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 A B S T R A C T

The influence of temperature-dependent fluid properties in a turbulent pipe flow with sinusoidal heat flux 
boundary conditions is studied. Four cases with increasing sensitivity to temperature variations, representative 
of molten salts in solar heat receivers, are calculated by means of direct numerical simulation. The computa-
tions have been performed with a reference friction Reynolds number equal to 180 and a reference Prandtl 
number equal to 0.7. It is found that the fluid properties variations result in an enhancement (damping) of 
the flow and temperature fluctuations on the cold (hot) side of the pipe. Small secondary motions of Prandtl 
second kind are found to occur with a significant impact on the vertical heat flux, accounting for one third 
of the total heat flux in the most sensitive case. Finally, the effect of the variable fluid properties in integral 
quantities like friction coefficient and Nusselt number is quantified.
. Introduction

Latest developments in the technology of Solar Thermal Collectors, 
mproving efficiency and operational costs, has risen the interest on 
sing renewable energy coming from the sun for industrial purposes. 
n particular, Solar Power Tower systems utilize sun-tracking mirrors, 
alled heliostats, to reflect solar radiation onto a receiver and heat the 
orking fluid, typically a molten salt. This heat is accumulated and 
sed on demand to create steam to move a turbine producing electricity 
Merchán et al., 2022).
For the application of a Central Solar Receiver using molten salts in 

ipes of typically 25 mm diameter, the working conditions are charac-
erized by flow bulk velocities of about 1–3 m/s and bulk temperatures 
n the range of 500–750 K. At these conditions, and depending on 
he salt used (Solar Salt, Hitec or Hitec XL for example), the typical 
orking range for the bulk Reynolds number is 𝑅𝑒𝑏 = 2𝑈𝑏𝑅∕𝜈 =
⋅ 103–5 ⋅ 104, where 𝑈𝑏 is the bulk velocity, 𝑅 is the pipe radius and 𝜈
s the kinematic viscosity. The tube face exposed to the solar radiation 
eceives a heat flux of order 𝑞′′𝑤 ∼ 1 MW/m2, while the opposite 
ace is almost adiabatic. This highly non-uniform heat flux distribution 
roduces significant circumferential temperature variations on the pipe 
all, ranging from 𝛥𝑇 = 50−250 K along the pipe (Rodríguez-Sánchez 
t al., 2014). In terms of working fluid properties variation, this tem-
erature difference produces changes in density, 𝜌, of about 5−10%, in 
pecific heat coefficient, 𝐶𝑝, of about 2−5%, in thermal conductivity, 𝑘, 
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of about 10−30% and in dynamic viscosity, 𝜇 of about 100−200% from 
the hot face to the cold face. It is however unclear what is the impact 
of these fluid property variations on the heat transfer performance of 
the system.

In spite of their practical relevance, to the best of our knowledge 
there are no studies in the literature of pipe flow with variable fluid 
properties and circumferentially varying heat flux boundary conditions. 
Numerical studies of heat transfer in a pipe with homogeneous heating 
can be found in Piller (2005) and Redjem-Saad et al. (2007), among 
others, while the experimental study of circumferentially-varying heat 
flux are reported e.g. in Black and Sparrow (1967) or Quarmby and 
Quirk (1972). In previous works (Antoranz et al., 2015, 2018), the 
present authors reported DNS of pipe flow with circumferentially-
varying heat flux with constant fluid properties. More recently, Straub 
et al. (2019) have also investigated the effect of azimuthally inhomoge-
neous heat flux in a pipe using liquid metals as the working fluid. Also, 
the influence of a sinusoidally-varying, periodic, thermal boundary 
condition in circumferential direction of a vertical turbulent pipe flow 
driven by the pressure gradient and buoyancy forces was studied by 
Dachwitz et al. (2023).

Regarding the studies on temperature-dependent fluid properties, 
the works of Zonta et al. (2012) and Lee et al. (2013), despite not being 
done for a pipe flow, are of application for our current analysis. Zonta 
et al. (2012) carried out direct numerical simulation (DNS) of a forced 
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convection turbulent flow in a channel with anisotropic temperature-
dependent viscosity and different channel walls temperature. Lee et al. 
(2013) reported DNS of a turbulent boundary layer over heated walls to 
investigate the effect of viscosity stratification. Both found a reduction 
of turbulence near the heated wall, where viscosity was lower. For 
a pipe flow, Sufrà and Steiner (2022) studied the effect of tempera-
ture depending material properties on heat and momentum transfer. 
They applied a constant averaged wall heat flux and considered sepa-
rately the cases of heated and cooled wall. They reported significantly 
damped/enhanced turbulent motion caused by the increase/decrease 
of the viscosity with distance to the heated/cooled wall. Finally, for a 
fluid with variable properties in a pipe, high Prandtl number flow has 
been studied by Irrenfried and Steiner (2024).

In this paper, we perform DNS of a pressure-driven fully devel-
oped turbulent flow in a pipe, with sinusoidal heat flux boundary 
conditions, and with temperature-dependent viscosity and thermal dif-
fusivity, representative of the conditions in the tubes of heat receivers 
in Solar Power Tower plants. Note that we simplify the problem by 
neglecting variations in fluid density and 𝐶𝑝 and having a null net heat 
flux to the pipe. The main objective of this study is to analyze the 
influence of variable fluid properties on mean values and turbulence 
statistics in the heat transfer fluid. To that end, four different conditions 
are considered: a case with constant fluid properties and three cases 
with temperature-dependent fluid properties. Preliminary results were 
reported in Antoranz et al. (2020).

The structure of the paper is as follows. First, the governing equa-
tions and the boundary conditions are presented, together with a 
brief description of the computational setup and the definition of the 
cases of study. The results are presented and discussed next. First, the 
circumferential distributions on the pipe wall are reported. After that, 
we analyze the influence of varying fluid properties on the velocity 
and temperature statistics. We then focus on the secondary flows 
created due to the non-isotropic fluid properties and their effect on the 
heat fluxes. Finally, the impacts on the overall flow performance are 
quantified.

2. Computational setup

The governing equations are the Navier–Stokes equations for an 
incompressible flow with a constant pressure gradient, 𝜕𝑝∕𝜕𝑧, in the 
direction of the pipe axis, 𝑧, together with an advection–diffusion 
equation for the temperature (neglecting viscous energy dissipation). 
Note that in this case, the energy and momentum equations are coupled 
by the variation of viscosity with temperature.

The resulting system of equations is
𝜕𝑢𝑖
𝜕𝑥𝑖

= 0, (1)

𝜕𝑢𝑖
𝜕𝑡

+ 𝑢𝑗
𝜕𝑢𝑖
𝜕𝑥𝑗

= −1
𝜌
𝜕𝑝
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

(

𝜈(𝑇 )
𝜕𝑢𝑖
𝜕𝑥𝑗

)

, (2)

𝜕𝑇
𝜕𝑡

+ 𝑢𝑖
𝜕𝑇
𝜕𝑥𝑖

= 𝜕
𝜕𝑥𝑖

(

𝛼(𝑇 ) 𝜕𝑇
𝜕𝑥𝑖

)

, (3)

where repeated sub-indices indicate Einstein summation convention, 
(𝑥1, 𝑥2, 𝑥3) = (𝑥, 𝑦, 𝑧) are the three Cartesian coordinates and (𝑢1, 𝑢2, 𝑢3)
= (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) their corresponding velocity components. Temperature is 
designated by 𝑇 , 𝑝 is the pressure, 𝜈 = 𝜇(𝑇 )∕𝜌 is the kinematic viscosity 
and 𝛼 = 𝑘(𝑇 )∕𝜌𝐶𝑝 is the thermal diffusivity.

The system of Eqs. (1)–(3) is completed with appropriate boundary 
conditions on the pipe surface: velocity is zero at the wall, and the wall-
normal temperature gradient is given by an imposed sinusoidal heat 
flux distribution 
𝑞′′𝑤(𝜃) = 𝜋𝑞′′𝑤 sin 𝜃 = −𝜌𝐶𝑝𝛼(𝑇 )

𝜕𝑇
𝜕𝑟

|

|

|

|𝑟=𝑅
. (4)

Since the net heat flux to the domain is null, the axial direction, 𝑧, 
is homogeneous and we can apply periodic boundary conditions along 
the streamwise direction.
2 
Table 1
Parameters of the simulations. Case 1: Constant fluid properties, Case 2: Low sensitivity 
to temperature, Case 3: Mid sensitivity to temperature and Case 4: High sensitivity to 
temperature.
 Case 𝑅𝑒𝜏0 𝑃𝑟0 𝑇0∕𝑇𝜏0 Line style (Color)  
 1 180 0.7 → ∞ Solid (Black)  
 2 180 0.7 1000 Long-dashed (Red)  
 3 180 0.7 500 Dashed–dotted (Blue) 
 4 180 0.7 250 Dashed (Green)  

Several averages will be used throughout the paper. The brackets 
⟨⋅⟩ indicate mean values, averaged in time and over the homogeneous 
direction, 𝑧. Primed variables denote fluctuations with respect to these 
mean values. Bulk variables, denoted with a 𝑏 sub-index, are averaged 
in time, over the homogeneous direction 𝑧, and over the cross-plane 
area 𝛺(𝑟, 𝜃). In particular, we define the bulk velocity 

𝑈𝑏 =
1

𝜋𝑅2 ∫𝛺
⟨𝑢𝑧⟩ 𝑑𝛺, (5)

and the bulk temperature 

𝑇𝑏 =
1

𝜋𝑅2𝑈𝑏 ∫𝛺
⟨𝑢𝑧𝑇 ⟩ 𝑑𝛺, (6)

which is a mass-flux weighted average of the temperature field.
The variation of the kinematic viscosity and the thermal diffusiv-

ity with temperature, 𝜈(𝑇 ) and 𝛼(𝑇 ), are prescribed by the following 
power-laws, 
𝜈
𝜈0

=
(

𝑇
𝑇0

)𝑒𝜈
, 𝛼
𝛼0

=
(

𝑇
𝑇0

)𝑒𝛼
, (7)

where 𝜈0, 𝛼0 and 𝑇0 are constant reference values. The exponents 𝑒𝜈 =
−3 and 𝑒𝛼 = 0.3 are selected to represent the behavior of typical molten 
salts encountered in solar central receivers (Benoit et al., 2016).

Apart from these two exponents, the problem is governed by three 
non-dimensional parameters: the reference Reynolds number 𝑅𝑒𝜏0 =
𝑢𝜏0𝑅∕𝜈0, the reference Prandtl number 𝑃𝑟0 = 𝜈0∕𝛼0 and the normalized 
temperature 𝑇0∕𝑇𝜏0, where 𝑢𝜏0 =

√

−𝑅𝜕𝑝∕𝜕𝑧∕(2𝜌) and 𝑇𝜏0 = 𝑞′′𝑤∕𝜌𝐶𝑝𝑢𝜏0
are respectively the friction velocity and the friction temperature for 
the case with constant fluid properties.

Once the working fluid is selected, (i.e., the values of 𝑒𝛼 and 𝑒𝜈 are 
given), the effect of varying fluid properties on the system is mainly 
determined by the ratio 𝑇0∕𝑇𝜏0. In the present study, the value of 𝑒𝛼 is 
low, so that significant changes in thermal diffusivity are not expected. 
Therefore, the temperature distribution in the fluid is primarily influ-
enced by the heat flux at the wall, which depends on the boundary 
conditions. The friction temperature 𝑇𝜏0 serves as an indicator of how 
much the fluid’s temperature varies, 𝛥𝑇 , due to the combined effects 
of heat flux and viscous dissipation near the boundary. The kinematic 
viscosity and thermal diffusivity of the fluid, which follow power-law 
relationships based on temperature (as described in Eq.  (7)), change in 
proportion to the ratio 𝛥𝑇 ∕𝑇0, which is on the order of 𝑇𝜏0∕𝑇0. If the 
ratio 𝑇0∕𝑇𝜏0 is large, the resulting changes in fluid properties are small. 
However, as this ratio decreases, the percentage changes in kinematic 
viscosity and thermal diffusivity become more significant. Note that 
in the case of constant fluid properties (where these properties do 
not vary with temperature), the ratio 𝑇0∕𝑇𝜏0 tends to infinity, making 
it irrelevant for the analysis. The ranges of variation of averaged 
kinematic viscosity and thermal diffusivity with temperature in the 
computational domain for the four cases of study are graphically shown 
in Fig.  1. For the most sensitive case, Case 4, the viscosity changes in 
the domain from ∼50% to ∼275% of the constant value, 𝜈0, whilst the 
diffusivity changes only from ∼90% to ∼107% of 𝛼0.

The values of the governing parameters selected for the present 
study are provided in Table  1. All simulations are run with constant 
mean pressure gradient, ensuring that the 𝑅𝑒𝜏0 = 180 for all cases. 
Case 1 has constant fluid properties and the remaining three cases have 
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Fig. 1. Range of variation in the computational domain of kinematic viscosity (𝑎) and thermal diffusivity (𝑏) with temperature. Colors are as described in Table  1.  (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Domain geometry and grid for the computational study (left) and instantaneous temperature field for Case 4 with variable fluid properties (right).
decreasing values of 𝑇0∕𝑇𝜏0, and consequently increasing sensitivity 
to variable fluid properties. For all the simulations presented here, 
we choose the initial mass averaged temperature to be equal to 𝑇0. 
Therefore, energy conservation implies that 𝑇𝑏 = 𝑇0 throughout the 
computation. Note that the same is not true for 𝜈𝑏 and 𝛼𝑏, which 
will depart from the reference values 𝜈0 and 𝛼0 due to the power law 
dependence of Eq.  (7) with the temperature.

The simulations are performed using the code Nek5000 (Fischer 
et al., 2008), which uses a spectral element method, solving the incom-
pressible Navier–Stokes equations on Gauss–Lobatto–Legendre nodes. 
The computational domain consists of a straight circular pipe of length 
25𝑅, discretized with 55440 spectral elements of polynomial order 𝑁 =
7, with 105 elements in the stream-wise direction and 528 elements in 
the cross-plane (Fig.  2(𝑎)). The first grid point in the radial direction 
is located at 𝛥𝑟𝑚𝑖𝑛𝑢𝜏0∕𝜈0 ≃ 0.25 from the wall, having a maximum 
radial mesh size of 𝛥𝑟𝑚𝑎𝑥𝑢𝜏0∕𝜈0 ≤ 3.5. In the circumferential direction 
we have 𝛥(𝑅𝜃)𝑚𝑎𝑥𝑢𝜏0∕𝜈0 ≤ 3.5, while in the axial direction the grid 
size ranges from 𝛥𝑧𝑚𝑖𝑛𝑢𝜏0∕𝜈0 ≃ 2.8 to 𝛥𝑧𝑚𝑎𝑥𝑢𝜏0∕𝜈0 ≤ 9. This resolution 
is slightly better than the DNS of turbulent pipe flow (without heat 
transfer) carried out by El Khoury et al. (2013) also using Nek5000. The 
computational time step selected maintains a Courant–Friedrich–Levy 
number of 𝐶𝐹𝐿 ≤ 0.5.
3 
3. Results and discussion

The statistics for the different cases were accumulated for a time in-
terval, given in terms of eddy turnover times, of 𝑡𝑡𝑜𝑡 = 312𝑅∕𝑢𝜏0, which 
is roughly equal to 180 wash-out times. The statistical convergence of 
the mean bulk velocity was assessed using the block averaging method, 
revealing that the standard deviation of sub-interval means relative to 
the overall mean was less than 1%. Note that the averaging interval 
exceeds the one reported by Pirozzoli et al. (2021), which was 204 
eddy-turnover times for an adiabatic pipe flow at 𝑅𝑒𝜏 = 180.3. How-
ever, the fact that the flow is not statistically homogeneous along the 
circumferential direction implies that significantly longer integration 
times would be required to obtain better statistical convergence. No 
advantage was taken from the mirror symmetry of the problem, so that 
the asymmetry in some of the plots below provides a measure of the 
convergence of the statistics. For illustration, Fig.  2(𝑏) shows a snapshot 
of the instantaneous temperature distribution 𝑇 ∕𝑇𝜏0 along the pipe for 
Case 4.

3.1. Circumferential distributions on the pipe wall

The circumferential distribution of temperature on the pipe wall is 
presented in Fig.  3(𝑎) for the three cases as the change from their cor-
responding bulk temperatures, (⟨𝑇 ⟩ − 𝑇 )∕𝑇 . The case with constant 
𝑤 𝑏 𝜏0
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Fig. 3. Circumferential variation of wall temperature minus bulk temperature at pipe wall (𝑎) and increment from Case 1 (𝑏). Shaded area indicates cooled half of the pipe. Lines 
are as described in Table  1. Thinner lines present circumferentially averaged values.
properties, Case 1, shows an anti-symmetrical temperature distribution 
with peak amplitude (⟨𝑇𝑤⟩ − 𝑇𝑏)∕𝑇𝜏0 ∼ 65. When 𝑇0∕𝑇𝜏0 decreases and 
𝜈 and 𝛼 are allowed to vary, Fig.  3(𝑎) shows that the wall temperature 
shifts to lower temperatures. This shift is characterized in Fig.  3(𝑏)
by the difference in wall-temperature between the cases with variable 
properties (Cases 2, 3 and 4) and the case with constant properties 
(Case 1), 𝛥(⟨𝑇 ⟩𝑤 − 𝑇𝑏)𝑖∕𝑇𝜏0, where 

𝛥(𝜉)𝑖 = [𝜉]𝑐𝑎𝑠𝑒 𝑖 − [𝜉]𝑐𝑎𝑠𝑒 1 (8)

𝑖 = 2, 3 and 4. The oscillations we see in this variable are likely an effect 
attributable to lack of convergence of the statistics. The circumferential 
average of the normalized temperature difference shows that (⟨𝑇𝑤⟩ −
𝑇𝑏)∕𝑇𝜏0 for Case 2 is shifted by ∼ − 1.1 and Case 3 by ∼ − 2.4, while 
Case 4 presents a shift of about ∼ − 4.7.

The non-uniform temperature distribution produces a variation 
of the fluid properties, viscosity and diffusivity, leading to a non-
homogeneous distribution of shear stress, ⟨𝜏𝑤⟩, at the wall and hence, of 
the local friction velocity 𝑢𝜏 (𝜃) =

√

⟨𝜏𝑤⟩∕𝜌. The variation of the friction 
velocity with the circumferential position is provided in Fig.  4(𝑎). For 
the most sensitive case, Case 4, the friction velocity varies about ∼−12% 
with respect to Case 1 in the heated part, and about ∼ + 14% in the 
cooled part. For Case 3, the friction velocity varies fairly symmetrically 
from −6% to +6%, while the change in 𝑢𝜏 for Case 2 is only ±2.5%. 
As a consequence, the local friction coefficient 𝐶𝑓 = 2𝑢2𝜏∕𝑈

2
𝑏  roughly 

changes 52%, 25% and 10% from top to bottom for Cases 4, 3 and 2 
respectively.

The local friction temperature, 𝑇𝜏 (𝜃), defined as 𝑞′′𝑤(𝜃) = 𝜌𝐶𝑝𝑢𝜏𝑇𝜏 , 
is shown in Fig.  4(𝑏). The percent variation of the friction temperature 
from the case with constant fluid properties is equal and of opposite 
sign to the variation of 𝑢𝜏∕𝑢𝜏0, since the thermal boundary condition 
implies 𝑢𝜏 (𝜃)𝑇𝜏 (𝜃) = 𝑢𝜏0𝑇𝜏0𝜋 sin 𝜃 for all cases.

Circumferential variations of the wall values of kinematic viscosity, 
⟨𝜈⟩𝑤, and the thermal diffusivity, ⟨𝛼⟩𝑤, together with the local friction 
velocity, 𝑢𝜏 , result in non-homogeneous profiles for the local friction 
Reynolds number (𝑅𝑒𝜏,𝑤 = 𝑢𝜏𝑅∕⟨𝜈⟩𝑤) and local Prandtl number (𝑃𝑟𝑤 =
⟨𝜈⟩𝑤∕⟨𝛼⟩𝑤), which are plotted in Fig.  5. Changes are significant. The 
Reynolds number varies a 33% from the hot to the cold side of the 
pipe in Case 2, a 66% in Case 3 and a 129% in Case 4, ranging from 
𝑅𝑒𝜏,𝑤 ∼ 78 to 𝑅𝑒𝜏,𝑤 ∼ 310 in the latter. Prandtl number changes from 
𝑃𝑟𝑤 ∼ 0.33 to 𝑃𝑟𝑤 ∼ 2.13 in the most sensitive case, which means a 
257% variation from the hot and cold sides of the pipe. This figure is 
reduced to 96% for Case 3 and to 43% for Case 2. Finally, the local 
Péclet number, 𝑃𝑒 = 𝑅𝑒 𝑃𝑟 , is reported in Fig.  5(𝑐). It takes a 
𝜏,𝑤 𝜏,𝑤 𝑤

4 
value of about 𝑃𝑒𝜏,𝑤 ∼ 105 at the hot side of the pipe, and about 
𝑃𝑒𝜏,𝑤 ∼ 159 at the cold side for Case 4, when 𝑃𝑒𝜏,𝑤 ∼ 126 for Case 1. 
As expected, the variation in the local Péclet number for Cases 3 and 2 
is smaller, roughly 115 to 140 and 120 to 132, respectively, from hot 
to cold sides of the pipe. Note that, while the local Reynolds number 
is increased (decreased) in the hot (cold) side of the pipe, the local 
Péclet number is decreased (increased). This suggests that, when the 
thermal boundary layers get thicker, the momentum boundary layers 
get thinner (and vice-versa).

Unlike cases with iso-thermal or mixed boundary conditions (Piller, 
2005), a constant heat flux boundary condition permits temperature 
fluctuations at the wall. Fig.  6 shows the circumferential variation 
of the RMS temperature fluctuations on the wall for the four cases 
of study. Values range from 𝑇 ′

𝑟𝑚𝑠∕𝑇𝜏0 ∼ 5.5 to 7.8 and have local 
maximums in the regions where the heat flux, positive or negative, 
is more intense, 𝜃 = 𝜋∕2 and 𝜃 = 3𝜋∕2. These fluctuations are found 
to be largely influenced by the variable fluid properties. As 𝑇0∕𝑇𝜏0
decrease, the fluctuations at the heated side are mitigated, while they 
are exacerbated at the cooled side. For Case 4, we have a ∼ + 13%
increment in the 𝑇 ′

𝑟𝑚𝑠∕𝑇𝜏0 peak at the cold bottom compared to the case 
of constant fluid properties, while fluctuations are reduced by ∼− 15%
at the hot top.

3.2. Cross-plane flow distributions

The variation of the flow properties in the cross-plane are shown 
through the use of contour plots in Figs.  7–10, where the left half of 
the pipe corresponds to the case with constant properties (Case 1) and 
the right half belongs to the more sensitive case (Case 4), facilitating 
the comparison between the two cases. Since the heat flux takes a top 
to bottom direction and the peak temperatures are reached at 𝜃 = 𝜋∕2
and 𝜃 = 3𝜋∕2, the profiles shown in the figures below correspond to 
a cut through the symmetry axis, 𝑥 = 0, because this is the location 
where differences are more apparent.

The results for the mean axial velocity are provided in Fig.  7, with 
Fig.  7(𝑎) showing the contour plots comparison and Fig.  7(𝑏) plotting 
the mean axial velocity profiles for all the cases. Fig.  7(𝑐) gives the 
variations of ⟨𝑢𝑧⟩ with respect to Case 1, namely 𝛥(⟨𝑢𝑧⟩)𝑖∕𝑢𝜏0, 𝑖 = 2, 3, 4. 
The mean axial velocity profiles tend to lose their symmetry when 
𝑇0∕𝑇𝜏0 decreases. The velocity gradient becomes smaller near the cold 
half of the pipe, with a thicker boundary layer caused by the increased 
viscosity. The opposite is true for the heated half of the pipe, where the 
mean velocity profile shows a thinner boundary layer and a steeper 
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Fig. 4. Circumferential variation of local friction velocity (𝑎) and local friction temperature (𝑏) at pipe wall. Shaded area indicates cooled half of the pipe. Lines are as described 
in Table  1.

Fig. 5. Circumferential variation of local friction Reynolds number (𝑎), local Prandtl number (𝑏) and local Péclet number (𝑐) at pipe wall. Shaded area indicates cooled half of the 
pipe. Lines are as described in Table  1.
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Fig. 6. Circumferential variation of local RMS temperature fluctuation on the pipe 
wall. Shaded area indicates cooled half of the pipe. Lines are as described in Table  1.

gradient at the wall for the cases with temperature dependent fluid 
properties. For the most sensitive case (Case 4), the axial flow velocity 
is reduced by ∼−3𝑢𝜏0 near the cooled wall, by ∼−0.7𝑢𝜏0 at mid channel 
but increased ∼ + 2𝑢𝜏0 near the heated wall.

The turbulent kinetic energy (TKE) contours and profiles are com-
pared in Fig.  8. We observe that the peak TKE is enhanced near the 
cold bottom, where the mean velocity gradient is reduced, while the 
opposite occurs in the hot side. Note also that the position of the 
peak TKE moves closer to the pipe wall as the mean velocity gradient 
increases. While the latter is the expected behavior in incompress-
ible wall-turbulent flows, the increased TKE for the reduced velocity 
gradients are not. However, this behavior is consistent with previous 
observations (Zonta et al., 2012; Lee et al., 2013).

The profile of the difference between the mean temperature and 
the bulk temperature, normalized with the global friction temperature, 
(⟨𝑇 ⟩ − 𝑇𝑏)∕𝑇𝜏0, is shown in Fig.  9. The temperature distribution in 
the cross-plane is dominated by the heat flux boundary condition on 
the wall. Highest mean temperature is reached at the top where the 
heat flux is maximum and lowest mean temperature is found at the 
bottom where the heat flux is more negative. Although the profiles 
for the four cases are similar, the local variation in Prandtl number 
produces an effect on the thermal boundary layers near the pipe wall. 
Fig.  9(𝑐) provides with the temperature increment in Cases 2, 3 and 
4 with respect to the temperature obtained for Case 1. We distinguish 
a central region where the temperature changes linearly from top to 
bottom with equal slope for the three cases, with Case 2 being shifted 
towards higher normalized temperatures by ∼ + 0.7, Case 3 by ∼ + 1.7
and Case 4 by ∼ + 3.5. Close to the wall the behavior is different and 
the cases with variable properties have lower temperatures, consistent 
with the discussion of the temperature profile on the wall (Fig.  3).

Fig.  10 reports the RMS temperature fluctuations in the cross-plane 
and on the vertical diameter of the pipe. Near the walls, the behavior 
of the temperature RMS is qualitatively similar to the behavior of the 
TKE. Fluctuations are promoted near the cooled wall, but damped near 
the heated wall. Note that these tendencies are now consistent with the 
changes in the mean temperature gradients. For the most sensitive case, 
Case 4, there is a +8.8% increment in the peak of 𝑇 ′

𝑟𝑚𝑠∕𝑇𝜏0 at the cooled 
part of the pipe wall, whilst the peak of 𝑇 ′

𝑟𝑚𝑠∕𝑇𝜏0 decreases −13.8% at 
the heated wall.

3.3. Secondary flows and heat fluxes

The introduction of variable fluid properties in the computation 
leads to the existence of small, but discernible, mean velocities in 
6 
the radial and circumferential directions, caused by the variations in 
temperature in the cross-plane. Fig.  11 shows the direction (⟨𝑢𝑥⟩, ⟨𝑢𝑦⟩) 
and magnitude (𝑢𝑠𝑒𝑐 =

√

⟨𝑢𝑥⟩2 + ⟨𝑢𝑦⟩2) of these secondary flows, for all 
three cases. For Case 4, the secondary vectors are of order 𝑂(𝑢𝑠𝑒𝑐∕𝑢𝜏0) ∼
0.1, with a maximum of 𝑢𝑠𝑒𝑐𝑚𝑎𝑥 = 0.169𝑢𝜏0, which accounts for ∼1.2%
of the bulk velocity. Note that the intensity of the secondary flow of 
Case 4 is comparable to that of the secondary flows in square ducts at 
comparable 𝑅𝑒𝜏 (Pinelli et al., 2010; Pirozzoli et al., 2018).

The presence of secondary flows are associated with the existence 
of non-zero stream-wise vorticity, which appears superimposed in Fig. 
11 as colored contours in the range −2.2 ≤ ⟨𝜔𝑧⟩𝑅∕𝑢𝜏0 ≤ 2.2. In order to 
have a better understanding on the nature of these secondary flows, we 
analyze the different terms in the stream-wise vorticity equation. The 
equation for the vorticity vector reads as in Eq. (9). 
𝜕�⃗�
𝜕𝑡

+
(

𝑢 ⋅ ∇
)

�⃗� =
(

�⃗� ⋅ ∇
)

𝑢 + 1
𝜌

[

∇ ×
(

∇ ⋅ ⃗⃗𝜏
)]

(9)

Considering that our problem is homogeneous in 𝑡 and 𝑧, and that 
∇⋅𝑢 = 0 and ∇⋅�⃗� = 0, and projecting in the axial direction, the equation 
of the averaged stream-wise vorticity leads to

advection term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
⟨𝑢𝑥⟩𝜕𝑥⟨𝜔𝑧⟩ + ⟨𝑢𝑦⟩𝜕𝑦⟨𝜔𝑧⟩+

turbulent production term
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

𝜕𝑥𝑥 − 𝜕𝑦𝑦
)

⟨𝑢′𝑥𝑢
′
𝑦⟩ + 𝜕𝑥𝑦

(

⟨𝑢′𝑦
2
⟩ − ⟨𝑢′𝑥

2
⟩

)

= ⟨𝜈⟩
(

𝜕𝑥𝑥 + 𝜕𝑦𝑦
)

⟨𝜔𝑧⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
mean dissipation term

+ ⟨𝜈′
(

𝜕𝑥𝑥 + 𝜕𝑦𝑦
)

𝜔′
𝑧⟩ + ⟨

(

𝜕𝑥𝑢𝑦 + 𝜕𝑦𝑢𝑥
) (

𝜕𝑥𝑥 − 𝜕𝑦𝑦
)

𝜈⟩ + 2⟨
(

𝜕𝑦𝑢𝑦 − 𝜕𝑥𝑢𝑥
)

𝜕𝑥𝑦𝜈⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

variable viscosity term
(10)

We have identified four terms contributing to the change in stream-
wise vorticity. The first term in Eq. (10) is the convection of 𝜔𝑧 by the 
cross-flow velocities. The second term is the production of 𝜔𝑧 by the 
Reynolds stresses (with negative sign). The third term is the dissipation 
created by the mean viscosity ⟨𝜈⟩. Finally, the fourth term is the 
contribution due to the viscosity gradients and fluctuations. Note that 
this last term would not exist in the case of constant fluid properties.

The magnitude of these terms are evaluated for Case 4 in a 10-
degrees sector, centered in 𝑦 = 0. Values reported in Fig.  12 are 
circumferentially averaged and adequately symmetrized to reduce the 
noise in the results. Figures correspond to non-dimensional values using 
𝑅 as the reference distance, 𝑢𝜏0 as the reference velocity and 𝜈0 as the 
reference viscosity. As shown in Fig.  12, the streamwise vorticity and 
all the terms are null near the axis of the pipe. When we approach 
the wall, ⟨𝜔𝑧⟩ starts increasing at 𝑟∕𝑅 ∼ 0.6 ((1 − 𝑟)𝑢𝜏0∕𝜈0 ∼ 70), 
getting a local maximum at 𝑟∕𝑅 ∼ 0.8 ((1 − 𝑟)𝑢𝜏0∕𝜈0 ∼ 36). Closer to 
the wall, at 𝑟∕𝑅 ∼ 0.9 ((1 − 𝑟)𝑢𝜏0∕𝜈0 ∼ 20), the streamwise vorticity 
becomes negative, reaching the minimum at the wall. Focusing now 
on the contribution from the different terms in Eq. (10), it is apparent 
that the existence of 𝜔𝑧 is mainly driven by the difference in Reynolds 
stresses near the walls, indicating that this secondary flow is of the 
second kind, following the classification by Prandtl (1926). The analysis 
shows that the turbulent stresses gradients are approximately balanced 
by the mean diffusion term, with the advection term having a much 
smaller contribution. This happens in almost all the domain, except for 
distances (1 − 𝑟)𝑢𝜏0∕𝜈0 ≤ 5. Closer to the wall, the turbulent stresses 
contribution vanishes and the term gathering the effect of the viscosity 
fluctuations and gradients becomes increasingly important.

These secondary flows, despite their small magnitude, have an 
important practical contribution to the heat fluxes in the cross-plane. 
We can distinguish, more clearly in Case 4, two anti-symmetrical vortex 
moving hotter fluid from top to bottom along the vertical diameter 
and returning colder fluid along the pipe walls, see Fig.  11c. In order 
to assess the influence of the secondary flows in the heat fluxes, 
let consider the transport equation for the mean energy in Cartesian 
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Fig. 7. Mean axial velocity (⟨𝑢𝑧⟩∕𝑢𝜏0) comparison. (𝑎) Case 1 field (left) is compared with Case 4 field (right). (𝑏) Top-bottom profile comparison. (𝑐) Variations with respect to 
Case 1, 𝛥⟨𝑢𝑧⟩∕𝑢𝜏0. Shaded area indicates cooled half of the pipe. Lines are as described in Table  1.

Fig. 8. Turbulent kinetic energy profiles, 𝑇𝐾𝐸 = 1∕2⟨𝑢′2 + 𝑣′2 + 𝑤′2
⟩∕𝑢2𝜏0. (𝑎) Case 1 field (left) is compared with Case 4 field (right). (𝑏) Top-bottom profile comparison. (𝑐)

Variations with respect to Case 1, 𝛥𝑇𝐾𝐸∕𝑢2𝜏0. Shaded area indicates cooled half of the pipe. Lines are as described in Table  1.

Fig. 9. Mean temperature (⟨𝑇 ⟩−𝑇𝑏)∕𝑇𝜏0 comparison. (𝑎) Case 1 field (left) is compared with Case 3 field (right). (𝑏) Top-bottom profile comparison. (𝑐) Mean temperature increment 
from Case 1 𝛥(⟨𝑇 ⟩ − 𝑇𝑏)∕𝑇𝜏0. Shaded area indicates cooled half of the pipe. Lines are as described in Table  1.
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Fig. 10. Root mean square temperature fluctuation (𝑇 ′
𝑟𝑚𝑠∕𝑇𝜏0

) comparison. (𝑎) Case 1 field (left) is compared with Case 3 field (right). (𝑏) Top-bottom profile comparison. (𝑐) Mean 
temperature increment from Case 1 𝛥𝑇 ′

𝑟𝑚𝑠∕𝑇𝜏0. Shaded area indicates cooled half of the pipe. Lines are as described in Table  1.

Fig. 11. Secondary velocity vectors, 𝑢𝑠𝑒𝑐 and streamwise vorticity, ⟨𝜔𝑧⟩𝑅∕𝑢𝜏0, contours. (𝑎) Case 2. (𝑏) Case 3. (𝑐) Case 4.  (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)
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Fig. 12. Streamwise vorticity equation terms analysis for Case 4. Blue dash-dotted line: mean advection term; red solid line: turbulent stresses term; green dashed line: mean 
diffusion term; yellow dotted line: variable viscosity term; black symbols: ⟨𝜔𝑧⟩𝑅∕𝑢𝜏0. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)
coordinates: 
𝜕⟨𝑢𝑖𝑇 ⟩
𝜕𝑥𝑖

= 𝜕
𝜕𝑥𝑖

(⟨

𝛼(𝑇 ) 𝜕𝑇
𝜕𝑥𝑖

⟩)

. (11)

From this equation, we can define the total heat flux vector, �⃗�, as 

𝛷𝑖 = ⟨𝑢𝑖⟩(⟨𝑇 ⟩ − 𝑇𝑏) + ⟨𝑢′𝑖𝑇
′
⟩ − ⟨𝛼(𝑇 )⟩⟨ 𝜕𝑇

𝜕𝑥𝑖
⟩. (12)

where we have added, with negative sign, the contribution of the 
solenoidal component of the flux ⟨𝑢𝑖⟩𝑇𝑏 and we have neglected the term 
⟨𝛼′𝜕𝑥𝑖𝑇 ′

⟩ (note that 𝑇 ′∕𝑇0 ≪ 1, and then 𝛼′∕𝛼0 ≪ 1).
In Fig.  13 we show the three terms of the vertical component of total 

heat flux vector, 𝛷𝑦: the secondary flow heat flux, ⟨𝑢𝑦⟩(⟨𝑇 ⟩−𝑇𝑏), the tur-
bulent heat flux, ⟨𝑢′𝑦𝑇 ′

⟩, and the diffusive heat flux, −⟨𝛼⟩𝜕⟨𝑇 ⟩∕𝜕𝑦, nor-
malized with 𝑢𝜏0𝑇𝜏0, for all 4 cases. Heat flux distributions are provided 
on two horizontal planes, at 𝑦∕𝑅 = +0.5 within the heated upper part 
and at 𝑦∕𝑅 = −0.5 within the cooled lower part. The sign criteria we fol-
low is that negative values indicate heat flux going from top to bottom.

As shown in Fig.  13, the normalized turbulent heat fluxes ⟨𝑢′𝑦𝑇 ′
⟩∕

(𝑢𝜏0𝑇𝜏0) are dominant in most of the flow domain. Starting from zero 
on the pipe surface, the profiles reach a minimum near the wall and 
then increase slightly towards the symmetry axis, 𝑥 = 0. Regarding the 
heat flux produced by the secondary flows, ⟨𝑢𝑦⟩(⟨𝑇 ⟩ − 𝑇𝑏)∕(𝑢𝜏0𝑇𝜏0), we 
observe an increasing contribution with the fluid variables sensitivity 
to temperature. Near the walls, the secondary heat fluxes are strong 
and positive, at 𝑦∕𝑅 = +0.5, or negative, at 𝑦∕𝑅 = −0.5, indicating a 
flow stream moving upwards, transporting fluid with mean temperature 
above or below 𝑇𝑏 respectively. Near the symmetry axis, the flows 
moves from top to bottom, creating secondary fluxes of the opposite 
sign. For Case 4, the contribution of these fluxes is even larger than 
that of the diffusive terms, accounting for up to one third of the total 
heat flux crossing the pipe. Note that the heat flux contribution of the 
secondary flows should be zero for Case 1 and that deviations from zero 
gives an indication of the statistics error due to lack of convergence.

3.4. Mean flow properties

Integral quantities are of great importance for engineering purposes 
in general and, in particular, for the design of Solar Power Towers, 
where their economic perspectives heavily depend on the working fluid 
performance. In this section, we quantify the performance output from 
the computation in terms of the mass flow rate, the friction coefficient 
and the heat transfer coefficient.
9 
Table 2
Mean pipe mass flow and friction coefficient.
 Case 𝑅𝑒𝜏0 𝑅𝑒𝑏 𝑈𝑏∕𝑢𝜏0 𝐶𝑓 ⋅ 10−3 
 Case 1 180.0 5262 14.59 9.36  
 Case 2 180.0 5244 14.56 9.43  
 Case 3 180.0 5188 14.41 9.63  
 Case 4 180.0 5039 14.00 10.21  
 El Khoury et al. (2013) 182.2 5300 14.54 9.45  
 Wu and Moin (2008) 181.4 5300 14.61 9.37  
 Redjem-Saad et al. (2007) 187.0 5500 14.70 9.25  
 Piller (2005) 180.0 5273 14.65 9.32  
 Eggels et al. (1994) 179.9 5300 14.73 9.22  
 Colebrook formula 5300 9.21  

Table  2 presents the results for the mass flow, in terms of the 
bulk velocity, 𝑈𝑏∕𝑢𝜏0, and the friction coefficient, 𝐶𝑓 , predicted in our 
computations. Results are compared with those obtained from previ-
ous reported DNS with constant properties and with the Colebrook’s 
empirical formula, showing good agreement with Case 1. Regarding 
the cases with variable fluid properties, as the parameter 𝑇0∕𝑇𝜏0 is 
decreased, we see an increment of the overall flow resistance, that 
implies a +9.1% in the friction coefficient for Case 4, a +2.9% for Case 
3 and a +0.8% for Case 2. The reasons for this increase in the friction 
coefficient are probably related to two separate contributions, namely 
the need to sustain secondary motions and an overall increase of the 
fluid viscosity. The latter is apparent in Fig.  1(𝑎), showing that the 
viscosity distribution is clearly skewed towards 𝜈∕𝜈0 > 1.

Regarding the thermal performance, we quantify the overall impact 
on heat transfer defining integral values for the Nusselt number on the 
heated surface and on the cooled surface as 

𝑁𝑢𝐻 = 2𝑅𝜋
𝜌𝐶𝑝 ∫

𝜋
0 ⟨𝛼𝑤⟩𝑑𝜃

∫ 𝜋
0 𝑞′′𝑤𝑑𝜃

∫ 𝜋
0 (⟨𝑇𝑤⟩ − 𝑇𝑏)𝑑𝜃

(13)

𝑁𝑢𝐶 = 2𝑅𝜋
𝜌𝐶𝑝 ∫

2𝜋
𝜋 ⟨𝛼𝑤⟩𝑑𝜃

∫ 2𝜋
𝜋 𝑞′′𝑤𝑑𝜃

∫ 2𝜋
𝜋 (⟨𝑇𝑤⟩ − 𝑇𝑏)𝑑𝜃

. (14)

Table  3 quantifies the heat transfer in terms of the integral Nusselt 
numbers (𝑁𝑢) for all the cases. Reynolds and Prandtl numbers provided 
are also average values obtained integrating the local surface values on 
the hot region (𝜃 = 0 to 𝜋) and on the cold region (𝜃 = 𝜋 to 2𝜋). Note 
that for the case with constant fluid properties (Case 1), the Nusselt, 
Reynolds and Prandtl numbers averaged over the hot and cold regions 
are the same, and hence only one value is reported in Table  3. The value 
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Fig. 13. Vertical heat fluxes for all cases at plane 𝑦∕𝑅 = +0.5 (𝑎) and at plane 𝑦∕𝑅 = −0.5 (𝑏). Colors correspond to case assignment in Table  1. Solid lines: secondary flow heat 
fluxes, ⟨𝑢𝑦⟩(⟨𝑇 ⟩ − 𝑇𝑏)∕𝑢𝜏0𝑇𝜏0, dash-dotted lines: turbulent heat fluxes, ⟨𝑢′𝑦𝑇 ′

⟩∕𝑢𝜏0𝑇𝜏0, and dashed lines: diffusive heat fluxes, −⟨𝛼⟩𝜕𝑦⟨𝑇 ⟩∕𝑢𝜏0𝑇𝜏0.  (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Mean Nusselt number on pipe wall.
 Case 𝑅𝑒𝜏,𝑤 𝑅𝑒𝑏 𝑃𝑟𝑤 𝑁𝑢  
 Case 1 180.0 5262 0.700 11.94 
 Case 2 (Hot) 199.6 5244 0.613 12.11 
 Case 2 (Cold) 160.4 5244 0.810 11.82 
 Case 3 (Hot) 218.1 5188 0.543 12.35 
 Case 3 (Cold) 141.6 5188 0.951 11.66 
 Case 4 (Hot) 253.3 5039 0.441 12.93 
 Case 4 (Cold) 105.2 5039 1.381 11.48 
 Gärtner et al. (1974) 5300 0.700 10.49 
 Reynolds (1963) 5300 0.700 9.85  
 Gnielinski formula 5300 0.700 17.51 

of the Nusselt number for the case with uniform heating obtained from 
the Gnielinski formula is provided as reference. More appropriate is the 
comparison with the cases with sinusoidal heat flux boundary condition 
of Reynolds (1963) and Gärtner et al. (1974). Both authors calculated 
the turbulent heat transfer in a pipe subjected to circumferentially-
varying heat flux conditions with constant fluid properties using RANS 
models. While Reynolds (1963) used an isotropic model for the thermal 
eddy-diffusivity, Gärtner et al. (1974) improved the calculations by 
employing a non-isotropic model. The discrepancies we found in the 
computed Nusselt number for Case 1, and the value obtained using the 
data from Reynolds (1963) or Gärtner et al. (1974), could be attributed 
to the simplifications applied by these authors in the radial distributions 
of the eddy viscosity and eddy diffusivities, and in the ratio used for 
the circumferential and radial diffusivities, which do not reflect the 
physical behavior, specially at low Reynolds numbers, as concluded 
in Antoranz et al. (2015). Note that the improved model of Gärtner 
et al. (1974) get closer to the current results (with an error of ∼−12%), 
than the estimation of Reynolds (1963) (error of ∼ − 18%).

The consideration of variable fluid properties in the computation 
produces significant differences in the local Nusselt number of the 
heated surface compared with the cooled surface. In the most sensitive 
case, Case 4, we appreciate an increment of +8.3% in 𝑁𝑢 on the hot 
wall compared to the Case 1, but a reduction of −3.8% on the cold 
wall. In average, the overall Nusselt number increases +0.21% for Case 
2, +0.54% for Case 3, and +2.22% for Case 4.

4. Conclusions

DNS of a fully-developed turbulent flow in a pipe, with
circumferentially-varying heat flux boundary conditions and with
10 
temperature-dependent fluid properties, has been conducted aiming to 
study their effect on the turbulent heat transfer on the pipes of a Solar 
Heat Receiver. The analysis has been carried out for a pipe with refer-
ence friction Reynolds number 𝑅𝑒𝜏0 = 180, reference Prandtl number 
𝑃𝑟0 = 0.7 and for four cases with different bulk temperatures, 𝑇0∕𝑇𝜏0 =
∞, 1000, 500 and 250, corresponding with null, low, medium and high 
viscosity and diffusivity sensitivity to flow temperature variations.

Inasmuch as the heat flux boundary condition is the same for all 
cases, the mean temperature distribution on the pipe wall does not 
change significantly. However, the viscosity and diffusivity dependency 
on temperature produce the turbulent velocities and temperature fluc-
tuations being enhanced near the cold bottom but damped near the 
hot top. The RMS temperature fluctuations at the pipe wall, (𝑇 ′

𝑟𝑚𝑠)𝑤, 
has increments of around +13% and reductions of around −15% for the 
most sensitivity case. The near wall peak of TKE has increased by +7.8%
at the cold end and reduced by −14.2% at the hot end.

The non-homogeneous fluid properties induce the occurrence of 
secondary flows on the pipe cross-plane. We have found that although 
the secondary velocities are low, they have a significant impact in the 
vertical heat flux, accounting for one third of the total heat flux in the 
most sensitive case.

Finally, the analysis of the integral flow quantities has shown that, 
when we reduce the bulk temperature and the fluid properties are 
more sensitive to temperature variations, the overall friction coefficient 
increases by up to +9.1%. Regarding the heat transfer on the wall, char-
acterized by the Nusselt number, we have found increasing differences 
from heated to cooled walls, but that means only a moderate overall 
increase of +2.2% in heat transfer for Case 4.
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