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Abstract

For multivariate time series, different time series might be sampled at dif-

ferent frequencies. A mixed frequency vector autoregressive model (MF–

VAR) can manage the problems arising from the mixed sampling of vari-

ables. In my thesis, I implement an estimation method for the parameters

of an MF–VAR(1) model, described in Anderson et al. (2012), and inves-

tigate how the accuracy of the parameter estimation changes if the slow

frequency variable is sampled less and less often compared to the fast fre-

quency variable and if the innovation variance matrix increases. I find that

the larger the distance between the observations of the slow process, the

worse the estimation is.

I would like to express my thanks to my advisor, Leopold Soegner for his countless helpful
comments and guidance during the writing of this thesis.
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1 Introduction

In several economic applications, the variables, which are desired to be used, are

not available at the same frequency. One way to cope with this issue is to use

mixed frequency data and mixed frequency methods. For example, one of the

most important economic indicators, gross domestic product (GDP) is published

only quarterly with a 3–month lag, while inflation or the unemployment rate

are available for every month. In finance, when one wants to forecast the daily

prices of commodities, e.g. price of crude oil, the inventory would be a proper

explanatory factor, however, it is only available at monthly frequency with a

6–month lag (see (Ye et al., 2006)).

To cope with the problems emerging from the mixed frequency data sampling,

several methods have been developed and being used. To nowcast (due to the

delay of publishing) and forecast GDP, Baffigi et al. (2004) use Bridge models

which link the fast frequency variables to the slow frequency variables.

Ghysels et al. (2007) introduce the Mixed Data Sampling method which uses

the fast frequency variable to explain the slow frequency one. Anderson et al.

(2015) provide identification of the parameters in mixed frequency vector autore-

gressive model (MF–VAR) which includes both the slow and fast frequency data

as explanatory variables.

In this study I apply the MF–VAR(1) model, described in Anderson et al.

(2012) and Anderson et al. (2015). I estimate the system and noise parameters

to investigate how the distance between two observations of the slow frequency

process affect the accuracy of the parameter estimation. The parameters are esti-

mated by ordinary least square (OLS) and general method of moments (GMM).

To test the finite sample performance of the estimation methods, a Monte Carlo

study with different set–ups is performed.

The further content of the thesis is the followings: section 2 provides a short

literature review of methods which are used to estimate and forecast including

mixed frequency data. Section 3 describes the mixed frequency vector autore-

gressive model, which is in the center of my thesis and the methods applied to

estimate the model parameters. Section 4 describes the simulation design and the

results of the parameter estimation on a particular example. Section 5 concludes.
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2 Literature review

This section provides a summary on mixed–frequency data forecasting and/or

the estimation of parameters from mixed frequency data. It also covers empirical

examples from the literature.

Foroni and Marcellino (2013) provide a comprehensive description of the ex-

isting mixed frequency methodologies. They thoroughly describe the existing

models concerning estimation and forecasting with mixed frequency data.

According to them, one of the simplest methods to forecast with mixed fre-

quency data without aggregation of the high frequency variable is the bridge

models (BM). The main point of BM is that first a forecast of the high frequency

variable is performed over a period when low frequency variable can be observed,

and then the aggregated forecast of the first step is used to forecast the low fre-

quency variable. Baffigi et al. (2004) test whether BM can give better nowcasts

and forecasts of the 1– and 2–quarter ahead the French, German and Italian

GDP, than benchmark models (ARIMA, VAR). According to their results, BM

performs particularly good in nowcasting the GDP, when the new GDP data are

not published but indicators are already available and in forecasting the GDP,

it also gives good results if at least some indicators are already known in the

forecasting period comparing to the benchmark models.

Estimating parameters from mixed frequency data demands for different meth-

ods. One of the most famous methods which is used in the literature is the Mixed

Data Sampling (MIDAS).

Ghysels et al. (2007) fully describe the structure and the opportunities of MI-

DAS. With MIDAS, one can use a variable sampled at high(er) frequency, e.g.

daily to predict/explain a variable which is sampled only at low(er) frequency,

e.g. monthly. The advantage of this technique is that data does not have to be

pre–filtered. That is, taking their example, the daily data does not have to be

transformed into monthly so the possibility of information loss can be avoided.

Ghysels et al. (2007) provide several extensions of the basic MIDAS such as: ex-

planatory variables can be sampled at different frequencies, multivariate MIDAS,

tick–by–tick data sampled at unequally spaced intervals. To use high frequency

data as a predictor of lower frequency data, one can use different polynomial spec-

ifications in MIDAS which also control the number of lags used in a regressions.

To demonstrate its applicability in empirical data Ghysels et al. (2007) provide

two examples. First, they take the ICAPM model proposed by Merton (1973)

to predict the Dow Jones index returns on weekly (5 days), 2–weekly (10 days),

3–weekly (15 days) and monthly (22 days) horizons using five different model
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specifications. As explanatory variables they include daily squared returns, the

daily absolute returns, the daily ranges, realized volatility (RV) and “realized

power” to capture the volatility. According to their findings, different polyno-

mial specifications might lead to various results, however, they claim that these

differences are not so considerable. In their second empirical example, they fore-

cast the daily volatility of Alcoa Inc. and Microsoft stocks using adjusted and

unadjusted RV sampled at every 5 and every 30 minutes.

An other way to handle mixed frequency data is using mixed frequency vec-

tor autoregressive models (MF–VAR). A main difference between MF–VAR and

MIDAS is that using MIDAS, one can only include the variable sampled at high

frequency as explanatory variable and the low frequency variable must be the

dependent variable. However, if someone wants to use e.g. inventory data (which

is available only monthly) to predict daily prices, it is not possible with MIDAS

but it becomes possible with MF–VAR.

Since the low frequency data is not as often observed as the high frequency,

the low frequency data has to be estimated in the unobserved periods before it

would be used to forecast the high frequency variable. To do so, the identifiability

of the system and noise parameters of the MF–VAR has to be proven. Anderson

et al. (2012) provides two ways which guarantee generic identifiability. First, they

use extended Yule Walker equations which provides enough observable second

moments to identify the parameters. Second, they show in a simple case, when

there is only one high and only one low frequency variable in a MF–VAR(1) system

and the slow frequency variable is sampled at every 2nd period, that substitution

method also works. That is, they write the slow and fast frequency variables as

a function of known, observed variable, therefore they manage to avoid that the

slow frequency process is not alway observable.

Anderson et al. (2015) also investigate the problem of generic identifiability of

an MF–VAR system. In their work, they impose only three restrictions regarding

the VAR system: order of the system, stability and rank of the innovation variance

matrix. In addition to their previous paper, they also show generic identifiability

in a case of a slow flow variable.

In empirical research, it is not obvious whether MIDAS or MF–VAR can give

more accurate forecasts (or better parameter estimation). To give an answer to

that question which method can provide more precise forecasts Kuzin et al. (2011)

use AR–MIDAS (a MIDAS regression with lagged dependent term), MIDAS and

MF–VAR to nowcast and forecast quarterly Euro GDP data using monthly avail-

able variables from 1992 to 2008. They apply the Bayesian information criteria

to choose the proper lagged term. To compare the outcomes of the nowcasts
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and forecasts they use relative mean squared error (relative to an univariate AR

model). On short horizon (3 months or less) the AR–MIDAS model has smaller

MSE than benchmark AR, however, on longer horizon (8–9 months) MF–VAR

performs better than the benchmark and the other two model specifications. That

is, they show with an empirical dataset that none of the aforementioned methods

is superior to another.
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3 Model and Parameter Estimation

This section describes the model which is in the center of my thesis and the

estimation method which is used to estimate the system parameters. The original

MF–VAR model and the proofs of generic identifiability of the parameters can

be found in Anderson et al. (2012) and Anderson et al. (2015).

3.1 Model

I will consider the case where both the high and low frequency variable are scalars.

Following Anderson et al. (2012), I will use a multivariate autoregressive model

of order 1: (
xf
t

xs
t

)
=

(
cf

cs

)
+

(
aff afs

asf ass

)(
xf
t−1

xs
t−1

)
+

(
νf
t

νs
t

)
t ∈ Z (1)

xf
t ∈ R denotes the variable observed at high/fast (e.g. daily) frequency, while

xs
t ∈ R is observed only at low/slow (e.g. weekly/monthly) frequency. That is,

we can observe xf
t at every t ∈ Z, but we can observe xs

t only at every t ∈ NZ.

In certain cases, e.g. monthly data are used to forecast daily data, then N is not

a constant number but N ∈ {20, 21, 22, 23} since the number of trading/business

day in a month is changing.

The innovation term is normally distributed:

ν =

(
νf
t

νs
t

)
∼ N(0,Σν),

where

Σν = E

((
νf
t

νs
t

)(
νf
τ νs

τ

))
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛⎝Σff Σfs

Σsf Σss

⎞⎠ if t = τ,

⎛⎝0 0

0 0

⎞⎠ if t �= τ.

In order to get equation (1) in the MF–VAR system form as Anderson et al.

(2012) and Anderson et al. (2015) define the MF–VAR system in their papers,

we have to subtract the mean E(xi
t) = μi, where i ∈ {f, s}. Then we can define
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yit := xi
t − μi, i ∈ {f, s}. So we can rewrite (1) in “demeaned” form (which

is similar to (Anderson et al., 2012, p. 184(1)):(
yft

yst

)
=

(
aff afs

asf ass

)(
yft−1

yst−1

)
+

(
νf
t

νs
t

)
(2)

which allows to obtain (see e.g. Hamilton, 1994, p. 258):(
cf

cs

)
=

((
1 0

0 1

)
−

(
aff afs

asf ass

))(
μf

μs

)
.

3.2 Estimation of the Parameters

3.2.1 Estimation of System Parameters

Following Anderson et al. (2012) the matrix equation (2) can be rewritten in the

following way:

yft =
(
aff afs

)(
yft−1

yst−1

)
+ νf

t , (3)

yst =
(
asf ass

)(
yft−1

yst−1

)
+ νs

t . (4)

Similar to Anderson et al. (2012), in equation (3), we can postmultiply both

sides with
(
yf

′
t−1 ys

′
t−1

)
, where yi

′
t−1, i ∈ {f, s} denote those periods when both

variables can be observed and use ordinary least squares to estimate aff and afs.

Let T stand for the set of time indices where both processes can be observed.

That is, {1, 1+N, 1+2N, . . . , T ′}, where T ′ is the last period when both processes

can be observed. If N is 2, 5, 10 or 20 as it is in this study, then T ′ = 501.

In addition, let xt :=
(
yft−1 yst−1

)
. Then, the parameters aff and afs can be

estimated by means of ordinary least squares (see e.g. Hansen, 2015, p. 88):(
âff

âsf

)
=

(∑
t∈T

xtx
T
t

)−1 ∑
t∈T

xty
f
t+1, (5)

In equation (4), yst and yst−1 cannot be simultaneously observed. (If N ≥ 2,

then for certain t none of them is observed.) Therefore, we cannot use OLS to

estimate the remaining system parameters (asf , ass). However, we can use the

general method of moments (GMM) to estimate them. First, we have to express
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yft and yft as a function of only observable variables, ysk and yft , . . . , y
f
t−k (for more

details see Appendix A):

yft = affy
f
t−1 + afsasf

k−1∑
i=1

ai−1
ss yft−1−i + afsa

k−1
ss yst−k + afs

k−1∑
i=1

ai−1
ss νs

t−i + νf
t , (6)

yst = asf

k∑
i=1

ai−1
ss yft−i + akssy

s
t−k +

k∑
i=1

ai−1
ss νs

t+1−i. (7)

From the equations (6), (7) and the assumption that E(νt) = 0 as well as

E(νi
ty

j
τ ) = 0 if t �= τ where i, j ∈ {f, s}, we can calculate the following second

moments which are also the moment conditions for the GMM estimator:

E(yst y
f
t−k) = E(asfy

f
t−k

k∑
i=1

ai−1
ss yft−i + akssy

f
t−ky

s
t−k), (8)

E(yst y
s
t−k) = E(asfy

s
t−k

k∑
i=1

ai−1
ss yft−i + akssy

s
t−ky

s
t−k). (9)

To estimate the remaining unknown system parameters θ =
(
asf , ass

)T

, the

GMM estimator (Hansen, 2015, pp. 278–279) minimizes the following quadratic

form on the set of stable system matrices (Lütkepohl, 2005, p. 16):

θ̂ = argmin
θ

gT (θ)
T I2 gT (θ)

subject to det(I2 − Âz) �= 0 if |z| ≤ 1
(10)

where gT (θ) is the finite sample analog of

g(θ) :=

⎛⎜⎜⎝E(yst y
f
t−k − asfy

f
t−k

k∑
i=1

ai−1
ss yft−i − akssy

f
t−ky

s
t−k)

E(yst y
s
t−k − asfy

s
t−k

k∑
i=1

ai−1
ss yft−i − akssy

s
t−ky

s
t−k)

⎞⎟⎟⎠
and I2 stands for

(
1 0

0 1

)
.

It is important to mention the reason behind the choice of these two particular

second moments. First of all, if we consider the following four second moments

and their finite sample analogs:

̂
E(yft y

f
t−k) =

1

T − 1

∑
yfi y

f
i−k, (11)

̂
E(yft y

s′
t−k) =

1

T − 1

∑
yfi y

s′
i−k, (12)
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̂
E(ys

′
t y

f ′
t−k) =

1

� T
N
�
∑

ys
′

i y
f ′
i−k, (13)

̂E(ys
′

t y
s′
t−k) =

1

� T
N
�
∑

ys
′

i y
s′
i−k, (14)

where N is the number of periods between two observations of the slow frequency

variable, T is the number of periods, yj
′

i , j ∈ {f, s} denotes those observations

when both process can be observed and �a� is the integer part of number a. k ∈ N

since if k = 0, then g(θ) is independent of asf , ass which have to be estimated.

As we can see from the equations (11), (12), (13), (14), the first two second

moments (equations (11), (12)) are sums of T − 1 elements (the sum goes from

t = 2 since k ∈ N), while the second two moments (equations (13), (14)), which

I use in the GMM estimation, is a sum of � T
N
� elements, which is the number of

observable slow frequency variable(s). However, if we used the first two moments

in the GMM estimator, then the estimated aff and asf should be included in

the estimation, while the last two second moments does not include the OLS

estimates of those system parameters.

Moreover, it is also important to mention that k can be not a constant in the

equations (13), (14). Hence, even if N is not constant, e.g. when one wants to

estimate the daily variables using monthly variable, then N ∈ {20, 21, 22, 23},
we can use OLS, equation (5) to estimate aff , afs and the above defined GMM

estimator, equation (10) to estimate asf , ass. Furthermore, if N is not constant,

then k is also not constant in equations (13) and (14), but always the smallest

N ∈ N for which both variable can be observed.

Therefore, this estimation method makes it feasible to work with unevenly

spaced slow frequency data.

3.2.2 Estimation of the Innovation Variance Matrix

To estimate the innovation covariance matrix, the errors need to be estimated.

That is why, first yst has to be estimated for ∀t when it is not observed. Using the

estimated system parameters (âff , âfs, âsf , âss), the y
s
t can be estimated between

two period when yst is observed.

Denote the estimated slow frequency series by ỹst , where

� ỹst = yst if at t, yst is observed,

� ỹst = âsfy
f
t−1+ âssỹ

s
t−1, if y

s
t is not observed. (ỹ

s
t−1 is already estimated, that

is why, it can be used.)
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Using the estimated ỹst and the estimated system parameters, we can estimate

both series by equation (2). By estimates of ŷft , ŷ
s
t , we can calculate ν̂f

t = yft − ŷft ,

ν̂s
t = ỹst − ŷst (= yst − ŷst , if at t the slow process can be observed) and therefore

Σ̂ν =

(
Var(ν̂f

t ) Cov(ν̂f
t , ν̂

s
t )

Cov(ν̂s
t , ν̂

f
t ) Var(ν̂s

t )

)
, (15)

and

Σ̂
′
ν =

(
Var(ν̂f

t ) Cov(ν̂f ′
t , ν̂s′

t )

Cov(ν̂s′
t , ν̂

f ′
t ) Var(ν̂s′

t )

)
(16)

can be obtained, where ν̂i′
t , i ∈ {f, s} is the estimated error term when both series

can be observed.

That is, I will also test which estimation is better for the innovation covariance

matrix. The first estimation of Σν uses the estimated ỹst as the true value since y
s
t

is not always observed. While the second estimation only includes those periods

when yst can be observed.
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4 Simulation and Results

To test the finite sample performance of the estimation method, I run simulations.

Throughout my thesis, I use MATLAB R2013a version 8.1.0.604. I run 1000

simulations and calculate the maximum, minimum, median, mean and standard

deviations of the estimated parameters. The time series dimension is T = 501.

The steps of the simulation are:

1. Choose N , which is, the number of periods between the realization of the

slow process and the time series dimension T = 501.

2. Define A =

(
aff afs

asf ass

)
.

3. Define Σν .

4. Draw the initial values of yf1 , and ys1 from normal distribution. That is,

we draw a starting value from a standard normal distribution:

(
yf1

ys1

)
∼

N(0,Σy(0)), where vec(Σy(0)) = (I4 − A ⊗ A)−1vec(Σν)
1. (Anderson

et al., 2012, p. 187)

5. Generate νf
t and νs

t for ∀t.

6. Simulate yft and yst for t = 2, . . . , T , using A and

(
νf
t

νs
t

)
.

7. Since yst is observable only for ∀t ∈ NZ, we set every non–observable ele-

ments of ys to NaN (Not–A–Number).

The steps of estimating the system parameters (aff , afs, asf , ass) are:

1. Estimate the aff , afs with OLS using equation (3).

2. Estimate asf , ass by the described GMM estimator using âff , âfs. To obtain

the GMM estimates by means of (10), use MATLAB fminsearch function,

which finds a local minimum of a given function (equation (10)) with respect

to initial values. I set these initial values to
(
asf ass

)
, which are the true

values of system parameters.

1vec is defined as: D =

⎛⎝d11 d12
d21 d22
d31 d32

⎞⎠ then vec(D) =

⎛⎜⎜⎜⎜⎜⎜⎝
d11
d12
d21
d22
d31
d32

⎞⎟⎟⎟⎟⎟⎟⎠
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The steps to estimate Σν are:

1. Since yst is not observed ∀t, use Â to calculate a ỹst series, where

� ỹst = yst if at t, yst is observed,

� ỹst = âsfy
f
t−1+ âssỹ

s
t−1, if y

s
t is not observed. (ỹ

s
t−1 is already estimated,

that is why, it can be used.)

2. Using the estimated ỹst series and Â, estimate ŷft , ŷ
s
t

3. Calculate the residuals: ν̂f
t = yft − ŷft , ν̂

s
t = yst − ŷst

4. From ν̂f
t , ν̂

s
t , get Σ̂ν =

(
Var(ν̂f

t ) Cov(ν̂f
t , ν̂

s
t )

Cov(ν̂s
t , ν̂

f
t ) Var(ν̂s

t )

)
(see equation (15)), and

Σ̂
′
ν =

(
Var(ν̂f

t ) Cov(ν̂f ′
t , ν̂s′

t )

Cov(ν̂s′
t , ν̂

f ′
t ) Var(ν̂s′

t )

)
(see equation (16))

4.1 Impact of N on the Estimates

A further goal of this simulation analysis is to investigate the impact of N (the

number of periods between two observation of the slow frequency process) on the

estimation of A and Σν .

If N > 1, then a VAR–model, where N = 1 becomes an MF–VAR model. We

claim, the larger the N , the more information is lost, therefore one can expect the

estimate of the parameters becomes less and less accurate as the N is increasing.

That is why, I run simulations with N = 2, 5, 10, 20 to see in a my simulation

runs how the mean, median, maximum, minimum and standard deviation of the

estimated parameters changes with increasing N . In practice if monthly and

quarterly data are used, then N = 3 is relevant, since quarterly (slow frequency)

data can be observed at every third month (fast frequency data). While if daily

and monthly data are used, then N = {20, 21, 22, 23} can be relevant.

To test the effect of N , the true values of A and Σν have to be given. In the

simulations I choose an A1, A2, A3 with eigenvalues within the unit circle, that

is, the system is stable, and a positive definite Σν :
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A1 =

(
0.1 0.02

0.05 0.07

)
,

A2 =

(
0.5 −0.5

0.5 0.7

)
,

A3 =

(
0.95 0.1

−0.2 0.85

)
,

Σν =

(
1 −0.2

−0.2 1

)
,

where the absolute values of the eigenvalues of A1, A2, A3 are (0.1200, 0.0500),

(0.7746, 0.7746), (0.9097, 0.9097) respectively. We expect the higher the persis-

tence of the system, that is, the higher the absolute value of the eigenvalues, the

more accurate the estimations.

4.2 Estimation results

4.2.1 Estimation of System Parameters (aff , afs, asf , ass)

Tables 1, 2 and 3 include the results of the system parameter estimations for A1,

A2, A3 after 1000 simulations.The true system parameters are in the first row.

The N which sets the number of periods between two observations of the slow

process is in the very first column. The blocks, which are separated by lines,

correspond to different Ns.

As it can be expected with higher Ns, the estimation becomes worse. That

is, the range and the standard deviation of the estimations increases for larger

N , as more value of the slow process can be observed if N is smaller, we have

to estimate less unobserved values. Therefore, we can expect that the estimation

will be also better if N is smaller, as in Tables 1, 2, 3.

Moreover, in the estimation of the system parameters of A1, which has the

smallest eigenvalues, the standard deviation of the estimations are larger for every

N than in case of A2, A3 as expected. To understand this result, we should take

a closer look at general formula of the OLS parameter variance matrix (see e.g.
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Hansen, 2015, p. 90): (
V ar(âff )

V ar(âfs)

)
= (XTX)−1ν2

f

where X =

⎛⎜⎜⎜⎜⎝
x1

x2

...

xT

⎞⎟⎟⎟⎟⎠ and xi are the component of the OLS estimation (equa-

tion (5)). Moreover, XTX = Σy(0) can be calculated by the following formula:

vec(Σy(0)) = (I4 −A ⊗A)−1vec(Σν) (Anderson et al., 2012, p. 187). So it can

be seen that if the system is more persistent, that is, the absolute value of the

eigenvalues of the system matrix is larger, then the variance of the estimates

are smaller. That is, the more persistent the system, the smaller the standard

deviation of the system parameter estimates.

It is also important to mention that different methods have been used to es-

timate aff , afs and asf , ass, which affects the results. For every N , the mean

and the median are closer to the true value for aff , afs which are estimated by

OLS. Similarly, the range of the estimated parameters is a smaller for aff , afs,

estimated by OLS, then for the asf , ass, estimated by GMM. These differences

can be explained by the different ways to compute the estimates. The MATLAB

fminsearch function uses a numerical approximation while for OLS the explicit

formula is used. That is, while we can use an analytical formula to estimate

aff , afs, the estimation of asf , ass is performed by tremendous numerical calcula-

tions, which may affect the results.
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Table 1: System parameter estimation with mixed frequency data for matrix A1

aff = 0.1 afs = 0.02 asf = 0.05 ass = 0.07
N

=
2

Mean 0.0967 0.0201 0.0883 0.1054

Median 0.0949 0.0215 0.0613 0.0888

Maximum 0.2884 0.2271 24.1045 0.4352

Minimum -0.0878 -0.1890 -11.3504 -0.2987

Std Dev 0.0631 0.0673 1.5627 0.1360

N
=

5

Mean 0.0997 0.0234 0.1402 0.0866

Median 0.1038 0.0216 0.1409 0.1771

Maximum 0.4399 0.3677 16.9357 0.7189

Minimum -0.2212 -0.2982 -12.7485 -0.7920

Std Dev 0.1074 0.1061 1.6124 0.4066

N
=

10

Mean 0.0996 0.0213 0.0654 0.0845

Median 0.0952 0.0233 0.1292 0.1306

Maximum 0.5671 0.4514 20.8074 0.9116

Minimum -0.3244 -0.4520 -16.5008 -0.8849

Std Dev 0.1467 0.1506 1.9143 0.5332

N
=

20

Mean 0.1025 0.0215 0.0827 0.0659

Median 0.1019 0.0200 0.1539 0.1213

Maximum 0.9444 0.9533 37.9083 0.9690

Minimum -0.5766 -0.7740 -16.5420 -1.0129

Std Dev 0.2162 0.2195 1.9760 0.5631

Notes: The true value of the system parameters is in the first row. The first column specifies

the different Ns which is the number of periods between the realization of slow process. Each

block (corresponding to different N) includes the mean, median, maximum, minimum and

standard deviation of the estimated system parameters after 1000 simulations. The number of

periods is 500.
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Table 2: System parameter estimation with mixed frequency data for matrix A2

aff = 0.5 afs = -0.5 asf = 0.5 ass = 0.7
N

=
2

Mean 0.4984 -0.4995 0.4990 0.6986

Median 0.4963 -0.5001 0.4986 0.7004

Maximum 0.6225 -0.3652 0.6239 0.8250

Minimum 0.3809 -0.6515 0.3753 0.5829

Std Dev 0.0402 0.0424 0.0357 0.0365

N
=

5

Mean 0.4975 -0.4979 0.5346 0.6817

Median 0.4939 -0.5009 0.5254 0.7033

Maximum 0.7403 -0.2986 1.0997 0.9137

Minimum 0.2522 -0.6920 0.1979 -0.5823

Std Dev 0.0689 0.0660 0.1145 0.1278

N
=

10

Mean 0.4982 -0.5001 0.5087 0.5279

Median 0.4932 -0.4996 0.4605 0.6842

Maximum 0.8226 -0.1282 3.0319 1.0045

Minimum 0.1954 -0.8085 -1.7517 -0.8685

Std Dev 0.0980 0.0963 0.5829 0.4230

N
=

20

Mean 0.4964 -0.5026 0.5383 0.4911

Median 0.4931 -0.5026 0.4725 0.6978

Maximum 0.8981 0.0378 4.6286 1.0424

Minimum 0.1115 -0.9857 -2.0127 -0.9675

Std Dev 0.1400 0.1434 0.6353 0.5123

Notes: The true value of the system parameters is in the first row. The first column specifies

the different Ns which is the number of periods between the realization of slow process. Each

block (corresponding to different N) includes the mean, median, maximum, minimum and

standard deviation of the estimated system parameters after 1000 simulations. The number of

periods is 500.
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Table 3: System parameter estimation with mixed frequency data for matrix A3

aff = 0.95 afs = 0.1 asf = -0.2 ass = 0.85
N

=
2

Mean 0.9489 0.1011 -0.2030 0.8462

Median 0.9496 0.1007 -0.2022 0.8475

Maximum 1.0339 0.1797 -0.1375 0.8987

Minimum 0.8344 0.0103 -0.2961 0.7595

Std Dev 0.0309 0.0259 0.0231 0.0197

N
=

5

Mean 0.9492 0.1018 -0.2038 0.8454

Median 0.9500 0.1013 -0.2026 0.8474

Maximum 1.0780 0.2391 -0.1075 0.9036

Minimum 0.7858 -0.0487 -0.3448 0.7281

Std Dev 0.0465 0.0388 0.0297 0.0242

N
=

10

Mean 0.9486 0.0968 -0.2100 0.8415

Median 0.9482 0.0965 -0.2037 0.8494

Maximum 1.1719 0.3254 -0.0482 0.9168

Minimum 0.7529 -0.0849 -0.7329 -0.7687

Std Dev 0.0682 0.0572 0.0622 0.0640

N
=

20

Mean 0.9481 0.0976 -0.3416 0.7373

Median 0.9474 0.1008 -0.2288 0.8500

Maximum 1.3736 0.3902 2.2425 0.9758

Minimum 0.6381 -0.2282 -5.3750 -0.9416

Std Dev 0.0974 0.0858 0.4691 0.3427

Notes: The true value of the system parameters is in the first row. The first column specifies

the different Ns which is the number of periods between the realization of slow process. Each

block (corresponding to different N) includes the mean, median, maximum, minimum and

standard deviation of the estimated system parameters after 1000 simulations. The number of

periods is 500.

4.2.2 Estimation of Noise Parameters (Σff ,Σfs,Σsf ,Σss)

Tables 4, 5 and 6 include the results of the noise parameter estimations after 1000

simulation runs. The block columns belong to the different estimation methods

of the noise parameters which specified in the first row of the tables (Σ̂ν equation

(15) and Σ̂
′
ν equation (16)). The true parameter values are in the second row.

The number of periods between two observations of the slow process is in the very

first column. The blocks correspond to different Ns and estimation methods.
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Similar phenomenon can be observed in the estimation of the noise parameters

as of the system parameter. That is, the larger the N , the worse the estimation

since both the range and the standard deviation of the estimates increases in N .

An other eye–catching phenomenon is the accuracy of the estimations between

Σff and the other noise parameters (Σfs,Σsf ,Σss) when we do not take ỹs as true

value but use only the ys
′
to estimate the parameters. To understand these differ-

ences, the estimations of the different noise parameters have to be investigated.

As known, Σ̂ff = Var(ν̂f
t ), where ν̂f

t = yft − ŷft , while Σ̂′
fs = Σ̂′

sf = Cov(ν̂s′
t , ν̂

f ′
t )

and Σ̂′
ss = Var(ν̂s′

t ), where ν̂s′
t = ys

′
t − ŷs

′
t (as before xi′

t , x ∈ {y, ν}, i ∈ {f, s} is

the value of the parameters when both process can be observed).

Hence, when Σff is estimated, the whole time period is taken into consider-

ation, however, when the other noise parameters (Σfs,Σsf ,Σss) are estimated,

only every N time period is considered. Of course, it would not be problem if

there were two high frequency processes. But with mixed frequency data, when

the estimated values of the slow process is used to estimate the processes, and

particularly for the estimation of ŷs
′

t = asfy
f
t−1 + assỹ

s
t−1 an estimated value is

always used, the estimations are bad.

However, when I estimate the noise parameters using the whole time period,

the estimations are better for the Σfs,Σsf ,Σss than for the other estimation

method since the standard deviation and the range of the estimations are smaller.

The estimation of Σff remains the same but the estimation of the other noise

parameters (Σfs,Σsf ,Σss) is changed to Σ̂fs = Σ̂sf = Cov(ν̂s
t , ν̂

f
t ) and Σ̂ss =

Var(ν̂s
t ), where ν̂s

t = ỹst − ŷst . So it is assumed that the estimated values are the

true values of the unobserved of the slow frequency process.

20



Table 4: Noise parameter estimation with mixed frequency data for matrix A1

Σ̂
′
ν Σ̂ν

Σff = 1 Σfs = −0.2 Σsf = −0.2 Σss = 1 Σff = 1 Σfs = −0.2 Σsf = −0.2 Σss = 1

N
=

2

Mean 0.9962 -0.2014 -0.2014 3.4873 0.9962 -0.1007 -0.1007 1.7493
Median 0.9942 -0.2040 -0.2040 1.0945 0.9942 -0.1018 -0.1018 0.5488
Maximum 1.2070 0.9388 0.9388 624.4652 1.2070 0.5709 0.5709 314.5604
Minimum 0.8107 -1.3776 -1.3776 0.7465 0.8107 -0.6870 -0.6870 0.3733
Std Dev 0.0655 0.1313 0.1313 22.0201 0.0655 0.0666 0.0666 11.0820

N
=

5

Mean 1.0261 -0.1931 -0.1931 3.8526 1.0261 -0.0387 -0.0387 0.7768
Median 1.0105 -0.1921 -0.1921 1.3832 1.0105 -0.0387 -0.0387 0.2793
Maximum 2.1474 4.7905 4.7905 240.8068 2.1474 0.9547 0.9547 48.1869
Minimum 0.8082 -7.1944 -7.1944 0.5806 0.8082 -1.4362 -1.4362 0.1162
Std Dev 0.1193 0.4266 0.4266 11.7843 0.1193 0.0856 0.0856 2.3686

N
=

10

Mean 1.0690 -0.1757 -0.1757 5.7575 1.069 -0.0176 -0.0176 0.5839
Median 1.0361 -0.1938 -0.1938 1.6718 1.0361 -0.0195 -0.0195 0.1712
Maximum 2.4330 14.3190 14.3190 631.9262 2.433 1.4474 1.4474 63.214
Minimum 0.8119 -9.2224 -9.2224 0.5107 0.8119 -0.906 -0.906 0.0511
Std Dev 0.1732 0.8939 0.8939 25.9373 0.1732 0.0904 0.0904 2.6033

N
=

20

Mean 1.1241 -0.1671 -0.1671 5.1392 1.1241 -0.0086 -0.0086 0.2712
Median 1.0700 -0.1506 -0.1506 1.5343 1.07 -0.0083 -0.0083 0.0788
Maximum 3.4278 9.0843 9.0843 1262.7794 3.4278 0.4581 0.4581 70.1367
Minimum 0.8332 -6.8827 -6.8827 0.3810 0.8332 -0.3468 -0.3468 0.0191
Std Dev 0.2298 0.8583 0.8583 41.2464 0.2298 0.0442 0.0442 2.2794

Notes: The first row specifies the estimation method used to estimate the innovation covariance matrix. The true value of the system parameters is in the

second row. The first column specifies the different Ns which is the number of periods between the realization of slow process. Each block (corresponding to

different N) includes the mean, median, maximum, minimum and standard deviation of the estimated system parameters after 1000 simulations. The number

of periods is 500.
21



Table 5: Noise parameter estimation with mixed frequency data for matrix A2

Σ̂
′
ν Σ̂ν

Σff = 1 Σfs = −0.2 Σsf = −0.2 Σss = 1 Σff = 1 Σfs = −0.2 Σsf = −0.2 Σss = 1

N
=

2

Mean 1.1201 -0.5439 -0.5439 1.4712 1.1201 -0.2724 -0.2724 0.7371
Median 1.1204 -0.5403 -0.5403 1.4675 1.1204 -0.2708 -0.2708 0.7358
Maximum 1.3662 -0.2791 -0.2791 1.9279 1.3662 -0.1396 -0.1396 0.9640
Minimum 0.8965 -0.8630 -0.8630 1.0075 0.8965 -0.4315 -0.4315 0.5038
Std Dev 0.0747 0.0965 0.0965 0.1349 0.0747 0.0483 0.0483 0.0675

N
=

5

Mean 1.3337 -0.9012 -0.9012 2.0467 1.3337 -0.1811 -0.1811 0.4126
Median 1.3209 -0.8687 -0.8687 1.9699 1.3209 -0.1747 -0.1747 0.3966
Maximum 1.8671 -0.2549 -0.2549 5.3487 1.8671 -0.0479 -0.0479 1.0702
Minimum 1.0086 -2.3156 -2.3156 1.1745 1.0086 -0.4627 -0.4627 0.2357
Std Dev 0.1154 0.2708 0.2708 0.4718 0.1154 0.0543 0.0543 0.0949

N
=

10

Mean 1.7739 -1.3640 -1.3640 3.4379 1.7739 -0.1389 -0.1389 0.3498
Median 1.6132 -1.0819 -1.0819 2.6107 1.6132 -0.1097 -0.1097 0.2643
Maximum 4.1763 0.9129 0.9129 30.8545 4.1763 0.1196 0.1196 3.0903
Minimum 1.0933 -10.7936 -10.7936 0.9018 1.0933 -1.0798 -1.0798 0.0948
Std Dev 0.4862 1.0160 1.0160 2.5971 0.4862 0.1031 0.1031 0.2635

N
=

20

Mean 1.9821 -1.5082 -1.5082 3.9808 1.9821 -0.0775 -0.0775 0.2056
Median 1.7358 -1.0568 -1.0568 2.6183 1.7358 -0.0541 -0.0541 0.1363
Maximum 7.5778 11.4032 11.4032 88.5508 7.5778 0.5786 0.5786 4.4665
Minimum 1.1765 -20.1236 -20.1236 0.6461 1.1765 -0.9862 -0.9862 0.0328
Std Dev 0.7431 1.7966 1.7966 4.9273 0.7431 0.0914 0.0914 0.2531

Notes: The first row specifies the estimation method used to estimate the innovation covariance matrix. The true value of the system parameters is in the

second row. The first column specifies the different Ns which is the number of periods between the realization of slow process. Each block (corresponding to

different N) includes the mean, median, maximum, minimum and standard deviation of the estimated system parameters after 1000 simulations. The number

of periods is 500.
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Table 6: Noise parameter estimation with mixed frequency data for matrix A3

Σ̂
′
ν Σ̂ν

Σff = 1 Σfs = −0.2 Σsf = −0.2 Σss = 1 Σff = 1 Σfs = −0.2 Σsf = −0.2 Σss = 1

N
=

2

Mean 1.0022 -0.1153 -0.1153 1.6982 1.0022 -0.0576 -0.0576 0.8508
Median 1.0009 -0.1190 -0.1190 1.6916 1.0009 -0.0597 -0.0597 0.8483
Maximum 1.2031 0.1316 0.1316 2.2299 1.2031 0.0657 0.0657 1.1152
Minimum 0.8051 -0.3748 -0.3748 1.1562 0.8051 -0.1897 -0.1897 0.5781
Std Dev 0.0654 0.0843 0.0843 0.1548 0.0654 0.0422 0.0422 0.0775

N
=

5

Mean 1.0220 0.0191 0.0191 2.8292 1.0220 0.0040 0.0040 0.5704
Median 1.0235 0.0180 0.0180 2.8156 1.0235 0.0035 0.0035 0.568
Maximum 1.2484 0.5415 0.5415 4.2259 1.2484 0.1086 0.1086 0.848
Minimum 0.8154 -0.6492 -0.6492 1.7950 0.8154 -0.1303 -0.1303 0.3609
Std Dev 0.0687 0.1726 0.1726 0.3964 0.0687 0.0345 0.0345 0.0797

N
=

10

Mean 1.0482 0.0883 0.0883 3.4173 1.0482 0.0091 0.0091 0.348
Median 1.0432 0.0889 0.0889 3.3791 1.0432 0.0090 0.0090 0.3436
Maximum 1.4029 1.1900 1.1900 10.1940 1.4029 0.1211 0.1211 1.0422
Minimum 0.8290 -1.2071 -1.2071 1.5367 0.8290 -0.1227 -0.1227 0.155
Std Dev 0.0770 0.2793 0.2793 0.7494 0.0770 0.0279 0.0279 0.0757

N
=

20

Mean 1.1537 0.7362 0.7362 11.8173 1.1537 0.0371 0.0371 0.6143
Median 1.0952 0.2024 0.2024 4.3336 1.0952 0.0111 0.0111 0.2229
Maximum 7.5599 154.5911 154.5911 3553.3702 7.5599 7.5118 7.5118 182.8047
Minimum 0.8322 -2.6791 -2.6791 1.1417 0.8322 -0.1765 -0.1765 0.0587
Std Dev 0.3929 5.6741 5.6741 114.6614 0.3929 0.2790 0.2790 5.9075

Notes: The first row specifies the estimation method used to estimate the innovation covariance matrix. The true value of the system parameters is in the

second row. The first column specifies the different Ns which is the number of periods between the realization of slow process. Each block (corresponding to

different N) includes the mean, median, maximum, minimum and standard deviation of the estimated system parameters after 1000 simulations. The number

of periods is 500.
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5 Conclusions and further research

In this study, I investigated mixed frequency vector autoregressive models of order

1 (MF–VAR(1)), described in Anderson et al. (2012).

First, the system parameters were estimated by ordinary least squares and

the general method of moments. The estimation methods which are used in

this study work for cases, when N , which is the number of periods between two

observations of the slow frequency process, is not constant2. That is, it can be

also applied if the high frequency variable is daily and the low frequency variable

is monthly.

Then I investigated how the periods, N between two observations of the slow

frequency process affect the properties of the estimations and how the persistence

of the system has an impact on the estimation. To test the finite sample per-

formance of the estimation methods, a Monte Carlo study with different set–ups

was performed.

According to my findings, the larger the number of periods between two ob-

servations of the slow frequency process, the worse the estimation since the both

the range and the standard deviation of the estimates are larger. Moreover, the

persistence of the system has a positive impact on the estimates, as could be

expected.

An obvious extension would be to derive similar estimation methods, which

allow of variable N , when the processes are multidimensional, that is, instead

of scalars, vector variables would be used. Furthermore, we considered only the

MF–VAR model of order 1, which usually would not be enough to do careful

empirical research. Therefore, it should be augmented to the general case when

the order can be any p > 1.

2If N is not constant, then it could take different values. E.g. if there is a monthly and a
daily variable, then N would be 20, 21, 22, 23 depending on the number of business days.
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A Appendix: calculations

A.1 Calculation of yst as a function of ysk and yft , . . . , y
f
t−k

By recursive calculation, from (4) we get:

yst = asfy
f
t−1 + assy

s
t−1 + νs

t

= asfy
f
t−1 + ass(asfy

f
t−2 + assy

s
t−2 + νs

t−1) + νs
t

= asfy
f
t−1 + assasfy

f
t−2 + a2ssy

s
t−2 + assν

s
t−1 + νs

t

= asf (y
f
t−1 + assy

f
t−2) + a2ssy

s
t−2 + assν

s
t−1 + νs

t

= asf (y
f
t−1 + assy

f
t−2) + a2ss(asfy

f
t−3 + assy

s
t−3 + νs

t−2) + assν
s
t−1 + νs

t

= asf (y
f
t−1 + assy

f
t−2 + a2ssy

f
t−3) + a3ssy

s
t−3 + a2ssν

s
t−2 + assν

s
t−1 + νs

t

= · · · =

= asf

k∑
i=1

ai−1
ss yft−i + akssy

s
t−k +

k∑
i=1

ai−1
ss νs

t+1−i

A.2 Calculation of yft as a function of ysk and yft , . . . , y
f
t−k

From (3):
yft = affy

f
t−1 + afsy

s
t−1 + νf

t

We also know from the previous calculation, that yst−1 = asf
k−1∑
i=1

ai−1
ss yft−1−i +

ak−1
ss yst−k +

k−1∑
i=1

ai−1
ss νs

t−i. Substituting this into yft = . . . we get:

yft = affy
f
t−1 + afs(asf

k−1∑
i=1

ai−1
ss yft−1−i + ak−1

ss yst−k +
k−1∑
i=1

ai−1
ss νs

t−i) + νf
t

= affy
f
t−1 + afsasf

k−1∑
i=1

ai−1
ss yft−1−i + afsa

k−1
ss yst−k + afs

k−1∑
i=1

ai−1
ss νs

t−i + νf
t .

B Appendix: Code

B.1 Simulation

1 c l e a r ; c l c ; c l o s e a l l ;
2 g l oba l numberofday y f y s y daynumber
3 g l oba l nDays1 nSlow y s1 y f 1 nFast t s l ow
4

5 % The dimension o f the time s e r i e s
6 T = 501 ;
7
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8 % The frequency o f slow proce s s with r e sp e c t to the f a s t
p roce s s (N in the wr i t t en t h e s i s ) .

9 % So slow proce s s e x i s t s at t = 1 , 1+t s low , 1+2� t s l ow
. . .

10 t s l ows eq = [2 5 10 2 0 ] ;
11

12 % To save r e s u l t s , f o r 3 d imens iona l matrix are
cons t ruc ted .

13 A table = ze ro s (5 , 4 , 4) ;
14 Sigma nu table1 = ze ro s (5 , 4 , 4) ;
15 Sigma nu table2 = ze ro s (5 , 4 , 4) ;
16

17 % Number o f s imu la t i on runs
18 numsim = 1000 ;
19

20 % To save the r e s u l t s o f each s imu la t i on runs
21 A par = ze ro s (numsim , 4 , 4) ;
22 Sigma nu par1 = ze ro s (numsim , 4 , 4) ;
23 Sigma nu par2 = ze ro s (numsim , 4 , 4) ;
24

25 % % % The true innovat ion var i ance matrix
26 nu sigma = [1 −0.2; −0.2 1 ] ;
27

28 % The true A matrix
29 A true = ze ro s (2 , 2 ) ;
30 A true = [ 0 . 9 5 0 . 1 ; −0.2 0 . 8 5 ] ;
31

32 f o r k i t e r =1:4
33

34 % ”Fi r s t , i n i t i a l i z e the random number genera to r to make
the r e s u l t s in

35 % th i s example r epea tab l e . ”
36 % http ://www. mathworks . com/help /matlab/math/random−

i n t e g e r s . html
37 rng (0 , ’ tw i s t e r ’ ) ;
38 t s l ow = t s l owseq ( k i t e r ) ;
39

40 % We need a vector whose entry c la ims the l ength from the
prev ious

41 % r e a l i z a t i o n o f a slow proce s s ( p o s i t i v e i n t e g e r s )
42 k = ze ro s ( t s low , 1) ;
43 f o r i = 1 : t s l ow ;
44 k ( i ) = i ;
45 end ;
46

47 k = repmat (k , f l o o r (T/ t s l ow ) , 1) ;
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48 k = [ t s l ow ; k ] ; %% For the f i r s t entry t s l ow would
belong , but i t doesn ’ t matter s i n c e we s t a r t from t =
1+k to have t−k(=1) .

49

50

51

52 % % % Create a vec to r with 1 i f the slow proce s s has a
value , and NaN i f

53 % only f a s t p roc e s s e x i s t s .
54 y snan= NaN(T, 1) ;
55 f o r i =1: t s l ow :T;
56 y snan ( i ) = 1 ;
57 end ;
58 %% Simulat ion s t a r t s here
59 f o r s im i = 1 : numsim % The number o f s imu la t i on s
60 % I n i t i a l i z a t i o n o f the two p ro c e s s e s
61 % The f i r s t column i s the va lue o f the p roce s s
62 % The second column says the l ength o f that entry from the

prev ious
63 % r e a l i z a t i o n o f the slow proce s s .
64 y f = ze ro s (T, 2) ;
65 y s = ze ro s (T, 2) ;
66

67 y f ( : , 2) = k ;
68 y s ( : , 2) = k ;
69

70

71

72 % % % Fi r s t we generate the two i n i t i a l va lue f o r yˆ f 1
and yˆ s 1 . These

73 % a l s o e x i s t in the emp i r i c a l part .
74 % Random number genera to r
75 % http ://www. mathworks . com/help /matlab/random−number−

gene ra t i on . html
76 % Draw a number from standard normal d i s t r i b u t i o n
77 vec s igma y = inv ( eye (4 ) − kron ( A true , A true ) ) � reshape

( nu sigma , 4 , 1) ;
78 s igma y = reshape ( vec s igma y , 2 , 2) ;
79 y mu = [ 0 , 0 ] ;
80 R y = cho l ( sigma y ) ;
81 y 1 = repmat (y mu , 1 , 1 ) + randn (1 , 2 ) �R y ;
82 y f (1 , 1) = y 1 (1 ) ;
83 y s (1 , 1) = y 1 (2 ) ;
84

85 % % Simulat ing e r r o r terms ( e , which i s \nu in the paper )
y f
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86 % Biva r i a t e Normal Random Numbers : http : //www. mathworks .
com/help /matlab/ r e f / randn . html#buf2c f t−1

87 nu mu = [0 0 ] ;
88 R = cho l ( nu sigma ) ;
89 % Fi r s t column i s eˆ f , second column i s eˆ s
90 nu = repmat (nu mu ,T, 1 ) + randn (T, 2 ) �R;
91

92

93 % % % Simulat ing the s e r i e s
94 f o r i =2:T;
95 y f ( i , 1 ) = A true (1 , 1) � y f ( i −1, 1) + A true (1 , 2) �

y s ( i −1, 1) + nu( i , 1 ) ;
96 y s ( i , 1) = A true (2 , 1) � y f ( i −1, 1) + A true (2 , 2)

� y s ( i −1, 1) + nu( i , 2 ) ;
97 end ;
98

99 % y s1 i s the y s vec to r without NaN va lue s :
100 y s1 = y s ( : , 1) .� y snan ;
101 y s1 ( i snan ( y s1 ) ) = [ ] ;
102

103 nFast = T; % by d e f i n i t i o n
104 nSlow = length ( y s1 ) ;
105

106

107 % We have to f i nd out at which po int o f time slow proce s s
e x i s t s

108 % Fi r s t we c r e a t e a sequence from 1 to nFast with step
s i z e 1 .

109 numbers = ze ro s ( nFast , 1) ;
110 f o r i = 1 : nFast ;
111 numbers ( i ) = i ;
112 end ;
113

114 % The days when slow and f a s t p roc e s s e x i s t .
115 y daynumber = numbers .� y snan ;
116 y daynumber ( i snan ( y daynumber ) ) = [ ] ;
117

118

119 % The length o f d i f f e r e n t pe r i od s i s a l s o nece s sa ry f o r
the c a l c u l a t i o n s ( r i g h t now i t i s always t s l ow )

120 numberofday = ze ro s ( l ength ( y daynumber ) , 1) ;
121 f o r i = 1 : ( l ength ( numberofday )−1) ;
122 numberofday ( i ) = y daynumber ( i +1) − y daynumber ( i ) ;
123 end ;
124

125 y s1 = [ y s1 numberofday ] ;
126
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127 % % % I c r ea t e a ” f a s t ” f requency vec to r which has va lue
only at those t when the re i s a

128 % value in the slow proce s s . Ba s i c a l l y , t h i s i s the pa i r
o f y s1

129 y f 1 = y f ( : , 1) .� y snan ;
130 y f 1 ( i snan ( y f 1 ) ) = [ ] ;
131

132 Ahat = ze ro s (2 , 2) ;
133

134 % % % OLS es t imat i on f o r a f f and a f s
135 X ols = [ y f 1 ( 1 : ( end−1) ) y s1 ( ( 1 : end−1) , 1) ] ;
136 y o l s = y f ( 2 : end , 1) .� y snan ( 1 : end−1) ;
137 y o l s ( i snan ( y o l s ) ) = [ ] ;
138

139 Ahat (1 , : ) = ( ( X ols ’� X ols ) \( X ols ’� y o l s ) ) ’ ;
140 fDays = t s l ow � ones (T, 1 ) ;
141

142 g l oba l a f f a f s
143 a f f = Ahat (1 , 1) ;
144 a f s = Ahat (1 , 2) ;
145

146 nDays1 = fDays .� y snan ;
147 nDays1 ( i snan ( nDays1 ) ) = [ ] ;
148

149 Ahat (2 , : ) = fminsearch (@GMMmin, A true (2 , : ) ) ;
150

151 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
152 %%%%%%%%%%% Sigma nu hat %%%%%%%%%%%%%
153 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
154

155 % % % Fi r s t we need to c r e a t e a ”new” slow process , where
every element i s

156 % observed . When y s i s known , then we l eave i t l i k e that ,
but unkown y s

157 % has to be est imated us ing the A hat .
158

159 newy s = y s ( : , 1) .� y snan ;
160 f o r i = 2 : nFast
161 i f i snan ( newy s ( i ) ) == 1
162 newy s ( i ) = Ahat (2 , 1) � y f ( i −1, 1) + Ahat (2 , 2) �

newy s ( i −1) ;
163 e l s e
164 newy s ( i ) = newy s ( i ) ;
165 end
166 end
167

168 y fha t = ze ro s (T, 1) ;
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169 y shat = ze ro s (T, 1) ;
170

171 y fha t (1 ) = y f (1 , 1) ;
172 y shat (1 ) = newy s (1 ) ; % Same as y s (1 , 1)
173 f o r i =2:T;
174 y fha t ( i ) = Ahat (1 , 1) � y f ( i −1, 1) + Ahat (1 , 2) �

newy s ( i −1) ;
175 y shat ( i ) = Ahat (2 , 1) � y f ( i −1, 1) + Ahat (2 , 2) �

newy s ( i −1) ;
176 end ;
177

178 % % % We drop those y shat terms which cannot be observed
179 y shat1 = y shat ( : , 1) .� y snan ;
180 y shat1 ( i snan ( y shat1 ) ) = [ ] ;
181

182 % % % y shat1 ’ s counterpar t
183 y fha t1 = y fha t ( : , 1) .� y snan ;
184 y fha t1 ( i snan ( y fha t1 ) ) = [ ] ;
185

186

187

188

189 nu fhat = y f ( : , 1) − y fha t ;
190 nu f1hat = y f 1 − y fha t1 ;
191 nu s1hat = y s1 ( : , 1) − y shat1 ;
192

193 nu shat = newy s − y shat ;
194

195

196 COV nu f1 nu s1 = cov ( nu f1hat , nu s1hat ) ;
197 COV nu f nu s = cov ( nu fhat , nu shat ) ;
198

199

200

201 Sigma nu par1 ( s im i , 1 , k i t e r ) = var ( nu fhat ) ;
202 Sigma nu par1 ( s im i , 2 , k i t e r ) = COV nu f1 nu s1 (1 , 2) ;
203 Sigma nu par1 ( s im i , 3 , k i t e r ) = COV nu f1 nu s1 (2 , 1) ;
204 Sigma nu par1 ( s im i , 4 , k i t e r ) = var ( nu s1hat ) ;
205

206 Sigma nu par2 ( s im i , 1 , k i t e r ) = var ( nu fhat ) ;
207 Sigma nu par2 ( s im i , 2 , k i t e r ) = COV nu f nu s (1 , 2) ;
208 Sigma nu par2 ( s im i , 3 , k i t e r ) = COV nu f nu s (2 , 1) ;
209 Sigma nu par2 ( s im i , 4 , k i t e r ) = var ( nu shat ) ;
210

211 A par ( s im i , 1 , k i t e r ) = Ahat (1 , 1) ;
212 A par ( s im i , 2 , k i t e r ) = Ahat (1 , 2) ;
213 A par ( s im i , 3 , k i t e r ) = Ahat (2 , 1) ;
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214 A par ( s im i , 4 , k i t e r ) = Ahat (2 , 2) ;
215 end
216

217 % % % F i l l i n g up A table , and Sigma nu table
218 f o r i =1:4
219 A table ( : , i , k i t e r ) = [mean(A par ( : , i , k i t e r ) ) ;

median ( A par ( : , i , k i t e r ) ) ; max(A par ( : , i , k i t e r ) )
; min ( A par ( : , i , k i t e r ) ) ; s td ( A par ( : , i , k i t e r ) )
] ;

220 Sigma nu table1 ( : , i , k i t e r ) = [mean( Sigma nu par1 ( : ,
i , k i t e r ) ) ; median ( Sigma nu par1 ( : , i , k i t e r ) ) ; max
( Sigma nu par1 ( : , i , k i t e r ) ) ; min ( Sigma nu par1 ( : ,
i , k i t e r ) ) ; s td ( Sigma nu par1 ( : , i , k i t e r ) ) ] ;

221 Sigma nu table2 ( : , i , k i t e r ) = [mean( Sigma nu par2 ( : ,
i , k i t e r ) ) ; median ( Sigma nu par2 ( : , i , k i t e r ) ) ; max
( Sigma nu par2 ( : , i , k i t e r ) ) ; min ( Sigma nu par2 ( : ,
i , k i t e r ) ) ; s td ( Sigma nu par2 ( : , i , k i t e r ) ) ] ;

222 end
223

224 end

B.2 GMM estimator

1 f unc t i on [ g ] = GMM(A)
2 g l oba l numberofday y f y daynumber
3 g l oba l nDays1 nSlow y s1 y f 1
4 % % % % % A(1 , 1) = a { f f } , A(1 , 2) = a { f s } , A(2 , 1) = a

{ s f } , A(2 , 2) = a { s s }
5

6 % A vecto r with a { s s } = A(2 ,2 ) powers . a s s power s = [ a {
s s }ˆ{k−1} , a { s s }ˆ{k−2} , . . . , a { s s }ˆ{1} , a { s s }ˆ{0} ]

7 a s s power s = ze ro s (max( numberofday ) , 1) ;
8 f o r i = 1 : l ength ( a s s power s ) ;
9 a s s power s ( i ) = A(1 , 2) ˆ( l ength ( a s s power s )− i ) ;

10 end ;
11

12 E22 1 = 0 ;
13 E22 2 1 = 0 ;
14 E22 2 2 = 0 ;
15 f o r i = 2 : nSlow
16 E22 1 = E22 1 + ( y s1 ( i −1, 1) � y s1 ( i , 1) ) / l ength ( 2 :

nSlow ) ;
17 E22 2 1 = E22 2 1 + ( y s1 ( i −1, 1) �A(1 , 1) � a s s power s

( 1 : y s1 ( i −1, 2) ) ’� y f ( y daynumber ( i −1) : ( y daynumber
( i )−1) , 1) ) / l ength ( 2 : nSlow ) ;

18 E22 2 2 = E22 2 2 + ( y s1 ( i −1, 1) �(A(1 , 2 ) ˆnDays1 ( i −1) )
� y s1 ( i −1, 1) ) / l ength ( 2 : nSlow ) ;

19 end
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20

21 E21 1 = 0 ;
22 E21 2 1 = 0 ;
23 E21 2 2 = 0 ;
24 f o r i = 2 : nSlow
25 E21 1 = E21 1 + ( y f 1 ( i −1)� y s1 ( i , 1) ) / l ength ( 2 : nSlow

) ;
26 E21 2 1 = E21 2 1 + ( y f 1 ( i −1)�A(1 , 1) � a s s power s ( 1 :

y s1 ( i −1, 2) ) ’� y f ( y daynumber ( i −1) : ( y daynumber ( i
)−1) , 1) ) / l ength ( 2 : nSlow ) ;

27 E21 2 2 = E21 2 2 + ( y f 1 ( i −1)�(A(1 , 2 ) ˆnDays1 ( i −1) ) �
y s1 ( i −1, 1) ) / l ength ( 2 : nSlow ) ;

28 end
29

30 % % % % % The ”g” func t i on
31 g (1 ) = E21 1 − ( E21 2 1 + E21 2 2 ) ;
32 g (2 ) = E22 1 − ( E22 2 1 + E22 2 2 ) ;
33

34 end

1 f unc t i on [ a ] = GMMmin(A)
2 g l oba l a f f a f s
3 Aprime = [ a f f a f s ; A ] ;
4 e i g v a l = abs ( e i g (Aprime ) ) ;
5 i f max( e i g v a l ) > 1−10ˆ(−4)
6 a = 10ˆ8 ;
7 e l s e
8 a = GMM(A) � eye (2 ) �GMM(A) ’ ;
9 end

10 end
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