: bending the flattened blind, plates, riveting of the angles

Smaller pieces of flattened blinds are used as connecting element between the wood diagonal 
bracing and the frames. There is no need to cut through the blind to get the wanted triangular 
shape. Bending them up to 360 degrees a couple of times until it breaks along the axis of bending 
is enough. Then the parts are riveted to the angles of the asymptotic frame.  The idea was born 
from a trial on the construction site in order to save time and work. Not to change the module frame 
or the bracing stripe in any way was also a requirement. The rectangular piece of wood was placed 
between  the angle arms symmetrically. In such a manner the bottom face of the timber band and 
an edge of the aluminium profile flange lay in one plane. Logically, a plate was created and used as 
a connecting element. 

Materials for one module: 1 aluminium blinds, 4 rivets DM4mm;  Tools: rivet gun, hammer, tin snips, 
screwdriver, pliers Improvement idea: Instead of rivets, screws and nuts could be used, so the detail 
can be reconstructed with no need of removing elements.

bending axis covered area
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Fig.125 Crosspoint of steel and wood

Following the results of the karamba model, wood and steel cables are used to stabilize the  
modules completely. After shifting the models to courtyard number 3 of the TU Wien, the whole 
bracing was firmly fixed to the aluminium module edges. At first the angles were riveted to the 
frames, then the diagonal wood stripes were screwed into them. The  6 cm width "belts", wrapped 
around the twisted blinds, to fix the timber elements passing through the middle of the edges. 
After that all the crossing points of the wood stripes were screwed together. It was a delight to 
the eye to see how the steel cables were slowly tensing up while installing the other part of the 
bracing. The ‘crumpled’ aluminium module edges reshaped into the planned geometry by adding 
the strengthening elements. 

Materials for one module:  8.82m wood length (diagonals:1.79m x2 + middle lines: 1.16m x4 + 
fixing area:0.6cm);(Specification: wooden strip (pine / spruce)240x0,5x4,6cm, spruce/pine, solid, 
untreated, versatile, easy editing, screwing/gluing/nailing as a mounting type, can be painted over, 
weight (net) 264 g, not quite straight) 1.55mx2 steel cable: Corrosion resistant, galvanised steel 
cables with 6mm dia. are ideal for simple assemblies. It can easily be used to connect, hold and 
press wire, steel ropes and aluminium blinds. It has many uses and it is reclaimable.  It has a 
6×7 wire strand construction, which makes it very robust while also being flexible. (Specification: 
weight (net):135g, load capacity: up to 420kg, high life expectancy, high abrasion resistance, UV-
resistant), M3 screws/ nuts/bolts x 21 pieces 4,aluminium band, 4 rivets for the bands, steel clamps 
2 or 4Tools: rivet gun, hammer, tin snips,drill, flathead and torx screwdriver, tape measure , saw; 
Improvement idea: Connecting the steel with the wood at the point where they meet.

       3 Steel, wood and aluminium - attaching the bracing

Fig.126 Connection between two modules

This solution emerged from several tasks such as: the need of fixing the bracing using one technique 
on a non-symmetrical profile; the connection is not fully fastened (movable along the edge) until 
every part is connected to the model; it stays true to the materiality and the concept of reusing; it 
can be fixed at a single edge but also on two neighbouring modules. For this reason, stripes of the 
widest blinds area were produced. They were twined round an edge. After screwing the wood on 
them, the so called `connection`s belts` are fastened with rivets so that they cannot move. (fig.126) 
At this step screws would again allow the reusing of the strips. They cover the location where the 
steel cable intersects the aluminium. 

Materials (one joint): one M4/screw+nut+bolt, wood, aluminium bands,2 rivets DM3mm Tools:  rivet 
gun, hammer, tin snips, drill, flathead and torque screwdriver, pliers Improvement: Perforated metal 
bands with min. width 6cm are used, so there is not only no need to hollow before screwing and but 
also a variety of possible places to fasten the connection.

the connection belts

4.8 Relocating 
There are a few steps that even one person can take in order to prepare the modules for transportation
in such a way that they take as little space as possible. Marking the elements belonging together 
can accelerate the rebuilding process when the last built variation is to be built again. The 
stripes connecting the modules have to be disjoined from the structure. The wood that is used 
for strengthening of single modules could be unscrewed only sideways. A folding of two opposite 
module’s angles into each other is possible and single modules can pass through a standardized 
door. For the same reason, four rivets (two by two from opposite sides) are removed. Using only 
screws, instead of any rivets, would make the whole structure entirely rebuildable. All modules fit in 
a box truck. If there is time to stack them closely next to each other, three people can help loading 
them on the transportation vehicle, and a van will be sufficient. An important thing to consider is the 
traffic volume at the starting and the end points. Depending on this, with a smaller or bigger car, in 
less or in more time, a careful process of the conveyance could be followed.

Tools: screwdriver , scotch tape, flathead and torque screwdriver
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Fig.127 The detached connection stripes, one disassembled module, unriveting at one angle’ side 

Fig.129 minimalistic dismantleling of every module

Fig.128 Disassembled wood bracing Fig.130 The modules in their storage place
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Variations 1
Lilium
3 modules

Variations 2
Lace 
3 modules

Variations 3
Elan
3 modules

Variations 5
Silhouette 
4 modules

Variations 4
Approching 
4 modules

Variations 6
Throne
5 modules

Variations 7
Wings
5 modules

Variations 8
Flower
6 modules

Variations 9
Bird
7 modules

Fig.131 The variations with the computed blind`s geometry at the edges (3-4 modules) Fig.132 The variations with the computed blind`s geometry at the edges (5-7 modules)

4.9 Summary of the built models

The following pages show a collection of the built variations. Proposed names are given 
according to the associations that the models evoke. They are all very different from each other 
which demonstrate the possibilities that the concept is giving. Firstly we recall to our minds their 
computational visualisations, afterwards we will see the photos of the real models.
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Fig.133 "Lilium" with 3 modules

Fig.134 "Shelter" with 3 modules

Fig.135 "Lace" with 3 modules

Fig.136 "Elan" with 3 modules

Lilium Lace

ElanShelter
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Fig.139 "Throne" with 5 modules

Fig.140 "Wings" with 5 modulesFig.138 "Approaching" with 4 modules

Fig.137 "Silhouette" with 4 modules

Silhouette   Throne

WingsApproaching
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Fig.141 ‘Flower’ with 6 modules

Fig.142 "Bird" with 7 modules

Fig.143 "Bird" left front viuw 

Fig.144 "Bird" right back viuw 

Bird

Bird

Flower

Bird



Fig.146 Bending of an Catenoid into a part of helicois without changing the lengths of curves (reference: 
Pottmann, et.al.,Architectural geometry)1 
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Habitual reasons led to the building of the variation “Bird“ as the biggest and representational one: 
time, place and wishes. For the first two points two experimental and seven final modules were 
feasible. The intention of the real-scale-modeling part was the construction of an arch-like structure.  

Fig.145 Looking at the sky from the "Bird"

5.   Excursus: Typologies of minimal surfaces
The final part presents an excursus and digresses on different typologies. As more and more 
becomes possible, the aim is to provide a broader perspective on what can still be spatially realized. 
Minimal surfaces can be highly diverse—they can be spanned at boundaries, and in some cases, 
they can also grow, be endless, or remain limited.

We can observe the types of curves that often define a minimal surface, such as circles, straight 
lines, and waves with the same amplitude. A catenoid (with circular ends) can be transformed into a 
helicoid (with spiral ends), demonstrating that such spatial transformations are also possible.

The influence of typology helps us understand how the structural behavior of a design will perform—
whether singularities restrict movement or allow for greater openness. In the following, we will 
examine some typologies from the perspectives of stability, boundary curves, and discretization. 
The goal is to gain insights and knowledge about what is possible.



Fig.147 Graphical representation of the words (1-5): embedded, non-embedded,genus, winding index, flux

Fig.148 Surfaces of the typology "sphere" 

Fig.149 Surfaces of the typology 'non-orientable' 
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5.1 In terms of stability
Little attention has been paid to the mathematical study of unstable minimal surfaces. The transition 
from a stable to an unstable one may be very important in solving technical problems, e.g. bifurcation 
problems. By definition, the average of the two principal curvatures of a minimal surface is zero. 
H = (k1+k2) / 2 = 0 =>  k1= - k2. "In classical Differential Geometry k1 & k2 are the maximum and 
minimum of the of the curvature at any given point on a surface. They measure how the surface 
bends by different amounts in different directions at that point." 2 The mean curvature of a minimal 
surface with the smallest possible area disappears at every point. The statement  H = 0 is a 
necessary one, but not the only one sufficient condition for a surface to be minimal. (All comditions 
are listed in chapter 2.4.12 ) Basically, all surfaces that meet the conditions H = 0 and ∫∫ dA = min are 
stationary stable minimal surfaces. There are no directions in which the geometry can decrease its 
area. Such surfaces that meet the curvature condition, but do not satisfy the minimum property, are 
called unstable stationary minimal surfaces.3 More tangible explanation is to create a soap film ‘S‘ 
with a boundary ‘b‘. By reshaping ‘b‘, ‘S‘ also will change.  Not every continuous change of form of 
a contour leads to a continual change the soap film itself. The reason for the irregular modifications 
is that at the time of deformation the surface can become unstable. The topological type and the 
connectivity will change. 4

5.2 In terms of form
The information in the following chapter, along with the five definitions below, is primarily taken from 
a blog on WordPress about minimal surfaces.5 Reference links are cited for each typology using 
superscripts.
There are plenty of minimal surfaces, described by a mathematical equation. According to their 
similarities and differences in appearance they can be divided into typologies. The next pages 
describe their classifications based on appearance and shows examples of main curvature lines 
and asymptotic curves at selected points.  On this page we explore the definitions of some terms: 
1. A surface is embedded when it can be placed in space without self-intersection. 2. The opposite 
is true when it is not-embeded. 3. Genus. in plural genera, stays for a number of “holes” of a 
surface, for example, a sphere has genus of zero. 4. Winding index is an integer representing the 
total number of times that a curve travels counterclockwise around a point. 5. Flux is the process of 
flowing in or flowing out of direction.

1 

2

5

4

3

P

       1 Spheres
They are conformally equivalent to a sphere. Conformally is a surface that can be mapped onto 
another surface so that all angles between intersecting curves remain unchanged. They can have an 
infinitely amount of punctures: Enneper ends look like a circle with sides sent in opposite directions, 
so a wave results. The surface holds the name of his inventor- Alfred Enneper and it is made by 
revolving a generatrix one full time around an axis of rotation. All its curvature lines are planar, and 
it can also be described parametrically. Sections of the geometry made by its symmetry planes are 
geodesics and principal curvature lines.6 Of course, a combination of ends are possible- straight 
lines plus Enneper ends, etc. They often have winding indexes starting by number two. Catenoid 
comes from the Latin word ‘catena' with the meaning of chain. Because it is arising by rotating a 
catenary curve about an axis- a surface of revolution. It can grow exponentially in radius while 
linearly in height, can be stable nonstable and it can be bent into piece of a helicoid.7

ennepener ends = waves catenoidal ends = circlesmixed ends =

Möbius strip Trefoil Knot 

       2 Non-orientable
A continuous choice of orientation cannot be assigned. Topologically interesting but not embedded.
Examples are the Klein Bottle, the Kusner’s Spheres with Planar Ends and the Henneberg Surface. 
The Björling surfaces are also non-orientable. "In differential geometry, the Björling problem is 
the problem of finding a minimal surface passing through a given curve with prescribed tangent 
planes." 8 Shown is an example of a trefoil Knot without twists. The faster the spinning normal, the 
more the twists are. Its core curve is the edge of a Möbius strip with 3 half-twists. Other examples of 
Björling surfaces are: Cycloid (Catalan’s Surface),  Deltoid,  Closed Cycloids, Quatrefoil Knot, Basic 
Torus Knots, Tweaked Torus Knots, Logarithmic Helix (Breiner-Kleene Surface) and spirals such 
as Archimedean Spiral, Logarithmic Spiral and Clothoid. They are all named by their core curves.9



Fig.150 Left: k-noid surface; right: symmetrized Chen-Gackstatter

Fig.151 Singly periodic surfaces 

annular ends

spiral endsplanar ends
lying in one plane

Fig.152 Doubly periodic surfaces 

Fig.153 Triply periodic surface

annular ends

catenoidal ends

120 121

Riemann’s Surface
Half-Twisted Scherk Surface

Helicoid

Singly periodic Scherk’s Surface 

       4 Singly Periodic 
The singly periodic minimal surfaces can increase in three-dimensional world under transition in only 
one direction. They can have many different ends, e.g. planar, annular, helicoidal, periodic enneper 
ends, mixed ends.12  For example, the Riemann’s Singly Periodic Surface grows vertically and has 
only circular horizontal cross sections. Catenoid like tunnels serve as a connecting element.13 The 
Scherk’s Singly Periodic Surface was first described in 1835 by Heinrich Ferdinand Scherk and it 
looks similar to two intersecting planes. Again Catenoid like tunnels serve as a connecting element. 
The Helicoid was discovered by Jean Baptiste Meusnier in 1776; together with the plane it is the 
only one ruled minimal surface. All horizontal lines, that are apropos straight, are symmetry lines; 
the mean curvature along them is automatically zero. It can be rebuilt into catenoid.15 The last 
example is of a mixed ends Half-Twisted Scherk Surface with self-intersections happening along 
straight lines.

       3 Symmetrizations
Typical for the typology is the increased surface complexity by expanding its symmetry.10 On the left 
we see k-Noids surface. Symmetry is generated by reflections at ‘n’ vertical planes and rotations 
about horizontal lines. The number of genera is eaqual to ‘n’-1.  On the right we see another 
dislodged example of a symmetrized Chen-Gackstatter. It has two genera and similarly to Enneper 
surface there is only one edge curve. 11

symmetry axes

vertical plane

       5 Doubly Periodic 
They grow in two linearly independent directions and different ends are possible. They can be 
embedded if they have annular ends (also called Scherk ends). The first example shows the 
simplest doubly periodic surfaces with only catenoidal ends and one planar end.16 The second 
example - Scherk’s Doubly Periodic Surface- is found by Heinrich Ferdinand Scherk. It has very 
simple mathematical equation and genus of 0. 17

       6 Triply Periodic
The examples of this kind of minimal surfaces can grow in three independent directions by 
translation. Their unit cell characteristics and relative density significantly affect the structure’s 
stiffness. Logically they can be described in solids such as cubes, prisms, polyhedrons, etc. 3-13. 
The example below represents the Schwarz P surface. Hermann Amandus found it in 1867 . It is 
generated using symmetry axes and it can be inscribed in a unit cell or in a regular octahedron.18

Doubly periodic Scherk’s Surface 

Schwarz P surface



Fig.154 Costa surface

Fig.155 Costa-Wohlgemuth surface

catenoidal ends

catenoidal ends
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       7 Tori 
Tori is the plural form of tourus.  As well created by rotation, this time has an intersection in form of 
genera. The Costa surface on the next page (bottom two rows) has one catenoidal and one planar 
end and it is obviously an embedded one. Tori has two catenoidal and one planar end. It is similar 
to catenoid, but with an intersection in the middle. 19 First described by Celso José da Cost in 
1982. Other examples of Tori surfaces are Chen-Gackstatter Surface Costa-Hoffman-Karcher Tori, 
Toroidal k-Noids, Costa-Enneper, 4-Ended Tori, Torus with one Catenoid and one Enneper end, 
Torus with Two Enneper Ends, The Genus One Helicoid 20

       8 Higher genus
They are similar to the building principle of the previous two types (rotational surfaces). As their 
name suggests - higher genus - they have higher number of genera. The example surface is called 
Costa-Wohlgemuth surface, that is having two catenoidal and two planar ends and it is vertically 
symmetrical. 21
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4.3 In terms of discretization 
We have considered so far, a lot of information about smooth surfaces. There are two more 
types of discretization. One is consisting of straight lines and planar surfaces. The second class 
is composed of one smooth and one discrete parameter.

Fig.156 Discrete, semi-discrete and smooth Catenoid

α

γ

β
i

αi normal angle

βi geodesic angle

γi geodesic angle

i intersection angle

Fig.157 Behavior of a discrete node

The curves shaping the minimal surface become straight lines and its complexity is taken up by the 
nodes. We can define three node angles which are related to the three curvatures of a respective 
smooth segmentation. They are measured in relation to the node axis and its corresponding tangent 
plane. Elke Schling and Rainer Barthel and explains in the paper "Repetitive Structures" the relation 
inteh following way: 
The normal angle α is connected with the normal curvature of the discrete surface and quantifies 
the deviation of each edge from the tangent plane at the node. 
The geodesic angle β is related to the geodesic curvature of the surface and stands for the degree 
between an edge and a traversal node inside the tangent plane. 
The torsion angle γ is associated with the geodesic torsion of the surface. It measures the deviation 
of subsequent node axes within the normal plane of their connecting (straight) edge. 
The angle i measures the intersection between the edges. 
All four angles explain the behavior of a discrete node.
Discrete minimal geometries are useful in computational graphics, mesh generation, architectural 
geometry. Fabricating from sheet material and straight lines allows fast and precise work. A mesh 
vertex where the central plane of emanating beams all pass through the axis of the node is an 
optimal solution when building networks of minimal possible area.2
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       1 discrete
A single definition of discrete minimal surfaces does not exist, because every surface can be 
discretized in different ways. On the one side, each of the numerous properties of the smooth 
geometry can be discretized, on the other, the resulting subdivision theory is very rich. Extraordinary 
would be a discretization that transfers more than one of the minimal surface characteristics 
to the discrete setting. Possible representations are triangle meshes, PQ - isothermic meshes,  
s-isothemic minimal surfaces with prescribed combinatorics and conical meshes.1 

Fig.158 Discrete transformable surface; rows numbered (reference: Maleczek, et.al., 11) 3 
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Fig.159 Semi-discrete transformable surface; column numbered (reference: Maleczek, et.al., 11) 5

       2 semi-discrete
The semi-discrete minimal surfaces in Euclidean space are consisting of one smooth parameter that 
belongs to the set of real numbers ( e R , any number that can be found in the real world ) and one 
discrete parameter belonging to the set of integers {Z = -3, -2, -1, 0, 1, 2, 3}. The aforementioned 
surface could be built with strips glued together from individual developable bands.  In such a 
model one direction is discretized into individual "steps", the other is continuous and smooth. Their 
grid is consisting of lines along one axis and curves along the other. If a semi-discrete surface is 
isothermic, one advantage will be circularity. As a consequence there exists a parallel surface s 
which is inscribed to the unit sphere, which means that more relations between the entities creating 
the geometry exist.4 

In Figures 151 and 152, we see a discrete model and a semi-discrete model, respectively. The 
hinges of the first model can be rotated, allowing the height of the model to be significantly adjusted. 
The hinges in one direction are fully 3D-printed, yet remain rotatable. In the other direction, the 
hinges are 3D-printed separately and later assembled. As mentioned, all hinges can rotate. 
To model the discrete parameter of the semi-discrete model, five flat pieces are also 3D-printed. To 
reproduce the smooth parameter of the geometry, separately 3D-printed hinges are once again used.

Structural origami, technical folding, transformable design are keywords for the industrial application 
of both discrete and semi-discrete surfaces. Tailored sheets are connected together via hinges in 
order to make the geometry deployable. Interesting is the fact that "the energy stored in a surface S 
bent from an inextensible plate of area A, can be expressed in terms of the mean curvature H and 
Gaussian curvature K. Both curvatures encode information about how the surfaces reveal in space, 
what responds to stresses, shears and how particles move across the geometry.7
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Fig.160 Pieces "1","2" and "3" of the Semi-discrete transformable surface (reference: Maleczek, et.al., 11) 6 

4.4 Spanning the Platonic Solids
Here we draw a close of the typological summary of minimal surfaces and create something new. 
Similarly to the work of Buckminster Fuller, the platonic solids will serve as scaffolding for a new 
geometric formation. While doing ve.sh in summer term 2023, a minimal surface was spanned 
from six adjacent hexahedron edges. The surface was divided into 6 pieces - modules (see page 
18). In this chapter we will consider what else is possible with the regular polyhedrons. They have 
some similarities with minimal surfaces, namely they inherit internal logic, look strong and beautiful. 

The Platonic solids are named after the ancient philosopher of the Classical period 
Plato, because he wrote about them in the dialogue Timaeus c. 360 B.C. Through all the 
millenniums they are examples of timeless symmetry and elegance. The alluring simplicity 
together with the intrinsic reasoning makes the shapes easy to understand. The tetrahedron, 
hexahedron, octahedron, dodecahedron and Icosahedron have unique properties such as: 

-their symmetry: they have one face type, same edge length, equal dihedral edges, congruent 
vertex pyramids
-they have three related spheres with the same origin point, namely the circumsphere (all vertices), 
the middlesphere (edge-midpoints) and the insphere (face-midpoints)
-the face center points of each Platonic solid are the vertices of another solid. The tetrahedron is self-
dual. The cube and the octahedron are duals to each other, the icosahedron and the dodecahedron 
as well. 
-the Euler formula is true(for all polyhedra without holes). The number of vertices minus the number 
of edges plus the number of faces is always equal to 2: v(vertices) - e(edges)+ f(faces) = 2 For 
example, a dodecahedron has v=20, e=30, and f=12 => 20 - 30 + 12 = 2 
-all the vertices are surrounded by the same number of faces. 8

Fig.161 The platonic solids- perspective viuw
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       1 Tetrahedron

       2 Hexahedron

Fig.163 The platonic solids and minimal surfaces from selected boundaries.

Fig.164 The platonic solids and minimal surfaces from selected boundaries.

solid selected boundaries minimal surface

Fig.162 The platonic solids and minimal surfaces from selected boundaries.
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       5 Dodecahedron 

We see that the minimal surfaces created with an icosahedron- and a dodecahedron- boundaries 
are flatter. To choose other edges may be advantageous. It is quite interesting that minimal surfaces 
formed from octahedron can also form ab octahedron-structure with their bounding geometries. The 
ve.sh was modelled with the help of a hexahedron. The geometry formed upon the tetrahedron is 
symmetrical and all four vertices are equidistant from each other. The sides meet at each vertex 
with the same length and angle to create equal forces.
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Fig.167 The platonic solids and minimal surfaces from selected boundaries.
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Fig.165 The platonic solids and minimal surfaces from selected boundaries.

Fig.166 The platonic solids and minimal surfaces from selected boundaries.
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5    Summary and final conclusion

The intention of this work was to provide research, analysis and experimentation regarding the topic
of minimal surfaces and their potential use in the field of mobile, transformable and resource-saving
architecture.

The first part of this thesis reviews realised innovative projects that are reshaping our imagination 
of architecture in structural, functional and aesthetics point of view. The ve.sh project is also an 
explicit example of reusing resources when building. All the examples give us a perception of what 
is intended in the diploma thesis.

Next a broader definition of minimal surfaces is taken into consideration by breaking down the 
geometry into its smallest units. The interconnection between the geometries describing it, can 
create optimum structure networks when building architecture.

The mentioned properties influence the aesthetics, use and structural performance of the structure.
They also have an effect on eminent curves on these surfaces. Depending on the profiles we design
on the three types of curves, we can influence the equilibrium state and composition of the edifice.
The elastic deformation of the initial flat materials enables the creation of double curved surfaces. 
This kind of material transformation during construction may have structural advantages if we 
choose the correct materials.

We take a look on four kinds of minimal surfaces: one non-orientable, one non-embedded, one 
triply periodic and one created with boundaries of tetrahedron are researched. Finally, we chose 
one to build because of the flexibility provided by the surface modules assembled together. Firstly, 
two modules, stabilized in different ways, were constructed. After discussions with the tutors, 
computational and real-life tryouts, the designs for the bracing and for the foundation were chosen. 
The exact connections between the wood slats, the steel cables and the aluminium blinds were 
born on the construction site. Rationales for this design decision were made by observing the form 
of all building materials, remembering the theory about osculating geometries and the intention 
to smoothly follow the minimal surface as much as possible. The foundation, the bracing and the 
connections are within in the width of a built module. The intention was to make the details look 
pleasant and harmonious with the whole structure. Another important rule in realizing the modules 
was to adhere to the virtual models. By working precisely and building the parts with the exact 
dimensions, the modules fit very well together.

The hinged connection between the frames and the bracing allowed for the smooth attachment of
the modules. The variations stand stable in the courtyard of the university, but I cannot guarantee 
the same result at a windy riverbank. We can see from the photos that all modules were assembled 
together without foundations. Nevertheless, even the biggest variation stands in the planned design, 
supported by couple of stones. For me, the module represents a semidiscrete minimal surface, 
where the steel cables and the aluminium blinds, parallel to each other, represent the discrete 
parameter. The wood slats stand for the smooth parameter.

The final part of the diploma project is a brief excursus on the typologies of minimal surfaces. A 
variety of these surfaces are illustrated and analysed. They can be categorized based on their 
boundaries, the way they weave through three-dimensional space, their genera, frequency, 
crosssections, construction methods, and more. We observe a classification system that can be 
further expanded when one begins to model minimal surfaces independently—this type of geometry 
can be adapted to any boundary. Next, the Platonic solids are used as a scaffolding for generating 
new minimal surfaces. Space frame structures can be easily constructed using polyhedra that 
have been established over millennia. This is achieved by duplicating the initial solid and rotating 
it according to its inherent logic. As possibilities continue to expand, the goal of this excursus is to
offer a broader perspective on what could still be spatially realized.

For the entire diploma project more than 50 kg recycled aluminium was used (modules, angles, 
foundations, connections, etc.). That means we saved between 100 to 200kg of CO2 emissions.
For the future I would also work on the steel cable connection. Cable claps came into use due to
time constraints. They were hidden within the aluminium 'bends' for aesthetic reasons. The cables
that cross each other in the middle of one module may also be connected with each other and with 
the wood.(see fig. 125) It would be interesting to investigate new designs with the other Platonic 
solids as bounding geometry.

The presented work was possible due to the knowledge acquired during the studio sequence 'Versatile 
spaces'. In addition, the skills accumulated during this time accelerated the building process. It was 
a blissful experience to build our knowledge regarding minimal surfaces in architecture gradually. 
A similar comparison for this experience would be the process of stabilizing the modules. The 
crumbled, vapid aluminium frames with an edge length of 2.2m were reshaped into the planned 
geometry by adding the bracing.
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