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Abstract Induction heating is an important technology for many engineering applications. Its modelling and
analysis are challenging because it is a multiphysics phenomenon coupling geometrically nonlinear mechanics,
electromagnetics and heat conduction. One of the challenges is buckling of thin plates and beams due to high
temperatures and thermal gradients. The mechanical buckling changes the electromagnetic configuration of the
model, thus changing the thermal solution, which affects mechanics back leading to a fully coupled problem.
While this phenomenon has been studied numerically in the literature, it lacks an analytical treatment. We
propose a closed-form analytical solution for the post-buckling deformation of induction heated beams. Using
the solution, we conduct multiple parameter studies, aiming to gain a foundational understanding of the
behaviour exhibited by the coupled system.

1 Introduction

Induction heating finds extensive application across diverse industries, owing to its capacity for rapidly and effi-
ciently increasing temperatures directly within the target material. This feature makes it particularly valuable
for numerous production processes, including material treatment and heating of transport belts during manu-
facturing operations [1]. Thin materials such as metal sheets, belts, electronic components and medical tubing
benefit significantly from this heating method. Industries such as aerospace, semiconductor manufacturing and
food production leverage its efficiency for various production needs illustrated in [2—4].

Significant temperature changes lead to thermal deformations, which cannot be omitted in the analysis
because of their impact on the model configuration. Such thermal deformations are particularly of interest
for thin structures, as they are prone to thermal buckling under high temperatures and high thermal gradients.
Buckling introduces high deflections, thus changing the electromagnetic configuration and the temperature
distribution, which in turn affects the post-buckling behaviour of the structure changing the equilibrium state
of the whole system. Research works show the significance of the effect of thermal buckling on the induction
heating process for various cases [5,6]. It is especially important for non-symmetric induction system layouts,
for example, for the transverse one-sided inductor layout, which is used in various industrial applications
shown in [3,5-8].

Numerical simulations allow us to study the influence of this phenomenon with high accuracy. Coupled finite
element method (FEM) modelling procedures are presented for different applications [6,7,9,10]. Typically, the
FEM approach consists of iterative subsequent solutions of electromagnetic, heat conduction and mechanical
models with geometry and parameter update. It is designed to converge to the equilibrium state of the whole
system for the given electric input. As a first step, the electromagnetic eddy current problem is solved for
the non-deformed configuration. This provides a heat source to solve the heat conduction problem. Then, the
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thermal strain is calculated and transferred to the nonlinear mechanical model. The next step is the transfer of the
displacements from the mechanical model to electromagnetic and heat conduction models to update their mesh
accordingly. Finally, the cycle repeats until a convergence criterion is satisfied. This method uses the concept
of fixed point iteration, allowing us to analyse predetermined models, such as those used in industrial settings.
However, it comes with several drawbacks: it demands significant computational resources, poses challenges
in model construction due to intricate meshing and data transfer needs, and lacks the ability to explore the
impact of all parameters on the system. As a result, this approach falls short of providing a comprehensive
understanding of induction heating buckling from a fundamental standpoint.

Our goal is to investigate the complicated phenomena, relevant to practical applications on the basis of a
novel simplified elasto-thermo-electromagnetic model problem, that reflects the principal coupling effects and
demonstrates post-buckling behaviour as the real-world structures do. In the present contribution, we develop a
comprehensive analytical solution for this model problem, which offers valuable insights into coupled system
critical behaviour. The analytical approach allows for a deeper understanding of the interplay between the
induction heating and the post-buckling behaviour of the beam, contributing to a more efficient and informed
design methodology.

We use methods from various fields to develop an analytical solution for the coupled problem. For the
electromagnetic model, we use coupled magnetic and electric circuit models. The heat conduction model
requires a steady state energy balance. We elaborate on the mechanical model based on the nonlinear beam
equation and Galerkin’s and asymptotic approaches. The final relations for the coupled system are solved
analytically with the assistance of the Wolfram Mathematica! computer algebra system.

2 Overview of the electro-thermo-mechanical model

We investigate a simplified test model of an induction heating process. The model is symmetric as illustrated
in Fig. 1. The system layout is equivalent to a transformer with an air gap in the core, where the size of the
air gap is governed by the mechanics of a flexible beam fixed at both ends. The magnetic core housing the
input coil is positioned directly above the midpoint of the beam. The primary function of the second coil is to
receive the energy from the electromagnetic system, heating the beam.

As the focus of the model is on an analytical investigation of the interconnectivity of physical phenomena
governing the induction heating process, there is a difference between the proposed simplified model and the
induction heating applications presented in [6,7,9,10]. Firstly, we have an electrically non-conductive beam;
thus, the heating process is governed exclusively by the second coil. Secondly, the mechanical part is simplified
to a clamped—clamped beam. Finally, the magnetic core is introduced to be able to use a network model for
the electromagnetic system, which, however, is common in numerous real-world applications [11].

We impose an alternating voltage V) to the input coil, generating the alternating current /1. The input
coil creates an alternating magnetic field. It passes through the core and the air gap. The alternating magnetic
field induces an electric current /p in the second coil. Then, the ohmic losses in the second coil heat the
beam. Due to thermal expansion and the inability to expand freely, compressive stresses occur in the beam.
At a critical temperature, the straight configuration of the beam becomes unstable and the beam buckles. The
arising deflections change the air gap width. This changes the electromagnetic configuration and the total
energy transferred to the system, which in turn affects the post-buckling behaviour.

In the following, we treat a coupled multiphysics problem involving electromagnetics, heat conduction
and mechanics. To describe the buckling caused by induction heating, we need to build a relation between the
deflections of the structure and the electrical input. For our model, deflections of the beam affect the air gap
width. Thus, the first step is to derive the relations connecting the output current in the second coil with the
input current and the gap width. Then we solve the thermal problem connecting the output current and the
beam’s temperature. Finally, we complete the coupled system by building a temperature—deflection relation.

3 Induction heating
We derive an analytical model describing the induction heating process. For this purpose, we combine electro-

magnetic and heat transfer models. Our objectives are to solve the system to obtain the relations for currents
I1 and I> and voltage in the output circuit V> for an imposed harmonic voltage V1, and to calculate the final

! https://www.wolfram.com/mathematica/
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temperature field of the beam. The resolved electrical circuits allow us to calculate the total input and output
energies of the system and its efficiency in dependence on the size of the air gap.

3.1 Electromagnetic model

To solve the electromagnetic problem analytically, we need to use a number of assumptions. Firstly, we neglect
the skin effect, no matter the input frequency. Secondly, we assume the flux is going through the magnetic core
and the gap only; we neglect any stray fluxes, particularly the stray flux in the gap. Additionally, we assume a
single turn in the input and output coils for simplicity.

The analytical solution for this example is based on the electromagnetic induction. The magnetic flux in
the circuit can be calculated by the equation derived from Ampere’s law (e.g. [12])

&=L — D), (D
where @ (in Wb) denotes the total magnetic flux through the core, L (in H) is the inductance, and /; and I,
(in A) represent the currents in input and output circuits, respectively. We use Faraday’s law
do
59
where Ver (in V) denotes the electromotive force, Kirchhoff’s voltage law (KVL) for the input and output
circuits

2)

Vemf = -

Vl = VR1 + Vemf» VZ = VR2 = Vemfv (3)
and Ohm’s law for the voltage over a resistor
Vg, = Ril;. “)

Here R; (in 2) denotes a resistance, and Vi (in V) refers to a voltage.
We insert the flux equation (1) in Faraday’s law (2). Additionally, applying the output KVL (3) and Ohm’s
law (4) leads to Veme = Ry 1. Thus, we obtain

dl; dl

Rol— —L (E _ E) . 5)

Then, we use Ohm’s law and substitute the input KVL equation (3) and the previously obtained Ve = R2 12
yielding

Vi, _Vi— Ry

L = 6
1= R R, (6)
Finally, we insert Eq. (6) into Eq. (5) and get the differential equation for the output current in the time domain
Ry\ dI» L dVv;
L{1+—)——Rh=——. 7
< Rl) dt 22 Ry dt @
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Fig. 1 Scheme of physics underlying the model
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We switch to the frequency domain by assuming a harmonic input voltage V| = Re(Vie/®) and using an
equivalent Ansatz for /5, to obtain the algebraic equation

Lio(1+ 55 - roby= Y2 (8)
Jw Rl 2 212 = R1 1,

where (A) defines a complex amplitude. Solving it with respect to b, we get

jwLV,

L =- )
JoL(R1+ Ry) — RiR>

©)

The output voltage can be obtained with Ohm’s law (4), and the current in the input circuit can be obtained
from the frequency domain form of Eq. (6). The inductance is L = RLM The magnetic reluctance Ry (in H™1)

consists of two parts: constant Ro (core and initial air gap) and changing R, depending on the deflections of
the beam

w

1
LZR—, RMZRO—RwZRO— (10)

M MgapAgap

where w (in m) denotes the deflection in the middle of the beam, (t¢,p (in H/m) stands for magnetic permeability
of the gap and Agyp (in m?) is the gap cross-sectional area (normal to the magnetic flux) of the gap (Fig. 1).
If the beam deflects towards the core (positive deflections w), the air gap shrinks, causing the total magnetic
reluctance Ry to decrease. One has different approaches to define Ay, for example, including fringing effects
as in [13]. For the sake of simplicity, we assume Agap = Acore, Where Acore is the constant cross section of the
magnetic core.

We aim to plot the efficiency characteristics of the electromagnetic system depending on its parameters.
The electrical efficiency can be calculated as follows

Re($?)
Re(S1)’

(In

Neff =

where S7 and S (in VA) are input and output complex powers. A complex power S; is calculated by Eq. (12).
We multiply a complex voltage and a complex conjugate of a complex current

=
“‘ml

Si = (12)

where () denotes a complex conjugate. We use the non-dimensional frequency and resistance parameters

© g R (13)
wy = 5 =
" RyRu R

to plot the electric efficiency of the system in Fig. 2. The figure shows a high-efficiency plateau for high @,
and R. Efficiency drops to zero at low frequency and resistance parameters. It remains constant for the low
resistance parameter across a wide range of @,,.

In a typical induction heating system [14], the operating frequency w ranges from a few kHz to several
MHz. The electrical resistivity of materials used is usually between 10~7 and 10~® Qm, while the magnetic
permeability ranges from 1072 to 10~ H/m. These properties result in values of @,, greater than 1. However,
@y, is often limited due to the skin effect, which is undesirable in many scenarios, such as when uniform
through-thickness heating is required. The parameter R typically exceeds 1, as this improves the efficiency of
the induction system.
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Fig. 2 Efficiency study for the electromagnetic system. The x- and y-axes stand for the non-dimensional parameters @, and R.
The z-axis represents the efficiency of the system. All the axes are in logarithmic scale. The thick black line represents the loading
range from Fig. 6

3.2 Heat transfer

With the thermal model, we connect the electric energy dissipated in the output resistor with the temperature
of the beam. We assume a steady state, only one heat source due to the period-averaged Ohmic losses from
induction heating, and cooling due to the surrounding air. Additionally, a high thermal conductivity of the
beam is assumed, so the heat generated by the induction is uniformly distributed over the beam. This leads
to a spatially constant temperature. Thus, the beam temperature can be obtained directly from the balance of
energy

2R2

Re(S2) = Qui of 2 — hAx(T — Ty), (14)

where Re(S2) (in W) is the real part of the induction heating complex power, Qg (in W) denotes the cooling
power, I = ||f2|| from Eq. (9), T (in K) is the temperature of the beam, 7j denotes the temperature of the air,
At (in m?) is the area of the beam in contact with the air and & (in W / m2K) is the heat transfer coefficient.
From Eq. (14), we get the current—temperature relation

_I’Ry
T 2hAr

For simplicity, we set 7o = 0 for further calculations. We also decoupled At from the mechanical dimensions
of the beam to study different effects separately.

+ Tp. (15)

4 Thermal post-buckling

We aim to derive an approximation of the beam deflection for supercritical temperatures. As the beam is fixed
on both ends and the temperature is uniform, we have a constant distribution of the compression force over
the beam (Fig. 3). Here we define the force P = P + AP (in N), where Py is Euler critical load and
A P represents the difference between the actual force and the critical force value at which the buckling is
initiated. Thus, firstly, we define the dependence of deflection on A P. Then, we build a relation between the
temperature and A P to get the post-buckling relation for the thermal loading.

4.1 Force—deflection relation

The first critical load and the associated buckling mode shape are known from Euler’s linear beam buckling
theory, see e.g. [15]. For our case (beam clamped on both sides), we have

27 A7’EJ
w(s) = wo(—=1+cos(k;s)), ki =—, Peoit=—5—

7 (16)
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Fig. 3 Mechanical model with kinematics. The applied force P = Pt + AP

where w(s) (in m) denotes the deflections of the beam, wq is the unknown deflection amplitude parameter, s
in [0, /] (in m) is the material coordinate of the beam, / (in m) represents the length of the beam, E (in Pa)
denotes Young’s modulus and J (in m*) represents the moment of inertia of the beam cross section.

Linear theory does not allow us to determine the unknown wy at the post-buckling stage. Therefore, we
need to use a nonlinear theory, assuming that the relation for w(s) from Eq. (16) holds for P > P as long
as A P is small. The nonlinear beam equation is

EJO"(s) 4 (Perit + AP) sin(0(s)) = 0, 7)

where 0(s) is an angle of the deformation (see Fig. 3) and the symbol () = % denotes the derivative with
respect to the material coordinate s. At small deformations, the deflections and the angle are related by

0(s) = w'(s) = —wpk; sin(k;s). (18)

One can utilise various mathematical approaches to find the relation for the unknown kinematic variable
wo. We introduce two methods. One is based on Galerkin’s procedure, which is known for this problem [16].
The other is developed based on the asymptotic approach and requires no a priori assumptions as in Eq. (16).

First, we apply Galerkin’s method. The method is used to approximate the solution of a differential equation.
The main idea is to minimise the residual error by selecting a suitable basis function, which usually results in
simple algebraic equations [17]. In our specific problem, we choose the expression for the angle of deformation
(18) without wok; as our basis function. We insert Eq. (18) into the beam equation (17). Then, we multiply
the resulting relation by the basis function sin(k;s) and integrate over the length. This reformulates our initial
problem, aiming to minimise the residual error in the solution.

! 2 AP
/o sin(k;s) |:—wokl3 sin(k;s) + (m + E_J> sin (wok; sin(kls)):| ds = 0. (19)
Evaluating the integral, we arrive at the equation
Jy (woky) (i_—ﬁl + k}l) — wk?wy = 0, (20)

where J1 () is the Bessel function of the first kind. To obtain an approximate closed-form solution, we perform
a series expansion of the Bessel function in Eq. (20) up to the third order with respect to wp and get

3_3( API? 2
Wy T ( Er TAT ) N wor AP _0
204 EJ

Solving the equation with respect to wy results in

221V AP

T /AP+ 4]'[122EJ

where wg denotes the deflection in the middle of the beam obtained with Galerkin’s method.

Galerkin’s method is an approximation-based method which does not guarantee the asymptotic accuracy
of the solution. So, we additionally determine wg using the asymptotic method to verify Eq. (21). The method
is utilised for deriving closed-form solutions, for example, in [18,19]. We add a small parameter A into the
beam equation (17), which indicates the smallness of A P:

wg = 2wy = 1)

EJO"(s) + (Pait + A2AP)sin(d(s)) = 0. (22)
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Then, we represent the solution as a series expansion with respect to this small parameter guessing the first
term based on the expression for the angle of the deformation Eq. (18)

0(s) = kywol sin(kis) + Y 116 (s) (23)
i=2

where the correction terms 6; are unknown functions. The power of A in Eq. (22) corresponds to the known
fact that the small deflections are proportional to the square root of A P, established by numerical solutions of
the nonlinear beam equations.

We substitute Eq. (23) to the modified beam equation Eq. (22) and collect coefficients at different powers
of the small parameter A', which produces an infinite system of equations. These equations can be solved
independently, and the solutions should satisfy the homogeneous BCs of the original problem. The equations
for the first two terms (i = 1, 2) are satisfied identically. The third equation for A is

" 2 _ : 1 4 2 - 2 AP
03 (s) + k;03(s) = kjwo sin(kys) Ek’ wy sin” (k;s) + z7 ) 24)

The minor correction term 63 itself has no importance. However, the equation (24) contains our unknown
wo and should satisfy the boundary conditions of the original problem, i.e. 83(0) = 0 and 83(/) = 0. The
inhomogeneous boundary value problem is only solvable when the right-hand side contains no first harmonic
and thus orthogonal to sin(k;s). Indeed, by multiplying the left-hand side of Eq. (24) with sin(k;s), integrating
over the length, using integration by parts and taking the boundary conditions into account, we obtain

1
/ (04 (s) + ki 63(s)) sin(k;s)ds = 0. (25)
0

Now, we are in the position to determine wg. Multiplying the right-hand side of Eq. (24) by sin(k;s),
integrating from O to / and equating the integral to zero, we obtain an equation for wg, which results in the
expression

V212 AP
72JET

where wy is the deflection in the middle of the beam obtained with the asymptotic method. The employed
procedure is similar to the Poincaré-Lindstedt method, but uses the solvability instead of the periodicity
condition [20].

The expression (26) resembles the results obtained from Galerkin’s method Eq. (21). The difference is that
the Galerkin’s result has an additional term in the denominator depending on ~/ A P, which becomes equivalent
to Eq. (26) after linearisation. We compare the results obtained by Galerkin and asymptotic methods with the
numerical solution of the beam equation Eq. (17) in Fig. 4. The numerical solution is obtained using Wolfram

Mathematica. We plot the non-dimensional deflections in the middle of the beam # against the normalised
supercritical force %.

As we can see from the graph, Galerkin’s approximation matches the numerical solution with high accuracy:
the relative error is less than 5% for up to 10% of additional load above critical. The asymptotic solution’s
deviation is almost two times higher at this force level. The accuracy can be further increased by solving
the equation resulting from Galerkin’s approach (20) with the Bessel function without series expansion or
by including higher-order terms in the expansion in the asymptotic approach. As AP is small for all our
numerical experiments and the main goal is to investigate the system behaviour qualitatively, we are not

focusing on higher-accuracy models.

wa = 2wy = (26)

4.2 Temperature—deflection relation

The last step is to find the relation between T and A P for the system depicted in Fig. 3. To do this, we use the
following geometrical relationships. First, we calculate the derivative of the position vector of the deformed
configuration with respect to the material coordinate s, given as r'(s) = y'(s)j + x'(s)i, yielding a local
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Fig. 4 Post-buckling deformation: comparison of Galerkin and asymptotic methods with the numerical solution. Only the positive
branch of the bifurcation diagram is shown

direction vector. Since the distance between the supports / is given, we can relate it to the integral of the
x-projection of the direction vector r'(s). We thus have

!
lz/ x'(s)ds. 27
0

As shown in [21], the first derivative of x is related to the strains and the angle of deformation as

x'(s) = (1 4+ €)cos(®) ~ (1 +¢€) (1 - %w/(s)2>. (28)

Here € is the axial strain, which is constant for our loading case and assumptions, and we keep just the quadratic
terms of the power series concerning the transverse deflection. According to Hooke’s law, the strains in the
beam are defined by

Perit AP
e=al — — =ol — - —,
EA EA EA

where A is the cross-sectional area of the beam. Here, we assume that the reference temperature for thermal
expansion is zero. We insert Eq. (28) into the integral Eq. (27) to obtain

1
I=q —I—e)/ (1 - 1u/(s)2> ds. (30)
o 2

Then we replace w’(s) by the buckling mode for the deformation angle Eq. (18):

1= (i E2—”'@>2d 31
_(+e)/0 —(2 lsm(l) 5. €19

Here we use Galerkin’s approximation for the post-critical deflections for the beam wg. After integration, one

obtains
2wl
= [ — . 32
(I+e) 1 (32)

(29)

We insert the equation for the strains (29) and the Galerkin’s approximation (21) to the expression for the total
length of the beam (32). Then we solve it for the post-critical load A P to obtain

1
o2
This can be inserted back into the Galerkin’s approximation (21) yielding
231 \/EA(oeT +2)- 4

T JEA@T +2)— & 4 $UEL

AP (—EAI*(—aT —2) — VE2A2B(—aT — 2)2 — 4E2J1* (42 AalT — 1674 J)).

wg(T) =

(33)
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with d = \/Ez 14 (A21%(aT +2)> + J(647*J — 1672 Aal?T)). The derived equation directly relates tem-
perature and deflection. An analogous computation could be done for the asymptotic method but is omitted
due to the lower accuracy as demonstrated in Sect.4.1.

5 Analysis of the coupled model

Having the closed-form solution derived for the induction heating and thermal post-buckling, we proceed with
an analysis of the behaviour of the coupled model with energy input, displacements and temperature outputs.
We introduce a set of non-dimensional parameters beginning with the electromagnetic quantities:

w _ R
RyRo’ a Ry’

X

o= (34)
non-dimensional frequency and non-dimensional resistance, respectively. The non-dimensional frequency
parameter for the coupled system differs from the one of the electromagnetic system @, from Eq. (13). Now,
we consider only the initial reluctance R from the designed gap width without taking buckling deflections
into account. For the uncoupled electromagnetic system (Eq. (13)), we consider the total reluctance Ry;. Then,
we define the coupling parameter (non-dimensional reluctance) and the non-dimensional input power

(35)

respectively, where /4 is the thickness of the beam and S; is the input power required to achieve buckling
instability. Finally, we require the output parameters, namely the non-dimensional displacement and the non-
dimensional temperature

wg = T
h ' Tcrit’

= (36)
respectively, where T is the temperature corresponding to the Euler critical load Peyi;.

The coupled system of equations consists of the temperature—deflection relation w(7") (33) and the function
of temperature over input voltage and deflections T(Re(‘}l), w) combining Eqs. (9), (10) and (15). Instead of
the voltage, we use the input power, as every input voltage can be related to an input power. Since the functions
T (Re(S1), w) and w(T) are bijective, we can build the closed-form solution using the following strategy: firstly,
we define a temperature range in which we want to acquire the equilibrium state of the system. As deflections
towards the inductor and away from it correspond to one temperature, we obtain two deflection values from the
temperature—deflection relation (33) for each temperature. The deflections have equal amplitudes but opposite
signs. We use Eq. (15) to determine the required output currents [ for the given temperature. Then, we compute
the inductance of the electromagnetic system with Eq. (10). We now have two inductances: one corresponding
to buckling towards the inductor and the other to buckling away from it. As the last step, we obtain the input
powers for corresponding computed inductances and the output current with Eq. (9).

5.1 Bifurcation diagrams

Knowing how to find the system’s equilibrium, we plot the bifurcation displacement and temperature diagrams.
We apply different temperatures up to 20% above the critical and obtain displacements and input energies. To

show the influence of the non-dimensional parameters @, R and R, we conduct three experiments, varying one
of the parameters and fixing the other two. The results for the non-dimensional displacement and temperature
are presented in Fig. 5. Firstly, we vary the frequency parameter & = 0.01, 1, 100 with the fixed R=1and

=1 (Flg 5 A). Then, we show the influence of the resistance parameter in Fig. 5 B for R =0.01,1,100
and @ = 1 and R = 1. Finally, Fig. 5 C shows bifurcation diagrams for different coupling parameters
R =0.1,1,10and ® = 1 and R = 1. The core reluctance is set to zero for simplicity, as it is negligibly small
compared to the gap reluctance for most realistic core materials and gap widths. Thus, R includes only the
initial gap reluctance.
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Fig. 5 Deflection bifurcation diagrams (left) and temperature bifurcation diagrams (right) for different non-dimensional param-
eters. The non-dimensional deflection w and non-dimensional temperature T are plotted over the non-dimensional input power
S. The beam is heated up to 7 = 1.2. The trivial unstable solution is not shown. A We vary non-dimensional frequency @ and
fix R=1and R = 1.B We vary non-dimensional resistance R and fix & = 1 and R=1.Cwe vary non-dimensional coupling
Randfix@=1and R =1

Bifurcation diagrams for induction heating-induced buckling differ from the standard thermal buckling
diagrams. For various non-dimensional parameters, the branches of the graphs are angled or distorted in a
non-symmetric way. This happens due to the change of the efficiency (see Fig. 2) in the system caused by
the total reluctance shift. The upper branches of deflection bifurcation diagrams in Fig. 5 represent buckling
towards the magnetic core and the inductor. If a beam buckles towards the magnetic core, the total magnetic
reluctance of the system decreases, and the efficiency nefr from Eq. (11) increases. This means the beam
temperature is higher for the same input of the electromagnetic system. The minimum of the post-critical state
electrical power Spin shifts from the bifurcation point to the branch depicting buckling towards the inductor.
The meaning of Sy, is further illustrated in Fig. 8 A and C. This can lead to “snap-through” behaviour of the
beam, meaning that the beam would reach high deflection immediately at the critical power input.

On the other hand, if a beam buckles away from the magnetic core (lower branches of deflection bifurcation
diagrams in Fig. 5), the total magnetic reluctance of the system increases, and the efficiency drops. Such a
behaviour of the system makes the bifurcation diagram unsymmetric and transcritical [22]. The transcritical
(“snap-through”) effect grows with a high resistance parameter or low frequency parameter. On the other hand,
with a low resistance parameter or high frequency parameter, the plot resembles the standard supercritical
thermal buckling.

We observe a specific case of buckling towards the magnetic core in Fig. 5 C. In this scenario, the deflection
of the beam reaches the initial gap width in the plot for R = 10 when buckling towards the magnetic core. The
beam rests against the magnetic core from w = 0.1 onward, creating a jump in the first derivative of the graph
at this point. This behaviour is out of the scope of our mechanical model. However, we assume that for T close
to 1, the deflection w does not change with increasing power input. Thus, no changes to the inductance (Eq.
(10)) are introduced at higher temperatures. This assumption leads to the linear temperature—energy relation,
since T no longer depends on the deflection (Eqgs. (9) and (15)). The behaviour is evident in the right plot of
Fig. 5 C for R =10 following the discontinuity in the first derivative.
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Fig. 6 The 2D slices of the electromagnetic system efficiency 3D diagram (dotted line) (see Fig. 2) with the loading paths (solid
line) and the initial starting point (dot) are presented. The range of the loading paths is also depicted by a solid line in Fig. 2. The
model is heated up to Ty = 1.2. The system efficiency nefr is plotted over the non-dimensional frequency @,,, including the

total reluctance of the system. For all the graphs, R = 1. The initial parameters for the starting points are depicted in the boxes
foreach graph. Ao =1and R =10.B@=1and R =0.1.C&® =100and R = 10. D ® = 0.0l and R = 10

The temperature bifurcation diagrams, shown in the right-hand plots of Fig. 5, follow the same pattern.
In the absence of significant influence of the electromagnetic model on thermal buckling, one observes only
linear temperature dependency on input energy (@ = 100 of the right plot in Fig. 5 A or R = 0.01 of the right
plot in Fig. 5 B). Opposite, we see an unsymmetric bifurcation at the critical temperature for the considerable
influence of the electromagnetic system on the critical behaviour of the beam.

5.2 Coupling parameter

The influence of the coupling parameter (Fig. 5 C) differs significantly. To study it, we investigate its influence
on the change in the efficiency of the electromagnetic system. We take 2D slices of the plot in Fig. 2 with
different initial frequency and resistance parameters and the coupling parameter. The coupling parameters
define the rate of the change. Initial frequency and resistance parameters define the initial point on the plot. We
heat the system up to 7¢s¢ and plot the starting point, which represents the state of the system in the bifurcation
point. Then we heat the system up to 1.27 (as in Fig. 5). The buckled system follows one of two paths to
the left or the right from the starting point, depending on whether the beam buckles towards or away from the
coil. This is determined manually in our model but in practice is guided by the small initial imperfection. The
paths represent the change in the non-dimensional frequency parameter, including the whole reluctance of the
system Eq. (13). Thus, the non-dimensional frequency, which includes only the initial reluctance of the system
Ro, is the initial parameter for the actual non-dimensional frequency parameter, which takes the deformations
into account. The results are presented in Fig. 6.

The coupling parameter defines the rate of change of the frequency parameter with respect to the beam’s
deflections. A high coupling parameter allows for significant change in the efficiency of the electromagnetic
system due to the substantial impact of deflection changing the gap width. Thus, it affects the post-buckling
behaviour of the beam by the unsymmetry of the two paths to the left and right from a starting point in Fig. 6
A and B. These figures correspond to plots for R = 10 and 0.1 in Fig. 5 C.

The resistance and frequency parameters define the initial point in the plot (Fig. 6 C and D). Due to the
non-symmetric behaviour of the system, we observe a significant influence of the initial point. In Fig. 6 C,
there is almost no change in efficiency, even with a significant impact of deformations on system reluctance,
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coupling non-dimensional parameters. The x- and y-axes are on a logarithmic scale. Three plots correspond to three different
non-dimensional resistances: A R = 0.001. B R = 1. C R = 1000

represented by a large coupling parameter. In Fig. 6 D, we have a dramatic change in the system’s efficiency
with the same impact as the deflections.

5.3 Transcritical behaviour

The next step is to analyse the transcritical effect of the bifurcation quantitatively. We define another non-
dimensional parameter, the transcritical effect power measure

Scrit - Smin

Scrit

’

where Spin denotes the minimum post-critical state electrical power (Fig. 8 A and C). Power Spin has no
clear physical meaning for the system and serves as a characteristic of the obtained transcritical bifurcations.
The transcritical effect power measure varies only from O to 1, where O is the case of pure thermal buckling.
We plot the transcritical effect power measure parameter in 3D parameter space with respect to the coupling
and frequency parameters. We also vary the resistance parameters R = 0.001, 1, 1000 to show its impact on
the plot. We obtain three plots corresponding to different R presented in Fig. 7. The coupling and frequency
parameters are depicted on a logarithmic scale, while the transcritical effect parameter is presented on a linear
scale to clearly distinguish between high and low transcritical unsymmetric effects.

The “snap-through” effect of the system for buckling towards the magnetic core intensifies for lower
frequency and higher coupling parameters. We observe the significantly lower transcritical effect when the
coupling parameters are below 10~!. From the comparison of the three figures, it is apparent that the resis-
tance parameter shifts the border between transcritical unsymmetric and symmetric systems in @-direction.
Specifically, higher values of R result in transcritical effect persisting at higher values of @.

As the next step, we show the effect’s practical importance by introducing the beam’s initial imperfection.
We modify the nonlinear beam equation (17) with the new undeformed configuration, resembling the buckling
shape Eq. (18)

EJ (6" (s) — Aok? sin(k;s)) + (Peric + AP) sin(0(s)) = 0, (37)

where Ao is an amplitude parameter of the initial imperfection in the form of the buckling mode. Following the
same procedure as for the ideal case (Eq. (17)), we relate the deflection and temperature of the beam thermal
buckling and use it within the established setup for the coupled model. Our goal lies in demonstrating the
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Fig. 8 Deflections (A, C) and temperature (B, D) bifurcation diagrams for two cases—with initial imperfection and without it.
The system parameters are @ = 1, R = 1 and Ay = 0.01hk;. For figures A and B, R = 5. For figures C and D, R = 0.5

arising effects and their importance for the system, not in quantifying the initial imperfection impact on the
system’s behaviour. Thus, we plot the bifurcation diagram for the temperatures up to 2Tcm for the mechanical
system with and without initial imperfection. For this experiment, we choose @ = 1, R=1R =5and
Ag = 0.01hk;.

Figure 8 shows that the actual critical energy and temperature drop when the beam buckles towards the
magnetic core in the presence of an initial imperfection. The reduction of the critical energy depends on
the sharpness of the unstable brunch and the initial imperfection parameter Ag. Comparing Fig. 8 A and C
supports this conclusion, showing that non-dimensional parameters influence the reduction of critical energy.
For absolutely unstable cases, when the transcritical effect energy measure equals 1 (Fig. 7), we expect an
instant jump in the deflection for significantly high Ag. Furthermore, from the coupled system with an initial
imperfection, we observe that only the sign of the initial imperfection defines the bifurcation branch for the
whole system.

6 Conclusion

As induction heating modelling, including buckling effects, lacks thorough analytical analysis, we proposed a
test system and developed its coupled analytical model. The obtained results clearly showed the importance of
the coupling effect both on the post-critical behaviour of the beam and on the efficiency of the induction heating.
The unsymmetry of the bifurcation diagrams results from the coupling and their transcritical development
depends on the introduced parameters. We investigated the influence of frequency, reluctance and resistance
non-dimensional parameters on the transcritical behaviour of the system. Arising transcritical effect of the
post-buckling state may cause significant changes in the induction heating process, as one can observe the
“snap-through” effect if the beam buckles towards the core.
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