

Diplomarbeit

Auslegung und Konstruktion einer einachsig nachgeführten Photovoltaik Anlage

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Diplom-Ingenieurs (Dipl. - Ing.), eingereicht an der TU Wien, Fakultät für Maschinenwesen und Betriebswissenschaften, von

Mathias Klotz

Mat.Nr. : 1019875 Oberlängenfeld 13, 6444 Längenfeld, Österreich

unter der Leitung von A.o. Univ.Prof. Dipl.-Ing. Dr.techn. Manfred Grafinger Institut für Konstruktionswissenschaften und Produktentwicklung

Dipl. - Ing. Dr.techn. Rainer Riegler Institut für Konstruktionswissenschaften und Produktentwicklung

Wien, September 2024

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass die vorliegende Arbeit nach den anerkannten Grundsätzen für wissenschaftliche Abhandlungen von mir selbstständig erstellt wurde. Alle verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur, sind in dieser Arbeit genannt und aufgelistet. Die aus den Quellen wörtlich entnommenen Stellen, sind als solche kenntlich gemacht. Das Thema dieser Arbeit wurde von mir bisher weder im In- noch Ausland einer Beurteilerin / einem Beurteiler zur Begutachtung in irgendeiner Form als Prüfungsarbeit vorgelegt. Diese Arbeit stimmt mit der von den Begutachterinnen / Begutachtern beurteilten Arbeit überein.

Wien, September 2024

Mathias Klotz, BSc

Danksagung

Diese Diplomarbeit entstand in Kooperation mit dem Institut für Konstruktionswissenschaften und Produktentwicklung an der Technischen Universität Wien und der Klotz Engineering GmbH.

Mein besonderer Dank gilt Herrn A.o. Univ.Prof. Dipl. - Ing. Dr.techn. Manfred Grafinger und insbesondere Herrn Dipl. - Ing. Dr.techn. Rainer Riegler für die Themenstellung sowie für die hervorragende Betreuung während des gesamten Arbeitsprozesses. Dessen stets offenes Ohr für Fragestellungen jeglicher Art sowie wertvolle Anregungen und Ideen während einer Vielzahl von Diskussionen, maßgebend zum Gelingen der Diplomarbeit beigetragen hat.

Ein großer Dank gebührt natürlich meinen Freunden und geschätzten Studienmittstreitern, Marlene Riedler, Karin Franzmayr, Mario Steiner, Philipp Gmeiner, Leonhard Gruber, Ferdinand Berger und Gerald Gehmayer, welche die letzten Jahre nicht nur zu einer fachlich interessanten, sondern auch zu einer kollegial großartigen und unvergesslichen Zeit machten.

Im privaten Rahmen möchte ich mich bei meiner Familie und speziell bei meinen Eltern Ulrike und Marcel bedanken, die mich jederzeit unterstützt und ermutigt haben durchzuhalten.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit der Auslegung und Konstruktion einer einachsig nachgeführten Photovoltaik - Anlage mit anschließender Installation der Pilotanlage in A-6444 Längenfeld. Dabei war das vorrangige Ziel herauszufinden, wie sich einachsig nachgeführte Photovoltaik - Anlagen im Alpenraum verhalten, welche Ertragssteigerungen sich durch eine einachsige Nachführung gegenüber einer stationären Photovoltaik - Anlagen erzielen lassen und ob sich einaschsig nachgeführte Photovoltaik - Anlagen wirtschaftlich im Alpenraum betreiben lassen.

Ein Nutzungskonzept in Bezug auf das Verhalten der Photovoltaik-Anlage bei verschiedenen Ereignissen wie Wind und Schnee wurde erarbeitet. Für die statische Auslegung der einachsig nachgeführte Photovoltaik-Anlage wurden unterschiedliche Lastannahmen wie Wind, Schnee sowie eine Kombination aus beiden Lastfällen angenommen. Für die Berechnung der Schneelasten wurde ein 50-jährliches Ereignis für den Standort Längenfeld herangezogen. Die Auslegung auf Wind wurde mit einer Windgeschwindigkeit von 60 km/h (Vorstufe stürmischer Wind) angenommen und basiert auf dem Nutzungskonzept der Photovoltaik-Anlage.

Anschließend an die Berechnung und Konstruktion der Photovoltaik-Anlage wurden die einzelnen Komponenten wie Antrieb, Lagerungen, Photovoltaikmodule, Wechselrichter und Stahlbau anhand der festgelegten Kriterien bestimmt. Am Schluss wurden die unterschiedlichen Modellansätze miteinander verglichen und ausgewertet. Als Erstes wurde ein Leistungsvergleich der unterschiedlichen Ausrichtungen, Nord/Süd, Ost/West und stationär montierte Photovoltaik-Anlage, an den Standorten Längenfeld, Österreich und Calama, Atacamawüste durchgeführt. Im nächsten Schritt wurde eine Wirtschaftlichkeitsberechnung anhand der Kapitalwertmethode der Nord/Süd und Ost/West Ausrichtung an beiden Standorten durchgeführt. Ein Wirtschaftlickeitsvergleich mit stationär montierten Photovoltaik-Anlagen wurde nicht erstellt, da sich die Herstellungskosten einer solchen Anlage deutlich von einer einachsig nachgeführten Photovoltaik-Anlagen unterscheiden.

Abstract

This thesis deals with the design and construction of a single-axis tracking photovoltaic system with subsequent installation of the pilot system in A-6444 Längenfeld. The primary objective is to find out how single-axis tracked photovoltaic systems behave in the Alpine region, what yield increases can be achieved by single-axis tracking compared to rigid photovoltaic systems and whether single-axis tracked photovoltaic systems can be operated economically in the Alpine region.

A utilization concept was developed with regard to the behaviour of the photovoltaic system under various events such as wind and snow. Different load assumptions such as wind, snow and a combination of both load cases are assumed for the static design of the single-axis tracking photovoltaic system. A 50-year event for the Längenfeld site is used to calculate the snow loads. The design for wind was assumed with a windspeed of 60 km/h (preliminary stage of stormy wind) and is based on the utilization concept of the photovoltaic-system.

Following the calculation and design of the system, the individual components such as drive, bearings, photovoltaic modules, inverters and steel construction are evaluated and determined on the basis of the defined criteria. Finally, the different model approaches are compared and evaluated. The first step was to compare the performance of the different orientations, north/south, east/west and fixed installation at the Längenfeld and Calama, Atacama Desert sites. Next, an economic efficiency calculation was carried out using the net present value method for north/south and east/west orientation at both locations. An economic efficiency comparison with the fixed-mounted systems was not carried out, as the manufacturing costs of such a system differ significantly from a single-axis tracking system.

Inhaltsverzeichnis

In	halts	sverzei	chnis		\mathbf{V}
A	bbild	ungsv	erzeichnis	٦	VII
Ta	abelle	enverz	eichnis	V	III
A	bkür	zungsv	verzeichnis		X
Fo	orme	lverzei	chnis	Х	IV
1	Ein	leitung			1
	1.1	Ausga	ngslage		1
	1.2	Proble	emstellung und Zielsetzung		2
	1.3	Gesch	ichte der Photovoltaik		2
	1.4	Theor	etische Grundlagen Sonne und Sonnenstrahlung		4
		1.4.1	Die Sonne		4
		1.4.2	Sonnenstrahlung		4
		1.4.3	Albedo (ALB)		6
		1.4.4	Sonnenintensität		7
	15	Besta	ndteile einer einachsig nachgeführten PV - Anlage mit Direkteinspei	· · sung	. 8
	1.0	151	PV - Module	Jung	8
		1.0.1	Wechselrichter		9
		1.5.3	Lagerung	•••	9
		154	Tracking		10
		155	Unterkonstruktion / Stahlbau		11
	16	Nachø	reführte Photovoltaiksysteme		11
	1.0	161	Finachsige Nachführung		12
		1.6.2	Zweiachsige Nachführung	•••	13
		1.0.2		• •	10
2	Met	thodik			14
	2.1	Laster	annahmen		15
		2.1.1	Einwirkung - Wind		15
		2.1.2	Einwirkung - Schnee		17
		2.1.3	Einwirkung - Kombinationen		17
	2.2	Komp	onenten der PV-Anlage		19
		2.2.1	Antrieb (einachsige Nachführung)		19
		2.2.2	Tracking Unit		20
		2.2.3	Lagerung		21
		2.2.4	Kriterien für die Auswahl bifazialer PV-Module		21

		2.2.5 Wechselrichter	22
	2.3	Auslegung Stahlbau und Fundament	22
		2.3.1 RSTAB - Modell	23
		2.3.2 Anschlüsse und Verbindungen	25
		2.3.3 Inventor - Modell	27
		2.3.4 Fundament \ldots	27
	2.4	Finanzierung	30
		2.4.1 Investition \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots	31
		2.4.2 Wirtschaftlichkeitsvergleich	34
	2.5	Vergleich stationäre und einachsig nachgeführte PV - Anlagen	35
	2.6	Bau der Pilotanlage	36
0	ъ		•••
3	Res	UITATE UND DISKUSSION	38
	3.1	PV-Anlage	39
	3.2	Stahlbau und Fundamente	45
	3.3	Finanzierung	51
	3.4	Leistungsvergleich PV - Anlage Otztal - Atacama	55
	3.5	Bau der Pilotanlage	56
4	Zus	ammenfassung	60
5	Aus	blick	61
Li	terat	ur (62
Ar	nhan	g	X
\mathbf{A}	Erg	änzungen	\mathbf{X}
	A.1	PV-Pilotanlage Ötztal	Х
	A.2	Einwirkungen	VI
	A.3	RSTABXX	ίV
	A.4	Schraubverbindung	VI
	A.5	Schweißnähte	Ш
	A.6	Nachweis Mikropfähle	VI
	A 77	Na abarraia Even dour ou to	ZT
	Α.(Nachweis Fundamente	Γ

Abbildungsverzeichnis

Abb. 1: Marktentwicklung Photovoltaik Österreich	2
Abb. 2: Elektromagnetische Strahlungsspektrum	5
Abb. 3: Globalstrahlung	6
Abb. 4: Strahlungsarten	6
Abb. 5: Sonnenstand	8
Abb. 6: Arbeitsablauf passiver Tracking Systeme	10
Abb. 7: Einachsige und geneigte Nachführung eines PV-Systems	13
Abb. 8: Zweiachsige Nachführung eines PV-Systems	13
Abb. 9: Projektübersicht	14
Abb. 10:Lasteinwirkungen auf die PV-Anlage	18
Abb. 11:Übersicht Stützenfundament	30
Abb. 12: Finanzierungsinstrumente	31
Abb. 13:Investitionsrechnung	32
Abb. 14:PV - Anlage Ötztal	38
Abb. 15:Nutzungskonzept der PV-Module	40
Abb. 16: Auswahl Lagerung	42
Abb. 17: Auswahl bifarziales PV - Modul	43
Abb. 18:Wechselrichterpreise, Nennwirkleistung und Nennscheinleistung	44
Abb. 19:RSTAB Modelle	45
Abb. 20:RSTAB Verformunganalyse	47
Abb. 21:Schraubverbindung	48
Abb. 22:Bewehrung Fundament	50
Abb. 23:Barwertermittlung Ötztal und Atacamawüste 70% Eigenverbrauch $~$	53
Abb. 24:Barwertermittlung Ötztal und Atacamawüste Volleinspeisung	54
Abb. 25:Bau der Fundamente	57
Abb. 26: Aushub und Einbau der Fundamente	58
Abb. 27:Fertig gestellte PV - Anlage	59
Abb. 28:3D Modell der PV-Pilotanlage im Ötztal	Х
Abb. 29:Gesamtzusammenbau PV - Anlage.	XI
Abb. 30:Zusammenbau Mitte PV - Anlage	XII
Abb. 31:Zusammenbau Oberbau PV-Anlage	XIII
Abb. 32:Zusammenbau Seite PV-Anlage	XIV
Abb. 33:Stückliste PV - Anlage	XV
Abb. 34:Übersicht Einwirkung Wind und Schnee	XVI
Abb. 35:Geometrie PV-Anlage	VII
Abb. 36:Einwirkung Wind	VIII
Abb. 37:Einwirkung Wind	XIX

Abb. 38:Einwirkung Wind	XX
Abb. 39:Einwirkung Wind	XXI
Abb. 40:Einwirkung / Nachweis Moment auf Antrieb	XXII
Abb. 41:Einwirkung Schneelast	XXIII
Abb. 42:Einwirkung Wind und Schnee	XXIV
Abb. 43:Bemessungsübersicht RSTAB Schneeeinwirkung	XXV
Abb. 44:Nachweis Schubspannnung Schraube Gruppe A	XXVI
Abb. 45:Nachweis Lochleibung im Blech Gruppe A	XXVII
Abb. 46:Nachweis Zugbeanspruchung des Restquerschnittes Gruppe	A XXVIII
Abb. 47:Nachweis Schubspannnung Schraube Gruppe B	XXIX
Abb. 48:Nachweis Lochleibung im Blech Gruppe B	XXX
Abb. 49:Nachweis Zugbeanspruchung des Restquerschnittes Gruppe	B XXXI
Abb. 50:Schweißnaht Grundplatte	XXXII
Abb. 51:cChweißnaht Grundplatte	XXXIII
Abb. 52:Schweißnaht Antrieb	XXXIV
Abb. 53:Schweißnaht Antrieb	XXXV
Abb. 54:Nachweis Mikropfahl Schneelast	XXXVI
Abb. 55:Nachweis Mikropfahl Schneelast	XXXVII
Abb. 56:Nachweis Mikropfahl Windlast	XXXVIII
Abb. 57:Nachweis Mikropfahl Windlast	XXXIX
Abb. 58:Nachweis Mindestbewehrung	XL
Abb. 59:Nachweis Fundament: Kippsicherheit	XLI
Abb. 60:Nachweis Fundament: Lagesicherheit	XLII
Abb. 61:Nachweis Fundament: Lagesicherheit	XLIII
Abb. 62:Nachweis Fundament: Grundbruch	XLIV
Abb. 63:Nachweis Fundament: Durchstanzen	
Abb. 64: Auswertung PVsyst Nord / Süd Längenfeld	XLVI
Abb. 65: Auswertung PVsyst Ost / West Längenfeld	XLVII
Abb. 66: Auswertung PVsyst stationär in Längenfeld	XLVIII
Abb. 67: Auswertung PV syst $\operatorname{Nord}/\operatorname{Süd}$ Atacama $\ .$ $\ .$ $\ .$ 	XLIX
Abb. 68: Auswertung PV syst $\operatorname{Ost}/\operatorname{West}$ Atacama $\ .$	L
Abb. 69: Auswertung PVsyst stationär in der Atacama	LI
Abb. 70:Randbedingungen Wirtschaftlichkeitsvergleich $\ .\ .\ .\ .$	LII
Abb. 71:Barwertermittlung 70 % Eigenv. Tirol $\operatorname{Ost}/\operatorname{West}$	LIII
Abb. 72:Barwertermittlung 70 % Eigenv. Tirol $\operatorname{Nord}/\operatorname{Süd}$	LIII
Abb. 73:Barwertermittlung 70 % Eigenv. Atacama $\operatorname{Ost}/\operatorname{West}$	LIV
Abb. 74:Barwertermittlung 70 % Eigenv. Atacama $\operatorname{Nord}/\operatorname{Süd}~$	LIV
Abb. 75:Barwertermittlung Volleinspeisung Tirol Ost / West $\ .\ .\ .$	LV
Abb. 76:Barwertermittlung Volleinspeisung Tirol Nord / Süd	LV

Abb. 77:Barwertermittlung Volleinspeisung Atacama $\operatorname{Ost}/\operatorname{West}$	LVI
Abb. 78:Barwertermittlung Volleinspeisung Atacama $\operatorname{Nord}/\operatorname{Süd}$	LVI

Tabellenverzeichnis

Tab. 1: Eigenschaften Sonnne und Erde4
Tab. 2: Albedowerte 7
Tab. 3: Randbedingungen Amortisation 35
Tab. 4: Geometrie und Gewicht PV-Anlage 39
Tab. 5: Auswahl Antrieb 40
Tab. 6: Einwirkung auf die PV-Anlage RSTAB Modelle 45
Tab. 7: Übersicht Stahlbaunachweise 47
Tab. 8: Übersicht Spannungsnachweis Stahlbau
Tab. 9: Resultat Schraubverbindung
Tab. 10:Resultat Anschluss durch Mikropfähle 49
Tab. 11: Übersicht Fundamentsbemessung $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 51$
Tab. 12: Übersicht Investitionskosten \ldots
Tab. 13:Angewandte Randbedingungen Ermittlung Barwert 52
Tab. 14:Eingangsparameter PV - Anlage Simulation PVsyst
Tab. 15:Leistungsvergleich Ötztal PV - Anlage 55
Tab. 16:Leistungsvergleich Atacamawüste PV-Anlage 56

Abkürzungsverzeichnis

Einheiten:

С	Celsius	
\mathbf{cm}^2	Quadratzentimeter	
€	Euro	
GW	Gigawatt	
GWh	Gigawattstunden	
Κ	Kelvin	
kg	Kilogramm	
\mathbf{km}^2	Quadratkilometer	
kN	Kilonewton	
kNm	Kilonewtonmeter	
kWp	Kilowattpeak	
kVA	Kilovoltamper	
\mathbf{m}^2	Quadratmeter	
m^3	Kubikmeter	
mm	Milimeter	
$\mathbf{M}\mathbf{W}$	Megawatt	
MWp	Megawattpeak	
Ν	Newton	
nm	Nanometer	
То	Tonnen	
W	Watt	
Abkürzungen:		

Abb.	Abbildung
Anh.	Anhang
ALB	Albedo
ASCE 7-16	American Society of Civil Engineers
\mathbf{CO}_2	Kohlenstoffdioxid
\mathbf{CF}	Cashflow
DHI	Diffuse Horizontal Irradiance
DNI	Direct Normal Irradiance
\mathbf{EC}	Eurocode
GHI	Global Horizontal Irradiance

Gl.	Gleichung		
GPS	Global Positioning System		
HORA	Hazard Overview and Risk assessment Austria		
IR-Licht	Infrarote Licht		
Kap.	Kapitel		
LDR	Light Dependent Resistor		
MPP	Maximum Power Point		
m.ü.M	Meter über Meer		
NCU	Network Control Unit		
\mathbf{PV}	Photovoltaik		
PVC Polyvinylchlorid			
QK	Querschnittsklasse		
RSTAB	Räumliches Stabwerk		
\mathbf{RSU}	Remote Sensor Unit		
SLS	Grenzzustand der Gebrauchstauglichkeit		
STC	Standard Test Conditions		
TBO	Tiroler Bauordnung		
TCU	Tracker Control Unit		
THG	Treibhausgasemissionen		
\mathbf{TMI}	Three Mile Island		
ULS Grenzzustand der Tragfähigkeit			
UTC Universal Time Coordinated			
UV-Licht	Ultraviolettes Licht		
z.B.	Zum Beispiel		

Formelverzeichnis

Griechische Buchstaben:

α	0	Maximaler Neigungswinkel PV-Module
$lpha_w$	mm	Schweißnahtdicke
β_w	_	Korrelationsbeiwert
γ_Q	_	Teilsicherheitsbeiwert
γ_M	_	Teilsicherheitsbeiwert
γ_{M0}	_	Teilsicherheitsbeiwert
γ_{M2}	_	Teilsicherheitsbeiwert
θ_{Zenit}	0	Zenitwinkel
μ_i	_	Schnee Formbeiwert
ρ	$\frac{\mathrm{kg}}{\mathrm{m}^3}$	Luftdichte
$\sigma_{bauteil}$	$\frac{N}{mm^2}$	Spannung Bauteil
σ_{druck}	$\frac{N}{mm^2}$	Druckbeanspruchung
$\sigma_{d;V}$	$\frac{N}{mm^2}$	Vergleichsspannung
σ_{Ed}	$\frac{N}{mm^2}$	Wirkende Spannung
$\sigma_{L;i}$	$\frac{N}{mm^2}$	Lochleibungsspannung
σ_{Rd}	$\frac{N}{mm^2}$	Zulässige Spannung Beton
$\sigma_{schraube}$	$\frac{N}{mm^2}$	Spannung Schraube
$\sigma_{x;Ed}$	$\frac{N}{mm^2}$	Einwirkende Normalspannung in Längsrichtung
σ_{zul}	$\frac{N}{mm^2}$	Zulässige Schubspannung
σ_{zul}	$\frac{N}{mm^2}$	Zulässige Spannung
$\sigma_{Z;i}$	$\frac{N}{mm^2}$	Zugbeanspruchung
$ au_{schub}$	$\frac{N}{mm^2}$	Schubbeanspruchung
$ au_{zul}$	$\frac{N}{mm^2}$	Zulässige Lochleibungsspannung
$ au_{zul}$	$\frac{N}{mm^2}$	Zulässige Zugspannung
φ	0	Phasenverschiebung
χ_{LT}	_	Abminderungsbeiwert Biegeknicken
χ_y	_	Abminderungsbeiwert Biegedrillknicken
χ_z	_	Abminderungsbeiwert Biegedrillknicken
\sum	m^2	Summe Oberfläche
\overline{Ofl} .		

Lateinische Buchstaben:

A	mm^2	Schraubenquerschnitt
A_0	€	Anschaffungszahlung im Zeitpunkt $t=0$

a_1	m	Abstand
A_{Gewi}	mm^2	Querschnittsfläche GEWI
A_{ref}	m^2	Bezugsfläche
$A_{s;min}$	cm^2	Mindestbewehrung
$a_{s;min}$	$\frac{\mathrm{cm}^2}{\mathrm{m}}$	Mindestbewehrung pro Meter
$A_{vorhanden}$	cm^2	Gewählte Bewehrung
$a_{vorhanden}$	$\frac{\mathrm{cm}^2}{\mathrm{m}}$	Gewählte Bewehrung pro Meter
b	mm	Breite Blech
b	m	Breite Fundament
b_1	m	Abstand
C_0	€	Kapitalwert der Investition
c_{dir}	_	Richtungsbeiwert
C_e	_	Umgebungskoeffizient
c_f	_	Aerodynamischer Beiwert
c_{fr}	_	Reibungsbeiwert
c_{season}	_	Jahreszeitenbeiwert
$c_s c_d$	_	Strukturbeiwert
C_t	_	Temperaturkoeffizient
d	mm	Schraubenschaft
d_{loch}	mm	Lochdurchmesser
e_y	m	Lastausmitte in y-Richtung
e_{zul}	m	Zulässige Lastausmitte
F	kN	Wirkende Kraft
f_{ctm}	$\frac{N}{mm^2}$	Zugfestigkeit Beton
f_{dehn}	$\frac{N}{mm^2}$	${\rm Dehngrenze}/{\rm Fließgrenze}~{\rm GEWI28mm}$
$F_{G;kN}$	kN	Eigengewicht der PV-Module und I-Träger
F_{fr}	kN	Windreibungskraft
f_s	_	Abminderungsfaktor
F_s	kN	Schneelast
f_u	$\frac{N}{mm^2}$	Zugfestigkeit schwächeren Bauteils
F_w	kN	Gesamtwindkraft
$F_{w;e}$	kN	Windkraft aus Außendruck
$F_{w;Ed}$	$\frac{\mathrm{kN}}{\mathrm{m}}$	Bemessungswert Kehlnaht Einwirkung
$F_{w;i}$	kN	Windkraft aus Innendruck
$F_{w;Rd}$	$\frac{\mathrm{kN}}{\mathrm{m}}$	Bemessungswert Tragfähigkeit Kehlnaht

F_y	kN	Einwirkung in y-Richtung
f_{yk}	$\frac{N}{mm^2}$	Streckgrenze Bewehrungsstahl
f_y	$\frac{N}{mm^2}$	Streckgrenze
f_{zug}	$\frac{N}{mm^2}$	${\rm Zugfestigkeit~GEWI28mm}$
F_z	kN	Einwirkung in z-Richtung
h	mm	Höhe Blech
h	m	Höhe Fundament
h_s	0	Sonnenwinkel
i	%	Zinssatz
i_{calc}	%	Kalkulationszinssatz
K_0	€	Anfangskapital
K_n	€	Endwert
k_{yy}	_	Interaktionsfaktoren
k_{yz}	_	Interaktionsfaktoren
k_{zy}	_	Interaktionsfaktoren
k_{zz}	_	Interaktionsfaktoren
L_n	€	Liquidationserlös
l_w	mm	Schweißnahtlänge
$M_{c,Rd}$	kNm	Momententragfähigkeit bei Berücksichtigung von Löchern
$M_{dst;i}$	kNm	Destabilisierendes Moment
M_{Ed}	kNm	Moment
M_{max}	kNm	Maximales aufnahme Moment des Antriebs
$M_{N;Rd}$	kNm	Momententragfähigkeit abgemindert infolge N_{Ed}
$m_{schraube}$	_	Anzahl Schnittflächen
$M_{stb;i}$	kNm	Stabilisierendes Moment
$M_{y,Ed}$	kNm	Moment in y-Richtung
$M_{y,Ed}$	kNm	Moment in y-Richtung
$\Delta M_{y,Ed}$	kNm	Moment aus Verschiebung der $QK4$
$\Delta M_{z,Ed}$	kNm	Moment aus Verschiebung der $QK4$
n	Jahre	Zinsperiode
$N_{c,Rd}$	kN	Normalkrafttragfähigkeit bei Druck
N_{Ed}	kN	Normalkraft
n_{naht}	_	Anzahl Schweißnähte
$n_{schraube}$	_	Anzahl Schrauben
$N_{senk;Ed}$	$\frac{kN}{m}$	Schnittgröße pro Längeneinheit

n_t	Jahre	Nutzungsdauer des Investitionsobjekts
q	_	Zinsfaktor
q_b	$\frac{kN}{m^2}$	Basiswindgeschwindigkeitsdruck
q_{fr}	$\frac{kN}{m^2}$	Windreibungsdruck
q_p	$\frac{kN}{m^2}$	${\it B\"oengeschwindigkeitsdruck}\ ({\it Spitzengeschwindigkeitsdruck})$
q_w	$\frac{kN}{m^2}$	Gesamtwinddruck
R_d	kN	Grundbruchwiderstand
s	$\frac{kN}{m^2}$	Schneelast
s_k	$\frac{kN}{m^2}$	Charakteristische Schneelast
t	Jahre	Zeitindex
t_i	mm	Blechstärke
v_b	$\frac{\mathrm{m}}{\mathrm{s}}$	Basiswindgeschwindigkeit
$v_{b;o}$	$\frac{\mathrm{m}}{\mathrm{s}}$	Grundwert der Basiswindgeschwindigkeit
$V_{c,Rd}$	kN	einwirkenden Querkrafttragfähigkeit
V_d	kN	Grundbrucheinwirkung
V_{Ed}	kN	Querkraft
v_p	$\frac{\mathrm{m}}{\mathrm{s}}$	Spitzengeschwindigkeit
$V_{parallel;Ed}$	$\frac{kN}{m}$	Schnittgröße pro Längeneinheit
$V_{senk;Ed}$	$\frac{kN}{m}$	Schnittgröße pro Längeneinheit
V_y	kN	Querkraft in y-Richtung
V_z	kN	Querkraft in z-Richtung
w_e	$\frac{kN}{m^2}$	Außenwinddruck
w_i	$\frac{kN}{m^2}$	Innenwinddruck
z_{zins}	%	Zinsen
Z_t	€	Differenz zwischen Ein- und Auszahlung der Periode \boldsymbol{t}

1. Einleitung

Im ersten Teil dieser Diplomarbeit wird auf die Ausgangslage, Problemstellung und Zielsetzung eingegangen. Des Weiteren werden die theoretischen Grundlagen und Eigenschaften der Sonne sowie die Komponenten einer einachsig nachgeführten PV-Anlage erörtert.

1.1. Ausgangslage

Das allgemeine Ziel der Erreichung von Netto-Null-Emissionen bis 2050 ist im Green Deal und im europäischen Klimagesetz gesetzlich festgelegt. Im Jahr 2021 legte die Europäische-Kommission mit der Gesetzesvorlage "Fit for 55" ein Paket vor, mit dem eine Reihe bestehender rechtlicher Grundlagen an das höhere Emissionsreduktionsziel von netto 55% im Vergleich zum Jahr 1990 angepasst werden soll. Im Regierungsübereinkommen von 2020 bis 2024 hat sich die österreichische Bundesregierung zum Ziel gesetzt, die Klimaneutralität bereits ab 2040 zu erreichen. Das bedeutet, dass der Abbau der österreichweiten Treibhausgasemissionen (THG) durch Kohlenstoffsenken nach der nationalen THG - Inventur bis spätestens 2040 vollständig ausgeglichen sein wird. Als Kohlenstoffsenke bezeichnet man den Geowissenschaften ein natürliches Reservoir, das in geologischen Zeitmaßstäben betrachtet, vorübergehend mehr Kohlenstoff aufnimmt und speichert, als es abgibt. Um dies zu erreichen, müssen in allen Bereichen weitreichende Maßnahmen ergriffen werden, welche die THG auf Netto-Null reduzieren [1]. Ein möglicher Schritt um die ambitionierten Ziele der Bundesregierung zu erreichen, ist unter anderem, in die Errichtung von Erneuerbare-Energien-Anlagen wie zum Beispiel Photovoltaik (PV) zu investieren.

Der österreichische PV - Markt erlebte seinen ersten großen Aufschwung mit dem Inkrafttreten des Ökostromgesetztes im Jahr 2003. Bereits im Jahr 2004 kam es jedoch durch die Deckelung der Tarifförderung wieder zu einem beträchtlichen Einbruch. Nach einem ersten Rekordzuwachs im Jahr 2013, der durch eine Förderanomalie verursacht wurde, schwankte der PV - Markt zwischen 2014 und 2018 bei jährlichen Zubauraten zwischen 150 und 190 MWp. Im Jahr 2021 konnte mit 739,7 MWp ein deutlicher Zuwachs erzielt werden, der im Jahr 2022 wieder übertroffen wurde. Abbildung 1 zeigt, dass im Jahr 2022 eine Neuinstallation von PV - Anlagen mit einer Gesamtleistung von 1.009,1 MWp erfolgte. Dies entspricht einem Anstieg um etwa 36,4 % im Vergleich zum Vorjahr. Bis Ende 2022 gab es in Österreich also PV - Anlagen mit einer Gesamtleistung von insgesamt 3.791,7 MWp. Im Jahr 2022 führten die in Österreich betriebenen Solarstromanlagen zu einer Stromerzeugung von mindestens 3.791,7 GWh, was zu einer Reduzierung der Kohlenstoffdioxid (CO₂) - Emissionen um 1.382.076 Tonnen (To) führte [2].

In Chile hat sich im Zeitraum 2015–2021 die installierte Solarstromkapazität um 456 % (3.892 MW) erhöht. Zur Zeit macht Solarenergie 25 % (4.468 MW) der gesamten installierten erneuerbaren Energiekapazität aus. Auf Photovoltaik entfallen 97 % der gesamten

installierten Solarstromleistung (4.360 MW). Es wird erwartet, dass Photovoltaik bis 2030 30% der Energieversorgung in Chile abdecken wird. Im Nordosten des Landes befindet sich die Atacamawüste. Sie erstreckt sich über eine Fläche von 105.000 km² und umfasst den Großteil der Region Antofagasta sowie den nördlichen Teil der Region Atacama. Einer der wenigen Orte der Welt, mit einer jährlichen Einstrahlung von über 2.500 kWh/m² [3].

Abbildung 1 Marktentwicklung (kumulierte Leistung (blau) und jährlich installiert (orange)) Photovoltaik in Österreich bis 2022 [2].

1.2. Problemstellung und Zielsetzung

Das Hauptziel der vorliegenden Arbeit ist die Auslegung und Konstruktion einer einachsig nachgeführten PV - Anlage im Ötztal (Österreich). Anschließend an die Auslegung und Konstruktion erfolgte die Kosten - und Investitionsrechnung der Pilotanalge. In einem weiteren Schritt wird ein Vergleich der Leistung der Pilotanalge mit unterschiedlichen Ausrichtungen Nord / Süd, Ost / West im Ötztal und in Calama (Atacamawüste) durchgeführt. Um die Leistungen der einachsig nachgeführten Pilotanlage besser zu verdeutlichen, wurden zusätzliche Simulationen mit einer stationären Analge an beiden Standorten mit unterschiedlichen Ausrichtungen durchgeführt. Abschließend wird die Pilotanlage in Unterried 39, A - 6444 Längenfeld aufgebaut und in Betrieb genommen.

1.3. Geschichte der Photovoltaik

Bereits im Jahr 1839 entdeckte der französische Wissenschaftler Alexandre Edmond Becquerel den photoelektrischen Effekt. Alexandre Edmond Becquerel war der Vater von Antoine Henri Becquerel, nach dem die Einheit der Aktivität von radioaktiven Stoffen benannt ist. Bei einem seiner Experimente steckte er zwei beschichtete Platinelektroden in einen Behälter mit einem Elektrolyten und bestimmte den zwischen den Elektroden fließenden Strom. Dabei konnte er feststellen, dass sich bei unterschiedlicher Lichtbestrahlung die Stromstärke ändert. Dabei treten Elektronen unter Lichteinfall aus einem Festkörper aus, dies wird auch als äußerer Photoeffekt bezeichnet.

Der britischen Ingenieur Willoughby Smith und sein Assistent Joseph May stellten 1873 fest, dass der Halbleiter Selen durch Bestrahlung seinen Widerstand ändert. Sie waren somit die Ersten die den für die PV so wichtigen inneren Photoeffekt beobachten konnten. Beim inneren Photoeffekt werden Elektronen im Halbleiter aus ihren Bindungen gerissen und stehen somit als freie Ladungsträger im Festkörper zur Verfügung. 1876 fanden die beiden Forscher William Adams und Richard Day heraus, dass ein mit Platinelektroden versehener Selenstab elektrische Energie produzieren kann, wenn man ihn dem Licht aussetzt. Somit wurde zum Ersten mal bewiesen, dass ein Festkörper Lichtenergie direkt in elektrische Energie umwandeln kann. Sieben Jahre später baute der New Yorker Wissenschaftler Charles Fritts ein Modul aus Selenzellen mit einer Fläche von circa 30 cm^2 . Dabei beschichtete er die Selenzellen mit einer sehr dünnen Elektrode aus Gold. Der Wirkungsgrad betrug damals schon knapp 1%.

In den darauf folgenden Jahren wurden die physikalischen Hintergründe des Photoeffekts immer besser erforscht. Einen bemerkenswerten Anteil daran hatte Albert Einstein (1879– 1955), der 1905 seine Lichtquantentheorie vorstellte und dafür 16 Jahre später den Physik Nobelpreis erhielt.

Der amerikanische Nobelpreisträger William B. Shockley präsentierte 1950 eine Erklärung für die Funktionsweise des "pn" - Übergangs und legte somit den Grundsatz für die heute verwendeten Solarzellen. Mit Hilfe dieses Wissens konnten 1954 Daryl Chapin, Calvin Fuller und Gerald Pearson die ersten Silizium-Solarzellen mit einem Wirkungsgrad von bis zu 6% herstellen. In den darauffolgenden Jahren konnte der Wirkungsgrad bis auf 10% gesteigert werden. Damals lag der Preis pro Watt bei mehr als dem 1000-Fachen des heutigen Preises, was dazu führte, dass diese PV-Module nur in Sonderanwendungen wie zum Beispiel der Raumfahrt in Frage kamen. Im März 1958 startete erstmals ein Satellit (Vanguard I) mit Solarzellen an Board in die Umlaufbahn. Dieser Satellit wurde mit zwei Sendern ausgestattet, ein Sender wurde mit Quecksilberbatterien und ein weiterer Sender mit sechs Solarzellen betrieben. Ersterer stellte bereits nach 20 Tagen den Betrieb ein, der zweite Sender arbeitete bis ins Jahr 1964. Dieser enorme Erfolg führte dazu, dass sich die PV als Energiequelle für Satelliten durchsetzen konnte und somit von der Raumfahrt vorangetrieben wurde.

In den 1970er - Jahren wurde damit begonnen, die PV zur Versorgung entlegener technischen Einrichtungen wie zum Beispiel Sendeanlagen, Signalsysteme oder auch in alpinen Hütten einzusetzen. Zudem fanden erneuerbare Energieformen während der Ölkrise in den 1970er - Jahren vermehrt Zuspruch. Durch den Störfall im Atomkraftwerk Harrisburg Three Mile Island (TMI) im März 1979 bei dem es zu einer Kernschmelze kam und vor allem die Reaktorkatastrophe im April 1986 in Tschernobyl, wurden die Regierungen unter Druck gesetzt neue Lösungen in der Energieversorgung anzustreben. Vor allem Länder wie die USA, Japan und Deutschland investierten in den späten 1980er-Jahren viel in Forschungsprogramme [4].

1.4. Theoretische Grundlagen Sonne und Sonnenstrahlung

Alles Leben auf der Erde basiert auf der Sonnenstrahlung. Ebenso basiert die Nutzung der PV auf dem Vorhandensein von Sonnenlicht. Daher lohnt es sich, einen genaueren Blick auf die Eigenschaften, wie Strahlungsangebot, Strahlungsarten und Strahlungsintensität, zu werfen.

1.4.1. Die Sonne

Die Energie der Sonne entsteht durch einen mehrstufigen Fusionsprozess. Wasserstoffkerne, die im Kern der Sonne als Plasma vorliegen, werden durch den enormen Druck und die Gravitation in der Sonne von Wasserstoff zu Helium. Schätzungen zufolge beträgt das Alter der Sonne circa 5 Milliarden Jahre. Während dieses Zeitraums reduzierte sich die Wasserstoffkonzentration auf circa 92 %, wobei die Heliumkonzentration auf circa 8 % anstieg. Mit dem derzeitigen Vorrat an Wasserstoff ist es der Sonne möglich, die jetzige Leistung über die nächsten 106 Milliarden Jahre abzugeben. Von den $4 \cdot 10^{26}$ Watt Strahlungsleistung, welche die Sonne abgibt, erreichen $2 \cdot 10^{17}$ Watt die Erde. Zum Vergleich, der derzeitige Energiebedarf der Menschheit beträgt circa $1,13 \cdot 10^{13}$ Watt. Aufgrund des hohen Druckes im Kern der Sonne, besitzt dieser eine mittlere Dichte von 10^5 kg/m³, das entspricht circa dem achtfachen der Dichte von Blei. Daraus erschließt sich, dass der Kern ungefähr 15 % des Sonnenvolumens einnimmt und zugleich 35-40 % der Sonnenmasse enthält [5].

1.4.2. Sonnenstrahlung

In Tabelle 1 werden einige wichtige Eigenschaften der Sonne und der Erde einander gegenübergestellt.

	0				
		Sor	nne	Erde	е
Eigenschaften	Einheit	Symbol	Wert	Symbol	Wert
Durchmesser	km	d_{Sonne}	1.392.520	d_{Erde}	12.756
Oberflächentemperatur	K	T_{Sonne}	5.778	T_{Erde}	288
Mittelpunktstemperatur	K	$T_{Sonne_{mittel}}$	15.000.000	$T_{Erde_{mittel}}$	6.700
Abgestrahlte Leistung	W	P_{Sonne}	$3.845 \cdot 10^{26}$		
Abstand Sonne Erde	km	r_{SE}	$149.6\cdot10^6$		

Tabelle 1 Eigenschaften der Sonne und Erde.

Das Spektrum der solaren Strahlung reicht von ultravioletter über den sichtbaren bis hin zum infraroten Anteil. Abbildung 2 zeigt das elektromagnetische Strahlenspektrum mit den dazugehörigen Wellenlängen. Der für das menschliche Auge sichtbare Strahlungsbereich besitzt eine Wellenlänge von 380-780 nm und wird als Licht bezeichnet. Auf einer Seite wird dieser Bereich durch das kurzwellige und damit energiereichere Ultraviolettes Licht (UV-Licht) und auf der anderen Seite durch das langwellige und energieärmere Infrarote Licht (IR-Licht) begrenzt.

Abbildung 2 Elektromagnetische Strahlungsspektrum mit den dazugehörigen Wellenlängen [6].

Global Horizontal Irradiance (GHI) Die Globalstrahlung bezeichnet den Anteil der Sonnenstrahlung, die auf die Erdoberfläche trifft (Abb. 3). Etwa 50 % des gesamten auf die Erdatmosphäre eingestrahlten Sonnenlichtes erreichen die Erdoberfläche. Dieser Anteil ist die Globalstrahlung *GHI*. Sie setzt sich aus diffuser Strahlung *DHI* und direkter Strahlung *DNI* in Abhängigkeit des Zenitwinkels θ_{Zenit} zusammen (Gl. 1).

$$GHI = DHI + DNI \cdot \cos(\theta_{Zenit}) \qquad [W/m^2] \qquad (1)$$

GHI: Global Horizontal Irradiance $[\rm W/m^2]$	DNI: Direct Horizontal Irradiance $[\rm W/m^2]$
DHI: Diffuse Horizontal Irradiance $[W/m^2]$	θ_{Zenit} : Zenitwinkel [°]

Abbildung 3 verdeutlicht das weltweite Globalstrahlungsangebot. Die dunkelroten Bereiche, die vermehrt von $+35^{\circ}$ Nord bis -35° Süd vom Äquator auftreten, weisen ein sehr hohes Global-Strahlungsangebot auf. Das Strahlungsangebot an den beiden Polen, dargestellt in türkis/grün, weißt hingegen nur ein sehr geringes Strahlungangebot auf.

Diffuse Horizontal Irradiance (DHI) Bei der Diffusstrahlung handelt es sich um den Anteil der Globalstrahlung, der in der Atmosphäre gestreut wird (Abb. 4). Die Streuung wird unterteilt in Rayleigh-Streuung und Mie-Streuung. Die Diffusstrahlung trägt

Abbildung 3 Übersicht der Globalstrahlung (GHI) in kWh/m² [7].

allerdings sowohl in der Solarthermie als auch in der Photovoltaik einen Teil zur Energieerzeugung bei, solange es sich um eine nicht konzentrierende Anlage handelt.

Direct Normal Irradiance (DNI) Die Direktstrahlung ist der Anteil der Globalstrahlung, der nicht gestreut wird und direkt auf eine Oberfläche auftrifft (Abb. 4). Direkte Strahlung hat eine höhere Energieintensität und kann im Gegensatz zu diffuser Strahlung konzentriert werden.

Abbildung 4 Strahlungsarten die auf eine PV - Anlage wirken: a) reflektierte Strahlung, b) direkte Strahlung (DNI), c) diffuse Strahlung (DHI).

1.4.3. Albedo (ALB)

Wenn Sonnenlicht auf die Erdoberfläche gelangt, wird ein Teil davon absorbiert und ein Teil reflektiert. Albedo bezeichnet die relative Menge des Lichts, das eine Oberfläche reflektiert, im Vergleich zum gesamten auf sie fallenden Sonnenlicht. Oberflächen, die einen Großteil des Lichts reflektieren, sind hell und weisen einen hohen Albedo auf. Oberflächen, die nur mäßig bis garnicht reflektieren, sind dunkel und haben einen niedrigen Albedo. Albedowerte liegen immer zwischen 0 und 1. Ein Albedowert von 0,9, welcher dem Wert einer frischen Schneedecke entspricht, bedeutet, dass 90 % der einfallenden Strahlung reflektiert wird. In Tabelle 2 sind verschiedene Albedowerte für unterschiedliche Untergrundarten aufgeführt [4].

Material / Untergrund	Albedo (ALB)
Wälder	0,050,18
Heidefläche	0,100,25
Asphalt	$0,\!15$
Rasen	0,180,23
Beton, verwittert	0,2
${\rm Gras}\;({\rm Juli}/{\rm August})$	$0,\!25$
unbestellte Felder	0,26
Beton, sauber	0,3
Schnedecke alt	$0,\!450,\!7$
Schneedecke neu	0,80,9

 Tabelle 2 Albedowerte f
 ür unterschiedliche Untergrundarten [4].

1.4.4. Sonnenintensität

Die nutzbare Strahlungsleistung hängt im Wesentlichen von der Position und Einstrahlungsrichtung der Sonne zur PV-Anlage ab. Allgemein lässt sich der Sonnenstand an einem festen Bezugssystem der Erdoberfläche durch den Höhenwinkel und dem Azimutwinkel definieren. Der Azimutwinkel stellt dabei auf der Nordhalbkugel der Erde eine Verbindung zwischen Sonne und Apertur und südlicher Himmelsrichtung her. Für den Sonnenwinkel h_s und dem Zenitwinkel θ_{Zenit} gilt folgender Zusammenhang (Gl. 2).

$$90^{\circ} = h_s + \theta_{Zenit}$$
^[°] (2)

 h_s : Sonnenwinkel [°] θ_{Zenit} : Zenitwinkel [°]

Eine zusätzliche Winkelabweichung bei entsprechender Neigung der Apertur zur horizontalen Ebene gibt der Neigungswinkel an. Abbildung 5 zeigt die für die Berechnung des Sonnenstands benötigten Winkel. Auf die exakte Berechnung der einzelnen Winkel wird in dieser Arbeit nicht weiter eingegangen.

Abbildung 5 Sonnenstand mit den dazugehörigen Winkeln [5].

1.5. Bestandteile einer einachsig nachgeführten PV - Anlage mit Direkteinspeisung

PV - Anlagen bestehen aus einzelnen Bauteilen, die perfekt aufeinander abgestimmt sein sollten, damit ein störungsfreier Betrieb und ein optimaler Energieertrag über die gesamte Lebensdauer von 20 bis 25 Jahren sichergestellt werden kann. Grundsätzlich kann eine PV - Anlage in fünf Teilbereiche aufgeteilt werden.

1.5.1. PV - Module

Ein PV - Modul besteht aus Solarzellen, die das Licht umwandeln, elektrischen Leitern, einem Glas auf der Vorderseite zum Schutz und einem Rahmen. Bei Glas - Glas - Modulen ist es möglich, den Rahmen zu entfernen. In diesem Fall sind die PV - Zellen von zwei Seiten von Gläsern umgeben. Es besteht die Möglichkeit, die Rückseite entweder mit Folie oder Glas zu schützen. Darüber hinaus gibt es eine Vielzahl von Technologien, die verwendet werden können, um Solarzellen herzustellen. Kristalline Solarzellen werden durch ihren Kristall - und Zellaufbau von Dünnschichtzellen unterschieden. Kristalline Solarzellen, die derzeit über 90 % der globalen Produktion ausmachen, dominieren den PV - Markt. Neue Technologien wie organische Solarzellen oder kristalline Solarzellen mit mehreren Bandabständen sind noch weit weg von der Markteinführung und befinden sich in einer frühen Entwicklungsphase. Kristalline Solarzellen werden je nach Halbleitermaterial in mono- und polykristalline Solarzellen unterteilt [8].

Monokristalline Solarzellen werden aus Wafern hergestellt, die aus einem Siliziumkristall herausgeschnitten werden. Aus diesem Grund haben diese Zellen auch eine einheitliche Oberfläche. Die Herstellungskosten dieser Zellen sind etwas höher als bei polykristallinen Zellen und haben in der Regel einen höheren Wirkungsgrad. Unter Laborbedingungen haben monokristalline Zellen bereits Wirkungsgrade von mehr als 26%. Aufgrund der sinkenden Kosten und höheren Effizienz werden monokristalline Zellen immer häufiger verwendet [9].

Polykristalline Solarzellen bestehen aus mehreren Siliziumkristallen, die sich während der Produktion frei gebildet haben. Die Module sind durch die einfachere Herstellung günstiger als die monokristallinen Module, haben aber auch einen geringeren Wirkungsgrad. Inzwischen können polykristalline Module im Labor einen Wirkungsgrad von mehr als 23 % erreichen. Aufgrund der niedrigeren Kosten dominierte diese Zelle für viele Jahre den PV-Markt [9].

Dünnschichtzellen gibt es in einer Vielzahl von Ausführungen. Sie variieren je nach Substrat und aufgedampften Stoffen. Es gibt eine breite Palette an Eigenschaften und Wirkungsgraden. Vor allem die Dicke der Schicht unterscheidet dünnschichtige Zellen von herkömmlichen Siliziumzellen. Die amorphe Siliziumzelle ist die am weitesten verbreitete Dünnschichtzelle. Mikrokristallines Silizium, Galliumarsenid, Cadmiumtellurid oder Kupfer - Indium - Schwefel - Selen - Verbindungen (CIGS - Zellen) sind andere Materialien, die für Dünnschichtzellen verwendet werden. Der Wirkungsgrad von Dünnschichtzellen reicht von 14 % bis 23 %. Allerdings haben diese Zellen einen großen Vorteil in Bezug auf ihren umfangreichen Einsatzbereich, der von aufrollbaren Flächen auf Rucksäcken bis hin zu Großflächenanlagen reicht [9].

Bifaziale PV - Module können Sonnenstrahlung sowohl auf der Vorder- als auch auf der Rückseite des Moduls in Strom umwandeln. Dafür werden spezielle PV - Zellen in Glas-Glas - Modulen verwendet. Der Vorteil dieser Module besteht darin, dass der Albedo-Effekt zu einem deutlichen Mehrertrag führt. Zum Beispiel reflektiert Schnee bis zu 90 % der Strahlung zurück, klassischer Rasen 18 % bis 25 % und Wasser weniger als 10 % [9].

1.5.2. Wechselrichter

Gleichstrom der PV-Module wird vom Wechselrichter in den Wechselstrom des Stromnetzes und der Stromverbraucher umgewandelt. Neben seiner Hauptfunktion steuert der Wechselrichter auch die PV-Anlage und sorgt dafür, dass alle Parameter wie zum Beispiel die richtige Spannung und Frequenz eingehalten werden. Falls das Stromnetz einer Störung unterliegt, kann je nach Art des Wechselrichters auch ein Inselnetz aufgebaut werden [9].

1.5.3. Lagerung

Als Lagerung werden sehr häufig Stehlager mit einem vierekigem beziehungsweise rundem Profil verwendet. Es sind Profile von bis zu $150 \times 150 \text{ mm}$ oder bei Rohrprofilen Außendurchmesser bis zu 150 mm möglich. Derartige Stehlager eignen sich aufgrund der güns-

tigen Eigenschaften besonders gut; sie sind wartungsarm, einfach zu montieren, gleichen Fluchtungsfehler aus und haben eine hohe Belastbarkeit und geringes Gewicht.

1.5.4. Tracking

Solartracker lassen sich anhand ihres Tracking - Mechanismus in Passive und Aktive Tracking Systeme unterteilen. Beide Arten können sowohl mit einachsigen als auch zweiachsigen Nachführstrukturen realisiert werden [10].

Passive Tracking Systeme erwärmen mithilfe der Sonne eine in Behältern gelagerte Flüssigkeit, die an den Seiten von PV-Modulen angebracht sind. Die Idee ist die Erwärmung dieser Flüssigkeit mit anschließender Umwandlung in ein Gas. Auf dieser Seite des PV-Moduls kann das expandierte Gas die schwerere Flüssigkeit in den verschatteten Behälter drücken und das Gewicht bewegen. Dies verursacht einen Gasdruck, der das Modul in Bewegung setzt. Diese Methode der Nachführung ist unkompliziert, da sie keinen elektronische Steuerung und keine Motoren benötigt. Allerdings hat dieses System nur eine begrenzte Präzision und ist bei niedrigen Temperaturen nicht funktionsfähig. In Abbildung 6 ist der Arbeitsablauf eines passiven Trackers dargestellt.

Abbildung 6 Arbeitsablauf passiver Tracker [11]: a) Sonne erwärmt den nicht beschatteten Behälter; b) Die Flüssigkeit steigt im Kupferrohr auf; c) Der schwere Behälter bewegt den Tracker; d) Durch die Sonneneinstrahlung steigt der Dampfdruck der Flüssigkeit, durch die Verschiebung des Gewichts rotiert das Ganze bis es im Gleichgewicht ist.

Aktive Tracking Systeme sind Nachführsysteme, bei der die PV - Module mithilfe eines elektrischen Mechanismus zur Sonne ausgerichtet werden. Im Vergleich zu passiven Trackern haben aktive Tracker eine höhere Genauigkeit beim Tracking [12]. Auf der Grundlage ihrer Funktionsweise lassen sich aktive Tracker weiter in zwei Kategorien einteilen: astronomische und sensorbasierte Solartracker. Bei beiden Systemen werden die PV - Module so nachgeführt, dass diese im rechten Winkel zu Sonne stehen. Der einzige Unterschied liegt lediglich darin, wie die jeweilige Sonnenposition bestimmt wird [13].

Astronomische Tracker verwenden astronomische Berechnungen und Daten zur Bestimmung der exakten Position des Sonnenstands. Es sind verschiedene Parameter erforderlich, darunter Längengrad, Breitengrad, Datum und Uhrzeit. Ein Algorithmus nutzt die gewonnenen Werte, um die Ausrichtung der PV-Module zu kontrollieren. Astronomische Tracker erfordern weder eine direkte Sonnenerkennung noch Sensoren, da sie vorab entwickelte astronomische Modelle nutzen. Darüber hinaus ermöglicht die sensorlose Verwendung einen niedrigen Energieverbrauch und die Positionierung der PV-Module ist normalerweise sehr genau [13]. Es ist jedoch notwendig, auch örtliche Umstände, wie Verschattungen durch mehrere Modulreihen oder Bäume zu berücksichtigen.

Sensorbasierte Solartracker verwenden Sensoren zur Echtzeiterfassung des aktuellen Sonnenstands. Dabei wird die Sonneneinstrahlung von den Sensoren aufgezeichnet. Diese werden dem Algorithmus zur Verfügung gestellt, der die PV-Module dann entsprechend einstellt. Die häufigsten Arten von Sensoren sind Helligkeitssensoren, die auch als Light Dependent Resistor (LDR) bezeichnet werden, da sie in der Lage sind, die Lichtstärke und den Schatten zu ermitteln. Es existieren auch zusätzliche Sensoren wie Infrarotsensoren oder Global Positioning System (GPS), die auch zur Bestimmung des Sonnenstands genutzt werden können. Tracker, die auf Sensoren basieren, sind anpassungsfähiger und reagieren besser auf die örtlichen Gegebenheiten und Umweltveränderungen. Dabei ist eine konstante Stromversorgung notwendig. Die beiden Methoden weisen sowohl Vor- als auch Nachteile auf und werden je nach Bedarf und Umgebungssituation angewendet [13].

1.5.5. Unterkonstruktion / Stahlbau

Die Unterkonstruktion einer nachgeführten PV-Anlage besteht in der Regel aus feuerverzinkten Stahl-oder Aluminium Profilen, welche mittels Schraub-und/oder Klemmverbindugen miteinander verbunden werden. Aufgrund der Tatsache, dass die konstruktive Komplexität der Unterkonstruktion relativ gering ist, können die Herstellungskosten der Trägerprofile für die Wirtschaftlichkeitsberechnung in \in /kg festgelegt werden.

1.6. Nachgeführte Photovoltaiksysteme

In diesem Unterkapitel werden die unterschiedlichen Typen von nachgeführten Systemen dargestellt. Unter nachgeführten Systemen werden Solar - Tracking - Systeme bezeichnet, die den Ertrag von Solarstrom steigern, indem sie die PV - Module der Sonne durch eine oder zwei Achsen nachführen. Es wird angenommen, dass nachgeführte Systeme die höchs-

te Ertragssteigerung erzielen, weil sie das PV - Modul für die einfallende Sonnenstrahlung optimal ausrichten [13]. Wenn der Neigungswinkel des Moduls mit den täglichen und saisonalen Änderungen des Sonnenstands synchronisiert ist, erreichen monofaziale Module ihre maximale Leistung. Ein idealer Solartracker würde es den Solarzellen ermöglichen, genau auf die Sonne zu zeigen und gleichzeitig Änderungen des Höhenwinkels, des Breitenversatzes und des Azimutwinkels der Sonne während des Tages auszugleichen [14]. Ein - und zweiachsige Solartracking - Systeme sind die beiden Hauptmodelle, die sich im Freiheitsgrad der Bewegung unterscheiden. Die nachfolgenden Abschnitte beschreiben die Merkmale dieser beiden Modelle.

1.6.1. Einachsige Nachführung

Ein einachsiges Nachführsystem besitzt nur einen Freiheitsgrad, bei dem das Solarpanel von Ost nach West wandert. Dieses System ist in drei verschiedenen Arten erhältlich: horizontales einachsiges Nachführungssystem, vertikales einachsiges Nachführungssystem und geneigtes einachsiges Nachführungssystem [15].

In der Regel wird ein horizontal einachsiger Tracker verwendet, um die Bewegung der Sonne nach Süden und Norden zu verfolgen, was den saisonalen Weg der Sonne entspricht. Es ist möglich, den Höhenunterschied der Sonne zu verfolgen. In der Regel wird ein vertikal einachsiger Tracker verwendet, um sie von Osten nach Westen zu verfolgen, was dem täglichen Weg der Sonne entspricht [13].

Im horizontalen System bewegt sich die Achse horizontal im Bezug zum Boden, und die Vorderseite des Moduls ist parallel zur Drehachse ausgerichtet. Im vertikalen System bewegt sich die Achse vertikal im Bezug zum Boden, und die Vorderseite des Moduls ist in einem Winkel zur Rotationsachse ausgerichtet [15]. Abbildung 7a zeigt die Bewegungen der Rotationsachsen dieser beiden Systeme.

Beim geneigten Nachführungssystem ist die Modulvorderseite normalerweise parallel zur Rotationsachse ausgerichtet, ähnlich wie beim horizontalen System. Die Rotationsachsen liegen zwischen der horizontalen und vertikalen Achse. Die Nachführung führt zu einer zylindrischen Bewegung, die symmetrisch um die Rotationsachse herum verläuft. Abbildung 7b zeigt einen solchen Solartracker.

b) Geneigte Nachführung eines PV-Systems [16].

Abbildung 7 Einachsige und geneigte Nachführung eines PV-Systems [16].

1.6.2. Zweiachsige Nachführung

Um eine Erhöhung des Ertrags pro Modul zu erreichen, wird ein Tracker mit zwei Achsen verwendet. Diese bestehen aus einer vertikalen und einer horizontalen Achse, die in der Regel senkrecht zueinander stehen. Diese Tracker können in verschiedenen Varianten ausgeführt werden wie in Abbildung 8 gezeigt.

Abbildung 8 Zweiachsige Nachführung eines PV-Systems [16].

2. Methodik

Das Kapitel Methodik besteht aus fünf Unterkapiteln und ist in zwei Themenblöcke aufgeteilt. Zum einen in die Auslegung und Konstruktion der PV-Anlage in Längenfeld (Ötztal) und zum anderen in die Auswertung und Vergleich der PV-Anlage im Alpenraum (Ötztal) und mit dem Standort in Calama (Atacamawüste). Dies ist in Abbildung 9 zusammengefasst dargestellt.

Das zweite bis vierte Unterkapitel befasst sich mit der Auslegung und Konstruktion der PV-Anlage in Längenfeld (Ötztal). Im Unterkapitel Finanzierung werden die Investition, Amortisation und Wirtschaftlichkeit der PV-Anlage erarbeitet. Im fünften Unterkapitel wird der Vergleich der PV-Anlage in Bezug auf das PV-Nachführsystem und deren Ausrichtung verglichen. Zu guter Letzt wurden diese Erkenntnisse mit der gleichen Anlage in der Atacamawüste gegenübergestellt.

Abbildung 9 Übersicht zur Auslegung und Konstruktion der PV-Anlage und dem Verlgeich der PV-Anlage.

2.1. Lastenannahmen

Im Folgenden werden die wirkenden Lasten durch Wind und Schnee und ihre Kombination auf die PV-Anlage beschrieben. Die PV-Anlage wird auf den Grenzzustand der Tragfähigkeit (ULS) ausgelegt und nicht auf den Grenzzustand der Gebrauchstauglichkeit (SLS). Das heißt, das Tragwerk muss bestimmten Einwirkungen standhalten ohne zu Versagen.

Die Einwirkungen durch Wind und Schnee sind vorübergehende Bemessungssituationen und werden als veränderliche Einwirkungen mit einem Teilsicherheitsbeiwert γ_Q von 1,5 angesetzt, sofern nichts anderes beschrieben wird.

2.1.1. Einwirkung - Wind

Die Windeinwirkung wurde anhand der ÖNORM EN 1991-1-4 [17] und der dazugehörigen Nationalen Festlegung [18] definiert. Dabei wird in einem ersten Schritt der Böengeschwindigkeitsdruck q_p ermittelt. Danach wird der Außen- und Innenwinddruck auf die PV-Anlage bestimmt. Die PV-Module müssen einen größeren Widerstand aufweisen als der wirkende Druck. Das Tragwerk und der Antrieb der PV-Anlage wird anhand der Windkraft ausgelegt.

Die Grundwerte für die Basiswindgeschwindigkeit $v_{b;o}$ und der Basisgeschwindigkeitsdruck $q_{b,0}$ können der Tabelle A.1 aus der ÖNORM B 1991-1-4 [18] entnommen werden. Die Basiswindgeschwindigkeit v_b ermittelt sich nach Gleichung 3; wobei der Richtungsbeiwert c_{dir} und der Jahreszeitenbeiwert c_{season} als 1,0 angenommen wird [17]. Daraus ergibt sich $v_b = v_{b;o}$. Der Basisgeschwindigkeitsdruck q_b (Gl. 4) resultiert aus der Basiswindgeschwindigkeit und der Luftdichte $\rho = 1,25 \text{ kg/m}^3$. Die Geländekategorie, in welcher sich die PV - Anlage befindet, definiert sich nach Tabelle 4.1 aus der ÖNORM EN 1991-1-4 [17] und Tabelle 2 aus der ÖNORM B 1991-1-4 [18]. Der Böengeschwindigkeitsdruck (Spitzengeschwindigkeitsdruck) q_p ermittelt sich nach Gleichung 5. Aufgrund der geographischen Höhenlage der PV - Anlage, darf der Abminderungsfaktor f_s angewendet werden [18]. Dieser beschreibt die Reduktion der Luftdichte mit zunehmender Höhe. Wegen der geringen Bauwerkshöhe muss keine Beurteilung der Schwingungsanfälligkeit durchgeführt werden.

$$v_b = v_{b;o} \cdot c_{dir} \cdot c_{season} \tag{3}$$

$$q_b = \frac{1}{2} \cdot \rho \cdot v_b^2 \qquad [kN/m^2] \qquad (4)$$

$$q_p = \left(\frac{v_p}{v_b}\right)^2 \cdot q_b \cdot f_s \qquad [kN/m^2] \tag{5}$$

 v_b : Basiswindgeschwindigkeit [m/s] $v_{b;o}$: Grundwert Basiswindgeschwindigkeit [m/s] c_{dir} : Richtungsbeiwert [-] c_{season} : Jahreszeitenbeiwert [-]

 q_b : Basiswindgeschwindigkeitsdruck [kN/m] ρ : Luftdichte [kg/m³] q_p : Böengeschwindigkeitsdruck [kN/m²] v_p : Spitzengeschwindigkeit [m/s]

 f_s : Abminderungsfaktor [-]

Die resultierende Gesamtwindkraft F_w (Gl. 6) und der Gesamtwinddruck q_w (Gl. 7) ergeben sich anhand des aerodynamischem Beiwerts c_f , des Strukturbeiwerts $c_s c_d$ und des Böengeschwindigkeitsdrucks q_p . Der Strukturbeiwert für Bauwerkshöhen kleiner als 15 m beträgt 1.0 [17]. Der aerodynamische Beiwert variiert je nach Art des Bauwerks, zum Beispiel als freistehendes Plakat oder freistehendes Dach mit einer bestimmten Neigung.

$$F_w = c_s c_d \cdot c_f \cdot q_p \cdot A_{ref} \cdot \sin(\alpha) \tag{6}$$

$$q_w = c_s c_d \cdot c_f \cdot q_p \cdot \sin(\alpha) \qquad [kN/m^2] \tag{7}$$

F_w : Gesamtwindkraft [kN]	4 D 0" 1 [²]	
c.c.: Strukturbeiwert [-]	A_{ref} : Bezugsflache [m ²]	
	$\alpha:$ Maximaler Neigungswinkel PV - Module	
c_f : Aerodynamischer Beiwert [-]	a: Gesamtwinddruck [kN/m ²]	
q_p : Böengeschwindigkeitsdruck [kN/m ²]	q_w . Gesame winder der [m_v / m_j]	

Die Windkraft ermittelt sich aus dem Außen- und Innenwindruck nach Gleichung 8 und 9.

$$F_{w;e} = c_s c_d \cdot \sum_{Ofl} w_e \cdot A_{ref}$$

$$[kN]$$
(8)

$$F_{w;i} = \sum_{Ofl.} w_i \cdot A_{ref}$$

$$[kN]$$

$$(9)$$

$F_{w;e}$: Windkraft aus Außendruck [kN]	$F_{w;i} :$ Windkraft aus Innendruck [kN]
$c_s c_d$: Strukturbeiwert [-]	w_e : Außenwinddruck [kN/m ²]
w_e : Außenwinddruck [kN/m ²]	w_i : Innenwinddruck [kN/m ²]
A_{ref} : Bezugsfläche [m ²]	$\sum_{Ofl.} \text{Summe Oberfläche } [m^2]$

Die Reibungskraft F_{fr} aufgrund der Windeinwirkung parallel zur PV-Anlage wird nach Gleichung 10 berechnet. Der Windreibungsdruck ist in Gleichung 11 aufgeführt.

$$F_{fr} = c_{fr} \cdot q_p \cdot A_{ref} \tag{10}$$

$$q_{fr} = c_{fr} \cdot q_p \qquad [kN/m^2] \qquad (11)$$

F_{fr} : Windreibungskraft [kN]	$4 \rightarrow \text{Regugation} \left[\text{m}^2\right]$	
c_{fr} : Reibungsbeiwert [-]	A_{ref} . Dezugshache [m]	
q_p : Böengeschwindigkeitsdruck [kN/m ²]	q_{fr} : which enduring surface [kiv/m]	

2.1.2. Einwirkung - Schnee

Die Scheelast wurde anhand der ÖNORM EN 1991-1-3 [19] und der dazugehörigen Nationalen Festlegung [20] definiert. Für veränderliche und ständige Bemessungssituationen ist die Schneelast *s* für Dächer nach Gleichung 12 zu ermitteln [19]. Die charakteristische Schneelast am Boden s_k ist dem Anhang C der ÖNORM EN 1991-1-3 [20] zu entnehmen. Eine genaue Standortangabe kann der Online Karte auf Hazard Overview and Risk assessment Austria (HORA) [21] für ein 25-jähriges, 50-jähriges und 100-jähriges Ereignis entnommen werden. Der Umgebungs- und Temperaturkoeffizient (C_e, C_t) in Gleichung 12 ist mit 1,0 anzusetzen [20]. Eine Verminderung der Schneelast durch den Temperaturkoeffizient darf nur bei zum Beispiel Gewächshäusern angewendet werden [20]. Die PV-Module werden nicht dazu gezählt. Der Formbeiwert des Schnees μ_i liegt bei 0,8 [19]. Eine außergewöhnliche Schneelast tritt nicht ein [20].

Schneelast bei Verwehung tritt nicht auf, da keine Wände, Vorsprünge oder Aufbauten vorhanden sind. Somit wird Verwehung nicht als Lastfall berücksichtigt. Die gesamte charakteristische Schneelast, welche auf die PV-Anlage wirkt, ergibt sich aus Gleichung 13.

$$s = \mu_i \cdot C_e \cdot C_t \cdot s_k \qquad [kN/m^2] \tag{12}$$

$$F_s = s \cdot A_{ref} \tag{13}$$

s: Schneelast [kN/m ²]	a . Charalitariatizaha Sahnaalaat [kN/m2]
u: Schnee Formbeiwert [-]	s_k . Onarakteristische Schneelast [kiv/ III-]
μ_i . Semice Pormberwert [-]	$F_{\rm s}$: Schneelast [kN]
C_e : Umgebungskoeffizient [-]	
C.: Temperaturkoeffizient [-]	A_{ref} : Bezugsfläche [m ²]
Ct. Temperaturkoemzient [-]	

2.1.3. Einwirkung - Kombinationen

In Abbildung 10 sind die verschieden Lasten, das Eigengewicht in dunkelgrau, die Windkraft in blau und die Schneelast in hellgrau dargestellt. Der maximale Neigungwinkel α der PV-Anlage liegt bei 60°. Die Windlast wirkt entweder direkt auf der Oberseite auf die PV-Module oder entgegengesetzt. Die resultierende Windkraft beziehungsweise Winddruck wird im Winkel von 60° angesetzt (Abb. 10 a-d). Die Windkraft kann auch seitlich auf die PV-Anlage wirken (Abb. 10 e).

Damit die Schneelast überhaupt auf der Anlage haftet, muss der Neigungswinkel kleiner als 40° sein. Die PV-Anlage stellt sich bei Schneefall automatisch in eine Neigung von 60° ein. Bei derartig großem Neigungswinkel ist es nicht möglich, dass Schnee an den PV-Modulen haften bleibt. Das heißt, dass Schneelast und Windkraft nicht in Kombination auftreten. Die Einwirkung auf die Anlage durch die Schneelast ergibt sich, wenn die PV-Module horizontal ausgerichtet sind, das heißt der Neigungswinkel α ist 0° (Abb. 10 g). In diesem Fall ist es möglich, dass eine Kombination aus Wind und Schnee herrscht (Abb. 10 f). Somit ergeben sich folgende vier Einwirkungen auf die PV-Anlage:

- Einwirkung Wind: $+q_w$ auf PV Module mit Neigungswinkel 60° (Abb. 10 b))
- Einwirkung Wind: $-q_w$ auf PV Module mit Neigungswinkel 60° (Abb. 10 d))
- Einwirkung Schnee: s auf PV Module mit Neigungswinkel $0^{\circ}\,({\rm Abb.}\,10\,{\rm g}))$
- Einwirkung Wind und Schnee: s auf PV-Module mit Neigungswinkel 0°, $+\,q_w$ (Abb. 10 f))

Abbildung 10 a) bis g) zeigen die verschiedenen wirkenden Lasten auf die PV-Anlage. Das Eigengewicht ist in dunkelgrau dargestellt, der Wind in blau und in grau der Schnee.

2.2. Komponenten der PV - Anlage

Im Folgenden wird aufgezeigt, nach welchen Kriterien die Komponenten der PV-Anlage definiert wurden.

2.2.1. Antrieb (einachsige Nachführung)

Die Auslegung des Antriebs wird anhand der ermittelten Windlast aus Kapitel 2.1.1 bemessen. Die maximale Neigung der PV-Module α liegt bei 60°. Die wirkenden Kräfte in y und z Richtung ermitteln sich anhand Gleichung 14-15. Das resultierende Moment, welches auf den Antrieb wirkt ist in Gleichung 16 dargestellt [22]. Der Nachweis (Gl. 17 ist erfüllt, wenn das wirkende Moment M_{Ed} vom ausgewählten Antrieb aufgenommen werden kann (M_{max}) .

$$F_y = F_w \cdot \cos(\alpha) \tag{14}$$

$$F_z = F_{G;kN} + F_w \cdot \sin(\alpha) \tag{15}$$

$$M_{Ed} = F_{G;kN} \cdot b_1 \cdot \cos(\alpha) - F_w \cdot a_1 \qquad [kNm] \qquad (16)$$

$$M_{Ed} \le M_{max} \tag{17}$$

F_y : Einwirkung in y-Richtung [kN]	M
F: Gesamtwindkraft [kN]	M_{Ed} : Moment auf Antried [KNm]
	b_1 : Abstand [m]
α : Neigungswinkel [*]	a_1 : Abstand [m]
F_z : Einwirkung in z-Richtung [kN]	
$F_{G:kN}$: Eigengewicht PV - Module und I - Träger [kN]	M_{max} : Maximales Aufnahmemoment Antrieb

Mit Hilfe der Ergebnisse aus den Gleichungen 14-16 werden weitere wichtige spezifische Anforderungskriterien an den Antrieb gestellt.

- Axiale statische Belastungen
- Axiale dynamische Belastungen
- Radiale statische Belastungen
- Radiale dynamische Belastungen
- Haltemoment
- Kippmoment
- Genauigkeit der Winkelnachführung
- Kosten
- Kommunikation und Expertise Hersteller

Jener Hersteller mit dem passenden Modell, welches die oben genannten Kriterien am besten erfüllt, wird für die PV-Anlage ausgewählt.

[kNm]
2.2.2. Tracking Unit

Grundsätzlich besteht eine Tracking Unit aus vier Baugruppen, Tracker Control Unit (TCU), Remote Sensor Unit (RSU), Network Control Unit (NCU) und einer Wetterstation mit Windsensor und Niederschlagssensor. Wobei die Wetterstation eine Unterbaugruppe der RSU ist [23].

Tracker Control Unit (TCU) dient dazu den Einfallswinkel zwischen dem einfallendem Sonnenlicht und dem PV-Modul zu minimieren. Dabei wird über einen Algorithmus die genaue Sonnenposition errechnet. Anschließend sendet die TCU die Signale weiter an den Antriebsmotor und dieser richtet die PV-Module exakt zur Sonne aus. Für Wartungsund Instandhaltungsarbeiten können die PV-Module über eine Smartphone-App je nach Wunsch ausgerichtet werden. In Abhängigkeit von der Stromversorgung können vier Modelle unterschieden werden:

- Self Powered: TCU wird durch eine eigene Batterie betrieben, benötigt aber ein separates PV-Modul, welches die Batterie lädt [24].
- Single line: Bei dieser Variante wird die Tracking Unit über das lokale Stromnetz versorgt [24].
- String Powered: Hierbei wird die Energie direkt aus der Photovoltaik Anlage bezogen. Daher funktioniert das Nachführsystem nur bei Sonneneinstrahlung [24].
- String Powered & Backup Battery: Hier wird zur Absicherung des Systems noch eine zusätzliche Batterie verbaut [24].

Remote Sensor Unit (RSU) wird für die Verarbeitung der Wetterdaten benötigt. Mit Hilfe eines Anemometers wird die Windgeschwindigkeit ermittelt und an die RSU weitergeleitet. Es gibt eine Vielzahl von Anemometer, manche messen neben der Windgeschwindigkeit noch die Windrichtung. Zusätzlich kann das System mit einem Schneesensor ausgestattet werden [24].

Network Control Unit (NCU) dient als zentrale Stelle der Tracking Unit und stellt in regelmäßigen Zeitabständen Anfragen an die TCU und RSU und wertet die erhaltenen Daten aus. Werden zum Beispiel erhöhte Windgeschwindigkeiten gemessen, sendet die NCU ein Signal an die TCU mit dem Befehl die Module in der Safety Position (Module stehen horizontal) zu parken [24].

Es wurden bestimmte Kriterien festgelegt, nach denen der Hersteller / Lieferant für die Tracking Unit ausgewählt werden soll.

- Zuverlässigkeit des Systems
- Qualität der einzelnen Komponenten (TCU, NCU, RSU und Wetterstation)
- Referenz Projekte
- $\bullet \ Bedienbarkeit \, / \, Nutzerfreundlichkeit$

Bei der Auswahl der am besten zutreffenden Tracking Unit sollen die Kosten weniger schwer gewichtet werden. Vermehrt soll das Hauptaugenmerk auf die Zuverlässigkeit des Systems gerichtet werden, was eine hohe Qualität der einzelnen Komponenten voraussetzt.

2.2.3. Lagerung

Die Lagerungen von einachsig nachgeführten PV - Anlagen werden in der Regel als geteilte Stehlager ausgeführt. Folgende Kriterien wurden für die Auswahl der Lager herangezogen:

- Hohe statische Belastbarkeit
- Temperaturbereich
- Verfügbarkeit
- Wartungsaufwand
- Axialer Versatz zulässig
- Kosten

2.2.4. Kriterien für die Auswahl bifazialer PV - Module

Im Folgenden sind die Kriterien für die Auswahl bifazialer PV-Module aufgeführt. Anhand dieser Kriterien wurden fünf verschiedene Hersteller (Trinasolar [25], CanadianSolar Inc. [26], RISEN ENERGY Co., LTD. [27], Luxor Solar GmbH [28] und BYD Company Limeted [29]) miteinander verglichen.

Elektrische Leistung Die elektrische Leistung bifazialer PV-Module ist bisher noch nicht standardisiert und daher gibt es keine genormten Abläufe. Folglich sind die Herstellerangaben zu diesen Produkten nicht vergleichbar. Die meisten Hersteller geben zusätzlich die Standard Test Conditions (STC) an. Dabei variiert die Einstrahlungsstärke auf die Rückseite zwischen 5 %, 10 %, 20 % und 30 %. Manche Hersteller verwenden zusätzlich die STC-Leistung der Rückseite oder den Bifacialfaktor [30].

Bifazialitätsfaktor Der Bifazialfaktor ist ein Qualitätskriterium. Je niedriger der Faktor ist, desto weniger energetische Zusatzgewinne können von der Modulrückseite erwartet werden. Die Rückseite ermöglicht in der Regel 60 % bis 90 % der Nominalleistung der Vorderseite. Der zusätzliche Energieertrag der Rückseite kann von Hersteller zu Hersteller deutlich variieren. Der Bifazialfaktor wird in den meisten Fällen nicht auf den Datenblättern der Hersteller angegeben. Es ist daher empfehlenswert, den Lieferanten zu kontaktieren oder die Hersteller-Informationen über die prozentualen Zusatzerträge zu nutzen, um den Wert zu ermitteln [30].

Anschlussdosen Vorzugsweise müssen sich die Anschlussdosen an den bifazialen PV-Modulen neben den Silizium Zellen befinden um einer zusätzlichen Verschattung durch die Kabel vorzubeugen. Bifaziale PV-Module mit konventioneller Anschlussdose wie es bei einigen Herstellern der Fall war, sind nicht empfehlenswert [30]. **Modulrahmen** Einige Hersteller bieten bifaziale PV - Module mit einem herkömmlichen Modulrahmen an. Die Rahmenhöhe beträgt zwischen 30 und 40 mm, was in den meisten Fällen zu Verlusten an Leistung führt. Empfehlenswert sind daher Rahmenlose PV -Module. Bei diesen Produkten ist jedoch Vorsicht geboten, da bei Einwirkungen auf die Glaskanten das Element sofort komplett zerbrechen kann. Zur Befestigung der rahmenlosen PV - Module sollten möglichst flache Klemmhalter verwendet werden, sonst verursachen sie Schatten an der Moduloberfläche [30].

2.2.5. Wechselrichter

Wie bereits in 1.5.2 aufgezeigt wurde, nimmt der Wechselrichter eine zentrale Rolle bei der Auslegung der PV-Anlage ein. Für die richtige Wahl des Wechselrichter ist zu beachten, dass in Osterreich nicht alle Wechselrichter zugelassen sind. Auf der Webseite von Osterreich-Energie [31] steht eine Wechselrichterliste zum Download bereit. Grenzt man mit Hilfe der Filterfunktion die einzelen Parameter ein, wird schnell ersichtlich, dass nur eine sehr geringe Auswahl an zugelassenen Wechselrichtern zur Verfügung steht. Zudem muss bei der Wahl des Wechselrichters berücksichtig werden, dass die Anzahl der Maximum Power Point (MPP) Tracker \geq zwei sein muss. Um den Maximum Power Point zu erreichen und damit die Leistung der Solaranlage auf dem optimalen Stand zu halten, stehen dem MPP - Tracker verschiedene Verfahren zur Verfügung. Zwei gängige Vahrfahren sind zum Beispiel das Suchschwingverfahren (Perturb and Observe) oder die Incremental Conductance Methode. Dabei wird die Spannung innerhalb der Strings (in Reihe geschaltete Solarmodule) schrittweise erhöht. Kommt es zu einem Leistungsabfall weiß das System, dass der Maximum Power Point überschritten wurde und senkt die Spannung wieder ab. Durch diesen Vorgang kann das System flexibel auf unterschiedliche Strahlungsverhältnisse reagieren und die Solaranlage stets mit der maximalen Leistung in Betrieb halten [4]. Anschließend wurde die Wechselrichterliste mit den aktuellen Marktpreisen inklusive Lieferkosten vom 14.03.2024 ergänzt. Folgende Kriterien für die Auswahl des Wechselrichters werden angewendet:

- Nennwirkleistung 15 16 kWp
- Nennscheinleistung 15 17 kVA
- Zulassung in Österreich
- PV Wechselrichter und kein Hybrid Wechselrichter
- Anzahl der MPP Tracker muss \geq zwei sein
- Verfügbarkeit gewährleistet

2.3. Auslegung Stahlbau und Fundament

Die Stahlkonstruktion der PV-Anlage setzt sich aus drei vertikalen Stützen zusammen auf welchen ein horizontaler Träger über den Antrieb und den Lagerschalen mit den

Stützen verbunden ist. Die PV-Module sind mit I-Trägern, welche rechtwinklig auf dem horizontalen Träger zu liegen kommen, verbunden.

Um die passenden Stahlprofile für die Konstruktion zu definieren, wird das Stabwerk Statik Programm RSTAB [32] verwendet (Kap. 2.3.1). Dabei wird die Beanspruchbarkeit der Querschnitte und der Stabilitätsnachweis der Bauteile nach Eurocode (EC) 3 [33] durchgeführt. Die zu verwendenden Lastfälle und Einwirkungen sind dem Kapitel 2.1.3 zu entnehmen.

Die Schraubverbindungen werden auf Schubspannung der Schraube, Lochleibung im Blech und Zugbeanspruchung des Restquerschnittes nachgewiesen [34].

Die Konstruktion der PV-Anlage erfolgt anschließend mit Hilfe von Autodesk Inventor (Kap. 2.3.3). In einem weiteren Schritt wird das Fundament aufgrund der ermittelten Schnittgrößen und Lagerreaktionen aus den RSTAB Modellen bemessen (Kap. 2.3.1, 2.3.4).

2.3.1. RSTAB - Modell

Für die Berechnung von Stabwerken, welche als Tragwerk verwendet werden, eignet sich das 3D Statik Programm RSTAB (Dlubal Software) [32]. Dabei steht das R für Räumlich, also die 3D Komponente. Mit RSTAB können sowohl lineare wie nichtlineare Berechnungen der Schnittgrößen erfolgen. Die Lagerreaktionen und die Verformung können ebenfalls ermittelt werden. Die wirkenden Kräfte beziehungsweise Lasten können als einzelne oder kombinierten Lastfällen als Knotenlast (kN), Stablast (kN/m) oder Flächenlast (kN/m²) definiert werden.

Bei Tragwerken aus Stahlbeton oder Spannbeton ist die Berücksichtigung der nichtlinearen Schnittgrößen notwendig, da Risse zu einer größeren Bauteilverformung und verminderter Bauteilsteifigkeit führen. Um möglichst praxistreue Ergebnisse zu erhalten, wird das nichtlineare Verfahren nach der Theorie II. Ordnung angewendet. Dabei wird das Gleichgewicht im verformten System ermittelt.

Für das Stabwerk der PV-Anlage werden zwei Modelle erstellt. Eines mit den PV-Modulen in einem Neigungswinkel von 60° und einmal horizontal (Neigungswinkel 0°). Die Tragfähigkeit der Bauteile wird durch folgende Nachweise (Eurocode 3) geführt:

- Beanspruchbarkeit der Querschnitte (Gl. 18-22)
- Stabilitätsnachweis (Gl. 23 24)

Bei der Beanspruchbarkeit wird der Querschnitt auf die Druckbeanspruchung (Gl. 18), Biegebeanspruchung (Gl. 19) und Querkraftbeanspruchung (Gl. 20) geprüft. Bei gleichzeitiger Beanspruchung des Querschnitts aus Biegung und Normalkraft (Gl. 21, 22), sowie Biegung, Querkraft und Normalkraft wird dies ebenfalls nachgewiesen.

$$\frac{N_{Ed}}{N_{c,Rd}} \le 1,0 \tag{18}$$

)

$$\frac{M_{Ed}}{M_{c,Rd}} \le 1,0 \tag{19}$$

$$\frac{V_{Ed}}{V_{c.Rd}} \le 1,0$$
 [-] (20)

$$M_{Ed} \le M_{N:Rd} \qquad [QK1\&2] \qquad (21$$

$$\sigma_{x;Ed} \le \frac{f_y}{\gamma_{M0}} \tag{22}$$

 N_{Ed} : Normalkraft (Druck) [kN] $V_{c,Rd}$: Querkrafttragfähigkeit [kN] $N_{c,Rd}$: Normalkrafttragfähigkeit bei Druck [kN] $M_{N;Rd}$: Momententragfähigkeit abgemindert N_{Ed} M_{Ed} : Einwirkenden Biegemoments [kNm][kNm] $M_{c,Rd}$: Momententragfähigkeit bei Berücksichtigung $\sigma_{x;Ed}$: Normalspannung in Längsrichtung [N/mm²]von Löchern[kNm] f_y : Streckgrenze [N/mm²] V_{Ed} : Querkraft [kN] γ_{M0} : Teilsicherheitsbeiwert [-]

Der Stabilitätsnachweis des Tragwerks wird für Bauteile, welche auf Biegung und Druck beansprucht sind, gemäß Gleichung 23 und 24 [33] geführt.

$$\frac{N_{Ed}}{\frac{\chi_y \cdot N_{Rk}}{\gamma_{M1}}} + k_{yy} \cdot \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\frac{\chi_{LT} \cdot M_{y,Rk}}{\gamma_{M1}}} + k_{yz} \cdot \frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} \le 1.0$$
(23)

$$\frac{N_{Ed}}{\frac{\chi_z \cdot N_{Rk}}{\gamma_{M1}}} + k_{zy} \cdot \frac{M_{y,Ed} + \Delta M_{y,Ed}}{\frac{\chi_{LT} \cdot M_{y,Rk}}{\gamma_{M1}}} + k_{zz} \cdot \frac{M_{z,Ed} + \Delta M_{z,Ed}}{\frac{M_{z,Rk}}{\gamma_{M1}}} \le 1.0$$
(24)

 $N_{Ed}, M_{y,Ed}, M_{y,Ed}$: Druck und Moment in y-, z-Richtung [kN, kNm] $\Delta M_{y,Ed}, \Delta M_{z,Ed}$: Momente aus Verschiebung der QK 4 [kNm] χ_y, χ_z : Abminderungsbeiwert Biegeknicken[-] χ_{LT} : Abminderungsbeiwert Biegedrillknicken [-] $k_{yy}, k_{yz}, k_{zy}, k_{zz}$: Interaktionsfaktoren

Zusätzlich wird im RSTAB die Spannungsanalyse nach Mises durchgeführt und die Verformung des Stabwerks betrachtet.

Modell: PV - Module 60° Um die Tragfähigkeit der Träger zu überprüfen wurde die Windlast $+q_w$ einmal direkt (vorne) auf die PV - Module und einmal entgegengesetzt (hinten) $-q_w$ angesetzt, gemäß Abbildung 10 b und 10 d. Das Modell wird mit dem Modul FUND Pro verwendet, um die Auslegung der Fundamente durchzuführen. Dabei werden ebenfalls die zwei wirkenden Lastfälle $\pm q_w$ angewandt. Der maßgebendere Lastfall wird mit dem Lastfall aus dem Modell mit den PV - Modulen bei 0° verglichen.

Modell: PV-Module 0° In diesem Modell wird die Schneelast S angesetzt, um die passenden Trägerprofile zu ermitteln (Abb. 10 g). Zusätzlich wird die Lastkombination

aus Wind und Schnee angewendet. In diesem Modell wird ebenfalls das Modul FUND Pro für die Fundament - Auslegung verwendet.

2.3.2. Anschlüsse und Verbindungen

Im Folgenden sind die verschiedenen Anschlüsse und Verbindungen einzelner Komponenten der PV-Anlage, welche benötigt werden, beschrieben.

Schraubverbindung Die Schraubverbindungen werden anhand des maßgebenden Lastfalls aus den RSTAB Modellen (Kap. 2.3.1) auf Schubspannung der Schraube (Gl. 27), Lochleibung im Blech (Gl. 30) und Zugbeanspruchung des Restquerschnittes (Gl. 33) nachgewiesen [34]. Der Nachweis der Schubspannung der Schraube wird mit Gleichung 25 und Gleichung 32 durchgeführt. Die Lochleibungsspannung im Blech wird mit Gleichung 28 und Gleichung 29 nachgewiesen und die Zugbeanspruchung des Restquerschnittes mit Gleichung 31 und Gleichung 32.

$$\tau_{schub} = \frac{F}{n_{schraube} \cdot m_{schraube} \cdot A} \qquad [N/mm^2] \qquad (25)$$

$$\tau_{zul} = 0, 3 \cdot \sigma_{schraube} \qquad [N/mm^2] \qquad (26)$$

$$\tau_a \le \tau_{zul} \qquad \qquad [-] \qquad (27)$$

 au_{schub} : Schubbeanspruchung [N/mm²] F: Wirkende Kraft [kN] $n_{schraube}$: Anzahl Schrauben [-] $m_{schraube}$: Anzahl Schnittflächen [-]

A: Schraubenquerschnitt [mm²] τ_{zul} : Zulässige Schubspannung [N/mm²] $\sigma_{schraube}$: Spannung Schraube [N/mm²]

 σ_{zul} : Zulässige Lochleibungsspannung [N/mm²]

 $[N/mm^2]$

 $\sigma_{bauteil}$: Spannung Bauteil [N/mm²]

$$\sigma_{L;i} = \frac{F}{n_{schraube} \cdot d \cdot t_i} \qquad [N/mm^2] \qquad (28)$$
$$\sigma_{zul} = 0, 7 \cdot \sigma_{bauteil} \qquad [N/mm^2] \qquad (29)$$

$$\sigma_{L;i} \le \sigma_{zul} \tag{30}$$

 $\sigma_{L;i}$: Lochleibungsspannung [N/mm²] F: Wirkende Kraft [kN] $n_{schraube}$: Anzahl Schrauben [-] d: Schraubenschaft [mm]

$$\sigma_{Z;i} = \frac{F}{(b - n_{schrauben} \cdot d_{loch}) \cdot h}$$
$$\sigma_{zul} = 0, 7 \cdot \sigma_{bauteil}$$

 t_i : Blechstärke [mm]

$$[N/mm^2] \tag{32}$$

 $\sigma_{Z;i} \le \sigma_{zul} \tag{33}$

(31)

$\sigma_{Z;i}$: Zugbeanspruchung [N/mm ²]	d_{loch} : Lochdurchmesser [mm]
F: Wirkende Kraft [kN]	h: Höhe Blech [mm]
b: Breite Blech [mm]	$\sigma_{zul}:$ Zulässige Zugspannung [N/mm²]
$n_{schraube}$: Anzahl Schrauben [-]	$\sigma_{bauteil}$: Spannung Bauteil [N/mm ²]

Schweißnaht Die Schweißnahtberechnung für den Nachweis der Tragfähigkeit von Kehlnähten wird nach dem vereinfachten Verfahren nach Schneider Bautabellen [35] durchgeführt. Gleichung 37 beschreibt den Bemessungswert auf die wirksame Kehlnahtfläche bestehend aus Gleichung 34-36. Der Bemessungswert der Tragfähigkeit der Schweißnaht ermittelt sich nach Gleichung 38. Im Vergleich zum richtungsbezogenen Verfahren ist dies einfacher anwendbar, kann allerdings in größerer Schweißnahtdicke resultieren.

$$N_{senk;Ed} = \frac{N_{Ed}}{n_{naht} \cdot l_w} + \frac{M_{Ed}}{\frac{l_w^2}{6}}$$

$$[kN/m]$$
(34)

$$V_{parallel;Ed} = \frac{N_{Ed}}{n_{naht} \cdot l_w}$$

$$[kN/m]$$
(35)

$$V_{senk;Ed} = \frac{V_{Ed}}{n_{naht} \cdot l_w}$$

$$[kN/m]$$
(36)

$$F_{w,Ed} = \sqrt{N_{senk;Ed}^2 + V_{parallel;Ed}^2 + V_{senk;Ed}^2} \qquad [kN/m] \qquad (37)$$

$$F_{w,Rd} = \frac{f_u}{\sqrt{3} \cdot \beta_w \cdot \gamma_{M2}} \cdot \alpha_w \qquad [kN/m] \qquad (38)$$

$$F_{w,Ed} \le F_{w,Rd} \tag{39}$$

 $N_{senk;Ed}$: Schnittgröße pro Längeneinheit [kN/m] V_{Ed} : Querkraft [kN] N_{Ed} : Normalkraft [kN] $F_{w;Ed}$: Einwirkung Kehlnaht [kN/m] n_{naht} : Anzahl Nähte [-] $F_{w;Rd}$: Tragfähigkeit Kehlnaht [kN/m] l_w : Schweißnahtlänge [mm] f_u : Zugfestigkeit schwächeren Bauteils [N/mm²] M_{Ed} : Moment [kNm] β_w : Korrelationsbeiwert [-] $V_{parallel;Ed}$: Schnittgröße pro Längeneinheit [kN/m] α_w : Schweißnahtdicke [-] $V_{senk;Ed}$: Schnittgröße pro Längeneinheit [kN/m] γ_{M2} : Teilsicherheitsbeiwert [-]

Anschluss Grundplatte - Fundament Der biegesteife Anschluss des Stützenfußes im Fundament wird mit GEWI Mikropfählen verankert. Dabei wird der GEWI Mikropfahl auf Druck- und Schubbeanspruchung geprüft (Gl. 40 - 43). Bei Quer- und Normalkraftbeanspruchung ist der Vergleichsspannungsnachweis erforderlich (Gl. 44 - 45).

$$\sigma_{druck} = \frac{N_{Ed}}{A_{Gewi}} \tag{40}$$

$$\sigma_{druck} \le \sigma_{zul} \tag{41}$$

$$\tau_{schub} = \frac{\sqrt{V_y^2 + V_z^2}}{A_{Gewi}}$$

$$[N/mm^2]$$
(42)

$$\tau_{schub} \le \tau_{zul} \tag{43}$$

$$\sigma_{d;V} = \sqrt{\sigma_{druck}^2 + 3 \cdot \tau_{schub}^2} \qquad [N/mm^2] \qquad (44)$$

$$\sigma_{d;V} \le \sigma_{zul} \tag{45}$$

 σ_{druck} : Druckbeanspruchung [N/mm²] N_{Ed} : Normalkraft [kN] A_{Gewi} : Querschnittsfläche GEWI [mm²] σ_{zul} : Zulässige Spannung [N/mm²] τ_{schub} : Schubbeanspruchung [N/mm²]

 V_y : Querkraft in y-Richtung [kN] V_z : Querkraft in z-Richtung [kN] τ_{zul} : Zulässige Schubspannung [N/mm²] $\sigma_{d;V}$: Vergleichsspannung [N/mm²]

Anschluss PV - Module - Träger Der Anschluss der PV - Module an den Träger erfolgt mittels Klemmen. Diese werden in gleichen Abständen zwischen Träger und PV - Modul montiert und benötigen keinen seperat geführten Nachweis. Die einzelnen Klemmen müssen je nach verwendeter Anzahl einer Zugbeanspruchung von mindestends 1,0 kN standhalten.

2.3.3. Inventor - Modell

Für die mechanische Konstruktion, insbesondere in den Bereichen Maschinenbau, Werkzeugbau, Blechverarbeitung und Anlagenbau, eignet sich die Software Autodesk Inventor Professional 2024 besonders gut. Autodesk Inventor ist eine parametrische 3D-CAD-Software [36], die auf Modellierungselementen basiert und von der Firma Autodesk entwickelt und vertrieben wird. "3D" bezeichnet die Erzeugung räumlicher Modelle durch sie. Dabei erfolgt die Speicherung sämtlicher Modellierschritte (Elemente) sowie aller damit verbundenen Maße (Parameter). Dies bedeutet, dass Modelle auch nachträglich gezielt und kontrolliert bearbeitet werden können, indem die Eingabewerte verändert werden. Aufgrund der Anwendung dieses Prinzips auf die Baugruppen ist es möglich mechanische Bewegungsabläufe als Videosequenz darzustellen ohne zusätzliche Hilfsmittel zu benötigen. Ein separater Arbeitsschritt ist die Anfertigung der erforderlichen 2D-Ableitungen von Baugruppen und Einzelteilen. Dabei werden die zuvor erstellten 3D-Modelle nur in druckbarer Form präsentiert und mit Kommentaren versehen. Zusätzlich werden die Zeichnungen mit den Modellen verknüpft. Dadurch werden die Zeichnungen bei jeder Änderung der Modelle (3D) aktualisiert.

2.3.4. Fundament

Die Fundamente eines Tragwerks übertragen das ganze Gewicht sowie Vertikal- und Horizontallasten in den Baugrund. Die Verbindung zwischen dem Fundament und der Stütze kann entweder gelenkig oder biegesteif sein. Im vorliegenden Fall der PV - Anlage handelt es sich um einen biegesteifen Stützenfuß.

Grundsätzlich wird zwischen Flach- und Tiefgründungen unterschieden [37]. Bei der Flachgründung werden die Lasten über die Sohlspannung, welche flächenmässig verteilt ist, abgetragen. Die Flachgründungen werden unterhalb der Frostgrenze eingebaut. Zu den Flachgründungen gehören zum Beispiel die Einzelfundamente für Stützen, Köcherfundamente und Blockfundamente. Tiefgründungen sind notwendig, wenn der Baugrund eine geringe Tragfähigkeit aufweist. Zu den Tiefgründungen gehören die Pfahlgründungen wie Ortbetonpfähle oder Mikropfähle [35]. Tiefgründungen sind aufwändiger und kostenintensiver im Vergleich zur Flachgründung.

Basierend auf den maßgebenden Schnittgrößen aus den RSTAB Modellen (Kap. 2.3.1) wird mit dem Modul FUND Pro [38] die Fundamentgröße, Tragfähigkeitsnachweise und das Bewehrungsmaterial anhand der Mindestbewehrung (Gl. 46) ermittelt [39]. Die konstruktive Mindestbewehrung soll das duktile Verhalten des Fundaments gewährleisten. Das heisst, die Mindestbewehrung verhindert bei Rissbildung das Versagen des Fundaments. Aufgrund der Einhaltung der Mindestbewehrung ist die Dauerhaftigkeit positiv beeinflusst (Gl. 47).

$$A_{s;min} = 0,26 \cdot b \cdot h \cdot \frac{f_{ctm}}{f_{yk}} \qquad [cm^2] \qquad (46)$$

$$A_{s;min} \le A_{vorhanden} \qquad [-] \qquad (47)$$

$A_{s;min}$: Mindestbewehrung [cm ²]	f_{ctm} : Zugfestigkeit Beton [N/mm ²]
b: Breite Fundament [m]	$f_{yk}:$ Streckgrenze Bewehrungsstahl $\rm [N/mm^2]$
h: Höhe Fundament [m]	$A_{vorhanden}$: Gewählte Bewehrung [cm ²]

Die Wahl des Betons soll nebst den statischen Lasten auch die chemischen und physikalischen Einwirkungen aus der Umgebung berücksichtigen. Die Mindestanforderung an den Beton kann anhand der Expositionsklassen [35] ermittelt werden.

Um die Tragfähigkeit (ULS) des Fundamentes zu überprüfen, werden folgende Nachweise gemäß Eurocode 7 durchgeführt [37]:

- Lagesicherheit (Gl. 48)
- Kippsicherheit (Gl. 49)
- Grundbruch (Gl. 50)

Die Nachweise für den Auftrieb / Aufschwimmen und das Gleiten werden aufgrund der geringen vertikalen Belastung (Wasserdruck) und der geringen horizontalen Belastung in dieser Arbeit nicht ausgeführt. Das Fundament ist wie der Oberbau auf die Tragfähigkeit (ULS) ausgelegt; somit werden die Nachweise der Gebrauchstauglichkeit (SLS) (Setzung, klaffende Fuge und Schiefstellung (Horizontaleverschiebung in der Sohle) nicht geführt. Der Durchstanznachweis wird aufgrund der geringen Vetikallast vereinfacht über die Betonfestigkeit geführt (Gl. 51).

$M_{dst;i} \le M_{stb;i}$	[-]	(48)
$e_y \le e_{zul}$	[—]	(49)
$V_d \le R_d$	[—]	(50)
$\sigma_{Ed} \le \sigma_{Rd}$	[—]	(51)
$M_{dst;i}$: Destabilisierendes Moment [kNm]	V_d : Grundbrucheinwirkung [kN]	
$M_{stb;i}$: Stabilisierendes Moment [kNm]	R_d : Grundbruchwiderstand [kN]	
e_y : Lastausmitte in y-Richtung [m]	$\sigma_{Ed}:$ Wirkende Spannung [N/mm²]	
e_{zul} : Zulässige Lastausmitte [m]	σ_{Rd} : Zulässige Spannung Beton [N/mm ²]

Blockfundament Das Blockfundament wird im Wohnungsbau eingesetzt und weist einen quadratischen Grundriss auf. Im Falle von eingespannten Stützen wird das Blockfundament gleichermaßen ausgebildet.

Einzelfundament Das Einzelfundament wird für einzelne Stützen verwendet und ist im Prinzip ein kleines Blockfundament. Dies kann quadratisch als auch rechteckig ausgebildet werden. Die Größe hängt von den einwirkenden Lasten ab und muss die Frostsicherheit gewährleisten. Die Bewehrung wird ebenfalls aufgrund der Einwirkung bestimmt. Die Stütze kann über einen Köcher glatt oder rau über einen Stützenfußanschluss verbunden werden (Abb. 11 a). Das Fundament ist in der Regel im Erdreich eingebunden.

Köcherfundament Das Köcherfundament wird häufig bei Fertigteilstützen verwendet. Dabei besteht das Köcherfundament aus einer Stahlbeton - Fundamentplatte und dem Köcher. Der Köcher kann innenseitig rau oder glatt sein (Abb. 11b). Der Hohlraum zwischen der Stütze und dem Köcher wird anschliessend ausbetoniert. Die Größe der Fundamentplatte und der dazugehörigen Bewehrung hängt von den einwirkenden Lasten ab. Das Fundament ist in der Regel im Erdreich eingebunden.

Mikropfähle Im Fall von Fels als Gründung kann die Stütze über die Grundplatte am Stützenfuß direkt mit Mikropfählen verankert werden. Die Mikropfahlvariante kann in Kombination mit einem Einzelfundament im Lockergestein (Tiefgründung) verwendet werden (Abb. 11c).

Abbildung 11 Mögliche Ausbildung des Stützenfundaments: a) Einzelfundament mit Köcher glatt und rau und Grundplattenanschluss; b) Köcherfundament glatt und rau; c) Grundplatte mit Mikropfählen auf Fels und mit Fundament im Lockergestein.

2.4. Finanzierung

Bei der Finanzierung stellt sich erstrangig die Frage nach der Herkunft der Finanzmittel; es wird zwischen Außen- und Innenfinanzierung unterschieden (Abb. 12). Die Art und Weise, wie die Außenfinanzierung durch Fremd-, Hybrid- und Eigenkapital durchgeführt wird, hängt von der rechtlichen Position der Kapitalgeber ab. Die Innenfinanzierung ist in die Finanzierung des Umsatzprozesses und der Finanzierung der Vermögensumschichtung unterteilt. Das Ergebnis dieser Methode sind fünf Finanzierungsformen (Abb. 12) [40]. Es besteht im Allgemeinen die Möglichkeit eine PV-Anlage durch Eigen- oder Fremd-

Es besteht im Allgemeinen die Möglichkeit, eine PV-Anlage durch Eigen- oder Fremdfinanzierung zu errichten. Es ist erforderlich Verhandlungen über die Finanzierung mit möglichen Geldgebern zu führen, um eine eventuelle Fremdfinanzierung zu erhalten. Die Finanzierungskosten des Kapitalgebers verteuern das Projekt bei einer Fremdfinanzierung.

Die vorliegende Diplomarbeit untersucht die Wirtschaftlichkeit einer einachsig nachgeführten PV-Anlage. Zudem wird eine Gegenüberstellung der einzelnen Systeme im Alpinen

Abbildung 12 Finanzierungsinstrumente unterschieden in Außenfinanzierung und Innenfinazierung [40].

Raum sowie in der Atacamawüste erstellt. Es wird angenommen, dass die Finanzierung aus Eigenkapital erfolgt. Es ist von wesentlicher Bedeutung, dass die Verzinsung des eingesetzten Kapitals, die Verzinsung eines Sparbuchs oder die Inflationsrate übersteigt. Für die Umsetzung der PV-Anlage werden die Investitionen und der Wirtschaftlichkeitsvergleich der geplanten Anlage betrachtet.

2.4.1. Investition

Bei Investitionsentscheidungen geht es darum, Kapital zu binden und langfristig Renditen zu erwirtschaften. Um die Erwartungen eines höheren Konsums in der Zukunft (z.B. höhere Dividenden) zu kompensieren-wird auf den heutigen Konsum (z.B. laufende Dividenden) verzichtet. Damit die Investition für den Anleger und die Investoren lukrativ ist, muss die Kaufzahlung wieder verdient werden, sowie ein noch darüberhinausgehender Betrag für die Deckung des Investitionsrisikos. Investitionsentscheidungen wirken sich auf die Handlungsfähigkeit eines Unternehmens aus. Bei der Bewertung von Investitionsentscheidungen berücksichtigen wir im Allgemeinen, ob die Investition den Investoren zugutekommt [41]. Abhängig davon, ob der Zeitpunkt der Ein- und Auszahlungen bei der Investitionsberechnung berücksichtigt wird oder nicht, unterscheidet man zwischen statischen und dynamischen Verfahren.

Eine Übersicht über die verschiedenen Investionsrechnungsmethoden ist in Abbildung 13 dargestellt. Im folgenden wird die statische und dynamische Investionsrechnung sowie die Kapitalwertmethode erläutert.

Abbildung 13 Investionsrechnung aufgeteilt in statische und dynamische Investionsrechnung.

Statische Investitionsrechnung verfolgt nicht das Ziel der Maximierung von Einkommen, Vermögen oder Wohlstand. Vielmehr geht es darum, Kosten zu minimieren beziehungsweise Gewinne und Renditen zu maximieren. Statische Investitionsberechnungen basieren auf einem typischen Durchschnittsjahr für das geplante Investitionsobjekt. Während der voraussichtlichen Nutzungsdauer von 25 Jahren wird auf eine detaillierte Analyse einzelner Jahre verzichtet. Zur Ermittlung eines repräsentativen Durchschnittsjahres werden einmalige Zahlungen periodisiert. Als typisches Beispiel für die Periodisierung von Zahlungsvariablen ist hier die Periodisierung von Einkaufszahlungen auf Basis periodischer Abschreibungen zu nennen. Die Periodisierung berücksichtigt dies bei der Ermittlung eines jahrestypischen Durchschnitts. Allerdings wird die zeitliche Struktur der Zahlungsströme bei der Berechnung der statischen Investition nicht berücksichtigt. Dementsprechend werden identische Zahlungen gleich gewichtet, unabhängig davon, wann diese Zahlungen erfolgen [42].

Die Praxis hat jedoch gezeigt, dass die statische Investitionsrechnung immer mehr an Bedeutung verliert und in den meisten deutschen Großunternehmen parallel dazu eine dynamische Investitionsrechnung durchgeführt wird. Bereits im Jahr 1996 hat sich die parallele Verwendung von statischen und dynamischen Investitionsrechnungs-Verfahren auf 59 % gesteigert [43].

Es wird in dieser Arbeit auf die einzelnen statischen Verfahren nicht weiter eingegangen, da diese hier keine Anwendung finden.

Dynamische Investitionsrechnung versucht, die Mängel der statischen Investitionsrechnung zu überwinden. Statische Methoden basieren auf der Annahme, dass die Zeit keinen Einfluss auf den Wert des Geldes hat. Die dynamische Investitionsrechnung basiert hingegen auf der Höhe der durch das Investitionsvorhaben verursachten Zahlungen und den unterschiedlichen Zeitpunkten, zu denen Ein- und Auszahlungen erfolgen. Dieser Grundgedanke stellt einen besonderen Zweig der angewandten Mathematik dar und wird auch im Bereich der Finanzmathematik berücksichtigt. Die Finanzmathematik befasst sich mit Problemen, die es ermöglichen, die Beträge von Zahlungen zu verschiedenen Zeitpunkten unter Berücksichtigung der Auswirkungen von Zinsen und Zinseszinsen zu vergleichen. Dabei wird berücksichtigt, dass nicht nur die absolute Höhe des Cashflow (CF), sondern auch deren zeitliche Verteilung über die Rentabilität einer Investition entscheidet. Unter Zinsen versteht man im Allgemeinen den Preis, der für das Kapital über einen bestimmten Zeitraum anfällt. Der Zins z_{zinsen} errechnet sich aus dem Produkt aus Anfangskapital K_0 , Zinssatz *i* und Anzahl der Zinsperioden *n*. Dies lässt sich mit folgender Gleichung 52 ausdrücken.

$$z_{zins} = K_0 \cdot i \cdot n \qquad \qquad [€] \qquad (52)$$
$$z_{zins}: \text{Zinsen} [€] \qquad i: \text{Zinssatz } [\%]$$

 K_0 : Anfangskapital [\in]

n: Zinsperiode [Jahre]

Mit Zuhilfenahme der Zinsrechnung kann der Endwert K_n (Gl. 53) eines Anfangskapitals K_0 nach n Jahren bei einem gleichbleibenden Zinssatz i ermittelt werden.

$$K_n = K_0 \cdot (1+i)^n = K_0 + q^n$$
 [€] (53)

K_n : Endwert $[\in]$	K . Antengolvanital [ϵ]
i: Zinssatz [%]	Λ_0 : Amangskapitar [ϵ]
q: Zinsfaktor [-]	n: Zinsperiode [Jahre]

Der Zinsfaktor q wird in der Literatur auch als Aufzinsungsfaktor bezeichnet. Die Umkehroperation zur Aufzinsung ist die Abzinsung, mit welcher der Barwert einer zukünftigen Zahlung bestimmt werden kann und wird gemäß Gleichung 54 ausgedrückt.

$$K_n = \frac{K_n}{(1+i)^n} = \frac{K_n}{q^n} \tag{54}$$

 K_n : Endwert [€]i: Zinssatz [%]q: Zinsfaktor [-]n: Zinsperiode [Jahre]

Die Kapitalwertmethode ist nicht nur die in der Finanztheorie favorisierte Methode zur Berechnung von Investitionen, sondern auch international die dominierende Methode in der Unternehmenspraxis [44].

Die Kapitalwertmethode basiert auf dem Prinzip, dass eine Investition dann rentabel wird, wenn die Kapitalrendite den Kaufpreis übersteigt. Zahlungen zu unterschiedlichen Zeitpunkten können jedoch nicht direkt verglichen werden. Sie sind mit einem gemeinsamen zeitlichen Vergleichspunkt verbunden, der Gegenwart oder dem Zeitpunkt der Entscheidung. Dadurch wird das Konzept leichter verständlich [41].

Der Kapitalwert eines Investitionsvorhabens ist der Barwert aller mit der Investition verbundenen Ein- und Auszahlungen. Der Barwert berechnet sich aus dem Zeitwert multipliziert mit dem Abzinsungsfaktor.

Der Kapitalwert wird ermittelt, indem die Rückflüsse (Einzahlungsüberschüsse) für jedes Jahr über die erwartete Nutzungsdauer als Differenz zwischen den mit der Investition verbundenen Einzahlungen und Auszahlungen prognostiziert werden. Anschließend werden die jährlichen Einzahlungsüberschüsse mit dem aus dem Opportunitätskostenprinzip errechneten Kalkulationszinssatz i_{calc} auf den Bewertungsstichtag (t = 0) abgezinst und addiert. Somit ergibt sich für den Kapitalwert C_0 folgende Gleichung 55.

$$C_0 = -A_0 + \sum_{i_{calc}=0}^{n_t} \frac{Z_t}{(1+i_{calc})^t} + \frac{L_n}{(1+i_{calc})^{n_t}} \qquad [\textcircled{e}]$$

C_0 : Kapitalwert der Investition $[\in]$	Z_t : Differenz zwischen Ein- und Auszahlung der
A_0 : Anschaffungszahlung im Zeitpunkt $t = 0 \ [\in]$	Periode $t \in$
n_t : Nutzungsdauer des Investitionsobjekts [Jahre]	i_{calc} : Kalkulationszinssatz [%]
t: Zeitindex [Jahre]	L_n : Liquidationserlös [€]

Ein positiver Kapitalwert (absolute Vorteilhaftigkeit) gibt an, dass die Rendite des jeweiligen Investitionsvorhabens höher ist als die Kapitalmarktzinsen. Für Investoren führen Projekte mit positivem Kapitalwert zu einem Vermögenszuwachs, daher sollten diese Projekte aus finanzieller Sicht umgesetzt werden. Weisen Investitionsprojekte einen negativen Kapitalwert auf, dann liegt die Rendite unterhalb der geforderten Verzinsung. Diese Projekte verringern das Vermögen der Investoren und sollten daher nicht umgesetzt werden. Investitionsprojekte mit einem Kapitalwert von Null generieren genau den von Anlegern geforderten Mindestzinssatz [45].

2.4.2. Wirtschaftlichkeitsvergleich

Der Wirtschaftlichkeitsvergleich wird einerseits vom Standort der PV-Analge im Ötztal mit Nord / Süd und Ost / West Ausrichtung simuliert und andererseits am Standort in der Atacama Wüste mit Nord / Süd und Ost / West Ausrichtung. Mit Nord / Süd beziehungsweise Ost / West Ausrichtung ist die Orientierung der Rotationsachse der PV-Anlage gemeint. Es gibt zwei Varianten pro Standort und Ausrichtung: einmal mit $70\,\%$ Eigenverbrauch und einmal mit Volleinspeisung. Beide Varianten werden zwischen den

Standorten verglichen.

Die angewendeten Parameter der Randbedingungen um die Barwertermittlung der PV-Anlage im Ötztal sowie in der Atacamawüste sind in Tabelle 3 abgebildet. Bei den Randbedingungen werden unter dem Parameter "gleich", für beide Standorte die gleichen Eingangsparameter verwendet.

Tabelle 3	Übersicht	der	angewendeten	Randbedingungen	um	die	Barwerte	der	PV - Anlage	im
	Ötztal sow	vie d	er Atacamawüs	ste zu ermitteln.						

Randbedingungen	Einheit	PV - Anlage Ötztal	PV - Anlage Atacamawüste
Anlagenleistung PV - Anlage Nutzungsdauer PV - Anlage Leistungsverlust PV - Anlage Nutzungsdauer Wechselrichter Kosten Wechselrichtertausch Einspeisevergütung Zukünftige Strompreissteigerung Prognostizierte Jahresstromproduktion Ost / West Prognostizierte Jahresstromproduktion Nord / Süd Installationskosten	kWp $Jahre$ $\frac{\%}{Jahr}$ $Jahre$ \notin $\frac{€}{kWh}$ $\frac{\%}{Jahr}$ kWh kWh kWh \notin	gleich gleich gleich gleich gleich gleich gleich unterschiedlich gleich	gleich gleich gleich gleich gleich gleich gleich unterschiedlich gleich
Betriebskosten	€	gleich	gleich

2.5. Vergleich stationäre und einachsig nachgeführte PV - Anlagen

Für die folgenden Leistungsvergleiche der PV - Anlage wurde die Software PVsyst [46] verwendet. Das Simulationstool PVsyst wurde speziell für die Simulation und Analyse von PV - Systemen entwickelt und bietet eine Vielzahl an Optionen und Hintergrunddaten. Es können sowohl fest installierte als auch ein- oder zweiachsig nachgeführte Anlagen simuliert werden, wobei umfangreiche Parameter eingestellt oder verändert werden können, um die Erträge von PV - Anlagen detailliert analysieren und optimieren zu können. Die Genauigkeit der Simulation ist jedoch stark von der korrekten Eingabe der Parameter abhängig.

Zur Berechnung des rückseitigen Energieertrags berechnet PVsyst in einem ersten Schritt die auf den Boden auftreffende Strahlung nahe der PV-Module. Die vom Sonnenstand abhängige direkte Strahlung erreicht den Boden nur zwischen den Modulen und wird ebenso wie die diffuse Strahlung für jeden Zeitschritt der Simulation neu berechnet. Der Anteil des Lichts, der das PV-Modul schließlich erreicht, wird View-Factor (Sichtfaktor) genannt. Diese Sichtfaktoren werden sowohl für die Rückseite als auch für die Vorderseite des Moduls ausgewertet [46]. Unter PVsyst lassen sich unter anderem folgende Parameter für bifaziale Anlagen definieren:

- Albedo Faktor
- Höhe über dem Boden

35

- Bifazialitätsfaktor
- Neigungswinkel
- Reihenanzahl
- Reihenabstand beziehungsweise Flächendeckungsgrad
- Strukturverschattungsfaktor
- Lichtdurchlässiger Anteil der Reihen (Transparenzfaktor)
- Mismatchverlustfaktor

Für die Simulation wird die exakt konstruierte PV - Anlage am Prototyp - Standort in Unterried 39, A - 6444 Längenfeld verwendet (Längengrad: 47.09° Nord, Breitengrad: 10.94° Ost, Höhe: 1151 m.ü.M, Zeitzone: Universal Time Coordinated (UTC)+1). Bei dieser Simulation ergeben sich aufgrund der unterschiedlichen Ausrichtungen beziehungsweise Nachführsysteme drei verschiedene Varianten:

- Variante a_1 : einachsige Nachführung mit Nord / Süd Ausrichtung, Längenfeld
- Variante b_1 : einachsige Nachführung mit Ost / West Ausrichtung, Längenfeld
- Variante c_1 : stationäre Anlage mit Neigungswinkel 5°, Längenfeld

Im nächsten Schritt werden die gleichen Simulationen, mit Abweichung der geografischen Lage und Wetterdaten, in Calama, Atacamawüste (Längengrad: -22,50° Süd, Breitengrad: -68,90° Ost, Höhe: 2312 m.ü.M, Zeitzone: UTC - 4) simuliert.

- Variante a_2 : einachsige Nachführung mit Nord / Süd Ausrichtung, Calama
- Variante b_2 : einachsige Nachführung mit Ost / West Ausrichtung, Calama
- Variante c_2 : eine stationäre Anlage mit Neigungswinkel 5°, Calama

Die Wetterdaten für die beiden Standorte stammen aus der Bibliothek von PVsyst (Meteonorm 8.1 (1996 - 2015) - Modelliert). Die Varianten (a_1, b_1, c_1) am Standort Längenfeld werden anschließend mit den drei Varianten aus Calama (a_2, b_2, c_2) verglichen. Dabei werden die kWh/Jahr, kWh/kWp/Jahr, Performence Ratio und die Amortisationszeit beziehungsweise Barwerte ausgewertet.

2.6. Bau der Pilotanlage

Nachdem die technischen Abklärungen und die Auslegung der PV-Anlage definiert sind, geht es in einem weiteren Schritt darum, die Pilotanlage aufzubauen. Folgende Hauptpunkte müssen berücksichtigt sein, um die PV-Anlage zu errichten.

- Baubewilligungsverfahren
- Netzanschluss (Tinetz)
- Beschaffung der PV-Komponenten und Stahlbau

- Bau der Fundamente
- Installation und Inbetriebnahme der PV-Anlage

Baubewilligungsverfahren Um eine PV-Anlage in der Gemeinde Längenfeld, Tirol zu errichten, muss ein positiver Baubescheid vorliegen. Dazu müssen Dokumente wie der Einreichplan und Lageplan laut §31 Tiroler Bauordnung (TBO) vorliegen. Ferner gilt es die Einspeisung und deren Tarife abzuklären.

Beschaffung der PV - Komponenten Die PV - Module, Antrieb, Tracking Unit, Lagerung und Wechselrichter werden bei den ermittelten Herstellern (Kap. 2.2.1 - 1.5.2) bestellt. Der Stahlbau wird bei der Mair Wilfried GmbH [47] in Auftrag gegeben.

Bau der Fundamente Die Fundamente werden nicht direkt vor Ort gefertigt und betoniert, sondern werden im Betonwerk der Auer Bau GmbH [48] gefertigt. Damit das Fundament gegossen werden kann, muss zuerst die Schalung auf die besagten Abmaße erstellt und angefertigt werden. Anschließend müssen die Bewehrungstäbe zusammengebunden werden. Im nächsten Schritt kann die Bewehrung sowie die Verankerung zwischen biegesteifer Anschlussplatte und Fundament eingelegt werden. Dazu wird eine Schablone verwendet, damit sichergestellt ist, dass der Anschluss mit der Stahlplatte übereinstimmt. Zusätzlich wird in einem der Fundamente ein Polyvinylchlorid (PVC) Rohr für die Kabel des Antriebs und der PV-Module eingelegt. Das Ganze wird anschließend mit Beton aufgefüllt.

Installation und Inbetriebnahme der PV-Anlage Als erstes muss der Aushub für die Fundamente durchgeführt werden. Dabei ist darauf zu achten, dass der Untergrund für die Fundamente gut verdichtet ist und ausreichend Platz rund um das Fundament freigelegt ist. Im gleichen Arbeitsschritt erfolgt ebenso der Aushub für die Rohrverlegung von der PV-Anlage zum Wechselrichter. Anschließend an die Aushubarbeiten können die Fundamente eingelegt und genau ausgerichtet werden. Im nächsten Schritt können die Stützenträger installiert werden. In einem weiteren Schritt werden der Antrieb, Stehlager und Hohlprofile montiert. Auf die Hohlprofile werden die I-Träger mit dem Abstand der PV-Module angeschlossen und exakt ausgerichtet. Darauf folgend können die PV-Module mit den I-Trägern verbunden werden. Im nächsten Schritt werden die einzelnen PV-Module miteinander verbunden. Die letzten Arbeitsschritte umfassen die Installation der Tracking Unit und des Wechselrichters. Die Installation der Tracking Unit bestehend aus, NCU, TCU, RSU und Wetterstation, wird von der Firma Suntrack [23] durchgeführt. Die Installation des Wechselrichters und der Anschluss an das lokale Stromnetz wird von der Firma MF - Tronic [49] aus Längenfeld durchgeführt.

3. Resultate und Diskussion

Aufgrund der behördlichen Bewilligungen und der Geometrie am Standort in Längenfeld kann die Pilot PV - Anlage wie in Abbildung 14 und Tabelle 4 ausgelegt werden. Detailliertere Abbildungen zum Zusammenbau und die Stückliste können dem Anhang A.1 entnommen werden. Die PV - Module der PV - Anlage können einen Neigungswinkel von maximal 60° einnehmen. Die Hauptstahlkonstruktion besteht aus drei HEA - Trägern (Mittelstütze HEA 200, Randstützen HEA 160), die auf bewehrten Einzelfundamenten biegesteif angeschlossen sind. Die IPE 100 - Träger sind mit einem Hohlprofil (QRO 150x4), welches die Rotationsachse definiert, verbunden. Die PV - Module sind auf IPE - Träger senkrecht auf dem Hohlprofil angeschraubt. Der Antrieb befindet sich auf der mittleren Stütze und unterteilt die PV - Anlage in zwei PV - Modulflächen.

Das Nutzungskonzept für die Pilotanlage ist durch die Ausrichtung der PV-Module bei bestimmten Ereignissen gemäß Abbildung 15 definiert und programmiert. Das bedeutet, bei Windgeschwindigkeiten größer als 60 km/h stellen sich die PV-Module automatisch horizontal (Neigungswinkel entspricht 0°). Bei hohen Windgeschwindigkeiten wirkt sich ein kleiner Neigungswinkel positiv auf die Stabilität des Gesamttragwerkes aus. Wenn die Umgebungstemperatur unter 4° C fällt und Niederschlag (Regen) vorhanden ist, stellen sich die PV-Module in einen Neigungswinkel von 60° auf. Dies bewirkt, dass kein Schnee auf der Anlage haften kann und wirkt sich ebenfalls positiv auf die Stabilität des Gesamttragwerkes aus. Treten alle drei Ereignisse, Wind, Umgebungstemperatur und Niederschlag auf, so stellen sich die PV-Module horizontal ein. Zudem wird davon ausgegangen, dass beim Auftreten aller drei Ereignisse der Wind den anfallenden Schnee von den PV-Modulen weht. Die Windkraft wirkt ungünstiger auf das Tragwerk im Vergleich zur Schneelast (Kap. 2.3). Die PV-Module folgen der Sonne, wenn keines der drei genannten Ereignisse auftritt.

Abbildung 14 Pilot PV-Anlage im Ötztal (Abmaße in mm).

Bezeichnung	Symbol	Wert	Einheit
Höhe Stützen	h	2.5	m
Breite PV-Modul	b_{solar}	$1,\!35$	m
Länge PV-Modul		$2,\!38$	m
Länge $2 \ge PV$ - Module	l_{solar}	4,789	m
Breite $12 \ge PV$ - Module	b	$16,\!39$	m
Bezugsfläche PV-Module	A_{ref}	$78,\!68$	m^2
Höhe $\rm PV$ - An lage 60 $^\circ$	h_{max}	4,58	m
Gewicht PV-Modul	m_{panele}	38,3	kg
Anzahl PV-Module	n_{panele}	24	-
Gewicht Stahloberbau	$m_{stahloberbau}$	780	kg

Tabelle 4 Resultierende Geometrieparameter und Gewicht der PV-Anlage.

3.1. PV - Anlage

Auswahl Antrieb Das Ergebnis der Gleichung 16 resultiert zu einem Antriebsmoment $M_{Ed} = 1,73$ kNm. Mit einem Teilsicherheitsbeiwert $\gamma_Q = 1,5$ ergibt sich ein wirkendes Moment von 2,6 kNm (Anh. A.2; Abb. 40). Dieses Moment muss der Antrieb mindestens aufnehmen können. Basierend auf den genannten Kriterien in Kapitel 2.2.1 ergeben sich folgende drei Hersteller für den Antrieb: SunSlew [50], TBG Group [51], CHANGZHOU HANGTUO MECHANICAL CO., LTD [52]. In Tabelle 5 sind die drei Hersteller mit den Kriterien aufgeführt. Bei der Wahl des Antriebes spielen neben dem Haltemoment, die Kosten, die Kommunikation und Expertise des Herstellers eine große Rolle.

Der ausgewählte Antrieb von SunSlew Modell VD10P-100S140-LC-SH032-0,3 hat ein Haltemoment von $M_{max} = 70$ kNm und erfüllt somit die Gleichung 17. Ebenfalls erfüllt er die Kriterien der radial / axial statischen und dynamischen Belastungen. Zudem war die Kommunikation mit der Firma SunSlew besonders unkompliziert und der Austausch der CADfiles erfolgte stets am gleichen Tag. Zudem darf vermerkt werden, dass die Firma SunSlew bereits den Antrieb für die Pilotanlage der Firma Solabolic GmbH [53] geliefert hat und dadurch als zuverlässiger Lieferant bekannt ist. Allerdings ist der ausgewählte Antrieb für die Pilotanlage stark überdimensioniert. Dies resultiert daher, dass sich die Anzahl der PV-Module aufgrund zahlreicher Abänderungen, welche von der örtlichen Baubehörde gefordert wurden, halbiert hat. Hauptargument der Baubehörde war, dass sich die PV-Anlage mit dieser Größe nicht in das Orts- und Landschaftsbild integrieren lässt. Die ursprüngliche Anlage war auf 48 Stück PV-Module ausgelegt und entsprach einer PV-Modulfläche von 149 m², dies entspricht der doppelten Fläche gegenüber der jetzigen Pilotanlage. Für die ursprüngliche Geometrie betrug das Moment $M_{Ed} = 14,35$ kNm.

Auswahl Tracking Unit Basierend auf den Kriterien, die in Kapitel 2.2.2 definiert wurden, konnten zwei Hersteller für die Tracking Unit bestimmt werden. Als erster Hersteller wird das chinesische Unternehmen GOOD Future Solar aus Henan, China [54] angeführt. GOOD Future Solar hat sich auf die Fertigung von Tracking Units und Solardämpfer

Abbildung 15 Nutzungskonzept der PV-Module bei bestimmten Ereignissen (Wind, Regen, Schnee und Sonneneinstrahlung).

Tabelle 5 Resultat des Vergleichs der A	uswahl des Antriebes nach Hersteller.
---	---------------------------------------

Kriterien	Einheit	SunSlew	TGB Group	CHANGZHOU HANGTUO MECHANICAL CO., LTD
		VD10P-100S140-LC-SH032-0,3	VE14	SE12
Axiale statische Belastung	kN	108	555	110
Radiale statische Belastung	kN	54	222	230
Axiale dynamische Belastung	kN	98	133,2	-
Radiale dynamische Belastung	kN	49	116,6	-
Haltemoment	kNm	70	54,5	40,56
Kippmoment	kNm	16	-	15
Genauigkeit Winkelnachführung	0	≤ 0.17	$\leq 0,1$	$\leq 0,1$
Kosten	€	1.384,26	1.836,75	kein Angebot erhalten
Kommunikation & Expertise	-	sehr gut	gut	mäßig

spezialisiert. Dieser Hersteller konnte durch den einfachen Aufbau der NCU und TCU punkten. Ein wesentlicher Nachteil ist, dass die Wetterstation, bestehend aus Wind und

Schneesensor, qualitativ nicht den erwarteten Anforderungen entsprechen und das optische erscheinen der Sensoren nicht ansprechend ist. Dieses System kann entweder über den String oder über das Stromnetz mit dem notwendigen Steuerstrom versorgt werden. Die Gesamtkosten für diese Tracking Unit belaufen sich auf auf $\in 1.509,00$, Installationskosten nicht berücksichtigt.

Ein weiterer Hersteller ist die Firma suntrack [55] mit Hauptsitz in Spanien. Suntrack ist eine Tochtergesellschaft der Firma P4Q und hat unter anderem Produktionsstätten in Albuquerque (USA) und Kunshan City (China) sowie Service Zentren in Mexico, Chile und Brasilien. In den unzähligen Besprechungen mit der Technikabteilung konnte ein guter Überblick über die weltweit installierten Systeme gewonnen werden. Mit Stand 25.03.2024 zählt suntrack zu den größten Lieferanten, mit mehr als 40 GW installierter Leistung, 800.000 installierten Geräten auf 1.700 Standorte verteilt [23]. Zudem zeichnete sich suntrack durch die hochwertigen und gut verarbeiteten Komponenten aus. Besonders auffallend war der gute Support und die Tatsache, das bei der Inbetriebnahme Techniker für die Installation bereitgestellt werden. Wie bereits zu erwarten war, sind die Kosten für die einzelnen Komponenten deutlich höher als bei GOOD Future Solar. Ein deutlicher Preisunterschied konnte bei den Komponenten für die NCU und Wetterstation festgestellt werden. Die NCU und der Ultraschall-Schneesensor von suntrack ist mit $\in 2.914,26$ we sentlich teurer gegenüber GOOD Future Solar mit \in 1.243,00. Es wird nochmals festgehalten, dass die Zuverlässigkeit und ein störungsfreier Betrieb der Anlage, auch bei besonderen Ereignissen wie bei Windböen und starkem Schneefall, unabdingbar ist. Die Gesamtkosten für die Tracking Unit inklusive Inbetriebnahme vor Ort der Firma suntrack betragen $\in 3.353,56$.

Die Kosten für die einzelnen Komponenten würden sich bei größeren Anlagen deutlich besser amortisieren, da auch für größere Anlagen nur eine Wetterstation ausreichend ist. Zudem können an eine NCU bis 70 TCU angeschlossen werden.

Auswahl Lagerung Anhand der Kriterien die in Kapitel 2.2.3 festgelegt wurden, konnten folgende Lagerhersteller ermittelt werden. Die Stehlager von der Igus GmbH sind sowohl mit runden als auch mit Vierkant - Lagereinsätzen erhältlich. Die Runden Lagereinsätze sind in den Durchmessern 120 - 140 mm erhältlich. Die Vierkant - Lagereinsätze sind für Vierkantrohre von 100 - 150 mm erhältlich. Laut internen Laborversuchen bestätigt Igus einen nahezu verschleißfreien Betrieb der Lager nach 72 Jahren bei 15 kN dauerhafter Belastung. Zudem garantiert die Igus GmbH eine maximal statische Belastung von bis 50 kN bei Vierkantlagereinsätzen mit 150 mm. Die Lager sind zur Gänze aus Kunststoff gefertigt und bestehen aus zweiteiligen Lagerschalen und Lagereinsätzen. Durch den Einsatz von sphärischen Lagerschalen können leichte Schiefstellungen der Welle sehr gut ausgeglichen werden. Ein wesentlicher Nachteil dieses Herstellers sind die hohen Kosten bei geringen Stückzahlen. Im Fall der Pilot - Anlage werden nur vier Stück benötigt und die Kosten je Lager belaufen sich auf $\in 94,16$ exklusive Versand und Steuern [56].

Ein weiterer Hersteller für Stehlager ist die CSB Plastic Bearing Technology aus China. Der Aufbau dieses Stehlagers ist sehr ähnlich dem Stehlager von der Igus GmbH. Ein deutlicher Unterschied ist jedoch, dass bei diesem Lager die obere Lagerschale noch zusätzlich mit einem feuerverzinkten Metallbügel gestützt wird. Die Lager von der CSB Plastic Bearing Technology können einer maximalen statischen Belastung von 30 kN standhalten. Zudem sind dieser Lager wartungsfrei und können leichte Schiefstellungen der Welle ausgleichen [57]. Im Vergleich zu den Lagern von Igus sind diese Lager deutlich günstiger, die Kosten je Lager belaufen sich auf $\in 40,11$ inklusive Verzollung und Versandkosten aus China. Somit sind die Stehlager von der CSB Plastic Bearing Technology nur halb so teuer wie die Lager von der Igus GmbH, bei vergleichbaren Eigenschaften.

Als dritter Hersteller von Stehlagern für PV - Anlagen wird auf die Lager von Trina Solar eingegangen. Im Vergleich zu den beiden zuvor angeführten Herstellern werden die Stehlager von Trina Solar direkt an den Träger befestigt es wird keine zusätzliche Halteplatten zwischen Stehlager und vertikalem Träger benötigt benötigt. Dies führt zu einer Reduktion der Herstellungskosten für den Stahlbau jedoch sind diese Lager wesentlich teurer als die geteilten Stehlager von der CSB Plastic Bearing Technology. Ein wesentlicher Vorteil dieser neuartigen Lagereinheit ist, dass Verdrehungen von $\pm 3^{\circ}$ des Trägers um die Längsachse sowie eine Schiefstellung der Welle bis zu 20,89° kein Problem darstellt [58]. Dies ermöglicht eine optimale Anpassung der PV - Anlage an die Topografie. Trina Solar verweigerte jedoch den Verkauf der Stehlager an die Klotz Engineering GmbH, mit der Begründung es wird zum jetzigen Zeitpunkt nur im Komplettsystem inklusive Stahlbau vertrieben.

Für die Pilot - Anlage wurden aufgrund des einfachen und robusten Aufbaues sowie den geringen Anschaffungskosten die Lager von CSB Plastic Bearing Technology, Modell MN527 verwendet. Die maximal wirkende Normalkraft auf die HEA 160 Träger resultiert gemäß RSTAB zu 53,50 kN. Auf jedes einzelne Stehlager wirkt eine Kraft von 26,75 kN und ist kleiner als die maximale Kraftaufnahme von 30 kN. Abbildung 16 stellt die unterschiedlichen Lagertypen welche zuvor betrachtet wurden bildlich dar.

Abbildung 16 Auswahl Lagerung: a) CSB, MN527; b) Igus, ESQM-150; c) Trina Solar, spherical bearing.

Auswahl bifaziales PV - Modul Abbildung 17a zeigt, dass alle Hersteller die gleichen Belastungswerte angeben. Die Belastung an der Vorderseite (positive Belastung) durch Wind beziehungsweise Schneedruck beträgt einheitlich $5,4 \text{ kN/m}^2$. Die Schneelast auf die PV - Module beträgt maximale $2,16 \text{ kN/m}^2$ (Tab. 6). Die maximale Belastung an der Rückseite fällt mit $2,4 \text{ kN/m}^2$ deutlich geringer aus. Die maximale Belastung an der Rückseite resultiert zu $0,36 \text{ kN/m}^2$ (Tab. 6). Die gering wirkende Einwirkung im Verhältnis zum Widerstand ist darauf zurückzuführen, dass eine Windgeschwindigkeit von 60 km/h anstelle der Spitzenwindgeschwindigkeit von 110 km/h für die Berechnung des Winddrucks verwendet wurde.

In Abbildung 17b sind die Preise je Modul sowie die Effizienz-Angaben der einzelnen Hersteller dargestellt. Bemerkenswert ist ebenfalls, dass alle Hersteller die gleichen Abmaße bei den Modulen verwenden. Die Modul-Effizienz STC wird in Prozent angegeben. Trina Solar weist mit 21,4 % die höchste Effizienz auf. Aufgrund der Tatsache, dass die PV-Module von Trina Solar preislich am günstigsten sind und gleichzeitig den höchsten STC Wert aufweisen, werden diese Module verwendet.

a) Belastungseigenschaften vers. PV-Module.

b) Modul Effizienz und Preis.

Auswahl Wechselrichter Abbildung 18 gibt einen Überblick über die zugelassenen Wechselrichter in Österreich, welche den Kriterien aus Kapitel 2.2.5 entsprechen. Die Kosten für den Wechselrichter der unterschiedlichen Hersteller wurden in Abbildung 18a zusammengetragen. Der Wechselrichter Sunny Tripower 15 - 50 von SMA ist fast doppelt so teuer, wie alle weiteren. Wird die dazugehörige Nennscheinleistung (Abb. 18b) betrachtet, fällt bei einigen Wechselrichtern auf, dass die Nennscheinleistung um bis zu 1,5 kW höher ist als die Nennwirkleistung. Der Bereich zwischen Nennscheinleistung und Nennwirkleistung wird als Blindleistung bezeichnet. Die Blindleistung in einem Wechselstromsystem entsteht durch die Phasenverschiebung von Spannung und Strom. Falls es keine Phasenverschiebung gibt, gibt es auch keine Blindleistung und $\cos(\varphi) = 1$. Aus Preis - leistungstechnischer

Abbildung 17 Auswahl bifarziales PV-Modul: a)Vergleich der Belastungseigenschaften Vorderund Rückseite verschiedener PV-Modulhersteller; b) Vergleich der Modul Effizienz und der Preise je Modul der unterschiedlichen Hersteller.

Sicht übertrifft der Huawei SUN2000-15KTL alle seine Konkurrenten, dies wird ebenfalls vom Elektromeister, Manfred Fritzer von der Firma MF Tronic, bestätigt.

a) Preise Wechselrichter.

b) Nennwirkleistung und Nennscheinleistung.

Abbildung 18 Vergleich der Wechselrichter diverser Hersteller: a) Preisvergleich; b) Nennwirkleistung und Nennscheinleistung der unterschiedlichen Hersteller.

3.2. Stahlbau und Fundamente

Die resultierenden Einwirkungen für die verschiedenen Lastfälle und Modelle sind in Tabelle 6 zusammengefasst. Diese werden im RSTAB - Modell angewendet. In Abbildung 19 ist das Modell mit der Schnee- und Windeinwirkung dargestellt und das Modell für den Wind bei einer PV-Modulneigung von 60°. Die ausführlichen Berechnungsschritte sind dem Anhang A.2 zu entnehmen. Für die Bemessung des Stahlbaus ist die Einwirkung durch den Schnee maßgebend (Abb. 19a). Die Windkraft ist maßgebend für die Bemessung der Fundamente (Abb. 19b).

	Symbol	Einheit	$\operatorname{PV}\operatorname{-}\operatorname{Modul} 0^\circ$	PV-Modul 60° Druck	$\mathrm{PV}\operatorname{-Modul}60^\circ\mathrm{Sog}$
Windkraft	F_w	kN	-	28,62	-28,62
Winddruck	q_w	$\frac{kN}{m^2}$	-	0,36	-0,36
Windreibungskraft	F_{fr}	kN	-	0,18	0,18
Schneelast	Q	kN	169,94	-	-
Schneedruck	s	$\frac{kN}{m^2}$	2,16	-	-
Windlast auf HEA - Träger	$q_{w_{HEA}}$	$\frac{\underline{kN}}{m}$	0,24	-	-

Tabelle 6 Resultierende Wind- und Schneeeinwirkung auf die PV-Anlage.

b) RSTAB Modell: Windeinwirkung

Abbildung 19 RSTAB Modelle: a) Schnee- und Windeinwirkung; b) Windeinwirkung.

Einwirkungsannahmen & Teilsicherheitsbeiwerte Die Einwirkung für die Windlast ermittelt sich anhand des Böengeschwindigkeitsdrucks q_p . Für den Standort der PV-Anlage ist die Spitzenwindgeschwindigkeit nach dem HORA [21] mit 110 km/h (30,56 m/s) angegeben. Aufgrund des PV-Anlagen Nutzungskonzepts, dass die Anlage bei Windgeschwindigkeiten von 60 km/h (16,67 m/s) den Neigungswinkel von 60° auf 0° stellt, wird für die Ermittlung des Böengeschwindigkeitdrucks eine Spitzenwindgeschwindigkeit von 60 km/h (16,67 m/s) verwendet. Als Windkraftbeiwert wird $c_f = 1,8$ für Anzeigetafeln verwendet [17]. Die ÖNORMEN 1991-1-4 [17] deckt den vorliegenden Fall für freistehende Flächen (PV-Modulen) mit Neigungswinkel von 60° nicht ab. Die Amerikanische Norm ASCE 7-16 [59] handelt die freistehenden Flächen mit PV-Modulen detaillierter ab. Basierend darauf resultiert ein Windkraftbeiwert von 1,45. Der Windkraftbeiwert ist linear in Gleichung 6 und 7 und somit resultiert in der ÖNORM EN 1991-1-4 [17] bereits eine höhere Windkraft von 20 % im Vergleich zur ASCE 7-16. Aufgrund der bereits reduzierten Spitzenwindgeschwindigkeit wird mit dem Windkraftbeiwert von 1,8 gerechnet. Für veränderliche Einwirkungen wird ein Teilsicherheitsbeiwert von 1,5 angewendet und der Winddruck resultiert zu $q_w = 0.36 \,\mathrm{kN/m^2}$.

Für die Bemessung der Schneeeinwirkung wurde die Schneelast des 50-jährigen Ereignis $s_k = 2.7 \text{ kN/m}^2$ für den Standort in Längenfeld angenommen. Gemäß Gleichung 12 resultiert der Bemessungswert $s = 2.16 \text{ kN/m}^2$. Es wird kein zusätzlicher Teilsicherheitsbeiwert angewendet. Das Nutzungskonzept der PV-Anlage sieht vor, dass bei Schneefall ohne Wind die PV-Module der Anlage eine Neigung von 60° einnehmen. Aufgrund der Steilheit, ist es unwahrscheinlich, dass der Schnee haften bleibt und es zu einer maßgebenden Schneelast kommt. Wenn die PV-Module eine Neigung von 0° aufweisen und eine Kombination aus Schneefall und Wind vorliegt, ist dies ebenfalls als aussergewöhnliches Ereignis zu betrachten und wird deshalb mit einem Teilsicherheitsbeiwert von 1,0 gerechnet. Die Windeinwirkung auf den HEA Träger im Kombinationsfall Schnee und Wind wird mit der Spitzenwindgeschwindigkeit von 110 km/h und dem Teilsicherheitsbeiwert von 1,5 berechnet.

Nachweis Stahlbau Für die Bemessung des Stahlbaus ist der Lastfall durch die Schneeeinwirkung maßgebend. In Tabelle 7 sind die Resultate der Tragfähigkeitsnachweise für jeden jeweiligen Profiltyp des am stärksten beanspruchten Stabes zusammengetragen. Die Resultate des Spannungsnachweises sind in Tabelle 8 dargestellt. Die maximale Verformung in z-Richtung resultiert bei den IPE-Profilen mit 76,5 mm (Abb. 20). Das Hohlprofil zeigt eine Verformung in z-Richtung von maximal 43,5 mm.

Der Nachweis beim Hohlprofil (QRO 150 x 4) ist sowohl beim Querschnittsnachweis Biegung und Normalkraftbeanspruchung, Stabilitätsnachweis wie auch beim Spannungsnachweis nicht erfüllt. Dies resultiert aufgrund der zulässigen Spannung im elastischen Bereich. Unter der Annahme, dass die plastische Reserve verwendet werden darf, mit einer zuläs-

	HEA 200	HEA 160	$\mathrm{IPE}100$	$\rm QRO150x4$
Stabnummer	1	3	36	50
Querschnittsklassen				
Klasse	2	1	1	3
Berechnungsverfahren	plastisch	plastisch	plastisch	elastisch
Querschnittsnachweis				
Druckbeanspruchung (Gl. 18)	$0,037 \le 1,0$	$0,039 \le 1,0$	-	$0,012 \le 1,0$
Biegebeanspruchung (Gl. 19)	$0,011 \le 1,0$	$0,\!400 \le 1,\!0$	$0,\!601 \le 1,\!0$	
Querkraftbeanspruchung (Gl. 20)	-	$0,018 \le 1,0$	$0,060 \le 1,0$	$0,166 \le 1,0$
Biegung & Normalkrafbeanspruchung (Gl. 21, 22)	$0,011 \le 1,0$	$0,\!400 \le 1,\!0$	$0,\!410 \le 1,\!0$	$1,\!173 \le 1,\!0$
Stabilitätsnachweis				
Biegung & Knicken Hauptachsen (Gl. 23)	$0,047 \le 1,0$	$0,300 \le 1,0$	$0,796 \le 1,0$	$1,\!173 \le 1,\!0$
Biegung & Knicken Hauptachsen (Gl. 24)	$0{,}061 \leq 1{,}0$	$0{,}486 \leq 1{,}0$	$0{,}815 \leq 1{,}0$	$1,\!173 \le 1,\!0$

Tabelle 7 Übersicht der Stahlbau Nachweise: Beanspruchung der Querschnitte und der Stabilität.

Tabelle 8	8	Überischt	des	Spannungsnad	chweises	für	den	Stahlbau
Tub ente	~	C D CI ID CI IC	aco	spannangona		LOL	aon	Statistaa

	Symbol	Einheit	HEA 200	HEA 160	IPE 100	$\rm QRO150x4$
Vorhandene Spannung Zulässige Spannung Nachweis	$\sigma_{vor;Mises}$ $\sigma_{vor;Mises}$	$\frac{\frac{N}{mm^2}}{\frac{N}{mm^2}}$	$\begin{array}{l} 19,21 \\ 355 \\ 0,054 \leq 1,0 \end{array}$	231,06 355 $0,651 \le 1,0$	273,18 355 $0,77 \le 1,0$	$ 418,93 \\ 355 \\ 1,18 \le 1,0 $

Abbildung 20 RSTAB Resultat aus der Verformungsanalyse unter der Schneelast.

sigen Spannung bei $490 \,\mathrm{N/mm^2}$, sind alle Nachweise erfüllt. Dies bedeutet jedoch, dass die Bohrungen für die Schraubverbindung zwischen Antrieb und Hohlprofil, im Falle einer Grenzbelastung, leichte Deformationen aufweisen werden. Ergänzend muss erwähnt werden, dass die Eigensteifigkeit der PV-Module nicht bei der Berechnung berücksichtigt wurden. Falls die Verformungen aus unbestimmten Gründen Werte überschreiten, die nicht akzeptabel sind, kann das Hohlprofil von außen nochmals verstärkt werden oder in QRO 150 x 5 mm ausgeführt werden.

Nachweis Schraubverbindungen Die Nachweise (Schubspannung der Schraube, Lochleibung im Blech und Zugbeanspruchung des Restquerschnittes) für die Schraubverbindung wurden für den maßgebenden Lastfall (Wind oder Schnee) ermittelt. Als maßgebend resultierten die Schnittkräfte aus dem Lastfall Schneefall für die Schrauben vertikal am HEA - Träger (Gruppe A, Abb. 21). Für die Schrauben horizontal am Träger (Gruppe B, Abb. 21) ist der Lastfall Wind direkt angeströmt auf die Module maßgebend . In Tabelle 9 sind die Ergebnisse dargestellt. Die ausführlichen Berechnungen sind im Anhang A.4 ersichtlich. Für die Schraubverbindungen wurden M16 Schrauben mit einer Festigkeit von 8.8 verwendet. Wie in Tabelle 9 ersichtlich ist, sind die Schrauben der Gruppe B mit M16 stark überdimensioniert. Da nur vier Schrauben betroffen sind und es die Montage vereinfacht, werden die gleichen Schrauben für Gruppe A und B verwendet. Zudem darf angemerkt werden, dass die Bohrungen im Antrieb bereits vorgefertigt sind und der verbaute Antrieb in der Regel größeren Kräften standhalten muss.

Abbildung 21 Schraubverbindung Aufteilung in Gruppe A und B.

	Schubspannung				Lochleibung			Zugbeanspruchung		
der Schraube			im Blech			des Restquerschnittes				
	$ au_a$	$ au_{zul}$	$\frac{\tau_{zul}}{\tau_a} \ge 1.0$	$\sigma_{L;i}$	σ_{zul}	$\frac{\sigma_{zul}}{\sigma_{L;i}} \ge 1.0$	$\sigma_{Z;i}$	$\sigma_{Z;zul}$	$\frac{\sigma_{Z;zul}}{\sigma_{Z;i}} \ge 1.0$	
	$\left[\frac{N}{mm^2}\right]$	$\left[\frac{N}{mm^2}\right]$	[-]	$\left[\frac{N}{mm^2}\right]$	$\left[\frac{N}{mm^2}\right]$	[-]	$\left[\frac{N}{mm^2}\right]$	$\left[\frac{N}{mm^2}\right]$	[-]	
А	55,92	192	$3.43 \ge 1,0$	91,45	248,5	$2,72 \ge 1,0$	63,61	248,5	$3,91 \ge 1,0$	
В	$17,\!29$	192	$11{,}1\geq1{,}0$	$21,\!21$	248,5	$11{,}72 \geq 1{,}0$	$2,\!57$	248,5	$96,\!65 \ge 1,\!0$	

Tabelle 9 Resultat der Schraubverbindung für den Lastfall Wind und Schnee.

Nachweis Schweißnähte Die Schweißnahtdicke am Stützenfuß resultiert zu $a_w = 4 \text{ mm}$ mit einer Schweißnahtlänge von $l_w = 568 \text{ mm}$. Dabei ist die Einwirkung aus der Windlast aufgrund des resultierenden Moments maßgebend. Ein Teilsicherheitsbeiwert von $\gamma_Q = 1,5$ wurde angewendet, damit gewährleistet ist, dass die Schweißnaht bei außergewöhnlicher Einwirkung nicht bricht.

Ebenfalls maßgebend ist die Windeinwirkung für die Bemessung der Schweißnaht am Stützenkopf für die Halterung des Antriebs. Diese ergibt eine Schweißnahtdicke von $a_w = 3 \text{ mm}$ und hat insgesamt eine Schweißnahtlänge von $l_w = 1921 \text{ mm}$. Die ausführlichen Bemessungsschritte sind dem Anhang A.5 zu entnehmen.

Nachweis Anschluss Grundplatte - Träger Für den Anschluss der biegesteifen Stütze ins Fundament wurde als Mikropfahl GEWI 28 mm gewählt. Die Anschlussplatte besteht aus vier GEWI 28 mm. Der Nachweis erfolgt durch die Gleichung 44 und 45 zu vier GE-WI 28 mm. Als Normalkraft resultiert die Schneeeinwirkung als maßgebend und für die Querkraft der Lastfall Wind. Beide Fälle müssen von den Mikropfählen aufgenommen werden. Die Ergebnisse pro GEWI 28 mm sind in Tabelle 10 zusammengetragen. Angenommen das sich die Lasten gleichmäßig auf alle vier GEWI 28 mm verteilen. Die Sicherheit der GEWI 28 mm ist auch bei der Annahme, dass nur zwei von vier Mikropfählen die Lasten aufnehmen, aufgrund der überdimensionierten GEWI 28 mm, gewährleistet.

	Symbol	Einheit	Lastfall Schnee	Lastfall Wind		
Anzahl GEWI	n _{Gewi}	-	4	4		
Teilsicherheitsbeiwert	γ_Q	-	1,5	1,5		
Normalkraft	N_{Ed}	kN	$26,\!34$	3,02		
Querkraft y-Richtung	V_y	kN	0,05	4,05		
Querkraft z-Richtung	\mathbf{V}_{z}	kN	0	0		
${\it Querschnitts} fl\"ache~{\it GEWI28mm}$	A_{Gewi}	mm^2	616	616		
$\operatorname{Zugfestigkeit}\operatorname{GEWI}28\mathrm{mm}$	f_{zug}	$\frac{N}{mm^2}$	580	580		
Dehngrenze/Fließgrenze GEWI 28 mm	f_{dehn}	$\frac{N}{mm^2}$	500	500		
Fließgrenze Scherdehnung GEWI 28 mm	$ au_{min}$	$\frac{N}{mm^2}$	288,68	$288,\!68$		
Teilsicherheitsbeiwert	γ_M	-	1,1	1,1		
Druckbeanspruchung	σ_{druck}	$\frac{N}{mm^2}$	42,75	4,91		
Zulässige Druckspannung	σ_{zul}	$\frac{N}{mm^2}$	527,27	$527,\!27$		
Nachweis Druckbeanspruchung	$\frac{\sigma_{druck}}{\sigma_{evil}}$	-	$0,08 \le 1,0$	$0,01 \le 1,0$		
Schubbeanspruchung	$ au_{schub}$	$\frac{N}{mm^2}$	0,08	6,58		
Zulässige Schubbespannung	$ au_{zul}$	$\frac{N}{mm^2}$	262,43	262,43		
Nachweis Schubbeanspruchung	$\frac{\tau_{zug}}{\tau_{mul}}$	-	$0,0003 \le 1,0$	$0,03 \le 1,0$		
Vergleichsspannung	$\sigma_{d;V}$	$\frac{N}{mm^2}$	42,75	12,41		
Zulässige Spannung	σ_{zul}	$\frac{N}{mm^2}$	454,55	454,55		
Nachweis Vergleichsspannung	$rac{\sigma_{d;V}}{\sigma_{zul1}}$	-	$0,\!09 \le 1,\!0$	$0,03 \le 1,0$		

Tabelle 10 Resultat Anschluss durch Mikropfähle.

Nachweis Anschluss PV - Modul - Träger Wie bereits in 2.3.2 erwähnt, werden für die Verbindung zwischen Träger und PV - Modul Klemmen verwendet. Für die Pilot - Anlage werden Trägerklemmen der Baugruppe TKL L mit einem Schraubendurchmesser von 9 mm, der Firma fischerwerke GmbH und CO.KG, verwendet. Diese Baureihe an Trägerklemmen können eine maximale Zugbeanspruchung von 1,2 kN aufnehmen. Für jedes PV - Modul werden 6 dieser Trägerklemmen verbaut, drei je Seite. Dies entspricht

einem maximalen Wert von 7,2 kN je PV - Modul. Berücksichtigt man, dass der maximale Winddruck, bei einem Teilsicherheitsbeiwert von 1,5, $0,36 \text{ kN/m}^2$ beträgt und sich auf 6 Trägerklemmen pro PV - Modul (3,106 m²) aufteilt, so ergibt sich eine Sicherheit von 6,5.

Nachweis Fundament Als Fundament wurde ein bewehrtes Einzelfundament der Größe $1,7 \ge 1,7 \ge 1,1$ m mit biegesteifem Grundplattenanschluss gemäß Abbildung 11 a gewählt. Werden die Herstellungs-/Einbaukosten der unterschiedlichen Fundamentarten verglichen, dann weist das Einzelfundament eine größere Betonkubatur auf, als das Köcherfundament, allerdings auch einen geringeren Schalungsaufwand. Daraus lässt sich ableiten, dass kleine Einzelfundamente wirtschaftlicher sind als Köcherfundamente. Die Mikropfahl-Variante ist aufgrund des Bohrens der Mikropfähle zeitaufwändig und kostenintensiv. Darüber hinaus können die Bohrungsarbeiten nicht selber ausgeführt werden, dazu wird ein Spezial-Tiefbauunternehmen benötigt.

Der maßgebende Lastfall für das Fundament ist die Windeinwirkung, welche rückseitig auf die 60° geneigten PV-Module wirkt und so einen Auftrieb bewirkt und das größte Moment am Stützenfuß ergibt. Die Resultate der Nachweise sind in Tabelle 11 zusammengefasst und ausführlich im Anhang A.7 aufgeführt. Es zeigt sich, dass ein Versagen des Fundaments durch das Kippen am wahrscheinlichsten sein wird beziehungsweise das Fundament hier die geringste Toleranz aufweist. Grundbruch und das Durchstanzen des Fundaments weisen eine große Restsicherheit auf.

Aufgrund der Ortseigenschaft der PV-Anlage wird der bewehrte Beton für das Fundament in die Expositionsklasse XC4 kategorisiert. Die Mindestfestigkeitsklasse für XC4 liegt bei C25/30. Als Beton für das Fundament wird eine Festigkeitsklasse von C30/37 verwendet. Dies ist eine höhere Festigkeitsklasse als die Mindestanforderung für die Expositionsklasse XC4. Die konstruktive Mindestbewehrung gemäß Gleichung 46 (Anhang A.7) resultiert zu $A_{s;min} = 25,64 \text{ cm}^2$. Dies ergibt eine erforderliche Bewehrung pro Meter von $a_{s;min} = 15,08 \text{ cm}^2/\text{m}$. Die entsprechende Fläche kann mit 16 mm Bewehrungsstäben im Abstand von 12,5 cm abgedeckt werden (Abb. 22, welche eine vorhandene Bewehrung pro Meter von $a_{vorhanden} = 16,06 \text{ cm}^2/\text{m}$ aufweisen. Die gerippten Bewehrungsstäbe entsprechen einem Typ B550B.

Abbildung 22 Mindestbewehrung mit 16 mm Bewehrungsstäben im Abstand von 12,5 cm.

	Symbol	Einheit	Werte	Nachweis
Einwirkung				
Vertikalkraft	P_z	kN	0,31	
Horizontalkraft x-Achse	\mathbf{P}_x	kN	0	
Horizontalkraft y-Achse	\mathbf{P}_y	kN	$11,\!42$	
Moment x-Achse:	M_x	kNm	30,11	
Moment y-Achse:	M_y	kNm	0	
Abmaße				
Breite	Х	m	1,7	
Länge	У	m	1,7	
Höhe	Z	m	1,1	
Volumen	V	m^3	3,2	
Nachweise				
Kippsicherheit	$e_y \le e_{zul}$	m	$0,54 \le 0,57$	$0,951 \le 1,0$
Lagesicherheit Kante 1	$M_{dstb} \leq M_{stb}$	kNm	$0,26 \le 60,8$	$0,004 \le 1,0$
Lagesicherheit Kante 2	$M_{dstb} \leq M_{stb}$	kNm	$42,94 \le 60,8$	$0,706 \le 1,0$
Lagesicherheit Kante 3	$M_{dstb} \leq M_{stb}$	kNm	$0,26 \le 60,8$	$0,004 \le 1,0$
Lagesicherheit Kante 4	$M_{dstb} \leq M_{stb}$	kNm	$0,26 \le 103.47$	$0,003 \le 1,0$
Grundbruch	$\sigma_{vorh} \leq \sigma_{Rd}$	$\frac{kN}{m^2}$	$69,74 \le 200$	$0,\!349 \le 1,\!0$
Durchstanzen	$\sigma_{Ed} \le \sigma_{Rd}$	$\frac{N}{mm^2}$	$0,\!37 \le 22,\!22$	$0,\!017 \le 1,\!0$

Tabelle 11 Übersicht der Nachweise zur Fundamentbemessung.

3.3. Finanzierung

Die resultierenden Investitionskosten und der prozentuale Anteil der jeweiligen Kostenposition für die PV-Anlage im Ötztal sind in Tabelle 12 dargestellt. Die totalen Kosten belaufen sich auf $\in 22.296,60$. Die geringste Kostenposition ist die Lagerung, welche aus vier Lagern besteht, mit 0,72 % von den Gesamtkosten. Die kostspieligste Position ist die Installation der PV-Anlage. Dies lässt sich aufgrund der Arbeitsstunden erklären. Der Stahlbau und die PV-Module sind mit 17,60 % und 16,06 % fast gleich.

Tabelle 12 Übersicht der Investitionskosten der PV-Anlage.

		8
Komponenten	Kosten in ${\ensuremath{\in}}$	Prozentualer Anteil an Gesamtkosten $[\%]$
Behördliche Kosten	740,00	3,32
Antrieb	$1.384,\!26$	6,21
Tracking Unit	3.853,56	17,28
Lagerung	160,44	0,72
PV - Module	3.923,76	17,60
Wechselrichter	1.699, 89	7,62
Stahlbau	3.581,76	16,06
Fundamente	$2.352,\!93$	10,55
Installation	4.600,00	20,63
Total	22.296,60	100,00

Wie bereits in Kapitel 2.4.2 erwähnt wurde, können aus Tabelle 13 die verwendeten Werte für die Barwertberechnung entnommen werden. Die prognostizierte Jahresstromproduktion ermittelt sich durch das PVsyst Software (Anh. A.8).

Tabelle 13 Übersicht der angewendeten	Randbedingungen	um die	Barwerte	der F	PV - Anlag	e im
Ötztal sowie in der Atacama	wüste zu ermitteln.					

Randbedingungen	Einheit	PV - Anlage Ötztal	PV - Anlage Atacamawüste
Anlagenleistung PV - Aanlage	kWp	15,72	15,72
Nutzungsdauer PV - Anlage	Jahre	25	25
Leistungsverlust PV - Anlage	$\frac{\%}{\text{Jahro}}$	0,5	$0,\!5$
Nutzungsdauer Wechselrichter	Jahre	15	15
Kosten Wechselrichtertausch	€	1.699, 89	1.699,89
Einspeisevergütung bei 70% Eigenverbrauch	$\frac{\in}{kWh}$	0,1506	0,1506
Einspeisvergütung bei Volleinspeisung	$\frac{\mathbb{E}}{\mathbb{E}}$	0,076	0,076
Zukünftige Strompreissteigerung	$\frac{\frac{1}{2}}{\frac{1}{2}}$	2,00	2,00
Prognostizierte Jahresstromproduktion Ost / West	$\tilde{k}Wh$	23.776,00	37.051,00
Prognostizierte Jahresstromproduktion Nord / Süd	kWh	25.564,00	44.585,00
Errichtungskosten	€	22.296,60	22.296,60
Betriebskosten $(1,5\%$ der Errichtungskosten)	$\frac{\%}{\text{Jahr}}$	334,45	334,45

70 % Eigenverbrauch In Abbildung 23 sind die Resultate für die Barwertermittlung unter der Annahme eines Eigenverbrauchs von 70 % für die Ausrichtungen Ost / West und Nord / Süd für die PV-Anlage im Ötztal und der Atacamawüste dargestellt.

Abbildung 23a zeigt die Auswertung der einachsig nachgeführten PV-Anlage mit 70%Eigenverbrauch im Ötztal bei Ost/West Ausrichtung. Nach 25 Jahren ergibt sich ein Barwert von €29.239,74. Das bedeutet, die Anlage würde sich bereits nach 9 Jahren amortisieren. Würde man zusätzlich noch den Tausch des Wechselrichters ($\in 1.699, 89$) nach 15 Jahren berücksichtigen, ergibt sich ein Barwert in der Höhe von €27.539,85. In Abbildung 23b ist die einachsig nachgeführte PV-Anlage mit 70% Eigenverbrauch im Ötztal bei Nord/Süd Ausrichtung dargestellt. Nach 25 Jahren ergibt sich ein Barwert von € 33.691,57. Das heißt, die Anlage würde sich nach 8 Jahren amortisieren. Würde man zusätzlich noch den Tausch des Wechselrichters ($\in 1.699, 89$) nach 15 Jahren berücksichtigen, ergibt sich ein Barwert in der Höhe von € 31.991,68. Abbildung 23c und 23d beschreiben die Barwerte der einachsig nachgeführten PV-Anlage bei Ost/West und Nord / Süd Ausrichtung in der Atacamawüste mit 70% Eigenverbrauch. Wie bereits zu erwarten war, ergeben sich für diese beiden Ausrichtungen besonders hohe Barwerte, was auf das enorme Sonnenangebot zurückzuführen ist. Für die Ost / West Ausrichtung ergibt sich laut Abbildung 23c ein Barwert von $\in 62.292.29$. Dies bedeutet, die Anlage würde sich bereits nach 5 Jahren amortisieren. Noch bemerkenswerter sind die Ergebnisse aus Abbildung 23d, hier beläuft sich der Barwert nach 25 Jahren auf $\in 81.050,70$ und die

b) Barwertermittlung Ötztal Nord / Süd.

c) Barwertermittlung Atacamawüste Ost / West.

d) Barwertermittlung Atacamawüste Nord / Süd.

Abbildung 23 Barwertermittlung mit 70% Eigenverbrauch im Ötztal und der Atacamawüste: a) Ötztal mit Ausrichtung Ost/West; b) Ötztal mit Ausrichtung Nord/Süd; c) Atacamawüste mit Ausrichtung Ost/West; d) Atacamawüste mit Ausrichtung Nord / Süd.

Anlage würde sich bereits nach 4 Jahren amortisiert haben. Bei beiden Ergebissen wurde der Tausch des Wechselrichters nach 15 Jahren nicht berücksichtigt.

Das Resultat in Bezug auf die Ausrichtung war zu erwarten, da der Sonnenverlauf von Ost nach West geht und somit mehr Strahlung auf die PV-Anlage fällt, als wenn diese Ost / West ausgerichtet ist. Zusammenfassend lässt sich aus dem Vergleich schlussfolgern, dass sich die einachsig nachgeführte PV - Anlage im Ötztal mit 70 % Eigenverbrauch, selbst bei den derzeit niedrigen Tarifen, wirtschaftlich betreiben lässt. Aufgrund des enormen Strahlungsangebotes in der Atacamawüste würde sich die Anlage dort, je nach Ausrichtung, spätestens nach 5 Jahren amortisieren.

Volleinspeisung In Abbildung 24 sind die Resultate für die Barwertermittlung unter der Annahme der Volleinspeisung für die Ausrichtungen Ost / West und Nord / Süd für die PV - Anlage im Ötztal und der Atacamawüste dargestellt. Für die Berechnung wurden die gleichen Einspeisetarife für beide Länder verwendet.

Die in Abbildung 24a dargestellten Resultate der einachsig nachgeführten PV - Anlage mit Volleinspeisung im Ötztal bei Ost/West Ausrichtung ergibt nach 25 Jahren einen Bar-

b) Barwertermittlung Ötztal Nord / Süd.

d) Barwertermittlung Atacamawüste
 $\operatorname{Nord}/\operatorname{Süd}.$

Abbildung 24 Barwertermittlung mit Volleinspeisung im Ötztal und der Atacamawüste: a) Ötztal mit Ausrichtung Ost / West; b) Ötztal mit Ausrichtung Nord / Süd; c) Atacamawüste mit Ausrichtung Ost / West; d) Atacamawüste mit Ausrichtung Nord / Süd.

wert von €-84,24. Das bedeutet, die Anlage würde sich über ihre gesamte Laufzeit von 25 Jahren nicht amortisieren. Würde man zusätzlich noch den Tausch des Wechselrichters (€1.699,89) nach 15 Jahren berücksichtigen, ergibt sich ein negativer Barwert in der Höhe von €-1.784,13. In der Abbildung 24b sind die Ergebnisse der einachsig nachgeführten PV - Anlage mit Volleinspeisung im Ötztal bei Nord / Süd Ausrichtung dargestellt. Dabei ergibt sich nach 25 Jahren einen Barwert von €2.162,36. Das heißt, die Anlage würde sich nach 22 Jahren amortisieren. Würde man zusätzlich noch den Tausch des Wechselrichters (€1.699,89) nach 15 Jahren berücksichtigen, ergibt sich ein Barwert in der Höhe von €462,5. Für die in Abbildung 24c und 24d dargestellten Resultate ergeben sich positive Barwerte in der Höhe von €16.595,66 und €26.062,05, was einen Amortisationszeitraum von 9-12 Jahren entspricht.

Zusammenfassend lässt sich aus dem Vergleich schlussfolgern, dass sich die einachsig nachgeführte PV-Anlage im Ötztal mit Volleinspeisung bei den derzeitigen Einspeisetarifen nicht wirtschaftlich betreiben lässt. Aufgrund des enormen Strahlungsangebotes in der Atacamawüste würde sich die Anlage, je nach Ausrichtung, spätestens nach 12 Jahren amortisieren.

3.4. Leistungsvergleich PV - Anlage Ötztal - Atacama

Im Zuge dieser Diplomarbeit wurde eine einachsig nachgeführten PV - Anlage mit Ost / West Ausrichtung mit einer nachgeführten Photovoltaik Anlage mit Nord / Süd Ausrichtung miteinander verglichen. Da am Beginn dieser Arbeit noch davon ausgegangen wurde, dass ein PV - Park in der Atacamawüste errichtet wird, wurden die Simulations - Ergebnisse aus Längenfeld mit den Ergebnissen aus der Atacamawüste verglichen. Zudem wurde auch ein Vergleich für eine stationäre Aufdachanlage (Neigungswinkel 5°, Azimutwinkel 0°,) an den beiden Standorten verglichen. In Tabelle 14 sind die verwendeten Eingangsparameter und die Wetterdaten für die Simulation mit PVsyst (Kap. 2.5) zusammengefasst.

Tabelle 14 Eingangsparameter für die Simulation mit P vsyst.					
Standort	Längengrad	Breitengrad	Höhe	Zeitzone	Wetterdaten
Längenfeld Calama/ Atacamawüste	47.09° Nord -22,50° Süd	10.94° Ost -68,90° Ost	1151m 2312m	UTC+1 UTC-4	Meteonorm 8.1 (1996 - 2015) Meteonorm 8.1 (1996 - 2015)

14 13

In Tabelle 15 sind die Ergebnisse aus der Simulation für den Standort in Längenfeld dargestellt. Laut den Simulationsergebnissen generiert die einachsig nachgeführte PV-Anlage mit Nord / Süd Ausrichtung (Variante a_1) um circa 7,5 % mehr Strom gegen über einer Anlage mit Ost / West Ausrichtung (Variante b_1) am Standort Längenfeld. Vergleicht man hingegen die Anlage mit Nord / Süd Ausrichtung mit einer stationären Anlage (Variante c_1), so generiert die Anlage mit Nord / Süd Ausrichtung um circa 36,2 % mehr Strom.

Tabelle 15 Resultat des Vergleichs der verschiedenen PV-Anlage Variante a_1, b_1, c_1 im Ötztal.

Variante	$\rm kWh/Jahr$	kWh/kWp/Jahr	PV - Anlage	Performance Ratio
$egin{array}{c} a_1 \ b_1 \ c_1 \end{array}$	25.564,00	1.626	Nord / Süd Ausrichtung	89,45 %
	23.776,00	1.512	Ost / West Ausrichtung	89,14 %
	18.773,86	1.194	Nord / Süd Stationär	87,84 %

Tabelle 16 zeigt die Simulationsergebnisse für den Standort Calama in der Atacamawüste. Obwohl Variante a_2 die größten Erträge verspricht, ist dennoch auffallend, dass Variante c_2 eine bessere Performance Ratio aufweist. Laut PVsyst ist dies auf die Verluste durch eine erhöhte Stringtemperatur (abhängig von der GHI) bei nachgeführten Systemen zurückzuführen [46]. Vergleicht man die Ergebnisse aus Tabelle 16 mit den Ergebnissen aus Tabelle 15 wird ersichtlich, dass die Ergebnisse durchaus plausibel sind, da am Standort Ötztal die Globalstrahlung deutlich geringer ist und dadurch auch die Verluste durch eine erhöhte Stringtemperatur deutlich geringer sind. Ein Auszug aus den Simulationsergebnissen ist dem Anhang unter A.8 begelegt.
Variante	kWh/Jahr	kWh/kWp/Jahr	PV - Anlage	Performance Ratio
a_2 b_2	44.585,00 37.051,00	2.836 2.357 2.088	Nord / Süd Ausrichtung Ost / West Ausrichtung	84,80 % 84,93 %
c_2	32.818,00	2.088	Nord / Sud Stationar	84,84%

 $\label{eq:calibration} \mbox{Tabelle 16 Resultat des Vergleichs der verschiedenen PV-Anlage Variante a_2, b_2, c_2 in der Atacamawüste.}$

3.5. Bau der Pilotanlage

Im folgenden sind die bereits erbrachten Einbauschritte der Pilotanlage bis zum Einreichtermin der Diplomarbeit aufgeführt.

Im ersten Schritt wurden die 16 mm Bewehrungsstäbe, welche bereits gebogen waren, zu einzelnen Körben zusammengebunden. In einem weiteren Schritt wurden die Betonfundamente angefertigt. Die Schalungselemte inklusive Kleinmaterial wurden von der Firma Auer Bau GmbH bereit gestellt. Christian Scheiber, Schalungsexperte bei der Firma Auer Bau GmbH, unterstützte die Schalungsarbeiten mit ihrem Fachwissen und alle drei Betonfundamte wurden am 23.03.2024 vorbereitet. Damit sicher gestellt werden kann, dass die in der Grundplatte vorgefertigten Bohrungen für die Ankerstäbe mit den Abständen der Ankerstäbe im Betonfundament übereinstimmen, wurden eigene Holzschablonen angefertigt. Abbildung 25a zeigt den exakten Einbau der Ankerstäbe. Zusätzlich wurde beim mittleren Fundament (Antrieb) das PVC-Rohr für die Verkabelung eingebaut. Dies erleichtert später die Verkabelung und bewirkt, dass die Kabel direkt an der Stütze aus der Erde ragen. Nachdem alle Schalungsbestandteile festgezogen und fixiert waren, konnten wir mit dem Ausgießen der Fundamente beginnen. Abbildung 25c zeigt wie die einzelnen Fundamente mit Beton angefüllt wurden. Aufgrund der Höhe der Fundamente und der dadurch wirkenden Kräfte, wurde der Gießvorgang in zwei Schritte unterteilt. Es bestand die Gefahr, dass der Beton an der Unterseite austreten könnte und gleichzeitig die gesamte Schalung anhebt. Im Zweiten Gießvorgang wurden schlussendlich die Fundamente bis Unterkante Holzschablone aufgefüllt. Nachdem die Fundamente alle ausgegossen wurden, dauerte es circa eine Woche bis die Fundamente genügend trocken waren um abtransportiert werden zu können.

Im nächsten Arbeitsschritt wurde der Aushub der Fundamente vorgenommen. Da das Gelände gegen Norden leicht abfallend ist, musste die Tiefe der einzelenen Fundamente angepasst werden. Abbildung 26a zeigt wie die Fundamente im Gelände ausgemessen wurden. Die rote Aussteckschnur dient dazu den Abstand zur Grundgrenze einzuhalten und erleichtert zusätzlich die exakte Positionierung der Fundamente beim Einheben in die Baugrube. Abbildung 26c zeigt wie die einzelnen Fundamente in die Baugrube eingebaut wurden. Die Einbauarbeiten wurden mit Hilfe eines Fahrzeugkranes durchgeführt.

Nachdem die drei Fundamente eingebaut und hinterfüllt wurden, wurde in einem weiteren Schritt die Stahlkonstruktion aufgebaut. Anschließend konnten die PV-Module installiert und verkabelt werden. Abschließend wurde die PV-Anlage vom Elektromeister Manfred Fritzer angeschlossen und in Betrieb genommen. In Abbildung 27 ist die fertig gestellte PV-Anlage dargestellt.

a) Schalung mit Bewehrungsstahl

b) Fertig gegossenes Fundament

c) Ausgießen der Betonfundamente

Abbildung 25 Bau der Fundamente: a) Schalung mit Bewehrungsstahl; b) Fertig gegossenes Fundament.; c) Ausgießen der Betonfundamente.

a) Aushub der Fundamente

b) Frostkoffer einbringen und Fundamenthöhe einstellen

c) Einbau Fundamente

d) Geländeanpassung mit Humus

Abbildung 26 Aushub und Einbau der Fundamente: a) Aushub der Fundamente; b) Frostkoffer einbringen und Höhe einstellen; c) Einbau Fundamente; d) Geländeanpassung mit Humus.

a) Fertige PV - Anlage bei 25 - 30° ostwärts

b) Fertige PV - Anlage bei 0°

c) Fertige PV-Anlage bei 0°

d) Fertige PV-Anlage bei 45°westwärts

Abbildung 27 Fertig gestellte PV - Anlage a) Neigungswinkel zwischen 25 - 30°; b) Neigungswinkel 0°; c) Neigungswinkel 0°; d) Neigungswinkel 45°.

4. Zusammenfassung

Ziel der vorliegenden Arbeit war die Auslegung und Konstruktion einer einachsig nachgeführten PV - Anlage mit anschließendem Bau und Inbetriebnahme der Pilotanlage in A-6444 Längenfeld. Das Nutzungskonzept der Pilotanlage sieht vor, dass bei Windgeschwindigkeiten von mehr als 60 km/h die PV - Module einen Neigungswinkel von 0° einnehmen. Bei Niederschlag unter 4°C (Schneefall) stellen sich die PV - Module in einen Neigungswinkel von 60°. Diese Maßnahmen wirken sich positiv auf die Auslegung der Stahlkonstruktion aus. Für die Auslegung der Stahlkonstruktion wurden einerseits Schneelasten für ein 50 - jähriges Ereignis ($2,16 \text{ kN/m}^2$) am Standort Längenfeld und andererseits Windlasten bei Windgeschwindigkeiten von 60 km/h ($0,36 \text{ kN/m}^2$) angenommen. Die maßgebende Belastung bei der Auslegung der Stahlkonstruktion resultiert aus dem Schneedruck. Bei der Auslegung der Fundamente kann der Schneedruck vernachlässigt werden; maßgebend hierbei waren die Windlasten bei 60° geneigten PV - Modulen.

Der Leistungsvergleich an den unterschiedlichen Standorten (Längenfeld und Calama, Atacamawüste) mit unterschiedlichen Ausrichtungen (Nord / Süd, Ost / West, stationär montierte Aufdachanlage) ergab, dass sich an beiden Standorten eine Nord / Süd Ausrichtung am besten eignet. Für die Pilotanlage konnten laut Simulation am Standort Längenfeld 25.563,00 kWh/Jahr und am Standort Calama in der Atacamawüste 44.585,00 kWh/Jahr Strom produziert werden. Bei der stationär montierten Aufdachanlage mit 5° Modulneigung am Standort Längenfeld ergab sich ein Wert von 18.773,86 kWh/Jahr, dies entspricht einer Reduktion von circa 26,5% gegenüber der Nord / Süd Ausrichtung. Sehr ähnliche Ergebnisse ergaben sich aus dem Vergleich der stationär montierten und der Nord / Süd ausgerichteten Anlage am Standort Calama. Hier ergaben die Simulationsergebnisse der stationär montierten Aufdachanlage eine Reduktion von circa 26,4% gegenüber einer Nord / Süd ausgerichteten Anlage.

Die Wirtschaftlichkeitsberechnung ergab, dass sich die geplante einachsig nachgeführte PV-Anlage am Standort Längenfeld, aufgrund der derzeitig niedrigen Einspeisetarife, nur dann wirtschaftlich betreiben lässt, sofern circa 70 % der produzierten Energie selbst verbraucht werden. Am Standort Calama würde sich die Anlage deutlich schneller armortisieren, da die PV-Anlage um circa 74 % mehr Energie erzeugt.

Mit dem Bau der Pilotanlage wurde im Juni 2024 begonnen und die Fertigstellung sowie Inbetriebnahme erfolgte in August 2024.

5. Ausblick

Um die einachsig nachgeführte PV - Anlage in der Atacamawüste noch wirtschaftlicher betreiben zu können, sollten weitere Anstrengungen in die statischen Bemessungen, mit der Annahme, dass keine Schneelasten vorkommen, unternommen werden. Es ist zu erwarten, dass sich die gesamte Stahlkonstruktion leichter oder in einer niedrigeren Stahlqualität ausführen lässt.

Angesichts der Tatsache, dass der Eurocode die Windbelastungen für einachsig nachgeführte PV - Anlagen nicht richtig abbildet, wäre es durchaus von Vorteil Windsimulationen durchzuführen. Dies würde einen genaueren Einblick über die Sogkräfte an der Rückseite geben. Aufgrund des bisherigen Umfanges, konnte das in dieser Arbeit nicht umgesetzt werden.

Zudem kann das Neigungskonzept bei Windgeschwindigkeiten über 60 km/h sowie das Verhalten der Anlage bei Wind und Schneefall überdacht werden. Darüber hinaus lassen sich mit den gesammelten Daten präzise Vergleiche gegenüber stationär installierten benachbarten Anlagen in Längenfeld erstellen. Ein durchaus weiterer wichtiger Punkt wäre die Untersuchung von Inselsystemen im Alpenraum und in wie weit es wirtschaftlich vertretbar ist, durch PV-Anlagen energieautark zu werden.

Abschließend könnten noch Messungen an der PV-Pilotanlage mit unterschiedlichen Albedowerten vorgenommen werden. Eine detaillierte Auswertung dieser Ergebnisse würde wichtige Informationen über mögliche Ertragssteigerungen während der Wintermonate im Alpenraum liefern.

Literatur

- [1] Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie (BMK), 2024, URL: https://www.oesterreich.gv.at/themen/umwe lt_und_klima/klima_und_umweltschutz/1/Seite.1000325.html, Datenstand: 01.04.2024.
- [2] Bundesministerium für Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie (BMK), 2022, URL: https://nachhaltigwirtschaften.at/de/publ ikationen/schriftenreihe-2023-36-marktentwicklung-energietechnologie n.php, Datenstand: 20.03.2024.
- S. Bayo-Besteiro, L. de la Torre, X. Costoya, M. Gómez-Gesteira, A. Pérez-Alarcón, M. deCastro, J.A. Añel, *Photovoltaic power resource at the Atacama Desert under climate change*, Renewable Energy, 216 (2023), 118999, ISSN: 0960-1481, DOI: https://doi.org/10.1016/j.renene.2023.118999, URL: https://www.sciencedirect.com/science/article/pii/S0960148123009059.
- Konrad Mertens, Photovoltaik Lehrbuch zu Grundlagen, Technologie und Praxis, 6. Auflage, Carl Hanser Verlag München, 2022.
- [5] Robert Stieglitz, Volker Heinzel, Thermische Solarenergie Grundlagen, Technologie, Anwendungen, 1. Auflage, Springer Vieweg, 2012.
- [6] Viktor Wesselak, Thomas Schabbach, Thomas Link, Joachim Fischer, « Regenerative Energiequellen », Handbuch Regenerative Energietechnik, Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, S. 111–192, ISBN: 978-3-662-53073-3, DOI: 10. 1007/978-3-662-53073-3_3, URL: https://doi.org/10.1007/978-3-662-53073-3_3.
- [7] Global Solar Atlas, 2023, URL: https://globalsolaratlas.info/download/ world, Datenstand: 26.01.2024.
- [8] Sebastian Voswinckel Viktor Wesselak, Photovoltaik Wie Sonne zu Strom wird, Berlin, Boston: Springer Berlin, Heidelberg, 2016, ISBN: 978-3-662-48905-5, URL: https://doi.org/10.1007/978-3-662-48906-2.
- [9] Bundesverband Photovoltaic Austria, 2024, URL: https://pvaustria.at/techni sche-grundlagen/, Datenstand: 29.02.2024.

- [10] Zakaria Kadmiri, Omar El Kadmiri, Lhoussaine Masmoudi, Mohammed Bargach, A Novel Solar Tracker Based on Omnidirectional Computer Vision, Journal of Solar Energy, 2015 (Jan. 2015), DOI: 10.1155/2015/149852.
- [11] Nadia AL-Rousan, Nor Ashidi Mat Isa, Mohd Khairunaz Mat Desa, Advances in solar photovoltaic tracking systems: A review, Renewable and Sustainable Energy Reviews, 82 (2018), 2548-2569, ISSN: 1364-0321, DOI: https://doi.org/10.1016/j.rser.2017.09.077, URL: https://www.sciencedirect.com/science/article/pii/S1364032117313266.
- [12] Vijayan Sumathi, R. Jayapragash, Abhinav Bakshi, Praveen Kumar Akella, Solar tracking methods to maximize PV system output A review of the methods adopted in recent decade, Renewable and Sustainable Energy Reviews, 74 (2017), 130-138, ISSN: 1364-0321, DOI: https://doi.org/10.1016/j.rser.2017.02.013, URL: https://www.sciencedirect.com/science/article/pii/S1364032117302162.
- [13] Aboubakr El Hammoumi, Saad Motahhir, Abdelaziz El Ghzizal, Abdelilah Chalh, Aziz Derouich, A simple and low-cost active dual-axis solar tracker, Energy Science & Engineering, 6.5 (2018), 607–620, DOI: https://doi.org/10.1002/ese3.236, URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/ese3.236.
- [14] C.S. Chin, A. Babu, W. McBride, Design, modeling and testing of a standalone single axis active solar tracker using MATLAB/Simulink, Renewable Energy, 36.11 (2011), 3075-3090, ISSN: 0960-1481, DOI: https://doi.org/10.1016/j.renene. 2011.03.026, URL: https://www.sciencedirect.com/science/article/pii/S0960148111001406.
- [15] Dr. Dhanabal Rengasamy, Venuturla Bharathi, R. Ranjitha, A. Ponni, S. Deepthi,
 P. Mageshkannan, Comparison of efficiencies of solar tracker systems with static panel single-axis tracking system and dual-axis tracking system with fixed mount,
 Intern. J. Eng. Technol. 5 (Jan. 2013), 1925–1933.
- [16] Sinovoltaics, 2024, URL: https://sinovoltaics.com/learning-center/csp/ single-axis-trackers/, Datenstand: 26.02.2024.
- [17] Eurocode 1: Einwirkungen auf Tragwerke Teil 1-4: Allgemeine Einwirkungen Windlasten (konsolidierte Fassung), Norm, 2011.

- [18] Eurocode 1: Einwirkungen auf Tragwerke Teil 1-4: Allgemeine Einwirkungen Windlasten Nationale Nationale Festlegungen zu ÖNORM EN 1991-1-4 und nationale Ergänzungen, Norm, 2019.
- [19] Eurocode 1: Einwirkungen auf Tragwerke Teil 1-3: Allgemeine Einwirkungen Schneelasten (konsolidierte Fassung), Norm, 2016.
- [20] Eurocode 1: Einwirkungen auf Tragwerke Teil 1-3: Allgemeine Einwirkungen Schneelasten Nationale Nationale Festlegungen zu ÖNORM EN 1991-1-3, nationale ERläuterungen und nationale Ergänzungen, Norm, 2022.
- BML Bundesministerium Land- und Forstwirtschaft, Regionne und Wasserwirtschaft, 2024, URL: https://hora.gv.at/#/cschneelast/bgrau/a-/@47.08975, 10.93897,16z/x47.09095,10.94251,16z, Datenstand: 10.02.2024.
- [22] Radu Velicu, Gheorghe Moldovean, I. Scaletchi, B.R. Butuc, Wind loads acting on an azimuthal photovoltaic platform. Experimental study, Renewable Energy and Power Quality Journal, 1 (Apr. 2010), 427–432, DOI: 10.24084/repqj08.347.
- [23] Suntrack, 2024, URL: https://suntrack.p4q.com/single-axis-solar-trackercontroller#, Datenstand: 11.02.2024.
- [24] Professionals for Quality P4Q, SUNTRACK SYSTEM GENERAL MANUAL, D013-Manual_General_Suntrack (Aug. 2022), 1–57.
- [25] Trinasolar, 2023, URL: https://www.trinasolar.com/en-glb/productl, Datenstand: 13.12.2023.
- [26] CanadianSolar, 2023, URL: https://www.csisolar.com/bihiku7/, Datenstand: 13.12.2023.
- [27] Risen Energy CO., LTD, 2023, URL: https://en.risenenergy.com/product/ assembly_info?info=3, Datenstand: 13.12.2023.
- [28] Luxor Solar, 2023, URL: https://www.luxor.solar/de/solar-module/eco-line -ntype-hjt/glas-glas-bifacial-solarmodule.html, Datenstand: 13.12.2023.
- [29] BYD Company Ltd., 2023, URL: https://pv.byd.com/sites/sune/singleCryst al_mob.html, Datenstand: 13.12.2023.

- [30] Christian Renken Francesco Frontini Mauro Caccivio, Leitfaden bifaziale Module, Anwendung von bifazialen Solarmodulen - Einsatzmöglichkeiten and Gebäuden, Dimensionierung der Anlagenkomponenten, /, / (/ 2019), 1–53.
- [31] Verein Österreichs E-Wirtschaft, 2024, URL: https://oesterreichsenergie.at/ publikationen/ueberblick/detailseite/wechselrichterliste-tor-erzeuge r-typ-a, Datenstand: 14.03.2024.
- [32] Dlubal Software GmbH, RSTAB 8, Version 8.34.01, URL: https://www.dlubal. com/de/produkte/altere-produkte/rstab-8/was-ist-rstab.
- [33] Eurocode 3: Bemessung und Konstruktion von Stahlbauten Teil 1-4: Allgemeine Bemessungsregeln und Regeln für den Hochbau (konsolidierte Fassung), Norm, 2014.
- [34] Prof. Dr. Georg Kartnig, *Grundlagen der Konstruktionslehre*, Universitäts Vorlesung, 2012.
- [35] Klaus Jürgen Schneider, Bautabellen für Ingenirure mit Berechnungshinweisen und Beispielen, Köln: Bundesanzeiger Verlag GmbH, 2018, ISBN: 978-3-8462-0880-9.
- [36] Autodesk, INVENTOR, Version 2024, URL: https://www.autodesk.ch/de/ products/inventor/overview?term=1-YEAR&tab=subscription.
- [37] Prof. Dr.-Ing. Rudolf Baumgart, Hoch, Fundamente, Hochschule Darmstadt, Massivbau, 5. Okt. 2020, URL: https://rudolfbaumgart.de/scripte/fundamente.pdf, Datenstand: 18.01.2023.
- [38] Dlubal Software GmbH 2016, 2023, URL: https://www.dlubal.com/de/webfile/ 003222/3726901/rf-fund-pro-handbuch-de.pdf?hash=294b4d6dc35a44928f0d e37fcc5acee402a281f5, Datenstand: 14.03.2023.
- [39] 2001-2024 Dlubal Software GmbH, 2024, URL: https://www.dlubal.com/de/suppo rt-und-schulungen/support/knowledge-base/001526, Datenstand: 24.02.2024.
- [40] Ulrich Pape, Mit Fallbeispielen und Übungen, Berlin, Boston: De Gruyter Oldenbourg, 2018, ISBN: 9783110578669, DOI: doi:10.1515/9783110578669, URL: https://doi.org/10.1515/9783110578669.

- [41] Martina Röhrich, Darstellung anhand einer Fallstudie, München: De Gruyter Oldenbourg, 2014, ISBN: 9783486854923, DOI: doi:10.1524/9783486854923, URL: https://doi.org/10.1524/9783486854923.
- [42] Pape Ulrich, Grundlagen der Finanzierung und Investition, 2. Auflage, München, Oldenbourg Wirtschaftsverlag, 2001, S. 308.
- [43] Däumler Klaus-Dieter, Grabe Jürgen, Grundlagen der Investitions- und Wirtschaftlichkeitsrechnung, 22. Auflage, Ettenheim, Verlag Neue Wirtschafts-Briefe GmbH Co. KG, 2007, S. 165.
- [44] Pape Ulrich, Grundlagen der Finanzierung und Investition, 2. Auflage, München, Oldenbourg Wirtschaftsverlag, 2001, S. 372.
- [45] Pape Ulrich, Grundlagen der Finanzierung und Investition, 2. Auflage, München, Oldenbourg Wirtschaftsverlag, 2001, S. 375–376.
- [46] PVsyst SA, *PVsyst*, Version 7.4.5, URL: https://www.pvsyst.com/.
- [47] Mair Wilfried GmbH, 2024, URL: http://www.mairwilfried.it/, Datenstand: 14.04.2024.
- [48] Auer Bau GmbH, 2024, URL: https://www.auerbau.at/, Datenstand: 14.04.2024.
- [49] Manfred Günter Fritzer, MF Tronic, 2024, URL: email: info@mf-tronic.at, Datenstand: 14.04.2024.
- [50] Jiangyin Sunslew Machinery Equipment, 2024, URL: https://www.sunslewdrive. com/products, Datenstand: 21.04.2024.
- [51] TBG Group Technologies, 2024, URL: https://www.tgb-group.com/de/, Datenstand: 21.04.2024.
- [52] CHANGZHOU HANGTUO MECHANICAL CO., LTD, 2024, URL: https://www. solarslewdrive.com/aboutus.html, Datenstand: 21.04.2024.
- [53] Solabolic GmbH, 2024, URL: https://www.solabolic.com/home, Datenstand: 14.04.2024.

- [54] GOOD Future Solar, 2024, URL: https://www.goodfuturesolar.com/, Datenstand: 21.04.2024.
- [55] suntrack, 2024, URL: https://suntrack.p4q.com/, Datenstand: 21.04.2024.
- [56] igus motsion plastics, 2024, URL: https://www.igus.at/info/photovoltaics, Datenstand: 13.03.2024.
- [57] CSB Plastic Bearing Technology, 2024, URL: https://www.csb-ep.com/products/ pv-support-bracket-spherical-bearings-794.html, Datenstand: 13.03.2024.
- [58] TrinaTracker, 2021, URL: https://www.csb-ep.com/products/pv-supportbracket-spherical-bearings-794.html, Datenstand: 12.03.2024.
- [59] SkyCiv Engineering, 2023, URL: https://skyciv.com/de/docs/tech-notes/ loading/solar-panel-wind-load-calculation-asce-7-16/, Datenstand: 24.04.2023.

Anhang

A. Ergänzungen

A.1. PV - Pilotanlage Ötztal

Abbildung 28 3D Modell der PV-Pilotanlage im Ötztal.

Abbildung 29 Gesamtzusammenbau PV-Anlage.

		MATERIAL	Aluminum 6061, geschweißt	Beton, Fertigbeton	EN S355JR	HARDOX 500 TUF	Aluminum 6061,	geschwelijt /		550/620		2 A2	
		G MASSE	бя <i>52</i> с,†	5416,451 kg	23,494 kg	148,201 kg	7,523 kg	0.184 ka	0,169 kg	14,529 kg	RACKER	5	-
	AUTEILLISTE	BESCHREIBUN	Blech-Blege-/ Schweißteil	C30/37	Blech-Biege-/ Schweißteil	A VD10	Blech-Biege-/	SCINEIISTEIL M16x55	M16x45	it Gewi 28mm Feuerverzinkt	PV TF	Hqm	
G: Alle Bauteile Fe	B	BAUTEILNUMMER	Autnahme_slew_Urive	Beton Fundament	Platte HEA_Träger	VD10PS-100S14.0-LC-SH032-REV.	Aufnahme_Slew_Drive_MIR1	Schraubverbindung Drive	Schraubverbindung HEA-Mitte Aufnahme	ZSB_Ankerverbindung_Fundamen e	Datum Datum Gassins 07.032.024 MK Konruller1 07.032.024 MK Norn 07.032.024 MK		5 Mar 1 (1 (1 (1 (1 (1 (1 (1 (1 (1
N N M E R K U N		IBJEKT ANZAHL	-	2 1	m	4 1	- 1 -	7 4	+ ∞	6 4			tus Anderungen um
		(~											
											∉ ₽⊃		

Abbildung 30 Zusammenbau Mitte $\operatorname{PV}\text{-}\operatorname{Anlage}.$

Aluminum 6061, geschweißt EN S355JR A2 Beton, Fertigbeton EN S355JR MATERIA 550/620 2,459 kg 1,542 kg 14,529 kg 1611,167 kg MASSE 5416,451 63,007 kg 23,928 kg 0,461 kg 2,420 kg m 0,161 kg ANMERKUNG: Alle Bauteile Feuerverzinkt õ Blech-Biege-/ Schweißteil This file contains a STEP AP42 implementation Tracker Control Unit Gewi 28mm Feuerverzinkt **PV TRACKER** Warmgewalzte I-Träger BESCHREIBUNG 1500×1500×1000mm 450x450x15 M16x40 Siehe Blatt M16×220 BAUTEILLISTE 4 EURONORM 53-62 - HE W. 160 A-2075 2020-150-CSB PLASTIC TH BE ARNIG TECHNOLOGY AFI COPYRIGHT Halterung Lager Seitlich BI Ę TCU ZSB_Ankerverbindung_F[|]C lundamente Platte HEA_Träger 1 Schraubverbindung HEA Aufnahme BAUTEILNUMMER Schraubverbindung Beton Fundament <u>Oberbau rechts</u> agerschalen C ANZAHL **OBJEKT** 6 2 æ ••• മ 0 0 മ Detail I 6 ∞) (m) (m) (+) (•) (\sim) (2) (...) Detail A BD O Ц d BD O ŧ ∢

	STÜCKLISTE PV-TRACKER						
OBJEKT	BAUTEILBEZEICHNUNG	ABBILDUNG	ANZAHL				
1	Fundament		3				
2	2 EURONORM 53-62 - HE 160 A-2075		2				
3	3 GSQB-150-CSB PLASTIC BEARING TECHNOLOGY COPYRIGHT		4				
4	Platten_Fundament (Platte Gerade 120x120x25)	•	36				
5	Muttern T2002 Fundament		48				
6	Gewi Anker 28mm Länge =0,8m	/	12				
7	Halterung Träger-Lager		4				
8	Versteifung_Halterung		12				
9	Platte HEA_Träger/ Grundplatte 450x450x15	•	3				
10	BS EN ISO 4017 - M16 x 40		32				
11	ISO 7092 - ST 16 - 140 HV	Ø	64				
12	DIN 6924 - M16 x 1,5	(52				
13	JIS 1176 M16x220	1	8				
14	ISO 7091 - ST 16 - 100 HV	0	16				
16	STN EN 10219-2 - 150 x 150 x 4 - 7338		2				
18	BS EN ISO 4017 - M14 x 30		16				
19	ISO 7092 - 14	Ø	16				
20	ZSB IPE 100		7				
21	DIN 1025 - IPE 100-4000		14				
23	DIN 1026-2 - UPE 80 - 200	I	14				
24	Schraubverbindung M12x180	/	56				
25	ANSI B18.3.1M - M12x1,75 x 180, DFHSHCS2HM		56				
26	ISO 7092 - 12	Ø	112				
27	ISO 7042 - M12		56				
28	PL-150-CSB PLASTIC BEARING TECHNOLOGY COPYRIGHT	•	2				
29	PV_Modul_TrinaSolar		24				
30	TCU_P4Q	-	1				
31	Halterung TCU	\square	2				
34	Halterung_HEA-Träger	-	2				
35	Versteifung Halterung PV-Modul		6				
37	VD10PS-100S140-LC-SH032-REV.A	P	1				
38	HEA 200 Antrieb.iam		1				
39	BS EN ISO 4017 - M16 x 55	1	4				
40	ISO 7092 - ST 16 - 140 HV	0	24				
42	BS EN ISO 4017 - M16 x 45		8				

Abbildung 33 Stückliste PV-Anlage.

A.2. Einwirkungen

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

Einwirkungen Wind & Schnee Stahlkonstruktion einer Solaranlage

Allgemein:

Abbildung 34 Einwirkung Wind und Schnee.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		\mathcal{V}_{a}) TZ ng GmbH
Geometrie Bauwerk:				
Höhe Anlage Träger:	<i>h</i> ≔2.5 <i>m</i>			
Breite Anlage:	<i>b</i> := 16.398 <i>m</i>			
Länge 2x PV-Modul:	$l_{solar} \coloneqq 4.798 \ m$			
Breite 1x PV-Modul:	$b_{solar} \coloneqq 1.35 \ m$			
Bezugsfläche PV-Module:	$A_{ref} \! \coloneqq \! l_{solar} \! \cdot \! b$		$A_{ref} = 78$	8.68 m^2
Gewicht PV-Module:	m_{panel} := 38.3 kg			
Anzahl PV-Module:	$n_{panel} \coloneqq 24$			
Gewicht Stahl Oberbau: (ohne HEA Stützen)	$m_{stahl;oberbau}$:=780 kg			
Neigungswinkel PV-Module:	$\alpha_{solarmodul} \coloneqq 60 deg$			
Höhe Anlage Modul 90°:	$s \coloneqq l_{solar} \cdot \sin\left(\alpha_{solarmodul}\right)$		$s\!=\!4.16$	m
Höhe Anlage Modul 60°:	$h_{max} \! \coloneqq \! h \! + \! \frac{s}{2}$		$h_{max} = 4$.58 m
		s=4.79	'8m * sin (60°)	h _{max} =4.58m

Abbildung 35 Geometrie PV-Anlage.

h=2.5m

60°

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at			
Eigengewicht:			
Eigengewicht Panel:	$F_{panel}\!\coloneqq\!m_{panel}\!\cdot\!n_{panel}$	•g	$F_{panel} {=} 9.01 \ {\it kN}$
Eigengewicht Oberbau:	$F_{oberbau} \coloneqq \mathbf{g} \boldsymbol{\cdot} m_{stahl;ober}$	rbau	$F_{oberbau} \!=\! 7.65$ kN
Totales Eigengewicht:	$F_{G;kN}\!\coloneqq\!F_{panel}\!+\!F_{oberb}$	au	$F_{G;k\!N} \!=\! 16.66~{\it kN}$
Totales Eigengewicht:	$F_{G} \! \coloneqq \! \frac{F_{G;kN}}{A_{ref}}$		$F_G \!=\! 0.21 rac{k\!N}{m^2}$
Statischer Bemessungswei	t:		
Teilsicherheitsbeiwert:	$\gamma_{Q1}\!\coloneqq\!1.1$		
Eigengewicht:	$F_{G;Ed} \! \coloneqq \! F_G \! \cdot \! \gamma_{Q1}$		$F_{G;Ed} {=} 0.23 rac{kN}{m^2}$
Windzone/-Karte:			
Grundwert Basiswindges.:	$v_{b;0} \coloneqq 25.4 \frac{m}{s}$	26.2 m/s ÖNORM B Sölden St.Leonhard im Pitz	2 199-1-4:2019; Tab. A.1 tal> HORA
Richtungsfaktor:	$c_{dir}\!\coloneqq\!1.0$		
Jahreszeitenbeiwert: Basisgeschwindigkeit:	$\begin{array}{l} c_{season} \coloneqq 1.0 \\ v_b \coloneqq v_{b;0} \bullet c_{dir} \bullet c_{season} \end{array}$		$v_b = 25.4 \frac{m}{s}$
Dichte Luft:	$\rho \coloneqq 1.25 \frac{kg}{m^3}$		
Basisgeschwindigkeitsdruck:	$q_b \coloneqq \frac{1}{2} \cdot \rho \cdot v_b^2$		$q_b \!=\! 0.4 rac{k\!N}{m^2}$
Gebäudegrösse & Geländel	kategorie:		
Gebäudehöhe < 25m:	$h_{max} {<} 25 \ m {=} 1$		
Geländekategorie:	Geländekategorie III	ÖNORM EN 1991	1-1-4:2011; Tab. 4.1
Aerodynamische Druck und	l Kraftbeiwerte:		
Aspect ratio:	$\frac{b}{s} = 3.95$		
Clearance ratio:	$\frac{s}{h_{max}} = 0.91$		

Abbildung 36 Einwirkung Wind.

Force Coe	efficients,	C _t , for (Case A a	and Cas	se B								
Clearance					1.00	Aspect Ra	itio, B/s	6					
Hatio, s/h	≤ 0.05	1.70	1.65	1.55	1.45	1.40	1 35	1 35	10	1 30	130	≥ 45	
0.9	1.85	1.75	1.70	1.60	1.55	1.50	1.45	1.45	1.40	1.40	1.40	1.40	
0.5	1.95	1.85	1.80	1.75	1.75	1.70	1.70	1.70	1.70	1.70	1.70	1.75	
0.2 ≤0.16	1.95	1.90 1.90	1.85	1.80	1.80	1.80 1.80	1.80 1.85	1.80	1.85	1.90 1.90	1.90 1.90	1.95	
/indkraf	tbeiwe	rt:			$c_f \coloneqq$	1.8	1.4: cf=	5 ASC 1.8 Ö	E 7-16 NORM	5 1 B 194	91-1-4	:2019): 9.4.2 Anzeigetafeln
trukturb	eiwert	:			$c_s c_d$:	=1.0	Nic	ht Sc	hwing	ungs	anfäll	ig	,
					-s-u				2	5		5	
öenges	schwir	ndigk	eitsd	Iruck	qp(z):							
NORM E ültigen V erechner	N 1991 Vindpro 1 und ei	l-1-4:2 ofiles i ntspri	2011, nicht d cht de	Gleicl anwe em Mi	hung (ndbar. ttelwe	4.8) is Der E rt übe	t aufg Söenge er 2 Se	rund eschw kund	der B vindigi en.	erück: keitsd	sichtig ruck q	jung (1p(z) 1	des in Österreich ist gemäß <mark>6.3.2.1</mark> zu
pitzenw	indges	chwin	digke	it:	$v_p \coloneqq$	110 -	km hr	30.5	6 <u>m</u> <u>s</u>	HOR Datu	4 <i>-Pass</i> m: 16	5 47,0 .02.2	19128° N; 10,94254° (023
pitzenw	indges	chwin	digke	it:	$v_p \coloneqq$	$60 \frac{kn}{h}$	$\frac{m}{r} = 1$	6.67	$\frac{m}{s}$	Defi	niert//	Ange	nommen
pitzenwi min (10 bmindei	indges m): rungsfa	chwin aktor:	digke	it:	$v_p \coloneqq$ $z \coloneqq 1$ $f_s \coloneqq$	60 <mark>kn</mark> h 0 0.896	$\frac{m}{r} = 1$	6.67	m s ÖNOI	Defii RM B 1	niert/ <i>i</i> 1991-4	Ange 4:201	nommen 9; Tab. 3; 6.3.2.1
pitzenwi min (10 bminder öengesc	indgeso m): rungsfa chwindi ? <i>199-1-</i>	chwin aktor: igkeit: <i>4:201</i>	digke sdruc <i>9; Tal</i>	it: k: <i>b. 2; c</i>	$v_p :=$ z := 1 $f_s :=$ $q_{p;10}$ 5.3.2.1	$60 \frac{kn}{h}$ 0 0.896 $= 1.7$	$\frac{m}{r} = 1$ $5 \cdot \left(\frac{z}{1}\right)$	(6.67)	$\frac{m}{s}$ $\ddot{O}NOp$ $\cdot q_b \cdot j$	Defii RM B 2	niert/ <i>i</i> 1991-4	Anger 4:201:	nommen $g_{j;Tab.3;6.3.2.1}$ $q_{p;10}{=}0.63{kN\over m^2}$
pitzenwi min (10 bminder öengesc öNORM B öengesc	indges m): rungsfa chwind : <i>199-1-</i> chwind	chwin aktor: igkeit: <i>4:201</i> igkeit:	digke sdruc <i>9; Tal</i> sdruc	it: k: b. <i>2; t</i> k:	$v_p :=$ z := 1 $f_s :=$ $q_{p;10}$ 5.3.2.1 $q_p :=$	$60 \frac{ka}{h}$ 0 0.896 $= 1.7$ $\left(\frac{v_p}{v_b}\right)^2$	$\frac{m}{br} = 1$ $5 \cdot \left(\frac{z}{10}\right)^2 \cdot q_b \cdot b$	(6.67)	$\frac{m}{s}$ $\ddot{O}NOP$ $\cdot q_b \cdot j$	Defin RM B L	niert// 1991-4	Ange 4:201	nommen 9; Tab. 3; 6.3.2.1 $q_{p;10} = 0.63 \frac{kN}{m^2}$ $q_p = 0.16 \frac{kN}{m^2}$
pitzenwi min (10 bminder öengesc öengesc öengesc	indges m): rungsfa :hwindi : <i>199-1-</i> :hwindi	chwin aktor: igkeit: <i>4:201</i> igkeit: ck/-k	digke sdruc <i>9; Tal</i> sdruc	it: k: <i>b. 2; t</i> k:	$v_p :=$ z := 1 $f_s :=$ $q_{p;10}$ 5.3.2.1 $q_p :=$	$60 \frac{ka}{h}$ 0 0.896 $= 1.7$ $\left(\frac{v_p}{v_b}\right)^2$	$\frac{m}{r} = 1$ $5 \cdot \left(\frac{2}{10} \cdot q_b\right)$	(6.67)	$\frac{m}{s}$ $\ddot{O}NOh$ $\dot{P} \cdot q_b \cdot j$	Defin RM B	niert/ <i>i</i> 1991-4	Ange 4:201	nommen 9; Tab. 3; 6.3.2.1 $q_{p;10} = 0.63 \frac{kN}{m^2}$ $q_p = 0.16 \frac{kN}{m^2}$
pitzenwi min (10 bminder öengesc öworm B öengesc ö engesc Vindkrafi	indgese m): rungsfa hwind <i>199-1-</i> chwind th ddruc	chwin aktor: igkeit: <i>4:201</i> igkeit: ck/-k	digke sdruc <i>9; Tal</i> sdruc	it: k: <i>b. 2; d</i> k:	$v_p :=$ z := 1 $f_s :=$ $q_{p;10}$ 5.3.2.1 $q_p :=$ $F_{w;10}$	$60 \frac{ka}{h}$ 0 0.896 $= 1.7$ $\left(\frac{v_p}{v_b}\right)^2$ $0 = c_s c$	$\frac{m}{r} = 1$ $5 \cdot \left(\frac{z}{10}^2 \cdot q_b \cdot c_f \cdot c$	$(6.67)^{0.26}$	$rac{m}{s}$ $\ddot{O}NOh$ $\cdot q_b \cdot j$	Define RMB	niert// 1991-4	Angel 1:201: modul)	nommen 9; Tab. 3; 6.3.2.1 $q_{p;10} = 0.63 \frac{kN}{m^2}$ $q_p = 0.16 \frac{kN}{m^2}$
pitzenwi min (10 bminder öengesc öengesc öengesc öenwir /indkraff	indgese m): rungsfa chwind <i>199-1-</i> chwind th ddruc t:	chwin aktor: igkeit: <i>4:201</i> igkeit: ck/-k	digke sdruc sdruc sdruc	it: b. <i>2; (</i> k:	$v_p :=$ z := 1 $f_s :=$ $q_{p;10}$ 5.3.2.1 $q_p :=$ $F_{w;10}$ $F_w :=$	$60 \frac{kr}{h}$ 0 0.896 $= 1.7$ $\left(\frac{v_p}{v_b}\right)^2$ $= c_s c_s - c_s c_d \cdot c_s - $	$\frac{m}{r} = 1$ $5 \cdot \left(\frac{z}{1}, \frac{z}{1}, \frac{z}{1},$	6.67 f_s $q_{p;10}$ • A_{re}	$\frac{m}{s}$ $\ddot{O}NOI$ $\dot{O} \cdot q_b \cdot d_b \cdot d$	Defin RM B f_s f_s	niert/ <i>i</i> 1991-4 α _{solari}	Angel 1:201: nodul)	nommen 9; Tab. 3; 6.3.2.1 $q_{p;10} = 0.63 \frac{kN}{m^2}$ $q_p = 0.16 \frac{kN}{m^2}$ • $F_{w;10} = 77.54 kN$ $F_w = 19.08 kN$
pitzenwi min (10 bminder öengesc övorm B öengesc Vindkraft Vindkraft	indgese m): rungsfa chwind <i>199-1-</i> chwind t: t: t:	chwin aktor: igkeit: igkeit: c k/-k	digke sdruc sdruc sdruc traft:	k:) <i>. 2; (</i>	$\begin{split} v_{p} &:= 1 \\ z &:= 1 \\ f_{s} &:= \\ q_{p;10} \\ z &:= 1 \\ q_{p} &:= \\ r_{w;10} \\ r_{w} &:= \\ r_{w;10} \\ r_{$	$60 \frac{kn}{h}$ 0 0.896 $= 1.7$ $\left(\frac{v_p}{v_b}\right)^2$ $= c_s c_d \cdot$ $= c_s c_d \cdot$	$\frac{m}{sr} = 1$ $5 \cdot \left(\frac{z}{1}\right)^{2} \cdot q_{b} \cdot c_{f} \cdot c_{f} \cdot q_{f}$ $c_{d} \cdot c_{f} \cdot q_{f}$ $d \cdot c_{f} \cdot c_{f} \cdot q_{f}$	$(6.67)^{0.26}$	$\frac{m}{s}$ $\ddot{O}NOI$ $\dot{O} \cdot q_b \cdot :$ $f \cdot \sin \phi$	Defin RM B f_s $\cdot \sin ($ $(\alpha_{sola}$	niert/ <i>/</i> 1991-4 α _{solarr} rmodul	Anger 1:201: nodul)	nommen 9; Tab. 3; 6.3.2.1 $q_{p;10} = 0.63 \frac{kN}{m^2}$ $q_p = 0.16 \frac{kN}{m^2}$ 9: $F_{w;10} = 77.54 kN$ $F_w = 19.08 kN$ $q_{w;10} = 0.99 \frac{kN}{2}$

Abbildung 37 Einwirkung Wind.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		$\mathcal{V}_{\mathcal{A}}$	
Windreibungskraft:			
Teilsicherheitsbeiwert:	$\gamma_Q\!\coloneqq\!1.5$		
Reibungsbeiwert:	$c_{fr}\!\coloneqq\!0.01$	Glatt: ÖNORM EN 1	991-4:2011; Tab. 7.10
Windreibungskraft:	$F_{fr} \! \coloneqq \! c_{fr} \! \cdot \! q_p \! \cdot \! A_{ref} \! \cdot \! \gamma_Q$	2	$F_{fr}\!=\!0.18~{\it kN}$
Windreibungsdruck:	$q_{fr} \! \coloneqq \! c_{fr} \! \bullet \! q_p \! \bullet \! \gamma_Q$		$q_{fr} \!=\! 0.002 rac{k\!N}{m^2}$
Statischer Bemessungswei	t:		
Teilsicherheitsbeiwert:	$\gamma_Q\!\coloneqq\!1.5$		
Windkraft maßgebend:	$F_{w;Ed}\!\coloneqq\!F_w\!\cdot\!\gamma_Q$		$F_{w;Ed} = 28.62 \ kN$
Winddruck maßgebend:	$q_{w10;Ed}\!\coloneqq\!q_{w;10}\!\cdot\!\gamma_Q$		$q_{w10;Ed} = 1.48 \frac{kN}{m^2}$
	$q_{w;Ed}\!\coloneqq\!q_w\!\cdot\!\gamma_Q$		$q_{w;Ed} \!=\! 0.36 \; rac{kN}{m^2}$
Winddruck auf Oberflächer	1: Freistehende Wän	de, Zäune, Anzeige	tafeln
Gerade Wand:	$\frac{b}{l_{solar}} = 3.42$ $b = 16.4 \text{ m}$ $4 \cdot h_{max} = 18.31 \text{ m}$ $b \le 4 \cdot h_{max} = 1$		
$fir t \le 4h$ $40 = 0.3h$ $42h$ $4 + h$ h h f	$\begin{split} A_{f} &:= 0.3 \cdot l_{solar} \cdot l_{solar} = \\ B_{f} &:= 1.7 \cdot l_{solar} \cdot l_{solar} = \\ C_{f} &:= 2 \cdot l_{solar} \cdot l_{solar} = 4 \end{split}$	$= 6.91 \ m^2$ = 39.14 m^2 46.04 m^2	
Nettodruckbeiwert: Nettodruckbeiwert: Nettodruckbeiwert:	$\begin{array}{c} c_{p;netA}\!\coloneqq\!2.9 \\ c_{p;netB}\!\coloneqq\!1.8 \\ c_{p;netC}\!\coloneqq\!1.4 \end{array}$	Tabelle 7.9 OENORM	_EN_1991-1-4_2011
Winddruck A:	$w_{i\!A}\!\coloneqq\!q_{p}\!\cdot\!c_{p;net\!A}\!=\!0.4$	$5 \frac{kN}{m^2}$	
Winddruck B:	$w_{iB} \! \coloneqq \! q_p \! \cdot \! c_{p;netB} \! = \! 0.2$	$8 \frac{\frac{m}{kN}}{m^2}$	

Abbildung 38 Einwirkung Wind.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
Winddruck C:	$w_{iC} \coloneqq q_p \cdot c_{p;netC} = 0.22 \; rac{kN}{m^2}$	
Windkraft A:	$F_{w;eA}\!\!:=\!w_{i\!A}\!\cdot\!A_f\!=\!3.12~{\it k\!N}$	
Windkraft B:	$F_{w;eB} \! \coloneqq \! \left(w_{iB} \! \cdot \! B_{f} \right) \! = \! 10.96 \textit{kN}$	
Windkraft C:	$F_{w;eC} \! \coloneqq \! \left(w_{iC} \! \cdot \! C_f \right) \! = \! 10.03 \textit{kN}$	
Windkraft:	$F_{w;e;total} \coloneqq F_{w;eA} + F_{w;eB} + F_{w;eC}$ $q_{w;e;total} \coloneqq \frac{F_{w;e;total}}{A_{wet}}$	$F_{w;e;total} = 24.1$ kN $q_{w;e;total} = 0.31 \frac{kN}{m^2}$
Winddruck:	$q_{w;e;total;Ed} \coloneqq q_{w;e;total} \cdot \gamma_Q$	$q_{w;e;total;Ed} = 0.46 \frac{kN}{m^2}$
Widerstand:	$q_{Rd} \coloneqq 5.4 \; rac{kN}{m^2}$	
Nachweis:	$\frac{q_{Rd}}{q_{w;e;total;Ed}} = 11.75$	
	$F_{Rd} \!\coloneqq\! q_{Rd} \!\cdot\! A_{ref}$	$F_{Rd} = 424.86 \ kN$

 $F_{w;e;total;Ed}\!\coloneqq\!F_{w;e;total}\!\cdot\!\gamma_Q$

 $F_{w;e;total;Ed} = 36.15$ kN

Abbildung 39 Einwirkung Wind

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

 M_r

Einwirkung Moment auf Antrieb:

Abstand Moment: Abstand Moment: Kraft in x:	$b_1 := 0.25 \ m$ $a_1 := 0.28 \ m$ $F_x := 0$	
Kraft in y:	$ \begin{aligned} F_{y;10} &\coloneqq F_{w;10} \cdot \cos\left(\alpha\right) \\ F_{y} &\coloneqq F_{w} \cdot \cos\left(\alpha\right) \end{aligned} $	$F_{y:10} = 67.16 \text{ kN}$ $F_y = 16.52 \text{ kN}$
Kraft in z:	$ \begin{split} F_{z;10} &\coloneqq F_{G;kN} + F_{w;10} \cdot \sin\left(\alpha\right) \\ F_{z} &\coloneqq F_{G;kN} + F_{w} \cdot \sin\left(\alpha\right) \end{split} $	$\frac{F_{z:10}\!=\!55.44~\textit{kN}}{F_{z}\!=\!26.2~\textit{kN}}$
Moment Antrieb:	$ \begin{split} M_{x} &\coloneqq \left F_{G;kN} \boldsymbol{\cdot} b_{1} \boldsymbol{\cdot} \cos\left(\alpha\right) - F_{w;10} \boldsymbol{\cdot} a_{1} \right \\ M_{x} &\coloneqq \left F_{G;kN} \boldsymbol{\cdot} b_{1} \boldsymbol{\cdot} \cos\left(\alpha\right) - F_{w} \boldsymbol{\cdot} a_{1} \right \end{split} $	$M_{r} = 18.1 \ \textit{kN} \cdot \textit{m}$ $M_{x} = 1.73 \ \textit{kN} \cdot \textit{m}$
Statischer Bemessungswert	t:	
Teilsicherheitsbeiwert:	$\gamma_Q\!\coloneqq\!1.5$	
Kraft in y:	$F_{y:Ed} := F_y \cdot \gamma_Q$	$F_{y;Ed} \!=\! 24.78 \ \mathbf{kN}$
Kraft in z:	$F_{z;Ed} \coloneqq F_z \cdot \gamma_Q$	$F_{z;Ed} = 39.3 \ kN$
Resultierendes Moment:	$M_{x;Ed} \coloneqq M_x \cdot \gamma_Q$	$M_{x;Ed} = 2.6 \ \mathbf{kN} \cdot \mathbf{m}$
Nachweis Moment auf Antri	ieb:	
Hersteller angaben:	$M_{max} \coloneqq 70 \ \mathbf{kN} \cdot \mathbf{m}$	
Nachweis:	$M_{x;Ed} \!\leq\! M_{max} \!=\! 1$	
$\mathbf{if}\left(\!M_{x} \!<\! M_{max}, \text{``Nachweis erfül}\right.$	llt", "Nachweis nicht erfüllt") = "Nachweis"	erfüllt"
Sicherheitsfaktor:	$\frac{M_{max}}{M} = 40.36$	
$\mathbf{if}\left(\frac{M_{max}}{1-1} \ge 1.0, \text{``Nachweis erfu}\right)$	$\left(11t^{2}, \text{``Nachweis nicht erfüllt''}\right) = \text{``Nachweis}$	s erfüllt"

Abbildung 40 Einwirkung / Nachweis Moment auf Antrieb.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
Schneelast:		
Char. Schneelast am Boden:	$s_k \coloneqq 2.7 \ rac{kN}{m^2}$	HORA-Pass 47,09128° N; 10,94254° O; Datum: 16.02.2023
Umgebungskoeffizient:	$C_e\!\coloneqq\!1.0$	
Temperaturkoeffizient:	$C_t \! \coloneqq \! 1.0$	
Außergewöhnliche Lasten:	$C_{esl}\!\coloneqq\!1.0$	
Formbeiwert Schnee:	$\mu_i := 0.8$	
Schneelast:	$s\!\coloneqq\!\mu_i\!\cdot\!C_e\!\cdot\!C_t\!\cdot\!s_k$	$s\!=\!2.16rac{kN}{m^2}$
Punktlast:	$Q\!\coloneqq\!s\!\cdot\!A_{ref}$	$Q \!=\! 169.94 \ k\!N$
Dichte Schnee:	$\rho \coloneqq 300 \frac{kg}{kg}$	
Schneehöhe	m^{3}	
Semicerione.	n 0.15 m	
Schneelast Rückrechnung:	$s_{k;k} \coloneqq \rho \cdot g \cdot h = 2.15 \frac{kN}{m^2}$	

Schneelast bei Verwehung:

Tritt nicht auf, da keine Wände, Vorsprung oder Aufbauten vorhanden sind.

Statischer Bemessungswert:

Teilsicherheitsbeiwert:	$\gamma_Q \coloneqq 1.0$	
Schneelast:	$F_{s;Ed} := s \cdot \gamma_Q$	$F_{s;Ed} \!=\! 2.16 \; rac{k\!N}{m^2}$
Punktlast:	$Q_{Ed} \! \coloneqq \! Q \! \cdot \! \gamma_Q$	$Q_{Ed} \!=\! 169.94 \ \textit{kN}$

Abbildung 41 Einwirkung Schnee.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

Lastkombinationen:

$E_d = E \sum_{j \ge 1} \gamma_{G,j} \ G_{k,j} " + " \gamma_P \ P + \gamma_{Q,1} \ Q$	(6.10		
	Teilsicher	heitsbeiwert y	
Einwirkung	günstig	ungünstig	Kombinationsbeiwert ψ_0
ständige (G _k)	1,0	1,35	
Wind (w _k)	0	1,5	0,6
Schnee (sk) über 1000m ü. NN	0	1,5	0,7
Schnee (sk) unter 1000m ü. NN	0	1.5	0.5

Tabelle 16: Teilsicherheits- und Kombinationsbeiwerte für Einwirkungen (ÖNORM)

 $\psi_{o;s}\!\coloneqq\!0.7\qquad \psi_{o;w}\!\coloneqq\!0.6\qquad \gamma_{Q2}\!\coloneqq\!1.35$ Eigengewicht wird im Rstab berücksichtigt

Sommer: Lastfall 1:	Wind auf 60° auf Panels	$q_{w;Ed} = 0.36 rac{kN}{m^2}$
Winter: Lastfall 2:	Schnee	$F_{s;Ed} \!=\! 2.16 \; rac{k\!N}{m^2}$
Lastfall 3:	$\begin{aligned} & \textit{Schnee} + \textit{Wind} \\ & E_{d;LK3} \coloneqq F_{s;Ed} \cdot \gamma_Q \cdot \psi_{o;s} + q_{w;Ed} \cdot \psi_{o;w} \end{aligned}$	$E_{d;LK3} = 1.73 \ \frac{kN}{m^2}$
Lastfall 5:	Wind bei 110 km/h auf HEA Träger $E_{d;LK5} := 1.22 \frac{kN}{m^2}$ $e_{d:LK4} := E_{d:LK5} \cdot 200 mm$	$E_{d;LK5} = 1.22 \frac{kN}{\frac{m^2}{kN}}$ $e_{d:LK4} = 0.24 \frac{kN}{\frac{kN}{kN}}$
		n m

Abbildung 42 Einwirkung Wind und Schnee.

A.3. RSTAB

						-				
Beschreibung	5 Typ	hweis	Nac Nacl	l krit	Belastung	Bemess.	Position [m]	ojekte Nr	O	Add-On
Veraleichsspannung (von Mises)	(J)p		1 180	KIII	1.61	BS1	v: 0.350	50	Stab	Speppupos-
vergreionsspannung (von inises)	Cityon Mases		1.100		ERI	551	x: 0.000		Stab	Dehnungs- Berechnung
Gesamtnormalspannung	σ _{x,ges}		1.176		LK1	BS1	x: 0.350	50	Stab	Spannungs- Dehnungs- Berechnung
Gesamtschubspannung	Tini		0.166 🗸		LK1	BS1	x: 0.000	50	Stab	Spannungs- Dehnungs- Berechnung
Querschnittsnachweis Biegung, Normalkraft und Schub nach EN 1993-1-1, 6.2.9.2, 6.2.9.3, 6.2.10 Elastische Bemessung	SP6200.00		1.176		LK1	BS1	x: 0.350	50	Stab	Stahlbemessu ng
Querschnittsnachweis Biegung v Achse nach EN 1993-1-1, 6.2.5 Plastische Bemessung	SP4100.03		0.601 🗸		LK1	BS1	x: 2.400	33,34,42,43,57,58, 66,67	Stab	Stahlbemessu ng
Querschnittsnachweis Doppelbie und Schub nach EN 1993-1-1, 6.3 und 6.2.10 Plastische Bemessur	SP6500.04		0.410		LK1	BS1	x: 2.400	36,37	Stab	Stahlbemessu ng
Querschnittsnachweis Biegung u Achse nach EN 1993-1-1, 6.2.5 Plastische Bemessung	SP5100.03		0.400 ¥		LK1	BS1	x: 2.500	3	Stab	Stahlbemessu ng
Querschnittsnachweis Biegung u Achse, Normalkraft und Schub na EN 1993-1-1, 0.2.9.1 und 0.2.10 Plastische Bemessung	SP6500.03		0.400 🗸		LK1	BS1	x: 2.500	3	Stab	Stahlbemessu ng
Querschnittsnachweis Biegung u Achse nach EN 1993-1-1, 6.2.9.2 6.2.9.3 Elastische Bemessung	SP4200.03		0.218 ¥		LK1	BS1	x: 0.000	2	Stab	Stahlbemessu ng
Querschnittsnachweis Schub na 1993-1-1, 6.2.6(4) Elastische Bemessung	SP3400.02		0.166 🗸		LK1	BS1	x: 0.000	50	Stab	Stahlbemessu ng
Querschnittsnachweis Querkraft Achse nach EN 1993-1-1, 6.2.6(2 Plastische Bemessung	SP3100.02		0.060 🗸	1	LK1	BS1	x: 2.400	33,34,42,43,57,58, 66,67	Stab	Stahlbemessu ng
Querschnittsnachweis Druck nac 1993-1-1, 6.2.4	SP1200.00		0.039 🗸	1	LK1	BS1	x: 0.000	3	Stab	Stahlbemessu ng
Querschnittsnachweis Querkraft Achse nach EN 1993-1-1, 6.2.6(2 Plastische Bemessung	SP3200.02		0.018 🗸	1	LK1	BS1	x: 0.250	3	Stab	Stahlbemessu ng
Querschnittsnachweis Vernachlässigbare Schnittgrößen	SP0100.00		0.000 🗸	1	EK1	BS1	x: 0.000	1-7,10-13,30-71	Stab	Stahlbemessu ng
Querschnittsnachweis Schubber nach EN 1993-1-5, 5.1, 5.2, 5.3 u	SP3500.00		0.000 🗸		LK1	BS1	x: 0.000	2, 4,5,7,10-13,30-71	Stab	Stahlbemessu ng

Abbildung 43 Bemessungsübersicht RSTAB Schneeeinwirkung.

A.4. Schraubverbindung

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

Schrauben Berechnung I Stahlkonstruktion einer Solaranlage

Abbildung 44 Nachweis Schubspannung der Schraube Gruppe A.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
2) Lochleibung im Blech		
Wirkende Kraft:	$F_i := \frac{F_{tt}}{2}$	F_i =35.12 kN
Anzahl der Schrauben:	$n \coloneqq 4$	
Schraubenschaft:	$d \coloneqq 16 \ mm$	
Blechstärke:	$t_i := 6 \ \boldsymbol{mm}$	
Lochleibungsspannung:	$\sigma_{L;i} \! \coloneqq \! \frac{F_i}{n \cdot d \cdot t_i}$	$\sigma_{L;i}\!=\!91.45~{m N\over m mm m^2}$
Spannung Bauteil:	$\sigma_{bausteil}$:= 355 $rac{N}{mm^2}$	
Zulässige Schubspannung:	$\sigma_{zul}\!\coloneqq\!0.7\!\boldsymbol{\cdot}\!\sigma_{bausteil}$	$\sigma_{zul} {=} 248.5 {N \over {mm^2}}$
Nachweis:	$\sigma_{L\!,\!i} {\leq} \sigma_{zul}$	
$\mathbf{if} \left(\sigma_{L\!,\!i} \! < \! \sigma_{zul}, \text{``Nachweis erfül} \right.$	lt", "Nachweis nicht erfüllt") = "N	Jachweis erfüllt"
Sicherheitsfaktor:	$rac{\sigma_{zul}}{\sigma_{L;i}} = 2.72$	
$\mathbf{if}\left(\frac{\sigma_{zul}}{\sigma_{L;i}} \ge 1.0, \text{``Nachweis erfu} ight)$	llt", "Nachweis nicht erfüllt") = "I	Nachweis erfüllt"
Maximale Einwirkung	$F_{max} \coloneqq \left(n \cdot d \cdot t_i ight) \cdot \sigma_{zul}$	$F_{max} = 95.42$ kN

Abbildung 45 Nachweis Lochleibung im Blech Gruppe A.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
3) Zugbeanspruchung des	Restquerschnittes	
Wirkende Kraft:	$F_i := \frac{F_{tt}}{2}$	$F_i \!=\! 35.12$ kN
Breite Blech:	b:=160 mm	
Lochdurchmesser:	d_{loch} :=17 mm	
Höhe Blech:	h≔6 mm	
Anzahl Schrauben:	$n_i \coloneqq 4$	
Nettoquerschnitt Blech:	$A_{i;netto}\!\coloneqq\!\left(\!$	$A_{i,netto}\!=\!552~{m mm}^2$
Zugbeanspruchung:	$\sigma_{Z;i} \! \coloneqq \! \frac{F_i}{A_{i;netto}}$	$\sigma_{Z;i}\!=\!63.61rac{N}{mm^2}$
Spannung Bauteil:	$\sigma_{bausteil} = 355 \ rac{N}{mm^2}$	
Zulässige Schubspannung:	$\sigma_{Z;zul}\!\coloneqq\!0.7\!\cdot\!\sigma_{bausteil}$	$\sigma_{Z;zul} = 248.5 \ rac{oldsymbol{N}}{oldsymbol{mm}^2}$
Nachweis:	$\sigma_{Z;i} {\leq} \sigma_{Z;zul}$	
$\mathbf{if} \left(\sigma_{Z;i} \! < \! \sigma_{Z;zul}, \text{``Nachweis erfit} \right)$	${\rm illt", "Nachweisnichterf" ullt"} = "$	'Nachweis erfüllt"
Sicherheitsfaktor:	$rac{\sigma_{Z;zul}}{\sigma_{Z;i}} {=} 3.91$	
$\mathbf{if} \left(\frac{\sigma_{zul}}{\sigma_{L;i}} \ge 1.0$, "Nachweis erfül	t", "Nachweis nicht erfüllt" = "N	Nachweis erfüllt"
Maximale Einwirkung	$F_{max} \!\! := \! A_{i;netto} \! \cdot \! \sigma_{Z;zul}$	$F_{max} = 137.17$ kN

Abbildung 46 Nachweis Zugbeanspruchung des Restquerschnittes Gruppe A.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

Schrauben Berechnung II Stahlkonstruktion einer Solaranlage

Wirkende Kraft Wind vorne: Wirkende Kraft Wind hinten:	$F_{wind;vorne} \coloneqq 10.86$	kN			
Wirkende Kraft Schnee:	$F_{schnee} \coloneqq 0.13 \ kN$				
Maßgebend:	$F_{tt} \coloneqq F_{wind;vorne}$				
1) Schubspannung der Sch	iraube				
Wirkende Kraft:	$F \coloneqq \frac{F_{tt}}{2}$	F=5.43 kN			
Anzahl der Schrauben: Anzahl Schnittflächen:	$n \coloneqq 2 \\ m \coloneqq 1$				
Schraubenquerschnitt:	$A \coloneqq 157 \ mm^2$	Asp: liegt die Scherfläche im Gewindebereich > Asp M16			
Schubbeanspruchung:	$\tau_a \coloneqq \frac{F}{n \cdot m \cdot A}$	$ au_a = 17.29 \ \frac{N}{mm^2}$			
Spannung Schraube:	$\sigma_{schraube} \coloneqq 640 \ \frac{N}{mm^2}$	- Festigkeit 8.8: 8*8*10			
Zulässige Schubspannung:	$\tau_{\mathit{zul}} \! \coloneqq \! 0.3 \! \cdot \! \sigma_{\mathit{schraube}}$	$ au_{zul} \!=\! 192 rac{oldsymbol{N}}{oldsymbol{mm}^2}$			
Nachweis:	$ au_a{\leq} au_{zul}$				
$\mathbf{if}\left(\tau_{a}\!<\!\tau_{zul},\text{``Nachweis erfüllt''},\text{``Nachweis nicht erfüllt''}\right)\!=\!\text{``Nachweis erfüllt''}$					
Sicherheitsfaktor:	$\frac{\tau_{zul}}{\tau_a}$ =11.1				
$\mathbf{if}\!\left(\!\frac{\tau_{zul}}{\tau_a}\!\!\geq\!\!1.0,\text{``Nachweis erfül}\right.$	lt", "Nachweis nicht er	fiillt" = "Nachweis erfüllt"			
Maximale Einwirkung Schraubenaufnahme:	$F_{max} \coloneqq (n \cdot m \cdot A) \cdot \tau_{zz}$	$F_{max} = 60.29 \ kN$			

Abbildung 47 Nachweis Schubspannung der Schraube Gruppe B.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
2) Lochleibung im Blech		
Wirkende Kraft:	$F_i := \frac{F_{tt}}{2}$	$F_i {=} 5.43$ kN
Anzahl der Schrauben:	$n \coloneqq 2$	
Schraubenschaft:	$d \coloneqq 16 \ mm$	
Blechstärke:	$t_i := 8 \ mm$	
Lochleibungsspannung:	$\sigma_{L,i} \coloneqq \frac{F_i}{n \cdot d \cdot t_i}$	$\sigma_{L;i} =$ 21.21 $rac{oldsymbol{N}}{oldsymbol{mm}^2}$
Spannung Bauteil:	$\sigma_{bausteil}$:= 355 $rac{oldsymbol{N}}{oldsymbol{mm}^2}$	
Zulässige Schubspannung:	$\sigma_{zul} \coloneqq 0.7 \cdot \sigma_{bausteil}$	σ_{zul} =248.5 $rac{N}{mm^2}$
Nachweis:	$\sigma_{L,i} {\leq} \sigma_{zul}$	
$\mathbf{if} \big(\sigma_{L\!;\!i} \! < \! \sigma_{zul}, \text{``Nachweis erful} \right)$	$ t", "Nachweis nicht erfüllt" \rangle = "$	Nachweis erfüllt"
Sicherheitsfaktor:	$\frac{\sigma_{zul}}{\sigma_{L,i}} = 11.72$	
$\mathbf{if} \left(\frac{\sigma_{zul}}{\sigma_{L;i}} \ge 1.0, \text{``Nachweis erfu} ight)$	llt", "Nachweis nicht erfüllt" $=$	'Nachweis erfüllt"
Maximale Einwirkung	$F_{max} \coloneqq (n \cdot d \cdot t_i) \cdot \sigma_{zul}$	$F_{max} \!=\! 63.62$ kN

Abbildung 48 Nachweis Lochleibung im Blech Gruppe B.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
3) Zugbeanspruchung des	Restquerschnittes	
Wirkende Kraft:	$F_i = \frac{F_{tt}}{2}$	$F_i \!=\! 5.43 \ \mathbf{kN}$
Breite Blech:	<i>b</i> := 300 <i>mm</i>	
Lochdurchmesser:	d_{loch} :=18 mm	
Höhe Blech:	h≔8 mm	
Anzahl Schrauben:	$n_i := 2$	
Nettoquerschnitt Blech:	$A_{i;netto}\!\coloneqq\!\left(b\!-\!n_{i}\!\cdot\!d_{loch}\!\right)\!\cdot\!h$	$A_{i;netto} = 2112 \ mm^2$
Zugbeanspruchung:	$\sigma_{Z,i} \! \coloneqq \! \frac{F_i}{A_{i;netto}}$	$\sigma_{Z,i}\!=\!2.57rac{oldsymbol{N}}{oldsymbol{mm}^2}$
Spannung Bauteil:	$\sigma_{bausteil}$:=355 $rac{N}{mm^2}$	
Zulässige Schubspannung:	$\sigma_{Z;zul}\!\coloneqq\!0.7\!\boldsymbol{\cdot}\!\sigma_{bausteil}$	$\sigma_{Z;zul} = 248.5 \frac{N}{mm^2}$
Nachweis:	$\sigma_{Z;i} {\leq} \sigma_{Z;zul}$	
$\mathbf{if} \big(\sigma_{Z;i} \! < \! \sigma_{Z;zul}, \text{``Nachweis erfited} \big)$	illt", "Nachweis nicht erfüllt" $\rangle = $	'Nachweis erfüllt"
Sicherheitsfaktor:	$\frac{\sigma_{Z;zul}}{\sigma_{Z;i}} = 96.65$	
$\mathbf{if} \left(\frac{\sigma_{zul}}{\sigma_{L;i}} \ge 1.0, \text{``Nachweis erfül} ight)$	$ t ^{*}$, "Nachweis nicht erfüllt" = "I	Nachweis erfüllt"
Maximale Finwirkung	$F := A$ σ_{-}	F = -524.83 kN
	$max - A_{i,netto} \cdot O_{Z;zul}$	$m_{max} = 024.00$ m/

Abbildung 49 Nachweis Zugbeanspruchung des Restquerschnittes Gruppe B.
A.5. Schweißnähte

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

Schweißnaht Anschluss I-Träger/Grundplatte

Teilsicherheitsbeiwert:

Wind hinten/vorne:

 $\gamma_Q\!\coloneqq\!1.5$

Schnee:

Normalkraft: Querkraft: Moment:

Normalkraft:

Massgeben: Normalkraft:

Querkraft:

Moment:

Querkraft:

Moment:

 $\begin{array}{l} N_{Ed} \! \coloneqq \! 71.29 \; \textbf{kN} \boldsymbol{\cdot} \gamma_Q \\ V_{Ed} \! \coloneqq \! 0.73 \; \textbf{kN} \boldsymbol{\cdot} \gamma_Q \\ M_{Ed} \! \coloneqq \! 0.80 \; \textbf{kN} \boldsymbol{\cdot} \boldsymbol{m} \boldsymbol{\cdot} \gamma_Q \end{array}$

 $N_{Ed} \coloneqq 9.17 \ \mathbf{kN} \cdot \gamma_Q$

 $V_{Ed} \coloneqq 10.99 \ \mathbf{kN} \cdot \hat{\gamma}_Q$

 $M_{Ed} \coloneqq 29.55 \ \mathbf{kN} \cdot \mathbf{m} \cdot \gamma_Q$

$$\begin{split} N_{Ed} \! = \! 106.94 \ \textit{kN} \\ V_{Ed} \! = \! 1.1 \ \textit{kN} \\ M_{Ed} \! = \! 1.2 \ \textit{kN} \! \cdot \! \textit{m} \end{split}$$

$$\begin{split} N_{Ed} \!=\! 13.76 \, \, \textit{kN} \\ V_{Ed} \!=\! 16.49 \, \, \textit{kN} \\ M_{Ed} \!=\! 44.33 \, \, \textit{kN} \! \cdot \! \textit{m} \end{split}$$

Kehlnahtanschluss - Vereinfachtes Verfahren (Schneider Bautabellen)

 $N_{Ed} = 13.76 \ kN$

 $V_{Ed}^{--}=16.49 \ kN$

 $M_{Ed}^{--} = 44.33 \ kN \cdot m$

Stahlgüte Träger: Streckgrenze:	$f_y \coloneqq 355 rac{N}{mm^2}$ F22	F1, LEd
Zugfestigkeit:	$f_u = 510 \frac{N}{mm^2}$	1/2
Stahlgüte Blech:		LEd I H C MEd
Streckgrenze:	$f_{y1} = 355 \frac{N}{mm^2}$	
Zugfestigkeit:	$f_{u1} \coloneqq 490 \; rac{N}{mm^2}$	
Blechstärke:	<i>t</i> := 6.5 <i>mm</i>	$t_{min} := t \cdot mm^{-1} = 6.5$
Korrelationsfaktor:	$\beta_w \coloneqq 0.9$	S355=0.9; S235=0.8
Teilsicherheit:	$\gamma_{M2}{\coloneqq}1.25$	
Anzahl Schweißnähte:	$n \coloneqq 1$	$a_{max}\!\coloneqq\!0.7 \cdot t_{min}\!=\!4.55$
Calculation		$a_{min} \coloneqq 3 \frac{mm}{2}$
Schweibhantolcke:	$a_w \coloneqq 4 \ mm$	$a_{min}\coloneqq \sqrt{t_{min}-0.5}{=}2.05$
Schweißnahtlänge:	$l_w \coloneqq 568 \ mm$	$l_{w;min} \! \geq \! 6 \boldsymbol{\cdot} a_w$
		$l_{w,min} \ge 30 mm$

Abbildung 50 Nachweis Schweißnaht Grundplatte.

XXXII

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
Einwirkungsseite:		
Beanspruchung N senkrecht:	$N_{senk;Ed} \! \coloneqq \! \frac{N_{Ed}}{n \cdot l_w} \! + \! \frac{M_{Ed}}{\frac{l_w^2}{2}}$	$N_{senk;Ed} \!=\! 848.551 \; rac{kN}{m}$
Beanspruchung V senkrecht:	$V_{senk;Ed} \coloneqq \frac{V_{Ed}}{n \cdot l_w} \qquad \qquad$	$V_{senk;Ed} = 29.023 \; rac{kN}{m}$
Beanspruchung V Parallel:	$V_{\textit{parallel;Ed}} {\coloneqq} \frac{N_{Ed}}{n { \cdot } l_w}$	$V_{parallel;Ed} = 24.217 \; rac{kN}{m}$
Bemessungswert: $F_{w:Ed} := \sqrt[2]{V}$	$\overline{N_{senk;Ed}}^2 + V_{parallel;Ed}^2 + \overline{V_{senk;Ed}}^2$	$F_{w;Ed} = 849.392 \ \frac{kN}{m}$
Widerstandsseite: Grenzscherfestigkeit Schweißnaht:	$f_{vw;d} \coloneqq rac{f_{u1}}{\sqrt[2]{3} \cdot eta_w \cdot \gamma_{M2}}$	$f_{vw;d} = 251.468 \ rac{N}{mm^2}$
Tragfähigkeit Schweißnaht:	$F_{w;Rd} \! \coloneqq \! f_{vw;d} \! \cdot \! a_w$	$F_{w;Rd} = 1005.87 \ \frac{kN}{m}$
Nachweis:	$F_{w;Ed} \!\leq\! F_{w;Rd}$	
Nachweis:	$\frac{F_{w;Ed}}{F_{w;Rd}}\!=\!0.84$	
$\mathbf{if} \left(F_{w;Ed} \leq F_{w;Rd}, \text{``Erfüllt''}, \text{``N} \right)$	$icht erf \ddot{u}llt") = "Erf \ddot{u}llt"$	

Abbildung 51 Nachweis Schweißnaht Grundplatte.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

Schweißnaht **Anschluss Halterung Antrieb**

Teilsicherheitsbeiwert:

 $\gamma_Q \coloneqq 1.5$

Schnee:

Normalkraft: Querkraft: Moment:

 $N_{Ed} \coloneqq 70.23 \ \mathbf{kN} \cdot \gamma_Q$ $V_{Ed} \coloneqq 0.13 \ \mathbf{kN} \cdot \gamma_Q$ $M_{Ed} \coloneqq 0.30 \ \mathbf{kN} \cdot \mathbf{m} \cdot \gamma_Q$

Wind hinten/vorne:

Normalkraft: Querkraft: Moment:

Massgeben:

Normalkraft: Querkraft: Moment:

 $V_{Ed} \coloneqq 10.81 \ \mathbf{kN} \cdot \hat{\gamma}_Q$ $M_{Ed} \coloneqq 2.3 \ \mathbf{kN} \cdot \mathbf{m} \cdot \gamma_Q$

 $N_{Ed} \coloneqq 8.06 \ \mathbf{kN} \cdot \gamma_Q$

 $N_{Ed} = 12.09 \ kN$ $V_{Ed}^{--}=16.22 \ kN$ $M_{Ed} = 3.45 \ kN \cdot m$ $N_{Ed} = 105.35 \ kN$ $V_{Ed}\!=\!0.2~\textit{kN}$ $M_{Ed} = 0.45 \ kN \cdot m$

 $N_{Ed} = 12.09 \ kN$ $V_{Ed} = 16.22 \ kN$ $M_{Ed} = 3.45 \ kN \cdot m$

Kehlnahtanschluss - Vereinfachtes Verfahren (Schneider Bautabellen)

Stahlgüte Träger: Streckgrenze:	$f_y \coloneqq 355 \ rac{N}{mm^2}$	F _{1.1.60}
Zugfestigkeit:	$f_u \coloneqq 490 \ \frac{N}{mm^2}$	1/2
Stahlgüte Blech: Streckgrenze:	$f_{y1} = 355 \frac{N}{mm^2}$	F _{LES} I,/2 M _{Ed}
Zugfestigkeit:	$f_{u1} \coloneqq 490 \ \frac{N}{mm^2}$	
Blechstärke:	<i>t</i> ≔ 8 <i>mm</i>	$t_{min} \coloneqq t \cdot \boldsymbol{m} \boldsymbol{m}^{-1} = 8$
Korrelationsfaktor: Teilsicherheit:	$\begin{array}{l} \beta_w \coloneqq 0.9 \\ \gamma_{M2} \coloneqq 1.25 \end{array}$	S355=0.9; S235=0.8
Anzahl Schweißnähte:	$n \coloneqq 1$	054 54
Schweißnahtdicke:	$a_w \coloneqq 3 \ \boldsymbol{mm}$	$a_{max} = 0.7 \cdot t_{min} = 5.0$ $a_{min} = 3 \ mm$ $a_{min} = 2 \ \sqrt{t_{min}} = 0.5 = 2.328$
Schweißnahtlänge:	$l_w \coloneqq 1921 \ mm$	$l_{w;min} \ge 4 \cdot a_w$ $l_{w;min} \ge 30 mm$

Abbildung 52 Nachweis Schweißnaht Antrieb.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
Einwirkungsseite: Beanspruchung N senkrecht:	$N_{senk;Ed} \! \coloneqq \! \frac{N_{Ed}}{n \cdot l_w} \! + \! \frac{M_{Ed}}{\underline{l_w}^2}$	$N_{senk;Ed}$ =7.935 $rac{kN}{m}$
Beanspruchung V senkrecht:	$V_{senk;Ed} \coloneqq \frac{V_{Ed}}{n \cdot l_w} = \frac{6}{1 - 1}$	$V_{senk;Ed} = 8.441 \ rac{kN}{m}$
Beanspruchung V Parallel:	$V_{\textit{parallel};Ed} \! \coloneqq \! \frac{N_{Ed}}{n \! \cdot \! l_w}$	$V_{parallel;Ed} = 6.294 \; rac{kN}{m}$
Bemessungswert: $F_{w;Ed} := \sqrt[2]{4}$	$N_{senk;Ed}^{2} + V_{parallel;Ed}^{2} + V_{senk;Ed}^{2}^{2}$	$F_{w;Ed} = 13.184 \frac{kN}{m}$
Widerstandsseite: Grenzscherfestigkeit Schweißnaht:	$f_{vw;d} \! \coloneqq \! \frac{f_{u1}}{\sqrt[2]{3} \boldsymbol{\cdot} \beta_w \boldsymbol{\cdot} \gamma_{M2}}$	$f_{vw;d} = 251.468 \; rac{N}{mm^2}$
Tragfähigkeit Schweißnaht:	$F_{w;Rd} \! \coloneqq \! f_{vw;d} \! \cdot \! a_w$	$F_{w;Rd} = 754.4 \ rac{kN}{m}$
Nachweis:	$F_{w;Ed}\!\leq\!F_{w;Rd}$	
Nachweis:	$rac{F_{w;Ed}}{F_{w;Rd}} \!=\! 0.02$	

 $\mathbf{if}\left(F_{w;Ed} \le F_{w;Rd}, \text{``Erfüllt''}, \text{``Nicht erfüllt''}\right) = \text{``Erfüllt''}$

Abbildung 53 Nachweis Schweißnaht Antrieb.

A.6. Nachweis Mikropfähle

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

Bemessung Mikropfähle Stützenanschluss Stahlkonstruktion einer Solaranlage Lastfall Schnee

Teilsicherheitsbeiwert:	$\gamma_Q \coloneqq 1.5$	
Anzahl Mikropfähle:	$n_{mikropf\ddot{a}hle}$:= 4	
Normalkraft:	$N \coloneqq \frac{70.23 \ \textbf{kN}}{n_{milraonfähle}} \cdot \gamma_Q$	N=26.34 kN
Querkraft y-Richtung:	$V_y \coloneqq \frac{0.13 \text{ kN}}{n_{mikropfähle}} \cdot \gamma_Q$	$V_y \!=\! 0.05 \ \mathbf{kN}$
Querkraft z-Richtung:	$V_z \coloneqq \frac{0 \ \textbf{k} N}{n_{mikropf\ddot{a}hle}} \cdot \gamma_Q$	$V_z = 0$ kN
Kennwerte GEWI		
Teilsicherheitsbeiwert:	$\gamma_M \coloneqq 1.1$	
Querschnitt GEWI 28:	$A_{Gewi} = 616 \ mm^2$	
Zugfestigkeit GEWI 28:	$f_{zugfestigekeit}$:= 580 $rac{N}{mm^2}$	
Dehngrenze/Fließgrenze GEWI 28:	$f_{dehngrenze} = 500 \frac{N}{mm^2}$	
Fließgrenze Scherdehnug:	$\tau_{min} \coloneqq \frac{f_{dehngrenze}}{\sqrt[2]{\sqrt{3}}}$	$ au_{min}$ =288.68 $rac{N}{mm^2}$
Nachweis Druckbeanspruc	hung:	
Druckbeanspruchung	$\sigma_{druck} {\coloneqq} \frac{N}{A_{Gewi}}$	$\sigma_{druck} = 42.75 \; rac{N}{mm^2}$
Zulässige Spannung:	$\sigma_{zul}\!\coloneqq\!\frac{f_{zugfestigekeit}}{\gamma_M}$	$\sigma_{zul} {=} 527.27 {N \over {mm^2}}$
Nachweis:	$\sigma_{druck} \leq \sigma_{zul1}$	
Nachweis:	$rac{\sigma_{druck}}{\sigma_{zul}} = 0.08$	
$\mathbf{if} \left(rac{\sigma_{druck}}{\sigma_{zul}} {<} 1.0$, "Nachweis er	füllt", "Nachweis nicht erfüllt") = "Nachweis e	erfüllt"

Abbildung 54 Nachweis Mikropfahl Schneelast.

 $\frac{\sigma_{d;V}}{\sigma_{zul1}} < 1.0$, "Nachweis erfüllt", "Nachweis nicht erfüllt" = "Nachweis erfüllt"

Abbildung 55 Nachweis Mikropfahl Schneelast.

if

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

Bemessung Mikropfähle Stützenanschluss Stahlkonstruktion einer Solaranlage Lastfall Wind

Anzahl Mikropfähle:	$\gamma_Q\!\coloneqq\!1.5$	
Anzahl Mikropfähle:	$n_{mikropf\"ahle}\coloneqq 4$	
Normalkraft:	$N \coloneqq \frac{8.06 \text{ kN}}{n_{mikropfähle}} \cdot \gamma_Q$	N=3.02 kN
Querkraft y-Richtung:	$V_y \coloneqq \frac{10.81 \ \textbf{kN}}{n_{mikropf\ddot{a}hle}} \cdot \gamma_Q$	$V_y \!=\! 4.05 \ \mathbf{kN}$
Querkraft z-Richtung:	$V_z \coloneqq \frac{0 \ \textbf{k} \textbf{N}}{n_{mikropf\ddot{a}hle}} \cdot \gamma_Q$	$V_z = 0 \ \mathbf{kN}$
Kennwerte GEWI		
Teilsicherheitsbeiwert:	$\gamma_M \coloneqq 1.1$	
Querschnitt GEWI 28:	$A_{Gewi} = 616 \ mm^2$	
Zugfestigkeit GEWI 28:	$f_{zugfestigekeit} = 580 \frac{N}{mm^2}$	
Dehngrenze/Fließgrenze GEWI 28:	$f_{dehngrenze} \coloneqq 500 \; rac{N}{mm^2}$	
Fließgrenze Scherdehnug:	$\tau_{min} \coloneqq \frac{f_{dehngrenze}}{\sqrt[2]{3}}$	$ au_{min}$ =288.68 $rac{m{N}}{m{mm}^2}$
Nachweis Druckbeanspruc	hung:	
Druckbeanspruchung	$\sigma_{druck} \coloneqq \frac{N}{A_{Gewi}}$	$\sigma_{druck} = 4.91 \ rac{N}{mm^2}$
Zulässige Spannung:	$\sigma_{zul}\!\coloneqq\!\frac{f_{zugfestigekeit}}{\gamma_M}$	$\sigma_{zul} = 527.27 \ rac{oldsymbol{N}}{oldsymbol{mm}^2}$
Nachweis:	$\sigma_{druck}{\leq}\sigma_{zul1}$	
Nachweis:	$rac{\sigma_{druck}}{\sigma_{zul}} = 0.01$	
$\mathbf{if} igg(rac{\sigma_{druck}}{\sigma_{zul}} < 1.0,$ "Nachweis erf	(ullt", "Nachweis nicht erfüllt" $) =$ "Nachweis e	rfüllt"

Abbildung 56 Nachweis Mikropfahl Windlast.

 $\left(\frac{\sigma_{d;V}}{\sigma_{zul1}} < 1.0, \text{``Nachweis erfüllt''}, \text{``Nachweis nicht erfüllt''}\right) = \text{``Nachweis erfüllt''}$

Abbildung 57 Nachweis Mikropfahl Windlast.

if

A.7. Nachweis Fundamente

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

Ermittlung Mindestbewehrung EC2 9.2.1

Material und Abmaße:		
Verwendeter Beton:	C30/37	
Stahlstreckgrenze:	$f_{yk} = 550 \frac{N}{m^2}$	
Zuefestislusit Determ		
Zugrestigkeit Beton:	$f_{ctm} \approx 2.9 \frac{1}{mm^2}$	
Höhe Fundament:	$h = 0.95 \ m$	
Breite Fundament	$b := 1.50 \ m$	
Mindosthowohrung		
Erforderliche Bewehrung:	$A_{armin} \coloneqq 0.26 \cdot \frac{f_{ctm}}{h \cdot b}$	$A_{ammin} = 19.54 \ cm^2$
5	f_{yk}	5,11611
	$A_{s:min} {f \cdot cm}^{-2}$	cm^2
Erf. Bewenrung pro Meter:	$a_{s;min} \coloneqq \underbrace{b \cdot m^{-1}}_{b \cdot m^{-1}}$	$a_{s;min}$ =13.02
Gewählte Bewehrung:		
Gewählter Bewehrungsstab:	$d_s \coloneqq 16 \ mm$	
Abstand Bewehrungsstabe:	s≔12.5 cm	
Vorhandener Bewehrung:	$a_{\text{workendom}} \coloneqq 16.06 \frac{cm^2}{cm^2}$	
, , , , , , , , , , , , , , , , , , ,	m	
Nashuusia	_	
Nachweis:	$a_{s;min} \leq a_{vorhanden}$	
Nachweis:	$\frac{a_{vorhanden}}{=}$ = 1.23	
	$a_{s;min}$	
$\mathbf{if}(a_{s;min} \leq a_{vorhanden}, \text{``Erfüllt''})$, "Nicht erfüllt") = "Erfüllt"	

Abbildung 58 Nachweis der Mindestbewehrung.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at

Nachweise Fundament PV-Anlage

Nachweis Kippsicherheit		
Einwirkung:		
Vertikalkraft:	$P_z := 0.31 \ kN$	
Horizontalkraft x-Achse:	$P_x \coloneqq 0 \ \mathbf{kN}$	
Horizontalkraft y-Achse:	$P_y \coloneqq 11.42 \text{ kN}$	
Moment x-Achse:	$M_x \coloneqq 30.11 \ \mathbf{kN} \cdot \mathbf{m}$	
Moment y-Achse:	$M_y := 0 \ \mathbf{kN} \cdot \mathbf{m}$	
Fundament Abmaße:		
Breite:	x := 1.7 m	
Tiefe:	y := 1.7 m	
Höhe:	$d \coloneqq 1.1 \ \boldsymbol{m}$	
Volumen:	$V \coloneqq x \cdot y \cdot d = 3.179 \ \boldsymbol{m}^3$	
Wichte Beton:	$\gamma_{Beton} = 25 \frac{kN}{m^3}$	
Eigengewicht Fundament:	$F_{G;fundament}\!\coloneqq\!\gamma_{Beton}\!\cdot\!V$	$F_{G;fundament} \!=\! 79.48$ kN
Moment in Bodenfuge und	Vertikalkraft> resultierende Exzent	rizität:
Resultierende Vertikalkraft:	$F_{z;res}\!\!\coloneqq\!F_{G;fundament}\!-\!P_{z}\!=\!79.165~\textit{kN}$	$F_{z;res} {=} 79.17$ kN
Moment Bodenfuge:	$M_{y;res}\!\coloneqq\!P_y\!\cdot\!d\!+\!M_x\!=\!42.672 \textit{kN}\!\cdot\!\textit{m}$	$M_{y;res}\!=\!42.67\; \textit{kN}\!\cdot\!\textit{m}$
Exzentrizität x:	$e_r \coloneqq 0 \ \boldsymbol{m}$	
	M	
Exzentrizität y:	$e_y \coloneqq \frac{W_{y;res}}{F_{z;res}}$	$e_y \!=\! 0.54~m{m}$
Zulässige Lastausmitte:	$e_{zul} \coloneqq \frac{y}{3}$	$e_{zul}\!=\!0.57~{m m}$
Nachweis:	$e_n < e_{rnl}$	
	<i>y</i> _ <i>2m</i>	
	$\frac{e_y}{e_{zul}} = 0.951$	
$\mathbf{if} igg(rac{e_y}{e_{zul}} \! < \! 1.0 ,$ "Nachweis erfül	t", "Nachweis nicht erfüllt" = "Nachweis	erfüllt"

Abbildung 59 Nachweis der Kippsicherheit des Fundaments.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
Stark exzentrische Belastur	ng:	
Zulässige Exzentrizität-x:	$e_{x;zul}\!\coloneqq\!\frac{x}{3}$	$e_{x;zul}\!=\!0.57~m{m}$
Vorhandene:	$e_x = 0 \ m$	
Nachweis:	$e_x\!\leq\!e_{x;zul}\!=\!1$	
Zulässige Exzentrizität-y:	$e_{y;zul} \coloneqq \frac{y}{3}$	$e_{y;zul}\!=\!0.57~{m m}$
Vorhandene:	$e_y \!=\! 0.539 \ m$	
Nachweis:	$e_y\!\leq\!e_{y;zul}\!=\!1$	
	$\frac{e_y}{e_{zul}} = 0.951$	
$\mathbf{if}\!\left(\!\frac{e_y}{e_{zul}}\!<\!1.0,\text{``Nachweis erfüll}\!\right)$	$t^{"}$, "Nachweis nicht erfüllt" = "Nac	chweis erfüllt"
Nachweis Lagesicherheit:		
Stabilisierendes Moment: Teilsicherheit:	$\gamma_{G;stb}$:= 0.9	
Moment aus Plattengewicht:	$M_{y;platte} \coloneqq F_{G;fundament} \cdot \left(\frac{x}{2} + e_x\right) \cdot \gamma$	$G_{g;stb}$ $M_{y;platte} = 60.8 \ kN \cdot m$
Char. Moment Plattengewicht:	$M_{y;platte;char} := F_{G;fundament} \cdot \left(\frac{x}{2} + e_x\right)$, $M_{y;platte;char} = 67.55 \text{ kN} \cdot m$
Stabilisierendes Moment:	$M_{stb;2} \coloneqq M_{y;platte}$	М _{stb;2} =60.8 kN · m
Destabilisierendes Moment	:> Kante 2 M = (B = A) + B = y + M	$M_{-} = 42.04 \text{ kN} \text{ m}$
Destabilisierendes Moment:	$M_{y;RS} \coloneqq (F_y \cdot a) + F_z \cdot \frac{1}{2} + M_x$ $M_{dth \cdot 2} \coloneqq M_{w:RS}$	$M_{y;RS} = 42.94 \text{ kN} \cdot m$ $M_{dth-2} = 42.94 \text{ kN} \cdot m$
	M w s	uoya .
Nachweis:	$\frac{M_{sto;2}}{M_{stb;2}} = 0.706$	
$\mathbf{if}\left(\frac{M_{dtb;2}}{M_{stb;2}} < 1.0, \text{``Nachweis erfit} ight)$	("illt", "Nachweis nicht erfüllt" $) = $ "	Nachweis erfüllt"
000,2)	

Abbildung 60 Nachweis der Lagesicherheit des Fundaments.

 $\mathbf{if} \left(\frac{M_{dtb;1}}{M_{stb;1}} < 1.0, \text{``Nachweis erfüllt''}, \text{``Nachweis nicht erfüllt''} \right) = \text{``Nachweis erfüllt''}$

Abbildung 61 Nachweis der Lagesicherheit des Fundaments.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
Nachweis Grundbruch:		
Teilsicherheit:	$\gamma_{G;sup}\!\coloneqq\!1.35$	
Vertikallast:	$V_d\!\coloneqq\!F_{z;\!res}\!\cdot\!\gamma_{G;\!sup}$	$V_d \!=\! 106.87 \ \mathbf{kN}$
Exzentrizität:	$e_y \coloneqq \frac{M_{y;res}}{V_d}$	$e_y{=}0.4~m{m}$
Wirksame Länge: Wirksame Breite:	$\begin{array}{l} L'\!\coloneqq\!x\!-\!2\!\cdot\!e_x\\ B'\!\coloneqq\!y\!-\!2\!\cdot\!e_y\end{array}$	$L' = 1.7 \ m$ $B' = 0.9 \ m$
Rechnerische Sohlfläche:	$A' \!\!\coloneqq\! B' \!\cdot\! L'$	A' =1.53 \boldsymbol{m}^2
Grundbrucheinwirkung: Teilsicherheit:	$\sigma_{vorh} \coloneqq \frac{V_d}{A'}$ $\gamma_{R;v} \coloneqq 1.4$	$\sigma_{vorh}\!=\!69.74rac{k\!N}{m^2}$
Sohlwiderstand:	$\sigma_{Rk} = 280 \frac{kN}{m^2}$	
Grundbruchwiderstand:	$\sigma_{Rd} \coloneqq \frac{\sigma_{Rk}}{\gamma_{R,v}}$	$\sigma_{Rd}\!=\!200rac{m km N}{m m^2}$
Nachweis:	$egin{aligned} &\sigma_{vorh} \!\leq\! \sigma_{Rd} \ & \ & \ & \ & \ & \ & \ & \ & \ & \ $	
$\mathbf{if}\left(\frac{\sigma_{vorh}}{\sigma_{Rd}} < 1.0, \text{``Nachweis er}\right)$	füllt", "Nachweis nicht erfüllt")	= "Nachweis erfüllt"

Abbildung 62 Nachweis des Grundbruchversagens.

Klotz Engineering GmbH Oberlängenfeld 13 A-6444 Längenfeld www.ingklotz.at		
Nachweis Durchstanzen:		
Druckfestigkeit C30/37:	$f_{ck} = 30 \; rac{N}{mm^2}$	
Teilsicherheit:	$\gamma_M \coloneqq 1.35$	
Normalkraft (Schneelast):	N_{Ed} :=70 kN	
Fläche der Wirkenden Kraft:	A ≔ 470 mm · 400 mm	$A = 188000 \ mm^2$
Spannung:	$\sigma_{Ed} {\coloneqq} \frac{N_{Ed}}{A}$	$\sigma_{Ed} {=} 0.37 rac{oldsymbol{N}}{oldsymbol{mm}^2}$
Nachweis Normalkraft übe	r Beton abgetragen:	
Nachweis:	$\sigma_{rd} < \frac{f_{ck}}{f_{ck}}$	

$$\sigma_{Ed} \leq \frac{J_{ck}}{\gamma_M}$$
$$\frac{\sigma_{Ed}}{\frac{f_{ck}}{\gamma_M}} = 0.017$$

 $\mathbf{if}\left(\frac{\sigma_{Ed}}{\frac{f_{ck}}{\gamma_M}} < 1.0\,, \text{``Nachweis erfüllt''}, \text{``Nachweis nicht erfüllt''}\right) = \text{``Nachweis erfüllt''}$

Abbildung 63 Nachweis Durchstanzen.

A.8. Finanzierung

Abbildung 64 Auswertung PVsyst Nord/Süd Längenfeld.

Abbildung 65 Auswertung PVsyst Ost / West Längenfeld.

Abbildung 66 Auswertung PVsyst stationär in Längenfeld.

Abbildung 67 Auswertung PVsyst Nord / Süd Atacama.

Abbildung 68 Auswertung PVsyst Ost / West Atacama.

Abbildung 69 Auswertung PVsyst stationär in der Atacama.

Randbedingungen für den Wirtschaftlichkeitsvergleich, Preise beziehen sich auf die Pilotanlage			
Randbedingungen	Wert	Einheit	
Jeweilige Anlagenleistung der Photovoltaikanlage	15,72	[kWp]	
Jeweilige Nutzungsdauer der Photovoltaikanlage	25	[Jahre]	
Leistungsverlust der Photovoltaikanlage	0,5	[%/Jahr]	
Nutzungsdauer Wechselrichter 1achsichig nachgeführte Freiflächenanlage	15	[Jahre]	
Kosten für Wechselrichtertausch nach 15 Betriebsjahren	1699,89	[€]	
Einspeisvergütung im Jahr 2023 druch die Verbund AG (https://www.verbund.com/de-at/privatkunden/photovoltaik/photovoltaik-abnahme-tarif)	0,1506	[€/kWh]	
Zukünftige Strompreissteigerung	2	[%/Jahr]	
Prognostizierte Jahresproduktion Strom der einachsig nachgeführten Freiflächenanlage in Tirol	25564	[kWh]	
Prognostizierte Jahresproduktion Strom der einachsig nachgeführten Freiflächenanlage in Calama/ Atacama Wüste	44585	[kWh]	
Errichtungskosten einachsig nachgeführten Freiflächenanlage in Tirol	22296,60	[€]	
Errichtungskosten einachsig nachgeführten Freiflächenanlage in der Atacama Wüste (leichterer Stahlbau)	22296,60	[€]	
Betriebskosten der einachsig nachgeführten Freiflächenanlage in Tirol, 1,5% der Errichtungskosten	334,45	€ im Jahr 2023	
Betriebskosten der einachsig nachgeführten Freiflächenanlage in der Atacama Wüste, 1,5% der Errichtungskosten	334,45	€ im Jahr 2023	

Abbildung 70 Randbedingungen für den Wirtschaftlichkeitsvergleich.

Zeitpunkt	Stromertrag [kWh/Jahr]	Einspeistarif [Euro/kWh]	Einnahmen [Euro]	Ausgaben [Euro]	Sı	umme [Euro]	Abzinsungsf aktor AbF 3,0 [%]		Barwert [Euro]	Jahre	al	kumulierte Barwerte
t0								-€	22.296,60			
t1	23776,00	0,1506	€ 3.580,67	€ 334,45	€	3.246,22	0,9709	€	3.151,67	1	-€	19.144,93
t2	23657,12	0,1506	€ 3.562,76	€ 342,81	€	3.219,95	0,9426	€	3.035,11	2	-€	16.109,81
t3	23538,83	0,1506	€ 3.544,95	€ 351,38	€	3.193,57	0,9151	€	2.922,57	3	-€	13.187,25
t4	23421,14	0,1506	€ 3.527,22	€ 360,16	€	3.167,06	0,8885	€	2.813,89	4	-€	10.373,36
t5	23304,03	0,1506	€ 3.509,59	€ 369,17	€	3.140,42	0,8626	€	2.708,95	5	-€	7.664,40
t6	23187,51	0,1506	€ 3.492,04	€ 378,40	€	3.113,64	0,8375	€	2.607,63	6	-€	5.056,78
t7	23071,58	0,1506	€ 3.474,58	€ 387,86	€	3.086,72	0,8131	€	2.509,79	7	-€	2.546,99
t8	22956,22	0,1506	€ 3.457,21	€ 397,55	€	3.059,65	0,7894	€	2.415,32	8	-€	131,67
t9	22841,44	0,1506	€ 3.439,92	€ 407,49	€	3.032,43	0,7664	€	2.324,10	9	€	2.192,43
t10	22727,23	0,1506	€ 3.422,72	€ 417,68	€	3.005,04	0,7441	€	2.236,03	10	€	4.428,46
t11	22613,59	0,1506	€ 3.405,61	€ 428,12	€	2.977,48	0,7224	€	2.151,00	11	€	6.579,46
t12	22500,53	0,1506	€ 3.388,58	€ 438,83	€	2.949,75	0,7014	€	2.068,90	12	€	8.648,36
t13	22388,02	0,1506	€ 3.371,64	€ 449,80	€	2.921,84	0,6810	€	1.989,63	13	€	10.637,99
t14	22276,08	0,1506	€ 3.354,78	€ 461,04	€	2.893,74	0,6611	€	1.913,10	14	€	12.551,09
t15	22164,70	0,1506	€ 3.338,00	€ 472,57	€	2.865,44	0,6419	€	1.839,21	15	€	14.390,30
t16	22053,88	0,1506	€ 3.321,31	€ 484,38	€	2.836,93	0,6232	€	1.767,88	16	€	16.158,19
t17	21943,61	0,1506	€ 3.304,71	€ 496,49	€	2.808,22	0,6050	€	1.699,02	17	€	17.857,20
t18	21833,89	0,1506	€ 3.288,18	€ 508,90	€	2.779,28	0,5874	€	1.632,53	18	€	19.489,74
t19	21724,72	0,1506	€ 3.271,74	€ 521,63	€	2.750,12	0,5703	€	1.568,35	19	€	21.058,09
t20	21616,10	0,1506	€ 3.255,38	€ 534,67	€	2.720,72	0,5537	€	1.506,40	20	€	22.564,49
t21	21508,02	0,1506	€ 3.239,11	€ 548,03	€	2.691,07	0,5375	€	1.446,58	21	€	24.011,07
t22	21400,48	0,1506	€ 3.222,91	€ 561,73	€	2.661,18	0,5219	€	1.388,85	22	€	25.399,92
t23	21293,48	0,1506	€ 3.206,80	€ 575,78	€	2.631,02	0,5067	€	1.333,12	23	€	26.733,04
t24	21187,01	0,1506	€ 3.190,76	€ 590,17	€	2.600,59	0,4919	€	1.279,32	24	€	28.012,35
t25	21081,07	0,1506	€ 3.174,81	€ 604,93	€	2.569,88	0,4776	€	1.227,39	25	€	29.239,74
					Sun	nme Barwert:		€	29.239,74			

Barwertermittlung für die 1-achsig nachgeführte Photovoltaikanlage mit 70% Eigenverbrauch in Tirol bei Ost-West Ausrichtung

Abbildung 71 Barwertermittlung 70 % Eigenverbrauch in Tirol bei Ost / West Ausrichtung.

				51	10 1	Ausrichtung						
Zeitpunkt	Stromertr ag [kWh/Jah r]	Einspeist arif [Euro/kW h]	Einnahmen [Euro]	Ausgaben [Euro]	s	umme [Euro]	Abzinsungsf aktor AbF 3,0 [%]		Barwert [Euro]	Jahre	al	kumulierte Barwerte
t0								-€	22.296,60			
t1	25564,00	0,1506	€ 3.849,94	€ 334,45	€	3.515,49	0,9709	€	3.413,10	1	-€	18.883,50
t2	25436,18	0,1506	€ 3.830,69	€ 342,81	€	3.487,88	0,9426	€	3.287,66	2	-€	15.595,84
t3	25309,00	0,1506	€ 3.811,54	€ 351,38	€	3.460,15	0,9151	€	3.166,53	3	-€	12.429,31
t4	25182,45	0,1506	€ 3.792,48	€ 360,16	€	3.432,31	0,8885	€	3.049,57	4	-€	9.379,74
t5	25056,54	0,1506	€ 3.773,52	€ 369,17	€	3.404,35	0,8626	€	2.936,62	5	-€	6.443,12
t6	24931,26	0,1506	€ 3.754,65	€ 378,40	€	3.376,25	0,8375	€	2.827,56	6	-€	3.615,57
t7	24806,60	0,1506	€ 3.735,87	€ 387,86	€	3.348,02	0,8131	€	2.722,24	7	-€	893,32
t8	24682,57	0,1506	€ 3.717,20	€ 397,55	€	3.319,64	0,7894	€	2.620,55	8	€	1.727,23
t9	24559,16	0,1506	€ 3.698,61	€ 407,49	€	3.291,12	0,7664	€	2.522,37	9	€	4.249,60
t10	24436,36	0,1506	€ 3.680,12	€ 417,68	€	3.262,44	0,7441	€	2.427,56	10	€	6.677,16
t11	24314,18	0,1506	€ 3.661,72	€ 428,12	€	3.233,59	0,7224	€	2.336,02	11	€	9.013,17
t12	24192,61	0,1506	€ 3.643,41	€ 438,83	€	3.204,58	0,7014	€	2.247,63	12	€	11.260,80
t13	24071,65	0,1506	€ 3.625,19	€ 449,80	€	3.175,39	0,6810	€	2.162,29	13	€	13.423,09
t14	23951,29	0,1506	€ 3.607,06	€ 461,04	€	3.146,02	0,6611	€	2.079,89	14	€	15.502,98
t15	23831,53	0,1506	€ 3.589,03	€ 472,57	€	3.116,46	0,6419	€	2.000,34	15	€	17.503,32
t16	23712,37	0,1506	€ 3.571,08	€ 484,38	€	3.086,70	0,6232	€	1.923,53	16	€	19.426,85
t17	23593,81	0,1506	€ 3.553,23	€ 496,49	€	3.056,74	0,6050	€	1.849,38	17	€	21.276,22
t18	23475,84	0,1506	€ 3.535,46	€ 508,90	€	3.026,56	0,5874	€	1.777,78	18	€	23.054,01
t19	23358,46	0,1506	€ 3.517,78	€ 521,63	€	2.996,16	0,5703	€	1.708,67	19	€	24.762,68
t20	23241,67	0,1506	€ 3.500,20	€ 534,67	€	2.965,53	0,5537	€	1.641,94	20	€	26.404,62
t21	23125,46	0,1506	€ 3.482,69	€ 548,03	€	2.934,66	0,5375	€	1.577,52	21	€	27.982,14
t22	23009,84	0,1506	€ 3.465,28	€ 561,73	€	2.903,55	0,5219	€	1.515,34	22	€	29.497,48
t23	22894,79	0,1506	€ 3.447,95	€ 575,78	€	2.872,18	0,5067	€	1.455,31	23	€	30.952,79
t24	22780,31	0,1506	€ 3.430,71	€ 590,17	€	2.840,54	0,4919	€	1.397,36	24	€	32.350,15
t25	22666,41	0,1506	€ 3.413,56	€ 604,93	€	2.808,63	0,4776	€	1.341,42	25	€	33.691,57
					Sur	nme Barwert:		€	33.691.57			

Barwertermittlung für die 1-achsig nachgeführte Photovoltaikanlage mit 70% Eigenverbrauch in Tirol bei Nord-Süd Ausrichtung

Abbildung 72 Barwertermittlung 70 % Eigenverbrauch in Tirol bei Nord / Süd Ausrichtung.

		Einspeist					Abzingungef					
Zeitpunkt	Stromertrag	arif	Einnahmen	Ausgaben	Su	umme [Euro]	aktor AbF	Ва	rwert [Euro]	Jahre	ak	kumulierte
-	[kWh/Jahr]	[Euro/kW	[Euro]	[Euro]			3,0 [%]				barwerte	
tO		1						-£	22 296 60			
t1	37051.00	0 1506	€ 5 579 88	£ 334 45	£	5 245 43	0 9709	£	5 092 65	1	-£	17 203 94
t2	36865.75	0.1506	€ 5.551.98	€ 342.81	€	5.209.17	0.9426	£	4.910.14	2	-€	12.293.80
t3	36681.42	0.1506	€ 5.524.22	€ 351.38	€	5.172.84	0.9151	£	4.733.88	3	-€.	7.559.92
t4	36498.01	0.1506	€ 5.496.60	€ 360.16	€	5.136.44	0.8885	£	4.563.66	4	-€	2.996.26
t5	36315.52	0.1506	€ 5.469.12	€ 369.17	€	5.099.95	0.8626	€	4.399.26	5	€	1.403.00
t6	36133.94	0.1506	€ 5.441.77	€ 378.40	€	5.063.37	0.8375	€	4.240.50	6	€	5.643.49
t7	35953,27	0,1506	€ 5.414,56	€ 387,86	€	5.026,70	0,8131	€	4.087,17	7	€	9.730,67
t8	35773,51	0,1506	€ 5.387,49	€ 397,55	€	4.989,94	0,7894	€	3.939,10	8	€	13.669,77
t9	35594,64	0,1506	€ 5.360,55	€ 407,49	€	4.953,06	0,7664	€	3.796,11	9	€	17.465,87
t10	35416,66	0,1506	€ 5.333,75	€ 417,68	€	4.916,07	0,7441	€	3.658,02	10	€	21.123,89
t11	35239,58	0,1506	€ 5.307,08	€ 428,12	€	4.878,96	0,7224	€	3.524,66	11	€	24.648,55
t12	35063,38	0,1506	€ 5.280,55	€ 438,83	€	4.841,72	0,7014	€	3.395,88	12	€	28.044,44
t13	34888,07	0,1506	€ 5.254,14	€ 449,80	€	4.804,35	0,6810	€	3.271,53	13	€	31.315,96
t14	34713,63	0,1506	€ 5.227,87	€ 461,04	€	4.766,83	0,6611	€	3.151,44	14	€	34.467,40
t15	34540,06	0,1506	€ 5.201,73	€ 472,57	€	4.729,17	0,6419	€	3.035,47	15	€	37.502,87
t16	34367,36	0,1506	€ 5.175,72	€ 484,38	€	4.691,34	0,6232	€	2.923,49	16	€	40.426,36
t17	34195,52	0,1506	€ 5.149,85	€ 496,49	€	4.653,35	0,6050	€	2.815,36	17	€	43.241,72
t18	34024,54	0,1506	€ 5.124,10	€ 508,90	€	4.615,19	0,5874	€	2.710,94	18	€	45.952,66
t19	33854,42	0,1506	€ 5.098,48	€ 521,63	€	4.576,85	0,5703	€	2.610,11	19	€	48.562,77
t20	33685,15	0,1506	€ 5.072,98	€ 534,67	€	4.538,32	0,5537	€	2.512,76	20	€	51.075,53
t21	33516,72	0,1506	€ 5.047,62	€ 548,03	€	4.499,58	0,5375	€	2.418,75	21	€	53.494,27
t22	33349,14	0,1506	€ 5.022,38	€ 561,73	€	4.460,65	0,5219	€	2.327,98	22	€	55.822,25
t23	33182,39	0,1506	€ 4.997,27	€ 575,78	€	4.421,49	0,5067	€	2.240,33	23	€	58.062,58
t24	33016,48	0,1506	€ 4.972,28	€ 590,17	€	4.382,11	0,4919	€	2.155,71	24	€	60.218,29
t25	32851,40	0,1506	€ 4.947,42	€ 604,93	€	4.342,49	0,4776	€	2.074,00	25	€	62.292,29
					Sum	nme Barwert:		€	62.292,29			

Barwertermittlung für die 1-achsige nachgeführte Photovoltaikanlage ohne Eigenverbrauch in Atacama Wüste mit 70% Eigenverbrauch Ost-West Ausrichtung

Abbildung 73 Barwertermittlung 70 % Eigenverbrauch Atacama bei Ost / West Ausrichtung.

Barwertermittlung für die 1-achsige nachgeführte Photovoltaikanlage ohne Eigenverbrauch in Atacama Wüste
mit 70% Eigenverbrauch bei Nord-Süd Ausrichtung

Zeitpunkt	Stromertrag [kWh/Jahr]	Einspeist arif [Euro/kW h]	Einnahmen [Euro]	Ausgaben [Euro]	Abzinsungsf aben Summe [Euro] aktor AbF Barwert [Euro] Jal ro] 3,0 [%]		Jahre	ak	kkumulierte Barwerte			
t0								-€	22.296,60			
t1	44585,00	0,1506	€ 6.714,50	€ 334,45	€	6.380,05	0,9709	€	6.194,23	1	-€	16.102,37
t2	44362,08	0,1506	€ 6.680,93	€ 342,81	€	6.338,12	0,9426	€	5.974,28	2	-€	10.128,09
t3	44140,26	0,1506	€ 6.647,52	€ 351,38	€	6.296,14	0,9151	€	5.761,86	3	-€	4.366,22
t4	43919,56	0,1506	€ 6.614,29	€ 360,16	€	6.254,12	0,8885	€	5.556,71	4	€	1.190,48
t5	43699,97	0,1506	€ 6.581,21	€ 369,17	€	6.212,05	0,8626	€	5.358,57	5	€	6.549,05
t6	43481,47	0,1506	€ 6.548,31	€ 378,40	€	6.169,91	0,8375	€	5.167,20	6	€	11.716,25
t7	43264,06	0,1506	€ 6.515,57	€ 387,86	€	6.127,71	0,8131	€	4.982,39	7	€	16.698,64
t8	43047,74	0,1506	€ 6.482,99	€ 397,55	€	6.085,43	0,7894	€	4.803,90	8	€	21.502,54
t9	42832,50	0,1506	€ 6.450,57	€ 407,49	€	6.043,08	0,7664	€	4.631,52	9	€	26.134,06
t10	42618,34	0,1506	€ 6.418,32	€ 417,68	€	6.000,64	0,7441	€	4.465,04	10	€	30.599,10
t11	42405,25	0,1506	€ 6.386,23	€ 428,12	€	5.958,11	0,7224	€	4.304,26	11	€	34.903,36
t12	42193,22	0,1506	€ 6.354,30	€ 438,83	€	5.915,47	0,7014	€	4.148,99	12	€	39.052,35
t13	41982,25	0,1506	€ 6.322,53	€ 449,80	€	5.872,73	0,6810	€	3.999,04	13	€	43.051,40
t14	41772,34	0,1506	€ 6.290,91	€ 461,04	€	5.829,87	0,6611	€	3.854,23	14	€	46.905,63
t15	41563,48	0,1506	€ 6.259,46	€ 472,57	€	5.786,89	0,6419	€	3.714,39	15	€	50.620,02
t16	41355,66	0,1506	€ 6.228,16	€ 484,38	€	5.743,78	0,6232	€	3.579,33	16	€	54.199,35
t17	41148,88	0,1506	€ 6.197,02	€ 496,49	€	5.700,53	0,6050	€	3.448,91	17	€	57.648,27
t18	40943,14	0,1506	€ 6.166,04	€ 508,90	€	5.657,13	0,5874	€	3.322,97	18	€	60.971,24
t19	40738,42	0,1506	€ 6.135,21	€ 521,63	€	5.613,58	0,5703	€	3.201,35	19	€	64.172,58
t20	40534,73	0,1506	€ 6.104,53	€ 534,67	€	5.569,86	0,5537	€	3.083,90	20	€	67.256,48
t21	40332,06	0,1506	€ 6.074,01	€ 548,03	€	5.525,97	0,5375	€	2.970,48	21	€	70.226,96
t22	40130,40	0,1506	€ 6.043,64	€ 561,73	€	5.481,90	0,5219	€	2.860,96	22	€	73.087,93
t23	39929,75	0,1506	€ 6.013,42	€ 575,78	€	5.437,64	0,5067	€	2.755,21	23	€	75.843,14
t24	39730,10	0,1506	€ 5.983,35	€ 590,17	€	5.393,18	0,4919	€	2.653,09	24	€	78.496,22
t25	39531,45	0,1506	€ 5.953,44	€ 604,93	€	5.348,51	0,4776	€	2.554,48	25	€	81.050,70
					Sun	nme Barwert:		€	81.050,70			

Abbildung 74 Barwertermittlung 70 % Eigenverbrauch Atacama bei Nord / Süd Ausrichtung.

							-						
Zeitpunkt	Stromertrag [kWh/Jahr]	Einspeist arif [Euro/kW h]	Ei	nnahmen [Euro]	Ausgaben [Euro]	Su	ımme [Euro]	Abzinsungs faktor AbF 3,0 [%]		Barwert [Euro]	Jahre	ak	kumulierte Barwerte
t0									-€	22.296,60			
t1	23776,00	0,076	€	1.806,98	€ 334,45	€	1.472,53	0,9709	€	1.429,64	1	-€	20.866,96
t2	23657,12	0,076	€	1.797,94	€ 342,81	€	1.455,13	0,9426	€	1.371,60	2	-€	19.495,36
t3	23538,83	0,076	€	1.788,95	€ 351,38	€	1.437,57	0,9151	€	1.315,58	3	-€	18.179,78
t4	23421,14	0,076	€	1.780,01	€ 360,16	€	1.419,84	0,8885	€	1.261,51	4	-€	16.918,26
t5	23304,03	0,076	€	1.771,11	€ 369,17	€	1.401,94	0,8626	€	1.209,32	5	-€	15.708,94
t6	23187,51	0,076	€	1.762,25	€ 378,40	€	1.383,85	0,8375	€	1.158,95	6	-€	14.549,99
t7	23071,58	0,076	€	1.753,44	€ 387,86	€	1.365,58	0,8131	€	1.110,34	7	-€	13.439,64
t8	22956,22	0,076	€	1.744,67	€ 397,55	€	1.347,12	0,7894	€	1.063,43	8	-€	12.376,22
t9	22841,44	0,076	€	1.735,95	€ 407,49	€	1.328,46	0,7664	€	1.018,15	9	-€	11.358,06
t10	22727,23	0,076	€	1.727,27	€ 417,68	€	1.309,59	0,7441	€	974,46	10	-€	10.383,61
t11	22613,59	0,076	€	1.718,63	€ 428,12	€	1.290,51	0,7224	€	932,29	11	-€	9.451,32
t12	22500,53	0,076	€	1.710,04	€ 438,83	€	1.271,21	0,7014	€	891,60	12	-€	8.559,71
t13	22388,02	0,076	€	1.701,49	€ 449,80	€	1.251,69	0,6810	€	852,34	13	-€	7.707,37
t14	22276,08	0,076	€	1.692,98	€ 461,04	€	1.231,94	0,6611	€	814,46	14	-€	6.892,91
t15	22164,70	0,076	€	1.684,52	€ 472,57	€	1.211,95	0,6419	€	777,90	15	-€	6.115,01
t16	22053,88	0,076	€	1.676,09	€ 484,38	€	1.191,71	0,6232	€	742,64	16	-€	5.372,37
t17	21943,61	0,076	€	1.667,71	€ 496,49	€	1.171,22	0,6050	€	708,61	17	-€	4.663,76
t18	21833,89	0,076	€	1.659,38	€ 508,90	€	1.150,47	0,5874	€	675,78	18	-€	3.987,98
t19	21724,72	0,076	€	1.651,08	€ 521,63	€	1.129,45	0,5703	€	644,11	19	-€	3.343,87
t20	21616,10	0,076	€	1.642,82	€ 534,67	€	1.108,16	0,5537	€	613,56	20	-€	2.730,31
t21	21508,02	0,076	€	1.634,61	€ 548,03	€	1.086,58	0,5375	€	584,09	21	-€	2.146,22
t22	21400,48	0,076	€	1.626,44	€ 561,73	€	1.064,70	0,5219	€	555,66	22	-€	1.590,56
t23	21293,48	0,076	€	1.618,30	€ 575,78	€	1.042,53	0,5067	€	528,24	23	-€	1.062,32
t24	21187,01	0,076	€	1.610,21	€ 590,17	€	1.020,04	0,4919	€	501,79	24	-€	560,53
t25	21081,07	0,076	€	1.602,16	€ 604,93	€	997,24	0,4776	€	476,29	25	-€	84,24
						Sum	me Barwert:		-€	84.24			

Barwertermittlung für die 1-achsig nachgeführte Photovoltaikanlage bei Volleinspeisung in Tirol bei Ost-West Ausrichtung

Abbildung 75 Barwertermittlung Volleinspeisung Tirol bei Ost / West Ausrichtung.

					u	Silici	itung						
Zeitpunkt	Stromertrag [kWh/Jahr]	Einspeist arif [Euro/kW h]	Ei	nnahmen [Euro]	Ausgaben [Euro]	Su	ımme [Euro]	Abzinsungs faktor AbF 3,0 [%]		Barwert [Euro]	Jahre	ak	kumulierte Barwerte
t0									-€	22.296,60			
t1	25564,00	0,076	€	1.942,86	€ 334,45	€	1.608,42	0,9709	€	1.561,57	1	-€	20.735,03
t2	25436,18	0,076	€	1.933,15	€ 342,81	€	1.590,34	0,9426	€	1.499,05	2	-€	19.235,98
t3	25309,00	0,076	€	1.923,48	€ 351,38	€	1.572,10	0,9151	€	1.438,70	3	-€	17.797,28
t4	25182,45	0,076	€	1.913,87	€ 360,16	€	1.553,70	0,8885	€	1.380,44	4	-€	16.416,84
t5	25056,54	0,076	€	1.904,30	€ 369,17	€	1.535,13	0,8626	€	1.324,22	5	-€	15.092,62
t6	24931,26	0,076	€	1.894,78	€ 378,40	€	1.516,38	0,8375	€	1.269,94	6	-€	13.822,68
t7	24806,60	0,076	€	1.885,30	€ 387,86	€	1.497,44	0,8131	€	1.217,56	7	-€	12.605,12
t8	24682,57	0,076	€	1.875,88	€ 397,55	€	1.478,32	0,7894	€	1.167,00	8	-€	11.438,12
t9	24559,16	0,076	€	1.866,50	€ 407,49	€	1.459,00	0,7664	€	1.118,20	9	-€	10.319,92
t10	24436,36	0,076	€	1.857,16	€ 417,68	€	1.439,48	0,7441	€	1.071,11	10	-€	9.248,81
t11	24314,18	0,076	€	1.847,88	€ 428,12	€	1.419,75	0,7224	€	1.025,66	11	-€	8.223,15
t12	24192,61	0,076	€	1.838,64	€ 438,83	€	1.399,81	0,7014	€	981,80	12	-€	7.241,35
t13	24071,65	0,076	€	1.829,45	€ 449,80	€	1.379,65	0,6810	€	939,47	13	-€	6.301,87
t14	23951,29	0,076	€	1.820,30	€ 461,04	€	1.359,26	0,6611	€	898,63	14	-€	5.403,25
t15	23831,53	0,076	€	1.811,20	€ 472,57	€	1.338,63	0,6419	€	859,21	15	-€	4.544,03
t16	23712,37	0,076	€	1.802,14	€ 484,38	€	1.317,76	0,6232	€	821,18	16	-€	3.722,85
t17	23593,81	0,076	€	1.793,13	€ 496,49	€	1.296,64	0,6050	€	784,49	17	-€	2.938,36
t18	23475,84	0,076	€	1.784,16	€ 508,90	€	1.275,26	0,5874	€	749,08	18	-€	2.189,28
t19	23358,46	0,076	€	1.775,24	€ 521,63	€	1.253,62	0,5703	€	714,92	19	-€	1.474,36
t20	23241,67	0,076	€	1.766,37	€ 534,67	€	1.231,70	0,5537	€	681,96	20	-€	792,40
t21	23125,46	0,076	€	1.757,54	€ 548,03	€	1.209,50	0,5375	€	650,17	21	-€	142,23
t22	23009,84	0,076	€	1.748,75	€ 561,73	€	1.187,01	0,5219	€	619,49	22	€	477,26
t23	22894,79	0,076	€	1.740,00	€ 575,78	€	1.164,23	0,5067	€	589,90	23	€	1.067,17
t24	22780,31	0,076	€	1.731,30	€ 590,17	€	1.141,13	0,4919	€	561,36	24	€	1.628,53
t25	22666,41	0,076	€	1.722,65	€ 604,93	€	1.117,72	0,4776	€	533,83	25	€	2.162,36
						Sun	me Barwert:		€	2.162,36			

Barwertermittlung für die 1-achsig nachgeführte Photovoltaikanlage bei Volleinspeisung in Tirol bei Nord-Süd Ausrichtung

Abbildung 76 Barwertermittlung Volleinspeisung Tirol bei Nord/Süd Ausrichtung.

		Einspeist				A haine					
Zeitpunkt	Stromertrag	arif	Einnahmen	Ausgaben	Summe [Euro]	faktor AbF		Barwert	Jahre	akkumulierte Barwerte	
Lenguint	[kWh/Jahr]	[Euro/kW	[Euro]	[Euro]	54	3.0 [%]		[Euro]	201110		
		hj									
t0							-€	22.296,60			
t1	37051,00	0,076	€ 2.815,88	€ 334,45	€ 2.481,43	0,9709	€	2.409,15	1	-€	19.887,44
t2	36865,75	0,076	€ 2.801,80	€ 342,81	€ 2.458,99	0,9426	€	2.317,83	2	-€	17.569,61
t3	36681,42	0,076	€ 2.787,79	€ 351,38	€ 2.436,41	0,9151	€	2.229,66	3	-€	15.339,95
t4	36498,01	0,076	€ 2.773,85	€ 360,16	€ 2.413,68	0,8885	€	2.144,53	4	-€	13.195,43
t5	36315,52	0,076	€ 2.759,98	€ 369,17	€ 2.390,81	0,8626	€	2.062,33	5	-€	11.133,09
t6	36133,94	0,076	€ 2.746,18	€ 378,40	€ 2.367,78	0,8375	€	1.982,98	6	-€	9.150,11
t7	35953,27	0,076	€ 2.732,45	€ 387,86	€ 2.344,59	0,8131	€	1.906,37	7	-€	7.243,75
t8	35773,51	0,076	€ 2.718,79	€ 397,55	€ 2.321,23	0,7894	€	1.832,40	8	-€	5.411,35
t9	35594,64	0,076	€ 2.705,19	€ 407,49	€ 2.297,70	0,7664	€	1.760,99	9	-€	3.650,35
t10	35416,66	0,076	€ 2.691,67	€ 417,68	€ 2.273,99	0,7441	€	1.692,06	10	-€	1.958,29
t11	35239,58	0,076	€ 2.678,21	€ 428,12	€ 2.250,09	0,7224	€	1.625,51	11	-€	332,78
t12	35063,38	0,076	€ 2.664,82	€ 438,83	€ 2.225,99	0,7014	€	1.561,27	12	€	1.228,48
t13	34888,07	0,076	€ 2.651,49	€ 449,80	€ 2.201,70	0,6810	€	1.499,25	13	€	2.727,73
t14	34713,63	0,076	€ 2.638,24	€ 461,04	€ 2.177,19	0,6611	€	1.439,38	14	€	4.167,11
t15	34540,06	0,076	€ 2.625,04	€ 472,57	€ 2.152,48	0,6419	€	1.381,59	15	€	5.548,71
t16	34367,36	0,076	€ 2.611,92	€ 484,38	€ 2.127,54	0,6232	€	1.325,81	16	€	6.874,52
t17	34195,52	0,076	€ 2.598,86	€ 496,49	€ 2.102,37	0,6050	€	1.271,97	17	€	8.146,48
t18	34024,54	0,076	€ 2.585,87	€ 508,90	€ 2.076,96	0,5874	€	1.220,00	18	€	9.366,48
t19	33854,42	0,076	€ 2.572,94	€ 521,63	€ 2.051,31	0,5703	€	1.169,83	19	€	10.536,31
t20	33685,15	0,076	€ 2.560,07	€ 534,67	€ 2.025,40	0,5537	€	1.121,42	20	€	11.657,73
t21	33516,72	0,076	€ 2.547,27	€ 548,03	€ 1.999,24	0,5375	€	1.074,69	21	€	12.732,42
t22	33349,14	0,076	€ 2.534,53	€ 561,73	€ 1.972,80	0,5219	€	1.029,59	22	€	13.762,01
t23	33182,39	0,076	€ 2.521,86	€ 575,78	€ 1.946,08	0,5067	€	986,06	23	€	14.748,07
t24	33016,48	0,076	€ 2.509,25	€ 590,17	€ 1.919,08	0,4919	€	944,06	24	€	15.692,13
t25	32851,40	0,076	€ 2.496,71	€ 604,93	€ 1.891,78	0,4776	€	903,52	25	€	16.595,66
					Summe Barwert:		€	16.595,66			

Barwertermittlung für die 1-achsig nachgeführte Photovoltaikanlage bei Volleinspeisung in Atacama bei Ost-West Ausrichtung

Abbildung 77 Barwertermittlung Volleinspeisung Atacama bei Ost / West Ausrichtung.

				Au	srici	itung						
Zeitpunkt	Stromertrag [kWh/Jahr]	Einspeist arif [Euro/kW h]	Einnahmen [Euro]	Ausgaben [Euro]	Si	umme [Euro]	Abzinsungs faktor AbF 3,0 [%]		Barwert [Euro]	Jahre	ak	kumulierte Barwerte
t0								-€	22.296,60			
t1	44585,00	0,076	€ 3.388,46	€ 334,45	€	3.054,01	0,9709	€	2.965,06	1	-€	19.331,54
t2	44362,08	0,076	€ 3.371,52	€ 342,81	€	3.028,71	0,9426	€	2.854,85	2	-€	16.476,69
t3	44140,26	0,076	€ 3.354,66	€ 351,38	€	3.003,28	0,9151	€	2.748,43	3	-€	13.728,26
t4	43919,56	0,076	€ 3.337,89	€ 360,16	€	2.977,72	0,8885	€	2.645,67	4	-€	11.082,59
t5	43699,97	0,076	€ 3.321,20	€ 369,17	€	2.952,03	0,8626	€	2.546,45	5	-€	8.536,15
t6	43481,47	0,076	€ 3.304,59	€ 378,40	€	2.926,19	0,8375	€	2.450,64	6	-€	6.085,51
t7	43264,06	0,076	€ 3.288,07	€ 387,86	€	2.900,21	0,8131	€	2.358,14	7	-€	3.727,37
t8	43047,74	0,076	€ 3.271,63	€ 397,55	€	2.874,07	0,7894	€	2.268,82	8	-€	1.458,55
t9	42832,50	0,076	€ 3.255,27	€ 407,49	€	2.847,78	0,7664	€	2.182,58	9	€	724,03
t10	42618,34	0,076	€ 3.238,99	€ 417,68	€	2.821,31	0,7441	€	2.099,32	10	€	2.823,35
t11	42405,25	0,076	€ 3.222,80	€ 428,12	€	2.794,68	0,7224	€	2.018,93	11	€	4.842,29
t12	42193,22	0,076	€ 3.206,68	€ 438,83	€	2.767,86	0,7014	€	1.941,32	12	€	6.783,61
t13	41982,25	0,076	€ 3.190,65	€ 449,80	€	2.740,85	0,6810	€	1.866,39	13	€	8.650,00
t14	41772,34	0,076	€ 3.174,70	€ 461,04	€	2.713,66	0,6611	€	1.794,05	14	€	10.444,04
t15	41563,48	0,076	€ 3.158,82	€ 472,57	€	2.686,26	0,6419	€	1.724,21	15	€	12.168,25
t16	41355,66	0,076	€ 3.143,03	€ 484,38	€	2.658,65	0,6232	€	1.656,78	16	€	13.825,03
t17	41148,88	0,076	€ 3.127,32	€ 496,49	€	2.630,82	0,6050	€	1.591,69	17	€	15.416,72
t18	40943,14	0,076	€ 3.111,68	€ 508,90	€	2.602,78	0,5874	€	1.528,86	18	€	16.945,58
t19	40738,42	0,076	€ 3.096,12	€ 521,63	€	2.574,49	0,5703	€	1.468,20	19	€	18.413,78
t20	40534,73	0,076	€ 3.080,64	€ 534,67	€	2.545,97	0,5537	€	1.409,64	20	€	19.823,42
t21	40332,06	0,076	€ 3.065,24	€ 548,03	€	2.517,20	0,5375	€	1.353,12	21	€	21.176,54
t22	40130,40	0,076	€ 3.049,91	€ 561,73	€	2.488,18	0,5219	€	1.298,56	22	€	22.475,10
t23	39929,75	0,076	€ 3.034,66	€ 575,78	€	2.458,88	0,5067	€	1.245,90	23	€	23.721,00
t24	39730,10	0,076	€ 3.019,49	€ 590,17	€	2.429,32	0,4919	€	1.195,06	24	€	24.916,06
t25	39531,45	0,076	€ 3.004,39	€ 604,93	€	2.399,46	0,4776	€	1.146,00	25	€	26.062,05
					Sum	me Barwert		£	26 062 05			

Barwertermittlung für die 1-achsig nachgeführte Photovoltaikanlage bei Volleinspeisung in Atacama bei Nord-Süd
Ausrichtung

Abbildung 78 Barwertermittlung Volleinspeisung Atacama bei Nord/Süd Ausrichtung.