
Dissertation

Deep Reinforcement Learning for Cell-Free
Massive MIMO Network Optimization

Author
Charmae Franchesca Mendoza, M.Sc.
Matriculation Number: 11935993

Advisor
Associate Prof. Dipl.-Ing. Dr.techn. Stefan Schwarz

Assisting Advisor
Univ.Prof. Dipl.-Ing. Dr.techn. Markus Rupp

Reviewers
Prof. Dr. André L. F. de Almeida
Prof. Dr. Lúıs Castedo Ribas

Institute of Telecommunications
Technische Universität Wien
Vienna, Austria

February, 2025

Abstract

Despite the significant advancements in wireless communication technologies, inter-
cell interference remains a limiting factor due to the cell-centric design of traditional
mobile networks. Cell-free massive multiple-input multiple-output (MIMO) is a
paradigm shift in network architecture, where we replace the fixed cell boundaries
with a seamless network of cooperating access points (APs) to achieve a uniformly
good performance throughout the coverage area. To harness its full potential, it is
necessary to address its scalability issue and the need for dynamic optimization based
on the current state of the wireless environment. Compared to conventional opti-
mization techniques and (un-)supervised machine learning, deep reinforcement learn-
ing (DRL) is capable of operating model-free, without requiring any prior knowledge,
including training datasets, and in an online manner, making it an effective tool
for real-time network adaptation. Motivated by these advantages, this dissertation
leverages DRL for the realization of scalable, self-adapting cell-free massive MIMO.
The dissertation consists of three main parts.

The first part focuses on user-centric clustering, where each user equipment (UE)
is served by only a subset of APs. We demonstrate that there exists a cluster size
that enables the scalable user-centric variant to stay close to the upper bound rate
performance, exhibited by the canonical setup, but with significantly fewer AP-
UE connections, translating to lower fronthaul requirements. While our proposed
iteration-based algorithms have managed to deal with the non-convexity of the op-
timization problems, such methods are challenging to implement in real-time.

The second part of the dissertation capitalizes on single-agent RL (SARL) for
cell-free network optimization. We design a framework that (de-)activates APs by
jointly considering the position of all users. We show that by properly identifying
the underutilized APs to deactivate, we reduce power consumption while obtaining
a quality of service (QoS) that is close to that achieved when all the APs are always
turned on. We next propose a SARL system that utilizes the spatial user densities
for grouping the APs in a scalable network with multiple central processing units
(CPUs). We demonstrate that by tailoring the AP group sizes to the expected
user concentrations in different subareas, we improve the network sum rate. We
then develop a DRL-based algorithm for user-centric clustering. By optimizing the
AP selection and cluster size for each UE, we obtain almost the same performance
as the canonical setup while benefiting from the reduced fronthaul capacity usage.
Our findings prove that small user-centric clusters are sufficient to achieve good QoS,
implying that only a subset of APs substantially contributes to UE rate performance.

The last part of the dissertation promotes distributed learning architectures by

employing multi-agent RL (MARL), in addition to SARL. Within MARL, we further
explore two setups, namely centralized training, decentralized execution (CTDE)
and personalized federated learning (FedPer). The former implements centralized
training, while the latter localizes this and only requires periodic aggregation of local
base layer parameters. We equip all three frameworks with prioritized experience
replay to accelerate convergence in a dynamic RL environment, which is character-
ized by the combination of device (de-)activation and user mobility. Our model-free
frameworks rely solely on UE rate feedback, making them agnostic to the system
model, and operate in an online mode, enabling them to learn and adapt to the
unpredictable activation patterns on the go. Our numerical experiments show that
the proposed prioritized sampling-based FedPer system boasts near-optimal rate and
power performance while incurring the least amount of communication overhead.

Acknowledgments

I would like to express my gratitude to Prof. Stefan Schwarz for giving me the
opportunity to pursue this Ph.D. and for his guidance throughout these years. I am
grateful for all the knowledge I gained from our fruitful discussions, and it has been
a pleasure working with you. My sincere appreciation also extends to Prof. Markus
Rupp for his support and valuable feedback. This Ph.D. journey would not have
been possible without the financial assistance from the Christian Doppler Research
Association and our industrial partners, for which I am truly thankful. I would also
like to deeply acknowledge Prof. André L. F. de Almeida and Prof. Lúıs Castedo
Ribas for their time and effort in serving as examiners of this dissertation.
日本で研究を行う機会をいただいた国立情報学研究所(NII)には、大変お世

話になりました。特に金子先生には、私をグループに迎え入れてくださり、ご
多忙の中、共同研究に多くの時間と労力を割いて、丁寧にご指導いただきまし
た。先生と一緒に研究に取り組む機会をいただけたことを、心より嬉しく思っ
ております。また、滞在中に素晴らしい時間を共にした、日本で出会った友人
たち、特に花菜さん、佳丽さん、吉田さんにも、心から感謝申し上げます。

A heartfelt thank you to my colleagues at the Institute of Telecommunications
for their constant encouragement, kindness, and stimulating discussions. You have
all made this journey enjoyable.

I am sincerely grateful to my amazing friends for all the laughter and much-
needed distractions. Thank you for cheering me on and for celebrating the small
wins with me.

Finally, my deepest gratitude goes to my family. To my parents, Greg and Beth,
and to my sister, Camille, thank you for your unconditional love and for always
believing in me. To Andok, who stood by me through thick and thin, I am incredibly
thankful for everything.

Contents

1 Introduction 1
1.1 Motivation and Scope of Dissertation 1
1.2 Literature Review . 5

1.2.1 User-Centric Clustering . 5
1.2.2 Dynamic AP Activation . 6
1.2.3 Multi-CPU System and AP Clustering 7
1.2.4 Power Control . 7

1.3 Structure and Contributions . 8

2 Preliminaries 11
2.1 Cell-Free Massive MIMO . 11

2.1.1 Definition . 11
2.1.2 Underlying Technologies . 12
2.1.3 Network Scalability . 13

2.2 Reinforcement Learning . 14
2.2.1 Agent-Environment Interaction 14
2.2.2 Temporal-Difference Learning 15
2.2.3 Deep Reinforcement Learning Algorithms 16

3 User-Centric Clustering 21
3.1 Downlink System Model . 21
3.2 Impact of Cluster Formation . 22

3.2.1 Fronthaul Optimization . 23
3.2.2 Max-Min SINR Optimization 25

3.3 Numerical Evaluations . 26
3.3.1 Total Fronthaul Requirement 28
3.3.2 Guaranteed Quality of Service 29

3.4 Summary . 30

4 SARL-based Network Optimization 31
4.1 Extended System Model . 31
4.2 Dynamic AP Activation . 33

4.2.1 Problem Formulation . 33
4.2.2 DDQN Framework for AP Activation 33

v

Contents

4.2.3 Numerical Evaluations . 36
4.3 Spatial User Density-based AP Clustering 40

4.3.1 AP Clustering . 41
4.3.2 Problem Formulation . 42
4.3.3 DDQN Framework for AP Clustering 42
4.3.4 Numerical Evaluations . 45

4.4 User-Centric Clustering . 48
4.4.1 Problem Formulation . 49
4.4.2 PPO Framework for Minimizing the AP-UE Connections . . . 50
4.4.3 PPO Framework for Minimizing the Active APs 52
4.4.4 Numerical Evaluations . 54

4.5 Summary . 59

5 Accelerated SARL and MARL for Power Control 61
5.1 Uplink System Model . 62
5.2 Problem Formulation . 64
5.3 Prioritized Experience Replay . 64
5.4 DDPG with Prioritized Sampling for Power Control 66

5.4.1 SARL-DDPG Framework . 66
5.4.2 Numerical Evaluations . 70

5.5 DDQN with Prioritized Sampling for Power Control 76
5.5.1 SARL-DDQN Framework . 77
5.5.2 MARL-CTDE Framework . 80
5.5.3 MARL-FedPer Framework . 84
5.5.4 Communication Overhead . 88
5.5.5 Numerical Evaluations . 89

5.6 Summary . 101

6 Conclusion and Outlook 103
6.1 Summary of Contributions . 103
6.2 Open Issues and Possible Future Works 104

List of Abbreviations 107

Notation 109

Bibliography 110

vi

1
Introduction

The exponential growth of mobile data traffic, driven by the emergence of data-
intensive services and the advancement of device capabilities [1], has led to numerous
technological innovations in wireless communications. In order to cope with the
traffic demand, the capacity of the cellular network can be primarily increased in
three ways: (1) by utilizing more bandwidth, which is costly, (2) by improving the
spectral efficiency, enabled by advanced signal processing techniques, and (3) by
deploying more cells per unit area, referred to as network densification [2].

A breakthrough technology is massive multiple-input multiple-output (MIMO)
[3], shown to significantly increase spectral efficiency [4]. We equip the base station
with multiple co-located antennas, called an antenna array, spatially multiplexing
several users on the same time-frequency resources. This concept also supports
the use of distributed antenna arrays, which offers higher coverage probability by
bringing the antennas closer to the users.

Of the three methods identified above, network densification has contributed
the most in increasing capacity [5]. After some point, however, further densifica-
tion does not help anymore, as interference is also worsened in the process [6]. To
combat this, cooperation among base stations through the backhaul network has
been investigated in coordinated distributed wireless systems [7], such as network
MIMO [8], coordinated multipoint (CoMP) [9], and distributed antenna system [10].
In spite of this, a couple of limiting factors were highlighted in [11], including the
large amount of overhead incurred from sharing the channel state information (CSI)
required for coordination and the persistent inter-cell interference that is inherent
in the cell-centric design of traditional mobile networks [12].

1.1 Motivation and Scope of Dissertation

Cell-Free Massive MIMO

Cell-free massive MIMO combines the benefits of massive MIMO and coordinated
distributed systems [13, 14]. It consists of a large number of distributed antennas
or access points (APs) jointly serving a much smaller number of user equipments

1

1.1. Motivation and Scope of Dissertation

(a)

CPU

AP

fronthaul link

(b)

Figure 1.1: CoMP-JT (left) versus cell-free massive MIMO (right).

(UEs) using the same time-frequency resources. This assumption allows us to exploit
the channel hardening and favorable propagation properties of massive MIMO [15].
The users benefit from the increased macro-diversity enabled by the coherent joint
operation of distributed APs [16], which are connected via the fronthaul links to a
central processing unit (CPU). The compatibility of cell-free massive MIMO with
other network architectures, such as cloud radio access network (CRAN), offers
several advantages. For instance, multiple CPUs may serve as the baseband units
that are instantiated on demand, which implies more flexible resource allocation
and lower operational costs, thereby opening new possibilities for improved network
performance [17]. On the other hand, to realize cell-free massive MIMO, a number
of practical deployment issues must be addressed, including challenges related to
scalability, backhaul/fronthaul capacity, and latency, as discussed in [18, 19].

Cell-free massive MIMO operates in time-division duplex (TDD) mode [20]. The
APs locally estimate the channels through the uplink pilots transmitted by the UEs.
By virtue of channel reciprocity, the APs use the estimates for precoding in the
downlink and for data detection in the uplink. These estimates, however, may be
correlated when the UEs utilize the same pilot sequences, resulting in performance
degradation. Pilot contamination effects can be mitigated by properly designing the
pilots, such as in [21,22]. In principle, the APs do not need to exchange CSI, leading
to reduced overhead compared to prior coordinated distributed systems. In the case
of maximum ratio transmission (MRT)/maximum ratio combining (MRC), most
processing can be done locally at the APs, and therefore, cell-free massive MIMO
can be implemented in a distributed manner [14]. More sophisticated schemes that
target the residual inter-user interference, such as zero-forcing [23] and minimum
mean-squared error (MMSE) [24], are shown to perform better; however, this is at
the expense of higher backhaul requirements.

Inter-cell interference causes the poor cell-edge performance in cellular networks.
The joint transmission (JT) variant of CoMP and cell-free massive MIMO are illus-
trated in Fig. 1.1. In CoMP-JT, the cooperating base stations in a predefined clus-

2

1.1. Motivation and Scope of Dissertation

ter jointly transmit to the UE. Inter-cell or inter-cluster interference still exists and
is generated by the non-cooperating base stations. In contrast, this is suppressed
in cell-free massive MIMO by eliminating the fixed cell boundaries and replacing
them with a seamless network of cooperating APs. A dense AP deployment is also
envisioned, such that a user is always surrounded by several APs regardless of ge-
ographical location [25]. This enables the cell-free network to provide a uniformly
good service throughout the coverage area [26]. Its scalability can be improved by
adopting the user-centric approach in [27], where each UE is served by only a subset
of APs, and by employing multiple CPUs [11].

Deep Reinforcement Learning

Network optimization has been traditionally carried out by conventional optimiza-
tion methods. Formulating an appropriate mathematical optimization problem and
then solving it using such techniques help us understand the theoretical performance
of the system. However, this usually comes with high computational complexity, for
instance, in the case of iteration-based approaches [28]. Moreover, existing algo-
rithms commonly require network-wide, up-to-date knowledge, such as CSI, which
may be challenging to obtain in practice.

Recent advances in artificial intelligence have promoted the application of ma-
chine learning (ML) for realizing intelligent wireless communication networks [29].
Common types of ML include supervised learning, which requires a labeled dataset
for training a model, and unsupervised learning, which finds hidden patterns and
relationships in unlabeled data [30]. Studies demonstrate that ML-based methods
are capable of dealing with the same optimization problems, but with much lower
computational complexity while still achieving good performance [31]. However,
both types assume that training datasets are available, which in reality, is not often
the case. This then dictates the limited types of problems we can solve.

Another variant of ML is reinforcement learning (RL) that operates without
needing any prior knowledge, including training datasets [32]. At its core are three
components, namely agent, environment, and reward. The agent learns on its own
by interacting with the environment and consequently obtaining a reward, which
it aims to maximize. Specifically, it looks at the current state of the environment
and acts based on this observation. Its learning process is governed by the reward
feedback, which quantifies how good the selected action is, allowing the agent to
improve its decision-making ability that is represented by its policy. Thus, RL is
best described as learning through trial and error. The policy of an agent has been
traditionally in the form of a lookup table. However, this proves to be infeasible for
more complex problems, where the size of the state and action spaces is too large.
In [33], a deep neural network (DNN) acts as a policy function approximator, giving
rise to deep reinforcement learning (DRL). While an actual physical environment
may serve as the RL environment, it is common practice to initially utilize a sim-
ulated environment for training the policy, especially in the case of safety-critical
applications [34]. For instance, the role of digital twin (DT) in sixth-generation

3

1.1. Motivation and Scope of Dissertation

(6G) mobile networks was highlighted in [35]. One use case is network planning,
in which DT allows operators to first optimize and test different configurations in
a virtual setup without disrupting the network operation. The trained model is
then deployed and fine-tuned in a real-world environment, referred to as sim-to-real
transfer in DRL [34].

Given that the wireless environment is inherently non-static, we highlight an-
other advantage of DRL over existing methods, which is its ability to handle both
static and dynamic scenarios [36]. In contrast, traditional algorithms solve the op-
timization problem for a single snapshot of the wireless environment. This implies
having to go through the computationally expensive approach every time the en-
vironment changes, as well as knowing when this change will occur in advance.
Likewise, (un-)supervised learning requires different training datasets for entirely
new environments.

In summary, DRL is capable of operating model-free, requiring no prior infor-
mation about the environment dynamics, and in an online manner, making it suit-
able for varying wireless scenarios. It is, therefore, easy to understand the motiva-
tion behind DRL being an attractive tool for solving resource allocation problems
in telecommunications [37]. Meanwhile, as previously discussed, cell-free massive
MIMO has the potential of providing a uniformly good service to everyone, and
thus, it is considered one of the key enablers of 6G [38]. However, in order to fully
reap its benefits, we must optimize it, for which we can utilize DRL. In this thesis,
we specifically focus on the following aspects.

• Network scalability
The canonical form of cell-free massive MIMO is not scalable, as it assumes
that all UEs are served by all the APs, which are connected to a single CPU.
In reality, we expect user-centric clustering to be implemented and multiple
CPUs to be utilized to cover different geographical areas. Moreover, although
fully centralized, network-wide optimization would theoretically give us the
best performance, it comes with some downsides, including high latency and
signalling overhead [39]. Frameworks geared towards distributed optimization
play an important role in network scalability.

• Self-adaptability of network
Given that the wireless environment is not static, the cell-free network must
optimize itself according to the real-time changes in the environment. This not
only ensures good quality of service (QoS), but also contributes to creating
a more energy-efficient mobile network. A candidate tool for this purpose
is DRL. However, it is known to suffer from slow convergence [40]. Thus,
incorporating strategies to accelerate learning improves the effectiveness of
DRL in dealing with dynamic scenarios.

4

1.2. Literature Review

Scope of Work

In this dissertation, we leverage DRL to address the challenging task of realizing a
scalable cell-free massive MIMO network, capable of autonomously adapting itself
to the current state of the wireless environment.

• In Chapter 3, we focus on contrasting the canonical and user-centric variants
of cell-free massive MIMO to investigate the possible performance degradation
with the latter setup, in exchange for improved network scalability.

• In Chapter 4, we utilize single-agent RL (SARL) to optimize the cell-free net-
work according to instantaneous user information. This includes dynamically
(de-)activating APs based on the presence of users in an area, forming AP
clusters of varying sizes in a multi-CPU system based on spatial user density,
and optimizing the AP selection for each user-centric cluster.

• In Chapter 5, we tackle the slow convergence limitation of DRL while solving
an uplink power control problem in a dynamic wireless environment. We look
into the different distributed learning architectures enabled by multi-agent RL
(MARL), where we also utilize federated learning [41]. We compare the fully
centralized and decentralized frameworks, providing insights on performance
and communication overhead.

1.2 Literature Review

In this section, we provide a literature review on selected topics under cell-free
massive MIMO, which are investigated in this dissertation.

1.2.1 User-Centric Clustering

When cell-free massive MIMO was proposed in [13, 14], it was assumed that all
users are connected to all the APs. However, this renders the network unscalable,
with each AP having to handle the data of all UEs, posing a problem for fronthaul
capacity-limited systems. In [27], it was suggested that each UE is served by only
a subset of APs, forming what is referred to as a user-centric cluster. Determining
which APs make up each cluster is essentially an AP-UE association problem.

Different metrics can be utilized for AP selection. For instance, the APs with
the best channel conditions were chosen in [11, 27], while in [42], pilot assignment
additionally dictated the AP-UE association decisions. The authors in [43] employed
the Hungarian algorithm, which is a combinatorial optimization technique, to assign
each UE to one of the predefined virtual clusters, such that the sum rate was max-
imized. Their method was shown to outperform the case where each user is served
by a fixed number of APs with the strongest channel. In [44], energy efficiency was
maximized while satisfying per-UE spectral efficiency and per-AP transmit power

5

1.2. Literature Review

constraints. Two AP selection schemes were presented, where a fixed percentage
of the APs were chosen based on either the received power or large-scale fading
quantities. In [45], k-means was utilized to first cluster the users, such that pilot
contamination was minimized, and then each AP was allocated to the user group
with the closest cluster centroid. Similarly, the authors in [46] proposed to initially
group the users, and then greedily assign each AP based on a fixed ratio between
the number of APs and UEs per cluster.

A common denominator for the above-mentioned works is that they involve a
fixed number of APs that serve each UE. This then becomes a design parameter,
whose predefined value must be properly configured to ensure a sufficiently good
performance. This also implies that the user-centric clusters are of equal size. How-
ever, this is not a realistic assumption, since the UEs would have different propa-
gation conditions with respect to the APs. Thus, they require a varying number
of serving APs in their clusters. In principle, the AP-UE connections can also be
decided by defining them as optimization variables. Alternatively, this is treated as
a power allocation problem, where zero power signifies that the AP does not serve
the user. In the case of non-convexity, the resulting problem is complex and difficult
to solve [47, 48]. In Chapters 3, we look at the performance comparison between
canonical and user-centric cell-free massive MIMO by investigating their guaranteed
rate and total fronthaul requirement [49]. In Chapter 4, we utilize SARL to deal
with the non-convexity and form user-centric clusters that vary in size [50].

1.2.2 Dynamic AP Activation

The base station was identified to be taking the largest chunk of the total power
consumption of a cellular network in [51]. Motivated by this, different base station
ON/OFF strategies were investigated in the literature [52, 53]. Since the traffic
demand varies throughout the day, putting some of the base stations into sleep
mode during off-peak hours improves energy efficiency. The same idea applies to
cell-free massive MIMO, where we expect a dense AP deployment.

In [54], the number of active APs and the transmit powers were jointly opti-
mized to minimize the power consumption of the cell-free network while satisfying
user demands. The globally optimal solution was achieved by solving a mixed-integer
second-cone program. In addition, a suboptimal low-complexity algorithm that ex-
ploits group sparsity was presented. Similarly, in [55], ℓ2,1-norm-based block sparsity
and successive approximation were utilized to jointly optimize power allocation and
AP selection, such that energy consumption is minimized while satisfying QoS con-
straints. Several suboptimal heuristic ON/OFF schemes were proposed in [56]. The
goal was to find an algorithm that gives a good balance between performance and
computational complexity. In [57], the same group built on their earlier work to
consider a non-uniform distribution of users in mmWave cell-free massive MIMO. It
was later demonstrated in [58] that heuristic approaches based on effective channel
gain, rather than on path loss as in [56, 57], performed better.

Most prior works relied on either heuristics or high-complexity optimization algo-

6

1.2. Literature Review

rithms. In Chapter 4, we take a different approach by utilizing SARL to handle this
problem. We present a DRL-based framework that (de-)activates APs based on the
presence of users in the area to maximize the minimum user signal-to-interference-
plus-noise ratio (SINR) [59]. We propose another framework that makes this decision
such that either the QoS demand is satisfied or the network sum rate is maximized
in [50].

1.2.3 Multi-CPU System and AP Clustering

Utilizing a single CPU to cover a large geographical area is not realistic and does
not scale well, since this CPU would need to handle all the data of all APs. Instead,
multiple CPUs are deployed, essentially assigning them to subareas. The authors
in [11] demonstrated that a system of multiple independent CPUs, coupled with their
proposed distributed power control scheme, behaves close to the fully centralized,
single-CPU setup. Meanwhile, a leakage-based optimization problem was solved
separately at each CPU to enable a distributed resource allocation in [60].

Several works have focused on inter-CPU communication. In [61], different de-
grees of CPU cooperation were identified according to the type of information ex-
changed among the CPUs. It was shown that only a modest performance degra-
dation results from sharing long-term CSI. A cooperation protocol was proposed
in [62], where the CPUs share channel estimates and implement either centralized
or distributed precoding. The same authors advocated partial information exchange
among the CPUs to achieve a balance between performance and overhead in [63].
Specifically, only the large-scale fading coefficients are shared, and based on those,
each CPU estimates the AP clustering and power control policies of the other CPUs.

In a multi-CPU cell-free network, each CPU is associated to a group of APs and
handles the data of the users served by those APs. It follows that determining how
to properly form the AP clusters is a topic that must be investigated. In [64], an
optimization problem was first formulated to obtain the optimal number of clusters.
A Gaussian mixture model was then employed to group the APs, which was shown
to outperform k-means. The number of subnetworks was maximized while satisfying
a per-user rate constraint by rewriting the optimization problem to enable bipartite
graph partitioning in [65, 66]. In Chapter 4, we leverage SARL and consider the
realistic case of heterogeneous user traffic to determine the appropriate cluster sizes
that lead to good performance [67].

1.2.4 Power Control

Power control plays an important role both in mitigating inter-user interference
and enabling an energy-efficient network. Conventional optimization algorithms
were utilized in several works, such as [68–70], to assign UE powers in order to
optimize different performance metrics. Meanwhile, ML-based methods are capable
of solving power allocation problems with lower computational complexity. They
were shown to achieve near-optimal performance in prior studies, including [31,71,72]

7

1.3. Structure and Contributions

that focused on the downlink case and [73–75] that considered the uplink. However,
as previously motivated, the main advantage of DRL is that it does not rely on
datasets for offline training, making it suitable for non-static environments.

In [76], DRL was utilized to find the beamforming matrix that maximizes the
long-term energy efficiency. The AP clusters and beamforming matrix were jointly
optimized using DRL to maximize either the sum rate or the minimum user rate
in [77]. A framework was proposed in [78] to solve power control problems that
are based on the max-min, max-sum, and max-product of the user rates, where the
DRL scheme consistently outperformed conventional optimization and deep learning-
based systems. The authors in [79] employed DRL for power allocation while bal-
ancing between user fairness and sum-rate maximization. These works, however,
only considered a fully static scenario. In [80], both static and mobile users were
considered when maximizing the sum rate, subject to user rate constraints, while
investigating the impact of different state vector definitions.

When the wireless environment changes, the DRL agent must react to this by
updating its policy accordingly. Otherwise, its actions will be based on an outdated
policy, degrading performance. However, one issue of DRL is slow convergence [40].
Prioritized experience replay was proposed in [81] to speed up learning. In [82], this
mechanism was employed for power allocation, where it was also suggested that an
optimal value for the prioritization factor exists. However, the study was limited
to a fully static, point-to-point scenario. In Chapter 5, we utilize DRL for uplink
power control and rely on prioritized experience replay to accelerate convergence.
Compared to existing works, the dynamic environment is not only characterized by
user mobility, but also by device (de-)activation [83, 84].

We additionally consider MARL for power control in Chapter 5. The authors
in [85] utilized MARL for downlink power allocation in cell-free massive MIMO,
aiming to maximize the sum spectral efficiency. In [86], it was employed for jointly
optimizing the pilot and data powers to maximize either the sum rate or the mini-
mum user rate. In Chapter 5, we investigate the performance of SARL and MARL
systems. We also explore combining federated learning [41] with DRL and prioritized
experience replay for power allocation [84].

1.3 Structure and Contributions

In this section, we outline the structure and main contributions of this dissertation.
We also refer to the publications in which the contributions have been first presented.

Chapter 2 – Preliminaries

The second chapter provides a brief introduction to key concepts. In Sec. 2.1,
we formally define cell-free massive MIMO, including its underlying technologies
inherited from cellular massive MIMO, as well as its scalability issue. In Sec. 2.2,
we give an overview of RL and discuss the DRL algorithms used in this work.

8

1.3. Structure and Contributions

Chapter 3 – User-Centric Clustering

In this chapter, we highlight the importance of user-centric clustering in making
the cell-free network scalable. We investigate the impact of cluster formation on
the total fronthaul requirement and guaranteed rate of the network. We formulate
the corresponding non-convex optimization problems and propose mathematical al-
gorithms to handle them. We show that there exists a cluster size such that the
user-centric variant achieves almost the same QoS level as the canonical setup while
benefiting from a significant reduction in fronthaul capacity usage.

The algorithms developed in this chapter have been published in [49]:

(i) C. F. Mendoza, S. Schwarz and M. Rupp, “Cluster Formation in Scalable Cell-
free Massive MIMO Networks,” 16th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), Thessaloniki,
Greece, 2020, pp. 62-67.

Chapter 4 – SARL-based Network Optimization

In Chapter 4, we propose three SARL frameworks that cater to different optimization
objectives in the context of cell-free massive MIMO.We design their reward functions
to be easily configurable to accommodate varying operating points and performance
targets.

We present a DRL system that dynamically activates only the best APs based
on the instantaneous user position in Sec. 4.2. We demonstrate that by switching
off underutilized APs, we reduce power consumption while still obtaining high user
SINR values. In Sec. 4.3, we envision a multi-CPU setup, and for this purpose,
develop a DRL scheme that exploits our knowledge of the spatial user density for
creating the AP groups associated to the CPUs. We show that by forming bigger
groups in subareas with expected higher user concentration, we maximize the net-
work sum rate. Lastly, we develop a DRL framework for AP-UE association and AP
(de-)activation, such that either a given user demand is satisfied or the sum spectral
efficiency is maximized, in Sec. 4.4. We prove that by optimizing the AP selection
and cluster size for each user, we stay close to the upper bound rate performance
even with small clusters, which then translates to fronthaul savings.

The contributions of this chapter have been published in [50,59,67]:

(i) C. F. Mendoza, S. Schwarz and M. Rupp, “Deep Reinforcement Learning for
Dynamic Access Point Activation in Cell-Free MIMO Networks,” 25th Inter-
national ITG Workshop on Smart Antennas (WSA), French Riviera, France,
2021, pp. 1-6.

(ii) C. F. Mendoza, S. Schwarz and M. Rupp, “Deep Reinforcement Learning for
Spatial User Density-based AP Clustering,” IEEE 23rd International Work-
shop on Signal Processing Advances in Wireless Communication (SPAWC),
Oulu, Finland, 2022, pp. 1-5.

9

1.3. Structure and Contributions

(iii) C. F. Mendoza, S. Schwarz and M. Rupp, “User-Centric Clustering in Cell-Free
MIMO Networks using Deep Reinforcement Learning,” IEEE International
Conference on Communications (ICC), Rome, Italy, 2023, pp. 1036-1041.

Chapter 5 – Accelerated SARL and MARL for Power Control

In the final chapter, we tackle an uplink power control problem with the goal of max-
imizing the guaranteed QoS of a dynamic cell-free network. We consider continuous
and discrete power values in Sec. 5.4 and 5.5, respectively. One novelty of our work
is the ability of our DRL frameworks to effectively handle UE (de-)activation with-
out knowing the device ON/OFF patterns in advance, in addition to user mobility.
We incorporate prioritized experience replay and demonstrate that it does not only
speed up convergence, but also enables higher user rates and lower power consump-
tion. We apply this strategy to our proposed fully centralized SARL and distributed
MARL systems. Within MARL, we further investigate two setups, with one relying
on centralized training, and the other keeping the training local at the agents. The
latter framework takes advantage of personalized federated learning [87], where each
agent only forwards the base layer of its trained local model for periodic aggregation.
We also highlight that we specifically designed our systems such that the network
entities share user rate information only, which is motivated by privacy preservation
and overhead reduction for improved scalability. We show that applying prioritiza-
tion on the federated learning-based distributed framework enables a near-optimal
performance with the least amount of communication overhead.

The methods investigated in this chapter have been presented in [83,84]:

(i) C. F. Mendoza, M. Kaneko, M. Rupp and S. Schwarz, “Accelerated Deep Rein-
forcement Learning for Uplink Power Control in a Dynamic Cell-Free Massive
MIMO Network,” IEEE Wireless Communications Letters, vol. 13, no. 6, pp.
1710-1714, Jun. 2024.

(ii) C. F. Mendoza, M. Kaneko, M. Rupp and S. Schwarz, “Enhancing the Uplink
of Cell-Free Massive MIMO through Prioritized Sampling and Personalized
Federated Deep Reinforcement Learning,” accepted in IEEE Transactions on
Cognitive Communications and Networking.

10

2
Preliminaries

In this chapter, we introduce the two major concepts central to this dissertation,
namely cell-free massive MIMO and DRL. We first provide a formal definition of
canonical cell-free massive MIMO, briefly touching upon its underlying technologies.
We also shed some light on its scalability issue and discuss how this can be tackled.
We next present the basics of RL, which is our main tool for optimizing the cell-free
network. We later describe the DRL algorithms employed in this work.

2.1 Cell-Free Massive MIMO

2.1.1 Definition

The canonical cell-free massive MIMO network [13,14] consists of M geographically
distributed APs, having N antennas each, and K single-antenna UEs1. We operate
in the regime of MN ≫ K, such that a much larger number of APs or antennas
spatially multiplex a relatively smaller number of users on the same time-frequency
resources. All APs are connected to a CPU via the fronthaul links, as illustrated
in Fig. 1.1b. The CPU is mainly responsible for AP coordination, synchronization,
and data processing.

When considering a traditional cellular network architecture, users at the cell
centers experience good QoS, while those at the cell edge suffer from poor perfor-
mance, causing large rate variations and unreliable service [21]. In cell-free massive
MIMO, we move away from such cell-centric design and transition to a more user-
centric one, comprising of cooperating APs without fixed cell boundaries. The goal
is to achieve a uniformly good performance throughout the coverage area by always
surrounding each UE with multiple APs regardless of its location [26].

1In principle, a UE may have multiple antennas. We, however, make a simplifying assumption
that single-antenna UEs are present in the cell-free network.

11

2.1. Cell-Free Massive MIMO

τuτp τd

Tc

Bc

Figure 2.1: TDD frame structure.

2.1.2 Underlying Technologies

We now look into the key massive MIMO technologies that are utilized by the cell-
free network [15,20].

Time-Division Duplex

Obtaining CSI is a prerequisite for the APs to perform certain tasks, such as precod-
ing. The APs first estimate the uplink channels through the pilot signals transmitted
by the UEs. In the case of TDD operation, the uplink and downlink are separated in
time. By virtue of channel reciprocity, the uplink and downlink channel realizations
are considered to be the same. Thus, the downlink channels can also be estimated
even without utilizing additional feedback. In contrast, the uplink and downlink
are separated in frequency when considering the frequency-division duplex (FDD)
mode. The channels are now different, and the reciprocity property can no longer
be exploited. This implies that pilots must be sent in both directions, and the UEs
must feed back their downlink channel estimates to the APs, resulting in significant
overhead [4]. For this reason, cell-free massive MIMO employs TDD [20].

We consider a block-fading channel model. The TDD frame structure for each
channel coherence block is shown in Fig. 2.1. A coherence block has a time interval
equal to the coherence time Tc (i.e., channel is assumed to be constant) and a
frequency interval equal to the coherence bandwidth Bc (i.e., channel is assumed
to be frequency flat). It contains τc = TcBc complex-valued samples, of which
τp are for the uplink pilots, τu are for uplink data transmission, and τd are for
downlink data transmission. Note that the coherence block essentially limits the
number of mutually orthogonal pilots (equal to τp) that can be assigned to the UEs.
When the pilot sequences are shared by the users, pilot contamination occurs, where
channel estimates become correlated that then degrades performance. Different pilot
assignment algorithms have been proposed to alleviate pilot contamination effects,
including those in [21, 22].

Channel Hardening

In massive MIMO, we equip the base station with a large number of antennas. Its
asymptotic behavior gives rise to two phenomena. One of them is channel hardening
[4]. Consider the channel hk,m ∈ CN×1 between UE k with one antenna and AP m

12

2.1. Cell-Free Massive MIMO

with N antennas. The following condition holds as N → ∞
∥hk,m∥2

E {∥hk,m∥2} → 1. (2.1)

That is, the fading channel behaves as if it is deterministic. This simplifies resource
allocation, as we no longer need to adapt it according to the small-scale fading
variations.

Favorable Propagation

Another asymptotic property is favorable propagation [4]. Consider channels hk,m,
hj,m ∈ CN×1 of UEs k and j, respectively. The following is true as N → ∞

|hH
k,mhj,m|2

∥hk,m∥2∥hj,m∥2 → 0. (2.2)

This implies that the channels of the two users are nearly orthogonal. The inter-user
interference is then negligible, even with low-complexity processing techniques, such
as MRT/MRC.WhenN is finite, utilizing precoding schemes that suppress inter-user
interference [23,24] and properly grouping the users to be spatially multiplexed [88]
improve performance.

It has been shown that several factors, including spatial channel correlation,
affect the degree of channel hardening and favorable propagation in cell-free massive
MIMO. We refer to [15, 21] for a more detailed discussion.

2.1.3 Network Scalability

The canonical cell-free network described in Sec. 2.1.1 assumes that all users are
served by all the APs and commonly considers network-wide processing. This does
not scale well in terms of computational complexity and required fronthaul capacity,
making it hard to realize in practice. Motivated by this, the user-centric concept was
proposed in [27], in which each UE is connected to a subset of APs only. The idea is to
admit the best APs into the user-centric cluster, with those APs having the greatest
impact on user rate performance. The individual clusters of the different UEs are
color coded in Fig. 2.2. It follows that each AP now serves a limited number of
users, even as the total number of UEs grows. With reference to the analysis in [42],
this implies finite complexity and fronthaul requirement per AP, since an AP has to
estimate the channels, compute the precoding/combining vectors, and send/receive
data corresponding to a finite (small) number of users only. Furthermore, considering
the large geographical area to be serviced, as well as the dense AP deployment [25],
we expect to utilize multiple CPUs to cover different subareas [11]. In line with this,
varying degrees of interconnectivity among the CPUs, as well as their computational
complexity, were investigated in [61–63]. This is in contrast to the canonical setup
that employs a single CPU only. The envisioned scalable cell-free network is depicted

13

2.2. Reinforcement Learning

AP

CPU 1 CPU 2

fronthaul link

Figure 2.2: Scalable cell-free massive MIMO with user-centric clustering in a multi-
CPU environment.

in Fig. 2.2. Here, each UE is served by the APs in its own user-centric cluster, and
the APs associated to each CPU are grouped together.

2.2 Reinforcement Learning

Machine learning can be categorized into three types, namely supervised, unsuper-
vised, and RL [30]. While the first two train a model using either labeled or unlabeled
data, RL takes a different approach, in that there is no need for a training dataset.
A decision-maker, known as the agent, learns autonomously through trial and error
by interacting with its environment and receiving a reward feedback. In this section,
we provide an overview of key RL concepts. We refer to [32] for a more detailed
description.

2.2.1 Agent-Environment Interaction

The agent observes the state s(t) ∈ S of the environment at time t, and based on that,
decides which action a(t) ∈ A to perform. At the next time step t+1, the state of the
environment changes to s(t+1), which is triggered by the recently applied action, as
well as by uncontrolled factors (e.g., other agents acting on the same environment).
The agent receives a corresponding numerical reward r(t+1) ∈ R that signals how
good or bad the action is given the state [32]. This framework is depicted in Fig. 2.3.
The experience at time t is represented by the tuple (s(t), a(t), r(t+1), s(t+1)). An RL
problem is mathematically formalized as a Markov decision process, which satisfies
the Markov property that a state transition depends only on the most recent state
and action [89]. Moreover, RL can either be model-based or model-free. In the
former case, all transition probabilities (i.e., probability of moving from one state

14

2.2. Reinforcement Learning

State Action

Agent

Environment

Reward

Figure 2.3: Agent-environment interaction in reinforcement learning.

to another) are known beforehand. However, this is unlikely to be true for most of
the real-world problems. Therefore, we focus on model-free RL, in which no prior
information about the environment dynamics is required [32].

The agent aims to maximize the cumulative reward received over time, or the
(discounted) return,

G(t) = r(t+1) + γr(t+2) + γ2r(t+3) + . . .

=
∞�
n=0

γnr(t+n+1),
(2.3)

where γ ∈ [0, 1] is the discount factor that specifies the present value of future re-
wards. With smaller γ values, the agent tends to focus on maximizing immediate
rewards, while with larger ones, it leans towards strongly considering future rewards.
An important RL concept is the exploration-exploitation trade-off. Since the agent
relies on collected experiences, it knows little to no information about the environ-
ment at the initial phase of the training process. Thus, it must first explore by
taking suboptimal actions that result to lower rewards. As the training progresses,
it gradually starts exploiting its improved knowledge by selecting better actions that
yield higher rewards [32].

2.2.2 Temporal-Difference Learning

The policy π of an agent is a function that maps a state to an action (i.e., it decides
the action to take given a state). In order to maximize the expected discounted
return, the agent must learn the optimal policy π∗. The state-value function for
policy π is the expected discounted return when starting from state s and then
acting according to policy π from then on

Vπ(s) = Eπ[G
(t)|s(t) = s]

= Eπ

� ∞�
n=0

γnr(t+n+1)

�����s(t) = s

�
.

(2.4)

15

2.2. Reinforcement Learning

The action-value function for policy π is the expected discounted return when start-
ing from state s, taking action a, and then acting according to policy π from then
on

Qπ(s, a) = Eπ[G
(t)|s(t) = s, a(t) = a]

= Eπ

� ∞�
n=0

γnr(t+n+1)

�����s(t) = s, a(t) = a

�
.

(2.5)

This is also known as the Q-function that provides the Q-value of a state-action
pair. Calculating the value function for every state or state-action pair is, however,
impractical. As derived in [32], the Bellman equation simplifies this computation by
estimating the values as

Vπ(s) = Eπ[G
(t)|s(t) = s]

= Eπ[r
(t+1) + γ(r(t+2) + γr(t+3) + . . .)|s(t) = s]

= Eπ[r
(t+1) + γG(t+1)|s(t) = s]

= Eπ[r
(t+1) + γVπ(s

(t+1))|s(t) = s],

(2.6)

Qπ(s, a) = Eπ[G
(t)|s(t) = s, a(t) = a]

= Eπ[r
(t+1) + γ(r(t+2) + γr(t+3) + . . .)|s(t) = s, a(t) = a]

= Eπ[r
(t+1) + γG(t+1)|s(t) = s, a(t) = a]

= Eπ[r
(t+1) + γQπ(s

(t+1), a(t+1))|s(t) = s, a(t) = a].

(2.7)

The above results are utilized for temporal-difference (TD) learning, where the
value function is updated at each time step as

Q(s(t), a(t)) ← Q(s(t), a(t)) + αstep(r
(t+1) + γQ(s(t+1), amax)� �� �

TD target (y)

−Q(s(t), a(t))

� �� �
TD error (δTD)

), (2.8)

amax = argmax
a

Q(s(t+1), a). (2.9)

Here, we define the learning rate or step size αstep ∈ (0, 1]. The TD error δTD, which
we aim to minimize, is the difference between the TD target and the current Q-value
estimate. The TD target, commonly denoted by y in the RL literature, is obtained
by adding the immediate reward and the discounted highest Q-value for the next
state [32].

2.2.3 Deep Reinforcement Learning Algorithms

Classical RL algorithms, such as Q-learning [90], store the Q-values of the state-
action pairs in a lookup table or Q-table, as illustrated in Fig. 2.4a. This, however,

16

2.2. Reinforcement Learning

Action1 Action2 ActionN

StateM

State1
State2

...

...

Q11
Q21

QM1

Q12
Q22

QM2

Q1N
Q2N

QMN

...

...

...

...

(a)

State

Q(a1)
Q(a2)

Q(aN)

.....

(b)

Figure 2.4: Q-table (left) versus DNN as a Q-function approximator (right).

is infeasible for high-dimensional problems. Motivated by this, a DNN was used to
approximate the Q-function in [33], which we refer to as DRL. In Fig. 2.4b, the
DNN takes in the state of the environment and then outputs the Q-values of all the
N possible actions.

Deep reinforcement learning algorithms can be categorized in different ways. In
order to find the optimal policy π∗, an algorithm can be: (1) policy-based, where we
learn the policy directly, (2) value-based, where we learn the optimal value function
that results to the optimal policy, or (3) a combination of both. Another classifica-
tion is whether it is on-policy or off-policy. The former utilizes the same policy for
action selection and updating the policy or value function, while the latter relies on
separate policies for that purpose [32].

There are several state-of-the-art DRL algorithms in the existing literature [91].
Here, we describe the algorithms used in this dissertation.

Double Deep Q-Network

Double deep Q-network (DDQN) is an off-policy, value-based method that handles
continuous/discrete state and discrete action spaces. It was introduced in [92] as
an improved version of the earlier deep Q-network (DQN) [33]. Specifically, DQN
suffers from the moving target problem, where the same DNN is used to compute
both the TD target and current Q-estimate in the TD error in (2.8). This creates an
effect that the target is moving, causing oscillations during training [93]. Another
issue is the overestimation of Q-values when we again use the same DNN for choosing
the best action in (2.9) to determine the TD target [92]. We solve these problems in
DDQN by employing two DNNs: primary Q and target Q′ networks, parameterized
by θprime and θtarg, respectively. The TD-target calculation is decoupled from action
selection by using separate DNNs. The TD target in the update is then

y
(t)
targ = r(t+1) + γQ′(s(t+1), amax; θ

(t)
targ), (2.10)

where the action is selected as

amax = argmax
a

Q(s(t+1), a; θ
(t)
prime). (2.11)

17

2.2. Reinforcement Learning

Double DQN relies on the concept of experience replay, such that the agent saves
its new experience (s(t), a(t), r(t+1), s(t+1)) in its memory or replay buffer B at each
time step [94]. A mini-batch of X experiences is randomly sampled from the buffer
when updating the primary network. This mechanism ensures that uncorrelated
experiences are used for the update. It also helps to mitigate catastrophic forgetting,
where the agent only remembers and learns from its most recent experiences [95].

The primary DNN parameter θprime is updated by minimizing the loss or the
mean-squared error (MSE)

LDDQN =
1

X

X−1�
i=0

(ytarg,i −Q(si, ai; θ
(t)
prime))

2 (2.12)

over the sampled mini-batch by performing gradient descent [96]. On the other
hand, the target DNN parameter θtarg is updated by copying θprime periodically or
using soft updates, such as Polyak averaging

θ
(t+1)
targ = τpolθ

(t)
prime + (1− τpol)θ

(t)
targ, (2.13)

with τpol ∈ (0, 1) being the rate of averaging [97].
As discussed in Sec. 2.2.1, the agent must find a balance between exploration

and exploitation. We use the decaying ϵ-greedy algorithm, with ϵ ∈ [0, 1], for the
DDQN action selection [32]. This is given by

a(t) =

�
argmax

a
Q(s(t), a; θ

(t)
prime), with probability 1− ϵ

random action, with probability ϵ.
(2.14)

We start with a high ϵ value, which implies that the agent would initially select
random actions, corresponding to the exploration phase. We decrease ϵ over time
at a rate ϵdecay ∈ [0, 1] until it reaches ϵend as

ϵ(t+1) = max{ϵ(t)(1− ϵdecay), ϵend}. (2.15)

The agent then exploits its knowledge of improved Q-estimates by picking the action
that gives the highest Q-value.

Deep Deterministic Policy Gradient

Deep deterministic policy gradient (DDPG) is an off-policy algorithm that handles
continuous/discrete state and continuous action spaces [98]. It combines the benefits
of policy-based and value-based methods by learning both an actor (policy) and a
critic (Q-value function) [99]. It utilizes four DNNs: primary actor µ (φprime), target
actor µ′ (φtarg), primary critic Q (θprime), and target critic Q′ (θtarg) networks.

The primary actor takes in the state observation, and based on that, outputs a
single action that maximizes the long-term reward. The primary critic takes in both

18

2.2. Reinforcement Learning

the state and selected action, and outputs the corresponding Q-value that is then
passed to the actor. The primary actor utilizes this information to gauge how good or
bad the chosen action is given the current state and to update φprime accordingly for
improving the policy. This update is carried out by taking the following derivative of
the Q-function with respect to the policy parameter (while keeping the Q-parameter
constant)

∇φprime
Q ≈ 1

X

X−1�
i=0

∇aQ(s, a; θprime)|s=si,a=µ(si)∇φprime
µ(s;φprime)|s=si (2.16)

and then applying gradient ascent over the sampled mini-batch of X experiences.
That is, we aim to learn policy µ that outputs the action maximizing the Q-function
[98].

The target networks, which improve learning stability [93], are used to calculate
the TD target in DDPG

y
(t)
targ = r(t+1) + γQ′(s(t+1), µ′(s(t+1);φ

(t)
targ); θ

(t)
targ). (2.17)

The primary critic θprime is updated by minimizing the MSE

LDDPG =
1

X

X−1�
i=0

(ytarg,i −Q(si, ai; θ
(t)
prime))

2 (2.18)

over the sampled mini-batch using gradient descent. The target networks are up-
dated using Polyak averaging

φ
(t+1)
targ = τpolφ

(t)
prime + (1− τpol)φ

(t)
targ, (2.19)

θ
(t+1)
targ = τpolθ

(t)
prime + (1− τpol)θ

(t)
targ. (2.20)

Exploration in DDPG is performed by adding a small amount of noise on top of
the selected action. Instead of using Ornstein-Uhlenbeck noise [100] as in the seminal
paper [98], we utilize uncorrelated, zero-mean Gaussian noise, which produces good
results in our tested environments [101].

Proximal Policy Optimization

Proximal policy optimization (PPO) is an on-policy method that handles continu-
ous/discrete state and action spaces. It aims to improve the learning stability by
ensuring that the policy is updated conservatively (i.e., the new policy does not
change too much from the old one) [102]. For this, it learns both an actor π (policy)
for action selection and a critic V (value function) for updating the policy, which
are represented as DNNs with parameters φ and θ, respectively.

19

2.2. Reinforcement Learning

In [102], the PPO clipped surrogate objective function is given by

J (t) = min
�
r
(t)
PPOÂ

(t), clip
�
r
(t)
PPO, 1− ξPPO, 1 + ξPPO

�
Â(t)

�
, (2.21)

where the ratio between the current and old policies is expressed as

r
(t)
PPO =

πφ(a
(t)|s(t))

πφ,old(a(t)|s(t)) , (2.22)

and the generalized advantage estimator (GAE) with parameter λGAE [103] is

Â(t) =
T−1�
n=0

(γλGAE)
nδ(t+n), (2.23)

δ(t) = r(t) + γVθ(s
(t+1))− Vθ(s

(t)). (2.24)

Thus, PPO ensures that the policy update is not too large by clipping the ratio in
(2.22) to be within a range specified by ξPPO. We then take the minimum or lower
bound of the resulting unclipped and clipped terms.

The actor φ is updated by maximizing (2.21) over the sampled mini-batch of X
experiences using gradient ascent. On the other hand, the critic θ is updated by
minimizing the MSE

LPPO =
1

X

X−1�
i=0

(Vθ(si)−Gi)
2 (2.25)

over the sampled experiences using gradient descent. Similar to DDPG, we utilize
Gaussian noise for exploration.

20

3
User-Centric Clustering

The previous chapters motivated us to adopt the user-centric approach to cell-free
massive MIMO, as it is claimed to be superior to its canonical counterpart in terms
of scalability [42]. We must ensure that even with this cell-free variant, the users are
still able to experience good service. In this chapter, we aim to gain some insights
on the impact of user-centric cluster formation on practical aspects of the cell-free
network, namely fronthaul requirement and guaranteed rate. In particular, we are
interested in determining the resulting performance gap between the two cell-free
setups, in exchange for improved scalability. The methods developed in this chapter
have been published in [49].

3.1 Downlink System Model

We consider a downlink cell-free massive MIMO network with M APs, having N
antennas each, and K single-antenna UEs. The total number of antennas MN is
much greater than the number of users K being served. We define the set of all APs
as M = {1, . . . ,M} and the set of all UEs as K = {1, . . . , K}.

The independent and identically distributed (i.i.d.) Rayleigh fading channel
between AP m and UE k is given by

hk,m =
√
gk,m�hk,m ∈ CN×1, (3.1)

which is a common model in the Sub-6 GHz band assumed in this work. The small-
scale fading is denoted by �hk,m ∼ CN (0, IN). The macroscopic fading coefficient
gk,m follows a distance-dependent path loss model with shadowing fading as

gk,m =

�
λc

4π

�2 �
1

dk,m

�nc

sk,m, (3.2)

where λc is the wavelength of carrier frequency fc, dk,m is the distance between
UE k and AP m, nc is the path loss exponent, and sk,m ∼ LN (0, σ2

c) is the random
lognormally distributed shadow fading. We assume that each AP knows the channels

21

3.2. Impact of Cluster Formation

to the UEs perfectly.
During downlink data transmission, the signal sent by AP m is obtained by

summing up the precoded signals for the individual UEs as

xm =
�
k∈K

wk,mskδk,m

=
�
k∈K

√
ρk,mfk,mskδk,m ∈ CN×1. (3.3)

The signal intended for UE k consists of the data symbol sk with power E(|sk|2) = 1
and the precoding vector wk,m ∈ CN×1, which is made up of the power allocated
to UE k by AP m ρk,m and the normalized vector fk,m ∈ CN×1. To facilitate user-
centric clustering, we introduce variable δk,m ∈ {0, 1} that indicates whether or not
AP m serves UE k. For ease of notation, we define δ:,m as the K-element AP-UE
association vector of AP m, and δk,: as the M -element association vector of UE k.
Note that in the case of δk,m = 0, the corresponding ρk,m and fk,m are set to 0.

The input-output relationship of UE k is written as

yk =
�
m∈M

hH
k,mxm + zk

=
�
m∈M

√
ρk,mh

H
k,mfk,mskδk,m� �� �

desired signal

+
�
j∈K
j ̸=k

�
m∈M

√
ρj,mh

H
k,mfj,msjδj,m

� �� �
inter-user interference

+ zk����
noise

, (3.4)

where zk is the receiver noise with variance σ2
z .

The SINR of UE k is expressed as

SINRk =

������
m∈M

√
ρk,mh

H
k,mfk,mδk,m

�����
2

�
j∈K
j ̸=k

������
m∈M

√
ρj,mh

H
k,mfj,mδj,m

�����
2

+ σ2
z

. (3.5)

The signal power is computed by coherently adding the contributions of the APs
forming the user-centric cluster. The spectral efficiency of UE k in bps/Hz is

SEk = log2(1 + SINRk). (3.6)

3.2 Impact of Cluster Formation

In this section, we investigate how user-centric clustering influences the total fron-
thaul requirement and guaranteed rate of the cell-free network. Specifically, we

22

3.2. Impact of Cluster Formation

formulate the corresponding non-convex optimization problems and propose algo-
rithms to approximately solve them.

3.2.1 Fronthaul Optimization

The fronthaul capacity is limited in practice, despite it being assumed to be an
unlimited resource in most research works [104]. Therefore, it has to be taken into
account when designing a realistic coordinated distributed wireless system. Moti-
vated by this, we formulate the following optimization problem

minimize
�
k∈K

�
m∈M

δk,m (3.7a)

w.r.t. δk,m ∈ {0, 1},
0 ≤ ρk,m ≤ ρmaxδk,m,

subject to
�
k∈K

ρk,mδk,m ≤ ρmax, ∀m ∈ M, (3.7b)

SINRk ≥ Γ, ∀k ∈ K. (3.7c)

The objective in (3.7a) is to minimize the total number of established AP-UE con-
nections. The power constraint in (3.7b) ensures that the sum of the non-negative
UE powers allocated by AP m does not exceed its maximum transmit power ρmax.
For simplicity, we assume the same value for ρmax for all M APs. Note that ρk,m is
non-zero only if δk,m = 1. The per-UE SINR constraint in (3.7c) defines a certain
performance level Γ that is guaranteed by the cell-free network.

Problem (3.7) is written in terms of the AP-UE link count and considers neither
the type of information nor the actual number of bits transmitted via the fronthaul
links. Nevertheless, this aligns with our goal, since minimizing the number of AP-
UE connections implicitly minimizes the required fronthaul capacity of the network.
Specifically, fewer connections result in smaller user-centric clusters. With the APs
serving fewer UEs, less information go through the fronthaul links. More impor-
tantly, we do so while making sure that the users still experience good service, as
imposed by Constraint (3.7c).

We reformulate the SINR constraint in (3.7c) as

SINRk =

������
m∈M

√
ρk,mh

H
k,mfk,mδk,m

�����
2

�
j∈K
j ̸=k

������
m∈M

√
ρj,mh

H
k,mfj,mδj,m

�����
2

+ σ2
z

=
|sk|2
∥ik∥2 , (3.8)

ℜ(sk) ≥
√
Γ∥ik∥, ℑ(sk) = 0 (3.9)

following a similar approach as in [105]. This renders the problem solvable using

23

3.2. Impact of Cluster Formation

software tools, including CVX [106] and MOSEK [107]. However, the presented
mixed-integer linear programming (MILP) problem is NP-hard, and its complexity
grows exponentially with M and K. Thus, we apply linear programming (LP)

relaxation by dropping the integer requirement for δ
(MILP)
k,m ∈ {0, 1} and allowing

it to take in continuous values, such that δ
(LP)
k,m ∈ [0, 1]. The relaxation leads to a

convex problem that is solvable in polynomial time, even for a large network of APs
and UEs. This transformation is governed by the following relationship, controlled
by a threshold variable αthr ∈ [0, 1],

δ
(MILP)
k,m =

�
1 δ

(LP)
k,m ≥ αthr,

0 otherwise.
(3.10)

Equation (3.10) provides a straightforward approach for relating the relaxed so-
lution back to the original one. However, its effectiveness is dictated by our choice
of the αthr value. We may obtain a feasible but suboptimal solution to the original
problem or even an infeasible solution where some of the constraints are violated.
One way to determine the best αthr is to sweep over its possible values. We start with
αthr = 0 and gradually increase it by a predefined step size until we reach αthr = 1.
At each iteration, we first solve the relaxed problem to get δ(LP), ∀k ∈ K, m ∈ M.
We then convert them to δ(MILP) based on the current αthr in (3.10). A connection is

established between UE k and AP m when δ
(LP)
k,m is at least αthr, where we set δ

(MILP)
k,m

to 1. The resulting δ(MILP) values are utilized to compute the user SINRs and the
objective function in (3.7a). We check if the SINR constraint in (3.7c) is satisfied
for all the UEs, such that after all the αthr update iterations, we know which αthr

values provide a feasible solution. Since our objective is to minimize the fronthaul
requirement by keeping the AP-UE link count as low as possible, we select the αthr

that corresponds to the smallest objective value. The procedure is summarized in
Algorithm 1.

24

3.2. Impact of Cluster Formation

Algorithm 1: Generic approach to solve Problem (3.7)

1: Apply LP relaxation to the original MILP problem.
2: Solve the LP relaxed problem to obtain δ(LP).
3: for (αthr = 0;αthr ≤ 1;αthr = αthr + step size) do
4: if δ(LP) ≥ αthr then
5: δ(MILP) ← 1
6: else
7: δ(MILP) ← 0
8: end if
9: Compute the objective function using δ(MILP).
10: Compute SINRk, ∀k ∈ K, using δ(MILP).
11: SINRcheck ← maxk(Γ− SINRk)
12: end for
13: Find the feasible points corresponding to SINRcheck ≤ 0.
14: Select the point with the smallest objective value.

3.2.2 Max-Min SINR Optimization

By eliminating the fixed cell boundaries, cell-free massive MIMO provides a uni-
formly good service to all UEs, including the cell-edge users who traditionally suffer
from poor performance. We formulate the following optimization problem to deter-
mine how good the guaranteed rate is

maximize min
k

SINRk (3.11a)

w.r.t. δk,m ∈ {0, 1},
0 ≤ ρk,m ≤ ρmaxδk,m,

subject to
�
k∈K

ρk,mδk,m ≤ ρmax, ∀m ∈ M, (3.11b)�
m∈M

δk,m ≤ csizemax, ∀k ∈ K. (3.11c)

The objective in (3.11a) is to maximize the minimum user SINR of the network. The
per-AP power constraint in (3.11b) ensures that the total allocated power does not
exceed the maximum transmit power ρmax. Since practical deployments are typically
fronthaul-limited [104], we impose a user-centric cluster size constraint in (3.11c),
where csizemax specifies the maximum number of APs that may serve each UE.

25

3.3. Numerical Evaluations

Problem (3.11) can be reformulated as

maximize t (3.12a)

w.r.t. δk,m ∈ {0, 1},
0 ≤ ρk,m ≤ ρmaxδk,m,

subject to
�
k∈K

ρk,mδk,m ≤ ρmax, ∀m ∈ M, (3.12b)�
m∈M

δk,m ≤ csizemax, ∀k ∈ K, (3.12c)

SINRk ≥ t, ∀k ∈ K. (3.12d)

Similar to Sec. 3.2.1, we rewrite Constraint (3.12d) as (3.9) and apply LP relaxation

that transforms δ
(MILP)
k,m ∈ {0, 1} into δ

(LP)
k,m ∈ [0, 1]. The resulting convex problem can

be solved using the bisection method, where at each iteration, a feasibility problem
is solved and the value of t is updated accordingly. This iterative process continues
as long as the bisection tolerance condition is satisfied [108].

The bisection method outputs δ
(LP)
k,m of the relaxed problem, which still needs to

be related back to δ
(MILP)
k,m of the original problem using csizemax. We interpret δ

(LP)
k,m as

the probability of establishing a connection between AP m and UE k. We, therefore,
start the transformation process by sorting the δ(LP) values of UE k in descending
order. After which, we take only the csizemax largest entries and determine the
corresponding AP indices. Those APs are considered to be the best ones for UE k.
As such, they make up its user-centric cluster, and we set the corresponding δ(MILP)

variables to 1. This process is done for each UE. We then utilize the resulting
δ(MILP) values to compute the user SINRs. Taking the minimum of those gives us
the guaranteed QoS of the network. The procedure is outlined in Algorithm 2.

3.3 Numerical Evaluations

We consider a downlink cell-free MIMO network with M = 50 APs, having N = 10
antennas each, and a varying number of single-antenna UEs K ∈ {2, . . . , 15}. The
simulation parameters are listed in Table 3.1, where the chosen values guarantee
the feasibility of the optimization problems. In order to minimize the information
exchange among the APs, we utilize MRT, such that fk,m =

hk,m

∥hk,m∥ in (3.5), as it has

been shown to achieve good performance while allowing the precoding to be done
locally at the APs [14].

26

3.3. Numerical Evaluations

Algorithm 2: Generic approach to solve Problem (3.12)

1: Apply LP relaxation to the original MILP problem.
2: Initialize tmin, tmax, and the bisection tolerance ϵtol > 0.
3: while tmax − tmin ≥ ϵtol do
4: t ← tmax+tmin

2

5: Solve the following feasibility problem to obtain δ(LP).

SINRk ≥ t, ∀k ∈ K,�
k∈K

ρk,mδk,m ≤ ρmax, ∀m ∈ M,�
m∈M

δk,m ≤ csizemax, ∀k ∈ K

����������
6: if feasible then
7: tmin ← t
8: else
9: tmax ← t

10: end if
11: end while
12: for k = 1 to K do
13: Sort δ(LP)(k, :) in descending order.
14: Store in [val,APidx].
15: for m = 1 to M do
16: if sum(δ(MILP)(k, :)) < csizemax then
17: δ(MILP)(k,APidx(m)) ← 1
18: end if
19: end for
20: end for
21: Compute SINRk, ∀k ∈ K, using δ(MILP).
22: Max SINRmin ← mink(SINRk)

Table 3.1: Simulation parameters

Parameter Value
Carrier frequency fc 2 GHz
Path loss exponent nc 2

Shadow fading variance σ2
c 6

Noise variance σ2
z 10−5

Per-AP maximum transmit power ρmax 1 W

27

3.3. Numerical Evaluations

2 4 6 8 10

Number of users

0

5

10

15

20

25

30

35

N
u

m
b

e
r
 o

f
A

P
-U

E
 c

o
n

n
e
c
ti

o
n

s

=9, LP-rlx

=9, MILP

=6, LP-rlx

=6, MILP

=3, LP-rlx

=3, MILP

Figure 3.1: Total fronthaul requirement with varying number of users and guaranteed
QoS level Γ expressed in dB.

3.3.1 Total Fronthaul Requirement

In Fig. 3.1, we present the results of the fronthual optimization when solving Prob-
lem (3.7) through Algorithm 1. The dashed and solid curves correspond to the LP
relaxation (LP-rlx) and MILP solutions, respectively. For the minimization problem
at hand, the LP solution provides a lower bound on that of MILP.

The cell-free network guarantees a performance level Γ in (3.7c). A higher value
forces each UE to be served by more APs to meet the stricter QoS requirement. This
implies more AP-UE connections are established, and the individual user-centric
clusters are bigger. As a consequence, a larger amount of information is exchanged
via the fronthaul links. It follows that the required fronthaul capacity increases with
Γ.

Admitting more users to the network inevitably increases the total fronthaul
requirement for a given Γ value in Fig. 3.1. Every additional UE needs at least
one serving AP in its cluster. Moreover, based on the definition of cell-free massive
MIMO, a UE is likely to be connected to more than one of the distributed APs
to benefit from their joint coherent transmission. The number of APs in the user-
centric cluster differs for the UEs. Some will require more to satisfy the same SINR
constraint. The AP count depends on several factors, such as the macrosopic path
loss of the user with respect to the APs, that then impact the UE rate calculation.

28

3.3. Numerical Evaluations

0 10 20 30 40 50

Maximum cluster size

2

0

2

4

6

8

10

12

14

16

18

20

M
in

im
u

m
 u

s
e
r
 S

IN
R

 [
d

B
]

K=5, LP-rlx

K=5, MILP

K=10, LP-rlx

K=10, MILP

K=15, LP-rlx

K=15, MILP

Figure 3.2: Guaranteed QoS with varying number of users and cluster size.

3.3.2 Guaranteed Quality of Service

In Fig. 3.2, we show the results of the max-min SINR optimization when solving
Problem (3.12) through Algorithm 2. The dashed and solid curves correspond to
the LP relaxation (LP-rlx) and MILP solutions, respectively. Note that the plotted
SINR values for LP relaxation are obtained by solving the relaxed problem through
the bisection method in Algorithm 2 (Lines 1 to 11). On the other hand, we get
those of MILP by first converting δ(LP) to δ(MILP) and then using δ(MILP) to calculate
the achievable user SINRs (Lines 12 to 22). In this case, we have a maximization
problem, where the LP solution serves as an upper bound on that of MILP.

We first focus on the scenario of K = 10 users (in red). The per-UE cluster size
constraint in (3.12c) limits the maximum number of APs that can serve each user
to csizemax. In Fig. 3.2, we observe that for both LP and MILP, the guaranteed
rate increases with csizemax. With possibly more APs coherently transmitting to
each UE, the individual user rates, as well as the guaranteed QoS, are likely to be
higher. However, in the case of LP relaxation, it starts to saturate at csizemax = 20.
Beyond this point, increasing csizemax does not impact performance anymore, and
the maximum SINRmin stays at around 15.5 dB. On the other hand, the MILP
curve does not exhibit such behavior. Although, notice that the rate improvement
gets less pronounced with increasing csizemax. Specifically, the first 10 APs already
provide 10.5 dB, while the next 10 only amount to a 2.5-dB increase. In the extreme
case that each UE is connected to all 50 APs, corresponding to the canonical setup,
we only achieve 15.5 dB. This is a modest improvement in performance given that

29

3.4. Summary

we possibly add 400 AP-UE connections in the process, translating to a significant
increase in the required fronthaul capacity. This suggests that when allowing the
formation of bigger user-centric clusters, the additional APs are likely to be already
far away from the UEs, such that they have little effect on the user rates. Based on
these results, the user-centric setup outperforms its canonical counterpart, since in
the former case, we are able to experience good performance without being burdened
by the fronthaul requirement of the network. Lastly, decreasing the number of users
to be served by the same number of APs leads to lower interference, causing an
upward shift to the plots in Fig. 3.2.

3.4 Summary

In this chapter, we investigated how user-centric clustering impacts performance,
specifically, in terms of the total fronthaul requirement and guaranteed QoS of cell-
free massive MIMO. We first formulated and approximately solved an AP-UE link
count minimization problem. While we did not consider the actual transmitted
bits, we implicitly minimized the fronthaul requirement by establishing the least
number of connections possible that satisfied the predefined user demand, resulting
in a smaller amount of information being exchanged through the fronthaul links.
A stricter QoS constraint necessitated more serving APs per user-centric cluster,
subsequently increasing the fronthaul requirement of the network.

We next focused on a max-min SINR optimization problem. We assumed a
cluster size constraint that specifies the maximum number of APs available to each
user. Here, we had a first look at the performance comparison between the canon-
ical and user-centric cell-free massive MIMO setups. Our numerical experiments
demonstrated that there exists a cluster size such that the latter setup is overall
better than the former. In reality, only a subset of APs significantly impacts perfor-
mance. This implies that, even with small cluster sizes (user-centric), we are able to
achieve almost the same guaranteed rate as the canonical variant while considerably
reducing fronthaul capacity usage.

30

4
SARL-based Network Optimization

Conventional optimization techniques have been instrumental in solving various
problems in wireless communications. Many relevant problems are non-convex and
are dealt with using algorithms of high computational complexity. These may be
time-consuming to implement in practice [28], including those designed in Chapter
3. Leveraging ML to tackle this challenge has been a leap forward, as not only
does it involve low-complexity solutions, but also equips the wireless network with
intelligence for potential self-optimization capabilities.

In this chapter, we consider different optimization problems in the context of cell-
free massive MIMO and rely on DRL to solve them. We focus on fully centralized
frameworks, in which we utilize a single agent. Among the aspects that we will look
into is power consumption. As a step towards greener networking, we aim to develop
energy-efficient cell-free systems. To this end, we propose methods to dynamically
select and activate only a subset of APs based on the instantaneous user positions.
Another aspect that we are interested in is network scalability, which is critical
in practical coordinated distributed wireless systems. This can be viewed in two
distinct levels, namely CPU-AP and AP-UE associations. In the former case, we
consider multiple CPUs and group the APs connected to the same CPU. The latter
case is synonymous to user-centric clustering, in that we decide which subset of APs
serves each UE. In both levels, we employ SARL for cluster formation based on
predefined optimization objectives. The frameworks developed in this chapter have
been published in [50,59, 67].

4.1 Extended System Model

We again consider the downlink case of cell-free massive MIMO and extend the sys-
tem model presented in Sec. 3.1. To accommodate the dynamic AP (de-)activation
that we will explore in this chapter, we define a new variable bm ∈ {0, 1} that indi-
cates whether or not AP m is active. The modified input-output relationship of UE

31

4.1. Extended System Model

k is

yk =
�
m∈M

bm
√
ρk,mh

H
k,mfk,mskδk,m� �� �

desired signal

+
�
j∈K
j ̸=k

�
m∈M

bm
√
ρj,mh

H
k,mfj,msjδj,m

� �� �
inter-user interference

+ zk����
noise

. (4.1)

The corresponding instantaneous SINR of UE k is then

SINRk =

������
m∈M

bm
√
ρk,mh

H
k,mfk,mδk,m

�����
2

�
j∈K
j ̸=k

������
m∈M

bm
√
ρj,mh

H
k,mfj,mδj,m

�����
2

+ σ2
z

. (4.2)

Here, we coherently add the contributions of the active APs only. In fact, the base
system model in Sec. 3.1 is a special case where bm = 1, ∀m ∈ M. In this chapter,
depending on the optimization objective of a given SARL framework, we configure
the values of bm and δk,m, ∀k ∈ K, m ∈ M, accordingly.

As we will see later when we discuss the proposed frameworks in detail, the
SINR has a direct impact on the decision-making process of the DRL agent at each
time step. Since the instantaneous SINR in (4.2) is based on the microscopic CSI,
the decisions become sensitive even to small user movements. This may lead to an
undesirable behavior, such as switching the APs on/off too frequently. Thus, we
utilize the average SINR, given by

SINRk =

E


������
m∈M

bm
√
ρk,mh

H
k,mfk,mδk,m

�����
2


�
j∈K
j ̸=k

E


������
m∈M

bm
√
ρj,mh

H
k,mfj,mδj,m

�����
2
+ σ2

z

=

�
m∈M

bmρk,mgk,mδk,m +
�
m∈M

�
n∈M
n ̸=m

bmbn
√
ρk,mgk,mρk,ngk,nδk,mδk,n

�
j∈K
j ̸=k

��
m∈M

bm
ρj,mgk,m

N
δj,m

�
+ σ2

z

. (4.3)

Recall that we consider an i.i.d. Rayleigh fading channel in (3.1). We implement

the precoding locally at the APs and employ MRT, where fk,m =
hk,m

∥hk,m∥ , to minimize

the information exchange among the APs [14]. Given these assumptions, we obtain
the SINR expression in (4.3), which is based on the macroscopic gain. This allows

32

4.2. Dynamic AP Activation

for a more stable behavior for a longer period of time, in addition to only having to
estimate the gains instead of the channel vectors. The spectral efficiency of UE k in
bps/Hz is

SEk ≈ log2(1 + SINRk), (4.4)

and the rate in bps is
uk ≈ B log2(1 + SINRk), (4.5)

where B is the system bandwidth in Hz.

4.2 Dynamic AP Activation

A dense AP deployment is envisioned in cell-free massive MIMO to support the
exponential growth in mobile data traffic while enabling a uniformly good service
[25]. This, however, triggers a substantial increase in energy consumption, and thus,
it is viewed negatively from both economic and environmental standpoints. Since
the traffic demand fluctuates throughout the day, one way to tackle this dilemma is
to switch off underutilized APs during off-peak hours. In this section, we propose
a SARL framework that dynamically (de-)activates APs based on the presence of
users in the network [59].

4.2.1 Problem Formulation

Our goal is to derive the best set of APs to activate that maximizes the minimum
user SINR as

maximize α
�
min
k

SINRk

�
− (1− α)

�
m∈M

bm (4.6a)

w.r.t. bm,

subject to bm ∈ {0, 1}, ∀m ∈ M, (4.6b)

where α ∈ [0, 1] is a weighting factor. Finding the optimal set of APs is considered
an NP-hard, combinatorial problem, where we search over all possible AP activation
combinations [56]. As shown in [54], finding the globally optimal solution entails high
computational complexity, and thus, suboptimal heuristic algorithms were proposed
in [56,57]. We, therefore, rely on DRL to deal with this challenging problem. Here,
we assume that all active APs serve all UEs, such that δk,m = 1, ∀k ∈ K, m ∈ MON,
in Sec. 4.1. We define the set of active APs as MON = {m ∈ M|bm = 1}.

4.2.2 DDQN Framework for AP Activation

We now present a SARL framework to determine the best APs to turn on by exploit-
ing the available instantaneous user position information. The agent-environment

33

4.2. Dynamic AP Activation

Replay
Buffer

Loss

DDQN

Primary Target

Mini-batch
(s,a,r,s',p)i=0,...,X-1

CPU

A
ge

nt
En

vi
ro

nm
en

t
θprime

θtarg

ytarg

amax

Q(s,a;θprime)

AP

Action
StateReward

X
X

Figure 4.1: SARL-DDQN framework for AP activation based on the presence of
users.

scenario is illustrated in Fig. 4.1, where the CPU serves as the agent, and the
environment consists of the APs and UEs.

1. State
The state of the environment at time t is described by

s(t) = [b
(t−1)
1 , . . . , b

(t−1)
M , g

(t)
1,1, . . . , g

(t)
K,M]. (4.7)

The first M elements signal the current ON/OFF status of the M APs, as a
result of the AP selection decision made at the previous time step t− 1. The
last KM elements indirectly represent the position information of the K users,
since the path gains are largely determined by the AP-UE distances.

2. Action
We enumerate all possible AP activation combinations in the discrete action
space of size 2M . Based on its state observation, the agent decides which APs
to switch on/off by selecting the combination index as

a(t) = ind �→ [b1, . . . , bM]. (4.8)

We then map the scalar ind to the corresponding M -element activation vector.
Note that this formulation allows us to change the ON/OFF status of several
APs simultaneously. Alternatively, we can reduce complexity by switching
only a single AP at the expense of slower convergence. The action selection

34

4.2. Dynamic AP Activation

process is governed by the ϵ-greedy mechanism in (2.14). We obtain the latest

set of active APs, given by M(t)
ON = {m ∈ M|b(t)m = 1}.

3. Power allocation
Each active AP divides its transmit power among the K UEs by solving the
following max-min SINR optimization problem

maximize β(t) (4.9a)

w.r.t. 0 ≤ ρ
(t)
k,m ≤ ρmax,

subject to
�
k∈K

ρ
(t)
k,m ≤ ρmax, ∀m ∈ MON, (4.9b)

SINR
(t)
k ≥ β(t), ∀k ∈ K. (4.9c)

Here, we define β as the minimum user SINR to be maximized, which is guar-
anteed for all K UEs in (4.9c). The power constraint in (4.9b) ensures that the
total power allocated by each active AP does not exceed its maximum transmit
power ρmax, whose value is the same for all M APs. We use a similar technique
as in Chapter 3 of rewriting the SINR constraint as (3.9). The reformulated
problem is convex, and it can be solved using the bisection method [108]. As
an alternative, we may also employ low-complexity power assignment schemes,
for instance, one that is proportional to the channel gains.

4. Reward
The goal of the SARL framework is to determine which APs to activate such
that we maximize the guaranteed QoS and improve the energy consumption of
the system by switching off underutilized APs. However, these two objectives
have contrasting effects on performance. We, therefore, study their trade-off
by expressing the reward function as

r(t+1) = αβ(t)
norm� �� �

QoS

− (1− α)ρ(t)norm� �� �
power

, (4.10)

where

β(t)
norm =

β(t)

βmax

, (4.11)

and

ρ(t)norm =

�
m∈M

b(t)m

�
ρcircuit +

�
k∈K

ρ
(t)
k,m

�
M(ρcircuit + ρmax)

. (4.12)

The first term in (4.10) corresponds to QoS, where β(t) is obtained by solving
Problem (4.9), and βmax is the maximum rate when all the APs are turned on.
The second term corresponds to the total power consumption of the system,
where we define ρcircuit as the power consumed by the circuitry of an AP when

35

4.2. Dynamic AP Activation

it is active. Note that more sophisticated power consumption models have
been presented in the literature [56]. However, in this work, we assume that
ρcircuit encompasses all the factors contributing to the additional power utilized
by an active AP compared to when it is inactive. We normalize both terms
in (4.10) to ensure a fair comparison when investigating the trade-off between
rate maximization and power minimization. Moreover, we attach a weighting
factor α ∈ [0, 1] to easily configure the operating point by giving more weight
or importance to one of the terms.

5. DRL algorithm
Given the continuous state space in (4.7) and the discrete action space in (4.8),
we utilize the DDQN algorithm, in which we employ separate DNNs for the
primary and target networks to stabilize the DRL learning process [92]. We
refer to Sec. 2.2.3 for details on DDQN.

Algorithm 3 outlines the procedure used in this work. We first initialize the DRL
parameters (Lines 1 to 2). The CPU observes the ON/OFF status of the APs and
the presence of users in the coverage area (Line 5). It then decides to (de-)activate
certain APs based on its current policy and ϵ value (Lines 6 to 7). After deriving
the set of active APs, power allocation is done by centrally solving the max-min
SINR optimization problem in (4.9) (Line 8). The CPU receives a reward, which
depends on the configured α value (Line 9). It saves the newly acquired experience
in its replay buffer or memory B and proceeds to randomly sample a mini-batch of
X experiences (Lines 10 to 11). Those samples are used to calculate the loss and
subsequently update the primary network by performing gradient descent (Lines 12
to 13). The target DNN parameter is updated using Polyak averaging (Line 14).
Finally, we gradually decrease ϵ until it reaches ϵend (Line 15).

4.2.3 Numerical Evaluations

We assume a downlink cell-free MIMO network with M = 8 APs, having N = 10
antennas each, and vary the number of single-antenna UEs K = {2, 4, 6} in a 60×60
m2 area. In this work, we consider a rather small scenario for reasons of complexity
and limited compute capability. A higher M corresponds to a significantly larger
action space of size 2M , in addition to solving the max-min SINR optimization
problem in (4.9) at each time step. These will be addressed later in the thesis when
we utilize other DRL algorithms and transition to distributed architectures. The
simulation parameters are summarized in Table 4.1.

36

4.2. Dynamic AP Activation

Algorithm 3: DDQN for dynamic AP activation

1: Initialize the DDQN primary (θprime) and target (θtarg) networks.
2: Initialize the ϵ-greedy algorithm ϵ ← ϵstart for RL exploration-exploitation.
3: for episode e = 0, . . . , E − 1 do
4: for time step t = 0, . . . , T − 1 do
5: Observe the current state s(t) (4.7).
6: Select an action a(t) (4.8) following (2.14).
7: (De-)activate the APs accordingly.
8: Solve the max-min SINR optimization problem in (4.9) using bisection.
9: Observe the reward r(t+1) (4.10) and next state s(t+1).

10: Store experience {s(t), a(t), r(t+1), s(t+1)} in B.
11: Sample a random mini-batch of X experiences from B.
12: Compute the loss or MSE (2.12) for all the samples.
13: Update θprime by minimizing the loss using gradient descent.
14: Update θtarg using Polyak averaging (2.13).
15: Update ϵ if ϵ > ϵend following (2.15).
16: end for
17: end for

Table 4.1: Simulation parameters

Parameter Value
Carrier frequency fc 2 GHz
Path loss exponent nc 2

Shadow fading variance σ2
c 6

Noise variance σ2
z 10−8

Per-AP maximum transmit power ρmax 1 W
Per-AP circuit power ρcircuit 1 W

Buffer size 10000
Mini-batch size X 64
Learning rate αstep 0.01
Discount factor γ 0.99
ϵstart, ϵend, ϵdecay 1, 0.05, 0.0005
Polyak factor τpol 0.001

37

4.2. Dynamic AP Activation

Table 4.2: AP set solutions

Number of users
Scheme 2 4 6

Canonical CF 11111111 11111111 11111111
DRL, α = 0.6 00110111 00111111 01111111
DRL, α = 0.5 00110001 00110011 00010111
DRL, α = 0.4 00010000 00010001 00010011
Small cells 00010000 00010001 00010111

We refer to our proposed framework as DRL. After experimenting with the DNN
architecture and tuning the hyperparameters, the final architecture, employed by
the DDQN primary and target networks, is a fully connected DNN with two hidden
layers, having 16 neurons each, and the rectified linear unit (ReLU) as the activation
function. We utilize the following benchmark schemes to evaluate its performance.

1. Canonical CF – All the APs are always active and serve all the users.

2. Small cells – Each UE is connected to the best AP with the largest channel
gain, and we turn off the unused APs.

The AP set solutions are provided in Table 4.2 for the different schemes and number
of users. Each 8-bit solution represents the ON/OFF status of the eight APs.

The guaranteed QoS is depicted in Fig. 4.2. The Canonical CF baseline achieves
the highest rates, with all the APs contributing to the individual user performance.
However, this is at the expense of high power consumption in Fig. 4.3, since all the
APs are assumed to be active all the time. Comparing this to DRL when α = 0.6,
we see at most a 1.5-dB gap in terms of QoS while saving up to 6 W. That is,
we consume 37.5% more power in exchange for only 7% gain in guaranteed rate
with Canonical CF, which is rather energy-inefficient. This demonstrates that by
exploiting the available user position information to properly select and activate only
a subset of APs that significantly contributes to performance, it becomes possible to
experience good QoS while keeping power consumption relatively low. Meanwhile,
setting α to 0.4, we observe that DRL behaves close to Small cells, with almost the
same APs turned on for the two systems in Table 4.2. Admitting more users to the
network decreases the guaranteed rate while increasing the total power consumption
for all the schemes.

We investigate the impact of the weighting factor α in (4.10) that controls the
trade-off between maximizing the minimum user rate and minimizing power con-
sumption. Configuring α to 0.5 implies that we give equal importance to both
objectives. Increasing α signifies that we prioritize improving the guaranteed QoS
of the network, as depicted in the upward shift of the curves in Fig. 4.2. However,
in order to do so, we are forced to activate more APs in the process. This can be
confirmed in Table 4.2 by comparing the number of active APs for different α values.

38

4.2. Dynamic AP Activation

2 4 6

Number of users

8

10

12

14

16

18

20
M

in
im

u
m

 u
s
e
r
 S

IN
R

 [
d

B
]

DRL, =0.6

DRL, =0.5

DRL, =0.4

Canonical CF

Small cells

Figure 4.2: Guaranteed QoS for different schemes and α values with a varying
number of users.

2 4 6

Number of users

0

2

4

6

8

10

12

14

P
o
w

e
r

c
o
n

s
u

m
p

ti
o
n

 [
W

]

DRL, =0.6

DRL, =0.5

DRL, =0.4

Canonical CF

Small cells

Figure 4.3: Power consumption for different schemes and α values with a varying
number of users.

39

4.3. Spatial User Density-based AP Clustering

2 4 6

Number of users

0.0

0.1

0.2

0.3

R
e
w

a
r
d

DRL, =0.6

DRL, =0.5

DRL, =0.4

Exhaust, =0.6

Exhaust, =0.5

Exhaust, =0.4

Figure 4.4: Reward comparison for DRL and exhaustive search with a varying num-
ber of users.

For instance, in the case of four users, 50% of the APs are turned on when α = 0.5,
as opposed to 75% when α = 0.6. Thus, the system consumes more power in the
latter case in Fig. 4.3. If we further increase α, we expect to reach the upper bound,
Canonical CF. On the other hand, decreasing α signals to the SARL framework
that we target lowering power consumption. This then deactivates more APs, as
reflected in Table 4.2. For the same example of four users, only 25% of the APs
remain turned on when α = 0.4. Although this translates to power savings, having
fewer APs available to the users leads to a decrease in the guaranteed rate.

The reward in (4.10) that is maximized by the DRL agent during training is
shown in Fig. 4.4 for different α settings. With reference to Fig. 4.2 and 4.3, QoS
goes down while power goes up for increasing number of users, which explains the
decreasing trend in the reward plots. We also performed an exhaustive search to
see how close we are to the optimal one. Although our proposed SARL system
provides a suboptimal solution, the gap is not large in Fig. 4.4, suggesting that the
framework is able to derive a near-optimal set of active APs while accounting for
varying performance targets that we configure through α.

4.3 Spatial User Density-based AP Clustering

The realization of scalable cell-free massive MIMO not only requires that each user
be served by a subset of APs (user-centric), but also that different geographical areas

40

4.3. Spatial User Density-based AP Clustering

be covered by distinct CPUs. Indeed, having a single CPU handle all the data to
and from all the APs is infeasible and does not scale well, especially for a dense AP
deployment. This was demonstrated in [63], where the computational complexity
of single- and multi-CPU setups was investigated. In principle, the CPUs do not
need to be hardware entities in the network. They may be instantiated on demand,
such as in the case of CRAN, which comes with several benefits [17]. It follows that
given a predefined number of CPUs, our next step is to figure out (1) which APs
are associated to each CPU (i.e., we group the APs connected to the same CPU)
and (2) how large the individual AP groups are. In this section, we propose a SARL
framework that considers a multi-CPU environment and forms the AP groups based
on the spatial density of users [67].

4.3.1 AP Clustering

We aim to partition the canonical cell-free network into G disjoint groups. We also
refer to each group as an AP cluster, which is connected to one of the available
G CPUs. We distinguish the AP groups from one another through their identifier,
listed in set G = {1, . . . , G}. The group in which AP m belongs to is indicated by
variable cm ∈ G. We assume that each UE is served by a single AP group at a time,
and thus, we introduce variable dk ∈ G to specify the serving group of UE k. We
denote the set of APs belonging to group g by Mg = {m ∈ M|cm = g}, such that

M = ∪|G|
i=1Mi and Mi ∩ Mj = ∅. Similarly, the set of UEs served by the APs in

group g is Kg = {k ∈ K|dk = g}, such that K = ∪|G|
i=1Ki and Ki ∩ Kj = ∅. The

AP-UE association is given by

δk,m =

�
1 dk = cm,

0 otherwise.
(4.13)

The above conditions state that UE k is only served by all the APs belonging to
group dk.

The AP clustering is based on the spatial user density, which is characterized by
a continuous function over the region of interest [112]. To simplify the problem, we
discretize the region into F subareas or subregions. Each subarea f is described by
its corresponding spatial density value that provides the expected number of users.
Assuming that the users follow a Poisson distribution, this expected value serves
as the mean λf of the Poisson random variable, which we then use to obtain the
instantaneous number of UEs that are uniformly distributed over subregion f . The
expected sum rate is

uexp = E {usum} = E

�
g∈G

�
k∈Kg

uk

 , (4.14)

where user rate uk is calculated as in (4.5), and the expectation is with respect to

41

4.3. Spatial User Density-based AP Clustering

the random number of users and UE positions.

4.3.2 Problem Formulation

We aim to group the APs such that the expected network sum rate is maximized as
follows

maximize uexp (4.15a)

w.r.t. δk,m ∈ {0, 1},
c1, . . . , cM ∈ G,
d1, . . . , dK ∈ G,

subject to δk,m =

�
1 dk = cm,

0 dk ̸= cm, ∀k ∈ K,m ∈ M.
(4.15b)

Problem (4.15) involves stochastic optimization [111] and is an integer programming
problem. A reformulation that could achieve convexity is not known to exist, and
thus, we leverage DRL to handle this complex problem. Here, we consider active
APs only, such that bm = 1, ∀m ∈ M, in Sec. 4.1.

4.3.3 DDQN Framework for AP Clustering

In this section, we detail the proposed SARL framework for AP clustering. We
assume that the spatial user density information for a given time period is known
at the operator side. The system is depicted in Fig. 4.5, where a central node acts
as the agent that controls the (instantiated) CPUs, while the APs and UEs make
up the environment.

1. State
The environment at time t is described by the state vector

s(t) = [c
(t−1)
1 , . . . , c

(t−1)
M , λ

(t)
1 , . . . , λ

(t)
F]. (4.16)

The first M elements indicate the latest AP grouping, which was decided at
the previous time step t − 1. The last F elements provide the spatial user
density information of the F subareas at time t.

2. Action
The agent decides the AP clustering configuration by selecting its index in the
discrete action space as

a(t) = ind �→ [c1, . . . , cM]. (4.17)

We then map the scalar ind to the actual M -element AP grouping vector.
In total, we have |G|M possible AP clustering configurations. Given that we

42

4.3. Spatial User Density-based AP Clustering

Replay
Buffer

Loss

DDQN

Primary Target

Mini-batch
(s,a,r,s',p)i=0,...,X-1

A
ge

nt
En

vi
ro

nm
en

t
θprime

θtarg

ytarg

amax

Q(s,a;θprime)

AP

Action

State Reward

CPU 1 CPU 2

fronthaul link

Figure 4.5: SARL-DDQN framework for AP clustering in a multi-CPU network.

envision a dense AP deployment, this implies that the size of the discrete
action space would easily blow up. For this reason, we limit ourselves to v
valid groupings only. In particular, we designed them in a way that only
contiguous APs can be grouped together. This means that no two APs can be
in the same group if there are APs between them belonging to a different group.
The exploration-exploitation dynamics during action selection is dictated by
the ϵ-greedy algorithm in (2.14).

3. AP-UE assignment
Once the AP groups have been formed, the next task is to decide which group
would serve each user. For this purpose, we rely on the channel gains of each
UE with respect to all the APs. We first sort the gains in descending order.
We consider a predefined search size z, such that we only take the z largest
gains. We map them back to the corresponding APs to determine in which
group the majority of the z APs belong to. This becomes the serving AP
group of the user, and we subsequently set the δk,m values accordingly. Note
that we designed the framework as such in order to decouple the AP clustering
problem from the AP-UE association problem. Ideally, we would handle them
jointly; however, the corresponding action space would be too large.

4. Power allocation
The power assigned to UE k by AP m, assuming equal power allocation, is

43

4.3. Spatial User Density-based AP Clustering

expressed as

ρ
(t)
k,m = δ

(t)
k,m

ρmax

∥δ(t):,m∥0
, ∀k ∈ K, ∀m ∈ M, (4.18)

where ρmax is the per-AP maximum transmit power. We define δ
(t)
:,m as the K-

element AP-UE association vector of AP m at time t. We take its zero-norm to
obtain the number of users served by AP m. Note that power ρ

(t)
k,m is non-zero

only if UE k and AP m belong to the same group, such that δ
(t)
k,m = 1. As an

alternative to this heuristic approach, we may also solve a power optimization
problem, as previously done in Sec. 4.2.2, at the expense of higher complexity.

5. Reward
The reward maximized by the agent is

r(t+1) = uexp ≈ 1

I

I−1�
i=0

u(i)
sum, (4.19)

where we estimate the expected network sum rate in (4.14) using Monte-Carlo
approximation with I random realizations of number of users and UE positions.

6. DRL algorithm
The problem at hand involves a continuous state space in (4.16) and a dis-
crete action space in (4.17). We, therefore, rely on the DDQN algorithm [92],
discussed in Sec. 2.2.3.

Algorithm 4 summarizes the procedure of the proposed system. We start with
the initialization phase by setting up the DDQN and ϵ-greedy algorithm parameters
(Lines 1 to 2). The agent observes the latest AP grouping and the spatial density of
users in different subareas (Line 5). Following this, it decides a new AP clustering
configuration according to its current policy and ϵ value (Lines 6 to 7). After apply-
ing the action, we implement Monte-Carlo approximation by generating I random
realizations of number of users and UE positions. For each realization, we deter-
mine the AP-UE assignment, perform equal power allocation, and finally, compute
the sum rate (Lines 8 to 12). We take the I resulting sum rates to calculate the
average reward (Line 13). The agent receives this numerical reward, which is part
of the new experience that it then saves in its replay buffer B (Lines 14 to 15). It
samples X experiences from its buffer that are used to calculate the loss function
for updating the DDQN primary network through gradient descent (Lines 16 to 18).
On the other hand, the target network is updated using Polyak averaging (Line 19).
Lastly, we decrease ϵ if its current value is still higher than ϵend (Line 20).

44

4.3. Spatial User Density-based AP Clustering

Algorithm 4: DDQN for spatial user density-based AP clustering

1: Initialize the DDQN primary (θprime) and target (θtarg) networks.
2: Initialize the ϵ-greedy algorithm ϵ ← ϵstart.
3: for episode e = 0, . . . , E − 1 do
4: for time step t = 0, . . . , T − 1 do
5: Observe the current state s(t) (4.16).
6: Select an action a(t) (4.17) following (2.14).
7: Form the AP groups.
8: for random realization i = 0, . . . , I − 1 do
9: Determine δ

(t)
k,m, ∀k ∈ K,m ∈ M, based on the z largest gains.

10: Compute ρ
(t)
k,m, ∀k ∈ K,m ∈ M.

11: Compute the network sum rate u
(i)
sum.

12: end for
13: Compute the average reward r(t+1) in (4.19).
14: Observe the next state s(t+1).
15: Store experience {s(t), a(t), r(t+1), s(t+1)} in B.
16: Sample a random mini-batch of X experiences from B.
17: Compute the loss or MSE (2.12) for all the samples.
18: Update θprime by minimizing the loss using gradient descent.
19: Update θtarg using Polyak averaging (2.13).
20: Update ϵ if ϵ > ϵend following (2.15).
21: end for
22: end for

4.3.4 Numerical Evaluations

We consider a 300 × 300 m2 simulation area, representing a train station scenario.
The area is divided into F = 6 subregions that serve as train platforms in Fig. 4.6. A
platform has five APs, with each having four antennas and a pregenerated spatially
correlated shadow fading map [113]. The users in subregion f are Poisson-distributed
with mean λf . We consider {λ1, λ2, λ3, λ4, λ5, λ6} = {60, 60, 20, 10, 10, 10} for the
six platforms, respectively. The simulation parameters are listed in Table 4.3.

We refer to our proposed system as DRL. The DDQN algorithm employs a fully
connected DNN with two hidden layers, having 16 neurons each, and ReLU as the
activation function. We evaluate its performance using the following benchmark
schemes.

1. Canonical – The APs are not clustered in any way. In effect, they belong to a
single group.

2. Small cells (SC) – Each UE is served by the best AP with the largest gain.

3. Platform – The APs on each platform are clustered, creating six static and
predefined AP groups.

45

4.3. Spatial User Density-based AP Clustering

Figure 4.6: Train station scenario with F = 6 platforms and M = 30 APs.

Table 4.3: Simulation parameters

Parameter Value
Carrier frequency fc 2 GHz

Bandwidth B 10 MHz
Path loss exponent nc 2

Shadow fading variance σ2
c 6

Noise variance σ2
z 10−8

Per-AP maximum transmit power ρmax 1 W
Number of valid AP groupings v 36

Search size z 5
Buffer size 10000

Mini-batch size X 64
Learning rate αstep 0.01
Discount factor γ 0.99
ϵstart, ϵend, ϵdecay 1, 0.0005, 0.0005
Polyak factor τpol 0.001

46

4.3. Spatial User Density-based AP Clustering

Figure 4.7: Sum rate ECDF (Platforms 1 and 2) for the different schemes.

The empirical cumulative distribution function (ECDF) of the network sum rate
for Platforms 1 and 2 (P1 and P2), where majority of the users are located, is shown
in Fig. 4.7. Here, we obtain the upper bound performance with the fully centralized
Canonical baseline by making all the APs available to each UE, resulting in higher
individual user rates. This, however, comes with a price, namely longer delays and
higher overhead for data co-processing [39]. On the other hand, in distributed archi-
tectures such as the proposed DRL scheme, these drawbacks are less pronounced, in
exchange for a certain degree of performance degradation. For instance, we observe
in Fig. 4.7 that forming more AP groups leads to lower rates. Moreover, the perfor-
mance gap between Canonical and DRL can be attributed to the restricted design
of the discrete action space, where we defined a limited number of AP groupings
that the agent can choose from. As motivated in Sec. 4.3.3, we only consider v
valid groupings, instead of all the |G|M possible combinations. However, this does
not guarantee that the optimal grouping is included in the designed action space.
Meanwhile, compared to Small cells, we achieve better rates with DRL, as the users
benefit from the joint transmission of multiple distributed antennas or APs. While
the Platform benchmark also utilizes several antennas, it has the worst performance
due to its reliance on static AP groups. In contrast, DRL takes advantage of the
spatial user density information by allocating more APs to areas with higher user
concentration. We also observe that the sum rate of P2 is higher than that of P1
for all schemes. In our simulations, we assume that the users on P2 are served by
closer APs on neighboring platforms in both left and right directions (Platforms 1
and 3), while those on P1 are served by more distant APs coming from the same
direction (Platforms 2, 3 and so on). Such boundary effects can be reduced by

47

4.4. User-Centric Clustering

(a) Four groups, large λ1, λ2. (b) Two groups, large λ1, λ2.

(c) Four groups, equal λs. (d) Two groups, equal λs.

Figure 4.8: Visualization of DRL solution for varying number of AP groups and
spatial user densities.

utilizing wraparound techniques in future work [114].
We next illustrate the converged AP clustering solution of DRL for different

simulated user density values in Fig. 4.8, where the colors represent the AP groups
formed. In Fig. 4.8a and 4.8b, we consider the above-mentioned densities, such
that λ1, λ2 ≫ λ3, λ4, λ5, λ6. Since majority of the users are likely to be present
on Platforms 1 and 2, DRL creates bigger groups in those areas. Allocating more
APs to match the anticipated higher number of users leads to better performance.
Meanwhile, assuming equal densities for all six platforms in Fig. 4.8c and 4.8d,
we see that the agent adapts well by selecting more symmetrical AP groupings to
provide uniform performance.

4.4 User-Centric Clustering

In Chapter 3, we had a first look at the scalable user-centric cell-free massive MIMO.
While its performance appeared promising, we still relied on conventional iteration-
based algorithms. In addition, we considered a cluster size constraint that dictated
the number of serving APs per UE. However, this assumption is unrealistic, since the
AP-UE propagation conditions differ, which naturally results in clusters of varying
sizes. In this section, we propose several SARL frameworks for AP-UE association
that consider different optimization objectives without having such size constraint

48

4.4. User-Centric Clustering

[50].

4.4.1 Problem Formulation

Our first objective is to keep the individual user-centric clusters as small as possible
such that a given user demand is satisfied. This is expressed as

minimize
�
k∈K

�
m∈M

δk,m (4.20a)

w.r.t. δk,m ∈ {0, 1},
0 ≤ ρk,m ≤ ρmaxδk,m,

subject to
�
k∈K

ρk,mδk,m ≤ ρmax, ∀m ∈ M, (4.20b)

log2(1 + SINRk) ≥ Γ, ∀k ∈ K. (4.20c)

Recall that the AP-UE association variable δk,m ∈ {0, 1} indicates whether or not
AP m serves UE k, and ρk,m is non-zero only if δk,m = 1. Objective (4.20a) counts
these AP-UE connections and minimizes their sum, which in effect, minimizes the
fronthaul requirement of the network. Constraint (4.20b) ensures that the total allo-
cated power of APm does not exceed the maximum transmit power ρmax. Constraint
(4.20c) defines the QoS demand Γ in bps/Hz that must be satisfied. In Chapter 3,
we proposed an algorithm to find a suboptimal solution to this combinatorial, non-
convex problem.

Our second objective is to maximize the sum spectral efficiency of the network
as

maximize
�
k∈K

log2(1 + SINRk) (4.21a)

w.r.t. δk,m ∈ {0, 1},
0 ≤ ρk,m ≤ ρmaxδk,m,

subject to
�
k∈K

ρk,mδk,m ≤ ρmax, ∀m ∈ M. (4.21b)

Problem (4.21) is non-convex and NP-hard [109]. Existing schemes find a locally
optimal solution to the sum-rate maximization problem [110].

Note that in this work, we assume a single-CPU system, and each UE can be
served by any of the APs in the network. In contrast, the proposed scheme in Sec.
4.3.3 grouped the APs associated to the multiple CPUs, and each user was served
by only the APs belonging to the same group.

49

4.4. User-Centric Clustering

Replay
Buffer

PPO

Mini-batch
(s,a,r,s',p)i=0,...,X-1

CPU

A
ge

nt
En

vi
ro

nm
en

t

J(ϕ)

AP

ActionStateReward

LPPO(θ)

Actor

Critic Update θ

Update ϕ

rPPO(ϕ)

δ, Vθ

Figure 4.9: SARL-PPO framework for user-centric clustering.

4.4.2 PPO Framework for Minimizing the AP-UE Connec-
tions

We now discuss our proposed SARL framework that tackles Problems (4.20) and
(4.21). The agent-environment scenario is shown in Fig. 4.9, where the former is
represented by the CPU, and the latter includes the APs and UEs. In this case, we
consider active APs only, such that bm = 1, ∀m ∈ M, in Sec. 4.1.

1. State
The following state vector describes the environment at time t

s(t) = [g
(t)
1,1, . . . , g

(t)
K,M , SE

(t−1)
1 , . . . , SE

(t−1)
K]. (4.22)

The user positions are reflected in the channel gains gk,m. The UEs feed back
their rate performance through the last K elements of the vector.

2. Action
The CPU decides which AP-UE links are established, such that the action at
time t is written as

a(t) = [δ
(t)
1,1, . . . , δ

(t)
K,M]. (4.23)

3. Power allocation
After the connection establishment phase, each AP allocates its transmit power

50

4.4. User-Centric Clustering

proportional to the macroscopic channel gains as

ρ
(t)
k,m = δ

(t)
k,m

��� g
(t)
k,m�

j∈K(t)
m

g
(t)
j,m

ρmax

��� , ∀k ∈ K,m ∈ M, (4.24)

where K(t)
m = {k ∈ K|δ(t)k,m = 1} is the set of users served by AP m. Power ρ

(t)
k,m

is non-zero only if a link exists between UE k and AP m, such that δ
(t)
k,m = 1.

Note that while we opted to use a scalable power assignment scheme, it is
also possible to employ more sophisticated ones, including network-wide power
optimization algorithms, in conjunction with DRL. However, as shown in our
previous work [59], this entails higher complexity.

4. Reward
We design two reward functions corresponding to the different optimization
goals in Sec. 4.4.1.

In Problem (4.20), we minimize the number of active AP-UE connections while
satisfying a given user demand Γ. This translates to the following reward
formulation

r
(t+1)
link,1 =

KM −
�
k∈K

�
m∈M

δ
(t)
k,m, if min

k∈K
(SE

(t)
k) ≥ Γ

0, otherwise.
(4.25)

The first condition signifies that the agent receives a non-zero reward only if
the guaranteed rate of the network is at least Γ bps/Hz. This is equal to the
number of inactive links maximized by the agent, which is obtained by taking
the difference between the total number of AP-UE links and the actual number
of connections established.

We may also maximize the sum spectral efficiency of the network as in Problem
(4.21), resulting in the following reward expression

r
(t+1)
link,2 = α

�
k∈K

SE
(t)
k − (1− α)

�
k∈K

�
m∈M

δ
(t)
k,m. (4.26)

In this case, however, we see two contrasting objectives, and thus, we seek
to find a balance between them. The first term is the network sum rate that
we want to maximize, while the second term represents the link count that
we want to minimize. To investigate their trade-off, we introduce a weighting
factor α ∈ [0, 1], which allows us to adapt the system to work on varying
operating points. We normalize both terms to ensure a fair comparison. The
first term is normalized by the sum rate when considering a canonical setup,

51

4.4. User-Centric Clustering

where all APs serve all UEs, while the second one by the maximum number
of links KM . A special case is α = 1 that simplifies (4.26) to correspond to
purely a sum-rate maximization problem.

5. DRL algorithm
We employ the PPO algorithm, which is suitable for continuous state and dis-
crete action spaces. This is motivated by the ability of PPO to handle a multi-
dimensional space of actions. In our case, we have a KM -dimensional action
vector, where each element takes a value of either 0 or 1 (i.e., δk,m ∈ {0, 1}).
On the other hand, DDQN only supports one-dimensional spaces, implying
that we have to enumerate all 2KM possible AP-UE association combinations
in a large action space. In addition, PPO has been shown to perform well
while requiring less hyperparameter tuning compared to other state-of-the-art
DRL algorithms [102]. We refer to Sec. 2.2.3 for the description of PPO.

4.4.3 PPO Framework for Minimizing the Active APs

The proposed system in Sec. 4.4.2 is geared towards reducing the fronthaul require-
ment of the network. However, it does not consider the total power consumption,
and as such, there is a possibility of operating underutilized APs. For instance,
we observed in our initial experiments that some APs remained active even while
serving only a single UE or no user at all. With this, we propose an alternative
framework that focuses on minimizing the number of active APs to achieve power
savings.

1. State
The state vector is left unchanged and follows (4.22).

2. Action
The CPU decides the set of active APs, denoted byM(t)

ON = {m ∈ M|b(t)m = 1},
through the action vector

a(t) = [b
(t)
1 , . . . , b

(t)
M]. (4.27)

We consider that each active AP serves all the users, and therefore, δk,m is no

longer part of the action. We assume δ
(t)
k,m = 1, ∀k ∈ K, m ∈ M(t)

ON.

3. Power allocation
Each active AP divides its transmit power based on the channel gains as

ρ
(t)
k,m =

g
(t)
k,m�

j∈K(t)
m

g
(t)
j,m

ρmax, ∀k ∈ K,m ∈ M(t)
ON. (4.28)

52

4.4. User-Centric Clustering

4. Reward
While we keep the same objectives discussed in Sec. 4.4.1, we reformulate
the original reward functions in (4.25) and (4.26), which aim to minimize the
AP-UE link count, to now focus on minimizing the number of active APs.

As the CPU starts to deactivate more APs, the network may not be able to
guarantee at least Γ bps/Hz to all UEs. This violates the constraint in (4.20c),
and therefore, we penalize the agent by giving it a zero reward. On the other
hand, satisfying the QoS demand leads to a non-zero reward equal to the
number of inactive APs, obtained by taking the difference between the total
number of APs and the actual number of APs activated. These conditions are
expressed as

r
(t+1)
AP,1 =

M −
�
m∈M

b(t)m , if min
k∈K

(SE
(t)
k) ≥ Γ

0, otherwise.
(4.29)

We may also maximize the network sum rate while attempting to save some
power by minimizing the number of active APs with the following reward

r
(t+1)
AP,2 = α

�
k∈K

SE
(t)
k − (1− α)

�
m∈M

b(t)m . (4.30)

The first term is normalized by the resulting sum spectral efficiency when all
UEs are served by all APs (canonical setup), while the second one by the
maximum number of APs M . Their trade-off is controlled by the weighting
factor α ∈ [0, 1].

Algorithm 5 outlines the steps of the proposed frameworks in Sec. 4.4.2 and
4.4.3. Both systems utilize the PPO DRL algorithm, and they mainly differ on the
action and reward definitions. We start by initializing the DNNs of the policy and
value function (Line 1). For each iteration, we first form a trajectory by collecting
experiences for a specified number of time steps using the current policy (Line 3).
For each experience, the agent observes the latest channel gains and previous user
rate performance. Depending on which framework is operated, it decides either
how the individual user-centric clusters are formed or which APs to activate. After
applying an action, it obtains a reward that is based on either maximizing the
network sum rate or satisfying a given user demand. The new experience is then
saved in the replay buffer B (Lines 5 to 9). This is followed by the computation of
the PPO advantage estimate and the return for all time steps using the current value
function (Lines 11 to 12). Lastly, we update the DNN parameters by first sampling
a mini-batch of experiences from the buffer, and then maximizing the PPO objective
while minimizing the PPO loss function over the samples (Lines 14 to 16).

53

4.4. User-Centric Clustering

Algorithm 5: PPO for minimizing the AP-UE connections/active APs

1: Randomly initialize the PPO actor (φ) and critic (θ) networks.
2: for iteration j = 1, 2, ... do
3: Collect experiences for T time steps using the current policy πφj

.
4: for time step t to t+ T do
5: Observe s(t) (4.22), then select and apply a(t): (4.23) or (4.27).

6: Compute ρ
(t)
k,m, ∀k,m: (4.24) or (4.28).

7: Compute the reward r(t+1): (4.25), (4.26), (4.29), or (4.30).
8: Observe the next state s(t+1).
9: Store the experience {s(t), a(t), r(t+1), s(t+1)} in B.
10: end for
11: Compute the advantage estimate Â(t) using the current value function

Vθj .

12: Compute the return G(t) = Â(t) + Vθj(s
(t)).

13: for epoch e = 1 to E do
14: Sample a random mini-batch of X experiences from B.
15: Update φ by maximizing the PPO objective (2.21) using gradient

ascent.
16: Update θ by minimizing the PPO loss (2.25) using gradient descent.
17: end for
18: end for

4.4.4 Numerical Evaluations

We consider a downlink cell-free MIMO network with M = 10 APs, having N = 10
antennas each, and a varying number of single-antenna UEs K = {2, 4, . . . , 10}. All
network elements are uniformly distributed over a 300×300 m2 area. The simulation
parameters are summarized in Table 4.4. We refer to the SARL frameworks in Sec.
4.4.2 and 4.4.3 as minLink and minAP, respectively. The PPO algorithm employs
a fully connected DNN with two hidden layers, having 64 neurons each, and the
hyperbolic tangent as the activation function.

• User demand
We first investigate the behavior of the two SARL frameworks when tasked to
satisfy a given user demand Γ in Fig. 4.10 and 4.11. We observe that minLink
significantly outperforms minAP in terms of the link count in Fig. 4.10, since
the former is designed to achieve the objective with the least number of AP-
UE connections possible in (4.25). Take for example the case when Γ = 1 and
K = 10, we see that minAP requires around 60 connections, while minLink
sets up only 20 of them, amounting to just one third of the other. Meanwhile,
when looking at the number of APs activated for that same example in Fig.
4.11, we observe that minLink uses all the 10 APs, while minAP only needs
60% to be running, with the latter designed to save power by activating as few

54

4.4. User-Centric Clustering

Table 4.4: Simulation parameters

Parameter Value
Carrier frequency fc 2 GHz
Path loss exponent nc 2

Shadow fading variance σ2
c 6

Noise variance σ2
z 10−8

Per-AP maximum transmit power ρmax 1 W
Mini-batch size X 64
Learning rate αstep 0.0003
Discount factor γ 0.99

Horizon T 2048
Number of epochs E 10

PPO clip parameter ξPPO 0.2
GAE parameter λGAE 0.95

2 4 6 8 10

Number of users

0

10

20

30

40

50

60

N
u

m
b

e
r
 o

f
a
c
ti

v
e
 A

P
-U

E
 l

in
k
s

minLink, =1

minLink, =2

minAP, =1

minAP, =2

Figure 4.10: Number of AP-UE connections established by minLink and minAP for
different Γ values and number of users.

55

4.4. User-Centric Clustering

2 4 6 8 10

Number of users

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r
 o

f
a
c
ti

v
e
 A

P
s

minLink, =1

minLink, =2

minAP, =1

minAP, =2

Figure 4.11: Number of APs activated by minLink and minAP for different Γ values
and number of users.

APs as possible in (4.29).

When we start increasing the Γ value, we see a corresponding increase in both
the number of active links and APs in Fig. 4.10 and 4.11, respectively. This
can be explained by the fact that with a stricter QoS constraint, each UE
may need more serving APs in its cluster. Consequently, a larger number of
APs is activated in the process. Although, after some point, we do not get a
feasible solution anymore. This phenomenon occurs faster for minAP, as the
framework derives the set of active APs to which all the UEs are connected.
This means there is little to no flexibility for the users to select the best APs
for them, leading to a performance degradation. Note that this happens due
to the small network of APs in the simulated scenario, such that adding more
APs allows us to obtain a feasible solution even for higher Γ values.

Increasing the number of UEs admitted to the network increases the number
of active connections and APs, since a new user automatically establishes at
least one additional link to a serving AP. It is worth point out that the number
of APs in the user-centric clusters formed by minLink varies for the individual
users, as this depends on the AP-UE distances and propagation conditions
that then impact the UE rate performance.

• Sum spectral efficiency

We next focus on the performance of the two SARL frameworks when maxi-

56

4.4. User-Centric Clustering

2 4 6 8 10

Number of users

10

15

20

25

30

35

40
S

u
m

 r
a
te

 [
b

p
s
/H

z
]

minLink, =1

minLink, =0.7

minLink, =0.5

minLink, =0.3

minAP, =1

minAP, =0.7

minAP, =0.5

Figure 4.12: Sum rate achieved by minLink and minAP for different α values and
number of users.

mizing the network sum rate in Fig. 4.12, 4.13 and 4.14. A general observation
is that, as we increase the value of the weighting factor α in rewards (4.26) and
(4.30), we see the curves being shifted up in all three figures. The higher the
α is, the less penalty the agent receives from either establishing more AP-UE
links or activating more APs as long as the sum rate is maximized.

Interestingly, in the case of minLink in Fig. 4.12 (in red), the rate improvement
gets smaller as we increase α. For instance, the jump in sum spectral efficiency
when changing α from 0.3 to 0.5 is more pronounced than when going from
0.5 to 0.7. Recall that we designed our reward to allow us to adapt our system
according to some performance target. For a fronthaul-constrained network,
this implies putting a limit on the number of AP-UE connections established,
which can be easily done by setting an appropriately small value for α in (4.26),
as depicted in Fig. 4.13. When such limit on the AP-UE link count exists, the
DRL framework is able to identify which links significantly contribute to the
user rate performance, and those are prioritized when actually establishing a
relatively small number of AP-UE connections. This explains why increasing
α further does not impact the sum rate that much anymore.

In the case of minAP in Fig. 4.12 (in blue), we observe that configuring α to
0.7 gives a performance that is close to that of α = 1, with the latter being 1
to 2 bps/Hz better. However, looking at Fig. 4.14, this gap is at the expense
of having all the APs active all the time, as opposed to only 60 to 80% of

57

4.4. User-Centric Clustering

2 4 6 8 10

Number of users

0

20

40

60

80

100

N
u

m
b

e
r
 o

f
a
c
ti

v
e
 A

P
-U

E
 l

in
k
s

minLink, =1

minLink, =0.7

minLink, =0.5

minLink, =0.3

minAP, =1

minAP, =0.7

minAP, =0.5

Figure 4.13: Number of AP-UE connections established by minLink and minAP for
different α values and number of users.

2 4 6 8 10

Number of users

3

4

5

6

7

8

9

10

N
u

m
b

e
r
 o

f
a
c
ti

v
e
 A

P
s

minLink, =1

minLink, =0.7

minLink, =0.5

minLink, =0.3

minAP, =1

minAP, =0.7

minAP, =0.5

Figure 4.14: Number of APs activated by minLink and minAP for different α values
and number of users.

58

4.5. Summary

them when α = 0.7. This demonstrates the ability of our DRL framework to
decrease power consumption without substantially losing on rate performance.

• Comparison with baseline schemes

We now compare our proposed methods with known benchmarks in the context
of cell-free massive MIMO. It was shown in [49] that the canonical setup acts as
an upper bound for evaluating performance. As depicted in Fig. 4.14, setting
α to 1 in reward (4.30) of minAP activates all the APs, which then serve all
the users in the network. This, therefore, represents the canonical baseline.
Our simulation results in Fig. 4.12 and 4.14 suggest that for appropriate α
values, the system behaves close to the upper bound while only activating a
subset of APs, improving energy efficiency.

When α = 1 for minLink, reward (4.26) is transformed into purely a sum-rate
maximization problem, giving us the highest sum spectral efficiency attained
by the framework. In Fig. 4.12 and 4.13, we observe that by configuring α
properly, we can achieve the same rate performance as the canonical bench-
mark with much fewer AP-UE connections. By optimizing the AP selection for
each user or cluster, the user-centric design effectively outperforms the canoni-
cal setup. This translates to lower fronthaul requirements for the network and
contributes to making it scalable.

Another baseline to compare with is the seminal work [27] on the user-centric
concept, which assumes that the clusters are of fixed size Nc. A larger Nc

implies that there are more serving APs in each cluster, resulting in higher
user rates, and thus, narrows the performance gap with our DRL framework.
However, assuming the same cluster size for all UEs is inefficient in terms of
the fronthaul capacity, since the users require varying number of serving APs
in practice.

4.5 Summary

In this chapter, we started to leverage DRL for network optimization. We formulated
various optimization problems and proposed SARL-based solutions, which are geared
towards the realization of energy-efficient, scalable cell-free massive MIMO.

The mobile data traffic fluctuates throughout the day, and thus, some APs are
underutilized during off-peak hours. We developed a DRL approach that selects
the best APs to activate given the current user position information. We highlight
that the system jointly considers the position of all users, which avoids having an AP
switched on even when only a single UE is connected to it. Moreover, we designed our
framework to be flexible enough to accommodate different operating points in terms
of the guaranteed QoS and power consumption. When we prioritized maximizing
the minimum user SINR, we forced more APs to be activated, which increased power
consumption. Our simulation results demonstrated that by carefully choosing the

59

4.5. Summary

limited number of APs to operate, we were able to obtain almost the same rate
performance as when all APs are active while achieving power savings.

The network scalability issue of the canonical cell-free network was tackled by ex-
ploring SARL-based clustering algorithms. In practice, multiple CPUs are expected
to cover different subareas. Given a predefined number of CPUs, we presented a
DRL system to cluster or group the APs associated to the same CPU. In order to
determine the size of each AP group, we relied on the current spatial user density
information of the subregions. This allowed us to form bigger AP groups in areas
where there are likely to be more users. Our numerical evaluations showed that
tailoring the group sizes as such led to a higher network sum rate.

We next focused on DRL-based user-centric clustering. Assuming a practical
fronthaul-constrained network, we either maximized the sum spectral efficiency or
satisfied a QoS demand, while forming the least number of AP-UE links possible.
Our numerical experiments proved that the framework is capable of determining the
best APs per user that enables us to stay close to the upper bound performance,
exhibited by the canonical setup, but with much lower fronthaul requirement. In
fact, when we allowed more AP-UE connections to be established by increasing α,
we observed insignificant rate improvements, suggesting that only a small number of
APs contributed to performance. This supports our findings in Chapter 3. However,
instead of utilizing an iteration-based approach that is commonly of high computa-
tional complexity, as well as imposing a cluster size constraint, we relied on DRL to
intelligently form the user-centric clusters of varying sizes.

60

5
Accelerated SARL and MARL for

Power Control

In Chapter 4, we applied SARL to approximately solve different non-convex opti-
mization problems in cell-free massive MIMO, which would have been rather com-
plex in the case of traditional optimization techniques. While our findings align
with our goal of improving the scalability and adaptability of the network, we have
mostly limited our experiments to static scenarios. This assumption is unrealistic,
given that the wireless environment changes over time, and it does not harness the
full potential of DRL. Moreover, we relied on a single agent in all our prior DRL
frameworks. A direct consequence of this is that the size of the action space is too
large for certain DRL algorithms, making it infeasible for most frameworks to handle
large-scale network simulations.

In this chapter, we move away from the above-mentioned limitations. Unlike
existing works that only considered user mobility, we assume a dynamic cell-free
environment that is characterized by the combination of UE (de-)activation and
mobility. Our main motivation for tackling such challenging scenario is its relevance
to practical use cases, including those of internet of things (IoT), where battery-
limited user devices switch to sleep mode in order to conserve power and prolong their
battery life. Furthermore, when dealing with a non-static environment, we inevitably
face the issue of slow convergence in DRL [40]. Specifically, the system enters a re-
training phase whenever the environment changes. A slow convergence implies that
by the time the re-trained model converges, the environment may have changed
again, leading to an outdated DNN policy selecting bad actions that then impact
performance. Thus, in this chapter, we utilize a technique known as prioritized
experience reply [81] in an attempt to accelerate learning. In addition, we transition
to distributed DRL architectures by exploring both SARL and MARL, including
federated learning [41], to solve an uplink power control problem that maximizes the
guaranteed rate of the cell-free network. The algorithms developed in this chapter
have been published in [83,84].

61

5.1. Uplink System Model

5.1 Uplink System Model

We consider an uplink cell-free massive MIMO network with M single-antenna APs
and K single-antenna UEs, such that M ≫ K. The set of all APs is denoted by
M = {1, . . . ,M}, the set of all UEs by K = {1, . . . , K}, and the set of active UEs
by KON ⊆ K. We assume i.i.d. Rayleigh fading as in (3.1). Given a block-fading
channel, each coherence block contains τc = τp + τu + τd samples, of which τp are for
uplink training, τu are for uplink data transmission, and τd are for downlink data
transmission.

In the uplink training phase, all active UEs transmit their pilot sequences simul-
taneously. The pilot sequence of UE k is denoted by φk ∈ Cτp×1. The APs obtain a
superposition of the sequences. The (τp × 1)-pilot signal received by AP m is

ym =
�

k∈KON

√
τpρphk,mφk + nm, (5.1)

where ρp is the pilot transmit power, and nm is the noise vector with i.i.d. elements
following CN (0, σ2

n).
In order to estimate the user channel, AP m projects the pilot signal onto φH

k as

ŷk,m = φH
k ym =

�
k′∈Vk

√
τpρphk′,m + φH

k nm, (5.2)

where Vk represents the set of active users utilizing the same pilot sequence φk. Here,
we consider random pilot allocation. Note, however, that different pilot assignment
schemes have been presented in the literature to mitigate pilot contamination effects
[21, 22]. The MMSE channel estimate [14, 80] is then

ĥk,m =

√
τpρpgk,m�

k′∈Vk

τpρpgk′,m + σ2
n

ŷk,m = ck,m ŷk,m, (5.3)

with ĥk,m ∼ CN (0, Vk,m) and

Vk,m =
τpρpg

2
k,m�

k′∈Vk

τpρpgk′,m + σ2
n

. (5.4)

During uplink data transmission, all active UEs send their data simultaneously.
The data symbol of UE k is xk with power E{|xk|2} = 1. The APs receive a
superposition of the symbols. In the case of AP m, this is given by

y(u)m =
�

k∈KON

hk,m
√
ρkxk + n(u)

m , (5.5)

62

5.1. Uplink System Model

where ρk is the uplink transmit power of UE k, and n
(u)
m is the noise at AP m.

Access point m utilizes its local channel estimate ĥk,m to obtain ĥ∗
k,my

(u)
m , which

is then forwarded to the CPU for data detection. The received signal at the CPU is

z
(u)
k =

�
m∈M

ĥ∗
k,my

(u)
m

=
�
m∈M

ĥ∗
k,mhk,m

√
ρkxk� �� �

desired signal

+
�
m∈M

�
k′∈KON
k′ ̸=k

ĥ∗
k,mhk′,m

√
ρk′xk′

� �� �
inter-user interference

+
�
m∈M

ĥ∗
k,mn

(u)
m� �� �

noise

. (5.6)

The SINR of UE k is expressed as

SINRk =

E


������
m∈M

ĥ∗
k,mhk,m

√
ρkxk

�����
2


E

����
��������
�
m∈M

�
k′∈KON
k′ ̸=k

ĥ∗
k,mhk′,m

√
ρk′xk′

��������
2����+ E


������
m∈M

ĥ∗
k,mn

(u)
m

�����
2


=

ρk

��
m∈M

Vk,m

�2

+
�
m∈M

ρkVk,mgk,m

τp
�
k′∈Vk

ρk′ρp

��
m∈M

ck,mgk′,m

�2

+
�

k′∈KON
k′ ̸=k

ρk′
�
m∈M

gk′,mVk,m +
�
m∈M

Vk,mσ
2
n

,

(5.7)

which is based on the power of the three terms in (5.6) following the analysis in
[14, 80]. The rate of UE k in bps is

uk ≈ B

�
1− τp

τc

�
log2(1 + SINRk), (5.8)

where B is the system bandwidth in Hz.
This system model is more accurate than the one described in Sec. 3.1, as it ac-

counts for channel estimation and pilot contamination. However, we also emphasize
that one of the advantages of DRL is its ability to operate online and model-free.
In fact, the presented system model is for evaluation purposes only, meaning, the
user rate feedback in our simulations is implemented following this model. In a real-
world deployment, our proposed frameworks would consider the actual achieved UE
rates, such that they are agnostic to the system model in use. This also implies that
they would be able to take into account several practical factors affecting the rate
calculation, which are not included in most models.

63

5.2. Problem Formulation

In this chapter, we consider dynamic device (de-)activation. We refer to the
changing of UE ON/OFF states as UE toggling with parameters Ttog and Ktog. The
number of episodes over which the ON/OFF status remains constant is specified by
Ttog, and the number of UEs that switch from active to inactive mode (or vice versa)
every Ttog is indicated by Ktog.

5.2 Problem Formulation

Inter-user interference may lead to severe performance degradation, highlighting the
need for effective power control strategies. We, therefore, formulate the following
uplink power control problem that maximizes the guaranteed rate of the cell-free
network

maximize min
k∈KON

uk (5.9a)

w.r.t. ρk,

subject to 0 ≤ ρk ≤ ρmax, ∀k ∈ KON. (5.9b)

The max-min objective is expressed in (5.9a). Constraint (5.9b) specifies the valid
range for the power values, where ρmax is the maximum transmit power that we
assume to be the same for all UEs.

For the considered single-antenna setup, Problem (5.9) is equivalent to maximiz-
ing the minimum user SINR, which after some reformulation, can be solved cen-
trally using conventional iteration-based optimization algorithms, including those
presented in [14,115]. However, in this chapter, we add another layer of complexity
by considering device (de-)activation. This is represented by set KON in (5.9) that
consists of the currently active UEs only. In this case, existing algorithms require
knowing the precise UE ON/OFF states in advance before being able to carry out
network-wide power allocation. However, this is non-trivial, as the unknown and
dynamic UE activation patterns depend on several factors, such as battery life and
event-triggered updates of IoT sensor devices, which are challenging to predict and
may change rapidly. In addition, the said algorithms are commonly of high com-
putational complexity and time-consuming to implement in practice. Motivated by
this, we leverage model-free DRL to solve the uplink power control problem in an
online manner, without requiring prior knowledge of the UE activation status, by
relying solely on UE rate feedback for user privacy preservation and communication
overhead reduction.

5.3 Prioritized Experience Replay

Deep reinforcement learning is known to suffer from slow convergence that makes it
less competitive as an optimization tool in practical deployments. This shortcoming

64

5.3. Prioritized Experience Replay

is magnified when dealing with a dynamic environment, where re-training is neces-
sary whenever changes in the environment are detected. In this section, we discuss
prioritized experience replay [81] or prioritized sampling, which is a technique to
accelerate convergence. By default, DRL algorithms assume a uniform distribution
when sampling the mini-batch of experiences for updating their DNNs, as detailed
in Sec. 2.2.3. In the case of prioritized sampling, we instead give more importance to
certain experiences to help the agent learn faster. While there exist different variants
of prioritized experience replay, we specifically utilize TD error-based prioritization,
since the TD errors are automatically computed when updating the DRL algorithms
that we employ in this chapter, namely DDPG and DDQN. Therefore, no additional
computational complexity is incurred in the process.

Recall that at each time step, a new experience is saved by the agent in its buffer
B. An experience is represented by the tuple (s, a, r, s′). With prioritized sampling,
we extend this to include a priority information p. Thus, the ith modified experience
tuple stored in B is given by (si, ai, ri, s

′
i, pi). The priority value pi is transformed

into the actual probability P (i) ∈ [0, 1] used during sampling as

P (i) =
pαi

len(B)−1�
j=0

pαj

, (5.10)

where len(B) is the current length of the buffer, and α ∈ [0, 1] is the prioritization
factor that controls how much we rely on prioritization. The higher the α is, the
greater the degree of prioritization, while plugging α = 0 into (5.10) corresponds to
the default case of uniform sampling. We see from the above relationship that the
priority value dictates how likely an experience will be selected for replay. Therefore,
a new experience is always assigned the current maximum priority pmax to increase
its chances of being sampled.

The priorities are obtained from the TD errors as

pi = |δTD,i|+ ς, (5.11)

where
δTD,i = ytarg,i −Q(si, ai; θ

(t)
prime) (5.12)

in (2.8) of Sec. 2.2.2, and ς > 0 is a small number to avoid dividing by zero in (5.10).
In DRL, we aim to minimize the TD error. Thus, we prioritize those experiences
with large δTD, such that they are more likely to be drawn frequently, implying more
attempts of minimizing the TD error.

A consequence for implementing such prioritization mechanism is that we in-
troduce a distribution bias that can be compensated and corrected by assigning

65

5.4. DDPG with Prioritized Sampling for Power Control

importance sampling weights to the saved experiences, expressed as

wi =

�
1

len(B) · P (i)

�β(t)

, (5.13)

where β ∈ [0, 1] is a correction parameter, with β = 0 corresponding to the case
where no correction is made. We anneal β over Nts time steps during the learning
process as

β(t+1) = β(t) +
βend − βstart

Nts

, (5.14)

where we initially set β to βstart and gradually increase its value until it reaches βend.
We note the inverse relationship between the probabilities and weights in (5.13).
Since experiences with higher priority and probability are likely to be oversampled,
we correct the distribution bias by downweighting them. Lastly, in order to ensure
that the weights are within the valid range wi ∈ [0, 1], we also normalize them as

wi =
wi

max
j

wj

. (5.15)

These weights appear in the following modified loss function

Lpriority =
1

X

X−1�
i=0

wi(ytarg,i −Q(si, ai; θ
(t)
prime))

2, (5.16)

which is used for updating the DDPG and DDQN algorithms.

5.4 DDPG with Prioritized Sampling for Power

Control

In this section, we present our first SARL framework for uplink power control, which
we equip with TD error-based prioritized experience replay to enable our system to
quickly adapt to the dynamic and unknown UE activation patterns [83]. The agent-
environment scenario is depicted in Fig. 5.1. The CPU acts as the agent that houses
the DDPG algorithm and prioritized sampling mechanism, while the APs and users
belong to the environment.

5.4.1 SARL-DDPG Framework

• DRL components

1. State
The (de-)activation activity of the UEs is monitored by the agent through

66

5.4. DDPG with Prioritized Sampling for Power Control

Update
Priority

Prioritized
Sampling

Replay
Buffer

DDPG

Mini-batch
(s,a,r,s',p)i=0,...,X-1

TD Error δ

CPU

A
ge

nt
En

vi
ro

nm
en

t

Target Actor

AP

ActionStateReward

Policy Gradient

Target Critic

Critic Loss

Actor

Critic

Update

Update

Polyak

Polyak

Q'

Q

s s'a

a'

Figure 5.1: SARL-DDPG with prioritized sampling framework for power control.

the state vector

s(t) = [d
(t)
1 , . . . , d

(t)
K , u

(t−1)
1 , . . . , u

(t−1)
K], (5.17)

where the ON/OFF status of UE k at time t is given by d
(t)
k ∈ {0, 1}.

The user rate performance at the previous time step t− 1 is indicated by
the last K vector elements.

2. Action
The CPU decides the uplink transmit power of all K UEs as

a(t) = [ρ
(t)
1 , . . . , ρ

(t)
K]. (5.18)

We ensure that the power constraint is satisfied by allocating non-zero
power within range ξ ≤ ρ

(t)
k ≤ ρmax, with 0 < ξ ≪ 1, to the active UEs

and assigning zero power to the inactive ones. We implement a post-
correction phase for the latter in case the agent selects a non-zero power
for an inactive UE.

3. Reward
The agent receives the following reward that it aims to maximize, corre-

67

5.4. DDPG with Prioritized Sampling for Power Control

sponding to the guaranteed rate in Problem (5.9),

r(t+1) = min
k′∈K(t)

ON

u
(t)
k′ . (5.19)

Here, we define the set of active UEs as K(t)
ON = {k ∈ K|d(t)k = 1}.

• Proposed SARL-DDPG algorithm
Given that our problem deals with continuous state and action spaces, we uti-
lize the DDPG algorithm [98], presented in Sec. 2.2.3. Unlike its vanilla form
that uniformly samples the experiences used for updating its DNNs, we aug-
ment it with prioritized sampling [81]. We refer to Sec. 5.3 for the description
of prioritized experience replay. Algorithm 6 summarizes the procedure of the
proposed method, which we detail below.
Step 1: We start with the initialization phase. We set up the DDPG pri-
mary actor and critic networks, and configure the same DNN parameters for
the corresponding target networks. We next initialize the prioritized sampling
mechanism and the noise for action exploration (Lines 1 to 4).
Step 2: The CPU observes the latest device activation status and the user
performance at the previous time step. Based on this information, it decides
the non-zero power values for the active UEs. This triggers a reward feedback
from the environment, which transitions into a new state at the next time step
(Lines 5 to 9).
Step 3: A basic tuple (s(t), a(t), r(t+1), s(t+1)) for the new experience is created.
Different from the DRL frameworks that we have seen so far, the prioritized
experience replay takes into effect by extending the tuple and attaching a pri-
ority information p, which is equal to the current maximum priority pmax. The
agent saves the modified tuple (s(t), a(t), r(t+1), s(t+1), pmax) in its replay buffer
B (Line 10).
Step 4: The priority values of the experiences in B are converted to proba-
bilities following (5.10), which serve as a basis for calculating the importance
sampling weights in (5.13) (Lines 11 to 12).
Step 5: The agent now samples a mini-batch of X experiences using the prob-
abilities associated to the stored experiences in B. For each sample, the TD
error δTD is determined. As the computation differs according to the DRL
algorithm in use, we recall that the TD error for DDPG is

δ
(t)
TD = y

(t)
targ −Q(s(t), a(t); θ

(t)
prime),

where
y
(t)
targ = r(t+1) + γQ′(s(t+1), µ′(s(t+1);φ

(t)
targ); θ

(t)
targ).

The target actor and critic networks are used to calculate the target value
ytarg. The weighted loss in (5.16) is computed based on the TD errors of the X
samples and is minimized using gradient descent to update the primary critic

68

5.4. DDPG with Prioritized Sampling for Power Control

Algorithm 6: SARL-DDPG with prioritized sampling for power control

1: Initialize the DDPG primary actor µ(s|φprime) and critic Q(s, a|θprime) with
weights φprime and θprime. Initialize the target networks µ′ and Q′ with
weights φtarg ← φprime and θtarg ← θprime.

2: Initialize the prioritized experience replay parameters β ← βstart and
pmax ← 0.

3: for episode e = 0, . . . , E − 1 do
4: Initialize a random process N for action exploration.
5: Initialize state s(0).
6: for time step t = 0, . . . , T − 1 do
7: Observe the current state s(t) (5.17).
8: Select and apply action a(t) ← µ(s(t)|φprime) +N (t) (5.18).
9: Observe the reward r(t+1) (5.19) and next state s(t+1).

10: Store experience (s(t), a(t), r(t+1), s(t+1), pmax) in B.
11: Compute the probabilities (5.10) of the experiences.
12: Compute their weights (5.13), (5.15).
13: Sample a mini-batch of X experiences from B based on the calculated

probabilities.
14: Compute their TD error (5.12) and the resulting weighted loss (5.16).
15: Update the critic by minimizing the loss using gradient descent.
16: Update the priorities (5.11) of the samples.
17: Update pmax ← maxj∈{0,...,len(B)} pj.
18: Update the actor by maximizing the gradient (2.16) using gradient

ascent.
19: Update the target networks using Polyak averaging (2.19), (2.20).
20: Update β as in (5.14).
21: end for
22: end for

(Lines 13 to 15).
Step 6: The newly calculated TD errors are utilized to update the priorities
of the sampled experiences as in (5.11). If follows that we also update the
current maximum priority pmax (Lines 16 to 17).
Step 7: Similar to vanilla DDPG, we update the DNN parameter of the
primary actor by maximizing the DDPG gradient in (2.16). After which, we
perform soft updates for the two target networks using Polyak averaging (2.19),
(2.20) (Lines 18 to 19).
Step 8: We update the prioritized sampling correction parameter by gradually
increasing β following (5.14) (Line 20).

69

5.4. DDPG with Prioritized Sampling for Power Control

Table 5.1: Simulation parameters

Parameter Value
Carrier frequency fc 1.9 GHz

Bandwidth B 20 MHz
Path loss exponent nc 2

Shadow fading standard deviation 8 dB
Noise figure 9 dB

Pilot transmit power ρp 0.1 W
Per-UE maximum transmit power ρmax 0.1 W

Buffer size 1e6
Mini-batch size X 100

Learning rate for actor, critic αstep 0.001
Discount rate γ 0.9
Polyak factor τpol 0.005

Prioritization factor α 0.5
Correction parameter βstart, βend 0.4, 1

5.4.2 Numerical Evaluations

We consider an uplink cell-free MIMO network with M = 30 single-antenna APs
and K = 10 single-antenna UEs. All network elements are uniformly distributed
over a 500× 500 m2 area. The simulation parameters are listed in Table 5.1.

We refer to our proposed SARL-DDPG with prioritized sampling framework in
Sec. 5.4.1 as Prop. DDPG-PS. We consider the same DNN architecture for both the
actor and critic networks, where we utilize a fully connected DNN with two hidden
layers, having 64 neurons each. We experimented with different prioritization factor
α values to determine the most appropriate one for our system. We achieved the
best performance with α = 0.5, and we, therefore, use this value in our analysis.

We evaluate the performance of Prop. DDPG-PS using the following benchmark
schemes.

1. Ref. Max-min – Problem (5.9) is solved as in [14].

2. Ref. DDPG-Uni – Vanilla DDPG employs uniform sampling as in [98].

3. Ref. Full power – Each UE transmits with ρmax.

Furthermore, we test the robustness of our framework using various combinations of
UE toggling and user mobility settings. The mobile scenario follows a random walk
model, where each user selects a direction (left, right, up, down) and a speed from
0 to 1 m/s at each time step, assuming a uniform distribution.

• Fully static scenario
We start with the fully static case, where the users are non-mobile, and the

70

5.4. DDPG with Prioritized Sampling for Power Control

0 200 400 600 800 1000

Episode

2

4

6

8

10

12

14

16

M
in

im
u

m
 u

s
e
r

ra
te

 [
M

b
p

s
]

Ref. Max-min

Prop. DDPG-PS

Ref. DDPG-Uni

Ref. Full power

Figure 5.2: Guaranteed rate for the fully static scenario.

UE ON/OFF states remain constant throughout the learning process. The
guaranteed rate for the different schemes is depicted in Fig. 5.2. The Ref.
Max-min baseline provides the upper bound performance. However, it requires
knowing the exact UE activation patterns in advance to solve Problem (5.9)
using conventional optimization techniques, which is challenging in practice.
We observe that our Prop. DDPG-PS framework behaves close to optimal,
with only a difference of 0.9 Mbps or 5.66%. More importantly, it does so
without prior knowledge of the UE ON/OFF states by relying solely on the
user rate feedback. The Ref. DDPG-Uni benchmark converges to the same
rate of 15 Mbps, albeit at a slower pace, which is 300 episodes later compared
to Prop. DDPG-PS. The worst-performing scheme is Ref. Full power due to
the increased inter-user interference.

Fig. 5.3 shows the total power consumption for the different setups, obtained
by summing up the powers of the active UEs. In the case of the DDPG-based
schemes, power consumption goes down while rate improves in Fig. 5.2 during
training. This implies that the agent learns to select better power values or
actions as it further interacts with the environment by observing the resulting
rewards. Moreover, while power reduction is not explicit in the reward function
in (5.19), it is accounted for when maximizing the guaranteed rate, as inter-
user interference is minimized in the process. In addition, we observe that as
opposed to vanilla DDPG, applying prioritization enables our proposed scheme
to reach Ref. Max-min faster at episode 200. As expected, Ref. Full power

71

5.4. DDPG with Prioritized Sampling for Power Control

0 200 400 600 800 1000

Episode

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

P
o
w

e
r

c
o
n

s
u

m
p

ti
o
n

 [
W

]

Ref. Max-min

Prop. DDPG-PS

Ref. DDPG-Uni

Ref. Full power

Figure 5.3: Total power consumption for the fully static scenario.

consumes the most power.

• Static users with UE toggling scenario
We next allow UE toggling for the non-mobile users. Specifically, Ktog = 0.1K
UEs switch from active to inactive mode (or vice versa) every Ttog = 500
episodes. This explains the sudden activity in the plots of Fig. 5.4 and 5.5
at episode 500. After the toggle, we observe that Prop. DDPG-PS is quick
to recover from this environment change, already converging to a new rate at
episode 600 in Fig. 5.4. In contrast, this only occurs more than 200 episodes
later for Ref. DDPG-Uni. We also highlight the benefits of prioritized sam-
pling in this case. Unlike in our results for the fully static scenario, we not
only achieve accelerated convergence, but also better rate performance, as ex-
hibited by the 7.4% rate increase, compared to vanilla DDPG. This advantage
extends to the total power consumption in Fig. 5.5, with Prop. DDPG-PS
being evidently more power-efficient, consuming almost the same power as the
optimal Ref. Max-min.

We now consider the case where UE toggling occurs more frequently by low-
ering Ttog to 350, signifying that the change in the device activation status
happens at episodes 350 and 700 in Fig. 5.6 and 5.7. After the first toggle, we
observe that our Prop. DDPG-PS framework quickly achieves convergence at
a rate of 14.5 Mbps at episode 450 in Fig. 5.6. In contrast, without prioritiza-
tion, Ref. DDPG-Uni settles for a lower rate of 12.8 Mbps, amounting to an
11.72% rate decrease, only 100 episodes later. After the second toggle, we ex-

72

5.4. DDPG with Prioritized Sampling for Power Control

0 200 400 600 800 1000

Episode

0

2

4

6

8

10

12

14

16
M

in
im

u
m

 u
s
e
r

ra
te

 [
M

b
p

s
]

Ref. Max-min

Prop. DDPG-PS

Ref. DDPG-Uni

Ref. Full power

Figure 5.4: Guaranteed rate for the static, Ttog = 500, Ktog = 0.1K scenario.

0 200 400 600 800 1000

Episode

0.2

0.3

0.4

0.5

0.6

0.7

P
o
w

e
r

c
o
n

s
u

m
p

ti
o
n

 [
W

]

Ref. Max-min

Prop. DDPG-PS

Ref. DDPG-Uni

Ref. Full power

Figure 5.5: Total power consumption for the static, Ttog = 500, Ktog = 0.1K sce-
nario.

73

5.4. DDPG with Prioritized Sampling for Power Control

0 200 400 600 800 1000

Episode

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

M
in

im
u

m
 u

s
e
r

ra
te

 [
M

b
p

s
]

Ref. Max-min

Prop. DDPG-PS

Ref. DDPG-Uni

Ref. Full power

Figure 5.6: Guaranteed rate for the static, Ttog = 350, Ktog = 0.1K scenario.

0 200 400 600 800 1000

Episode

0.2

0.3

0.4

0.5

0.6

0.7

P
o
w

e
r

c
o
n

s
u

m
p

ti
o
n

 [
W

]

Ref. Max-min

Prop. DDPG-PS

Ref. DDPG-Uni

Ref. Full power

Figure 5.7: Total power consumption for the static, Ttog = 350, Ktog = 0.1K sce-
nario.

74

5.4. DDPG with Prioritized Sampling for Power Control

0 200 400 600 800 1000

Episode

0

2

4

6

8

10

12

14

16

M
in

im
u

m
 u

s
e
r

ra
te

 [
M

b
p

s
]

Ref. Max-min

Prop. DDPG-PS

Ref. DDPG-Uni

Ref. Full power

Figure 5.8: Guaranteed rate for the mobile, Ttog = 500, Ktog = 0.1K scenario.

pect the guaranteed rate to increase, as depicted in the plots of Ref. Max-min
and Ref. Full power. Our framework detects the change in the environment
and is able to react accordingly with a corresponding increase in the minimum
user rate. On the other hand, vanilla DDPG likely requires more time to do so.
In terms of power consumption, we see that our proposed scheme still behaves
close to Ref. Max-min in Fig. 5.7.

• Mobile users with UE toggling scenario
Lastly, we combine user mobility with UE (de-)activation in Fig. 5.8 and 5.9,
assuming Ttog = 500 and Ktog = 0.1K. Both DDPG-based schemes now take a
longer time to converge to a solution compared to their static counterparts in
Fig. 5.4 and 5.5. In particular, we observe an additional 100 episodes for Prop.
DDPG-PS, while Ref. DDPG-Uni has yet to reach convergence even at episode
1000 in Fig. 5.8. The same phenomenon can be perceived in Fig. 5.9, where
the power consumption plots are slower to settle to their converged values. In
this more challenging scenario, the agent has to deal with the added mobility,
on top of detecting the environment change triggered by UE (de-)activation,
with both simultaneously affecting its action or power decisions. Nonetheless,
our results demonstrate the robustness of our proposed framework, as we retain
the performance gain in terms of rate, power, and convergence speed compared
to vanilla DDPG while approaching the performance of Ref. Max-min.

75

5.5. DDQN with Prioritized Sampling for Power Control

0 200 400 600 800 1000

Episode

0.2

0.3

0.4

0.5

0.6

0.7

P
o
w

e
r

c
o
n

s
u

m
p

ti
o
n

 [
W

]

Ref. Max-min

Prop. DDPG-PS

Ref. DDPG-Uni

Ref. Full power

Figure 5.9: Total power consumption for the mobile, Ttog = 500, Ktog = 0.1K
scenario.

5.5 DDQN with Prioritized Sampling for Power

Control

In the previous section, we utilized DDPG that employs four DNNs to solve the
uplink power control problem in (5.9). Meanwhile, it was shown in [116] that the
DNN processes involved in operating DRL algorithms consume a huge amount of
energy. This is not an issue for a SARL system that considers the CPU as the agent,
since the CPU has sufficient computing power to keep the DDPG algorithm running.
In this section, however, we explore distributed architectures in line with our goal of
creating a scalable cell-free network. Specifically, in addition to SARL, we propose
two MARL systems, namely centralized training, decentralized execution (CTDE)
and personalized federated learning (FedPer), that we later detail. In the case of
MARL, each UE serves as one of the multiple agents. In practical deployments,
the DRL algorithm would be implemented in battery-limited user devices, which
then poses a problem due to the expected high power consumption of the DRL
operation. We, therefore, utilize DDQN that considers a discrete action space and
utilizes only two DNNs with relatively few parameters [92], in order to conserve
energy and prolong the battery life of UEs. Moreover, the use of discrete power
levels is a practical assumption specifically for IoT scenarios that commonly involve
low-complexity devices [117]. Similar to the prior DDPG framework, we leverage
TD error-based prioritized experience replay for improved performance [84].

76

5.5. DDQN with Prioritized Sampling for Power Control

Update
Priority

Prioritized
Sampling

Replay
Buffer

Weighted Loss

DDQN

Primary Target
Mini-batch

(s,a,r,s',p)i=0,...,X-1

TD Error δ

CPU

A
ge

nt
En

vi
ro

nm
en

t
θprime

θtarg

ytarg

amax

Q(s,a;θprime)

AP

StateReward Action

Figure 5.10: SARL-DDQN with prioritized sampling framework for power control.

5.5.1 SARL-DDQN Framework

We present our first DDQN framework for power control, which is based on a fully
centralized SARL architecture [84]. The CPU serves as the agent that runs the pri-
oritized sampling-based DDQN, while the APs and UEs are part of the environment,
as illustrated in Fig. 5.10.

• DRL components

1. State
The state of the environment at time t is given by

s(t) = [d
(t)
1 , . . . , d

(t)
K , v

(t−1)
1 , . . . , v

(t−1)
K , u

(t−1)
1 , . . . , u

(t−1)
K]. (5.20)

The first K elements specify the latest activation state of the UEs, with
d
(t)
k ∈ {0, 1}. Initially, the agent does not know how to interpret its

state observations. It is, therefore, prone to committing power allocation
errors (PAEs), where it assigns non-zero power even to inactive UEs. This
negatively impacts performance, as it also affects the power allocated to
the active UEs. In order to avoid this, we define the following PAE
indicator

v
(t−1)
k =

�
1, if ρ

(t−1)
k > 0, d

(t−1)
k = 0

0, otherwise.
(5.21)

The total PAE at time t is

PAE(t) =
�
k∈K

v
(t)
k . (5.22)

77

5.5. DDQN with Prioritized Sampling for Power Control

By observing the PAE vector elements, as well as the RL reward, the
agent is able to autonomously learn the UE activation patterns. Thus,
we expect the PAE to go down to zero as the agent further interacts with
the environment. The last K elements in (5.20) provide the user rate
performance.

2. Action
In DDQN, we consider a one-dimensional discrete action space. Since we
have to determine the uplink transmit power of all K UEs, we enumerate
all possible power combinations in the action space. The agent selects
the index of one of these combinations as

a(t) = ind �→ [ρ1, . . . , ρK]. (5.23)

We then map the scalar ind to the correspondingK-element power vector.
The possible values for power ρk are listed below

ρk =

�
0,

ρmax

Npow − 1
,

2ρmax

Npow − 1
, . . . , ρmax

�
, (5.24)

where Npow denotes the number of power levels. The size of the SARL
action space is (Npow)

K .

3. Reward
We formulate the following reward

r(t+1) = min
j∈K(t)

ON

u
(t)
j − PAE(t), (5.25)

which is made up of the guaranteed rate that we aim to maximize and a
penalty term to minimize PAE by assigning zero power to inactive UEs.

• Proposed SARL-DDQN algorithm
We combine DDQN and prioritized experience replay, described in Sec. 2.2.3
and 5.3, respectively. Algorithm 7 outlines the steps implemented by the
proposed SARL framework, which we detail below.

Step 1: We first initialize the DDQN primary and target networks, the ϵ-
greedy algorithm for RL exploration-exploitation, and the prioritized sampling
parameters (Lines 1 to 3).
Step 2: The agent makes its state observation, comprising of the latest UE
ON/OFF states and the previous PAEs and user rates. It then applies its se-
lected UE power combination. The CPU obtains a corresponding reward that
is designed to maximize the minimum user rate while keeping PAE as low as
possible. The environment transitions into a new state at the next time step
(Lines 4 to 9).
Step 3: Before saving its newly acquired experience in its memory B, the

78

5.5. DDQN with Prioritized Sampling for Power Control

CPU attaches a priority to it that is equal to the current maximum priority
pmax (Line 10).
Step 4: As described in Sec. 5.3, the prioritized experience replay mechanism
transforms the priorities of the stored experiences into probability values that
are then used to compute the importance sampling weights. These relation-
ships are governed by (5.10) and (5.13) (Lines 11 to 12).
Step 5: We next sample a mini-batch of X experiences using the previously
calculated probabilities. For each sample, we compute the TD error δTD, which
recall in DDQN is given by

δ
(t)
TD = y

(t)
targ −Q(s(t), a(t); θ

(t)
prime),

where
y
(t)
targ = r(t+1) + γQ′(s(t+1), amax; θ

(t)
targ),

and
amax = argmax

a
Q(s(t+1), a; θ

(t)
prime).

The target network calculates the target value ytarg, while the primary network
is responsible for action selection. The resulting TD errors, together with the
weights, are utilized to form the weighted loss function in (5.16). The primary
DNN is updated by minimizing the loss over the sampled experiences using
gradient descent. On the other hand, the target DNN is updated through
Polyak averaging (2.13) (Lines 13 to 16).
Step 6: We perform several parameter value updates. We modify the priorities
of the samples based on the new TD error values (5.11), as well as the current
maximum priority pmax. We anneal the correction parameter β according to
(5.14). We update the ϵ-greedy algorithm to gradually shift from exploration
to exploitation as in (2.15) (Lines 17 to 20).

79

5.5. DDQN with Prioritized Sampling for Power Control

Algorithm 7: SARL-DDQN with prioritized sampling for power control

1: Initialize the DDQN primary (θprime) and target (θtarg) networks.
2: Initialize the ϵ-greedy algorithm ϵ ← ϵstart for RL exploration-exploitation.
3: Initialize the prioritized experience replay parameters β ← βstart and

pmax ← 0.
4: for episode e = 0, . . . , E − 1 do
5: Initialize state s(0).
6: for time step t = 0, . . . , T − 1 do
7: Observe the current state s(t) (5.20).
8: Select and apply an action a(t) (5.23) according to (2.14).
9: Observe the reward r(t+1) (5.25) and next state s(t+1).
10: Store experience (s(t), a(t), r(t+1), s(t+1), pmax) in B.
11: Compute the probabilities (5.10) of the experiences.
12: Compute their weights (5.13), (5.15).
13: Sample a mini-batch of X experiences from B based on the calculated

probabilities.
14: Compute their TD error (5.12) and the resulting weighted loss (5.16).
15: Update θprime by minimizing the loss using gradient descent.
16: Update θtarg using Polyak averaging (2.13).
17: Update the priorities (5.11) of the samples.
18: Update pmax ← maxj∈{0,...,len(B)} pj.
19: Update β as in (5.14).
20: Update ϵ if ϵ > ϵend following (2.15).
21: end for
22: end for

5.5.2 MARL-CTDE Framework

Our first distributed MARL setup is based on the CTDE approach in [118,119], com-
prising of a central trainer and multiple agents [84]. Unlike our prior SARL systems,
where the CPU makes the power decision for all users, we distribute this task across
the agents, in this case, the K UEs. At every time step, each agent selects its local
action and subsequently acquires a new local experience, which is forwarded to the
central trainer. The trainer gathers the experiences, and together with previously
stored ones, utilizes them for training a single DDQN. This architecture creates an
effect that the agents are learning together to accelerate convergence. The updated
DNN model is then fed back to the agents for local action selection, and therefore,
this is commonly referred to as parameter sharing [120]. Although the same trained
DNN policy is used in the decision-making of multiple agents, the distributed DNNs
take in different local state observations, resulting in distinct experiences for the
agents [121]. The CTDE agent-environment scenario is shown in Fig. 5.11. The
CPU serves as the central trainer that implements DDQN with prioritized experi-
ence replay [122]. Each UE acts as one of the K MARL agents that utilizes its own

80

5.5. DDQN with Prioritized Sampling for Power Control

Update
Priority

Prioritized
Sampling

Replay
Buffer

Weighted Loss

DDQN

Primary Target
Mini-batch

(s,a,r,s',p)i=0,...,X-1

TD Error δ

CPU

θcent_prime

θcent_targ

ytarg

amax

Q(s,a;θcent_prime)
D

ec
en

tra
liz

ed
Ex

ec
ut

io
n

C
en

tra
liz

ed
Tr

ai
ni

ng

UE1 UE2 UEK
..........

(s,a,r,s')1 (s,a,r,s')2 θcent_prime(s,a,r,s')K

Figure 5.11: MARL-CTDE with prioritized sampling framework for power control.

DNN for local action selection.

• DRL components

1. State
The local observation of agent k at time t is described by

s
(t)
k = [d

(t)
k , u

(t−1)
k , u

(t−1)
j∈K
j ̸=k

]. (5.26)

Since agent k is an actual UE in the network, it knows the true activation
status of UE k, represented by d

(t)
k . When a UE is inactive, it does not

participate in the RL process, and its transmit power is automatically
set to zero. As such, unlike the earlier SARL system, there would be no
power violations, and we do not need to keep track of the PAE.

2. Action
The local action of agent k is

a
(t)
k = ρ

(t)
k . (5.27)

The agent selects a single transmit power value among those listed in
(5.24). The size of the action space is |ACTDE| = Npow, which is consid-
erably smaller than |ASARL| = (Npow)

K , highlighting the need for MARL
architectures to improve network scalability.

3. Reward

81

5.5. DDQN with Prioritized Sampling for Power Control

The reward is expressed as

r
(t+1)
k =

 min
j∈K(t)

ON

u
(t)
j , d

(t)
k = 1

0, otherwise.
(5.28)

We consider a global reward that is equal to the minimum user rate that
we aim to maximize, which is received by the active UEs following the
first condition in (5.28).

• Proposed MARL-CTDE algorithm
We detail the procedure employed by the proposed CTDE framework, given
in Algorithm 8.

Step 1: We first initialize the DDQN DNNs and the prioritized sampling
system at the central trainer. We also initialize the distributed DNN policies
and the ϵ-greedy algorithm at the individual agents (Lines 1 to 2).
Step 2: Each active UE observes the previous rate performance of the other
UEs and decides on its own latest transmit power. It obtains a centrally
computed reward that indicates the current guaranteed rate of the network.
It then forwards its newly created experience to the CPU and updates the ϵ
value if necessary. In contrast, inactive UEs do not undergo any of these steps
(Lines 3 to 16).
Step 3: The CPU attaches priority pmax to all the gathered local experiences
from the active UEs before storing them in its replay buffer B (Line 17).
Step 4: Since CTDE only distributes the action selection task and still keeps
the training centralized, the entire prioritized experience replay mechanism is
implemented at the central trainer (Lines 18 to 26).
Step 5: Finally, the CPU sends a copy of the updated DNN policy θcent prime

to all K UEs for them to use at the next time step (Lines 27 to 29)

θ
(t+1)
prime,k ← θ

(t)
cent prime. (5.29)

82

5.5. DDQN with Prioritized Sampling for Power Control

Algorithm 8: MARL-CTDE with prioritized sampling for power control

1: Initialize the DDQN primary (θcent prime) and target (θcent targ) networks, as
well as the prioritized experience replay parameters β ← βstart and
pmax ← 0, of the CPU (central trainer).

2: Initialize the distributed policy network (θprime,k) and the ϵ-greedy
algorithm ϵk ← ϵstart,k, ∀k ∈ K, of the UEs (agents).

3: for episode e = 0, . . . , E − 1 do
4: Initialize state s

(0)
k , ∀k ∈ K.

5: for time step t = 0, . . . , T − 1 do
6: for UE k = 0, . . . , K − 1 do
7: if d

(t)
k = 1 then

8: Observe the current local state s
(t)
k (5.26).

9: Select and apply a local action a
(t)
k (5.27) according to (2.14).

10: Observe the global reward r
(t+1)
k (5.28) and next state s

(t+1)
k .

11: Forward experience (s
(t)
k , a

(t)
k , r

(t+1)
k , s

(t+1)
k) to the CPU.

12: Update ϵk if ϵk > ϵend,k following (2.15).
13: else
14: Pass
15: end if
16: end for

/* At the CPU */

17: Store (s
(t)
k , a

(t)
k , r

(t+1)
k , s

(t+1)
k , pmax), ∀k ∈ K(t)

ON, in B.
18: Compute the probabilities (5.10) of the experiences.
19: Compute their weights (5.13), (5.15).
20: Sample a mini-batch of X experiences from B based on the calculated

probabilities.
21: Compute their TD error (5.12) and the resulting weighted loss (5.16).
22: Update θcent prime by minimizing the loss using gradient descent.
23: Update θcent targ using Polyak averaging (2.13).
24: Update the priorities (5.11) of the samples.
25: Update pmax ← maxj∈{0,...,len(B)} pj.
26: Update β as in (5.14).
27: Send the latest θcent prime to all K UEs.
28: for UE k = 0, . . . , K − 1 do
29: Update local DNN θprime,k (5.29).
30: end for
31: end for
32: end for

83

5.5. DDQN with Prioritized Sampling for Power Control

5.5.3 MARL-FedPer Framework

Our second distributed MARL setup combines federated learning [41] with DRL [84].
Federated learning is motivated by user privacy preservation, which is made possible
by keeping the data samples local at the clients. In contrast to CTDE, the agents
do not forward their RL experiences to a central trainer. They instead utilize them
for training locally and only send a copy of their local model to a central server.
The server implements model aggregation before feeding back the updated global
model to the clients. We employ FedPer, where only the base layers are forwarded
to the server, while the upper or personalized layers are kept local. This federated
learning variant has been shown to outperform the default federated averaging-based
aggregation (FedAvg) [87, 123,124].

The weight matrix and bias vector of a single base layer of the local DNN of
client k are denoted by Wk and bk, respectively. We define the model aggregation
period Taggr as the time duration over which independent local training takes place
at each client. Every Taggr time steps, the clients send the base layer parameters to
the server, which then averages them as

Wglob ← 1

|KON|
�

j∈KON

Wj, (5.30)

bglob ← 1

|KON|
�

j∈KON

bj. (5.31)

While our work considers a single base layer only, the above definitions can be easily
extended to support the aggregation of multiple base layers per client [87]. The
proposed FedPer system is illustrated in Fig. 5.12, where the CPU acts as the
server, and the UEs serve as the K MARL agents or clients. Compared to CTDE,
each UE houses its own prioritized sampling-based DDQN.

• DRL components

1. State
The local observation of agent k is given by

s
(t)
k = [d

(t)
k , u

(t−1)
k , u

(t−1)
j∈Nk

], (5.32)

where we define Nk ⊆ K\{k} as the neighborhood of UE k containing its
closest |Nk| neighbors. Setting Nk = K\{k} implies that UE k monitors
all the other K − 1 users, as in the case of CTDE.

2. Action
Agent k selects its own UE transmit power as its local action

a
(t)
k = ρ

(t)
k , (5.33)

84

5.5. DDQN with Prioritized Sampling for Power Control

CPU

Update
Priority

Prioritized
Sampling

Replay
Buffer

Weighted Loss

DDQN

Primary Target
Mini-batch

(s,a,r,s',p)i=0,...,X-1

TD Error δ

UEK

θprime

θtarg

ytarg

amax

Q(s,a;θprime)

Model AggregationWprime,1
Wtarg,1
bprime,1
btarg,1

Wprime,K
Wtarg,K
bprime,K
btarg,KWglob_prime

Wglob_targ
bglob_prime
bglob_targ

UE1 UEK

Figure 5.12: MARL-FedPer with prioritized sampling framework for power control.

whose value is among those enumerated in (5.24). Thus, the size of the
action space is |AFedPer| = Npow.

3. Reward
The local reward of agent k is

r
(t+1)
k =

 min
j∈N (t)

k,ON

u
(t)
j , d

(t)
k = 1

0, otherwise.
(5.34)

The first condition states that each active UE receives a reward equal to
the local minimum user rate, considering itself and its monitored neigh-
boring active UEs.

• Proposed MARL-FedPer algorithm
Algorithm 9 summarizes the procedure utilized by the proposed FedPer frame-
work that we discuss below.

Step 1: We start with the initialization phase, where we first set up the global
models for the DDQN primary and target networks at the server or aggregator
node. These are sent out to the clients, which use them as a starting point for
their local models. We locally initialize the ϵ-greedy algorithm and prioritized
experience replay mechanism at each agent. To facilitate the FedPer model
aggregation, we also set up global ts that keeps track of the global time step
count (Lines 1 to 2).
Step 2: Each active UE k observes the previous rate performance of the users

85

5.5. DDQN with Prioritized Sampling for Power Control

in its predefined neighborhood Nk. It then decides its transmit power and
consequently receives a local reward that is based on the resulting rates of its
monitored active neighbors. These form a new local experience to which agent
k attaches its current maximum priority pmax,k before saving it in its private
buffer Bk (Lines 3 to 12).
Step 3: Unlike CTDE, FedPer localizes both action selection and prioritized
sampling. Thus, the prioritized experience replay mechanism described in Sec.
5.3 is implemented at each agent (Lines 13 to 22).
Step 4: The model aggregation timing is dictated by global ts and Taggr.
Every Taggr, each active UE forwards the base layer parameters of its primary
and target DNNs to the CPU. In turn, the server aggregates the collected local
models as

Wglob prime ← 1

|KON|
�

j∈KON

Wprime,j, (5.35)

bglob prime ← 1

|KON|
�

j∈KON

bprime,j, (5.36)

Wglob targ ← 1

|KON|
�

j∈KON

Wtarg,j, (5.37)

bglob targ ← 1

|KON|
�

j∈KON

btarg,j. (5.38)

The resulting global models are sent back to the clients for them to utilize at
the next time step

W
(t+1)
prime,k ← W

(t)
glob prime, (5.39)

b
(t+1)
prime,k ← b

(t)
glob prime, (5.40)

W
(t+1)
targ,k ← W

(t)
glob targ, (5.41)

b
(t+1)
targ,k ← b

(t)
glob targ. (5.42)

We highlight that, in contrast to CTDE, the local experiences are kept private
by the UEs. The agent coordination is enabled by the periodic sharing of the
local base layer only, instead of the entire DNN as in the case of FedAvg (Lines
23 to 33).

86

5.5. DDQN with Prioritized Sampling for Power Control

Algorithm 9: MARL-FedPer with prioritized sampling for power control

1: Initialize the global models (Wglob prime, bglob prime, Wglob targ, bglob targ) at
the CPU (server) and send them to the K UEs (clients). Set global ts ← 0.

2: Initialize the distributed DDQN primary (θprime,k) and target (θtarg,k)
networks, the ϵ-greedy algorithm ϵk ← ϵstart,k, and the prioritized
experience replay parameters βk ← βstart,k and pmax,k ← 0, ∀k ∈ K.

3: for episode e = 0, . . . , E − 1 do
4: Initialize state s

(0)
k , ∀k ∈ K.

5: for time step t = 0, . . . , T − 1 do
6: global ts ← global ts + 1
7: for UE k = 0, . . . , K − 1 do
8: if d

(t)
k = 1 then

9: Observe the current local state s
(t)
k (5.32).

10: Select and apply a local action a
(t)
k (5.33) according to (2.14).

11: Observe the local reward r
(t+1)
k (5.34) and next state s

(t+1)
k .

12: Store (s
(t)
k , a

(t)
k , r

(t+1)
k , s

(t+1)
k , pmax,k) in Bk.

13: Compute the probabilities (5.10) of the experiences.
14: Compute their weights (5.13), (5.15).
15: Sample a mini-batch of X experiences from Bk based on the

calculated probabilities.
16: Compute their TD error (5.12) and the resulting weighted loss

(5.16).
17: Update θprime,k by minimizing the loss using gradient descent.
18: Update θtarg,k using Polyak averaging (2.13).
19: Update the priorities (5.11) of the samples.
20: Update pmax ← maxj∈{0,...,len(Bk)} pj.
21: Update βk as in (5.14).
22: Update ϵk if ϵk > ϵend,k following (2.15).
23: if global ts mod Taggr == 0 then
24: Send Wprime,k, bprime,k, Wtarg,k and btarg,k to the CPU.
25: end if
26: else
27: Pass
28: end if
29: end for
30: if global ts mod Taggr == 0 then
31: The server aggregates the local models as (5.35), (5.36), (5.37),

(5.38) and feeds back the updated parameters to the K agents.
32: for UE k = 0, . . . , K − 1 do
33: Update the local DNNs as (5.39), (5.40), (5.41), (5.42).
34: end for
35: end if
36: end for
37: end for

87

5.5. DDQN with Prioritized Sampling for Power Control

Table 5.2: Communication overhead
(with y > z and x > z)

UE-CPU
Downlink Uplink UE-UE

SARL
action

[Kx bits]
state, reward, next state

[(6K + 1)x bits]
-

CTDE
θcent prime

[y bits]
(s, a, r, s′)

[|KON|(2K + 4)x bits]
uk

[|KON|v bits]

FedPer

Wglob prime,
bglob prime,
Wglob targ,
bglob targ

[z bits]

Wprime,k,
bprime,k,
Wtarg,k,
btarg,k

[|KON|z bits]

uk

[|KON|v bits]

5.5.4 Communication Overhead

In this section, we compare the DDQN-based SARL and MARL frameworks in terms
of their incurred communication overhead. We distinguish the information exchange
occurring in two segments: (1) between each UE and the CPU, and (2) among the
UEs. Table 5.2 summarizes the type of information and the number of bits required
for transmission.

We start with the UE-CPU segment, which can be further divided into its
downlink and uplink communications. In downlink, the SARL agent applies its
K-element action vector, consisting of the UE power values. Assuming that each
element corresponds to x bits, this then amounts to Kx transmission bits in total.
In CTDE, the central trainer utilizes y bits to broadcast the updated DNN pol-
icy (θcent prime). Meanwhile, it takes z bits for the FedPer server to broadcast the
updated global model or the aggregated base layer of the local DNNs (Wglob prime,
bglob prime, Wglob targ, bglob targ). Here, we note that z < y 1. In uplink, the SARL
agent observes the current and next 3K-element state vectors. Together with the
scalar reward feedback, these cost (6K +1)x bits in total. In the case of the MARL
setups, recall that only the active UEs participate in the RL process, such that
|KON| users transmit to either the central trainer or the aggregator server. Each
active CTDE agent spends (2K + 4)x bits to forward its new experience (s, a, r, s′),
with the state vectors having K + 1 elements each. In FedPer, z bits are required
for each active client to send the base layer parameters of its local DNN (Wprime,k,
bprime,k, Wtarg,k, btarg,k). Here, we assume that (2K + 4)x > z, as it takes more
bits to encode an entire RL experience than solely the base layer parameters of a
DNN [125, 126]. We next proceed with the UE-UE segment. Each UE consumes v
bits when broadcasting its rate performance to the other users. This corresponds to

1Given that y = f(K) and z = f(|Nk| + 1), the gap between y and z is dictated by Nk. In
practice, each UE would only track a limited number of neighboring UEs in Nk ⊂ K\{k}, implying
a smaller local DNN per user and a lower overhead for FedPer.

88

5.5. DDQN with Prioritized Sampling for Power Control

|KON|v bits for both CTDE and FedPer.
Our analysis above shows that CTDE has a larger communication overhead than

FedPer. In the case of SARL, a single RL experience is in effect transmitted when
taking into account both downlink and uplink segments. In contrast, multiple RL
experiences are forwarded in CTDE, and thus, it generally has a higher overhead
than SARL. Note, however, that SARL suffers from scalability issues when consid-
ering large network deployments. Meanwhile, FedPer keeps the experiences local at
the agents and only involves a periodic sharing of local models for aggregation. More
importantly, we point out that Taggr is not necessarily equal to 1, such that we do
not aggregate at each time step. In fact, FedPer utilizes either |KON|(z+ v) + z bits
when aggregation is carried out or only |KON|v bits in time instances without ag-
gregation. This implies that FedPer incurs the least amount of overhead among the
three proposed methods. This advantage is more pronounced for larger aggregation
periods.

5.5.5 Numerical Evaluations

We initially consider an uplink cell-free MIMO network with M = 10 single-antenna
APs and K = 5 single-antenna UEs. All of which are uniformly distributed over
a 100 × 100 m2 area. A simulation consists of 500 episodes, having 100 time steps
each. The agents make power decisions every time step, which we assume to last
for 1 ms. In the case of FedPer, we start the aggregation at episode 10 to allow the
agents to stabilize first. The simulation parameters are summarized in Table 5.3.

We refer to our proposed prioritized sampling-based DDQN frameworks in Sec.
5.5.1, 5.5.2, and 5.5.3 as Prop. SARL-PS, Prop. CTDE-PS, and Prop. FPer-PS,
respectively. In FedPer, we additionally distinguish between two cases: (1) Prop.
FPer-Comp-PS, where each agent has complete information on all user rates (Nk =
K\{k}), and (2) Prop. FPer-Part-PS, where each agent has partial information only
(Nk ⊂ K\{k}). We implement the DDQN primary and target networks using a fully
connected DNN with two hidden layers, having 64 neurons each, and ReLU as the
activation function. In FedPer, the first hidden layer serves as the base layer, which
is forwarded for aggregation, and the second one as the personalized layer, which is
kept local at each agent.

Dynamic device (de-)activation has not yet been considered in prior works, and
thus, there is no algorithm in the existing literature to compare with. For instance,
while MARL downlink power allocation in cell-free MIMO was investigated in [85], it
employed uniform sampling and did not consider possible UE toggling. We evaluate
the performance of our proposed frameworks using the following baseline schemes.

1. Ref. Exhaustive - Problem (5.9) is solved by considering discrete power values
and performing an exhaustive search over all possible UE power combinations.

2. Ref. Full Power - Each UE transmits with ρmax.

89

5.5. DDQN with Prioritized Sampling for Power Control

Table 5.3: Simulation parameters

Parameter Value
Carrier frequency fc 1.9 GHz

Bandwidth B 20 MHz
Path loss exponent nc 2

Shadow fading standard deviation 8 dB
Noise figure 9 dB

Pilot transmit power ρp 0.1 W
Per-UE maximum transmit power ρmax 0.1 W

Number of power levels Npow 5
Buffer size 1e6

Mini-batch size X 100
Learning rate αstep 0.001
Discount rate γ 0.9
Polyak factor τpol 0.005

Prioritization factor α 0.7
(5-UE scenario) Correction parameter βstart, βend 0.4, 1
(10-UE scenario) Correction parameter (fixed) β 0.4

3. Ref. Uni. - Vanilla DDQN relies on uniform sampling as in [92]. We refer to
the corresponding DRL benchmarks as Ref. SARL-Uni, Ref. CTDE-Uni, Ref.
FPer-Comp-Uni, and Ref. FPer-Part-Uni.

4. Ref. Ind. MARL - The K agents are fully independent and do not exchange
any information. Each agent selects its transmit power to maximize its own
rate.

We test our proposed algorithms using different combinations of UE toggling and
user mobility settings. In the mobile scenario, each user randomly selects a direction
(left, right, up, down) and a speed from 0 to 1 m/s at each time step, assuming a
uniform distribution.

We compared the performance of FedPer, FedAvg [41], and the case with no
aggregation. The results in Fig. 5.13 motivate us to employ FedPer, which achieves
the highest guaranteed rates. Meanwhile, we observe that averaging random local
models at each time step in FedAvg leads to unstable learning or even divergence,
as investigated in previous works [87]. Lastly, we get the worst rate without aggre-
gation. In FedPer, we experimented with various aggregation period Taggr values.
It turned out that we obtain comparable performance for Taggr = 1 and Taggr = 10.
Thus, we utilize Taggr = 10 in our simulations to enable a good performance with
relatively low overhead by aggregating less frequently.

We experimented with different numbers of discrete power levels Npow for FedPer
in Fig. 5.14. Here, we include the Continuous benchmark, where Problem (5.9) is
solved while considering continuous power values as in [14]. A lower Npow implies

90

5.5. DDQN with Prioritized Sampling for Power Control

0 100 200 300 400 500

Episode

1

2

3

4

5

6

7

8
M

in
.
U

s
e
r

R
a
te

 [
M

b
p

s
]

FedPer (Taggr=1)

FedPer (Taggr=10)

FedPer (Taggr=30)

FedAvg (Taggr=1)

No aggregation

Figure 5.13: Performance comparison between FedPer and FedAvg.

0 100 200 300 400 500

Episode

8

10

12

14

16

18

M
in

.
U

s
e
r

R
a
te

 [
M

b
p

s
]

Continuous

Npow=10

Npow=8

Npow=6

Npow=4

Figure 5.14: Impact of number of discrete power levels Npow.

91

5.5. DDQN with Prioritized Sampling for Power Control

0 100 200 300 400 500

Episode

10

12

14

16

18

M
in

.
U

s
e
r

R
a
te

 [
M

b
p

s
]

Ref. SARL-Uni

Prop. SARL-PS

Ref. CTDE-Uni

Prop. CTDE-PS

Ref. FPer-Comp-Uni

Prop. FPer-Comp-PS

Ref. FPer-Part-Uni

Prop. FPer-Part-PS

Ref. Exhaustive

Ref. Full Power

Ref. Ind. MARL

Figure 5.15: Guaranteed rate for the fully static scenario with K = 5.

coarser power quantization that results in a performance degradation. On the other
hand, better guaranteed rates are achieved with higher Npow values. In the following
numerical evaluations, we utilize Npow = 5 to limit the size of the SARL action
space, allowing us to compare the SARL and MARL frameworks. Note, however,
that with sufficiently large Npow, we would obtain a performance that is closer to
the Continuous benchmark, as depicted in Fig. 5.14.

• Fully static scenario
We first consider the fully static case, where the users are not moving and
the UE activation states remain constant throughout the simulation. The
minimum user rates achieved by the different schemes are depicted in Fig.
5.15, where Ref. Exhaustive provides us with the upper bound performance.
We obtain 16 Mbps and 18 Mbps with Ref. SARL-Uni and Prop. SARL-PS,
respectively. This demonstrates how prioritization enables SARL to achieve
the optimal rate, as well as a more stable learning curve. We next compare Ref.
CTDE-Uni and the fully centralized Ref. SARL-Uni system, where we get a
slightly higher rate in the former. This is likely due to the significantly larger
action space for SARL, with |ASARL| = 3125 compared to just |ACTDE| = 5 per
agent in CTDE. Nevertheless, prioritized sampling again makes a difference,
allowing Prop. CTDE-PS to also approach Ref. Exhaustive. Meanwhile, both
Ref. FPer-Comp-Uni and Prop. FPer-Comp-PS exhibit the optimal rate
performance. When we limit the information exchange among the agents in
the case of Ref. FPer-Part-Uni and Prop. FPer-Part-PS, such that each UE

92

5.5. DDQN with Prioritized Sampling for Power Control

0 100 200 300 400 500

Episode

0.20

0.25

0.30

0.35

0.40
P
o
w

e
r

C
o
n

s
u

m
p

ti
o
n

 [
W

]
Ref. SARL-Uni

Prop. SARL-PS

Ref. CTDE-Uni

Prop. CTDE-PS

Ref. FPer-Comp-Uni

Prop. FPer-Comp-PS

Ref. FPer-Part-Uni

Prop. FPer-Part-PS

Ref. Exhaustive

Ref. Full Power

Ref. Ind. MARL

Figure 5.16: Total power consumption for the fully static scenario with K = 5.

tracks a limited number of neighboring UEs with |Nk| = 0.4K, the minimum
user rate decreases by 13.89%. While we get marginal benefits from equipping
FedPer with prioritized experience replay for this simple scenario, we will see
later in this section that this is not the case when considering more complicated
scenarios. Lastly, we get the worst guaranteed rates with Ref. Full Power and
Ref. Ind. MARL due to the increased inter-user interference, since the UEs
decide on their transmit power without regard to the other users.

We show the total power consumption of the different schemes in Fig. 5.16.
These are calculated by summing either the UE power values in the resulting
action vector of SARL or the individual powers of the multiple agents in CTDE
and FedPer. We first observe that power consumption goes down while the
guaranteed rate increases for all DRL-based methods. This suggests that the
agents are able to improve their DNN policy, allowing them to select better
actions or power values, as they further interact with the environment by
observing the states and reward feedback. Baselines Ref. SARL-Uni and Ref.
CTDE-Uni converge to around 0.24 W and 0.20 W, respectively. In contrast,
Prop. SARL-PS and Prop. CTDE-PS, as well as both Ref. FPer-Comp-Uni
and Prop. FPer-Comp-PS, achieve the optimal power performance at 0.18 W,
as indicated by Ref. Exhaustive. Having partial network information in Ref.
FPer-Part-Uni and Prop. FPer-Part-PS causes a 38.89% increase in power
consumption compared to their FPer-Comp equivalents. Finally, we observe
that Ref. Ind. MARL behaves close to Ref. Full Power, with the agents likely

93

5.5. DDQN with Prioritized Sampling for Power Control

to utilize their maximum transmit power to maximize their own rate. This,
however, only leads to power inefficiency, as evident in Fig. 5.16.

• Mobile users without UE toggling scenario

We next add user mobility while keeping the UE ON/OFF states unchanged
during the learning process. We observe that the plots in Fig. 5.17 and 5.18
are noisier than their fully static counterparts. This can be attributed to the
random user movements at each time step that directly impact the channel
gains and UE rate calculations. Furthermore, we consider a small number of
discrete power levels in our simulations for reasons of feasibility and limited
compute capability. This may have also contributed to the rate fluctuations,
since there is a relatively large gap between any two power levels, causing
significant variations in the user rates from one time step to the next.

User mobility makes the power selection process more challenging for the
agents. This is exhibited by the PAE plots of Ref. SARL-Uni and Prop.
SARL-PS in Fig. 5.19. Recall that the ideal case would be a PAE of 0,
meaning, the agents have learned to assign zero power to all inactive UEs. In
the case of static users (in blue), Ref. SARL-Uni settles for a PAE of 0.2,
while prioritized sampling makes it possible to bring the PAE to 0 for Prop.
SARL-PS. However, with user mobility (in red), we observe higher PAEs for
both schemes. With prioritization, the PAE is still likely to reach 0, albeit at
a slower pace. As previously mentioned, a non-zero PAE leads to poor power
performance, since the active UEs are assigned suboptimal power values. This
phenomenon is illustrated in Fig. 5.16 and 5.18, where prioritized sampling-
based frameworks are more power-efficient. Note that PAE does not exist for
CTDE and FedPer, since the transmit power of inactive UEs is automatically
zero.

Recall that we purposely designed our proposed frameworks to only include
rate information in the state vector to minimize information exchange, which
is motivated by improved scalability and user privacy preservation. This is,
however, insufficient when it comes to high-mobility scenarios. Additional in-
formation, including position- and channel-related ones, may help improve the
DRL performance in such scenarios, as investigated in [80]. Nonetheless, our
results in Fig. 5.17, 5.18, and 5.19 demonstrate the potential of prioritization.

94

5.5. DDQN with Prioritized Sampling for Power Control

0 100 200 300 400 500

Episode

8

10

12

14

16

18

20

M
in

.
U

s
e
r

R
a
te

 [
M

b
p

s
]

Ref. SARL-Uni

Prop. SARL-PS

Ref. Exhaustive

Ref. Full Power

(a)

0 100 200 300 400 500

Episode

10

12

14

16

18

M
in

.
U

s
e
r

R
a
te

 [
M

b
p

s
]

Ref. CTDE-Uni

Prop. CTDE-PS

Ref. FPer-Comp-Uni

Prop. FPer-Comp-PS

Ref. FPer-Part-Uni

Prop. FPer-Part-PS

Ref. Ind. MARL

(b)

Figure 5.17: Guaranteed rate for the mobile, no UE toggling scenario with K = 5.

95

5.5. DDQN with Prioritized Sampling for Power Control

0 100 200 300 400 500

Episode

0.15

0.20

0.25

0.30

0.35

0.40

P
o
w

e
r

C
o
n

s
u

m
p

ti
o
n

 [
W

]

Ref. SARL-Uni

Prop. SARL-PS

Ref. CTDE-Uni

Prop. CTDE-PS

Ref. FPer-Comp-Uni

Prop. FPer-Comp-PS

Ref. FPer-Part-Uni

Prop. FPer-Part-PS

Ref. Exhaustive

Ref. Full Power

Ref. Ind. MARL

Figure 5.18: Total power consumption for the mobile, no UE toggling scenario with
K = 5.

0 100 200 300 400 500

Episode

0.00

0.05

0.10

0.15

0.20

0.25

0.30

P
A

E

Ref. SARL-Uni (Static)

Prop. SARL-PS (Static)

Ref. SARL-Uni (Mobile)

Prop. SARL-PS (Mobile)

Figure 5.19: Impact of user mobility on PAE.

96

5.5. DDQN with Prioritized Sampling for Power Control

Table 5.4: Convergence analysis

Before Toggle After Toggle
Rate

[Mbps]
Episode
Number

Time
[s]

Rate
[Mbps]

Episode
Number

Time
[s]

Ref. SARL-Uni 16.0 150 15 15.5 450 20

Prop. SARL-PS 17.9 175 17.5 15.5 260 1

Ref. CTDE-Uni 16.8 100 10 11.75 400 15

Prop. CTDE-PS 17.2 125 12.5 12.5 375 12.5

Ref. FPer-Comp-Uni 17.9 50 5 15.25 450 20

Prop. FPer-Comp-PS 17.9 50 5 15.25 270 2

Ref. FPer-Part-Uni 15.5 50 5 12.5 400 15

Prop. FPer-Part-PS 15.5 25 2.5 14.0 450 20

• Static users with UE toggling scenario

We next investigate the performance of our systems considering the complex
case of device (de-)activation. Here, we set Ttog = 250 and Ktog = 0.2K for the
static users. This means that some of the UEs change their ON/OFF status at
episode 250; hence, we see abrupt movements at the 250th mark in Fig. 5.20
and 5.21. We also summarize the converged guaranteed rates and convergence
time before and after the UE toggle in Table 5.4. The convergence time is
expressed in terms of the episode at which convergence was reached and the
elapsed time from the latest UE toggle until convergence.

While both uniform and prioritized sampling-based SARL and FPer-Comp
schemes converge to near-optimal rates and power values after the device (de-
)activations at episode 250, convergence occurs 200 episodes earlier when ap-
plying prioritization in Prop. SARL-PS and Prop. FPer-Comp-PS. However,
when we factor in the other benefits of the distributed Prop. FPer-Comp-PS,
namely reduced communication overhead and improved network scalability, it
outperforms the fully centralized Prop. SARL-PS. When the agents have par-
tial information only in their state vector, the system suffers from performance
degradation, as exhibited by Ref. FPer-Part-Uni. This can be improved by
equipping the system with prioritized experience replay, where we observe a
12% rate increase in Prop. FPer-Part-PS. While this advantage extends to
Prop. CTDE-PS, all CTDE-based schemes require more time steps to find
better DRL solutions for this scenario.

We emphasize that the agents have no prior knowledge of the device activation
patterns that are by themselves unpredictable, as they would depend on the
UE battery life in practice. Thus, the agents have no way of anticipating
the sudden changes in the ON/OFF status of the other UEs. Our simulation
results demonstrate that our proposed prioritized sampling-based frameworks
are capable of adapting to new and unknown environments, which are in this
case, triggered by UE toggling.

97

5.5. DDQN with Prioritized Sampling for Power Control

0 100 200 300 400 500

Episode

2

4

6

8

10

12

14

16

18

M
in

.
U

s
e
r

R
a
te

 [
M

b
p

s
]

Ref. SARL-Uni

Prop. SARL-PS

Ref. CTDE-Uni

Prop. CTDE-PS

Ref. FPer-Comp-Uni

Prop. FPer-Comp-PS

Ref. FPer-Part-Uni

Prop. FPer-Part-PS

Ref. Exhaustive

Ref. Full Power

Ref. Ind. MARL

Figure 5.20: Guaranteed rate for the static, Ttog = 250, Ktog = 0.2K scenario with
K = 5.

0 100 200 300 400 500

Episode

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

P
o
w

e
r

C
o
n

s
u

m
p

ti
o
n

 [
W

]

Ref. SARL-Uni

Prop. SARL-PS

Ref. CTDE-Uni

Prop. CTDE-PS

Ref. FPer-Comp-Uni

Prop. FPer-Comp-PS

Ref. FPer-Part-Uni

Prop. FPer-Part-PS

Ref. Exhaustive

Ref. Full Power

Ref. Ind. MARL

Figure 5.21: Total power consumption for the static, Ttog = 250, Ktog = 0.2K
scenario with K = 5.

98

5.5. DDQN with Prioritized Sampling for Power Control

• Mobile users with UE toggling scenario

Finally, we combine user mobility with device (de-)activation while assuming
a larger cell-free network with M = 30 single-antenna APs and K = 10 single-
antenna UEs over a 500 × 500 m2 area. Note that we no longer consider the
Ref. Exhaustive benchmark and SARL-based schemes due to their significantly
large action space with |A| = 510.

Focusing on Fig. 5.22a and 5.22b, we consistently achieve better minimum
user rates with prioritization. Although the CTDE and FPer-Comp meth-
ods converge to the same rates, recall in Sec. 5.5.4 that the former incurs a
higher communication overhead and is, therefore, inferior to the latter, espe-
cially that we only aggregate every 10 time steps. Meanwhile, we configure
|Nk| to 0.5K for Prop. FPer-Part-PS. Interestingly, we observe that for this
sufficiently large neighborhood for each UE, again coupled with prioritization,
Prop. FPer-Part-PS is able to close the gap with Prop. FPer-Comp-PS. This
is yet another possibility of reducing overhead, since the overhead is dictated
by the size of the neighborhood based on our analysis in Sec. 5.5.4. Thus, by
tuning |Nk| and only tracking a limited number of nearby users that cause the
greatest interference, we are able to obtain a good performance while keeping
the overhead relatively low. In terms of power consumption in Fig. 5.23, the
prioritized sampling-based systems are perceived to be more power-efficient.

99

5.5. DDQN with Prioritized Sampling for Power Control

0 100 200 300 400 500

Episode

2

4

6

8

10

12

14

M
in

.
U

s
e
r

R
a
te

 [
M

b
p

s
]

Ref. CTDE-Uni

Ref. FPer-Comp-Uni

Ref. FPer-Part-Uni

Ref. Full Power

Ref. Ind. MARL

(a)

0 100 200 300 400 500

Episode

2

4

6

8

10

12

14

M
in

.
U

s
e
r

R
a
te

 [
M

b
p

s
]

Prop. CTDE-PS

Prop. FPer-Comp-PS

Prop. FPer-Part-PS

Ref. Full Power

Ref. Ind. MARL

(b)

Figure 5.22: Guaranteed rate for the mobile, Ttog = 250, Ktog = 0.2K scenario with
K = 10.

100

5.6. Summary

0 100 200 300 400 500

Episode

0.2

0.3

0.4

0.5

0.6

0.7

P
o
w

e
r

C
o
n

s
u

m
p

ti
o
n

 [
W

]
Ref. CTDE-Uni

Prop. CTDE-PS

Ref. FPer-Comp-Uni

Prop. FPer-Comp-PS

Ref. FPer-Part-Uni

Prop. FPer-Part-PS

Ref. Full Power

Ref. Ind. MARL

Figure 5.23: Total power consumption for the mobile, Ttog = 250, Ktog = 0.2K
scenario with K = 10.

5.6 Summary

In this chapter, we tackled a classical uplink power control problem that maxi-
mizes the minimum user rate of cell-free massive MIMO. We employed DDPG and
DDQN, with the latter being more suitable for battery-limited and low-complexity
user devices. Our proposed DRL frameworks rely solely on UE rate feedback and
are agnostic to the system model. This implies that in a real-world scenario, they
would consider the actual achieved user rates and be able to take into account sev-
eral practical factors that are neglected in existing system models in the literature.
The limited information exchange among the network entities is motivated by user
privacy preservation and improved scalability. More importantly, we designed our
systems such that we also addressed the shortcomings of our previously proposed
methods, namely assuming a static RL environment and utilizing a single agent only,
as those are prohibitive in the effectiveness of DRL in practical large-scale network
deployments.

We focused on the challenging dynamic scenario of combined UE (de-)activation
and user mobility, which has not yet been considered in prior works. Traditional
optimization techniques require precise knowledge of the activation patterns in ad-
vance that is difficult to obtain in practice due to their unpredictability. In contrast,
our proposed DRL systems autonomously recognize the patterns on the go. We
specifically assumed online learning, where the agent learns continuously until con-

101

5.6. Summary

vergence is reached. When a significant change in the environment is detected, for
instance, triggered by UE toggling in our case, the system enters a re-training phase
to find the optimal power values for the new environment, during which convergence
is again achieved. To ensure that our frameworks are able to quickly adapt to such
changes in the wireless environment, addressing the slow convergence issue of DRL,
we employed prioritized experience replay. We attach TD error-based priority values
to the stored experiences that influence which experiences are sampled for updating
the DNNs of the DRL algorithm in use. Our simulation results demonstrated that,
not only was it able to accelerate convergence, but it also improved the rate and
power performance.

We proposed fully centralized SARL and distributed MARL algorithms. Recall
that in SARL, a single agent is the lone decision-maker of the system. On the other
hand, multiple agents are employed by MARL, resulting in a smaller action space per
agent, to enable distributed learning in a more scalable network. We investigated two
MARL architectures, namely CTDE and FedPer. The CTDE framework depends on
a central node that utilizes the gathered local experiences from the agents for training
a single policy. In contrast, while FedPer also relies on a central entity for periodic
model aggregation, it keeps the training local at each agent. The FedPer clients only
forward the base layer parameters of their local DNNs to the central server. Among
the three systems, our analysis showed that FedPer has the least amount of commu-
nication overhead. We tested our proposed methods using different combinations of
UE toggling and user mobility settings. In our numerical evaluations, FedPer with
prioritization boasted a competitive, near-optimal performance with minimal over-
head, even while aggregating less frequently. It offers more flexibility by allowing
us to tweak the size of neighborhood per user and the model aggregation period.
Our experiments also showed that with a sufficiently large neighborhood to monitor
the UEs generating the highest interference, prioritized sampling-based FedPer with
only partial information in its state vector performed well compared to FedPer with
complete information, despite the relatively low overhead incurred by the former
setup.

102

6
Conclusion and Outlook

Cell-free massive MIMO represents a paradigm shift in network architecture, where
we transition from the rigid structure of fixed cell boundaries to a seamless network of
cooperating APs, enabling a uniformly good performance throughout the coverage
area. The ability of DRL to learn online, without requiring a training dataset,
sets it apart from other ML techniques and makes it suitable for dynamic wireless
environments. Motivated by the potential of these technologies, this dissertation
focused on the design of SARL- and MARL-based algorithms for the realization of
scalable, self-adapting cell-free massive MIMO networks.

6.1 Summary of Contributions

The first part of the dissertation provided initial insights on the performance com-
parison between the canonical and user-centric cell-free massive MIMO setups in
terms of their fronthaul requirement and guaranteed QoS. We demonstrated that a
higher user demand necessitated more serving APs per user-centric cluster, and thus,
higher fronthaul capacity utilization. We showed that there exists a cluster size that
enables the scalable user-centric variant to perform close to the canonical setup, but
with significantly lower fronthaul requirement. This implies that only a subset of
APs actually contributes to UE rate performance. While we have successfully dealt
with the non-convexity of the formulated optimization problems in this case, the
proposed suboptimal algorithms involved relaxations and iterative processes that
would be time-consuming to implement in practice.

In the second part, we presented our first applications of DRL for network opti-
mization. Our investigations were centered on improving the energy efficiency and
scalability of cell-free massive MIMO while maintaining good service in terms of
either the guaranteed QoS or the network sum rate. To this end, we formulated
various non-convex problems and leveraged SARL to approximately solve them. We
developed a framework that derives a near-optimal set of active APs based on the in-
stantaneous user positions, which provided good performance while achieving power
savings by turning off underutilized APs. We next designed an algorithm to cluster

103

6.2. Open Issues and Possible Future Works

the APs in a scalable multi-CPU environment based on the spatial user density in-
formation. We showed that by forming a larger AP group to match the anticipated
higher concentration of users in a given subregion, we were able to improve the
sum rate. We also proposed a SARL system for user-centric clustering or AP-UE
association. By optimizing the AP selection for each cluster, we performed close to
the upper bound, but with much fewer AP-UE connections. Moreover, the flexible
design of our RL reward functions enabled us to easily adapt our frameworks to dif-
ferent operating points, as well as to investigate the interplay of rate performance,
power consumption, and fronthaul requirement of the network.

The last part of the dissertation focused on effective SARL- and MARL-based
power control strategies in uplink cell-free massive MIMO, aiming to maximize the
guaranteed rate. We designed our frameworks to rely solely on UE rate feedback,
which comes with several benefits, namely user privacy preservation, reduced over-
head for improved scalability, and being agnostic to the system model in use. We
assumed a dynamic RL environment, which is characterized by the combination of
device (de-)activation and user mobility, allowing us to emulate more realistic sce-
narios. Compared to traditional optimization methods, our model-free DRL systems
operate in an online manner and learn the unpredictable activation patterns on the
go. The non-static nature of the wireless environment exposes one weakness of DRL,
which is its slow convergence. Thus, we capitalized on TD error-based prioritized
experience replay to accelerate learning. We explored both fully centralized SARL
and distributed MARL architectures. We further investigated two MARL setups,
namely CTDE, which centralizes training, and FedPer, which localizes training and
only requires periodic aggregation of the local base layer parameters. Our numerical
experiments showed that prioritized sampling-based FedPer achieved near-optimal
rate and power performance, with faster convergence, while also outperforming the
other algorithms in terms of communication overhead. By properly configuring the
FedPer parameter values, such that we aggregated less frequently and only tracked
a limited number of users generating non-negligible interference, we obtained good
performance without being burdened by the resulting overhead.

6.2 Open Issues and Possible Future Works

• Inter-CPU cooperation

In Chapters 2 and 4, we defined scalable cell-free massive MIMO as a network
implementing user-center clustering and multiple interconnected CPUs. The
information exchange among network entities is dictated by the CPU-AP and
AP-UE associations. Recall that we group the APs connected to the same
CPU in the former, while we determine the subset of APs serving each UE in
the latter. Although we tackled the corresponding association problems using
DRL, we dealt with them separately in Chapter 4. Specifically, the user-centric
clusters were created assuming a single-CPU network in [50]. Meanwhile,
multiple CPUs were employed in [67], but the APs forming a user-centric

104

6.2. Open Issues and Possible Future Works

cluster must all be connected to the same CPU. The ideal case, however,
would allow each UE to select its best serving APs, and these APs may be
connected to different CPUs. This setup entails inter-CPU cooperation that
includes determining the type of information that must be exchanged among
them, which has not been covered in this dissertation. User mobility also adds
to the complexity, since the APs associated to each mobile UE would change
over time. Thus, a possible future work is the design of a unified hierarchical
DRL framework that handles both CPU-AP and AP-UE associations in a
mobile cell-free network.

• Large discrete action space

In Chapters 4 and 5, we utilized DDQN in our proposed SARL-based frame-
works. The resulting large discrete action spaces, combined with our limited
compute capability, led us to simulate small scenarios only and make simpli-
fying assumptions, including the small number of predefined AP groupings
in [67]. In the later parts of this dissertation, we dealt with this issue by (1)
employing a different DRL algorithm, such as PPO in [50], and (2) transition-
ing to MARL in [84]. In future work, we may also implement a preprocessing
stage to better handle the large action space. For instance, in [127], the discrete
actions were first embedded in a continuous space before applying a k-nearest
neighbor search to map them back to a discrete set. Such method may help in
situations where the problem at hand requires a SARL-based solution or when
utilizing SARL as a benchmark to evaluate MARL performance.

• High-mobility scenario

In Chapter 5, the dynamic cell-free network was characterized by the combi-
nation of UE (de-)activation and user mobility. We only considered slow user
movements in our simulations. However, high-mobility scenarios also hold
practical relevance. In this case, the limited UE rate information in the state
vector is likely to be insufficient. This must be extended to include other in-
formation, such as CSI and position-dependent ones, to capture the changes
in the network for improved performance [80]. Therefore, the design of differ-
ent state vector definitions, where we identify the necessary information to be
tracked in the states, is a logical next step when considering more sophisticated
use cases.

• Non-stationary RL environment

While DRL is an effective tool for optimization, applying it on time-varying
environments is non-trivial, and is in fact, an active research field on its own.
Deploying RL in a live system and expecting it to continuously adapt to new
environments require continual reinforcement learning or lifelong learning [36].
Several challenges arise from this setup, including possible system breakdowns
during exploration, as well as catastrophic forgetting [128]. Specifically, when-
ever a change in the environment is detected, the agent re-enters an exploration

105

6.2. Open Issues and Possible Future Works

phase that may be time-consuming in practice. We settle for suboptimal solu-
tions during this period. However, in extreme cases, such performance degra-
dation may lead to a system failure. Meanwhile, catastrophic forgetting causes
the agent or DNN to forget behaviors learned from past experiences, which
may occur given the sequential learning assumed in DRL. To combat these
issues, a framework was proposed in [128] that relies on an ensemble of expert
policies, with each corresponding to a specific environment, and implements
a safety monitor that activates a default policy when needed to avoid system
failures. In [129], a change point algorithm was proposed to detect changes in
the environment. Although the above-mentioned complexities have not been
considered in this dissertation, they present interesting research directions for
optimizing non-static wireless networks.

106

List of Abbreviations

6G sixth generation

AP access point

CoMP coordinated multipoint

CPU central processing unit

CRAN cloud radio access network

CSI channel state information

CTDE centralized training, decentralized execution

DDPG deep deterministic policy gradient

DDQN double deep Q-network

DNN deep neural network

DQN deep Q-network

DRL deep reinforcement learning

DT digital twin

ECDF empirical cumulative distribution function

FDD frequency-division duplex

FedAvg federated averaging

FedPer personalized federated learning

GAE generalized advantage estimator

i.i.d. independent and identically distributed

IoT internet of things

JT joint transmission

LP linear programming

MARL multi-agent reinforcement learning

MILP mixed-integer linear programming

MIMO multiple-input multiple-output

ML machine learning

MMSE minimum mean-squared error

MRC maximum ratio combining

MRT maximum ratio transmission

MSE mean-squared error

107

List of Abbreviations

PAE power allocation error

PPO proximal policy optimization

QoS quality of service

ReLU rectified linear unit

RL reinforcement learning

SARL single-agent reinforcement learning

SINR signal-to-interference-plus-noise ratio

TD temporal difference

TDD time-division duplex

UE user equipment

108

Notation

The following table describes the notation used throughout this dissertation.

x, X ∈ C (R) Complex-valued (real-valued) scalar

x ∈ CN×1 (RN×1) Complex-valued (real-valued) column vector with

N elements

X ∈ CN×M (RN×M) Complex-valued (real-valued) matrix with N rows

and M columns

X Set of numbers

IN Identity matrix of size N ×N

|x| Magnitude of a scalar

∥x∥ L2 norm of a vector

∥x∥0 L0 norm of a vector

|X | Size of a set

[X]n,m Element at the nth row and mth column of a

matrix

[X]n,: nth row of a matrix

[X]:,m mth column of a matrix

(.)∗ Conjugate operation

(.)H Conjugate-transpose operation

E{.} Expected value of a random variable

CN (µ, σ2) Complex Gaussian distribution with mean µ and

variance σ2

ℜ(.) Real part of a complex variable

ℑ(.) Imaginary part of a complex variable

len(B) Length of an object B

109

Bibliography

110

Bibliography

[1] Ericsson, “Ericsson Mobility Report,” Nov. 2024. [Online]. Available:
https://www.ericsson.com/en/reports-and-papers/mobility-report

[2] R. N. Clarke, “Expanding mobile wireless capacity: The challenges presented
by technology and economics,” Telecommunications Policy, vol. 38, no. 8-9, pp.
693-708, 2014.

[3] T. L. Marzetta, “Noncooperative Cellular Wireless with Unlimited Numbers of
Base Station Antennas,” IEEE Transactions on Wireless Communications, vol.
9, no. 11, pp. 3590-3600, Nov. 2010.

[4] E. Björnson, J. Hoydis and L. Sanguinetti, “Massive MIMO Networks: Spectral,
Energy, and Hardware Efficiency,” Foundations and Trends in Signal Processing,
vol. 11, no. 3-4, pp 154-655, 2017.

[5] J. G. Andrews, X. Zhang, G. D. Durgin and A. K. Gupta, “Are we approaching
the fundamental limits of wireless network densification?,” IEEE Communica-
tions Magazine, vol. 54, no. 10, pp. 184-190, Oct. 2016.

[6] M. Thurfjell, M. Ericsson and P. de Bruin, “Network Densification Impact on
System Capacity,” IEEE 81st Vehicular Technology Conference (VTC Spring),
Glasgow, UK, 2015, pp. 1-5.

[7] S. Zhou, M. Zhao, X. Xu, J. Wang and Y. Yao, “Distributed wireless commu-
nication system: a new architecture for future public wireless access,” IEEE
Communications Magazine, vol. 41, no. 3, pp. 108-113, Mar. 2003.

[8] S. Venkatesan, A. Lozano and R. Valenzuela, “Network MIMO: Overcoming
Intercell Interference in Indoor Wireless Systems,” 41st Asilomar Conference on
Signals, Systems and Computers, Pacific Grove, California, USA, 2007, pp. 83-
87.

[9] R. Irmer et al., “Coordinated multipoint: Concepts, performance, and field trial
results,” IEEE Communications Magazine, vol. 49, no. 2, pp. 102-111, Feb. 2011.

[10] W. Choi and J. G. Andrews, “Downlink performance and capacity of distributed
antenna systems in a multicell environment,” IEEE Transactions on Wireless
Communications, vol. 6, no. 1, pp. 69-73, Jan. 2007.

111

Bibliography

[11] G. Interdonato, P. Frenger and E. G. Larsson, “Scalability Aspects of Cell-Free
Massive MIMO,” IEEE International Conference on Communications (ICC),
Shanghai, China, 2019, pp. 1-6.

[12] A. Lozano, R. W. Heath and J. G. Andrews, “Fundamental Limits of Coopera-
tion,” IEEE Transactions on Information Theory, vol. 59, no. 9, pp. 5213-5226,
Sep. 2013.

[13] E. Nayebi, A. Ashikhmin, T. L. Marzetta and H. Yang, “Cell-Free Massive
MIMO systems,” 49th Asilomar Conference on Signals, Systems and Computers,
Pacific Grove, California, USA, 2015, pp. 695-699.

[14] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson and T. L. Marzetta, “Cell-
Free Massive MIMO Versus Small Cells,” IEEE Transactions on Wireless Com-
munications, vol. 16, no. 3, pp. 1834-1850, Mar. 2017.

[15] Z. Chen and E. Björnson, “Channel Hardening and Favorable Propagation in
Cell-Free Massive MIMO With Stochastic Geometry,” IEEE Transactions on
Communications, vol. 66, no. 11, pp. 5205-5219, Nov. 2018.

[16] S. Shamai and B. M. Zaidel, “Enhancing the cellular downlink capacity via co-
processing at the transmitting end,” IEEE 53rd Vehicular Technology Conference
(VTC Spring), Rhodes, Greece, 2001, pp. 1745-1749.

[17] Ö. T. Demir, M. Masoudi, E. Björnson and C. Cavdar, “Cell-Free Massive
MIMO in Virtualized CRAN: How to Minimize the Total Network Power?,”
IEEE International Conference on Communications (ICC), Seoul, Republic of
Korea, 2022, pp. 159-164.

[18] J. Zheng et al., “Mobile Cell-Free Massive MIMO: Challenges, Solutions, and
Future Directions,” IEEE Wireless Communications, vol. 31, no. 3, pp. 140-147,
Jun. 2024.

[19] H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau and K. V. Srinivas,
“User-Centric Cell-Free Massive MIMO Networks: A Survey of Opportunities,
Challenges and Solutions,” IEEE Communications Surveys & Tutorials, vol. 24,
no. 1, pp. 611-652, 2022.

[20] G. Interdonato, E. Björnson, H. Q. Ngo, P. Frenger and E. G. Larsson, “Ubiqui-
tous cell-free Massive MIMO communications,” EURASIP Journal on Wireless
Communications and Networking, vol. 2019, no. 197, 2019.

[21] Ö. T. Demir, E. Björnson and L. Sanguinetti, “Foundations of User-Centric
Cell-Free Massive MIMO,” Foundations and Trends in Signal Processing, vol.
14, no. 3-4, pp. 162-472, 2021.

112

Bibliography

[22] W. Zeng, Y. He, B. Li and S. Wang, “Pilot Assignment for Cell Free Massive
MIMO Systems Using a Weighted Graphic Framework,” IEEE Transactions on
Vehicular Technology, vol. 70, no. 6, pp. 6190-6194, Jun. 2021.

[23] E. Nayebi, A. Ashikhmin, T. L. Marzetta, H. Yang and B. D. Rao, “Precoding
and Power Optimization in Cell-Free Massive MIMO Systems,” IEEE Transac-
tions on Wireless Communications, vol. 16, no. 7, pp. 4445-4459, Jul. 2017.

[24] E. Björnson and L. Sanguinetti, “Making Cell-Free Massive MIMO Competitive
With MMSE Processing and Centralized Implementation,” IEEE Transactions
on Wireless Communications, vol. 19, no. 1, pp. 77-90, Jan. 2020.

[25] H. Q. Ngo, G. Interdonato, E. G. Larsson, G. Caire and J. G. Andrews, “Ul-
tradense Cell-Free Massive MIMO for 6G: Technical Overview and Open Ques-
tions,” Proceedings of the IEEE, vol. 112, no. 7, pp. 805-831, Jul. 2024.

[26] H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson and T. L. Marzetta, “Cell-
Free Massive MIMO: Uniformly great service for everyone,” IEEE 16th Inter-
national Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Stockholm, Sweden, 2015, pp. 201-205.

[27] S. Buzzi and C. D’Andrea, “Cell-Free Massive MIMO: User-Centric Approach,”
IEEE Wireless Communications Letters, vol. 6, no. 6, pp. 706-709, Dec. 2017.

[28] E. Björnson and E. Jorswieck, “Optimal Resource Allocation in Coordinated
Multi-Cell Systems,” Foundations and Trends in Communications and Informa-
tion Theory, vol. 9, no. 2–3, pp 113-381, 2013.

[29] N. Kato, B. Mao, F. Tang, Y. Kawamoto and J. Liu, “Ten Challenges in Ad-
vancing Machine Learning Technologies toward 6G,” IEEE Wireless Communi-
cations, vol. 27, no. 3, pp. 96-103, Jun. 2020.

[30] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and
prospects,” Science, vol. 349, no. 6245, pp. 255-260, 2015.

[31] M. Zaher, Ö. T. Demir, E. Björnson and M. Petrova, “Learning-Based Downlink
Power Allocation in Cell-Free Massive MIMO Systems,” IEEE Transactions on
Wireless Communications, vol. 22, no. 1, pp. 174-188, Jan. 2023.

[32] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[33] V. Mnih et al., “Playing Atari with Deep Reinforcement Learning,” NIPS Deep
Learning Workshop, Lake Tahoe, USA, 2013.

[34] W. Zhao, J. P. Queralta and T. Westerlund, “Sim-to-Real Transfer in Deep
Reinforcement Learning for Robotics: a Survey,” IEEE Symposium Series on
Computational Intelligence (SSCI), Canberra, Australia, 2020, pp. 737-744.

113

Bibliography

[35] X. Lin et al., “6G Digital Twin Networks: From Theory to Practice,” IEEE
Communications Magazine, vol. 61, no. 11, pp. 72-78, Nov. 2023.

[36] K. Khetarpal, M. Riemer, I. Rish and D. Precup, “Towards Continual Reinforce-
ment Learning: A Review and Perspectives,” Journal of Artificial Intelligence
Research, vol. 75, pp. 1401-1476, 2022.

[37] N. C. Luong et al., “Applications of Deep Reinforcement Learning in Communi-
cations and Networking: A Survey,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 4, pp. 3133-3174, 2019.

[38] C. -X. Wang et al., “On the Road to 6G: Visions, Requirements, Key Technolo-
gies, and Testbeds,” IEEE Communications Surveys & Tutorials, vol. 25, no. 2,
pp. 905-974, 2023.

[39] Y. S. Nasir and D. Guo, “Multi-Agent Deep Reinforcement Learning for Dy-
namic Power Allocation in Wireless Networks,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 10, pp. 2239-2250, Oct. 2019.

[40] M. Botvinick et al., “Reinforcement Learning, Fast and Slow,” Trends in Cog-
nitive Sciences, vol. 23, no. 5, pp. 408-422, 2019.

[41] H. B. McMahan, E. Moore, D. Ramage, S. Hampson and B. Agüera y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentralized Data,”
Proceedings of the 20th International Conference on Artificial Intelligence and
Statistics (AISTATS), Fort Lauderdale, USA, 2017.

[42] E. Björnson and L. Sanguinetti, “Scalable Cell-Free Massive MIMO Systems,”
IEEE Transactions on Communications, vol. 68, no. 7, pp. 4247-4261, Jul. 2020.

[43] C. D’Andrea and E. G. Larsson, “User Association in Scalable Cell-Free Massive
MIMO Systems,” 54th Asilomar Conference on Signals, Systems, and Comput-
ers, Pacific Grove, California, USA, 2020, pp. 826-830.

[44] H. Q. Ngo, L. -N. Tran, T. Q. Duong, M. Matthaiou and E. G. Larsson, “On
the Total Energy Efficiency of Cell-Free Massive MIMO,” IEEE Transactions on
Green Communications and Networking, vol. 2, no. 1, pp. 25-39, Mar. 2018.

[45] F. Riera-Palou, G. Femenias, A. G. Armada and A. Pérez-Neira, “Clustered
Cell-Free Massive MIMO,” IEEE Globecom Workshops (GC Wkshps), Abu
Dhabi, United Arab Emirates, 2018, pp. 1-6.

[46] O. Zhou, J. Wang and F. Liu, “Average Downlink Rate Analysis for Clustered
Cell-Free Networks with Access Point Selection,” IEEE International Symposium
on Information Theory (ISIT), Espoo, Finland, 2022, pp. 742-747.

114

Bibliography

[47] M. Guenach, A. A. Gorji and A. Bourdoux, “Joint Power Control and Access
Point Scheduling in Fronthaul-Constrained Uplink Cell-Free Massive MIMO Sys-
tems,” IEEE Transactions on Communications, vol. 69, no. 4, pp. 2709-2722,
Apr. 2021.

[48] H. V. Nguyen et al., “On the Spectral and Energy Efficiencies of Full-Duplex
Cell-Free Massive MIMO,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 8, pp. 1698-1718, Aug. 2020.

[49] C. F. Mendoza, S. Schwarz and M. Rupp, “Cluster Formation in Scalable Cell-
free Massive MIMO Networks,” 16th International Conference on Wireless and
Mobile Computing, Networking and Communications (WiMob), Thessaloniki,
Greece, 2020, pp. 62-67.

[50] C. F. Mendoza, S. Schwarz and M. Rupp, “User-Centric Clustering in Cell-
Free MIMO Networks using Deep Reinforcement Learning,” IEEE International
Conference on Communications (ICC), Rome, Italy, 2023, pp. 1036-1041.

[51] C. Han et al., “Green radio: radio techniques to enable energy-efficient wireless
networks,” IEEE Communications Magazine, vol. 49, no. 6, pp. 46-54, Jun. 2011.

[52] J. Wu, Y. Zhang, M. Zukerman and E. K. -N. Yung, “Energy-Efficient Base-
Stations Sleep-Mode Techniques in Green Cellular Networks: A Survey,” IEEE
Communications Surveys & Tutorials, vol. 17, no. 2, pp. 803-826, 2015.

[53] F. Han, S. Zhao, L. Zhang and J. Wu, “Survey of Strategies for Switching
Off Base Stations in Heterogeneous Networks for Greener 5G Systems,” IEEE
Access, vol. 4, pp. 4959-4973, 2016.

[54] T. V. Chien, E. Björnson and E. G. Larsson, “Optimal Design of Energy-
Efficient Cell-Free Massive Mimo: Joint Power Allocation and Load Balanc-
ing,” IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 2020, pp. 5145-5149.

[55] T. X. Vu, S. Chatzinotas, S. ShahbazPanahi and B. Ottersten, “Joint Power
Allocation and Access Point Selection for Cell-free Massive MIMO,” IEEE In-
ternational Conference on Communications (ICC), Dublin, Ireland, 2020, pp.
1-6.

[56] G. Femenias, N. Lassoued and F. Riera-Palou, “Access Point Switch ON/OFF
Strategies for Green Cell-Free Massive MIMO Networking,” IEEE Access, vol.
8, pp. 21788-21803, 2020.

[57] J. Garćıa-Morales, G. Femenias and F. Riera-Palou, “Energy-Efficient Access-
Point Sleep-Mode Techniques for Cell-Free mmWave Massive MIMO Networks
With Non-Uniform Spatial Traffic Density,” IEEE Access, vol. 8, pp. 137587-
137605, 2020.

115

Bibliography

[58] S. Jung and S. -E. Hong, “Performance analysis of Access Point Switch
ON/OFF schemes for Cell-free mmWave massive MIMO UDN systems,” Interna-
tional Conference on Information and Communication Technology Convergence
(ICTC), Jeju Island, Republic of Korea, 2021, pp. 644-647.

[59] C. F. Mendoza, S. Schwarz and M. Rupp, “Deep Reinforcement Learning for
Dynamic Access Point Activation in Cell-Free MIMO Networks,” 25th Interna-
tional ITG Workshop on Smart Antennas (WSA), French Riviera, France, 2021,
pp. 1-6.

[60] H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau and K. V. Srinivas,
“Distributed Resource Allocation Optimization for User-Centric Cell-Free MIMO
Networks,” IEEE Transactions on Wireless Communications, vol. 21, no. 5, pp.
3099-3115, May 2022.

[61] F. Riera-Palou and G. Femenias, “Decentralization Issues in Cell-free Massive
MIMO Networks with Zero-Forcing Precoding,” 57th Annual Allerton Confer-
ence on Communication, Control, and Computing (Allerton), Monticello, Illinois,
USA, 2019, pp. 521-527.

[62] S. Kim et al., “Revisiting the Coverage Boundary of Multi-CPU Cell-Free Mas-
sive MIMO: CPU Cooperation Aspect,” IEEE International Conference on Com-
munications (ICC), Rome, Italy, 2023, pp. 1022-1028.

[63] S. Kim et al., “CPU-Cooperative Power Control Scheme for Scalable Cell-Free
Massive MIMO Systems,” IEEE Transactions on Wireless Communications, vol.
23, no. 10, pp. 13904-13919, Oct. 2024.

[64] P. Biswas, R. K. Mallik and K. B. Letaief, “Optimal Access Point Centric Clus-
tering for Cell-Free Massive MIMO Using Gaussian Mixture Model Clustering,”
IEEE Transactions on Machine Learning in Communications and Networking,
vol. 2, pp. 675-687, 2024.

[65] J. Wang, L. Dai, L. Yang and B. Bai, “Rate-Constrained Network Decompo-
sition for Clustered Cell-Free Networking,” IEEE International Conference on
Communications (ICC), Seoul, Republic of Korea, 2022, pp. 2549-2554.

[66] J. Wang, L. Dai, L. Yang and B. Bai, “Clustered Cell-Free Networking: A Graph
Partitioning Approach,” IEEE Transactions on Wireless Communications, vol.
22, no. 8, pp. 5349-5364, Aug. 2023.

[67] C. F. Mendoza, S. Schwarz and M. Rupp, “Deep Reinforcement Learning for
Spatial User Density-based AP Clustering,” IEEE 23rd International Workshop
on Signal Processing Advances in Wireless Communication (SPAWC), Oulu, Fin-
land, 2022, pp. 1-5.

116

Bibliography

[68] T. C. Mai, H. Q. Ngo and L. -N. Tran, “Energy-efficient power allocation in
cell-free massive MIMO with zero-forcing: First order methods,” Physical Com-
munication, vol. 51, 2022.

[69] S. Chakraborty, Ö. T. Demir, E. Björnson and P. Giselsson, “Efficient Downlink
Power Allocation Algorithms for Cell-Free Massive MIMO Systems,” IEEE Open
Journal of the Communications Society, vol. 2, pp. 168-186, 2021.

[70] S. Mosleh, H. Almosa, E. Perrins and L. Liu, “Downlink Resource Allocation
in Cell-Free Massive MIMO Systems,” International Conference on Computing,
Networking and Communications (ICNC), Honolulu, Hawaii, USA, 2019, pp.
883-887.

[71] S. Chakraborty, E. Björnson and L. Sanguinetti, “Centralized and Distributed
Power Allocation for Max-Min Fairness in Cell-Free Massive MIMO,” 53rd Asilo-
mar Conference on Signals, Systems, and Computers, Pacific Grove, California,
USA, 2019, pp. 576-580.

[72] Y. Zhao, I. G. Niemegeers and S. H. De Groot, “Power Allocation in Cell-Free
Massive MIMO: A Deep Learning Method,” IEEE Access, vol. 8, pp. 87185-
87200, 2020.

[73] C. D’Andrea, A. Zappone, S. Buzzi and M. Debbah, “Uplink Power Control in
Cell-Free Massive MIMO via Deep Learning,” IEEE 8th International Workshop
on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
Le gosier, Guadeloupe, 2019, pp. 554-558.

[74] Y. Zhang, J. Zhang, Y. Jin, S. Buzzi and B. Ai, “Deep Learning-Based Power
Control for Uplink Cell-Free Massive MIMO Systems,” IEEE Global Communi-
cations Conference (GLOBECOM), Madrid, Spain, 2021, pp. 1-6.

[75] N. Rajapaksha, K. B. Shashika Manosha, N. Rajatheva and M. Latva-Aho,
“Deep Learning-based Power Control for Cell-Free Massive MIMO Networks,”
IEEE International Conference on Communications (ICC), Montreal, Québec,
Canada, 2021, pp. 1-7.

[76] W. Li, W. Ni, H. Tian and M. Hua, “Deep Reinforcement Learning for Energy-
Efficient Beamforming Design in Cell-Free Networks,” IEEE Wireless Commu-
nications and Networking Conference Workshops (WCNCW), Nanjing, China,
2021, pp. 1-6.

[77] Y. Al-Eryani, M. Akrout and E. Hossain, “Multiple Access in Cell-Free Net-
works: Outage Performance, Dynamic Clustering, and Deep Reinforcement
Learning-Based Design,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 4, pp. 1028-1042, Apr. 2021.

117

Bibliography

[78] L. Luo et al., “Downlink Power Control for Cell-Free Massive MIMOWith Deep
Reinforcement Learning,” IEEE Transactions on Vehicular Technology, vol. 71,
no. 6, pp. 6772-6777, Jun. 2022.

[79] M. Rahmani et al., “Deep Reinforcement Learning-based Power Allocation in
Uplink Cell-Free Massive MIMO,” IEEE Wireless Communications and Net-
working Conference (WCNC), Austin, Texas, USA, 2022, pp. 459-464.

[80] X. Zhang, M. Kaneko, V. An Le and Y. Ji, “Deep Reinforcement Learning-
based Uplink Power Control in Cell-Free Massive MIMO,” IEEE 20th Consumer
Communications & Networking Conference (CCNC), Las Vegas, Nevada, USA,
2023, pp. 567-572.

[81] T. Schaul, J. Quan, I. Antonoglou and D. Silver, “Prioritized Experience Re-
play,” 4th International Conference on Learning Representations (ICLR), San
Juan, Puerto Rico, 2016.

[82] S. Zhou, Y. Cheng, X. Lei and H. Duan, “Deep Deterministic Policy Gradient
With Prioritized Sampling for Power Control,” IEEE Access, vol. 8, pp. 194240-
194250, 2020.

[83] C. F. Mendoza, M. Kaneko, M. Rupp and S. Schwarz, “Accelerated Deep Re-
inforcement Learning for Uplink Power Control in a Dynamic Cell-Free Massive
MIMO Network,” IEEE Wireless Communications Letters, vol. 13, no. 6, pp.
1710-1714, Jun. 2024.

[84] C. F. Mendoza, M. Kaneko, M. Rupp and S. Schwarz, “Enhancing the Up-
link of Cell-Free Massive MIMO through Prioritized Sampling and Personalized
Federated Deep Reinforcement Learning,” accepted in IEEE Transactions on
Cognitive Communications and Networking.

[85] Y. Zhao, I. G. Niemegeers and S. M. H. De Groot, “Dynamic Power Allocation
for Cell-Free Massive MIMO: Deep Reinforcement Learning Methods,” IEEE
Access, vol. 9, pp. 102953-102965, 2021.

[86] I. M. Braga, R. P. Antonioli, G. Fodor, Y. C. B. Silva and W. C. Freitas,
“Decentralized Joint Pilot and Data Power Control Based on Deep Reinforcement
Learning for the Uplink of Cell-Free Systems,” IEEE Transactions on Vehicular
Technology, vol. 72, no. 1, pp. 957-972, Jan. 2023.

[87] M. G. Arivazhagan, V. Aggarwal, A. K. Singh and S. Choudhary, “Federated
Learning with Personalization Layers,” arXiv preprint arXiv:1912.00818, 2019.

[88] S. Eddine Hajri, J. Denis and M. Assaad, “Enhancing Favorable Propagation
in Cell-Free Massive MIMO Through Spatial User Grouping,” IEEE 19th Inter-
national Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Kalamata, Greece, 2018, pp. 1-5.

118

Bibliography

[89] R. A. Howard, Dynamic Programming and Markov Processes. MIT Press, 1960.

[90] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, pp.
279–292, 1992.

[91] F. AlMahamid and K. Grolinger, “Reinforcement Learning Algorithms: An
Overview and Classification,” IEEE Canadian Conference on Electrical and
Computer Engineering (CCECE), Ontario, Canada, 2021, pp. 1-7.

[92] H. v. Hasselt, A. Guez and D. Silver, “Deep Reinforcement Learning with Dou-
ble Q-learning,” 30th AAAI Conference on Artificial Intelligence, Phoenix, Ari-
zona, USA, 2016.

[93] H. Hasselt, “Double Q-learning,” 24th Annual Conference on Neural Informa-
tion Processing Systems (NIPS), 2010.

[94] L. Lin, “Self-Improving Reactive Agents Based on Reinforcement Learning,
Planning and Teaching,” Machine Learning, vol. 8, pp. 293–321, 1992.

[95] D. Rolnick, A. Ahuja, J. Schwarz, T. P. Lillicrap and G. Wayne, “Experience
Replay for Continual Learning,” 33rd Annual Conference on Neural Information
Processing Systems (NeurIPS), 2019.

[96] Y. LeCun, Y. Bengio and G. Hinton, “Deep learning,” Nature, vol. 521, pp.
436-444, 2015.

[97] B. T. Polyak and A. B. Juditsky, “Acceleration of Stochastic Approximation
by Averaging,” SIAM Journal on Control and Optimization, vol. 30, no. 4, pp.
838-855, Jul. 1992.

[98] T. P. Lillicrap et al., “Continuous control with deep reinforcement learning,”
4th International Conference on Learning Representations (ICLR), San Juan,
Puerto Rico, 2016.

[99] V. R. Konda and J. N. Tsitsiklis, “Actor-Critic Algorithms,” 13th Annual Con-
ference on Neural Information Processing Systems (NIPS), Denver, Colorado,
USA, 1999.

[100] G. E. Uhlenbeck and L. S. Ornstein, “On the Theory of the Brownian Motion,”
Physical Review, vol. 36, pp. 823-841, 1930.

[101] J. Hollenstein, S. Auddy, M. Saveriano, E. Renaudo and J. Piater, “Action
Noise in Off-Policy Deep Reinforcement Learning: Impact on Exploration and
Performance,” Transactions on Machine Learning Research, 2022.

[102] J. Schulman, F. Wolski, P. Dhariwal, A. Radford and O. Klimov, “Proximal
Policy Optimization Algorithms,” arXiv preprint arXiv:1707.06347, 2017.

119

Bibliography

[103] J. Schulman, P. Moritz, S. Levine, M. I. Jordan and P. Abbeel, “High-
Dimensional Continuous Control Using Generalized Advantage Estimation,” 4th
International Conference on Learning Representations (ICLR), San Juan, Puerto
Rico, 2016.

[104] W. Ejaz et al., “A comprehensive survey on resource allocation for CRAN in
5G and beyond networks,” Journal of Network and Computer Applications, vol.
160, Jun. 2020.

[105] S. Schwarz, “Remote Radio Head Assignment and Beamforming in Dynamic
Distributed Antenna Systems,” IEEE International Conference on Communica-
tions (ICC), Kansas City, Missouri, USA, 2018, pp. 1-6.

[106] M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex Pro-
gramming, version 2.2,” Jan. 2020. [Online]. Available: https://cvxr.com/cvx

[107] M. ApS, “The MOSEK optimization toolbox for MAT-
LAB manual, version 8.1.0.82,” Oct. 2019. [Online]. Available:
https://docs.mosek.com/8.1/toolbox/index.html

[108] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[109] Z. -Q. Luo and S. Zhang, “Dynamic Spectrum Management: Complexity and
Duality,” IEEE Journal of Selected Topics in Signal Processing, vol. 2, no. 1, pp.
57-73, Feb. 2008.

[110] Q. Shi, M. Razaviyayn, Z. -Q. Luo and C. He, “An Iteratively Weighted
MMSE Approach to Distributed Sum-Utility Maximization for a MIMO Inter-
fering Broadcast Channel,” IEEE Transactions on Signal Processing, vol. 59, no.
9, pp. 4331-4340, Sep. 2011.

[111] M. Razaviyayn, M. S. Boroujeni and Z. -Q. Luo, “A stochastic weighted
MMSE approach to sum rate maximization for a MIMO interference channel,”
IEEE 14th Workshop on Signal Processing Advances in Wireless Communica-
tions (SPAWC), Darmstadt, Germany, 2013, pp. 325-329.

[112] D. Lee et al., “Spatial modeling of the traffic density in cellular networks,”
IEEE Wireless Communications, vol. 21, no. 1, pp. 80-88, Feb. 2014.

[113] Claussen, “Efficient modelling of channel maps with correlated shadow fad-
ing in mobile radio systems,” IEEE 16th International Symposium on Personal,
Indoor and Mobile Radio Communications, Berlin, Germany, 2005, pp. 512-516.

[114] A. V. Kini, M. Hosseinian, M. -i. Lee and J. Stern-Berkowitz, “Reevaluating
cell wraparound techniques for 3D channel model based system-level simula-
tions,” IEEE Wireless Communications and Networking Conference (WCNC),
New Orleans, Louisiana, USA, 2015, pp. 171-176.

120

Bibliography

[115] M. Bashar, K. Cumanan, A. G. Burr, M. Debbah and H. Q. Ngo, “On the Up-
link Max–Min SINR of Cell-Free Massive MIMO Systems,” IEEE Transactions
on Wireless Communications, vol. 18, no. 4, pp. 2021-2036, Apr. 2019.

[116] T. H. L. Dinh et al., “Towards an Energy-Efficient DQN-based User Associa-
tion in Sub6GHz/mmWave Integrated Networks,” 17th International Conference
on Mobility, Sensing and Networking (MSN), Exeter, United Kingdom, 2021, pp.
645-652.

[117] C. Tsinos, S. Spantideas, A. Giannopoulos and P. Trakadas, “Over-the-Air
Computation with Quantized CSI and Discrete Power Control Levels,” Wireless
Communications and Mobile Computing, vol. 2023, 2023.

[118] R. Lowe et al., “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive
Environments,” 31st Annual Conference on Neural Information Processing Sys-
tems (NIPS), Long Beach, California, USA, 2017.

[119] S. Gronauer and K. Diepold, “Multi-agent deep reinforcement learning: a
survey,” Artificial Intelligence Review, vol. 55, pp. 895–943, 2022.

[120] J. K. Gupta, M. Egorov and M. Kochenderfer, “Cooperative Multi-agent Con-
trol Using Deep Reinforcement Learning,” 16th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), São Paulo, Brazil, 2017.

[121] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli and S. Whiteson, “Coun-
terfactual Multi-Agent Policy Gradients,” 32nd AAAI Conference on Artificial
Intelligence, New Orleans, Louisiana, USA, 2018.

[122] D. Horgan et al., “Distributed Prioritized Experience Replay,” 6th Interna-
tional Conference on Learning Representations (ICLR), Vancouver, Canada,
2018.

[123] H. De Oliveira, M. Kaneko and L. Boukhatem, “Federated Multi-Agent Deep
Reinforcement Learning for Intelligent IoT Wireless Communications,” IEEE
Vehicular Technology Magazine, in press, Aug. 2024.

[124] H. De Oliveira, M. Kaneko and L. Boukhatem, “Smart Band Association for
Wireless IoT Networks: a Personalized Federated Multi-Agent Deep Reinforce-
ment Learning Approach,” IEEE 100th Vehicular Technology Conference (VTC
Fall), Washington DC, USA, 2024.

[125] Y. Zhang et al., “Towards Cost-Efficient Federated Multi-agent RL with Learn-
able Aggregation,” 28th Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), Taipei, Taiwan, 2024.

[126] X. Huang, S. Leng, S. Maharjan and Y. Zhang, “Multi-Agent Deep Rein-
forcement Learning for Computation Offloading and Interference Coordination

121

Bibliography

in Small Cell Networks,” IEEE Transactions on Vehicular Technology, vol. 70,
no. 9, pp. 9282-9293, Sep. 2021.

[127] G. Dulac-Arnold et al., “Deep Reinforcement Learning in Large Discrete Ac-
tion Spaces,” arXiv preprint arXiv:1512.07679, 2015.

[128] P. Hamadanian, M. Schwarzkopf, S. Sen and M. Alizadeh, “Demystifying Rein-
forcement Learning in Time-Varying Systems,” arXiv preprint arXiv:2201.05560,
2022.

[129] S. Padakandla, P. K. J. and S. Bhatnagar, “Reinforcement learning algorithm
for non-stationary environments,” Applied Intelligence, vol. 50, pp. 3590–3606,
2020.

122

	Introduction
	Motivation and Scope of Dissertation
	Literature Review
	User-Centric Clustering
	Dynamic AP Activation
	Multi-CPU System and AP Clustering
	Power Control

	Structure and Contributions

	Preliminaries
	Cell-Free Massive MIMO
	Definition
	Underlying Technologies
	Network Scalability

	Reinforcement Learning
	Agent-Environment Interaction
	Temporal-Difference Learning
	Deep Reinforcement Learning Algorithms

	User-Centric Clustering
	Downlink System Model
	Impact of Cluster Formation
	Fronthaul Optimization
	Max-Min SINR Optimization

	Numerical Evaluations
	Total Fronthaul Requirement
	Guaranteed Quality of Service

	Summary

	SARL-based Network Optimization
	Extended System Model
	Dynamic AP Activation
	Problem Formulation
	DDQN Framework for AP Activation
	Numerical Evaluations

	Spatial User Density-based AP Clustering
	AP Clustering
	Problem Formulation
	DDQN Framework for AP Clustering
	Numerical Evaluations

	User-Centric Clustering
	Problem Formulation
	PPO Framework for Minimizing the AP-UE Connections
	PPO Framework for Minimizing the Active APs
	Numerical Evaluations

	Summary

	Accelerated SARL and MARL for Power Control
	Uplink System Model
	Problem Formulation
	Prioritized Experience Replay
	DDPG with Prioritized Sampling for Power Control
	SARL-DDPG Framework
	Numerical Evaluations

	DDQN with Prioritized Sampling for Power Control
	SARL-DDQN Framework
	MARL-CTDE Framework
	MARL-FedPer Framework
	Communication Overhead
	Numerical Evaluations

	Summary

	Conclusion and Outlook
	Summary of Contributions
	Open Issues and Possible Future Works

	List of Abbreviations
	Notation
	Bibliography

