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RESEARCH ARTICLE                       

Decoding wayfinding: analyzing wayfinding processes in 
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Negar Alinaghia , Ioannis Giannopoulosa , Markus Kattenbecka and 
Martin Raubalb 
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and Geoinformation, ETH Zurich, Zurich, Switzerland 

ABSTRACT 
Navigating complex environments is crucial for human life, yet 
understanding the cognitive processes involved in its wayfinding 
component remains challenging. One theoretical model that 
explains these processes is Downs and Stea’s four-step model. 
Our study builds on this model to empirically analyze its steps, 
focusing particularly on the monitoring step. Machine learning 
models were trained on gaze behavior and head/body movement 
data from over 300 routes walked by 56 participants in a real- 
world outdoor study, predicting three of these wayfinding steps: 
self-localization, route planning, and goal recognition. Applying 
this trained model to the respective monitoring segment of the 
same routes suggests that monitoring includes micro-versions of 
these three steps, indicating it operates as a recursive process 
rather than a distinct cognitive step. By bridging theoretical 
frameworks with empirical evidence, these findings enhance our 
understanding of spatial cognition and can inform the design of 
navigational tools and urban spaces.

ARTICLE HISTORY 
Received 6 September 2024 
Accepted 24 February 2025 

KEYWORDS 
Wayfinding behavior; 
cognitive processes; 
machine learning; eye- 
tracking; head movement 
tracking   

1. Introduction

Navigating complex environments is an essential part of human life. Wayfinding is at 
the core of this ability, a multifaceted cognitive process involving orientation, deci
sion-making, and environmental perception (Montello and Sas 2006). Studying these 
processes offers valuable insights into spatial cognition and perception, enhancing our 
understanding of how individuals interpret and interact with their surroundings. This 
understanding can inform the design of navigational tools and urban spaces, improv
ing accessibility and efficiency (Seidel 1982, Arthur and Passini 1992, Raubal 2001).

Wayfinding research is grounded in a rich history of theoretical frameworks, each 
offering unique perspectives on its cognitive processes. Lynch (1964) was the first to 
explore the visual quality of cities and the role of environmental cues in navigation. 
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Later, Downs and Stea (1977) proposed a four-step model of wayfinding processes. 
Passini (1981) framed wayfinding as spatial problem-solving with three phases. 
Montello (2001) distinguished wayfinding from locomotion as the two components of 
navigation and explored spatial cognition’s role in wayfinding (Montello and Raubal 
2012).

Despite extensive theoretical work, empirical studies validating these frameworks 
are limited. While several studies (Dong et al. 2022, Dalton 2003, Kiefer et al. 2014, 
Yang et al. 2020, Alinaghi et al. 2022, 2023) have explored individual aspects of way
finding, comprehensive empirical evaluation of the full wayfinding span and its cogni
tive processes is lacking. This gap may result from the complexity of cognitive 
processes and practical measurement challenges. However, empirically studying these 
processes is important for refining existing theories or developing new ones.

Among the theoretical frameworks, Downs and Stea (1977)’s four-step model stands 
out for its detailed breakdown of cognitive processes:

… we can break down the process [of wayfinding] into four sequential and interrelated 
steps: (1) orientation, (2) the choice of route, (3) keeping on the right track, and (4) the 
discovery of the objective. (Downs and Stea 1977, p. 124)

These steps—also known as self-localization, route planning, monitoring, and goal 
recognition—can be behaviorally observed and measured, making them more suitable 
for empirical investigation than models focused solely on decision-making processes.

However, Downs and Stea’s model presents challenges in understanding the inter
relatedness and transitions between its sequential steps. The monitoring step, defined 
as ‘keeping on the right track’, is particularly vague. While presented as a standalone 
step, monitoring could actually involve all other steps—continuous awareness of the 
current location, planning a route, and recognizing the destination. Yet these actions 
might differ from initial self-localization, initial route planning, and final goal recogni
tion, in that they may only need to be updated and fine-tuned once realized for the 
first time. Thus, monitoring could be seen as involving micro-versions of these three 
steps: To fine-tune self-localization, route planning, and goal recognition, one might 
recursively set intermediate goals, continually self-localize, plan a route, and confirm 
the achievement of these micro-goals until reaching the final destination.

This study examines two interpretations of the monitoring step: The first is as a 
standalone step, as defined by Downs and Stea. The second is as a recursive call of 
the other three steps (i.e. self-localization, route planning, and goal recognition). The 
required analysis for this is structured into two parts: First, we use machine learning 
(ML) to train a model predicting three of the four steps of wayfinding as defined by 
Downs and Stea, based on gaze behavior and head/body movements. We refer to 
these instances used for training as the macro versions of these three activities. 
Second, we use this trained model to decode the monitoring step, examining whether 
the same learned patterns appear and how these patterns, referred to as the micro 
versions of the three activities, are distributed during monitoring and related to the 
macro steps.

56 participants navigated over 300 routes in familiar and unfamiliar environments 
while wearing eye-tracking glasses and a head-mounted IMU (Inertial Measurement 
Unit) sensor. Tasks reflected the four-step model: determining the current location, 
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drawing a route to a given destination, following it, and verifying destination recogni
tion. The phase of following the planned route until verifying the destination was con
sidered the monitoring step. The classifier predicting the three macro steps achieved 
87.8% accuracy and a kappa value of j ¼ 81:9% on unseen data. This model was then 
used to infer the micro steps during monitoring using sequence analysis techniques.

Results suggest the presence of micro-versions of the three steps during monitor
ing, supporting the idea that monitoring could be seen as a recursive call of the same 
three functions on a micro-scale. By bridging theoretical frameworks with empirical 
evidence, our study advances wayfinding research and offers insights into human navi
gation behavior for practical applications in various domains.

2. Related work

Subsection 2.1 introduces key theoretical models of wayfinding with a focus on 
Downs and Stea’s model. Subsection 2.2 then reviews empirical studies linking various 
aspects of wayfinding to these theories. This highlights the need for a comprehensive 
empirical study to decode the complex cognitive processes involved in wayfinding.

2.1. Theoretical models of wayfinding

Montello (2001) defines wayfinding and locomotion as two components of navigation. 
Wayfinding, the cognitive process of orienting oneself in physical spaces, has been 
studied in various disciplines. Lynch (1964) initiated this research by exploring how 
urban landscapes shape mental images that are essential for successful navigation. His 
work highlighted the role of mental representations of the space—a fusion of sensory 
inputs and memories—in guiding spatial understanding and actions, thereby laying 
the foundation for understanding how environmental features influence wayfinding 
strategies. As mentioned in Section 1, Downs and Stea (1977) introduced a cognitive 
model of wayfinding that is framed as a four-step cycle (in this order): self-localization, 
route planning, monitoring, and goal recognition. These steps are defined as follows:

‘We must know where we are in relation to some selected places on the Earth’s surface’. 
(p. 124) … ’The choice of a route requires that a person make a cognitive connection 
between his current location and that of the desired destination. To be useful, this 
connection must be converted into a plan of actions … ’ (p. 130) … ’The third step in the 
process, keeping on the right track, monitors the execution of the route plan … keeping 
on the right track is achieved by keeping our cognitive map tied to the perceived 
environment, by making and taking appropriate actions at each decision point’. (p. 133) 
… ’You must recognize that you have got to where you are going. Again, this recognition 
depends upon linking a cognitive map with the perceived environment, a linkage that 
usually brings profound relief’. (p. 135)

Downs and Stea provide a detailed breakdown of the process into sequential and 
interrelated steps. Although some aspects, such as the definition of monitoring and 
the interrelationships between the steps, are not clear enough, the model is promising 
for empirical testing since the defined steps are behaviorally observable and 
measurable.
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Passini (1981) conceptualized wayfinding as a dynamic problem-solving process, 
highlighting individualized strategies in different contexts. He identified ‘three distinct 
but not necessarily chronological phases’: processing information, making decisions 
based on the processed information, and taking actions based on the decisions. In a 
review article, Jamshidi and Pati (2021) discussed various problem-solving models 
related to wayfinding, including the Test–Operate–Test–Exit (TOTE) model (Miller et al. 
2017), self-regulation theories (e.g. Carver and Scheier (2001)), and progress monitor
ing theory (MacGregor et al. 2001). These models share a feedback-driven cycle in 
which individuals test, adjust, and repeat until reaching their goal. Although these 
models cover the full span of wayfinding, they focus on decision-making, making the 
associated actions difficult to observe empirically.

Several other models address wayfinding by focusing on the cognitive functions 
required for successful wayfinding rather than defining the sequence of steps. For 
example, Chown et al. (1995) integrated cognitive mapping, emphasizing landmark 
recognition, path selection, direction choice, and spatial abstraction for successful way
finding. Golledge (1999) categorized wayfinding into exploratory navigation, travel to 
familiar destinations, and travel to unfamiliar destinations, outlining the cognitive func
tions needed for each. Golledge (2003) expanded this by categorizing related tasks 
like path integration, piloting, and chunking, showing how spatial knowledge and per
ceptual cues guide navigating un/familiar environments. Wiener et al. (2009) offered 
an extended taxonomy, categorizing tasks based on external constraints and the way
finder’s level of spatial knowledge. Montello and Raubal (2012) explored spatial cogni
tion’s role in key wayfinding functions like route planning, landmark recognition, and 
distance estimation, explaining how these functions are essential for successful 
wayfinding.

These perspectives advance our understanding of wayfinding as a complex inter
play of cognitive processes and environmental cues. Despite different approaches, 
some cognitive processes or tasks, e.g. route planning and landmark recognition are 
consistently identified by different researchers. We selected the model by Downs and 
Stea for its detailed categorization of steps that span the entire wayfinding task and 
are defined in a way that can be measured and analyzed empirically, at least to a cer
tain extent.

2.2. Empirical studies for understanding wayfinding processes

Recent empirical studies from various disciplines focusing on key wayfinding behav
iors, e.g. self-localization and route planning, have advanced our understanding of 
wayfinding and spatial cognition. Among the various sensors used, eye-tracking has 
become a valuable method for studying these behaviors, as it reveals how gaze 
behavior reflects underlying cognitive processes. Since the work of Yarbus (1967), gaze 
behavior has captured significant attention from researchers, with studies showing 
that different cognitive tasks produce distinct gaze patterns (Just and C 1976). In par
ticular, research on eye movements in spatial decision-making (see Kiefer et al. (2017) 
for an overview) highlighted the importance of eye-tracking in understanding how 
individuals process spatial information. For example, Kiefer et al. (2014) used mobile 
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eye-tracking technology to explore self-localization in urban environments, and found 
that effective self-localization involves increased visual attention to map symbols and 
shifts between these symbols and real-world landmarks. Meilinger et al. (2007) com
pared different schematic maps for self-localization in complex buildings and reported 
similar performance across various map types. Schmid et al. (2010) developed a map 
design that integrates local and global orientation cues, improving the speed and 
accuracy of self-localization. Br€ugger et al. (2018) used eye-tracking to investigate how 
navigational cues influence spatial orientation, observing fewer forward and backward 
glances with no significant effect on sideways glances.

From a neuroscience perspective, Epstein and Vass (2014) showed how humans 
and animals use landmarks for navigation, linking landmark recognition, localization, 
and spatial knowledge to specific regions of the brain. More recently, Peer et al. (2023) 
showed through the analysis of brain activities that the accuracy and variability of 
cognitive maps depend on the structure of the environment, supporting the theory 
of Lynch (1964). Similarly, Hartley et al. (2003) used fMRI to show that successful way
finders activate the caudate nucleus during route-following, aligning with research 
showing that wayfinding relies on both caudate (response-based) and hippocampal 
(place-based) representations.

In a closely related paper, (Alinaghi and Giannopoulos 2024) explored the visual 
attention of familiar and unfamiliar wayfinders during the different steps of wayfinding 
as defined by the Downs and Stea (1977) model. The authors found that distinct gaze 
and visual attention patterns emerge at different steps of wayfinding, with some pat
terns significantly influenced by the individual’s spatial familiarity. Building on Passini’s 
wayfinding model (Passini 1981), Spiers and Maguire (2008) conducted an empirical 
study using retrospective verbal reports and eye-tracking data from 20 participants 
performing wayfinding tasks in a virtual reality simulation of London, UK. Participants 
described their thoughts during wayfinding, and the authors classified them and com
puted their frequency, duration, and temporal order. The findings reveal a wider range 
of thoughts than the theory suggests but confirm that ‘route planning’ and ‘action 
planning’, as defined by the model, are the most frequent and central processes in 
wayfinding cognition.

While these studies offer important empirical insights into wayfinding, they mainly 
focus on specific aspects of this complex cognitive process. Therefore, there is still a 
gap in the empirical study of the entire process of wayfinding by observing the 
behaviors and actions of wayfinders. This is not only crucial for improving related 
technologies or applications, but also for creating theoretical frameworks or refining 
existing ones.

3. Experimental design and procedure

To empirically study the wayfinding processes defined by Downs and Stea, we 
designed an outdoor real-world human-subject study1, conducted in Vienna, Austria. 
Data2 was collected in two steps—an online step and an on-site step—between 

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5



August 2021 and June 2023 due to challenges, e.g. weather and daylight variability, 
and COVID-related interruptions. The following subsections detail these two steps.

3.1. Step 1: Online data collection

Given the significant impact of personal attributes on wayfinding, we included an 
online registration step to collect personal data, which took roughly 15-20 minutes to 
complete. To ensure a comprehensive understanding of each participant’s background 
and spatial abilities, we collected demographic data, participants’ level of spatial famil
iarity with different regions in Vienna, preferences for navigational aids, responses to 
the SBSOD (Santa Barbara Sense of Direction) questionnaire (Hegarty 2002), and Short 
15-item Big Five Inventory test (Lang et al. 2011). The spatial familiarity data was then 
used to customize the subsequent on-site data collection. The following subsections 
provide details on the participants and the familiarity assessment.

3.1.1. Participants
Participants were recruited through a snowball method, where colleagues and friends 
who had lived in Vienna for at least three months were asked to refer additional par
ticipants. Residency was important to ensure familiarity with, at least, parts of the city. 
A total of 84 individuals completed the online part of the experiment, but only 67 
attended the on-site step3. The rest were non-responsive and three were excluded 
due to wearing correction glasses with a prescription above 63:5; which would affect 
eye-tracking accuracy. Of the 67, we experienced data loss for 11 participants due to 
sensor malfunction (five experiments were terminated early, and for six the data loss 
was detected after data collection). The final sample included 56 participants (meanage 

¼ 31.16 years, stdage ¼ 5.93) with 22 females and 34 males.

3.1.2. Familiarity assessment
After registration, participants were directed to a web map and asked to rate their 
familiarity with different regions in Vienna (presented as a hexagonal tessellation) on a 
5-point scale, where 1 indicated completely unfamiliar and 5 indicated completely 
familiar. To ensure a comprehensive familiarity assessment, participants were required 
to rate the entire city. The inner city was covered by 1.00 km2 cells by default, and the 
outer city by 7.00 km2 cells (which could be divided by the user into seven 1.00 km2 

cells), assuming that the inner city, being more touristic, would likely have common 
familiar cells for most participants.

3.2. Step 2: On-site data collection

After the online step, we used the collected familiarity data to select a familiar and an 
unfamiliar study area for each participant. To ensure consistent urban design and envi
ronmental characteristics, we selected both areas from the inner city’s 1.00 km2 hex
agonal grids. These areas have similar urban characteristics, considering building age 
and architectural design (Reimer et al. 2022). For each participant, the cells with the 
highest and lowest familiarity scores were selected from these areas.
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Within each cell, multiple OD (Origin-Destination) pairs were selected, with a walk
ing distance of 7–10 minutes and at least one turn, due to the behavioral differences 
observed at turning versus non-turning junctions (i.e. intersections where participants 
continued straight ahead) (Alinaghi et al. 2022). Local landmarks, such as shops, res
taurants, and cafes, served as destinations. It was planned that each participant would 
walk three different routes in both familiar and unfamiliar areas, resulting in six routes 
per participant. The entire procedure, including sensor setup and calibration, took 
roughly 1 hour 45 minutes per participant. Various hardware and software tools were 
used to collect data for each trial, as detailed in the following subsections.

3.2.1. Hardware and software
The outdoor data collection used several sensors and hardware (Figure 1(b) shows the 
setup of these sensors on the participant):

� Eye-Tracker: PupilLabs Invisible glasses (Tonsen et al. 2020) were used to record 
eye movements at a frequency of 200Hz running on an Android phone.

� IMU Sensor: the xSens MTi-300 IMU (Xsens Technologies 2020), positioned on top 
of the head to be aligned with the forward-facing view, was used to capture data 
such as velocity, acceleration, rotation, and magnetic field at frequencies from 100 
to 1000Hz. This sensor was connected to a Windows-based laptop.

� GPS: the PPM 10-xx38 GNSS receiver, connected to an Android phone receiving 
EPOSA ground corrections, recorded location data at 1Hz.

� Clicker: Participants used a custom-built clicker device connected to an LED light 
on their backpack to indicate recognition of the destination by clicking it.

Two customized Android applications facilitated outdoor data collection:

Figure 1. (a) Shows the participants’ app interface used for self-localization and route planning 
tasks; and (b) illustrates the sensor setup on the participant during the outdoor data collection.
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� Participant’s app, shown in Figure 1(a), resembled an adapted version of Google 
Maps with modified functions. To enable self-localization, both the user’s current 
location and the location search functions were disabled. The app included a line 
drawing tool for route planning, and while being zoomable, at the beginning, it 
was displayed in the selected familiarity cell by default. Pre-selected destinations 
were marked on the map with their names for the unfamiliar condition, and their 
names and their Google Street View images for the familiar condition. This 
approach aimed to increase the sense of familiarity in the familiar condition and 
enable more realistic wayfinding, as it was not certain that participants were famil
iar with all the selected destinations in the familiar areas. Map visualization was 
standardized with the default Google base map and the tablet’s screen rotation 
was locked to portrait view in order to control visualization preferences.

� Experimenter’s app included five simple trigger buttons to log different events dur
ing the wayfinding task (Subsection 3.2.2). These logged events were labeled in 
more detail later during data cleaning and were synchronized with sensor record
ings to serve as ground truth labels for analysis.

3.2.2. Procedure
Participants received instructions via email on where to meet on-site, with half of 
them randomly assigned to the pre-selected familiar area and the other half to the 
pre-selected unfamiliar area. This randomization was essential to minimize learning 
biases, as starting with the same condition could lead to relaxation and learning 
effects that would affect performance in the second condition. Outdoor trials were 
structured as follows:

1. Sensor Setup: Sensors were set up and calibrated.
2. Instructions for the Wayfinding Tasks:

a. Self Localization: Participants were asked to find their current location and 
mark it in the participants’ app (i.e. the customized Google Maps app), which 
was provided on an 11-inch tablet with a 2560� 1600 LCD display.

b. Orientation: The experimenter pointed in a direction in the surroundings by 
hand and asked participants to show on the map where they would go if 
they walked in that direction.

c. Route Planning: Participants were instructed to draw the route they preferred 
to take to the destination displayed to them on the map.

d. Walk to the Destination: Participants were asked to walk their planned route 
while maintaining their normal behavior (as if they were alone) and being 
focused on the wayfinding task. They were allowed to use the map as many 
times as they wanted.

e. Goal Recognition: Participants were asked to press the clicker in their hand 
upon spotting and recognizing the destination while still walking toward it. 

To optimize resource-intensive data collection, we increased the number of routes 
per participant using a cognitive reset strategy to minimize route recollection. After 
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reaching a destination, participants read aloud from a text while being escorted to a 
new starting point (2–3 minutes walk), resetting self-localization by distracting them 
from observing their surroundings. This reset method was also used in the unfamiliar 
condition before the first route to avoid familiarity with the meeting point. Each trial 
included, on average, three routes, with faster participants completing up to four 
routes and slower ones completing two. The same setup was used for the second con
dition where the participant was tested at a different location. During each route, the 
experimenter logged the following events using the experimenter app (Figure 2):

� Self Localization: From identifying the current location to marking it on the map.
� Orientation: From the moment the direction was shown to the participant (exclu

sive) until they showed the direction on the map.
� Route Planning: From showing the destination to the participant on the map (exclu

sive) to when they finished drawing the route.
� Events During Walking:

� Participant Behavior: Duration of behaviors such as feeling lost (e.g. slowing 
down, standing, looking around) or making mistakes (e.g. wrong turns, missing 
the destination). Unexpected events, like interruptions from the experimenter 
(e.g. sensor failure) or curious pedestrians, were also logged.

� Junction: Duration of passing a junction.
� Change Side: Duration of walking from one side to the other of the street.
� Clicker: From clicking the clicker device to indicate destination recognition to 

having reached the destination.

4. Data pre-processing

This section describes the main pre-processing techniques used to prepare the data 
for the ML experiments, including data synchronization, cleaning, and feature 
engineering.

4.1. Data synchronization

Given the multi-sensor data collection, with each sensor operating on its own clock 
and a different operating system, careful synchronization was crucial. We followed a 
three-step process to synchronize the sensors: First, we displayed UTC timestamps on 
all device screens using Android and Python applications. Screens with timestamps 

Figure 2. The sequence and duration of recorded events during a sample route. Detailed labels 
(e.g. “turn left/right/no turn” instead of “junction”) are derived during data processing.
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were captured via the eye tracker’s scene camera at the start of gaze recording, serv
ing as a reference point. Second, we calculated time differences between each device 
and the eye-tracking time (establishing a master time) by extracting frame numbers of 
video displaying timestamps on other devices. Finally, we applied these time differen
ces to respective recordings to synchronize the timestamps. This process assumes neg
ligible clock drift and constant differences throughout the recording, supported by the 
short duration of recording and the high-frequency timestamps.

To validate IMU synchronization, we compared its recordings with logged events. 
IMU records a peak in acceleration signals at the start of walking. Figure 3 shows, as 
an example from a random route, the free acceleration signal in the Y-axis4 (FreeAcc- 
N), and how the start of the peak correctly aligns with the synced label of ‘walking’.

4.2. Data cleaning

After synchronizing the data, we checked for errors such as malfunctions or recording 
interruptions. Recordings with clear issues (e.g. empty or corrupted files, or missing 
data) were excluded. For more latent errors, we applied the 3r-rule to IMU and eye- 
tracker signals, flagged anomalies, visually inspected them, and cross-checked with 
scene videos. Out-of-distribution values, i.e. any values outside the 3r threshold, were 
removed to ensure a clean dataset. Initially, we expected 336 routes (6 routes per par
ticipant). However, as not all participants completed 6 routes, and after data cleaning, 
we were left with 309 valid routes, consisting of 157 familiar and 152 unfamiliar 
routes.

4.3. Feature extraction

After data preparation, feature extraction was performed for ML experimentation. To 
transform the recorded signals into tabular data, we used a sliding window approach 
to segment the data and extract the features for every window.

While factors such as spatial familiarity (Kattenbeck et al. 2024), environmental fea
tures (Alinaghi et al. 2023), and wayfinder characteristics (e.g. demographics, spatial 
skills, etc. (Montello and Sas 2006)) can influence behaviors during wayfinding, we 
focused on gaze and head/body movements. Although we collected these data, ana
lyzing them was beyond the scope of this study. To answer our research questions at 

Figure 3. The scatter plot of the free acceleration signal confirms the alignment of IMU and 
experimenter app data with the master clock (i.e. the eye-tracker time), as evidenced by the clear 
peak corresponding to the “walking” event.
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a general level, we aimed to predict the steps of wayfinding and decode the monitor
ing step using only gaze and movement features without this contextual information.

4.3.1. Sliding window segmentation
Two sliding window approaches were used based on suggestions in the literature 
(Dehghani et al. 2019): a non-overlapping fixed-size window and an overlapping fixed- 
size window. The fixed-size approach ensures consistent feature extraction across 
instances and enhances computational efficiency while maintaining accuracy. For the 
overlapping method, a step size of one second was used to maximize data.

Window sizes from 2 to 10 seconds were evaluated in terms of classification accur
acy and kappa across 18 experiments (9 non-overlapping and 9 overlapping). The opti
mal segmentation was determined to be a 6-second overlapping window. Therefore, 
we exclusively report the results from this segmentation. Figure 4 illustrates the appli
cation of this segmentation. Each window is referred to as one instance in our dataset. 
The 6-second overlapping segmentation across 309 routes results in over 90, 000 
instances which is a large enough dataset for the ML experiments.

4.3.2. Gaze features
The gaze features extracted for each instance focus on two primary gaze events: 
fixations and saccades, which are key indicators of cognitive processes, scene compre
hension, and visual search (refer to Chapters 13 and 21 of Duchowski (2017)). Fixation- 
related features include frequency (count of fixations in time intervals), duration 
(period of relatively still eye position known as dwell time), and dispersion (maximum 
horizontal and vertical distance covered by gaze positions during fixation, as defined 
by Salvucci and Goldberg (2000)). Saccadic features include duration (time between 
two fixations), amplitude (distance traveled by a saccade), and rate (number of sac
cades per second). To account for the impact of head movements on saccades in 
mobile eye-tracking, we apply a saccadic correction method from Alinaghi and 
Giannopoulos (2022) ensuring that the extracted saccadic features are based on cor
rected data.

Since gaze movement during the experiment partially involved the tablet, we also 
considered the distribution of fixation points. During route planning, fixations are 
expected to cluster around the planned route, whereas in self-localization, they tend 
to be more dispersed. To capture these variations, we computed four key features 

Figure 4. Visualization of the overlapping sliding window applied to a sample route. The legend 
shows the number of instances generated for each logged event (e.g. 45 instances of self-localiza
tion) using the sliding window segmentation.
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that encode the distribution of fixation points (Kang et al. 2023). We used KDE (Kernel 
Density Estimation) to estimate the probability density function, which provides a 
smoothed representation of point distribution in 2D space. We computed the entropy 
of the KDE, where higher entropy indicates greater dispersion or randomness, and 
lower entropy suggests more concentrated distributions. In addition, taken from point 
pattern analysis (Baddeley et al. 2016), we calculated intensity and centrography. 
Intensity measures the average number of event points per unit area and reflects spa
tial concentration. Two measures were used for centrography: Standard Distance, 
which is similar to the traditional standard deviation and indicates the dispersion of 
events around the spatial mean center, and the standard ellipse of dispersion, which 
assesses the dispersion and orientation in two dimensions. Table 1 summarizes the 22 
gaze features extracted for each instance.

4.3.3. IMU features
We used the XSENS MTi-300 IMU sensor to accurately track head and body move
ments based on a gyro-enhanced Attitude and Heading Reference System (AHRS). 
It records normal acceleration (velocity changes), free acceleration (gravity-independ
ent), and high-resolution acceleration at 1000 Hz to distinguish motion from stillness 
and abrupt versus smooth head movements. Gyroscopic measurements indicate 
rotational velocity captured at 400 Hz and 1000 Hz, and magnetic field strength 
identifies non-movement anomalies. Velocity changes, orientation, rotation incre
ments, and angles (orientation change and quaternions) are measured at 400 Hz, 
with Euler angles at 100 Hz tracking precise rotations around longitudinal, lateral, 
and vertical axes.

Head and body movements are task-dependent and can indicate the task being 
performed, as shown in human activity recognition research (e.g. Vanrell et al. (2018)). 

Table 1. Calculated gaze features: for each instance, the frequency, mean, minimum, maximum, 
and variance of various fixation- and saccade-related features, as well as several features encoding 
the fixation distribution patterns, are computed.
Gaze events Features Definition Count

Fixation Frequency # Fixations divided by window size (6 sec) 1
Mean/min/max/variance – 

duration
The period when the eye remains relatively 

still from the first gaze position to the last 
gaze position of a fixation

4

Mean/min/max/variance – 
dispersion

The maximum horizontal and vertical 
distance covered by the gaze positions in 
a fixation

4

Entropy The entropy of the KDE of fixation points 1
Intensity The average number of fixations in the 

minimum bounding box
1

Stdd Standard deviation of distances between 
fixations

1

Theta Angular difference between consecutive 
fixations

1

Saccade Frequency # Saccades divided by window size (6 sec) 1
Mean/min/max/variance – 

duration
The time taken to move between two 

fixations
4

Mean/min/max/variance – 
length

The distance traveled by a saccade 4

Total count 22
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However, unlike gaze analysis, which has established specific features linked to cogni
tive processes, there is limited literature on how head movements correlate with 
deeper cognitive tasks. While we can make assumptions—such as variation in Yaw 
rotation indicating search behavior or changes in walking acceleration reflecting stops 
or speed adjustments due to engagement in another task (e.g. looking at a map)—we 
aimed for a more complete encoding of movement. Therefore, we utilized all the pre
cise IMU measurements we had and computed basic statistical features (minimum, 
maximum, average, and variance) from them. We believe this detailed encoding of the 
movement will help the model distinguish the movements more effectively. Table 2
summarizes these 128 features derived from IMU recordings.

Table 2. Calculated IMU features: statistical measures (mean, minimum, maximum, and variance) 
from each signal were computed for each instance.

IMU recordings
Features (mean/min/max/ 

variance) Definition Count

Acceleration Acceleration X/Y/Z The rate of change of velocity along the 
three axes

12

free acceleration X/Y/Z Acceleration in the local frame along the 
three axes from which the local gravity is 
deducted

12

HR acceleration X/Y/Z Accelerations at a high sampling rate along 
the three axes

12

3D rate of turn gyros X/Y/Z The angular rate or rotational velocity 
measured around the three axes

12

HR gyros X/Y/Z The angular rate at a high sampling rate 
measured around the three axes

12

Magnetic field magnetic field X/Y/Z The magnetic field strength or intensity 
along the X, Y, and Z-axis

12

Velocity change velocity change X/Y/Z Velocity change during a certain interval (this 
interval is 2.5 ms (400 Hz) by default)

12

Orientation change orientation change q0 The scalar component of the quaternion 
representing the rotation increment

4

orientation change q1 The component associated with the rotation 
about the X-axis in the quaternion 
representation

4

orientation change q2 The component associated with the rotation 
about the Y-axis

4

orientation change q3 The component associated with the rotation 
about the Z-axis

4

Quaternion quaternion q0 The scalar (real) part of the quaternion, 
representing the rotation’s magnitude or 
angle

4

quaternion q1 The component associated with the rotation 
about the X-axis

4

quaternion q2 The component associated with the rotation 
about the Y-axis

4

quaternion q3 The component associated with the rotation 
about the Z-axis

4

Euler Angles (XYZ Earth 
fixed type)

Roll The rotation of an object around its 
longitudinal axis, which is an axis running 
from the front to the back of the object

4

Pitch The rotation of an object around its lateral 
axis, which is an axis running from side to 
side

4

Yaw The rotation of an object around its vertical 
axis, which is an axis running vertically, 
typically perpendicular to the ground

4

Total count 128

The count represents the multiplication of these four statistics with the features listed in the feature column.
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5. Analysis

This section outlines the analysis and methods applied to address our research ques
tions. As noted in Section 1, the required analysis is structured into two parts: first, 
training an ML model for predicting the three well-defined wayfinding steps (i.e. the 
macro steps), and second, decoding the monitoring phase using this trained model. 
The following subsections explain these parts in detail.

5.1. Part I: Prediction of the macro steps in wayfinding

The first part of our analysis involves training a model to predict the macro steps of 
wayfinding. Based on our experience with various ML classifiers and supported by the 
literature, we focus on tree-based classifiers, which are effective at splitting the feature 
space and are among the best for medium-sized structured data (Treboux et al. 2018). 
Given its promising results in human activity recognition, we selected XGBoost for our 
experiments (Ambati and El-Gayar 2021). Additionally, we tested an MLP (Multilayer 
Perceptron) due to its simplicity and effectiveness with structured data, avoiding the 
complexity of deeper networks that may overfit our dataset size. We conducted 
experiments with both classifiers. Our goal was to train a robust model that could reli
ably infer the micro steps during the monitoring phase.

5.1.1. Preparing the data for training and inference
As shown in Figure 4, each instance was labeled based on events logged by the 
experimenter app. Instances not related to wayfinding activities were excluded, such 
as those after self-localization (light green bars labeled as ‘standing’ in Figure 4), when 
the experimenter interacted with the participant to check the pinned location, ask the 
orientation question, and display the next destination. These instances are not repre
sentative of wayfinding activities and, thus, were omitted from the analysis. The orien
tation task was also excluded, in line with Downs and Stea’s theory, which treats 
orientation as part of self-localization rather than a separate step.

For goal recognition, participants pressed a clicker upon recognizing the destination 
and continued walking towards it. If they forgot, the experimenter asked when they 
had recognized the destination and manually labeled that moment as the clicker 
event. Since decision-making occurs before clicking, we defined 5, 10, and 15 seconds 
prior to the clicker press as possible ground truths. Testing revealed that the 10- 
second interval yielded the highest classification scores, so we adopted this interval as 
ground truth.

As discussed in Section 1, defining accurate ground truth for the ‘monitoring’ step 
is challenging due to its abstract definition. Therefore, we trained the model on the 
three well-defined macro-steps: self-localization, route planning, and goal recognition 
(as depicted in Figure 5). This means we excluded any data related to the monitoring 
part—the segment after route planning, where participants started walking towards 
the destination until recognizing it—from the model training (marked in red in 
Figure 5). This segment of data from each route was reserved for inference, allowing 
us to infer the learned patterns of the macro-steps of wayfinding during the monitor
ing step.
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5.1.2. Machine learning experiments
Several ML experiments were conducted using the two models, testing different 
feature combinations: gaze features only, IMU features only, and both combined. 
Each experiment was repeated with 18 sliding window approaches. We retained routes 
from 10 random participants for testing (� 19% of the data), excluding their data 
from training and validation (i.e. using the Leave-k-Group-Out method). Using 10-fold 
cross-validation on the remaining data, we tuned the models’ hyperparameters. 
Consistent testing was ensured by using the same 10 left-out participants for all 
experiments. Given the class imbalance, particularly with goal recognition being repre
sented by only 5 instances per route, we applied the SMOTE (Synthetic Minority Over- 
sampling Technique) upsampling method to balance the dataset for training (Chawla 
et al. 2002). The best model was XGBoost with hyperparameters: [subsample: 0.5, n-esti
mators: 4500, max-depth: 7, learning-rate: 0.01, colsample-bytree: 0.45], trained on both 
IMU and gaze features with a 6-second overlapping window segmentation. We use 
this trained model for inference as described in Section 5.2.

5.2. Part II: Decoding monitoring through sequence analysis

The trained model classifies three of the steps proposed by Downs and Stea. To 
account for monitoring as an independent step or other undefined steps, we added a 
fourth class, ‘unknown’ for predictions below a confidence threshold determined 
through a data-driven approach. We analyzed class probabilities for the test set, identi
fying correct predictions and calculating the 10th percentile of their probabilities. This 
threshold, found to be 67.9%, means 90% of the correct predictions had probabilities 
above this value, reflecting the model’s confidence. Predictions with a probability 
below this threshold were labeled ‘unknown’ with the low-confidence predicted class 
label still noted. Using this trained model, we inferred the monitoring phase which is 
considered the most ambiguous part of the model by Downs and Stea. Therefore, for 
each route’s monitoring step, we received a sequence of micro steps: self-localization, 
route planning, goal recognition, and unknown, resulting in 309 sequences (check 
Section 6.2 for an example of such a sequence). Figure 6 (Section 6) illustrates an 
example. To derive insights, we applied sequence analysis techniques such as sequen
tial pattern mining and examining label transitions and distributions.

Figure 5. The model is trained and tested on three steps: self-localization, route planning, and 
goal recognition. The remaining data, representing monitoring (the walk to the destination) is used 
for inference.
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5.2.1. Sequential pattern mining on micro-steps
Sequential pattern mining is a method used to discover recurring sequences or order 
of items within ordered sets of events or items (Fournier-Viger et al. 2017). It is valu
able in contexts where the order of occurrences is critical, such as analyzing customer 
purchase behavior, web navigation paths, or biological sequences. This technique 
identifies frequent sequences in a dataset, revealing hidden patterns valuable for dif
ferent analyses. Common algorithms for this task include FPGrowth (Han and Pei 
2000), Apriori (Agrawal et al. 1994), GSP (Generalized Sequential Pattern) (Srikant and 
Agrawal 1996), PrefixSpan (Han et al. 2001), etc. Among these, we tested three meth
ods: Apriori, FPGrowth, and PrefixSpan. PrefixSpan stands out for its efficiency in hand
ling large datasets without generating and testing an excessive number of candidate 
sequences. By breaking the problem into smaller parts (prefixes and projected data
bases), PrefixSpan efficiently identifies frequent patterns, improving mining speed and 
accuracy (Han et al. 2001). Of the three methods tested, we selected PrefixSpan for its 
ability to generate a more complete set of subsequences, making it the most suitable 
for our dataset of 309 sequences with varying item counts. The results from 
PrefixSpan enabled us to identify the most frequent sequence orders across all routes.

5.2.2. Analyzing the share and transition of micro-steps
The second analysis examined the transitions between micro-steps, such as how labels 
in a sequence like [a, a, b, c, b, d, a, … ] change over time. This involved analyzing, 
first, the share of each label in each sequence and, subsequently, how each label tran
sitions to another, e.g. from ‘a’ to ‘b’. We also looked at the distribution of different 
labels to understand if instances of one label are clustered together or spread out. For 
example, are instances of label ‘a’ mostly clustered at the beginning of the sequence, 
or are they scattered throughout the sequence? The analysis focused on three 
key aspects: First, the share of each micro-step, i.e. the overall time spent on each 
micro-step. For example, how much time did the participants spend on self- 
localization during the monitoring? Second, the relationship between the time spent 
on micro self-localization and route planning, and their corresponding macro-steps. 
Third, the distribution of time spent on each step throughout the monitoring period. 
This means examining how the time for each label is spread out.

6. Results

6.1. Part I: Prediction of the macro steps in wayfinding

Table 3 compares the accuracy and kappa values of MLP and XGBoost models on test 
data, trained with both IMU and gaze features. XGBoost consistently outperforms MLP 
across all window sizes. Figure 7 shows that while gaze features alone have limited 
predictive power, its combination with IMU features achieved the highest accuracy, 
using a 6-second overlapping sliding window segmentation. To ensure the generaliz
ability of the results, the XGBoost model experiments with both sensor features were 
repeated five times using five different 10-participants-out method. The results in 
Table 3 represent the average of these runs. The best-performing model from these 
runs was used for the sequence analysis.
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Figure 8 includes (A) the confusion matrix, (B) the learning curve, and (C) the SHAP 
(SHapley Additive exPlanations) values (Lundberg and Lee 2017) showing the top 20 
important features for predicting each class. The confusion matrix (A) visualizes the 
model’s performance by showing which classes are confused with each other. It shows 
that goal recognition is almost perfectly predicted, while self-localization and route 
planning are misclassified as each other for 17 and 18% of the time, highlighting areas 
where the model struggles. The bars in the SHAP plot (C), color-coded by class, illus
trate the importance of each feature for predicting each class. These plots are for the 
best-performing model tested on unseen test data.

6.2. Part II: Decoding monitoring through sequence analysis

As explained in Subsection 5.2, we used the trained model with a prediction probabil
ity threshold for inference. Figure 6 shows an example of the inferred classes 
within the monitoring step, color-coded by class. The gray color represents the 
‘unknown’ class but still indicates the potential label the model could assign, regard
less of prediction confidence. The next two subsections present the results from 

Table 3. Test results of the MLP and XGBoost models, trained on both IMU and gaze features. 
XGBoost outperforms the MLP in all window sizes.

MLP XGBoost

Window-size Accuracy Kappa Accuracy Kappa

2 0.717 0.544 0.748 0.599
3 0.720 0.540 0.808 0.675
4 0.738 0.574 0.797 0.670
5 0.736 0.581 0.807 0.652
6 0.739 0.572 0.878 0.819
7 0.705 0.444 0.812 0.712
8 0.719 0.481 0.812 0.640
9 0.729 0.498 0.779 0.598
10 0.641 0.342 0.688 0.519

The reported values for the XGBoost experiments are the average of five runs with five different test sets (i.e. five 
runs with the Leave-10-Group-Out method).
The highest performance metrics are highlighted in bold.

Figure 6. Shows the inferred labels from the trained model. The top plot displays the original 
events logged by the experimenter during the monitoring part of a sample route, while the bot
tom plot shows the same part with the inferred labels. The gray color represents the “unknown” 
class, and the label on it indicates the label the model could have assigned it to if the prediction 
confidence had not been considered.
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sequential pattern mining and micro-step transition analysis, following the structure 
in Subsection 5.2.

6.2.1. Sequential pattern of micro-steps during monitoring
Sequential pattern mining using the PrefixSpan algorithm identified [‘unknown’, ‘self- 
localization’, ‘goal recognition’] as the most frequent subsequence of labels, with a 
support of 0.915. Input sequences were pre-processed to merge consecutive repeti
tions of the same label, e.g. [‘a’, ‘a’, ‘a’, ‘b’, ‘c’, ‘c’] was converted to [‘a’, ‘b’, ‘c’]. Since 

Figure 7. The XGBoost model’s performance was compared across different feature combinations 
and segmentation window sizes. The best results in accuracy and kappa were achieved with both 
sensors and a 6-second window size.

Figure 8. (A) Presents the confusion matrix showing the model’s performance for each class. (B) 
depicts the model’s learning curve, illustrating its performance over training time. (C) Displays the 
SHAP values for the top 20 most important features, color-coded by class, to indicate which fea
tures are most effective for predicting each class.
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our inputs could potentially contain repetitions of these subsequences ([‘a’, ‘b’, 
‘c’, … ,’a’, ‘b’, ‘c’, … ]), we count the occurrence of each subsequence in each route 
and calculated support as the total number of occurrences divided by the total num
ber of routes.

6.2.2. The share and transition of micro-steps during monitoring
In Subsection 5.2.2, we posed three questions about micro-step transitions: (1) the overall 
time spent on each micro-step during monitoring, (2) the relationship between macro 
and micro self-localization and route planning times during monitoring, and (3) how the 
time spent on micro-steps is distributed over the monitoring step. We address these ques
tions with appropriate plots. To answer question (1), we use boxplots per label (Figure 9), 
which show the share of each inferred label during the monitoring across all routes. On 
average, 56.24% of the monitoring part is labeled as goal recognition, 26.08% as self-local
ization, 2.86% as route planning, and 14.82% as unknown.

Question (2) is answered by plotting the total micro self-localization and route planning 
times against their respective macro times. The scatterplots (see Figure 10(a)) reveal dis
tinct patterns for these wayfinding steps. For self-localization (left), most points cluster in 
the lower left, indicating that both macro and micro times are typically under one minute, 
though some points show occasional differences. For route planning (right), most points 
cluster along the x-axis, indicating that micro route planning times are generally short, 
even with varying macro times (note the different scales on the y and x axes). Question 
(3) was answered by plotting the time distribution of the micro-steps within the monitor
ing step (see subplot 10b). The bars represent the total monitoring time, while the circular 
markers indicate each instance of the micro-step and the unknown class. The y-axis shows 
the time spent walking to the destination, and the markers reveal the time-wise distribu
tion of micro-steps throughout monitoring. Regardless of the high variability between 
routes across micro-steps, goal recognition occurs more frequently along the walk; self- 
localization, although repeated at variable intervals during monitoring, mainly occurs at 

Figure 9. Shows the distribution of micro steps that form the monitoring step. For example, based 
on the median (b), monitoring consists of 58.76% micro goal recognition, 24.88% micro self-local
ization, 2.80% route planning, and 12.75% unknown.
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the trip’s start; route planning follows a similar pattern on a smaller scale, i.e. mostly at 
the start of monitoring phase.

7. Discussion

To address our main research question of whether monitoring is a standalone step, as 
defined by Downs and Stea (1977), or a recursive call of self-localization, route 

Figure 10. These plots show the relationship between the macro (initial) and micro (inferred dur
ing monitoring) wayfinding steps.

20 N. ALINAGHI ET AL.



planning, and goal recognition, we first trained a model using behavioral data from 
the macro version of these three steps (i.e. initial self-localization and route planning, 
and final goal recognition). Our results show that these steps can be predicted with 
high accuracy using head/body and eye movement data. The SHAP feature impor
tance analysis revealed that certain behaviors are strongly associated with specific 
steps. Next, we used this trained model to infer the same behavioral patterns during 
the monitoring phase across all routes. Our findings suggest that monitoring likely 
involves micro versions of the same steps. The following subsections provide a 
detailed discussion of these findings and the remaining open questions.

7.1. Prediction of the three macro steps in wayfinding

The accuracy and kappa metrics reported in Subsection 6.1, indicate that predicting 
wayfinding steps through ML techniques using visual attention and physical move
ment features is feasible. XGBoost outperformed MLP, highlighting the strength of 
ensemble learning in capturing the complexity and multi-dimensional nature of sen
sory data during wayfinding tasks as also noted by Wu et al. (2021). Figure 7 shows 
that combining gaze and IMU features results in optimal performance, indicating that 
both visual attention and physical movements are influenced by the underlying cogni
tive processes of wayfinding (See e.g. Giannopoulos (2016), Takemiya and Ishikawa 
(2011)).

The SHAP value plot (Figure 8(B)) highlights the importance of these features in 
predicting the three macro steps. Notably, half of the top 10 features are gaze-related, 
emphasizing the crucial role of visual attention in wayfinding. Fixation duration, 
reflecting the cognitive load of information processing (Irwin 2013), as well as saccade 
length and duration, reflecting task difficulty (Xin et al.2021), enhance the model’s pre
dictive power almost equally for all three classes. This suggests that each class has a 
distinct pattern of fixation duration and saccade length and duration, indicating differ
ent cognitive processes and visual search strategies (careful orientation vs overview 
scans) for each step (Alinaghi and Giannopoulos 2024). As expected, the standard dis
tance deviation (stdd) and intensity of fixation distribution are more important for 
self-localization and route planning, supporting the idea that gaze distribution differs 
during these steps (Kiefer et al.2013). During route planning, fixations tend to be lin
early clustered along the planned route, whereas during self-localization, they are 
more dispersed across the tablet and surrounding environment. These variations in 
gaze patterns can also reflect changes in cognitive load. Clustered gaze during route 
planning shows higher cognitive demand, while dispersed gaze during self-localization 
reflects less cognitive demand (Nakayama et al.2002).

While five gaze features are among the top 10, the model’s performance signifi
cantly dropped when trained only on gaze data. Although eye movements are task- 
related and, therefore, provide good proxies for understanding the cognitive processes 
of a task, they are also influenced by external factors, such as noise. Also, research has 
shown that, for example, during periods of mind wandering, gazing somewhere does 
not necessarily indicate an active perception of information (See e.g. Kwok et al. 
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(2024)). Combining eye tracking and behavioral sensors, hence, improves prediction 
accuracy as indicated by our empirical evidence.

The computed IMU features capture various aspects of the head/body movements. 
Among these features, the variance of free acceleration along the Z-axis (FreeAcc-U- 
var) is the most important feature particularly for predicting goal recognition, as it 
encodes variations in walking and gait changes. The IMU’s Z-axis faces upward, captur
ing upward movements associated with the swing phase of gait while walking 
(Gujarathi and Bhole 2019). The confusion matrix confirms the feature’s strong predict
ive power for goal recognition. The average free acceleration along the X-axis 
(FreeAcc-E-mean), pointing East, is key for detecting route planning and self-localiza
tion, as it reflects lateral velocity changes in head/body movements during activities 
like looking around. Pitch-related features (i.e. up-and-down head movements) are 
more effective for predicting self-localization and route planning but less for goal rec
ognition, indicating minimal ‘looking up-and-down’ during goal recognition.

7.2. Monitoring: a standalone step or a recurring call of micro-steps?

Using the trained model and applying sequence analysis, we decoded the monitoring 
step, uncovering a sequence of predicted labels at a micro level. This shows that the 
same physical and gaze behavior patterns observed during self-localization, route 
planning, and goal recognition are also present during monitoring. Cognitive neurosci
ence research has linked cognitive processing to brain-behavior relationships, showing 
that, for example, during perceptual decision-making, the decision-making compo
nents at two representational levels (neural and behavioral) are significantly associated 
(Imani et al. 2021). Therefore, in our study, the recurrence of similar behavioral pat
terns during monitoring can also suggest a connection to similar underlying cognitive 
processes. Cognitive processing, broadly defined, involves a sequence of stages in 
which sensory input is transformed, reduced, elaborated, stored, retrieved, and utilized 
(Kreutzer et al.2011) [p. 859]. Considering this, monitoring serves as a concrete 
example of cognitive processing in action. By continuously iterating through micro 
self-localization, micro route planning, and micro goal recognition, monitoring illus
trates how cognitive operations such as attention, memory, and reasoning dynamically 
interact to support wayfinding. This recursive process highlights the adaptive and 
non-linear nature of cognitive processing. The following subsections explain the role 
of each micro-step in ‘keeping us on the right track’.

7.2.1. The role of micro self-localization
As shown in Figure 9, self-localization is the second most frequent label, accounting 
for 26.08% of the monitoring time. But how does micro self-localization differ from, or 
resemble, macro self-localization? Micro self-localization is consistently distributed 
throughout the monitoring phase, including near the destination (Figure 10(b)), sup
porting findings that individuals reaffirm their position as they move farther from the 
starting point (Wiener et al. 2009). Early in monitoring (in the zoomed-in view in 
Figure 10(b)), 58.22% of participants spent the first six seconds on self-localization, 
indicating active recapping of their position while walking, consistent with Montello 
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and Sas (2006)’s concept of orientation updating. Figure 10(a) shows a weak negative 
correlation (−0:202; p ¼ 0:0277) between the time spent on macro and micro self- 
localization, as revealed by a Spearman’s rank correlation test. This statistically signifi
cant but weak relationship suggests that more time spent on macro self-localization 
reduces the need for micro self-localization fine-tuning, aligning with Passini (1984), 
who noted that a detailed mental representation reduces the need for frequent recall 
during navigation. This, however, needs further analysis regarding the working 
memory of the subjects. Another aspect could be the impact of spatial scale on the 
cognitive functions triggered for any step (Wolbers and Wiener 2014). Macro self- 
localization occurs in vista space, i.e. where all necessary information is visible within a 
field of view with minimal movement, whereas monitoring happens in environmental 
space, i.e. where movement is required to access necessary information. However, 
according to Montello (1993), environmental space can be viewed as a connected 
stream of vista spaces, therefore suggesting micro self-localization takes place across 
multiple such discrete spaces. Together with a cognitive view, micro self-localization 
combines real-time sensory input (bottom-up processing) with spatial knowledge (top- 
down processing) to determine a person’s position in their environment. This process 
reflects the mechanisms of macro self-localization, but works continuously and adap
tively in the dynamic and varying landscape of environmental space.

7.2.2. The role of micro route planning
Route planning is the least frequent label, accounting for only 2.86% of the monitor
ing time (Figure 9). As shown in Figure 10(a), the micro route planning time is roughly 
one-fifth of the macro time, with several cases showing no instance of micro route 
planning at all. This could be due to the relatively short routes, allowing participants 
to easily memorize them after initial planning. This interpretation aligns with Alinaghi 
et al. (2023), who discuss that longer distances increase the likelihood of forgetting 
instructions and needing them again. It is also consistent with the serial position 
effect, where longer sequences make intermediate items harder to recall (Ebbinghaus 
1913). Hilton et al. (2021) have found a trace of this effect in route learning by memo
rizing landmarks. They have also reported that participants break longer sequences 
into smaller sub-lists. This observation could explain the behavior of revisiting route 
planning during monitoring. Routes with higher complexity (e.g. longer distances, 
more decision points) are likely to impose greater working memory demands, leading 
to more frequent instances of micro self-localization and route planning. Another 
explanation could be the distinction H€olscher et al. (2011) makes between planning a 
route for oneself before taking it (prospective planning) and planning a route while 
navigating (situated planning). According to their study on familiar wayfinders, situ
ated planning can be seen as ‘an incremental optimization of the overall plan by add
ing in local direction information’. Our inferred micro route planning could be an 
instance of situated planning. Despite its minimal overall occurrence, 20.39% of micro 
route planning occur when participants start walking, possibly as a rehearsal of the 
planned route.
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7.2.3. The role of micro goal recognition
According to Figure 9, on average, 56.24% of the monitoring phase is dedicated to 
goal recognition, with a high standard deviation, indicating variability across routes 
that could stem from individual differences. The boxplots show that despite this vari
ability, goal recognition constitutes the majority of the monitoring phase for all routes. 
Figure 10(b) reveals that goal recognition occurs consistently throughout the walk to 
the destination. This finding aligns with problem-solving theories, which suggest indi
viduals set intermediate sub-goals to monitor progress, adjusting their actions continu
ously until the final goal is achieved (Kaplan and Kaplan 1982, MacGregor et al. 2001). 
Goal recognition’s predominance during monitoring can also align with working mem
ory’s role in comparing stored goal representations with sensory input to assess pro
gress (Ebbinghaus 1913). Despite the fact that goal recognition is the most frequent 
step throughout the monitoring phase, it accounts only for 2.9% of the first six sec
onds. This suggests that even though macro self-localization and route planning were 
performed immediately prior (i.e. the person found their current location and planned 
a route to the destination just a few seconds before), goal recognition is not the first 
cognitive function to be activated during the monitoring phase. Considering the three 
levels of situational awareness—perceiving, comprehending, and projecting future 
states in the environment (Endsley et al. 2000)—goal recognition corresponds to the 
third level, such as anticipating landmarks or assessing progress toward the destin
ation. This suggests that participants were likely still focused on the first two levels of 
situational awareness at the beginning of the monitoring phase.

7.2.4. What can ‘unknown’ mean?
Figure 9 shows that 14.82% of the monitoring time could not be confidently classified 
by the model. This is a significant observation, as this unclassified time is almost 
evenly distributed throughout the monitoring. In particular, in 18.48% of all routes, 
the monitoring begins with six seconds of this ‘unknown’ step (Figure 10(b)). Several 
potential explanations come to mind: First, it could represent a distinct and standalone 
step as suggested by Downs and Stea (1977), possibly a pure control mechanism to 
ensure the wayfinder stays on track. Second, it might indicate other activities or men
tal states, such as mind wandering (Lee et al. 2021). Third, it could reflect transitional 
periods between cognitive steps. While cognitive processes are often modeled as dis
crete steps for analysis, they are typically continuous and dynamic, with overlapping 
stages and gradual transitions. This also aligns with Downs and Stea (1977)’s concep
tualization of the steps as interrelated. In psychology, it is well-known that cognitive 
tasks often transition into one another, with one process gradually giving way to the 
next (Spivey 2007, p. 3–29). Further supporting the idea of transitions, we observed 
that the ‘unknown’ label never appeared consecutively in the inferred sequences— 
other labels always occurred between instances of ‘unknown’. This supports the third 
explanation more as a single unknown prediction is too short to be a pure control 
mechanism, and the consistent distribution makes it less likely to be another activity, 
e.g. mind wandering or window shopping. Our assumption is that these unknown 
instances are more likely to represent moments of transition between steps, where 
the model struggles to classify them into one of the predefined classes due to the 
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mixture of steps involved. With this interpretation, ‘unknown’ likely represents 
moments of heightened cognitive load as individuals integrate information across 
steps. These transitions align with theories of dual-task interference, where concurrent 
cognitive processes (e.g. updating spatial information and planning) compete for lim
ited cognitive resources (Spivey 2007, p. 98).

7.2.5. Ordered sequence of wayfinding steps
So far, we have primarily focused on each step individually. However, an essential 
aspect of the theory by Downs and Stea is the sequence of these steps. Do the steps 
follow the order defined in the theory, or do they occur without a specific sequence? 
While our experimental design dictates a certain order for the first two measured 
steps, the PrefixSpan algorithm can help explore whether such an order can be 
extracted from our empirical analysis of the monitoring step. The resulting sequence 
for the monitoring phase –[‘unknown’, ‘self-localization’, ‘goal recognition’]– suggests 
that, regardless of the number of occurrences of these three labels, this order is 
observed in 91.5% of all cases. It is important to note that this order does not imply 
any hierarchy between the steps, but rather reflects the most frequently observed 
order across routes. This suggests that during the walk to the known destination, par
ticipants encounter an initial unknown step, potentially reflecting a transitional 
moment after completing the macro route planning. This is followed by micro-level 
self-localization and then micro-level goal recognition. This cycle with this order can 
repeat throughout the monitoring phase.

8. Conclusion

In this study, the cognitive processes involved in wayfinding were empirically investi
gated with a focus on the monitoring step, based on the model proposed by Downs 
and Stea (1977). We trained a ML model using behavioral data from 56 participants 
navigating over 300 routes. The model successfully learned behavioral patterns related 
to three of the wayfinding steps: self-localization, route planning, and goal recognition, 
achieving a test accuracy of 87.8%. The trained model was then used to infer the 
learned behavioral patterns during the monitoring phase of all routes. Sequence ana
lysis on the inferred classes revealed that monitoring likely involves recurring iterations 
of these three steps, suggesting that monitoring is a phase of continuous mid-goal 
setting and fine-tuning of self-localization and route planning.

Despite these insights, some limitations and questions for future research remain. 
The gender imbalance in the sample could not be addressed during recruitment but 
may have an impact on the findings. Furthermore, this study focused on predicting 
the four steps and analyzing the monitoring phase based solely on gaze behavior and 
head/body movements. However, existing literature indicates that personal attributes, 
spatial familiarity, and environmental features significantly impact wayfinding behavior 
(Giannopoulos et al. 2014). Future research should explore how these factors influence 
the interpretation of monitoring. For instance, how do familiarity and spatial skills 
affect the results? How do familiar and unfamiliar wayfinders perform in different 
steps? Do familiar participants have more efficient self-localization or route planning 
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strategies, or is their performance more related to spatial skills (Kattenbeck et al. 
2024)? As an example of environmental factors, do street junctions, commonly consid
ered as decision points, correlate with goal recognition behavior? The unknown steps 
require more in-depth analysis, particularly regarding the semantic information in vis
ual attention. Previous research by Alinaghi and Giannopoulos (2024) has identified 
distinct patterns in visual attention across the four steps of wayfinding. It is crucial to 
explore the semantic information related to visual attention—specifically, the objects 
that wayfinders focus on—during these instances of unknown prediction. 
Furthermore, while we focused on the four steps suggested by Downs and Stea, it is 
worth exploring whether more and/or different steps exist. Employing unsupervised 
learning techniques, which do not require ground truth data, could uncover additional 
patterns in the collected behavioral data.

Ultimately, this study enhances our understanding of human wayfinding behavior, 
informing the design of more efficient and accessible navigational tools and urban 
environments. Such empirical studies are crucial for building new theories or refining 
existing ones, advancing our theoretical and practical understanding of spatial cogni
tion and wayfinding. For instance, our findings suggest that monitoring might involve 
iterative cycles between the steps of self-localization, route planning, and goal recog
nition, hinting at the dynamic and interrelated nature of the wayfinding steps pro
posed by Downs and Stea (1977).

Notes

1. The experimental design proposal was reviewed by the Pilot Research Ethics Committee of 
Vienna University of Technology(see supplementary materials). All participants have given 
written consent prior to participation in the study.

2. While not all the collected data was used in this analysis, we present a comprehensive 
overview of the data collection procedure to help readers understand why and how specific 
data were gathered.

3. The dropout rate may have been due to the longer and physically demanding outdoor 
sessions compared to the online step.

4. The directions X, Y, and Z correspond to East, North, and Up, respectively.
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