
Model-Based Systems Engineering of the
Event-Driven Industrial Internet of Things

Amirali Amiri
Institute of Computer Engineering

TU Wien, Vienna, Austria
amirali.amiri@tuwien.ac.at

Max Thoma
Institute of Computer Engineering

TU Wien, Vienna, Austria
max.thoma@tuwien.ac.at

Gernot Steindl
Institute of Computer Engineering

TU Wien, Vienna, Austria
gernot.steindl@tuwien.ac.at

Christoph Klaassen
Institute of Energy Systems and Thermodynamics

TU Wien, Vienna, Austria
christoph.klaassen@tuwien.ac.at

Wolfgang Kastner
Institute of Computer Engineering

TU Wien, Vienna, Austria
wolfgang.kastner@tuwien.ac.at

Abstract—The Industrial Internet of Things (IIoT) is char-
acterized by a multitude of standards, protocols, and tools.
Moreover, the convergence of Information Technology (IT) and
Operational Technology (OT) brings new architectural styles, e.g.,
event-driven communication, that are easier to scale and integrate
IIoT devices. Architects need extensive expertise to manage the
complex task of designing systems that encompass hardware,
software, information, communication, and users. Proven ap-
proaches such as Model-Based Systems Engineering (MBSE)
can simplify the design of IIoT systems by offering abstractions
through system models and views. In this paper, we introduce
an MBSE approach grounded in Systems Modeling Language
(SysML) 2.0. Our method involves defining metadata tailored to
event-driven IIoT systems. System designers can generate tagged
model instances that undergo automatic validation against system
requirements, such as asynchronous messaging, authentication,
and health checks. Following validation, these models are utilized
by an artifact generator to produce code, test cases, or documen-
tation. Our approach is designed for reusability, and we provide
tool support to streamline the implementation of requirements
checking for emerging standards and guidelines. This enhances
the flexibility and efficiency of IIoT system design, ensuring
compliance with diverse and evolving industry requirements.

Index Terms—IIoT, MBSE, Event-Driven Communication

I. INTRODUCTION

Nowadays, the Industrial Internet of Things (IIoT) encom-
passes a vast array of standards, protocols, and tools. Con-
sequently, architects must possess profound expertise to de-
sign such comprehensive systems. The traditional automation
pyramid [8] can hinder scalability as components are tightly-
coupled and linearly-integrated. The real-time requirements
play a vital role in the domain of Operational Technology
(OT). However, when IIoT devices are integrated using the
Information Technology (IT), the even-driven communication
[2] can be beneficial and provide loose coupling, e.g., using

© 2024 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

MQTT brokers [9]. The IT/OT convergence can result in con-
tradicting requirements. This contradiction requires a frame-
work that detects possible violations for specific requirements,
e.g., communication schema or security with authenticity.

Nevertheless, there still exists a barrier to entry as IIoT
system designers must learn different technologies, as well
as how to implement and integrate them in their system.
Established methodologies, such as Model-Based Systems
Engineering (MBSE) [11], facilitate the design process of IIoT
systems by offering abstractions through system models and
views. Moreover, supporting tools can automate different steps
of MBSE and make the approach easier to use. Thus, we set
out to answer the following research questions:

RQ1: How can MBSE assist the design of IIoT systems
according to the event-driven communication standards and
patterns, e.g., asynchronous messaging [12]?

RQ2: What is the architecture of a prototypical tool that
facilitates the automatic requirements validation and generates
artifacts, e.g., code, test cases, or documentation?

In this paper, we introduce an MBSE approach [11] to
facilitate the requirements validation of the event-driven IIoT
systems. We introduce metadata describing these systems that
are used as tags in Systems Modeling Language (SysML)
2.01 model instances. Our framework automatically converts
the instances to graphs and saves them in a Neo4j database2.
We perform graph-based validation of the requirements, and
inform of any violations. Moreover, we present a prototypical
tool support that facilitates using our concepts. We provide
architectural details into our tool to demonstrate how system
designers can extend and tailor our framework to their needs.

The structure of the papers is as follows. Section II presents
the related work of our study. We give an overview of our
proposed approach in Section III, and explain the details of
our study in Section IV. Section V presents our accompanying

1https://www.omg.org/spec/SysML/2.0/Beta1
2https://neo4j.com

prototypical tool. Section VI presents a sample case and
discusses our findings. Section VII concludes the paper.

II. RELATED WORK

Vogel-Heuser et al. [14] argue that properties and environ-
mental dependencies of industrial systems impact the overall
performance of automated production systems. These prop-
erties, often in the form of characteristic curves, are only ac-
cessible from suppliers’ documents, like operating instructions
or online catalogs. They propose SysML profiles and create
disciplinary views. A metamodel is used for a more precise
presentation of the proposed reference mechanism. In an ear-
lier work, Vogel-Heuser et al. [13] introduce a SysML-based
approach for MBSE in manufacturing automation software
projects. They adapt SysML to create SysML for Automation
(SysML-AT), a specialized language profile that encompasses
functional and non-functional requirements, software applica-
tions, and hardware properties. They developed a prototype
tool that integrates adapted SysML parametric diagrams into
an industrial automation software development environment,
allowing debugging within the model.

De Saqui-Sannes et al. [4] examine the progression of
Systems Engineering towards MBSE, highlighting the shift
from document-centric methods to model-centric approaches
for system development. While previous research has detailed
the benefits and limitations of MBSE, this paper specifically
aims to equip industry professionals with criteria for selecting
MBSE languages, tools, and methods. It categorizes these
elements beyond the commonly associated techniques like
SysML and provides selection criteria. Fadhlillah et al. [5]
argue that companies building Cyber-Physical Production Sys-
tems (CPPS) often create many variants, increasing engineer-
ing and maintenance efforts. So the systematic management of
software variability would reduce these costs, but they offer
limited support. They propose using a textual delta modeling
approach from the Software Product Line (SPL) domain to
manage IEC 61499-based control software. This approach
can express software variability and provide a semi-automatic
generator. Case studies and a user study indicate their potential
benefits for implementing and maintaining control software.

Cederbladh et al. [3] indicate that there’s been a shift
from document-based to model-based development in systems
engineering due to increased complexity and the need for
digital workflows. They propose that MBSE is essential,
providing early models for analysis and automated tasks.
However, there’s no common approach for early Verification
and Validation (V&V) of system behavior in MBSE. They
performed a systematic literature review with 149 of 701
relevant publications on early V&V in MBSE. Their findings
show early V&V aims to ensure design quality before imple-
mentation, with SysML as the standard language. The authors
conclude that V&V solutions vary, often targeting functional
properties and being context-specific, with common issues
in readiness, simplifications, and tool integration. Kharatyan
et al. [7] highlight the growing integration of information
and communication technologies in technical systems due to

Model
 Validation

Artifact
 Generation

Model
Instance

Textual
 SysML 2.0

Artifact

Tagged with
Metadata

Metadata
Definitions

Graphs in
Neo4j Templates

SysML 2.0
Metamodel

Parent
Concept

Child
Concept

Fig. 1: The Workflow of Model-Based Systems Engineering

digitization, which offers benefits like autonomous driving
but also presents development challenges. To tackle these
challenges, MBSE approaches are used to manage the increas-
ing complexity and interconnectivity of products. However,
ensuring the reliability of future systems necessitates the early
consideration of security aspects.

III. APPROACH OVERVIEW

This section introduces our MBSE approach. The MBSE
workflow [11] is outlined in Fig. 1. Utilizing SysML 2.0’s
textual representation1, we define metadata for the IIoT do-
main, which are then used as tags when creating a Model
Instance. These instances are transformed into graphs and
stored in a Neo4j database2. A Model Validator verifies that
system requirements are met. Once validated, the models are
sent to an Artifact Generator to produce artifacts such as
code, test cases, or documentation. Fig. 2 outlines the high-
level activities involved in our approach, with further details

Define Requirements

Perform Graph-Based Validation
of Requirements

Convert System Model to Graphs

Import Metadata
Definitions

Model and Tag
System Components

Generate Artifacts:
Graph Visualization / Violation Report

Extend Metadata
Definitions

 Graph Rep. Correct?

 Violation happened?

 [Yes]

 [No]

[No]

 [Yes]

Fig. 2: High-Level Activities of Our Approach

System under
Consideration

Edge

InfrastructureCommunicationUser

Requirement

Test Case Counter
Measure

Role

Asset
+ hasHealthCheck : bool

Information

CloudHardwareSoftware

Base Node Composite Node

Massage Broker

Execution
Environment

GatewayFog IIoT Device

 0..*

0..*0..*

 1..*

1..*

 1..*
0..*

1..*

«inter-dependencies»

 0..*

1..*

 1..*

0..*

0..* 0..*

 0..*

Fig. 3: Metadata of Event-Driven IIoT Systems

provided in the subsequent section. The only additional task
for architects or system designers is to tag system compo-
nents with our predefined metadata definitions in SysML 2.0.
Our methodology automatically converts the system model
to graph representations, validates requirements using graph-
based methods, creates a graph visualization, and highlights
any system components that violate requirements.

IV. APPROACH DETAILS

Our metadata definitions for event-driven IIoT systems are
presented in Fig. 3. A System under Consideration includes at
least one Asset, which can be categorized as Information, Com-
munication, User with various Roles, or Infrastructure. A Base
Node represents Software and Hardware. A Composite Node,
composed of base nodes, can be an Edge, Fog, Cloud, Mes-
sage Broker, Device Gateway, or IIoT Device. An Execution
Environment models either virtual or physical environments,
such as virtual machines, containers, or bare-metal servers. A
Requirement encapsulates system requirements, while Counter
Measures are actions taken to meet these requirements. For
example, message brokers allow the asynchronous messaging
as a counter measure to the requirements of event-driven
communication and loose coupling of system components. Test
Cases evaluate the effectiveness of these counter measures.
Note that architects can easily extend our metadata, e.g.,
by defining user roles as detailed in this section. Listing 1
provides a snippet of our SysML 2.0 metadata.

Graph Representation of Model Instances System de-
signers simply need to import our metadata definitions into
a SysML 2.0 textual representation and tag their system
components accordingly. Once the system components are
tagged, we convert the system model into a graph. This graph
representation reflects the components-and-connectors view of
the system [1]. Section VI offers an illustrative sample case.

Graph-Based Validation of Requirements We traverse
the graph representation of model instances for requirements
validation. To validate the requirement regarding asynchronous
messaging, we check all paths of the converted system graph

to make sure that all communications go through message
brokers. Our approach indicates a violation of system require-
ments, if there exists a path that the requests can be passed
between system parts without going through a message broker.
Algorithm 1 presents our validation of requirements.

1 package Meta_EventDrivenIIoT {
2 enum def UserRole { enum Admin; }
3

4 metadata def Asset {
5 import ScalarValues::*;
6 attribute hasHealthCheck : boolean;}
7

8 metadata def User :> Asset {
9 import Meta_EventDrivenIIoT::UserRole::*;

10 attribute Role : UserRole;}
11

12 metadata def Infrastructure :> Asset;
13 metadata def BaseNode :> Infrastructure;
14 metadata def CompositeNode :> Infrastructure;
15 metadata def Edge :> CompositeNode;
16 metadata def Fog :> CompositeNode;
17 metadata def Cloud :> CompositeNode;
18 metadata def IIoTDevice :> CompositeNode;
19 metadata def Gateway :> CompositeNode;
20 metadata def MessageBroker :> CompositeNode;
21 ...
22 }

Listing 1: Excerpt of Metadata Definitions in SysML 2.0

Algorithm 1: Graph-Based Requirement Validation:
Communication must be asynchronous.

Input: G← Graph(SystemModel)

violation← false

foreach path in G do
if path does not include a MessageBroker then

violation← true
break

end
end
return violation

We also study system health checks using, e.g., the Heart-
beat pattern [6] or the Health Check API pattern [10]. In
these patterns, the system ensures the availability of a system

Algorithm 2: Graph-Based Requirement Validation:
Health checks must be available.

Input: G← Graph(SystemModel)

function stop function exists(G)
begin

HealthNodes← find health nodes(G)
MessageBrokers← find message brokers(G)
violation array ← []

foreach node in HealthNodes do
foreach broker in MessageBrokers do

if direct path exists from broker to node then
violation array[component]← false
break

else
violation array[component]← true

end
end

end
return violation array

end
violation array ← stop function exists(G)
violation← false

foreach element in violation array do
if element == true then

violation← true
break

end
end
return violation

component, either by periodically checking in case of the
Heartbeat pattern, or by communicating with an endpoint in
case of the Health Check API. We check that the health check
is available for system components and that there is a direct
path, i.e., path of length one, from message brokers to system
parts. Algorithm 2 presents our validation of health checks.

Moreover, the Application Programming Interface (API)
Gateway pattern3 provides a single entry point to the system.
The gateway usually authenticates user requests to ensure
security as also mandated by the IEC 62443-3-3 standard.
Similarly to Algorithm 2, we check that all requests coming
from users go through a directed path to gateways. To avoid
repetition, this algorithm is not shown. However, Section V
gives an implementation of this requirements validation.

Artifact Generation After validating the models, our ap-
proach generates a visualization of the system graph along
with information about any requirement violations. This step
allows system architects to verify that the converted graph
accurately represents the system model, ensuring the informa-
tion provided is correct. Our approach identifies the specific
system parts that violate safety and security requirements.
If the graph is found to be inaccurate, architects or system
designers can re-tag their system components and rerun the
process. Additionally, the metadata definitions can be extended
to better meet the needs of different systems.

3https://microservices.io/patterns/apigateway.html

V. TOOL SUPPORT

Tool Architecture We provide a prototypical tool to demon-
strate our approach, available in the online artifact of our
study4. Fig. 4 shows the tool architecture. The frontend is
implemented in React5 and the backend is developed as a
RESTful API6. We provide a Dockerized Jupyter notebook7

to model the system under consideration in SysML 2.0. Note
that any editor can be used instead. The system model is
converted into multiple JSON files and loaded into a Neo4j
graph database. We query the graph database using Cypher2.
Finally, our algorithms in Section IV check the results of the
queries for requirements validations. The Artifact Generator
provides a visualization of the converted graph and gives
information on the exact parts that violate the requirements.

Implementation Details Listing 2 shows the partial imple-
mentation of Algorithm 1 in the Cypher language. We check
that all paths go through message brokers, excluding the paths
with gateways. The Model Validator and Artifact Generator of
our tool perform additional processing on the returned values
of the Cypher query.

1 MATCH paths=(root) -[*0..]-> (node) -[*0..]-> (leaf)
2 WHERE length(paths) > 0 AND
3 ALL (node IN nodes(paths)
4 WHERE node.tag <> ‘MessageBroker’) AND
5

6 ALL (node IN nodes(paths)
7 WHERE node.tag <> ‘Gateway’)
8 return distinct paths

Listing 2: Requirement Checking: Asynchronous Messaging

Algorithm 2 is partially implemented in the Cypher lan-
guage as shown by Listing 3. We check that heath checks
exist from brokers to system assets with a path length of one.

1 MATCH (HealthNodes:Asset)
2 WHERE HealthNodes.attribute = ‘true’
3 MATCH (Brokers) WHERE Brokers.tag = ‘MessageBroker’
4

5 return distinct HealthNodes, exists((Brokers)
-[*1]->(HealthNodes)) AS HealthCheckExists

Listing 3: Requirement Checking: Health Check

The implementation of the requirements checking regarding
gateways is shown by Listing 4. As mentioned, API gateways
usually provide authentication as well to ensure security. We
check that all user requests go through gateways as the entry
point of the system with a direct path of length one.

1 MATCH (Users) WHERE Users.tag = ‘User’
2 MATCH (Gateways) WHERE Gateways.tag = ‘Gateway’
3

4 return distinct Users, exists((Users)-[*1]->(
Gateways)) AS GatewayExist

Listing 4: Requirement Checking: Gateway

Extension Capabilities We designed our approach to be
easily extensible. System architects can tailor our tool to au-
tomatically check for requirements, standards and guidelines.

4https://zenodo.org/records/11415428 DOI:10.5281/zenodo.11415428
5https://reactjs.org
6https://restfulapi.net
7https://jupyter.org

«Docker Container»

Artifact
Generator

Neo4j
Graph Database

Model
Validator

Graph
Converter

«Docker Container»

RESTful Backend

«Docker Container»

React
Application

Web Frontend

«Docker Container»

SysML 2.0
Jupyter Notebook

«Docker Container»

Cypher
Query

Violation Results

 Check
 Requirements

Violation Report .JSON FilesConvert Model

Fig. 4: Tool Architecture Diagram

For example, it is possible to extend our metadata definitions to
include the role OTExpert and ITExpert as shown by Listing 5.
It is also possible to define more counter measures, and adding
the corresponding metadata definitions. Architects can write
new algorithms for requirements validation and implement
them using the Cypher queries. For example, queries can
check for more specific security-authentication requirements,
or security levels for different system zones.

1 package Meta_EventDrivenIIoT {
2 enum def UserRole {
3 enum Admin;
4 enum OTExpert;
5 enum ITExpert;
6 ...
7 }}

Listing 5: Extended Metadata with User Roles

VI. DISCUSSION

We provide a sample case, and discuss our results.
Illustrative sample case We model a system with a central

broker in SysML 2.0, where edge, fog, and cloud services
are modeled. Listing 6 shows the tagged model instance, and
Fig. 5 presents the converted graph of the sample case.

1 package EventDrivenIIoT {
2 import Meta_EventDrivenIIoT::*;
3

4 part MQTT {@MessageBroker;}
5 part CloudService {@Cloud;}
6 part FogAnalytics {@Fog {hasHealthCheck=true;}}
7 part SCADA {@Edge;}
8 part DeviceGateway {@Gateway;}
9 part Device {@IIoTDevice;}

10 part Admin {@User {Role=Admin;}}
11

12 connect MQTT to SCADA;
13 connect MQTT to CloudService;
14 connect Device to DeviceGateway;
15 connect DeviceGateway to MQTT;
16 connect SCADA to FogAnalytics;
17 connect FogAnalytics to MQTT;
18 connect CloudService to MQTT;
19 connect Admin to SCADA;
20 }

Listing 6: SysML 2.0 Model of the Sample Case

MQTT
tag=MessageBroker

hasHealthCheck=false
FogAnalytics tag=Fog
hasHealthCheck=true

CloudService tag=Cloud
hasHealthCheck=false

SCADA tag=Edge
hasHealthCheck=false

DeviceGateway
tag=Gateway

hasHealthCheck=false

Device tag=IIoTDevice
hasHealthCheck=false

Admin tag=User
hasHealthCheck=false

Fig. 5: Graph Representation of the Sample Case

Results Fig. 6 shows the results of our framework regarding
the sample case. Our approach informs about the paths that
violate the asynchronous messaging. Also, system parts vio-
lating the health-check and gateway patterns are highlighted.

Failed the requirements of the asynchronous messaging:

 Admin -> SCADA , SCADA -> Device

 Admin -> SCADA -> Device

Failed the requirements of the health-check pattern:

 FogAnalytics

Failed the requirements of the gateway pattern:

 Admin

Fig. 6: Results regarding Failed Requirements

Following the information regarding asynchronous messag-
ing, we update the system model event-driven communica-
tions. Fig. 7 shows our updated design, and Fig. 8 shows the
results of our framework regarding the updated graph.

async
as

yn
c

async

async

asyn
c

asyn
c

as
yn

c

as
yn

c

async

async

async

MQTT
tag=MessageBroker

hasHealthCheck=false
SCADA tag=Edge

hasHealthCheck=false

CloudService tag=Cloud
hasHealthCheck=false

Device tag=IIoTDevice
hasHealthCheck=false

DeviceGateway
tag=Gateway

hasHealthCheck=false

FogAnalytics tag=Fog
hasHealthCheck=true

Admin tag=User
hasHealthCheck=false

Fig. 7: Updated Graph of the Sample Case

Failed the requirements of the asynchronous messaging:

 Admin -> SCADA

Passed the requirements of the health-check pattern.

Failed the requirements of the gateway pattern:

 Admin

Fig. 8: Results regarding the Updated Graph

Finally, we add an API gateway as the system entry point
to pass all requirements as shown by Fig. 9. The results of
our framework is shown in Fig. 10 passing all requirements.
The recommendations of our approach helps the architects to
update the system design early in the process.

async

async as
yn

c

as
yn

c

MQTT
tag=MessageBroker

hasHealthCheck=false
Admin tag=User

hasHealthCheck=false

APIGateway
tag=Gateway

hasHealthCheck=false

Fig. 9: Adding an API Gateway to the Sample Case

Passed the requirements of the asynchronous messaging.

Passed the requirements of the health-check pattern.

Passed the requirements of the gateway pattern.

Fig. 10: Results regarding the Passed Requirements

VII. CONCLUSIONS

In this paper, we set out to answer the research questions
how MBSE can assist the design of IIoT systems according to
the event-driven communication standards and patterns, e.g.,
asynchronous messaging [12] (RQ1), and what the architec-
ture of a prototypical is tool that facilitates the automatic
requirements validation and generates artifacts, e.g., code,
test cases, or documentation (RQ2). We proposed a MBSE
approach focusing on the event-driven IIoT systems to answer
RQ1. We defined metadata in SysML 2.0 and provided support
to automatically validate requirements based on the converted
system graphs. Regarding RQ2, we demonstrated support for
the basic functionality of standards and patterns as a proof-
of-concept. As system designers utilize our framework, we
expand our approach and develop a knowledge base of guide-
lines specific to the domain of event-driven IIoT. Our approach
finds violation of requirements early at the design-time, and
gives architects recommendation to update the system design.

We plan to evaluate our framework in real-world scenarios
by generating code based on the standard IEC 61131-3:2013.
Moreover, we apply our concepts in an experimental setting,
where we measure empirical data regarding the runtime of
our generated artifacts. Having done so, we plan to study
automatic adaptation of system design. The self-adaptation
provides feedback from the runtime to the design-time of
industrial systems to improve the quality of service.

REFERENCES

[1] V. Bertram, S. Maoz, J. O. Ringert, B. Rumpe, and M. von Wenckstern.
Component and connector views in practice: An experience report.
In 2017 ACM/IEEE 20th International Conference on Model Driven
Engineering Languages and Systems (MODELS), pages 167–177, 2017.

[2] H. Cabane and K. Farias. On the impact of event-driven architecture
on performance: An exploratory study. Future Generation Computer
Systems, 153:52–69, 2024.

[3] J. Cederbladh, A. Cicchetti, and J. Suryadevara. Early validation and
verification of system behaviour in model-based systems engineering: A
systematic literature review. ACM Trans. Softw. Eng. Methodol., 33(3),
mar 2024.

[4] P. De Saqui-Sannes, R. A. Vingerhoeds, C. Garion, and X. Thirioux.
A Taxonomy of MBSE Approaches by Languages, Tools and Methods.
IEEE Access, 10:120936–120950, 2022.

[5] H. S. Fadhlillah, S. Sharma, A. M. Gutierrez Fernandez, R. Rabiser,
and A. Zoitl. Delta modeling in iec 61499: Expressing control soft-
ware variability in cyber-physical production systems. In 2023 IEEE
28th International Conference on Emerging Technologies and Factory
Automation (ETFA), pages 1–8, Sep. 2023.

[6] U. Joshi. Patterns of distributed systems. Addison-Wesley Professional,
2023.

[7] A. Kharatyan, J. Tekaat, S. Japs, H. Anacker, and R. Dumitrescu. Meta-
model for safety and security integrated system architecture modeling.
Proceedings of the Design Society, 1:2027–2036, 2021.

[8] C. Lucizano, A. A. de Andrade, J. F. Blumetti Facó, and A. G. de Freitas.
Revisiting the automation pyramid for the industry 4.0. In 2023 15th
IEEE International Conference on Industry Applications (INDUSCON),
pages 1195–1198, 2023.

[9] S. Mirampalli, R. Wankar, and S. N. Srirama. Evaluating nifi and mqtt
based serverless data pipelines in fog computing environments. Future
Generation Computer Systems, 150:341–353, 2024.

[10] P. Raj, A. Raman, and H. Subramanian. Architectural Patterns: Uncover
essential patterns in the most indispensable realm. Packt Publishing,
December 2017.

[11] A. L. Ramos, J. V. Ferreira, and J. Barceló. Model-based systems engi-
neering: An emerging approach for modern systems. IEEE Transactions
on Systems, Man, and Cybernetics, 42(1):101–111, 2012.

[12] C. Richardson. Microservice architecture patterns and best practices.
http://microservices.io/index.html, 2019.

[13] B. Vogel-Heuser, D. Schütz, T. Frank, and C. Legat. Model-driven en-
gineering of Manufacturing Automation Software Projects – A SysML-
based approach. Mechatronics, 24(7):883–897, 2014.

[14] B. Vogel-Heuser, M. Zhang, B. Lahrsen, S. Landler, M. Otto, K. Stahl,
and M. Zimmermann. Sysml’ – incorporating component properties in
early design phases of automated production systems. at - Automa-
tisierungstechnik, 72(1):59–72, 2024.

	Introduction
	Related Work
	Approach Overview
	Approach Details
	Tool Support
	Discussion
	Conclusions
	References

