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Abstract: Surface soil moisture (SSM) has proven to be an important variable for the yield
prediction of main crops like maize and wheat, but its value for spring barley, the third
most cultivated crop in Europe, has not yet been evaluated. This study assesses how
much of spring barley yield variability can be explained by the commonly used model and
satellite-based global SSM products ERA5 SWVL1 and H SAF. A Feed Forward Neural
Network, SSM time series, and reference yield data are used to predict spring barley yield
at NUTS level for Austria, Czechia, and Germany. A random train-test split is used to
assess the explained variability and a cross-validation at the NUTS level for the spatial
evaluation. The results indicate the following: (1) ERA5 SWVL1 achieved an R² of 0.37, H
SAF an R² of 0.33; (2) Both products achieved the lowest RMSE and MAE in Czechia, high
RMSE and MAE values are observed in Eastern Germany. (3) ERA5 SWVL1 performed
better in areas with low sensitivity for microwaves like the Alpine region, but both products
achieved similar results in 80% of the NUTS regions. These findings contribute to better
utilization of SSM and more accurate yield predictions for spring barley and similar crops.

Keywords: yield prediction; soil moisture; agriculture; spring barley; machine learning

1. Introduction
Yield prediction is a crucial tool to optimize agricultural practices by enabling precise

resource allocation and maximizing crop productivity [1,2]. Accurate yield predictions
also help to mitigate financial risks for farmers by informing decisions on crop selection
and market timing [3,4]. Furthermore, yield prediction can contribute to environmental
sustainability by promoting the efficient use of water, fertilizers, and pesticides [5–7].
Especially in drought years, harvest forecasts are essential for the early detection of a lack
of food supply [8]. This allows countermeasures such as irrigation or the import of food.
Due to global warming and the related increase in weather extremes, the importance of
early and accurate yield prediction is expected to increase in the future [9,10]. One of the
most common crops in terms of cultivated area and total production in Europe is spring
barley [11]. Its economic value and resilience to environmental stressors contribute to
its importance in global food security and agricultural systems [12]. It is used for food
production, livestock feed, and the brewing industry, and therefore, plays a pivotal role in
the food chain. Compared to other cereals, barley is considered a drought-tolerant crop
type. It is adaptable to various climates and soils and, therefore, is less sensitive to moisture
stress. Yet, proper water supply is still crucial for spring barley growth. In particular, in
the reproduction stage, during the flowering and dough stage, moisture stress is harmful
and leads to shorter plants and subsequent lower yield [13,14]. A key variable indicating
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the water supply is Soil Moisture (SM). It is a critical variable in agricultural systems
as it directly influences plant physiological processes, including water uptake, nutrient
absorption, and photosynthesis [15,16]. Optimal SM levels are essential for maintaining
plant turgor pressure and facilitating root function, which in turn, supports crop growth
and development [17]. In contrast to precipitation, SM directly reflects the water available
to plants, which impacts crop health and yield. While precipitation data indicate potential
water input, they do not account for evaporation, infiltration, and run-off, which influence
actual soil water content. Zhao et al. [18] assessed the value of SM for maize yield in
China and concluded that SM is a more suitable variable for maize yield prediction than
precipitation.

1.1. Soil Moisture in the Context of Yield Prediction

There is a wide range of global SM products that differ mainly in terms of data origin,
methodology, and reference soil layer. Depending on the origin of the data, a distinction
can be made between two product categories. Satellite-based products are usually derived
from active or passive microwave sensors. On the other hand, there are model-based
products. These are calculated by a model based on different input variables and physical
processes. Existing literature used either of these product categories for the yield prediction
of different crop types. Bushong et al. [19] found that including satellite-derived SM in
the prediction of grain yield led to an increase in R² of 0.09. White et al. [20] observed an
increase in canola yield prediction accuracy when passive microwave SM from SMOS was
used as an input variable. Finally, Buecchi et al. [21] found that ESA CCI combined SM is
an important predictor for maize yield, especially in drought years. Several studies also
used model-based SM for yield prediction. Boas et al. [22] used, among other variables, SM
from the Community Land Model to predict wheat, barley, and canola yield and concluded
that the model was able to capture recorded inter-annual variations of the crop yield
satisfactorily. Bojanowski et al. [23] used ERA5 SM among other variables for operational
yield forecasting of various crop types and achieved high-performance metrics. Depending
on the soil depth or soil layer, a distinction can also be made within the two product
categories between surface, respectively, the topsoil moisture and root-zone SM. Several
studies compared these two SM variables for yield prediction. Amor et al. [24] tested
AMSR-E SM for maize yield prediction and suggested using near-surface SM assimilation
instead of root-zone SM. In another study, Potopova et al. [25] compared the Advanced
Scatterometer (ASCAT) Soil Water Index (SWI) for topsoil and root-zone to model yield
losses in Moldova for three crop types and observed a higher correlation for the Surface
Soil Moisture (SSM) product with yield.

1.2. Scope of This Study

The above-mentioned studies demonstrated the general value of different SM products
for yield prediction and indicated that SSM has a higher value for the prediction of a variety
of crop types compared to root-zone SM. However, an in-depth assessment of the value
of SSM for spring barley yield prediction has not yet been carried out. Moreover, while
model-based and satellite-derived have been separately used in these studies, no study has
yet compared the performance of the two product categories for yield prediction. Finally,
the studies are mostly limited to individual countries with homogeneous climatic and
farming conditions. This study aims to overcome these research gaps by answering the
following questions: (1) How much of the spring barley yield variability in Central Europe
can be explained only by SSM? (2) How do yield prediction accuracies based on SSM differ
spatially in the study area? And finally, (3) how does yield prediction based on modeled
SSM compare to satellite-derived SSM?
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To address these research issues, this study uses the EUMETSAT Satellite Application
Facility on Support to Operational Hydrology and Water Management (H SAF) product [26]
as a representative of a satellite-derived SM product and ERA5 Volumetric Soil Water Layer
1 (SWVL1) [27] as a model-based product. The H SAF product is selected due to the
operational nature of the European Organisation for the Exploitation of Meteorological
Satellites (EUMETSAT) ASCAT and SCA-Second Generation satellite series, providing
SM data until at least 2040 as confirmed by EUMETSAT. This is an important aspect for
possible yield prediction applications as it warrants data availability in the future. The
ERA5 reanalysis dataset is provided by the European Centre for Medium-Range Weather
Forecasts (ECMWF) and is used in the European State of the Climate by Copernicus. These
two SM products are used as input for a Feed-Forward Neural Network (FFNN) for the
prediction of spring barley yield for Nomenclature Des Unités Territoriales Statistiques
(NUTS) regions in Austria (AT), Czechia (CZ), and Germany (DE) for the years 2016–2022.
Subsequently, we quantify the explained variability of both SM products and evaluate the
performance spatially. It is important to note that the aim of the study is not to suggest
operational yield prediction based on SSM alone and neither to validate SSM products.
Instead, our results allow quantifying the value of SSM for explaining yield variability
in spring barley and analyzing the potential of the two product types. Furthermore, the
spatial comparison of the two products allows us to investigate its potential over different
climate, soil, and farming characteristics and define in which areas one product category
or the other is preferable. With the findings, we are demonstrating the value of SSM and
supporting the development of more accurate and robust models for spring barley yield
estimation. This can subsequently help to prevent food shortages by adapting agricultural
practices or the import of food. In addition, we see the findings from the SSM product
comparison and the spatial evaluation of the SSM-based yield models as not only valuable
for spring barley yield prediction but also transferable to other crop types.

2. Materials and Methods
2.1. Study Region

The study region, illustrated in Figure 1, comprises three countries: Germany, Czechia,
and Austria. These countries were selected to cover different climate conditions, soil
characteristics and farming practices as well as different land cover types. Moreover, spring
barley is among the most cultivated crops in the three countries, which contributes to the
availability of a comprehensive reference data basis (more detail on this is provided in
Section 2.3). In Northern Germany, the temperate maritime climate is dominant. The climate
here is heavily influenced by the North Sea and the Baltic Sea. The region experiences
mild temperatures throughout the year, with cool summers and relatively mild winters
compared to inland areas. Summers typically see average temperatures ranging from 15 °C
to 20 °C, while winter temperatures vary between 0 °C and 5 °C. Rainfall is relatively evenly
distributed across the year. Southern Germany and large parts of Austria are characterized
by an alpine climate. The climate in the Alpine region depends highly on the altitude.
Higher altitudes experience heavy snowfall and temperatures well below 0 °C, frequently
ranging from −10 °C to −20 °C in the winter months. Summers are much cooler compared
to lowland areas, with temperatures typically ranging from 10 °C to 20 °C. Precipitation
is high throughout the year, with the summer months being wetter. Finally, a continental
climate is predominant in Central Germany, large parts of Czechia, and Eastern Austria.
The continental climate is characterized by warm, dry summers and cold winters. Summer
temperatures often range from 25 °C to 30 °C, with relatively low humidity and abundant
sunshine. Winters, on the other hand, are cold, with temperatures frequently dropping
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below freezing, averaging around 0 °C. Precipitation is moderate, especially in summer
rain occurs irregularly, and longer dry spells are not uncommon.

Figure 1 shows the average spring barley yield for the years 2016–2022 at the NUTS
level for the three countries Austria, Czechia, and Germany. As can be seen from the figure,
the average yield varies greatly within the study region (mean = 4.6 t/ha, stdv = 1.06 t/ha).
Low average yields can be observed in large parts of Austria and in the most extreme form,
in Eastern Germany. The lowest yield of 1.61 t/ha is observed here for the region DE40G in
the year 2018. High average yields, on the other hand, can be found in Eastern Czechia
as well as Central and Southern Germany. The highest yield of 9.12 t/ha is observed in
the north-western German region DE94C. The reasons for these spatial differences are
addressed in the following section.

Figure 1. Illustration of the study region. The NUTS regions are shown with the average spring
barley yield over the years 2016–2022 in tonnes/hectares. NUTS regions that are mentioned in
the manuscript are labeled with their NUTS code. The color variations of the labels are used to
enhance readability.

2.2. Cultivation of Spring Barley

In Central Europe, spring barley is typically sown in early spring, around March to
early April. As spring barley is sensitive to frost, the timing highly depends on the local
weather conditions. Harvesting takes place about 90 to 120 days after sowing, between July
and early August. Spring barley grows best in moderate temperatures between 14 °C and
18 °C. During germination and early growth, it favors cool conditions but requires warmer
temperatures during grain filling and maturation [28]. While the plant is relatively drought-
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resistant in the early growth stage, adequate water supply in the form of precipitation or
irrigation is essential, especially during the stem elongation, flowering, and grain-filling
stages. Moisture stress at flowering and the dough stage decreases seeds per head and seed
weight. Excessive moisture, however, can lead to diseases [13,14,29]. The significant spatial
differences in average yield values illustrated in Figure 1 and outlined in Section 2.1 can
partly be explained by the different climate and soil conditions: Many areas in Austria have
heavy soils or chernozems [30]. In addition, late frost leads to yield losses and a shortened
growing season in the Alpine region. Furthermore, in Eastern Austria, precipitation occurs
irregularly with longer dry periods [31,32]. Similar conditions apply to Eastern Germany.
This region tends to experience drier conditions and higher temperatures during critical
growth stages compared to high-yield regions like Southern Germany. Subsequently, the
climate water balance here is significantly lower and turns negative during summer [33].
Soils in many parts of Eastern Germany are sandy, nutrient-poor, and have a low water-
holding capacity, exacerbating the impact of drought conditions. In contrast, Southern
Germany has more loamy soils offering a better water-holding capacity and higher nutrition
content, favoring higher average yields [34]. In addition, farming conditions also differ
between the countries. Austria’s agriculture is characterized by small-scale farms and
impacted by the mountainous terrain [35]. It has one of the highest shares of organic
farmland in the EU with 25% [36]. Compared to Czechia and Germany, agricultural
production is focused more on quality and sustainability than on maximizing productivity.
The importance of spring barley has been declining in recent years, with farmers moving to
the cultivation of winter barley [37]. Czech agriculture is characterized by a dual structure:
a small number of farms manage the majority of the agricultural land. On the other hand,
there is a large number of small-scale farms that cultivate the remaining small share of
the farmland [38]. Its agricultural sector has undergone a static modernization in the last
decades [39]. Spring barley has a high importance and is more cultivated than winter
barley [40]. Germany’s agriculture is characterized by large-scale farms and has the lowest
share of organic farmland among the three countries [36,41]. Fertilizer consumption is
significantly higher compared to Austria and Czechia [42]. Overall, agriculture here is
more focused on productivity, which contributes to higher crop yields.

2.3. Crop Yield Data

Spring barley yield data were available for NUTS regions in Germany (NUTS 3),
Austria, and Czechia (both NUTS 4) for the years 2016 to 2022. The term NUTS 4 refers
here to the district level and is used for simplicity, although it is not an official level defined
by the European Union. The data indicate the average yield in tonnes per hectares for
the NUTS regions without providing further information on the spatial distribution of the
yield within the NUTS regions. Figure 1 indicates that not all regions’ data were available;
especially in Germany, numerous regions are missing. In total, data were available for
413 NUTS regions but not always for all six years. The final reference dataset consisted
of a total of 2326 samples, where one sample is defined as a unique combination of an
NUTS region and a year with an available yield reference. Sample 1, for instance, is the
reference yield for the NUTS region DE94C and the year 2016. Sample 2 is the reference
yield for the same region in the year 2017, and so on. Of the 2326 samples, 573 samples
are within Austria, 482 within Czechia, and 1282 samples within Germany. The data have
been provided by the national statistical offices of the individual countries in the scope of
the ESA-funded project Yield Prediction and Estimation from Earth Observation and the
InterReg funded Clim4Cast project (details outlined in the acknowledgements). The dataset
was subjected to intensive plausibility checks. For Austria and Czechia, crop yield data at
higher NUTS 3 levels were used for this. The NUTS 4 data were then aggregated to this
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level and compared. Furthermore, the yield of neighboring NUTS regions was compared,
as well as the deviation from the long-term average to check for unreasonable outliers.

2.4. Surface Soil Moisture Data

This study compares a commonly used satellite-derived SSM product with a com-
monly used model-based SSM product. As a representative of the former category, we used
the H SAF SSM product. This product was selected because it is widely used, provides
a long-term data record, and is offered as a near-real-time product. Thus, it is suitable
for retrospective crop yield analysis as well as for yield predictions within a growing sea-
son. The product is developed under the EUMETSAT’s H SAF program and uses C-band
microwave satellite observations from the ASCAT satellite mission to estimate the water
content in the top few centimeters of soil (0.5 cm to 2 cm) and is provided in degree of
saturation (0 to 100%) [26]. The soil moisture retrieval is based on the TU Wien change
detection algorithm [43,44]. In this study, the H SAF products H119 and H120 at a 12.5 km
sampling are used [26]. The product is also available in near real time with a latency of
around two hours.

As a model-based product, we used the latest ERA5 product version, the so-called
ERA5 reanalysis dataset, the SWVL1 variable [27]. This variable represents the volumetric
SM content in the topmost soil layer, ranging from 0 cm to 7 cm depth. This variable
quantifies the amount of water contained within the soil matrix in the specified layer,
expressed as a fraction of the total soil volume. It is provided on a 0.25 ◦ × 0.25 ◦ grid in
a temporal resolution of 1 h and is globally available. ERA5 uses a land surface model,
which is coupled to the atmospheric model in the ECMWF Integrated Forecast System. The
model simulates the evolution of SM, among other land surface variables, using precipita-
tion, evapotranspiration, surface run-off, and subsurface water movement between soil
layers [45]. Due to its long-term data record, this product is also suitable for retrospective
crop yield analysis and has already been used in several studies for yield prediction [46–48].

For all the available reference samples outlined in Section 2.3, SSM time series for
the specific year and NUTS region were extracted from the two SSM products. This was
conducted by selecting all grid points within the polygons of the NUTS regions from the
two SSM datasets. For NUTS regions where no grid point was located within the region,
the grid point closest to the centroid of that region was selected. Subsequently, time series
for the period from April to the end of July were extracted by calculating the daily average
from all selected grid points. The period was chosen to cover the vegetation period of
spring barley up to harvest. Afterward, the time series was resampled to 14 daily time steps.
This temporal sampling was selected as a compromise to capture SM variations over time
but to avoid a too high number of input features for the Machine Learning (ML) model.
During the resampling, the statistics min, max, and mean were calculated to cover both
an oversupply and an undersupply of water as well as the average moisture conditions.
The final SSM dataset for each product thus consisted of the three variables min, max, and
mean, for nine time steps for each of the 2326 reference samples. These data were used as
input variables for the ML model specified in the following Section 2.5. The use of SSM
instead of root-zone SM in this study is justified as follows: Studies already mentioned
in Section 1 showed higher correlations between yield and SSM compared to root-zone
SM [24,25]. Moreover, in the first weeks of plant growth, SSM is a better indicator for water
supply than root-zone SM due to the reduced root depth of the plants. Finally, for the used
statistics min, max, mean, and the temporal sampling of 14 days, a significantly higher
variability can be expected for SSM in which short dry periods are better represented.
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2.5. Feed Forward Neural Network

This study uses an FFNN for the SSM-based spring barley yield prediction. In this neural
network architecture, data propagate unidirectionally from the input layer through the hidden
layers to the output layer without the presence of feedback loops. This distinguishes them from
feedback networks like Long Short-Term Memory networks or Gated Recurrent Units. The
weights of the hidden layers are adjusted during the training process using backpropagation.
Backpropagation propagates the error from the output layer backward through the network,
using the gradient of the error with respect to each weight to update them via gradient descent.
The choice of using FFNN as a model is justified as follows. The architecture is characterized
by its relatively low memory requirements and high computational efficiency [49]. This allows
model training and predictions to be performed on a local machine without the need for a
GPU. Nari et al. [50] compared different ML models, such as SVM, RF, ERT, and Artifical
Neural Network (ANN) for yield prediction and concluded that deep ANNs have a superior
performance for yield prediction compared to the other ML models. In addition, FFNN have
been compared to regression models for yield prediction: Kaul et al. [51] used an FFNN for
the prediction of corn and soybean yield in Maryland and achieved higher accuracies with an
FFNN compared to multiple linear regression models. A similar conclusion was drawn by
Sun et al. [52] who used an FFNN for the prediction of rice yield in China and concluded that
they show better performance compared to a multiple linear regression model.

2.6. Model Design and Training

We used a grid search to identify the best model parameters for the yield prediction.
The resulting model was an FFNN with four hidden layers, each followed by a dropout
layer. Dropout was used as a regularization mechanism to prevent over-fitting. In total,
the final network consisted of 478,517 trainable parameters. We trained the model from
scratch using the Adam optimizer with a learning rate of 0.0005 [53]. The maximum
number of training epochs was set to 150 with an early-stop monitor with patience of
eight. Early stopping is a mechanism that ensures the training process is stopped if the
validation loss has not decreased over several epochs. The model was implemented
using the Python (version 3.6) library “Keras (version 2.7)” [54]. In total, four different
models were used in this study. One model per SSM product to assess the explained
variability of spring barley yield and one model per product to evaluate the spatial
patterns in the prediction. These models are the H SAF model and the ERA5 model.
These models were always trained with their corresponding SSM dataset serving as a
predictor variable and the harvest reference data as a target variable. The dataset was
always divided into two-thirds for training and validation and one-third for testing. As
FFNNs do not support three-dimensional input data, the time and feature dimensions
were flattened to a single dimension. A simplified representation of the model input
and output parameters, as well as the model architecture, is shown in Figure 2. Further
details on the experimental set-up are provided in Section 3. For all experiments, we
used the same model parameters. Moreover, all experiments were repeated ten times
with the same train and test split to reduce the impact of the random weight allocation
on the accuracy. The final prediction for each test sample was then determined by
taking the average of all ten predictions. The same train and test split was used for the
H SAF data and the ERA-5 data.
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Figure 2. The figure shows a simplified illustration of the architecture of the FFNN model. In addition,
the model inputs and outputs are illustrated in their data shape. Depending on whether H SAF or
ERA5 SSM is used, the models are referred to as H SAF or ERA5 model.

2.7. Accuracy Assessment

The following metrics were used in the study to assess the accuracy of the yield
prediction models:

• Root Mean Square Error (RMSE): RMSE quantifies the average magnitude of prediction
errors by taking the square root of the mean of the squared differences between
predicted and actual values. RMSE gives more weight to larger errors, making it
particularly useful when large deviations are undesirable or critical in a model’s
performance [55].

• Mean Absolute Error ( MAE): MAE measures the average magnitude of prediction
errors by calculating the mean of the absolute differences between predicted and
actual values. In contrast to RMSE, it treats all errors equally, making it less sensitive
to outliers.

• Pearson’s R (correlation coefficient): PearsonR measures the strength and direction
of a linear relationship between two continuous variables. It ranges from −1 to +1,
where +1 indicates a perfect positive correlation and −1 a perfect negative correlation;
0 suggests no linear correlation. PearsonR is only sensitive to linear relationships, so it
does not capture non-linear associations effectively [56].

• R² (coefficient of determination): R² measures the proportion of variance in the de-
pendent variable that is explained by the independent variable(s) in a regression
model. However, the exact definition and associated calculation of the coefficient of
determination varies. In this study, R² was determined using the Scikit-learn r2_score
function, which defines R² as the ratio of the explained sum of squares to the total
sum of squares. An R² value closer to 1 means that the model explains most of the
variability, while values close to 0 or negative indicate a low explained variability [57].

• Unbiased Root Mean Square Error (ubRMSE): ubRMSE provides insight into how well
a model captures the dynamics or variability in the data while ignoring any consistent
bias. A low ubRMSE indicates that the model predictions closely follow the pattern of
the actual data, even if there is a consistent offset. It is defined as the square root of
the difference of the squared RMSE and the squared bias. This metric is only used in
Sections 3.2 and 4.2.

• F-statistic: The F-statistic in regression analysis tests whether the model explains a
significant proportion of the variance in the dependent variable compared to random
chance. It evaluates the null hypothesis that all regression coefficients (except the
intercept) are zero, meaning that the predictors have no collective effect. A large
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F-statistic indicates that the model is statistically significant and at least one predictor
contributes meaningfully to explaining the variance [58].

3. Results
In the following section, the results of the study are presented. First, the R² measure

is used to assess how much of the yield variability can be explained by the SSM products.
Afterward, the yield prediction is spatially evaluated, and finally, differences between the
results for the two SSM products are assessed in detail.

3.1. Explained Variability by Surface Soil Moisture

The first step was to analyze how much of the yield variability can be explained by
SSM alone. For this purpose, the entire dataset was randomly divided into training and test
data. One model was then trained with the H SAF product and one model with the ERA5
SWVL1 product, which were then subsequently evaluated. Table 1 shows the accuracy
metrics achieved for the two models. The H SAF model achieved a PearsonR value of
0.59, an R² value of 0.33, an RMSE of 0.89, and a MAE of 0.68. The values for the ERA5
model are slightly better for all metrics. The PearsonR for ERA5 SWVL1 is 0.61, the R²
0.37, RMSE 0.86 and MAE 0.65. The F-statistic for the ERA5 model is 9.9, and for the H
SAF model 8.0. The H SAF SSM product can thus explain 33% of the variability in spring
barley yield in the dataset and the ERA5 SWVL1 37% of the variability in spring barley
yield. To test the significance of the achieved R², we further calculated from the F-statistics
the corresponding p-value for all model runs. The obtained p-values were all below the
threshold of 0.05, indicating that the R² value is statistically significant and unlikely to have
occurred by chance. Figure 3a,b shows scatterplots for the predicted and reference yield
for both models. Similar patterns can be recognized for both products: A good alignment
between predicted, and reference yield can be observed especially for reference yields
between 4 t/ha and 6 t/ha, whereas the models for both products tend to overestimate low
yields and significantly underestimates high spring barley yields.

(a) (b)

Figure 3. Scatterplot between the predicted and the reference yield for the H SAF SSM and
ERA5 SWVL1 product. The points always represent the average predicted yield over the ten runs.
(a) H SAF SSM. (b) ERA5 SWVL1.



Remote Sens. 2025, 17, 1394 10 of 22

Table 1. Achieved accuracy metrics for the H SAF SSM and the ERA5 SWVL1 product using a random
split over all NUTS regions and years.

H SAF SSM ERA5 SWVL1

PearsonR R² RMSE MAE F-Statistic PearsonR R² RMSE MAE F-Statistic

0.59 0.33 0.89 0.68 9.9 0.61 0.37 0.86 0.65 8.0

3.2. Spatial Evaluation of the Models

To assess the performance for the different geographic regions, a cross-validation was
carried out on the NUTS level. Over three runs, samples of a different third of the 413 NUTS
regions were used as a test dataset and the samples of the other two-thirds for training and
validation. The experiment was repeated five times, each time using a different split to
reduce the impact of the split on the accuracy metrics. To ensure comparable results, the
same train-test split was used for both products. All predictions were then assigned to their
corresponding NUTS region and country. For every NUTS region and the three countries,
the final metrics were subsequently calculated over all assigned predictions.

Table 2 outlines the achieved metrics for the two models and the three countries. In
Czechia, both models achieved very similar results, and each the lowest RMSE and MAE
among the three countries. The ERA5 model achieved slightly higher values for PearsonR
and R². RMSE, ubRMSE and MAE are almost identical for both models. The metrics for
Austria are significantly worse for both models. The H SAF model achieved a PearsonR
of 0.50, an R² of 0.17, and MAE of 0.70 t/ha. Here, the highest difference between the
RMSE and the ubRMSE can be observed with values of 0.89 t/ha and 0.84 t/ha. The ERA5
model achieved slightly better metrics with a PearsonR of 0.53, an R² of 0.23, and RMSE,
respectively, MAE of 0.85 t/ha and 0.67 t/ha. The difference here between RMSE and
ubRMSE is only 0.01 t/ha. The highest PearsonR and R² for both products were achieved in
Germany. The PearsonR for the H SAF model is 0.53 compared to 0.58 for the ERA5 model.
Also, the R² is 0.06 higher for the ERA5 model (0.34 to 0.28). The RMSE ubRMSE are both
0.05 t/ha lower and the MAE is 0.03 lower (0.69 t/ha to 0.72 t/ha) for the ERA5 model.

Table 2. Achieved accuracy metrics for the H SAF SSM and the ERA5 SWVL1 product when
performing a cross-validation on NUTS level. The metrics were calculated from all NUTS regions in
the specific country.

H SAF SSM ERA5 SWVL1
PearsonR R² RMSE ubRMSE MAE PearsonR R² RMSE ubRMSE MAE

AT 0.50 0.17 0.89 0.84 0.70 0.53 0.23 0.85 0.83 0.67
CZ 0.52 0.26 0.70 0.70 0.54 0.53 0.28 0.70 0.70 0.53
DE 0.53 0.28 0.94 0.94 0.72 0.58 0.34 0.89 0.89 0.69

Figure 4 illustrates the RMSE on the country level for the H SAF product (a) and the
ERA5 product (b). Overall, both products show similar spatial patterns. Outlier regions
with very high RMSE values are located especially in Germany (NUTS regions DE94C,
DEA1F, DE27B, DE258, DE298, DE12A). Moreover, both products show a cluster with high
RMSE values in Eastern Germany, with slightly higher RMSE values for the H SAF product.
The H SAF model shows some regions with higher values in the alpine regions in Southern
Germany and Austria, which are less pronounced for the ERA5 model. In Czechia, both
models show overall the lowest RMSE values with only one outlier region (CZ0421) at the
border with Germany exceeding an RMSE of 1.5 t/ha.
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(a) (b)

Figure 4. RMSE between the predicted and reference yield for the H SAF SSM and the ERA5 SWVL1
product per NUTS unit. The RMSE values are retrieved over all available years on NUTS level.
(a) H SAF SSM. (b) ERA5 SWVL1.

3.3. Comparison of ERA5 SWVL1 and H SAF SSM

Figure 5 shows the differences between the predictions for the H SAF model and
the ERA5 SWVL1 model per NUTS region. The figure was derived by calculating the
RMSE difference between the prediction of the H SAF model and the ERA5 model, thus
the difference between Figure 4a,b. Positive values in Figure 5 indicate higher errors for
the H SAF-based model, whereas negative errors indicate higher errors for the ERA5-
based models. To test if the differences between the RMSE values over the 50 runs of
the H SAF model and ERA5 model are statistically significant, we performed a paired
t-test between these values, using the p-value 0.05 as the threshold. The calculated
p-value quantifies the statistical significance of the observed differences between the
compared cases. Specifically, it represents the probability of obtaining the observed
differences, or more extreme ones, under the null hypothesis that the means of the
two groups being compared are identical. NUTS regions with significant differences
are highlighted in Figure 5 with a grid pattern. Looking at the figure, two areas with
high differences stand out. The first and smaller one is the alpine region in Southern
Germany and Western Austria. Here, higher errors are observed for the H SAF-based
product. The second cluster is in Eastern Germany. Here, again, the H SAF model
shows higher RMSE values in several NUTS regions. Remarkably, in all of Czechia,
both models show a very similar performance with only 13 NUTS regions showing
significant differences with a p-value ≤ 0.05. All of these have an RMSE difference
smaller than 0.5 t/ha. Also, in most of Western and Central Germany as well as most
of Southern and Eastern Austria, only a few regions show significant differences. In
total, 81 of the 413 NUTS regions, equal to 20%, show significant differences. Of these,
32 show a significantly higher average RMSE value for the ERA5 product, and 49 show
a higher average RMSE value for the H SAF product.
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Figure 5. Comparison of RMSE values on NUTS level between the predicted yield for the H SAF-
based model and the ERA5-based model. Positive errors (white to red) indicate a higher error for
the H SAF-based model, whereas negative errors (blue to white) indicate a higher error for the
ERA5-based model. NUTS regions where the difference in RMSE is significant (p-values ≤ 0.05) are
highlighted by the grid pattern.

4. Discussion
4.1. Value of SSM for Spring Barley Yield Prediction

In this section, the explained variability score will be discussed, and in a later section,
the two products will be compared in detail. The relatively high explained variability scores
of 33% and 37%, combined with the PearsonR values of 0.59, respectively, 0.61, stress the
high importance of SSM for spring barley yield prediction. It must be taken into account
here that the explained variability R² refers to the proportion of the variance in the reference
yield that is explained by the independent variable, in this case, the min, max, and mean
SSM values of the model. It can thus be only a rough indicator of the real relationship
between SSM and spring barley yield. The results align with a previous study from Středa
et al. [14] who achieved an R² of 27% between available water holding capacity and spring
barley yield in Czechia. The remaining variability not explained by SSM can be attributed
to several other factors. A big fraction can be assigned to other meteorological variables. In
their study, Chmielewski and Köhn [59] could explain 60% of spring barley yield variability
with meteorological variables. Yiğit et al. [60] observed an explained variability of 82% for
meteorological variables (temperature, precipitation, potential evapotranspiration, global
radiation, and climatic water balance) for winter and spring barley yield in Germany.
Temperature and solar radiation can be seen as the largest contributing factors here [61].
Field experiments have shown that heat stress leads to a greater reduction in spring barley
grain weight than water stress [62]. Besides meteorological variables, other contributing factors
to be named here are soil acidity, fertility, and nutrient availability, particularly nitrogen and
phosphorus are crucial [63]. Thai et al. [64] quantified the impact of fertilizer application
on spring barley yield in a field experiment in Eastern Germany with 11%. The timing
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of sowing has been shown to impact yield, with early sowing leading to higher yields as
long as young plants are not affected by frost [65]. Soil characteristics, including nitrogen
content, impact yield to a certain degree [66]. Finally, effective disease control and genetic
factors, such as variety adaptability and stress resistance, enhance resilience [60,67,68].

Similar studies have been carried out for maize, which is, in general, considered a
more drought-sensitive crop. These studies showed a higher explained variability for
SSM on the maize yield. NeSmith et al. [69] observed a yield reduction of up to 40% for
water-deficit treated maize plants. In addition, Milics et al. [70] compared SM to maize
yield in Hungary and obtained an R² score of 0.5947.

The scatter plots in Section 3.1 further indicate that the yield prediction models struggle
to predict low and high yield values. The estimation of extreme values is, in general, difficult
for ML models. Since extreme values are typically underrepresented in the dataset, ML
methods tend to learn mainly non-extreme data points [71]. This is also evident when
looking at the spatial error distribution, as discussed next.

4.2. Spatial Error Distribution

Section 3.2 outlined significant differences between the countries in the study region,
with the lowest RMSE value for both products observed in Czechia. This can be related
to two factors: A comparison of Figures 1 and 4 indicates that regions with average yield
values close to the overall average (between 4 t/ha and 6 t/ha) have typically low error
rates. In Czechia, all NUTS regions have average yield values between 3 t/ha and 7 t/ha.
This can be seen as the main reason why this country has the lowest RMSE value among
the three countries. The higher error rates for Austria and Germany can partly be attributed
to regions with significantly higher RMSE values. Some of these are identical for both
models and some are amplified in the predictions of only one model. The high error values
(RMSE ≥ 2.5 t/ha) of the isolated NUTS regions in Western and Southern Germany (DE94C,
DEA1F, DE27B, and DE258) and Austria (AT4708) are probably due to the unusually high
or low crop yield in these NUTS regions. As Figure 1 illustrates, the NUTS regions DE94C,
DEA1F, DE27B, and AT4708 are among those with the highest average yield in the entire
study region. NUTS region DE258, on the other hand, has a below-average yield. It is
striking that all these regions differ greatly from their neighboring regions in terms of
yield. The low prediction accuracy of the SSM models and the isolated occurrence of
these patterns lead to the conclusion that these deviations are not or only to a small extent
attributable to SSM. More likely, there are causes that occur on a smaller scale, such as
nutrient availability, differences in the form of cultivation, etc.

Table 2 indicates that Austria has, for both products, the lowest R² and the highest
difference between the RMSE and the ubRMSE. This indicates a significant bias in the
predictions, which is also evident from Figure 4 where wide scale RMSE values around
1 t/ha) for both products are visible. On closer examination, it turns out this is caused by an
overprediction of the spring barley yield. The cause of this can be seen in the unfavorable
growing conditions mentioned in Section 2.1: frequent late frosts in the west and heavy soils
in the east. Thus, the models struggle to predict the relatively low yield values based only
on the SSM time series of the two products, leading to the low R² values and the high RMSE.
These unfavorable conditions are also reflected in a steady decrease in the production of
spring barley and a transition to the cultivation of winter barley in Austria [37].

For both products, the highest RMSE errors occur in Eastern Germany, especially the
NUTS regions DE405, DE40A, DE40E, DE40H, DE406, and DE40G. A closer look at the
predictions for these regions reveals that they are strongly affected by a bias and a constant
significant overprediction of yield. The obtained bias for these regions ranges from 1.8 t/ha
to 2.9 t/ha. The ubRMSE for these NUTS regions is, thus, significantly lower and ranges
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from 0.4 t/ha to 1.3 t/ha. To better understand why the models for both products struggle
to accurately predict spring barley yield based on SSM, we created density plots showing
the yield and average SSM for the samples of the NUTS regions in Eastern Germany
compared to the samples from all other NUTS regions. Figure 6 illustrates this for the
two SSM products. As can be seen, the majority of the samples from the NUTS regions in
Eastern Germany (displayed as red dots) have a (far) below-average yield. However, they
mostly have average or only slightly below average SSM values. Based on this probability
distribution, however, a significantly higher yield would be expected for the SSM values of
most of these samples. It must be noted that this illustration only represents a simplified
relationship between SSM and yield, as only the average SSM values for the entire growth
phase are used here. We conclude from these that the relationship between SSM and yield in
this region differs greatly from the rest of the study region. As a reason for this, we refer back
to Section 2.1 that pointed out that this region is characterized by unfavorable cultivation
conditions, with drier conditions and soils with lower water holding capacity [33]. Due to
these unique conditions, both models have difficulties predicting the low yield there based
on SSM. Here, the use of a root-zone SM might prove to be useful, as it would give more
of an indication of how long water is available to plants. Nonetheless, reliable root-zone
SM needs to be available that takes into account soil characteristics, which is currently not
available from the H SAF product suite. Looking at the spatial errors, differences between
the predictions of the models of the two SSM products become obvious and are discussed
in the following section.

(a) (b)

Figure 6. Density plots showing the relation between the mean SSM during the vegetation period and
spring barley yield per sample for the two products. In addition, the samples from NUTS regions in
Eastern Germany are shown as red dots. The density was calculated using a Gaussian kernel density
estimation. (a) H SAF SSM. (b) ERA5 SWVL1.

4.3. Comparison of the Two SSM Products

Sections 3.1 and 3.2 have shown that the models for both products achieved very
similar results for the random split as well as for the spatial split. In both cases, a (slightly)
better performance was observed for the ERA5 SWVL1 product. As already mentioned in
the introduction, the aim of this study was not a validation of the SM products. Studies
validating the two SSM products with in-situ measurements observed a high agreement for
both products in Europe with slightly lower errors for the ERA5 product [72,73]. Other stud-
ies compared the two products, respectively, the H SAF product with another model-based
SSM product, for different applications: Modanesi et al. [74] found a higher correlation
for satellite-derived SM products to crop losses compared to model-based SM products.
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Gaona et al. [75] concluded in their study that the H SAF product has a high value for
drought monitoring in Europe. It must also be taken into account that the products are
derived differently and depict SSM at different soil depths. While both products represent
SSM, the ERA5 SWVL1 is defined to cover the depth up to 7 cm, while the H SAF product
only covers the top 2 cm. Moreover, ERA5 SWVL1 is a model-derived product, whereas
the H SAF product is derived from satellite data. Thus, the H SAF product captures, in
contrast to the ERA5 product, irrigation. On the other hand, the ERA5 SWVL1 product is
deduced using additional information like soil maps that can potentially be advantageous
for yield prediction. In contrast, the derivation from satellite observations makes the H
SAF product subject to influences stemming from different land covers, the satellite’s
acquisition geometry, radio frequency interference, and other factors. These are mapped
in the calculation of the SM noise. Figure 7 shows the average H SAF SM noise for all
NUTS regions calculated for the same period as the SSM data. As the figure illustrates,
the highest noise values can be found in the Alpine region. Here, the significant terrain
causes uncertainties in the calculation of the SM. The higher error rates in the prediction
using the H SAF product in some of the regions (AT4702, AT4701, AT4703, DE21F, DE21K,
AT4506, AT4504, AT4612) in the Alpine area, illustrated in Figure 5, can thus be most likely
related to high SM noise. This aligns with findings from previous studies. Hahn et al. [76]
found that in mountainous terrain, the influence of ASCAT SM assimilation on precip-
itation forecasts was low, mainly due to forcing mechanisms specific to these regions.
Paulik et al. [77] observed that the mountainous Southern part of their study area consis-
tently showed higher topsoil moisture values compared to the northern part, indicating
potential challenges in accurate SM retrieval in such terrain. Considering these partly high
SM noise values in the study region and the significant differences in the retrieval and
definition of the two products, it is remarkable that they achieved comparable results in
80% of the NUTS regions.

Figure 7. Average SM noise of the H SAF SSM product per NUTS region. The SM noise was calculated
over the same period as the H SAF SSM data.
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From Figure 7, we can also conclude that the significant differences in the RMSE values
in Eastern Germany can not be attributed to SM noise. To inspect the reliability of the
mean H SAF SSM time series of the NUTS region, we calculated the standard deviation per
NUTS region. This was conducted by determining the daily standard deviation for the SSM
time series of all grid points in the NUTS regions. The mean standard deviation over the
entire year was then calculated for all years in which crop yield data were available for this
NUTS region. The result is illustrated in Figure 8. This figure shows a strong overlap with
Figure 5. Many NUTS regions in which the H SAF product has higher RMSE values also
have high standard deviations. In the Alpine region, the high standard deviations can again
be attributed to the high SM noise, as well as to small-scale differences in rainfall due to
the effect of the mountains as a weather divide. In Eastern Germany, especially the regions
DE405, DE40A, DE40E, DE40H, and DE406 show both a high standard deviation and a high
RMSE value for the H SAF product. To understand what causes the high standard deviation
in these regions, the deviations per grid point were determined in the regions. This revealed
that grid points with a high difference from the mean SM are often located in forest areas or
in the proximity of water bodies. A CORINE landcover-based calculation of forest cover per
NUTS region showed that these NUTS regions have a high fraction of forest (between 40 and
50%) and a relatively low percentage of agriculture (between 30 and 50%). In addition, the
two federal states Brandenburg and Mecklenburg-Vorpommern, in which these NUTS regions
are located, are those with the highest number of lakes in Germany [78]. As densely vegetated
areas and water bodies allow no (accurate) derivation of SM from microwave observation
and, thus, no reliable SM retrieval, they contribute to the high variability within the NUTS
region [79,80]. The high variability subsequently has the effect that the mean SM time series
is less reliable in these NUTS regions. An improved selection of grid points based only on
agriculture or filtering out grid points with a high derivation from the mean SSM would likely
improve the yield prediction in the NUTS regions for the H SAF model.

Figure 8. Mean standard deviation per NUTS region. The standard deviation is derived from the H
SAF SSM time series of all grid points within an NUTS region. Afterwards, the mean over all years
was calculated.
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4.4. Limitations of the Study

The findings of this study are subject to several limitations, which are discussed in the
following. First, several factors can impact and potentially reduce the achieved explained
variability for SSM: the quality of the SSM products, the quality of the yield data, the
quality of the model fit, and in particular, the temporal and spatial resolution of the SSM.
In addition, carrying out the analysis on the NUTS level without knowledge about the
distribution of spring barley within the region introduces further uncertainties, especially
with regard to the retrieval of the corresponding SSM time series. The real explained
variability (as observed with in-situ measurements in a field study) of SSM can thus be even
higher. Moreover, within this study, we only tested one satellite-based SM product and one
model-based SM product. Other widely used active products, such as the CLMS Sentinel
1-based SSM product, passive products like ASMR2, or a combined product like SMAP,
were not tested. However, based on previous studies [80–82], similar findings regarding
performance limitations in low-sensitivity areas are expected, especially for c-band and
x-band-based products. It must also be taken into account that the study region covers
only a limited range of climate conditions. As the importance of individual factors is
expected to be highly dependent on the climate conditions, the transferability to other
regions is, therefore, limited. In regions with climate conditions similar to central Europe,
for instance, parts of eastern North America, parts of East Asia or New Zealand, similar
results for the explained variability can be expected. Ray et al. [83] analyzed the influence of
climate variables (temperature, precipitation) on crop yield on a global scale and concluded
that there are considerable spatial differences in their impact. In dry regions such as sub-
Saharan Africa, SM is significantly more important. Gibon et al. [84] demonstrated this
by quantifying the explained variability for SM on millet yield in the Sahel with 81%. In
northern regions and regions where crops are typically irrigated, temperature has been
shown to have a higher importance compared to SM [83].

5. Conclusions
In this study, we took a detailed look at the value of the two SSM products, H SAF

and ERA5 SWVL1, for the prediction of spring barley yield in Central Europe. In this
scope, we trained an FFNN using SSM time series and spring barley yield for NUTS3
regions in Germany and NUTS4 regions in Austria and the Czechia for the years 2016 to
2022. The results showed that SSM has a high potential to predict variability in spring
barley yields. ERA5 SWVL1 can explain 37% and the H SAF product 33% of the yield
variability in the crop. A spatial evaluation of the predictions of the two products revealed
that they achieve similar RMSE values for Czechia and most parts of Germany and Austria.
In the Alpine regions of Southern Germany and Western Austria, the H SAF product
showed higher RMSE values in some NUTS regions, which can be attributed to the high
SM noise in these regions. The biggest differences occurred in Eastern Germany. The H SAF
product performed significantly worse here. Our analysis revealed that in these regions,
the standard deviation of the SSM time series of the different grid points is higher than in
the remaining study region. This can be attributed to the high fraction of dense vegetation
and a high number of water bodies in these regions, which decrease the sensitivity of
the radar signal to SSM. In these areas with low sensitivity of microwaves, the usage of
model-based SSM such as ERA5 or improved filtering of the grid points is expected to
increase the prediction accuracy. In the remaining study area, 80% of the NUTS regions,
both products achieve comparable results. The H SAF product offers the advantage that it
is provided in near real-time, thus allowing earlier predictions than the ERA5 reanalysis
product. The usage of the latest version of the H SAF product, which includes several
improvements such as a landcover-specific trend correction, could likely improve the
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results for this SSM product. Based on these results, adding SSM as an input to yield
prediction or crop growth models for spring barley or similar crop types is recommended.
In areas with low sensitivity for microwaves, model-based products are expected to allow
more accurate results. Implementing these findings allows the development of more
accurate yield prediction and crop growth models, subsequently contributing to more
improved agricultural management and food security. These become increasingly relevant
as droughts are expected to occur more frequently in Central Europe due to climate change.
In this context, future work will focus on assessing in detail the performance in single years
to understand the value of SSM under a variety of drought conditions.
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