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Abstract
The  integration  of  diverse  point  cloud  sources  – such  as  Terrestrial  Laserscanning (TLS),  Image
Based  Modelling (IBM),  and  Ground  Penetrating Radar  (GPR)  – enables  the  creation  of  compre-
hensive  3D  models  of  archaeological  sites,  imaging both  surface  and  subsurface  structures.  Each
data type  captures  distinct  information:  TLS  provides  detailed  geometry,  photogrammetry  offers  

texture  and  overall  structure,  and  GPR  reveals  subsurface  features.  Merging these  data sets  into 

a unified  point  cloud  improves  the  visualisation  and  facilitates  the  topographic  correction  of  GPR
data,  GPR  anomaly  detection,  and  digital  twin  creation,  which  are  essential  for  archaeological
research  and  cultural  heritage  preservation.

The  proposed  workflow  optimises  and  georeferences  TLS  data while  ensuring global  consis-
tency  across  multiple  scans.  Global  reference  is  established  by  using Global  Navigation  Satellite
System  (GNSS)  data of  distinct  features  and  airborne  drone  measurements.  Comparisons  to
transform  parameters  using the  geo-located  IBM  data are  conducted  and  consequently  preferred
due  to visual  consistency.  The  resulting integrated  3D  models  not  only  enhance  the  understanding 

of  the  investigated  cultural  heritage  sites  but  also improve  the  accuracy  of  subsurface  and  surface
mapping by  correlating overlapping structures  from  different  sensing modalities.

This  project  also demonstrates  an  automated  framework,  in  which  all  data are  treated  as  

point  clouds  and  merged  following precise  referencing.  A dedicated  C++  tool  facilitates  the
optimisation  process,  and  the  integration  is  performed  within  a Geographic  Information  System
(GIS)  framework  called  Nubigon,  suited  for  the  handling of  very  large  data sets.  This  type  of
system  is  pivotal  in  ensuring that  both  high-resolution  surface  details  and  subsurface  anomalies
are  accurately  represented,  thereby  supporting more  effective  conservation  and  research  efforts.
The  custom  developed  tool  is  set  to be  published  as  open  source  software,  therefore  facilitating free
access  and  the  possibility  of  contribution  by  a broader  user  base.  This  encourages  transparency
and  accessibility  of  software  used  for  the  specific  purpose  of  aligning multiple  point  clouds  and
optimising the  underlying pose  graph.

GPR  data revealed  subsurface  structures  and  features  within  the  manor  grounds.  Anoma-  

lies  caused  by  buried  walls  and  foundations  of  a suspected  orangery  were  discovered  beneath
the  meadow  of  a terrace  adjacent  to the  building complex.  These  3D  point  cloud  data sets  and
contained  structures  have  been  jointly  visualized  using Nubigon,  which  overlays  IBM  surface
data with  GPR  subsurface  data to provide  a comprehensive  representation.
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Chapter  1 

Introduction
Joint  3D  subsurface  and  surface  imaging using a combination  of  Ground  Penetrating Radar  

(GPR),  Image  Based  Modelling (IBM),  and  Terrestrial  Laser  Scanning (TLS)  has  emerged  

as  a powerful  approach  for  noninvasive  archaeological  and  historical  site  investigations  and  

documentation  (Schmidt  et  al. 2023;  Merkle  et  al. 2020;  Trinks  et  al. 2018;  Wolf  et  al. 2018).
Merging geoarchaeological  prospection  data from  these  methods  into a unified  3D  point  cloud
visualization  offers  several  benefits:

Enhanced  Data Integration  and  Interpretation
Integrating datasets  allows  for  a multi-layered  analysis  where  surface  and  subsurface  features  can
be  directly  compared.  This  correlation  of  topographical  details,  obtained  from  IBM  and  laser  

scanning,  with  buried  structures  identified  by  GPR,  enhances  the  spatial  context.  Subsurface
anomalies  detected  by  GPR  can  be  better  understood  in  relation  to  above-ground  features
such  as  walls,  ditches,  or  terrain  changes.  Merging all  datasets  into a common  3D  environment
ensures  better  spatial  alignment  and  reduces  interpretation  errors,  providing a seamless  overlay
of  different  data types.

Increased  Accuracy in  Spatial  Positioning
Combining point  clouds  from  different  sources  allows  for  cross-validation  and  refinement  of  spatial
positioning,  which  is  particularly  useful  in  complex  terrains  or  forested  areas  where  GNSS  may
be  unreliable.  Laser  scanning provides  high-precision  georeferencing that  can  be  used  to align
and  correct  IBM  and  GPR  datasets,  ensuring georeferencing consistency  and  improved  data
registration.

Improved  Visualization  and  Communication
A more  intuitive  3D  representation  allows  researchers,  stakeholders,  and  the  public  to better
understand  archaeological  features  by  visualizing them  in  a realistic  3D  space,  including both
visible  and  hidden  structures.  Point  cloud-based  3D  models  facilitate  interactive  exploration,
enabling sectioning and  filtering of  different  data layers  to focus  on  specific  aspects.  This  enhanced
visualization  is  a powerful  tool  for  archaeologists,  heritage  managers,  and  the  public,  making
discoveries  more  tangible  and  accessible,  thereby  improving stakeholder  engagement.

Facilitating Advanced  Data Processing and  Analysis
Merged  3D  datasets  can  serve  as  input  for  AI  and  machine  learning applications,  enabling 

automated  feature  recognition,  segmentation,  or  classification  using deep  learning techniques.
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Comparing GPR  point  clouds  with  surface  data may  allow  for  semi-automated  reconstruction
of  stratigraphic  sequences.  Additionally,  this  integration  enables  quantitative  analysis,  such  as
calculating the  volume  of  buried  structures  or  erosion  patterns.

Cross-Validation  of  Different  Methods
The  integration of  different  datasets allows for  the  confirmation of  subsurface  features detected
by  GPR  by  cross-checking with  terrain  data from  laser  scanning or  IBM,  ruling out  modern
disturbances.  Differences  between  datasets  can  help  refine  interpretations,  distinguishing natural
geological  formations  from  archaeological  structures.  Furthermore,  laser  scanning can  provide
topographic  corrections  for  GPR,  reducing errors  caused  by  uneven  terrain  and  improving the
overall  interpretation  of  GPR  data.

Digital  Twins  as  Investigative  Tool
Digital  twins  of  the  manor  houses  shall  serve  art  historians  and  archaeologists  in  their  investi-
gations.  This  approach  is  likewise  applicable  to the  investigation  of  archaeological  sites  using
non-invasive  geophysical  prospection  methods,  such  as  GPR.  So far,  the  surfaces  and  environment  

in  which  a prospection  survey  is  conducted  are  normally  not  recorded  or  documented,  leading to
incomplete  data sets.  The  combined  surface  and  subsurface  mapping and  imaging will  lead  to
more  comprehensive,  more  complete  and  more  realistic  data representations.

1.1 Choosing Imaging Methods
Image  Based  Modeling (IBM)
In  the  context  of  archaeological  prospection,  mapping the  surface  of  sites  with  color  and  texture
information is essential  for  digital  documenting,  and can be  used to virtually  preserving cultural
heritage  sites.  For  efficient  and  comprehensive  acquisition  of  surface  structures,  IBM  serves  as
a well  suited,  low  cost  method.  Given  most  archaeological  sites  are  geometric  structures  with
distinct  textural  features,  the  usual  pitfalls  for  IBM,  like  modeling textureless  or  vegetational  areas,
are  mostly  avoided.  The  nature  of  the  IBM  method  facilitates  high  resolution  documentation
of  textural  features,  while  providing sufficient  geometrical  accuracy  for  archaeological  purposes.
This  efficient  acquisition  technique  is  suited  for  large  scale  imaging as  well  as  high  resolution
capturing of  intricate  textural  details.  Given  low  occlusion  by  surrounding objects,  the  GNSS
receiver  onboard  a drone  used  for  IBM  provides  global  reference  of  the  investigated  object.  In
the  context  of  this  thesis,  exterior  structures  of  the  Hafslund  manor  have  been  mapped  using
drone  powered  IBM.

Terrestrial  Laser  Scanning (TLS)
TLS  point  clouds  can  provide  more  geometrically  accurate  data and  can  serve  as  a reference  

to captured  IBM  data.  Given  sufficient  overlap  between  adjacent  scans  and  minimized  error  

in  Iterative  Closest  Point  (ICP)-based  matching,  structural  features  are  acquired  with  higher
reliability  compared  to IBM.  In  this  thesis,  TLS  data captured  of  the  exterior  and  interior  of  the
manor  has  been  processed  and  analyzed.
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Ground  Penetrating Radar  (GPR)
While  TLS  and  IBM  provide  surface  level  data,  GPR  facilitates  investigation  of  the  corresponding
subsurface  (Conyers 2023).  Given  recent  developments  in  terms  of  data resolution  (Trinks  et  al.
2018),  and  reliable  results  in  near-surface  archaeological  investigations,  this  method  is  well  suited
for  efficient  and  robust  subsurface  data acquisition.

1.2 Manors  in  the  Baltic  Sea Region
In  the  framework  of  a collaboration  between  the  University  of  Vienna,  Vienna Institute  for
Archaeological  Science  (VIAS),  GeoSphere  Austria,  and the  Research Centre  for  Manors in the
Baltic  Sea Region1 of  the  University  of  Greifswald,  selected  manor  houses  have  been  investigated
as  pilot  studies.  The  purpose  of  these  studies  was  to develop  a workflow  for  simple  and  efficient
digital  3D  documentation  of  manor  houses  and  their  surroundings,  as  well  as  to use  geophysical
prospection  techniques  to survey  areas  in  the  vicinity  of  the  main  buildings.  Predominantly
georadar  measurements  have  been  used  for  the  geophysical  archaeological  prospection  surveys.
One  application  of  this  joint  3D  surface  and  subsurface  imaging was  attempted  at  Hafslund
Manor  in  Norway,  testing and  showcasing its  potential  for  the  non-destructive,  comprehensive
documentation  of  cultural  heritage  sites.

1.2.1 Hafslund  Manor
According to the  Directorate  for  Cultural  Heritage  (Riksantikvaren)2,  Hafslund  is  one  of  Norway’s
largest  manor  estates  (figure 1.1).  The  features  of  the  surrounding landscape  help  explain  how
this  power  center  emerged:  to the  west  lie  the  Glomma River  and  Sarpsfossen,  with  its  associated
industry  and  power  production;  to the  north  and  east  are  National  Road  118 (formerly  E6)  

and  the  railway  – vital  connections  to international  markets;  and  to the  south  unfolds  a rich
agricultural  landscape.  The  three-winged  main  building,  constructed  between  1758 and  1762,  was
erected  partly  by  reusing masonry  from  the  structure  that  burned  down  in  1757.  This  masonry
dates  back  to the  1600s  and  early  1700s.  Today,  the  north  wing serves  as  the  main  wing and
comprises  two full  stories,  while  the  east  and  west  wings  consist  of  a single  story  with  an  adapted  

attic.  The  main  building features  plastered,  white-painted  walls  with  impressive  rows  of  windows
and  a high  mansard  roof  adorned  with  glazed  roof  tiles.  The  external  staircases,  as  well  as  the
estate’s  fences  and  gates,  were  added  during a restoration  led  by  Arnstein  Arneberg in  1936–37.
Although  Arneberg also influenced  the  interiors,  much  of  the  original,  high-quality  18th-century
decoration  remains  preserved.

As  an  imposing Baroque  complex,  Hafslund  stands  alongside  Jarlsberg as  one  of  Norway’s
premier  manor  estates.  The  design  makes  deliberate  use  of  axes  and  symmetry  in  both  the  park
and  the  buildings.  The  outbuildings  conclude  at  the  main  building with  two pavilions  rendered
in  brick.  Remnants  of  a formal  parterre  garden  with  Renaissance  features  and  a Baroque-style
landscape  park  with  monumental  linden  avenues  further  underscore  the  historical  significance  of
the  estate.  

Today,  the  manor  houses  meeting and  conference  facilities  for  Hafslund  ASA3.

1 https://cdfi.uni-greifswald.de/en/history-of-art/research/research-centre-for-manors-in-the-baltic-sea-region/
2 https://riksantikvaren.no/en/
3 https://www.hafslund.no/en

https://cdfi.uni-greifswald.de/en/history-of-art/research/research-centre-for-manors-in-the-baltic-sea-region/
https://riksantikvaren.no/en/
https://www.hafslund.no/en
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Fig.  1.1: Hafslund  manor,  as  captured  by  drone  imaging.  Photo:  I.  Trinks.

1.2.2 Other  relevant  manors
Other  manor  houses  investigated  with  an  approach  similar  to that  used  at  Hafslund  Manor  – 

combining IBM,  TLS,  and  GPR  – include  Fossesholm  in  Norway,  Stola in  Sweden,  Kolga in  

Estonia,  Nuhjala in  Finland,  and  Orellen–Ungurmuiža in  Latvia.  The  integrated  surface  and  

subsurface  imaging presented  in  this  thesis  would  be  highly  applicable  to these  sites.  Beyond  

manor  houses,  the  3D  documentation  of  Insula IV in  Regio VII  at  Pompeii  by  the  Austrian
Archaeological  Institute,  employing the  same  three  methods,  offers  a comparable  scenario.

1.3 Creating and  Visualising Unified  3D  Point  Cloud
This  thesis  deals  with  the  combination  and  integration  of  the  different  data sets  collected  at  

Hafslund  Manor  by  correctly  referencing them  to each  other.  All  involved  data sets  can  be
regarded  and  presented  as  3D  point  clouds,  which  is  obvious  for  TLS  and  IBM  data,  but  less  so
for  GPR  data.  It  was  Kamp  et  al.  (2014)  who first  suggested  to visualise  GPR  data as  a 3D  point  

cloud.  The  process  of  combining these  point  clouds  involves  correctly  referencing individual  data
sets  to each  other,  followed  by  merging and  visualization.  The  ultimate  outcome  of  the  project
will  be  a comprehensive  workflow  that  outlines  the  acquisition,  processing,  and  integration  of  3D
surface  and  subsurface  data.

1.4 Related  Works
The  approach  by  Merkle  et  al. 2020 was  to combine  LiDAR  and  GPR  data,  using two GNSS  

antennas  in  combination  with  an  Inertial  Measurement  Unit  (IMU)  in  order  to reference  the  

datasets.  The  main  focus  of  this  work  was  to provide  additional  subsurface  information  in
infrastructural  use  cases  like  utility  mapping,  rebar  localization  within  concrete  or  void  detection.
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Topographic  correction  of  the  GPR  data,  using the  LiDAR  data,  ensures  consistent  ground  height.
Furthermore,  this  work  shows  that  the  LiDAR  cloud  as  reference,  increases  interpretability  of
GPR  data and  allows  measurements  between  subsurface  and  surface  structures.

Trinks  et  al. 2018 states  that  over  the  past  decade,  the  introduction  of  advanced  multi-channel
GPR  antenna array  systems  has  significantly  enhanced  survey  efficiency  and  spatial  sampling
resolution.  By  utilizing GPR  antenna arrays  with  up  to 16 channels  operating simultaneously,
combined  with  automatic  positioning solutions  like  real-time  kinematic  global  navigation  satellite
systems  or  robotic  total-stations,  it  is  now  feasible  to map  several  hectares  per  day  with  a trace
spacing of  8 cm  cross-line  and  4 cm  in-line.  This  substantial  increase  in  coverage  not  only  reduces
the  costs  of  GPR  surveys,  making them  more  accessible  for  archaeological  applications,  but  

also enables  high-resolution  imaging of  relatively  small  archaeological  features.  For  instance,
structures  such  as  25 cm  wide  post-holes  from  Iron  Age  buildings  or  the  brick  pillars  of  Roman
floor  heating systems  can  now  be  clearly  imaged,  leading to much  improved  archaeological
interpretations  of  the  data collected.

Based  on  the  findings  mentioned,  the  trend  towards  handling high  volumes  of  data,  poten-  

tially  processed  and  referenced  in  real-time,  is  becoming increasingly  important.  Developing
an  efficient  framework  for  integrating multiple  datasets,  particularly  point  clouds,  is  crucial  for
various  prospecting applications.  This  thesis  aims  to cover  parts  of  this  agenda.



Chapter  2 

Material  and  Methods

2.1 Ground  Penetrating Radar  (GPR)
Ground  Penetrating Radar  (GPR)  is  a non-invasive  remote  sensing technology  that  utilizes  

electromagnetic  waves  in  the  radar  frequency  range  to create  subsurface  images  by  detecting
reflected  signals.  The  practical  result  of  the  radiation  of  electromagnetic  waves  into the  subsurface
for  GPR  measurements  is  shown  by  the  basic  operating principle  that  is  illustrated  in  figure
2.1.  GPR  is  designed  primarily  for  investigating the  shallow  subsurface  of  the  earth,  building
materials,  and  infrastructure  such  as  roads  and  bridges.  Developed  over  the  past  thirty  years,
GPR  enables  shallow,  high-resolution  investigations.  It  is  a time-dependent  geophysical  method
that  can  provide  a 3D  pseudo-image  of  the  subsurface,  including depth  estimates  for  many
common  subsurface  objects.  Under  favourable  conditions,  GPR  can  deliver  precise  information
about  buried  objects.  Additionally,  GPR  can  be  deployed  in  boreholes  to extend  the  range  of
investigations  away  from  the  boundary  of  the  hole.

Fig.  2.1: Scheme  of  an  air-coupled  GPR  system  (Merkle  et  al. 2020).

2.1.1 Electromagnetic  Theory
GPR  relies  on  the  principles  of  electromagnetic  (EM)  wave  propagation,  rooted  in  Maxwell’s
equations.  These  fundamental  equations  describe  the  physics  of  electromagnetic  fields  and  their
interaction  with  materials.  Constitutive  relationships  link  material  properties  to electromagnetic
fields.  Material  can  be  characterized  based  on  their  response  to transient  EM  fields.  The  key
properties  for  GPR  are  dielectric  permittivity,  electrical  conductivity,  and  magnetic  permeability
(Reynolds 2011).
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Maxwell’s  Equations  and  Constitutive  Relationships:

Maxwell’s  equations  form  the  foundation  of  EM  theory,  describing how  electric  and  magnetic
fields  propagate  and  interact  with  materials.  The  constitutive  relationships  are:

Dielectric  Permittivity (𝜖)  : measures  how  a material  polarizes  in  response  to an  electric  field,
affecting how  EM  waves  propagate  through  it.

D = 𝜖E = 𝜖r𝜖0E (2.1)  

where:

• D is  the  electric  displacement  vector  [C/m2]

• E is  the  electric  field  strength  vector  [V/m]

• 𝜖r is  the  relative  permittivity

• 𝜖0 is  the  permittivity  of  free  space  (8.85 × 10−12 [F/m])

Electrical  Conductivity (σ)  : describes  how  free  charges  move  to create  an  electric  current
when  an  electric  field  is  applied.

J = σE (2.2)  

where:

• J is  the  electric  current  density  vector  [A/m2]

• E is  the  electric  field  strength  vector  [V/m]

• σ is  the  electrical  conductivity  [S/m]

Magnetic  Permeability (µ)  : measures  a material’s  ability  to support  the  formation  of  a
magnetic  field  within  itself.

B = µH = µrµ0H (2.3)  

where:

• B is  the  magnetic  flux  density  vector  [T]

• H is  the  magnetic  field  strength  vector  [A/m]

• µr is  the  relative  permeability

• µ0 is  the  permeability  of  free  space  (4π × 10−7 [H/m])

Electromagnetic  Wave  Propagation

In  simple,  isotropic,  linear  media,  Maxwell’s  equations  combined  with  the  constitutive  relation-
ships  describe  the  propagation  of  EM  waves.  The  movement  of  electric  charges  generates  a
current J,  which  produces  a magnetic  field B.  This  field  induces  an  electric  field E,  perpetuating
the  propagation  of  EM  waves  through  the  medium  (see  Figure 2.2).
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Fig.  2.2: Propagation  of  EM  waves  where  changing electric  fields  create  magnetic  fields,  and
vice  versa (Reynolds 2011).

Wave  Equation: The  propagation  of  EM  waves  is  described  by  the  transverse  vector  wave
equation,  derived  from  Faraday’s  law,  Ampere’s  law,  and  the  constitutive  relations:

∇2E − µ𝜖  

∂2E
∂  t2 =  0, (2.4)

where E is  the  electric  field, µ is  the  magnetic  permeability,  and 𝜖 is  the  dielectric  permittivity
of  the  medium  (D.  J.  Daniels 2004).  Both  electric  and  magnetic  fields  satisfy  this  wave  equation.

Wave  Propagation  in  Frequency Domain: Transforming the  wave  equation  into the  frequency
domain  via Fourier  transformation,  assuming sinusoidal  time  variation,  the  propagation  constant
k is:

k = α + iβ = ω

v

√
µ𝜖

(︂
1 + i  

σ

ω  𝜖

)︂
(2.5)  

where:

• ω is  the  angular  frequency

• v is  the  phase  velocity

• α is  the  attenuation  constant

• β is  the  phase  constant

Lossy Media: For  real  earth  materials,  losses  are  often  due  to electrical  conductivity.  When
losses  are  low,  i.e.,

ω  µσ ≪ ω  𝜖 (2.6)  

or  equivalently,
σ ≪ ω  𝜖 (2.7)  

the  wave  properties  simplify  to:
v =  

1√
µ𝜖

(2.8)

α = µσ

2v
(2.9)
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Z =
√︂

µ

𝜖
(2.10)  

where Z is  the  electromagnetic  impedance.

Frequency and  Conductivity Dependence: The  variation  of  wave  properties  with  frequency  and  

conductivity  is  shown  in  Figure 2.3.  At  low  frequencies,  wave  properties  are  frequency-dependent.  

As  frequency  increases,  water  relaxation  frequency  effects  and  scattering losses  become  significant
(Reynolds 2011).

Fig.  2.3: Variation  of  wave  velocity  and  attenuation  with  frequency  for  different  conductivities
(Reynolds 2011).

In  the  GPR  frequency  range  (10 MHz  – 2 GHz),  velocity  is  generally  independent  of  frequency
and  conductivity.  However,  attenuation  increases  with  both  frequency  and  conductivity,  limiting
penetration  depth  (Reynolds 2011).

2.1.2 Reflection  and  Transmission  of  EM  Waves
When  an  EM  wave  encounters  an  interface  between  two materials  with  different  electrical
properties,  part  of  the  wave  is  reflected  back  and  part  is  transmitted  through  the  interface.  This
section  provides  a detailed  scientific  explanation  of  these  processes.

Reflection  Coefficient: The  reflection  coefficient R at  an  interface  between  two materials  is
given  by  the  ratio of  the  reflected  electric  field  amplitude  to the  incident  electric  field  amplitude.
For  normal  incidence,  it  can  be  expressed  as:

R = Z2 − Z1
Z2 + Z1

(2.11)

where Z1 and Z2 are  the  impedances  of  the  first  and  second  materials,  respectively.  The  impedance
Z is  related  to the  permittivity 𝜖 and  permeability µ of  the  material  by:

Z =
√︂

µ

𝜖
(2.12)

Transmission  Coefficient: The  transmission  coefficient T is  given  by  the  ratio of  the  transmitted
electric  field  amplitude  to the  incident  electric  field  amplitude:

T =  

2Z2
Z2 + Z1

(2.13)
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Snell’s  Law: The  angles  of  incidence θi and  refraction θt at  the  interface  between  two materials
are  related  by  Snell’s  Law:

sin θi

sin θt
= v1

v2
=

√︂
𝜖2
𝜖1

(2.14)  

where v1 and v2 are  the  velocities  of  the  wave  in  the  first  and  second  materials,  respectively.

Fig.  2.4: Reflection  and  transmission  of  an  EM  wave  at  an  interface  (J.  J.  Daniels 2000).

Wave  Propagation  Velocity: The  velocity v of  an  EM  wave  in  a material  is  related  to the
permittivity 𝜖 and  permeability µ of  the  material:

v =  

1√
𝜖µ

(2.15)

In  most  non-magnetic  materials, µ ≈ µ0 (the  permeability  of  free  space),  so the  velocity  is
primarily  determined  by  the  permittivity 𝜖.

2.1.3 Scattering Mechanisms
When  an  EM  wave  encounters  an  object  with  different  permittivity,  various  scattering mechanisms
can  occur,  including specular  reflection,  diffraction,  resonant  scattering,  and  refraction.

Specular  Reflection: follows  the  Law  of  Reflection,  where  the  angle  of  incidence  equals  the
angle  of  reflection:

θi = θr (2.16)

This  type  of  scattering is  common  in  GPR  when  the  interface  is  smooth  and  planar  (see  Figure
2.5a).

Refraction  Scattering: occurs  when  part  of  the  wave  transmits  through  the  interface  into the
second  material,  changing direction  according to Snell’s  Law  (see  Figure 2.5b).

Diffraction  Scattering: occurs  when  the  wave  encounters  a sharp  boundary  or  obstacle,  causing 

the  wave  to bend  and  spread  out.  The  behavior  of  diffracted  waves  can  be  described  by  Huygen’s
Principle  (see  Figure 2.5c).

Resonant  Scattering: occurs  when  the  wave  impinges  on  a closed  object,  causing the  wave  to
resonate  within  the  object.  The  resonant  frequency  depends  on  the  size  of  the  object  and  the
material  properties  (see  Figure 2.5d).
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(a) spectral  reflection  scattering (b) Refraction  scattering

(c) Diffraction  scattering (d) Resonant  scattering

Fig.  2.5: Scattering mechanisms:  (a)  specular  reflection  scattering,  (b)  refraction  scattering,  (c)
diffraction  scattering,  and  (d)  resonant  scattering (J.  J.  Daniels 2000).

2.1.4 Processing of  GPR  data
The  processing of  GPR  data is  crucial  for  accurate  interpretation  and  involves  several  steps  aimed
at  improving the  signal-to-noise  ratio and  the  resolution  of  the  final  image.  This  section  builds
upon  the  techniques  discussed  by  Benedetto et  al. 2017 and  covers  data acquisition,  preprocessing,
signal  enhancement,  migration,  and  interpretation.

GPR  Data Representation:  A-Scan,  B-Scan,  and  C-Scan

GPR  data can  be  represented  in  different  formats,  each  providing unique  insights  into the
subsurface  structure.  The  most  common  representations  are  A-scan,  B-scan,  and  C-scan.

A-Scan: (Amplitude  scan)  represents  a single  trace  of  reflected  signal  amplitudes  over  time.  

It  provides  a one-dimensional  view  of  the  subsurface  at  a single  location.  The  vertical  axis  

represents  time  (or  depth),  and  the  horizontal  axis  represents  the  amplitude  of  the  reflected
signal.  The  A-scan  is  useful  for  analyzing the  signal  characteristics  at  a specific  point.

A(t)  = R(t), (2.17)  

where A(t) is  the  amplitude  of  the  reflected  signal  at  time t,  and R(t) is  the  recorded  signal.

B-Scan: (Brightness  scan)  is  a two-dimensional  cross-sectional  image  of  the  subsurface,  gener-
ated  by  combining multiple  A-scans  collected  along a survey  line.  The  horizontal  axis  represents
the  position  along the  survey  line,  while  the  vertical  axis  represents  time  (or  depth).

B(x,  t)  = R(x,  t), (2.18)

where B(x,  t) is  the  B-scan  image, x is  the  position  along the  survey  line,  and t is  the  time  (or
depth).  B-scans  are  also referred  to as  2D  GPR  profile  sections.
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C-Scan: (Constant  depth  scan)  provides  a plan  view  (horizontal  slice)  of  the  subsurface  at  

a constant  depth.  It  is  created  by  extracting data at  a specific  time  (or  depth)  from  multiple
B-scans  collected  over  a grid  of  survey  lines.  The  intensity  of  each  pixel  in  the  resulting image
corresponds  to the  amplitude  of  the  reflected  signal.  The  C-scan  is  useful  for  mapping the  spatial
distribution  of  subsurface  features.

C(x,  y)  = R(x,  y  ,  t0), (2.19)

where C(x,  y) is  the  C-scan  image, x and y are  the  coordinates  of  the  survey  grid,  and t0 is  the
selected  time  (or  depth).  C-scans  are  also referred  to as  GPR  time-slices  or  GPR  depth-slices.

(a) A-scan (b) B-scan (c) C-scan

Fig.  2.6: Illustration  of  A-scan,  B-scan,  and  C-scan  representations  in  GPR  data (Benedetto
et  al. 2017).

Preprocessing

Preprocessing steps  include  time-zero correction,  dewow  filtering,  and  gain  adjustment.  These
steps  aim  to remove  noise  and  correct  for  systematic  errors  in  the  data.

Time-Zero Correction: adjusts  the  recorded  data to ensure  that  the  start  time  of  each  trace  is
aligned.  This  correction  is  necessary  because  the  initial  pulse  may  not  coincide  with  the  zero-time
point  due  to system  delays.

Dewow  Filtering: removes  low-frequency  noise,  typically  caused  by  the  GPR  system’s  electronics.
This  is  achieved  by  applying a high-pass  filter  to the  data.  A common  approach  is  to use  a
moving average  filter  to subtract  the  low-frequency  component:

ddew  ow  ed(t)  = d(t) − 1
N

N  /2∑︁
i=−N  /2

d(t + i), (2.20)

where d(t) is  the  original  signal  and N is  the  window  size  of  the  moving average  (Cassidy  and
Jol 2009).

Gain  Adjustment: compensates  for  the  attenuation  of  the  signal  with  depth.  This  can  be  done
using exponential  or  automatic  gain  control  (AGC):

dg  ain(t)  = d(t) · eαt, (2.21)  

where α is  a constant  that  controls  the  gain  factor  (Cassidy  and  Jol 2009).
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Signal  Enhancement

Signal  enhancement  techniques  include  filtering,  background  removal,  and  deconvolution.  These
methods  improve  the  clarity  and  resolution  of  the  GPR  data.

Filtering: Band-pass  filters  are  often  used  to remove  both  low-frequency  and  high-frequency
noise  from  the  data.  The  filter  can  be  represented  in  the  frequency  domain  as:

Df  il  ter  ed(f)  = H(f)D(f), (2.22)

where D(f) is  the  Fourier  transform  of  the  original  signal,  and H(f) is  the  filter  function  (D.  J.
Daniels 2004).

Background  Removal: Background  removal  techniques  eliminate  consistent  noise  patterns,
such as antenna ringing.  One  common method is to subtract  the  average  trace  from each trace
in  the  data set:

dback  g  r  ound_r  emov  ed(t)  = d(t) − 1
M

M∑︁
i=1

di(t), (2.23)  

where M is  the  number  of  traces  (Cassidy  and  Jol 2009).

Deconvolution: aims  to collapse  the  wavelet  to a spike,  improving resolution.  The  Wiener
deconvolution  filter  is  commonly  used:

W (f)  = S∗(f)
S(f)S∗(f) + N(f)N∗(f) , (2.24)

where S(f) is  the  signal  spectrum, N(f) is  the  noise  spectrum,  and ∗ denotes  the  complex
conjugate  (Cassidy  and  Jol 2009).

Migration

Migration  is  the  process  of  repositioning reflected  signals  to their  correct  locations  in  space,
accounting for  the  propagation path of  the  waves.  The  Kirchhoff migration algorithm is widely
used:

dmig  r  ated(x,  z)  =
∫︁  ∫︁

d(xs,  tr)δ
(︃

tr −
√︀

(x − xs)2 + z2

v

)︃
dxsdtr, (2.25)

where xs is  the  source  position, tr is  the  travel  time, v is  the  wave  velocity,  and δ is  the  Dirac
delta function  (Yilmaz 2001).

Topographic  Correction

The  primary  goal  of  topographic  correction  is  to remove  the  distortions  caused  by  surface  elevation
changes.  In  GPR  surveys  conducted  over  undulating terrain,  the  recorded  signal  travel  times
are  influenced by  the  varying distance  between the  radar  antenna and the  subsurface  reflectors.
Without  correction,  these  variations  can  lead  to misinterpretation  of  subsurface  features  and
inaccurate  depth  estimations  (Neal 2004).  

Topographic  correction  involves  several  steps,  which  can  be  summarized  as  follows:
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1. Surface  Elevation  Measurement: Accurate  measurement  of  the  surface  elevation  at
each  GPR  survey  point  is  essential.  This  can  be  achieved  using differential  GPS  (DGPS)  or
total  station  surveying (D.  J.  Daniels 2004),  as  well  as  topographic  recording using image
based  modelling or  Lidar-based  sensors  (see  the  following sections).

2. Travel  Time  Adjustment: The  recorded  two-way  travel  times  (tobs)  are  adjusted  based
on  the  measured  surface  elevations.  The  corrected  travel  time  (tcor  r)  for  a given  depth  is
calculated  using the  following equation:

tcor  r(x)  = tobs(x) − 2h(x)
v  

, (2.26)

where h(x) is  the  surface  elevation  at  position x,  and v is  the  velocity  of  the  radar  wave  in
the  medium  (Grasmueck 1996).

3. Data Interpolation: Interpolating the  GPR  data onto a regular  grid  that  accounts  for
the  corrected  travel  times.  This  step  ensures  that  the  subsurface  reflections  are  accurately
represented  in  a consistent  spatial  framework.

Fig.  2.7: Example  for  common-offset  data processing steps.  (a)  Raw  data.  (b)  After  trace
alignment,  dewow,  and  mean  trace  removal.  (c)  After  along-trace  smoothing (window
width  10 samples),  t1.2 gain,  time-to-depth  conversion  using an  RMS  velocity  of  0.1
m/ns,  f-k  migration,  and  along-profile  smoothing (oversampling factor  4,  running mean
window  width  6 traces)  (d)  After  topographic  correction  (Plattner 2020).
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2.2 Image  Based  Modeling (IBM)
Image-based  modeling,  otherwise  referred  to as  photogrammetry,  incorporates  the  principles  

of  Structure  from  Motion  (SfM)  to reconstruct  three-dimensional  representations  from  two-
dimensional  images.  The  fundamental  idea is  to estimate  both  the  3D  structure  of  the  scene  and
the  motion  of  the  camera.

Structure  from  Motion  (SfM)
SfM  is  a foundational  technique  within  photogrammetry  that  enables  the  estimation  of  camera
positions  and  scene  structure  simultaneously  from  a set  of  overlapping images.  This  process
involves  identifying common  features  or  points  across  multiple  images,  calculating their  positions
in  3D  space  through  triangulation,  and  refining the  camera parameters  to minimize  errors
(Schonberger  and  Frahm 2016).  

The  SfM  pipeline  typically  involves  the  following key  steps:

1. Feature  Detection  and  Matching: Extract  and  match  distinctive  features  across
multiple  images.

2. Geometric  Verification: Estimate  the  relative  pose  between  image  pairs  based  on  the
matched  features.

3. Incremental  Reconstruction: Build  a sparse  3D  point  cloud  incrementally  by  adding
new  images  (see  figure 2.8).

4. Bundle  Adjustment: Refine  the  3D  structure  and  camera parameters  by  minimizing the
reprojection  error.

5. Dense  Reconstruction  (Optional): Generate  a dense  3D  model  from  the  sparse  point
cloud.

Fig.  2.8: Pipeline  of  an  incremental  SfM  algorithm  (Schonberger  and  Frahm 2016).

2.2.1 Feature  Detection  and  Matching
The  first  step  in  SfM  involves  detecting and  matching features  across  images.  Reliable  feature
detection  and  matching are  crucial  for  accurate  3D  reconstruction.  Common  algorithms  for  

feature  detection  include  the  Scale-Invariant  Feature  Transform  (SIFT)  (Lowe 2004)  and  the
Speeded-Up  Robust  Features  (SURF)  (Bay  et  al. 2008).
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Scale-Invariant  Feature  Transform  (SIFT)
The  Scale-Invariant  Feature  Transform  (SIFT)  algorithm,  developed  by  David  Lowe  (Lowe 2004),  

is  a key  method  for  detecting and  describing local  features  in  images.  SIFT  features  are  robust  to
scale  changes,  rotations,  and  to some  extent,  affine  transformations  and  illumination  variations.
The  algorithm  consists  of  several  stages:

Scale-Space  Extrema Detection: The  first  stage  of  SIFT  is  to detect  potential  keypoints  by
finding extrema in  the  scale-space.  Scale-space  is  constructed  by  applying Gaussian  blurring at
different  scales  to the  image  (Figure 2.9a).  The  scale-space  function L(x,  y  ,  σ) is  defined  as:

L(x,  y  ,  σ)  = G(x,  y  ,  σ) ∗ I(x,  y), (2.27)

where G(x,  y  ,  σ) is  the  Gaussian  kernel  with  standard  deviation σ,  and I(x,  y) is  the  input
image.  To identify  keypoints,  a series  of  Difference-of-Gaussian  (DoG)  images  are  computed  by
subtracting consecutive  blurred  images:

D(x,  y  ,  σ)  = L(x,  y  ,  k  σ) − L(x,  y  ,  σ), (2.28)

where k is  a constant  factor.  Keypoints  are  detected  as  local  maxima and  minima in  the  DoG
images  across  both  spatial  and  scale  dimensions  (Figure 2.9b).

(a) (b)

Fig.  2.9: (a)  For  each  octave  of  scale  space,  the  initial  image  is  repeatedly  convolved  with  

Gaussians  to produce  the  set  of  scale  space  images  shown  on  the  left.  Adjacent
Gaussian  images  are  subtracted  to produce  the  difference-of-Gaussian  images  on  the
right.  After  each  octave,  the  Gaussian  image  is  down-sampled  by  a factor  of  2,  and
the  process  repeated.  (b)  Maxima and  minima of  the  difference-of-Gaussian  images
are  detected  by  comparing a pixel  (marked  with  X)  to its  26 neighbors  in  3×3 regions
at  the  current  and  adjacent  scales  (marked  with  circles)  (Lowe 2004).

Keypoint  Localization: Keypoints  are  refined  to achieve  sub-pixel  accuracy  and  eliminate  

keypoints  that  are  poorly  localized  or  have  low  contrast.  This  is  achieved  by  fitting a 3D
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quadratic  function  to the  local  neighborhood  of  the  keypoint  using Taylor  expansion.  The
function D(x) is:

D(x)  = D + ∂  D

∂x
T

x +  

1
2xT ∂2D

∂x2 x, (2.29)  

where x =  (x,  y  ,  σ)T is  the  displacement  from  the  candidate  keypoint.

Orientation  Assignment: Each  keypoint  is  assigned  an  orientation  to achieve  invariance  to image
rotation.  The  local  dominant  gradient  angle  is  computed  and  used  as  a reference  orientation.  

Then,  the  local  gradient  distribution  is  normalized  with  respect  to this  reference  direction.
Gradient  magnitude m(x,  y) and  orientation θ(x,  y) are  calculated  as:

m(x,  y)  =
√︁

(L(x + 1,  y) − L(x − 1,  y))2 + (L(x,  y + 1) − L(x,  y − 1))2, (2.30)

θ(x,  y)  =  tan−1
(︂

L(x,  y + 1) − L(x,  y − 1)
L(x + 1,  y) − L(x − 1,  y)

)︂
. (2.31)

An  orientation  histogram  is  created  from  the  gradient  orientations  within  a region  around  the
keypoint,  and  the  peak  of  this  histogram  defines  the  dominant  orientation  (see  Figure 2.10).

Fig.  2.10: Reference  Orientation  Attribution:  The  gradient  orientations  are  computed  from  

the  scaled  image  (middle),  collected  into a histogram  (right)  and  then  smoothed
(Rey  Otero 2015).

Keypoint  Descriptor  Generation: The  final  stage  involves  creating a descriptor  for  each  keypoint,
which  is  a vector  representing the  local  gradient  distribution  around  the  keypoint.  The  region
around  each  keypoint  is  divided  into a 4 × 4 grid,  and  within  each  cell,  an  orientation  histogram
with  8 bins  is  computed.  The  descriptor  vector  is  then  formed  by  concatenating these  histograms,
resulting in  a 128-dimensional  vector  for  each  keypoint  (see  Figure 2.11).

2.2.2 Geometric  Verification
Estimation  of  the  Essential  or  Fundamental  Matrix
Once  feature  matches  between  pairs  of  images  are  established,  the  next  step  is  to estimate  the
essential  or  fundamental  matrix.  The  choice  between  these  matrices  depends  on  whether  the
intrinsic  parameters  of  the  cameras  (e.g.,  focal  length,  principal  point)  are  known.
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Fig.  2.11: SIFT  descriptor  construction:  The  patch  around  the  detected  keypoint  is  scaled
down,  normalized  and  oriented  (middle).  It  is  further  partitioned  into 16 subpatches
for  which  orientation  histograms  with  8 bins  are  computed,  resulting in  a 128-
dimensional  vector.  Features  from  different  images  are  then  matched  by  comparing
their  descriptors,  typically  using a nearest-neighbor  search  (Rey  Otero 2015).

Essential  Matrix: The  essential  matrix,  denoted  as E,  is  used  when  the  intrinsic  parameters  of
the  cameras  (such  as  focal  length,  principal  point,  and  lens  distortion)  are  known.  It  encapsulates  

the  relative  rotation R and  translation t between  two camera positions.  The  relationship  between
corresponding points x and x′ in  two images  can  be  expressed  as:

x′⊤Ex =  0, (2.32)

where E can  be  decomposed  as E =  [t]×R.  Here, [t]× is  the  skew-symmetric  matrix  of  the  

translation  vector t,  and R is  the  rotation  matrix.  This  equation  represents  the  epipolar
constraint,  which  states  that  a point  in  one  image  will  be  mapped  to a corresponding epipolar  line
in  the  second  image  (Figure 2.12).  The  essential  matrix  effectively  describes  how  the  camera’s
viewpoint  changes  from  one  image  to another.  It  is  derived  from  the  intrinsic  camera calibration
and  the  relative  pose  of  the  cameras.  The  essential  matrix  can  be  estimated  using the  normalized
eight-point  algorithm  (Hartley  and  Zisserman 2003).  This  algorithm  involves  normalizing the
coordinates  of  the  matched  points,  solving a linear  system  to find  an  initial  estimate,  and  then
enforcing the  rank-2 constraint  on E.

Fundamental  Matrix: The  essential  matrix  serves  as  a foundation  for  the  fundamental  matrix,
F.  Both  matrices  are  instrumental  in  defining constraints  between  corresponding points  in
images.  However,  the  fundamental  matrix  is  applicable  only  when  the  cameras  are  calibrated,  as
it  requires  knowledge  of  the  intrinsic  camera parameters  (matrices K and K′)  for  normalization
(Hartley  and  Zisserman 2003).  Conversely,  if  the  cameras  are  calibrated,  the  essential  matrix
is  valuable  for  determining the  relative  position  and  orientation  of  the  cameras,  as  well  as  the
3D  positions  of  matching image  points.  The  relationship  between  the  essential  matrix  and  the
fundamental  matrix  is  given  by:

E =  (K′)⊤FK−1. (2.33)
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Fig.  2.12: Epipolar  constraint:  a point  in  one  image  will  be  mapped  to corresponding epipolar
line  in  the  second  image,  forming an  epipolar  plane  (Pfeifer  et  al. 2021).

Decomposition  of  the  Essential  Matrix: Once  the  essential  matrix  is  estimated,  it  is  decomposed
to obtain  the  relative  rotation  and  translation  between  the  two camera poses.  The  essential
matrix E can  be  decomposed  into R and t using Single  Value  Decomposition  (SVD):

E = UΣV⊤ (2.34)

where U and V are  orthogonal  matrices,  and Σ is  a diagonal  matrix.  From U and V,  the
possible  solutions  for R and t are  derived:

R = UWV⊤ or R = UW⊤V⊤ (2.35)

t = u3 or t = −u3 (2.36)  

where W is  a specific  rotation  matrix  and u3 is  the  third  column  of U (Arun  et  al. 1987).

Disambiguating the  Correct  Pose: Since  the  decomposition  of  the  essential  matrix  provides
four  possible  solutions  (two for  rotation  and  two for  translation),  additional  constraints  are  needed
to determine  the  correct  pose.  One  common  approach  is  to use  the  positive  depth  constraint:
the  correct  solution  ensures  that  the  triangulated  3D  points  lie  in  front  of  both  cameras.  This  is
verified  by  reprojecting the  3D  points  into both  images  and  checking the  sign  of  the  depth  values
(Pfeifer  et  al. 2021).

2.2.3 Incremental  Reconstruction
Once  the  initial  pose  of  the  cameras  is  estimated,  the  next  step  in  the  SfM  pipeline  is  the
incremental  reconstruction  of  the  3D  scene.  This  step  involves  incrementally  adding images  to
the  reconstruction,  estimating their  poses,  and  extending the  3D  point  cloud  (Schonberger  and
Frahm 2016).

Initial  Triangulation: Starting with  an  initial  pair  of  images  with  known  relative  pose,  3D  points
are  triangulated  from  the  matched  feature  points.  Triangulation  involves  finding the  intersection
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of  the  rays  corresponding to the  matched  points  in  the  two images.  Given  two camera projection
matrices P1 and P2,  and  the  corresponding points x1 and x2,  the  3D  point X can  be  found  by  

minimizing the reprojection  error:

min
Xj

∑︁
i,j

‖xij − PiXj‖2 , (2.37)

where xij is  the  observed  image  point, Pi is  the  projection  matrix  for  the i-th  camera,  and Xj is
the j-th  3D  point.  The  reprojection  error  is  the  difference  between  the  observed  and  projected
points  in  the  images,  and  minimizing this  error  improves  the  accuracy  of  the  3D  point  locations
(Hartley  and  Zisserman 2003).

Projection  Matrix: The  projection  matrix Pi is  defined  as:

Pi = K[Ri|ti], (2.38)

where K is  the  intrinsic  camera matrix, Ri is  the  rotation  matrix,  and ti is  the  translation  vector
for  the i-th  camera (Hartley  and  Zisserman 2003).

Adding New  Images  with  Perspective-n-Point  (PnP): New  images  are  added  to the  recon-
struction  one  at  a time  using the  PnP  algorithm.  Given  a set  of  3D  points {Xi} and  their  image
projections {xi} in  the  newly  added  image,  the  goal  is  to find  the  rotation R and  translation t
that  minimize  the  reprojection  error  (compare  to 2.37):

min
Ri,ti

∑︁
i,j

‖xij − PiXj‖2 , (2.39)

This  problem  is  typically  solved  using iterative  algorithms  such  as  the  Levenberg–Marquardt
algorithm (LM)  algorithm (Lepetit  et  al. 2009).  For  details on the  LM algorithm,  see  chapter
2.3.1.3.

2.2.4 Bundle  Adjustment
Bundle  adjustment  is  a crucial  step  in  SfM  that  simultaneously  refines  the  3D  points  and  the
camera parameters  by  minimizing the  reprojection  error.  This  optimization  process  ensures  that
the  3D  model  is  accurate  and  consistent  across  all  images.  Bundle  adjustment  minimizes  the
following objective  function  (Triggs  et  al. 2000):

min
Ri,ti,Xj

∑︁
i,j

‖xij − PiXj‖2 , (2.40)

The  optimization  adjusts  the  camera poses {Ri, ti} and  the  3D  points {Xj} to minimize  the
reprojection  error  (compare  to 2.37 and 2.39)  across  all  images.  Note  that 2.37, 2.39 and 2.40
show  the  same  mathematical  context,  yet  the  adjusted  parameters  in  order  to minimize  the
problem  differ.

2.2.5 Dense  Reconstruction  with  Multi  View  Stereo (MVS)
SfM  techniques  recover  camera poses  and  3D  point  clouds.  However,  the  resultant  3D  points  are
typically  sparse,  representing only  the  distinctive  image  features  that  consistently  match  across
multiple  photographs.  To advance  from  sparse  to dense  3D  reconstruction,  MVS  algorithms
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are  employed.  MVS  algorithms  enhance  3D  geometric  information  by  utilizing multiple  images,
analogous  to how  the  human  visual  system  perceives  depth  by  integrating information  from  two
eyes.  In  the  MVS  context,  numerous  images  that  observe  the  same  point  can  be  utilized  for  

depth  estimation.  Figure 2.13 demonstrates  the  fundamental  process  by  which  a basic  MVS
algorithm  estimates  a depth  value  at  a single  pixel  (Agarwal  et  al. 2011).

Fig.  2.13: A conventional  window-based  multi-view  stereo (MVS)  algorithm  operates  by  hy-
pothesizing a finite  number  of  potential  depths  along the  viewing ray  of  a given  pixel
and  its  surrounding image  window.  At  each  hypothesized  depth,  the  image  window
is  projected  onto the  corresponding locations  in  the  other  images.  The  algorithm  

evaluates  the  consistency  of  textures  at  these  projected  locations.  The  true  depth,
marked  in  green,  corresponds  to the  hypothesis  that  yields  the  highest  consistency
score  (Agarwal  et  al. 2011).

Point  Cloud  Generation: After  computing the  depth  maps,  the  3D  points  are  extracted  to 

form  a dense  point  cloud  (see  Figure 2.14).  Each  depth  value  is  back-projected  into 3D  space
using the  known  camera parameters  (intrinsics  and  extrinsics).  The  back-projection  formula is
given  by:

X = Z(K−1x), (2.41)

where X is  the  3D  point, Z is  the  depth  value, K is  the  camera intrinsic  matrix,  and x is  the
pixel  coordinate  in  homogeneous  form.

Fig.  2.14: From  left  to right,  sample  input  image,  structure  from  motion  reconstructions,  and
multiview  stereo reconstructions  (Agarwal  et  al. 2011).
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2.3 Terrestrial  Laser  Scanning (TLS)
Terrestrial  Laser  Scanning (TLS),  also known  as  ground-based  Light  Detection  And  Ranging
(LiDAR),  is  a method  used  to capture  high-resolution  3D  data of  objects,  terrains,  and  infras-
tructure.  The  technology  has  gained  widespread  use  due  to its  ability  to generate  detailed
and  accurate  spatial  information  quickly.  TLS  has  applications  in  a variety  of  fields,  including
surveying,  construction,  heritage  conservation,  forestry,  and  geology.

TLS  operates  on  the  principle  of  laser  ranging,  where  a laser  light  pulse  is  emitted  from  the  

scanner  towards  a target  object.  The  time  taken  for  the  laser  to return  to the  scanner  after
reflecting off  the  object  is  measured,  and  this  time-of-flight  (TOF)  is  used  to calculate  the  distance
between  the  scanner  and  the  object  while  also registering azimuth  and  elevation.  The  scanner
typically  rotates  horizontally  and  vertically  to capture  a close  to full  360-degree  view  of  the
surroundings,  generating a dense  point  cloud  that  represents  the  3D  structure  of  the  environment
(Kraus 2004).

Components  of  a TLS  System: a typical  TLS  system  consists  of  several  key  components:
• Laser  Source: The  laser  source  emits  a coherent  light  pulse,  usually  in  the  infrared  

spectrum,  towards  the  target.  The  wavelength  and  power  of  the  laser  determine  the
scanning range  and  accuracy.

• Receiver: The  receiver  captures  the  reflected  laser  signal,  and  the  time-of-flight  is  measured
to determine  the  distance.

• Rotating Mirror/Scanner: This  component  allows  the  laser  beam  to be  directed  across
the  scene  in  both  horizontal  and  vertical  planes,  enabling the  acquisition  of  a comprehensive
high-resolution  3D  point  cloud.

• Control  Unit: The  control  unit  processes  the  data collected  by  the  scanner  and  manages
the  scanning process.

• Data Storage: The  collected  data is  stored  in  the  form  of  a 3D  point  cloud,  which  can  be
processed  and  analysed  later.

Data Processing
The  raw  data obtained  from  a TLS  system  typically  consists  of  a large  set  of  3D  points,  each  with
x, y,  and z coordinates,  collectively  known  as  a point  cloud.  Additional  point  fields  for  color  or
intensity  information  are  common. Color  is  often  assigned  to 3D  points  by  capturing additional
digital  photographs  with  a camera integrated  into or  mounted  on  the  laser  scanner  system.  This
process  involves  mapping the  pixel  colors  from  the  photographs  to the  corresponding points  in  the
3D  scan  (Abdelhafiz 2013). A survey  might  consist  of  several scan  positions,  each  representing
the  recording of  an  independent  point  cloud  of  the  same  object.  The  consequential  overlap
of  those scans being conducted  from  varying perspectives  is  a prerequisite  to align  and  merge
consecutive  clouds  to a consistent  data set,  and  to eliminate  shadow  zones  (Pfeifer 2018).

2.3.1 Registration  and  Georeferencing in  Terrestrial  Laser  Scanning
Registration  and  georeferencing are  critical  steps  in  processing TLS  data.  Registration  involves
aligning multiple  point  clouds  from  different  scans  into a single  coordinate  system,  while  geo-  

referencing refers  to placing this  registered  point  cloud  into a global  coordinate  system.  This
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section  focuses  on  two key  methods:  the  Iterative  Closest  Point  (ICP)  algorithm  and  specifically
Generalized  ICP  (GICP)  for  registration  and  georeferencing via targets.

2.3.1.1 Iterative  Closest  Point  (ICP)  Algorithm

the  ICP  algorithm,  developed  by  Besl  and  McKay  (Besl  and  McKay 1992),  is  a widely  used
method  for  aligning 3D  point  clouds.  The  core  idea behind  ICP  is  to iteratively  minimize  the
distance  between  two point  clouds  by  finding the  best  rigid  transformation,  consisting of  rotation
and  translation,  that  aligns  them  (see  Figure 3.1).

Algorithm  Workflow: The  ICP  algorithm  operates  in  the  following steps:

1. Initial  Alignment: A rough  initial  alignment  of  the  two point  clouds  is  required.  This  

can  be  achieved  through  manual  alignment  or  using an  algorithm  that  provides  a coarse
registration.

2. Correspondence  Matching: For  each  point  in  the  source  point  cloud,  the  algorithm
identifies  the  closest  point  in  the  target  point  cloud.

3. Transformation  Estimation: Using the  matched  pairs,  the  algorithm  computes  the
best  rigid  transformation  (rotation  and  translation)  that  minimizes  the  distance  between
corresponding points.

4. Application  of  Transformation: The  estimated  transformation  is  applied  to the  source
point  cloud.

5. Iteration: Steps  2 to 4 are  repeated  iteratively  until  the  alignment  converges,  i.e.,  the
change  in  the  alignment  error  between  iterations  falls  below  a predefined  threshold.

Challenges  and  Variations: While  ICP  is  powerful,  it  has  limitations.  A major  challenge  is  its
reliance  on  a good  initial  alignment;  without  it,  the  algorithm  may  converge  to a local  minimum,
resulting in  incorrect  registration.  Additionally,  ICP  assumes  that  the  point  clouds  overlap
significantly  and  that  one  point  cloud  is  a subset  of  the  other,  which  may  not  always  be  the  case,  

leading to false  correspondences  and  poor  alignment.  To address  these  issues,  several  variations  of
ICP  have  been  developed.  The  most  relevant  adaptions  for  the  scope  of  this  thesis  are  explained
in  the  following chapters.

2.3.1.2 Point-to-Plane  ICP

Unlike  the  standard  point-to-point  ICP,  which  minimizes  the  Euclidean  distance  between  cor-
responding points,  point-to-plane  ICP  minimizes  the  error  along the  surface  normal  at  each
correspondence,  thereby  increasing robustness  to noise  and  outliers  (Chen  and  Medioni 1992).  

Instead  of  minimizing the  sum  of  squared  Euclidean  distances:

T =  arg min
T

∑︁
i

||T · bi − mi||2, (2.42)

where mi is  the  corresponding point  in  the  reference  cloud,  the  point-to-plane  algorithm  minimizes
the  projection  of  the  residual  error  onto the  surface  normal:
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T =  arg min
T

∑︁
i

wi||ηi · (T · bi − mi)||2, (2.43)

where ηi is  the  surface  normal  at mi,  and wi is  an  optional  weighting term  that  can  be  used  to
model  uncertainty  (Segal  et  al. 2009).

This  modification  improves  convergence  by  favoring alignment  along locally  estimated  sur-
face  structures  rather  than  treating all  dimensions  equally.  The  approach  is  particularly  effective
when  dealing with  structured  environments,  such  as  indoor  mapping and  robotic  perception,
where  planar  surfaces  are  common.

2.3.1.3 Generalized  Iterative  Closest  Point  (GICP)

Generalized  Iterative  Closest  Point  (GICP)  extends  the  traditional  Iterative  Closest  Point  (ICP)
algorithm  by  incorporating probabilistic  models  for  point  cloud  alignment  (Segal  et  al. 2009).  

Unlike  standard  ICP,  which  minimizes  the  Euclidean  distance  between  corresponding points,  

GICP  refines  the  optimization  by  attaching a probabilistic  model  to the  transformation  step
while  maintaining efficiency.

Formulation  of  GICP: Given  two point  clouds, A = {ai}N
i=1 and B = {bi}N

i=1,  GICP  assumes
that  each  measured  point ai and bi is  generated  from  an  underlying true  set Â and B̂ according
to Gaussian  noise:

ai ∼  N (âi,  CA  

i ),  bi ∼  N (b̂i,  CB  

i ), (2.44)

where CA
i and CB

i are  covariance  matrices  describing the  uncertainty  of  each  point.  Assuming
perfect  correspondences  and  an  ideal  transformation T ∗,  we  obtain:

b̂i = T ∗âi. (2.45)

The  alignment  is  then  performed  by  solving for  the  transformation T that  maximizes  the  likelihood
of  the  observed  correspondences,  which  leads  to minimizing the  Mahalanobis  distance:

T =  arg min
T

∑︁
i

d
(T )⊤
i (CB  

i + T  CA  

i T ⊤)−1d
(T )
i , (2.46)  

where d
(T )
i = bi − T  ai is  the  residual  error.

Special  Cases  and  Interpretation: The  standard  point-to-point  ICP  algorithm  emerges  as  a
special  case  of  GICP  when:

CB  

i = I  ,  CA  

i =  0, (2.47)  

which  reduces  the  cost  function  to:

T =  arg min
T

∑︁
i

||d(T )
i ||2. (2.48)

Similarly,  the  point-to-plane  ICP  variant,  which  minimizes  distances  along surface  normals,  is
derived  by  setting:

CB  

i = P −1
i ,  CA  

i =  0, (2.49)
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where Pi is  the  projection  onto the  local  plane  at bi.

Plane-to-Plane  Generalization: GICP  can  be  further  extended  to plane-to-plane  alignment  by
incorporating covariance  information  from  both  scans.  Given  surface  normals µi at bi and νi at
ai,  the  covariance  matrices  are  constructed  as:

CB  

i = Rµi

  ε 0 0 

0 1 0 

0 0 1

   R⊤
µi

,  CA  

i = Rνi

  ε 0 0 

0 1 0 

0 0 1

   R⊤
νi

, (2.50)

where ε is  a small  constant  representing uncertainty  along the  surface  normal.  Intuitively,  this
can  be  interpreted  as  knowing the  positions  of  the  sampled  points  along the  surface  normals
with  very  high  confidence,  while  low  confidence  is  attributed  to the  location  along its  local  plane.
This  model  improves  alignment  robustness  by  leveraging local  surface  structure  from  both  scans.
Figure 2.15 demonstrates  the  algorithm’s  behavior  in  an  extreme  scenario.  Here,  all  points  along
the  vertical  section  of  the  green  scan  are  erroneously  associated  with  a single  point  in  the  red
scan.  Due  to inconsistent  surface  orientations,  the  plane-to-plane  method  automatically  discounts
these  matches.

Fig.  2.15: Illustration  of  the  plane-to-plane  generalization  (Segal  et  al. 2009).

Optimization  and  Implementation: The  transformation T is  iteratively  computed  using non-
linear  optimization  techniques  such  as  LM  (Levenberg 1944,  Marquardt 1963).  Each  iteration
refines T by  linearizing the  error  function  and  solving the  resulting system:

(H + λI)Δx = −b, (2.51)

where H is  the  system  Hessian,  representing the  second  order  derivative  of  the  error  function, b
is  the  gradient,  and λ is  the  damping factor  in  the  LM  framework.  The  final  transformation  is
obtained  as:

T ∗ = T̂  + Δx∗. (2.52)

The  LM  algorithm  is  a widely  used  approach  for  solving nonlinear  least  squares  problems.  It
combines the  Gauß-Newton method,  which approximates the  Hessian as H = JT J ,  where J is
the  Jacobian  of  the  error  function,  with  gradient  descent,  which  introduces  a damping factor λ
to improve  convergence  in  ill-conditioned  cases.  The  update  step  is  given  by:

(JT J + λI)Δx = −JT r, (2.53)  

where r represents  the  residual  vector.  The  damping term λ is  adaptively  adjusted:
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• If  the  error  decreases, λ is  reduced,  making the  update  more  Gauß-Newton-like  for  faster
convergence.

• If  the  error  increases, λ is  increased,  shifting towards  gradient  descent,  ensuring stability.

This  balance  allows  LM  to handle  highly  nonlinear  problems  efficiently.  GICP  leverages  LM
optimization  to refine  transformations,  ensuring robust  and  accurate  point  cloud  alignment.  The
method  has  been  successfully  applied  in  robotic  perception  and  SLAM  (Segal  et  al. 2009).

2.3.1.4 Optimization  of  the  pose  graph

In  this  thesis,  the  approach  specified  by  Kümmerle  et  al. 2011 is  used  to optimize  the  pose  graph
in  order  to minimize  cumulative  alignment  errors.  This  is  a necessary  step  to combine  a large
number  of  scans  required  for  surveys  on  sizable  objects,  such  as  buildings.  The  mathematical
problem  can  be  formulated  as  minimizing a nonlinear  least-squares  objective  function:

F (x)  =
∑︁

(i,j)∈E
e(xi,  xj ,  zij)T Ωije(xi,  xj ,  zij), (2.54)  

where:

• eij(xi,  xj) is  a vector  error  function  that  measures  how  well  the  parameter  blocks xi and
xj satisfy  the  constraint zij .  It  is  0 when xi and xj perfectly  match  the  constraint,

• Ωij is  the  information  matrix  associated  with  the  measurement  uncertainty. Ωij is  usually
provided  as  the  hessian  of  the  error  function  of  the  GICP  alignment (see  formula 2.51).
Practical  consequences  and  problems  with  weighing measurements  based  on  the  respective
hessians  will  be  discussed  in  chapter 3.1.2.

• E is  the  set  of  edges  representing constraints  between  state  variables.

This  problem  can  be  effectively  represented  by  a directed  graph,  where  nodes  correspond  to
parameter  blocks,  and  edges  encode  constraints  (see  fig. 2.16).

Fig.  2.16: Illustration  of  mathematically  representing a graph  based  problem  by  constructing
an  objective  function F (x) (Kümmerle  et  al. 2011).

Least-Squares  Optimization: If  an  initial  estimate x̂ is  available,  numerical  optimization
methods  such  as  Gauss-Newton  or  Levenberg-Marquardt  (LM)  can  be  employed  to solve:

x∗ =  arg min
x

F (x). (2.55)  

Using a first-order  Taylor  expansion  around  the  estimate x̂:

eij(x̂ + Δx) ≈ eij + JijΔx, (2.56)
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where Jij is  the  Jacobian  of eij(x) at x̂.  Substituting this  into the  objective  function  gives  a
quadratic  approximation:

F (x̂ + Δx) ≈ c + 2b⊤Δx + Δx⊤HΔx. (2.57)  

Minimizing this  quadratic  form  leads  to the  normal  equations:

HΔx∗ = −b, (2.58)  

where H is  the  information  matrix.  The  solution  is  updated  iteratively:

x∗ = x̂ + Δx∗. (2.59)  

In  the  LM  algorithm,  a damping term λ is  introduced  to control  convergence:

(H + λI)Δx∗ = −b. (2.60)

The  damping factor λ is  adjusted  dynamically  based  on  error  reduction  in  each  iteration  (Leven-
berg 1944;  Marquardt 1963).  If  the  error  decreases, λ is  reduced;  otherwise, λ is  increased,  and
the  step  is  reverted.  

For  more  details  on  the  implementation  of  LM  in  this  framework,  see  Kümmerle  et  al. 2011.

2.3.1.5 Georeferencing

The  custom  C++  tool,  discussed  in  chapter 2.4,  allows  users  to define  target  points  for  transform-
ing the  merged  point  cloud  into a global  coordinate  system.  Given  a set  of  corresponding points
in  both  the  local  frame  and  the  global  (reference)  frame,  the  goal  is  to compute  the  optimal  rigid
transformation  (rotation  and  translation)  that  minimizes  the  alignment  error  using (Arun  et  al.
1987).

Let  the  local  points  be pi ∈ R3 and  their  corresponding global  coordinates  be qi ∈ R3,  where
i =  1,  .  .  .  ,  N .  The  optimal  transformation  consists  of  a rotation  matrix R ∈ S  O(3) and  a
translation  vector t ∈ R3,  such  that:

qi ≈ Rpi + t, ∀i.

To determine R and t,  the  centroids  of  both  point  sets  are  first  computed:

p̄ =  

1
N

N∑︁
i=1

pi, q̄ =  

1
N

N∑︁
i=1

qi.

The  point  sets  are  then  centered  by  defining:

p′
i = pi − p̄, q′

i = qi − q̄.

The  cross-covariance  matrix  is  computed  as:

H =
N∑︁

i=1
p′

iq′⊤
i .

Applying SVD  to H,  we  obtain:
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H = UΣV⊤.

The  optimal  rotation  is  given  by:

R = VU⊤.

If det(R) < 0,  ensuring a proper  rotation  requires  adjusting V by  flipping its  last  column:

V′ =  [v1, v2, −v3],

R = V′U⊤.

Finally,  the  optimal  translation  is  determined  as:

t = q̄ − Rp̄.

This  method  ensures  the  least-squares  optimal  alignment  of  the  point  cloud  in  the  presence  of
noise  (Arun  et  al. 1987).

2.4 Tool  for  visualizing,  optimizing and  georeferencing of  TLS  data
In order  to facilitate  the  processing and analysis of  large  volumes of  TLS data without  reliance
on  costly  commercial  software1,  a specialized  C++  tool  has  been  developed,  applying several
robust  open-source  libraries.  Because  other  open  source  software  solutions  like Cloud  Compare
provide  a broad  spectrum  of  point  cloud  processing capabilities  but  rather  lack  in  performance
and  stability  for  large  datasets,  this  tool  was  developed  with  the  goal  of  avoiding boilerplate2

and  overhead  code  by  using specialized  lightweight  libraries.  The  following chapter  provides  an
overview  of  the  tool’s  functionality  and  the  underlying open-source  libraries  integrated  into its
pipeline.

2.4.1 Overview  of  the  Tool
The  tool  supports  the  efficient  handling of  large  TLS  datasets  by  incorporating the  following
core  functionalities:

• Point  Cloud  Management: Reading and  processing point  clouds  from  E57 file  format.

• Alignment: Aligning point  clouds  using Generalized  Iterative  Closest  Point  (GICP).

• Pose  Graph  Optimization: Optimizing the  pose  graph  by  implementing the  least
squared  method.

• Global  Georeferencing: Allowing users  to pick  target  points  and  georeference  the  merged
cloud  to a global  coordinate  system.

• Visualization: Real-time  rendering of  point  clouds,  scan  positions,  and  connections.
1 Both commonly  used commercial  IBM tools AgiSoft  MetaShape and Reality  Capture where  at  the  onset  of this

work  priced at  approximately  3500 € for the  professional  license,  both permitting  the  merging  of IBM and TLS
point  clouds.  In the  meantime, Reality  Capture has  been made  available  free  of charge  by EPIC  GAMES.

2 Refers  to  code  that  is  repeated in multiple  places  with little  to  no  variation.  When using  languages  that  are
considered verbose,  the  programmer must  write  a  lot  of boilerplate  code  to  accomplish only  minor functionality
(Lämmel  and Jones 2003).
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2.4.2 Libraries  and  Dependencies
The  following libraries  form  the  backbone  of  the  tool:

Pangolin: Pangolin is  a versatile  and  lightweight  library  developed  by  Steven  Lovegrove  and
Richard  Newcombe.  It  is  designed  to streamline  the  development  of  3D,  numerical,  and  video-
based  applications,  particularly  in  the  field  of  Computer  Vision.  Its  primary  goal  is  to minimize
platform-specific  boilerplate  while  providing a simple  and  flexible  interface  for  data visualization.

Pangolin simplifies  tasks  such  as  window  management  and  video handling through  intuitive
interfaces  and  factory  methods.  Additionally,  it  offers  a range  of  interactive  debugging tools,
including 3D  manipulation,  plotting utilities,  adjustable  variables,  and  a drop-down  Quake-style
console  for  Python  scripting and  real-time  parameter  tuning (Lovegrove  and  Newcombe 2024).

libE57: libE57Format is  a C++  library  providing read  and  write  support  for  the  ASTM-standard
E57 file  format.  3D  point  cloud  data are  stored  in  binary  format  including fields  for  color  and
intensity  as  well  as  extensive  header  information  for  individual  scans.  Additionally,  2D  images
(taken  by  a 3D  imaging system)  can  be  stored  (Maloney 2024).

small  gicp: small  gicp is  a header-only  C++  library  offering efficient  and  parallelized  algorithms  

for  precise  point  cloud  registration,  including ICP,  Point-to-Plane  ICP,  GICP,  VGICP,  and  more.
It  represents  a refined  and  optimized  evolution  of  its  predecessor, fast  gicp,  re-engineered  from
the  ground  up  to enhance  computational  efficiency  and  accuracy  in  point  cloud  alignment  tasks
(Koide 2024).

g2o (General  Graph  Optimization): g2o is  an  open-source  C++  framework  for  optimizing 

graph-based  nonlinear  error  functions.  It  has  been  designed  to be  adaptable  to wide  range  of  

problems,  unusually  complex  problems  can  be  defined  with  the  addition  of  a few  new  lines  of
code  (Kümmerle  et  al. 2011).

JSON  for  Modern  C++  : JSON  for  Modern  C++ handles  JSON input/output  for  saving and
reading pose  information  and  configuration  data (Lohmann 2023).

2.4.3 Core  Functionalities  and  Pipeline
2.4.3.1 Point  Cloud  Import  and  Subsampling

The  newly  developed  tool  reads  point  clouds  from  E57 files,  leveraging libE57 for  efficient  parsing.
To handle  large  datasets,  a subsampling routine  is  implemented,  reducing the  number  of  points
while  retaining geometric  fidelity.  Customizable  selections  of  scans  can  be  read  and  visualized.
The  functionality  of  the  file  reading can  be  viewed  in  the  Appendix 7.1.1.  Random  subsampling
has  been  implemented,  with  a standard  point  cloud  size  of  500,000 points  (see  Appendix 7.1.1.1).
This  method  has  been  chosen  in  order  to avoid  spatial  queries  during the  subsampling process
that  potentially  decrease  processing speed.

2.4.3.2 Visualization  and  Interaction

The  tool  features  a real-time  visualization  interface  built  with Pangolin,  allowing users  to 

view  point  clouds,  connections,  and  target  points.  Controls  enable  point  picking,  rendering
adjustments,  and  transformation  previews.  The  current  main  interface  is  shown  in  figure 2.17.
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Fig.  2.17: Interface  of  custom  C++  tool,  after  selecting E57 files  required  for  processing.

Metadata is  monitored  by  displaying verbose  information  about  various  processing steps  in  a
terminal  window.

Visualization  Pipeline

• A display  is  initialized  using Pangolin,  rendering the  loaded  scans  and  their  respective
connections.

• Users  can  adjust  rendering settings,  including point  size,  distance  thresholds,  and  display
of  scan  positions  or  connections.

• Custom  handlers  allow  for  point  picking and  the  creation  of  georeferencing targets.

2.4.3.3 Alignment  via GICP

Pairwise  alignment  between  scans  is  performed  using the small gicp library,  which  allows  for
downsampling and  iterative  optimization  of  correspondences  (see  Chapter 2.3.1.3).  The  tool
organizes  these  transformations  into a pose  graph  by  saving GICP  results  to a JSON file.  The
code  used  for  this  step  is  specified  in  Appendix 7.1.2.

2.4.3.4 Optimization  of  the  pose  graph

The  established  pose  graph  can  be  optimized  by  approaching the  mathematical  problem  as
specified  by  Kümmerle  et  al. 2011 (see  Chapter 2.3.1.4).  The  tool  saves  the  resulting parameters
such  as  optimized  poses  and  covariances  to a JSON file,  enabling further  analysis  and  visualization.
The  corresponding code  segment  for  this  step  can  be  found  in  Appendix 7.1.3.
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2.4.3.5 Georeferencing

By  selecting corresponding points  in  the  local  TLS  frame  using the  main  interface  (figure 2.17)
and  providing ASCII  information  of  the  geopositioning of  the  targets,  the  computation  of  the
transformation  parameters  is  executed  as  specified  in  Chapter 2.3.1.5.  An  interface  is  provided
to streamline  the  selection  of  included  targets  (figure 2.18).  The  implementation  of  this  step  is
described  in  Appendix 7.1.4.

(a)

(b)

Fig.  2.18: Interface  of  the  custom  C++  tool  for  computing transformation  parameters  (a)  and
complementary  terminal  output  (b).

2.5 NUBIGON
NUBIGON 3 is  a software  tool  designed  for  the  visualization  and  analysis  of  large  point  cloud  

data sets,  particularly  in  the  field  of  reality  capture.  It  enables  the  display,  examination,  and
presentation  of  point  cloud  datasets  with  great  efficiency,  accessing in  each  case  only  those  points  

that  are  necessary  to fill  the  display  screen.  This  capability  is  beneficial  for  the  joint  visualization
of  surface  and  subsurface  structures,  especially  in  archaeological  contexts.

3 https://www.nubigon.com/

https://www.nubigon.com/
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2.5.1 Octree  Generation
Upon  initial  loading, NUBIGON converts  point  cloud  data into an  octree  structure.  This  hierar-
chical  data format  optimizes  rendering performance  and  visual  quality.  The  octree  generation
process  occurs  only  once  at  data import,  allowing the  software  to manage  very  large  datasets
consisting of  many  billions  of  3D  points  effectively.

2.5.2 X-Ray Mode
NUBIGON ’s  X-ray  mode  allows  users  to visualize  hidden  structures  and  details  within  point  

clouds  by  automating transparency  in  respect  to the  camera position.  In  the  context  of  this  

thesis,  it  was  utilized  to simultaneously  visualize  surface  and  subsurface  features  in  order  to
characterize  archaeological  sites.

2.6 Data
2.6.1 TLS  data
The  TLS  dataset  from  Hafslund  Manor  was  acquired  using the  BLK360 G1 stationary  terrestrial  

laser  scanner  (see  figure 2.19),  developed  and  manufactured  by  Leica Geosystems4.  The  technical
details  of  the  scanner  are  summarized  in  table 2.1.

Fig.  2.19: BLK360 laser  scanner  positioned  on  table  in  Hafslund.  Photo:  I.  Trinks.

Using the  Cyclone  Field  app,  provided  by  Leica Geosystems,  the  point  clouds  from  individual
scans  can  be  coarsely  aligned  through  the  application  of  an  ICP  algorithm.  The  aligned  point
clouds  can  be  exported  to an  E57 file  and  visualized  in  the  custom  C++  tool  (fig. 2.21).  The
coarse  cloud-to-cloud  registrations  result  in  misalignments  of  structural  features,  with  deviations
reaching magnitudes  of  up  to several  decimeters  (fig. 2.22).

4 https://leica-geosystems.com/products/laser-scanners/scanners/blk360

https://leica-geosystems.com/products/laser-scanners/scanners/blk360
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Fig.  2.20: Panoramic  image  captured  by  the  BLK360’s  internal  camera.

Terrestrial  laser  scanners  (TLS)  equipped  with  in-built  RGB  cameras,  such  as  the  BLK360,
capture  both  range  measurements  and  spherical  panoramic  images.  The  laser  scanner  generates
a point  cloud  with  3D  coordinates,  while  the  camera provides  color  information  (fig. 2.20).  Once
registered,  the  color  information  from  the  panoramic  images  is  mapped  onto the  point  cloud.  This
is  achieved  by  intersecting the  line  connecting each  point  in  the  point  cloud  with  the  scanner’s
position  and  the  corresponding pixel  in  the  panoramic  image.  The  color  of  the  intersecting pixel
is  then  assigned  to the  point (Abdelhafiz 2013).
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Category Specification
SCANNING
Distance  measurement  system High  speed  time  of  flight  enhanced  by  

Waveform  Digitizing (WFD)  technology
Laser  class Class  1 (in  accordance  with  IEC  

60825-1:2014)
Wavelength 830 nm
Field  of  view 360° (horizontal)  / 300° (vertical)
Range Min.  0.6 – up  to 60 m  at  78%  albedo
Point  measurement  rate Up  to 360,000 pts/sec
Ranging accuracy 4 mm  @  10 m  / 7 mm  @  20 m
Measurement  modes 3 user-selectable  resolution  settings

IMAGING
Camera system 15 Mpixel  3-camera system,  150 Mpx  full  

dome  capture,  HDR,  LED  flash
Calibrated  spherical  image,  360° x  300°

Thermal  camera FLIR  technology-based  longwave  infrared  

camera
Thermal  panoramic  image,  360° x  70°

PERFORMANCE
Measurement  speed <  3 min  for  complete  fulldome  scan,  spherical

image,  thermal  image
3D  point  accuracy 6 mm  @  10 m  / 8 mm  @  20 m  all  at  78%  

albedo
Tab.  2.1: Specifications  of  the  BLK360 G1 stationary  laser  scanner.  The  table  summarizes  

scanning,  imaging,  and  performance  features  of  the  device.  All  parameters  were
taken  from  the  official  BLK360 G1 specification  sheet  provided  by  Leica Geosystems.
Accuracy  data is  presented  in  terms  of  standard  deviation.
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Fig.  2.21: TLS  data as  exported  from  Cyclone  Field  (Leica Geosystems)  and  visualized  using
the  custom  C++  tool.

Fig.  2.22: Exemplary  alignment  issues  in  the  exported  raw  TLS  data.
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2.6.2 GNSS  data
During the  measuring campaign  at  Hafslund  manor  several  distinct  features  have  been  used
as  targets  for  global  referencing (fig. 2.23).  By  additionally  extracting the  corresponding local
coordinates  of  these  features  from  the  TLS  point  cloud,  a global  reference  can  be  established
(see  Chapter 2.3.1.5).

Fig.  2.23: GNSS  measurements  used  as  targets  for  transforming TLS  data.

2.6.3 IBM  data
Based  on  geopositioned  RGB  images  taken  from  an  sub-249 g heavy  airborne DJI 5 Mini  3  Pro
drone  complemented  by  terrestrial  imaging using a handheld Sony  ZV-1 photo camera,  a globally  

referenced  point  cloud  of  the  manor  and  its  surroundings  was  computed  using Agisoft  Metashape
professional6 (fig. 2.25a).  The  theoretical  approach  to acquire  3D  information  from  images  has  

been  specified  in  Chapter 2.2.  Figure 2.24 illustrates  the  estimated  camera poses  computed  by
Metashape,  overlaid  onto the  resulting surface  model.  The  visualization  also includes  the  sparse
point  cloud  and  the  resulting colored  dense  point  cloud,  providing a view  of  the  data integration
process  (see  Chapter 2.2).

5 Da-Jiang  Innovations  Science  and Technology  Co.,  Ltd (DJI)
6 https://www.agisoft.com/

https://www.agisoft.com/
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(a)

(b)

(c)

Fig.  2.24: IBM  surface  model  created  in  Agisoft  Metashape  and  estimated  camera poses  as  blue
rectangles  (a),  sparse  point  cloud  (b)  and  dense  point  cloud  (c).
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2.6.4 GPR  data
The  topographically  corrected  GPR  data is  provided  in  the  3D  field  format  FLD.  This  format
has  been  developed  by  Alois  Hinterleitner  from  GeoSphere  Auastria,  formerly  Zentralanstalt  für
Meteorology  and  Geodynamics,  Archeo Prospections® and  LBI  ArchPro,  and  is  used  to store
GPR  data as  a 3D  data block  in  a single  binary  file.  Depth-slices  of  gridded  GPR  prospection
data,  computed  by  ApRadar  (ZAMG  Archeo Prospections®),  are  stored  and  extended  with
geodetic  information.  The  format  enables  a lossy  compression  and  Run-length  encoding (RLE)
of  no data values.

The  FLD  file  was  converted  to a LAZ  point  cloud  (Isenburg 2013)  by  using a python  script,
based  on  the  open  source  project  ApInsight,  a Ground  Penetrating Radar  Data Analysis  Tool
(Nau 2024). The  algorithm  developed  for  this  thesis  involves  omitting zero values  received  by  the
matrix  of  the  FLD  data format.The  code  for  this  step  is  specified  in  Appendix 7.2.

(a) (b)

Fig.  2.25: IBM  point  cloud  created  in  Agisoft  Metashape  (visualized  in  CloudCompare)  (a)  and
GPR  data (C-scan)  of  the  study  area Hafslund  manor  at  surface  level  (b).



Chapter  3 

Results

3.1 TLS
3.1.1 GICP  alignment
Based  on  the  .e57 files  received  from  the  Leica Cyclone  Field  app,  coarse  alignments  of  the  scans
showed  discrepancies  in  distinct  structural  features  (fig. 2.22 and  fig. 3.1a).  Without  metadata
on  ICP  linkage  between  scans,  manual  selection  of  potential  matches  was  necessary.  GICP  was
applied  to the  respective  pairs  of  scans  and,  provided  convergence  was  achieved  (compare  to 

Chapter 2.3.1.3),  visually  verified  as  appropriate.  Figure 3.1 visualizes  the  effect  of  successful  

convergence  to the  global  minimum  of  the  error  function 2.46.  The  LM  algorithm  starts  off  

with  higher  values  for λ,  which  is  typical  of  the  optimization  behavior  of  the  gradient  descent
method,  which  shifts  the  pose  parameters  in  the  direction  of  the  steepest  decline  and  therefore
prioritizes  stability  over  convergence  speed  in  the  early  iterations.  During the  algorithm, λ is  

being decreased,  providing the  error  decreases.  The  update  becomes  more  Gauß-Newton-like,
accelerating convergence  (compare  to paragraph 2.3.1.3).  The  initial  and  new  errors  are  depicted
as  well  in  figure 3.1c,  while  the  initial  error  describes  the  euclidean  distances  between  point
correspondences  and  the  new  error  the  distances  of  the  same  correspondences di after  minimizing
the  error  function 2.46.  Note  that  in  each  iteration  new  correspondences  are  established,  conse-
quently  reducing the  initial  error  of  the  next  iteration  compared  to the  new  error  of  the  previous
iteration.  The  overall  rapid  decrease  in  initial  and  new  errors  especially  in  the  early  iterations
demonstrates  the  effectiveness  of  the  LM-algorithm  in  finding the  global  minimum  of  the  error
function.  The  stabilization  of  error  parameters,  translational  and  rotational  increments  suggests
convergence  to an  optimal  solution.

GICP  was  applied  to all  possible  matches  and  the  final  residuals  were  scaled  by  the  number  of
point  correspondences  (see  fig. 3.2 left).  The  magnitude  of  the  residuals  is  mostly  in  accordance
with  the  scanners  ranging accuracy  (compare  to table 2.1)  when  also considering influences
from  parameters  like  point  density  on  overlapping features,  scanner  pose  distances  and  overall
geometric  feature  richness  of  the  scanned  objects.  The  scatter  plot  in  figure 3.2 shows  a trend  of
increasing scaled  errors  with  larger  pose  distances,  while  some  higher  error  values  also occur  in
close  proximity  scan  alignments.

3.1.2 Pose  graph  optimization
By  aligning all  scans  to their  respective  matches  by  using GICP  a pose  graph  was  established.
Alignment  parameters  computed  by  GICP  represent  edges  or  constraints  while  the  poses  of  the
scans  can  be  abstracted  as  nodes.  The  optimization  algorithm  as  described  in  chapter 3.1.2
demands  a-priori  stochastic  information  used  as  weighing factors  for  edges.  In  some  cases,  the
initial  estimates  of  the  relative  poses  were  of  higher  quality  than  the  resulting GICP  alignment.
For  these  circumstances,  the  initial  estimates  were  fixed  by  applying artificially  low  uncertainty
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(a) (b)

(c)

Fig.  3.1: Before  (a)  and  after  (b)  applying GICP  with  the  C++  package  small  gicp  (Koide 2024)
on  two scans  of  the  Hafslund  dataset.  (c)  shows  parameter  development  during the
LM  algorithm.  The  expected  tendencies  of  decreasing values  in λ,  cumulative  distance
error  of  correspondences  (red  and  blue)  and  step  sizes  in  translation  and  rotation
(green  and  magenta)  are  presented.

Fig.  3.2: Scaled  residuals  of  all  GICP  alignments  (left)  and  residuals  against  pose  distances
(right).

values.  In  order  to assess  values  for  the  remaining matrices Ωij in  formula 2.54,  two approaches
were  tested.
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3.1.2.1 Weighing edges  by corresponding Hessians

By  using the  resulting Hessian  matrix Hij from  formula 2.51 of  the  GICP  algorithm,  full
information  on  the  alignment  behavior  can  be  included  in  the  pose  graph  optimization  process.
Hij describes  the  curvature  of  the  error  surface  with  respect  to the  transformation  parameters.
It  captures  the  second-order  partial  derivatives  of  the  error  function  (formula 2.46),  providing
information  about  how  the  error  changes  as  the  parameters  vary.  The  Hessian  matrix Hij with
respect  to the  pose  parameters pij =  [xij ,  yij ,  zij ,  αij ,  βij ,  γij ],  is  given  by:

Ωij = Hij =
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where Eij is  the  error  function  for  the  constraint  of  the i-th  and j-th  poses  being minimized,
and xij ,  yij ,  zij represent  the  translational  parameters,  while αij ,  βij ,  γij represent  the  rotational
parameters  around  the x-, y-,  and z-axes,  respectively.

Fig.  3.3: Scaled  local  uncertainty  ellipses  and  third  axis  color  coded  after  optimization.

Figure 3.3 visualizes  the  local  uncertainty  ellipses  (according to 95%  confidence)  of  the  poses
after  optimization  by  g2o.  Note  that  pose  graph  estimation  was  performed  in  the  local  frame.
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The  rank  deficiency  in  formula 2.54 refers  to the  ambiguity  in  global  pose  estimation,  effectively
allowing the  entire  graph  to be  translated  or  rotated  without  violating relative  constraints.  By
fixing the  first  node  of  the  graph,  a reference  frame  is  established,  reducing the  degrees  of  freedom
and  ensuring a unique  solution.  The  fixed  node  is  marked  as  a black  dot  in  the  center  of  the
graph  in  figure 3.3.  As  a consequence  of  fixing on  node  and  error  propagation,  a wide  range  of
uncertainty  ellipsoid  axis  length  can  be  observed  with  smaller  uncertainties  at  poses  closer  to the  

fixed  node  and  higher  uncertainties  at  poses  with  a greater  edges  path  length  between  the  nodes.

Fig.  3.4: Residuals  of  edges  after  pose  graph  optimization.

Figure 3.4 visualizes  the  residuals  of  the  edges  following optimization.  These  residuals  represent
the  discrepancies  between  the  relative  positions  derived  from  GICP  and  the  relative  positions  of
the  optimized  estimates,  expressed  as  distances.  Comparing these  values  to table 2.1 and  figure
3.2,  similar  magnitudes  of  the  a-posteriori  residuals,  GICP  alignment  errors  and  scanner  ranging
accuracy  can  be  observed.  Figure 3.4 exhibits  higher  frequencies  in  the  millimeter  range  and  a
more  pronounced  decline  towards  higher  magnitudes  compared  to figure 3.2.

Fig.  3.5: Eigenvalue  Spectrum  per  pose  (left)  and  Eigenvalue  Spectrum  of  the  whole  pose  graph
(right).
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The  Eigenvalues  of  the  pose  uncertainty  ellipsoids  are  presented  in  figure 3.5.  The  spectrum
on  the  left  depicts  a trend  of  insignificant  differences  in  Eigenvalue  magnitudes  per  pose  with  few  

outliers  in  this  regard.  The  spectrum  to the  right  shows  a steep  decline  in  Eigenvalue  magnitude
towards  higher  Eigenvalue  indices,  when  sorted  by  value.

In  the  scatter  plot  presented  in  Figure 3.6,  a trend  of  increasing axis  lengths  across  all  el-  

lipsoid  dimensions  is  evident.  Specifically,  within  the  range  of  0.18 m  to 0.05 m  for  the  major
axis,  the  second  axis  – which  can  be  interpreted  as  the  minor  axis  in  the  2D  context  – appears
to plateau  for  a significant  number  of  poses.

Fig.  3.6: Relation  of  confidence  ellipses  after  optimization  using corresponding Hessian  matrices.

A negative  consequence  of  optimizing the  pose  graph  with  the  GICP-derived Hij as  a-priori
stochastic  information Ωij (see  formula 2.54)  is  depicted  in  figure 3.7.  Persistent  misalignment
in  structural  features  is  evident  across  the  optimized  point  clouds,  particularly  with  respect  to
rotational  inconsistencies.  Furthermore,  Figure 3.8 illustrates  a sharp  decline  in χ2 alongside  a
systematic  reduction  in λ.  After  approximately  25 iterations,  no substantial  improvement  in χ2

is  noticable.  The  final χ2/DoF  ratio,  where  DoF  refers  to the  degrees  of  freedom  in  the  pose
graph,  is  given  by:

χ2

DoF =  260.01

with χ2/DoF ≫ 1 being strongly  indicative  of  overfitting (Bevington  and  Robinson 1969).
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Fig.  3.7: Alignment  issue  after  optimization  using GICP  Hessians  as  a-priori  stochastic  infor-
mation.  In  GICP  alignments  of  TLS  point  clouds  congruency  of  overlapping features
is  expected.  This  visualization  exhibits  displacement  of  those  features.

Fig.  3.8: Optimization  process  using the  GICP-derived Hij as  a-priori  stochastic  information
Ωij .

3.1.2.2 Weighing edges  using adjusted  stochastic  model

To address  the  issue  of  overfitting,  the  underlying stochastic  model  was  adjusted.  The  following
matrix  was  applied  to formula 2.54:

Ωij =
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where σt =  0.008 (given  in  table 2.1)  and σr =  0.00023,  in  order  to apply  low  uncertainty  to
rotations  which,  from  experience,  are  well  estimated.  By  omitting a-priori  correlations  between
rotation  and  translation,  this  approach  reduces  the  risk  of  overparametrisation  and  overfitting,
leading to a more  flexible  and  generalizable  model.  The  rotational  component σr was  adjusted  to
achieve  a fitting a-priori  stochastic  model  by χ2/DoF ≈ 1.  This  behavior  is  visualized  in  Figure
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3.9,  where  convergence  is  achieved  at χ2/DoF =  1.05.  Initially,  there  is  a steep  decline  in χ2 over
the  first  five  iterations,  accompanied  by  a logarithmic  decrease  in λ values  until  iteration  13.
After  iteration  10,  no significant  change  in χ2 is  observed.  Towards  the  end  of  the  optimization
process, λ values  exhibit  a sharp  increase,  indicating that  the  algorithm  is  struggling to find
parameter  adjustments  that  further  reduce  the  error.  This,  combined  with  the  stabilization  of
χ2,  triggers  the  termination  of  the  optimization.  The  lack  of  improvement  in χ2 suggests  that
the  algorithm  has  likely  reached  a minimum,  potentially  the  global  minimum.

Fig.  3.9: Optimization  process  using the  adjusted Ωij as  a-priori  stochastic  information.

Figure 3.10 illustrates the  confidence  ellipses at  a 95% significance  level  following pose  graph
optimization  using Ωij ,  where  only  the  diagonal  elements  are  non-zero.  The  ellipses  exhibit
reduced  eccentricity  compared  to those  in  Figure 3.3.  Additionally,  the  negative  error  propagation
is  less  pronounced,  as  evidenced  by  the  more  uniform  sizes  of  the  ellipses.

Fig.  3.10: Scaled  local  uncertainty  ellipses  and  third  axis  color  coded  after  optimization  using
Ωij .
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Figure 3.11 illustrates  the  residuals  of  the  edges  following optimization,  using Ωij as  a-priori
stochastic  information.  The  discrepancies  between  the  GICP  results  and  the  optimization  results
are  reduced  compared  to optimization  using Hij (compare  to figure 3.4),  as  indicated  by  the  

high  frequency  of  residuals  below  1 mm.  The  distribution  exhibits  a sharp  decline  towards
higher  residuals,  with  the  most  extreme  values  remaining under  1 cm.  Upon  further  comparison
of  these  residuals  with  the  GICP-derived  errors  depicted  in  Figure 3.2,  it  is  evident  that  the
post-optimization  residuals  exhibit  a significantly  lower  magnitude  than  the  measurement  errors.

Fig.  3.11: Residuals  of  edges  after  pose  graph  optimization  using Ωij .

Figure 3.12 illustrates  a more  homogeneous  Eigenvalue  spectrum  compared  to the  spectrum
obtained  using Hij as  a-priori  stochastic  information.  On  the  left,  the  eigenvalues  of  individual
poses  exhibit  a somewhat  proportional  relationship,  with  a significantly  lower  mean  and  standard
deviation.  On  the  right,  there  is  a steep  decline  in  Eigenvalues  at  lower  indices,  followed  by  a
more  evenly  distributed  tail.

Fig.  3.12: Eigenvalue  Spectrum  per  pose  (a)  and  Eigenvalue  Spectrum  of  the  whole  pose  graph
(b).  Both  spectra visualize  the  Eigenvalues  in  respect  to the  positions  of  the  scans.
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In  the  scatter  plot  depicted  in  Figure 3.13,  the  grouping of  data points  occurs  at  higher  values  

compared  to Figure 3.6.  Notably,  the  magnitudes  of  the  minor  and  major  axes,  both  for  individual
poses  and  across  the  entire  pose  graph,  appear  more  evenly  distributed.  The  plateauing effect
observed  in  Figure 3.6 is  not  evident  in  Figure 3.13.  However,  there  is  a higher  visual  density
in  the  range  of  0.04m  to 0.06m  of  the  major  axis  and  0.04m  to 0.05m  of  the  second  axes.  The
extreme  value  at  [0.0,  0.0,  0.0]  corresponds  to the  fixed  pose  used  to address  global  ambiguity.

Fig.  3.13: Relation  of  confidence  ellipses  after  optimization  using Ωij .

Assessment  of  positioning quality through  wall  structure  comparison To evaluate  the  quality
of  the  pose  graph  over  extended  edge  path  distances,  an  analysis  of  the  northern  facade  was  

conducted  and  compared  to the  inner  wall  structure.  By  assuming parallel  surfaces  on  both
the  interior  and  exterior,  it  was  possible  to compare  unconnected  scans,  thereby  assessing the
overall  quality  of  the  pose  graph.  Specifically,  scans  from  the  top  floor  were  compared  to exterior  

scans  to the  north,  which  are  significantly  distant  in  terms  of  edge  path.  Figure 3.14 displays  the
segmented  point  cloud,  highlighting the  wall  structure.  The  color  coding indicates  the  distances
between  the  interior  and  exterior  surfaces,  offering a clear  visualization  of  spatial  variations.
Note  that  in  the  central  section,  higher  distances  are  visible  due  to the  thicker  wall  structure  in
this  area.
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Fig.  3.14: Wall  structure  of  the  northern  wall  as  seen  from  the  interior.  The  color  bar  to the
right  refers  to the  cloud-to-cloud  distances  in  relation  to the  exterior  facade.

The  variation  in  distances  with  increasing height  is  evident  in  Figure 3.15 on  the  left.  Note  that
the  central  section  mentioned  above  was  removed  for  the  purpose  of  highlighting the  suspected
trend.  The  trend  indicates  a difference  in  wall  thickness  of  approximately  10 cm  from  the  floor
to the  ceiling on  the  top  floor.  Additionally,  a lateral  deviation  of  about  5 cm  is  detectable  across
the  approximately  40 m  long wall  front.  The  degree  to which  the  walls  taper  is  noted  above  the
scatter  plots.

Fig.  3.15: Wall  structure  trend  regarding its  thickness.

3.1.3 Georeferencing the  Terrestrial  Laser  Scanner  (TLS)  cloud
To reference  the  optimized  TLS  point  cloud  to the  global  frame,  GNSS  measurements  were  

utilized.  The  targets  were  visually  selected  in  the  optimized  local  point  cloud,  corresponding 

to the  features  measured  by  GNSS,  and  the  residuals  were  calculated  as  shown  in  table 3.1.
Through  an  iterative  process  of  deselecting the  targets  with  the  highest  residuals,  a set  of  four
residuals,  each  below  5 cm,  was  achieved.
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Point ΔX [m] ΔY [m] ΔZ [m] |Δ| [m]
TP002 0.015 -0.028 -0.028 0.042 

TP003 -0.035 0.017 0.026 0.046 

TP005 -0.012 0.007 -0.003 0.014 

TP007 0.031 0.004 0.005 0.032
not  selected

TP004 -0.180 -0.222 -0.038 0.289 

TP006 -0.133 -0.056 -0.569 0.587 

TP008 -0.007 -0.344 -0.092 0.356 

TP018 -1.010 0.412 2.065 2.336

Tab.  3.1: Transformation  residuals  based  on  GNSS  targets.

By  utilizing the  geo-located  IBM  point  cloudfor  target  references,  more  precise  transformation
parameters  were  obtained,  as  demonstrated  by  the  residuals  in  table 3.2.  This  approach  allowed
for  the  inclusion  of  additional  targets,  as  the  residuals  for  all  selected  targets  were  lower  compared
to table 3.1.

Point ΔX [m] ΔY [m] ΔZ [m] |Δ| [m]
IB1 -0.018 0.036 -0.013 0.042 

IB2 -0.010 0.032 -0.007 0.035 

IB3 0.014 -0.010 -0.015 0.023 

IB4 0.019 -0.026 0.031 0.045 

IB5 -0.006 -0.032 0.003 0.033

Tab.  3.2: Transformation  residuals  based  on  IBM  targets.

Figure 3.16 visualizes  the  previously  mentioned  residuals.  While  the  GNSS-targets  better
encompass  the  study  area,  the  IBM-targets  contribute  to a more  reliable  transformation  result
as  more  targets  could  be  included.

(a) (b)

Fig.  3.16: Transformation  residuals  using (a)  GNSS  targets  and  (b)  IBM  targets.  In  the  left
plot  (a),  targets  not  used  for  the  computation  of  the  transformation  parameters  are
colored  red  (see  residuals  in  table 3.1).
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3.2 IBM  data and  TLS  comparisons
As  a consequence  of  the  IBM-target-based  transformation,  the  point  clouds  of  the  IBM  approach
and  the  transformed  TLS  data were  analyzed.  A simple  cloud-to-cloud  distance  visualization  is
presented  in  figure 3.17.

Fig.  3.17: Cloud-to-cloud  distances  (in  meters)  of  the  IBM  point  cloud,  referenced  against  the
TLS  point  cloud,  computed  in  CloudCompare  post-georeferencing.

(a) (b)

Fig.  3.18: Segmented  TLS  point  cloud  visualized  with  RGB  information  (a)  and  cloud-to-cloud
distances  of  the  same  section  (b)  with  distances  referred  to in  meters.  Points  with
values  above  0.2 m  are  colored  in  dark  red.
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Figure 3.18 displays  a section  of  the  TLS  point  cloud,  highlighting parts  of  the  facade  and
tree  structures.  Significantly  higher  residuals  are  observed  in  vegetated  areas,  particularly  tree
crowns  (see  also figure 3.17).  Surfaces  with  low  textural  topography  exhibit  residuals  around
10 cm,  while  fragile  structures  such  as  fences  also show  elevated  residuals.

3.3 IBM  data and  GPR  comparisons
To compare  ground  features  captured  by  IBM  and  GPR,  ground  points  from  both  datasets  were
extracted.  The  gridded  nature  of  the  GPR  data and  consequently  the  point  cloud,  allowed  for
determination  of  the  highest  data point  in  each  column,  representing a ground  point.  By  creating
a Triangulated  Irregular  Network  (TIN)  from  the  ground  points,  a ground  mesh  for  the  GPR
data was  generated.  Additionally,  using the  Cloth  Simulation  Filter  (CSF)  method  by  W.  Zhang 

et  al. 2016,  a corresponding ground  mesh  for  the  IBM  data was  computed,  as  illustrated  in  figure
3.19.  Vertical  mesh  to mesh  distances  were  computed  in  CloudCompare. Figure 3.20 illustrates
the  resulting height  residuals  to the  right.  Discrepancies  of  approximately  20 cm  are  noticable
across  most  areas,  with  some  regions  exhibiting significantly  higher  differences  exceeding 50 cm.
Notable  patterns  are  evident  around  the  small  path  perpendicular  to the  central  avenue  and  in  

other  areas  featuring embankments.

Fig.  3.19: Illustration  of  the  CSF  algorithm.  The  simple  physical  process  of  a cloth  pulled  onto 

the  inverted  surface  points  is  simulated  to extract  the  ground  points  of  the  IBM  data
(W.  Zhang et  al. 2016).

3.4 Visualization  of  merged  3D  surface  and  subsurface  data
The  GPR  data reveals  distinct  buried  anomalies  of  strongly  reflective  and  geometric  nature,  sug-
gesting an  anthropogenic  origin.  These  anomalies  exhibit  clear  patterns  indicative  of  structured,
human-made  features  rather  than  natural  formations.  Specifically,  the  data highlights  wall-like
structures  arranged  in  a perpendicular  formation,  which  is  characteristic  of  architectural  design.
This  configuration  suggests  the  presence  of  building remains  and  related  structures,  such  as  pipes
(see  fig. 3.21).
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(a) (b)

Fig.  3.20: Top  view  of  IBM  point  cloud  with  superimposed  slope  map  [degrees]  (a)  and  mesh
to cloud  distances  between  IBM  surface  points  and  top  GPR  mesh  [m]  (b).

Fig.  3.21: Visualization  of  merged  3D  GPR  and  IBM  data in  Nubigon.
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Discussion

4.1 TLS
4.1.1 GICP  alignments
By  selecting the  Generalized  ICP  (GICP)  as  the  alignment  technique,  more  robust  computation  of  

alignments  was  achieved  compared  to using the  conventional  ICP  algorithm.  GICP’s  consideration
of  surface  structure  allows  for  the  discarding of  faulty  point  correspondences,  resulting in  more
robust  outcomes  (Segal  et  al. 2009).  However,  coarse  alignment  of  scans  remains  necessary  to
ensure  successful  convergence  to a global  minimum.  The  TLS  data used  in  this  thesis  meets  this
requirement,  as  coarse  manual  alignment  was  performed  using the  Cyclone  Field  app  prior  to data 

export.  Alignment  errors,  as  illustrated  in  Figure 3.2,  are  influenced  by  several  factors,  including 

point  density,  structural  characteristics  in  overlapping areas,  scanner  pose  distances,  and  ranging 

accuracy.  The  highly  featured  structures  within  the  manor  grounds,  such  as  vegetation  and  gravel
surfaces,  present  challenges  for  accurate  capture  and  alignment.  These  surfaces  exhibit  intricate
structural  compositions  that  are  difficult  to reliably  and  accurately  match  across  adjacent  scans.
The  limitations  in  ranging accuracy  and  point  density  of  the  sensor  used  further  worsen  these
issues,  leading to inaccuracies  in  the  GICP  alignment  process.

4.1.2 Pose  graph  optimization
By  using the  Hessian  matrices  obtained  in  the  GICP  algorithm  as  a priori  stochastic  information
for  pose  graph  optimization,  intricate  details  about  the  translational  and  rotational  parameters
and  their  correlations  can  be  included  for  pose  estimation.  Intuitively,  this  approach  assigns
lower  weights  for  alignments  with  less  accuracy  and  higher  weights  to those  with  greater  precision
(Niemeier 2008).  Distinctions  in  weighting within  the  parameter  space  define  the  quality  of  

the  GICP  alignment  in  relation  to environmental  conditions.  For  instance,  lengthy  corridors
contribute  to higher  accuracy  perpendicular  to the  corridor  axis,  while  accuracy  parallel  to the
corridor  axis  is  lower.  The  variation  in  weighting is  evident  in  Figure 3.4,  where  high  residuals  of  

approximately  6 cm  indicate  an  edge  with  low  weight,  necessitating a more  significant  adjustment.  

Meanwhile,  the  histogram  displays  the  expected  behavior  across  most  other  areas.  Analyzing the  

Eigenvalue  spectrum  in  figure 3.5,  the  pose  graph  exhibits  notable  characteristics.  A sharp  decline
in  Eigenvalues,  when  sorted  by  decreasing value  per  pose,  indicates  low  isotropy,  resulting in  a
confidence  ellipse  with  higher  eccentricity.  Additionally,  the  sharp  decline  in  the  Eigenvalue  spec-  

trum  to the  right  of  figure 3.5 is  significant.  The  more  evenly  distributed  portion  of  the  spectrum  

corresponds  to interior  poses,  characterized  by  shorter  pose  distances,  higher  overlaps,  and  favor-  

able  structures.  Conversely,  the  sharply  inclined  portion  to the  left  corresponds  to exterior  poses,  

which  exhibit  opposite  characteristics.  This  behavior  is  typical  for  unfavorable  error  propagation,
a consequence  of  fixing a single  pose  to eliminate  global  ambiguity  (Niemeier 2008).  Confidence
ellipses  of  poses  within  the  interior  of  the  manor  exhibit  an  increase  in  the  major  axis,  while  the
magnitudes  of  the  second  and  third  axes  remain  stable  (Figure 3.6).  This  suggests  a relationship
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between  the  nature  of  interior  structures  and  error  propagation.  The  adjustments  at  edges
with  lower  weight,  combined  with  the  over-parameterization  from  correlating translational  and
rotational  parameters,  result  in  undesired  structural  misalignments,  as  seen  in  Figure 3.7.  This  is  

particularly  evident  in  rotational  discrepancies.  The  resulting χ2/DoF ≫ 1 indicates  a poor  model
fit,  suggesting an  underestimation  of  the  measurement  covariances  (Bevington  and  Robinson
1969).  Consequently,  the  Hessian  matrices  appear  to apply  an  overly  optimistic  weighting scheme.  

Addressing the  mentioned  shortcomings,  a simpler  stochastic  model  was  applied,  with  no correla-  

tion  between  translational  and  rotational  parameters  (see  Chapter 3.1.2.2).  Notably,  convergence
is  achieved  at  significantly  less  iterations  with  a final χ2/DoF =  1.05.  Figure 3.12 on  the  right
shows  confidence  ellipses  with  less  eccentricity  and  a less  asymptotic  path  of  the  Eigenvalue
spectrum.  The  residuals  exhibit  no significant  outliers,  all  being below  1 cm.  Error  propagation
is  moderate  because  all  edges  are  weighted  equally,  regardless  of  their  relative  pose  distances.
This  approach,  chosen  experimentally,  achieves  satisfying visual  congruency  of  structural  features
and  a χ2/DoF =  1.05.  This  method  is  justified  because  alignments  with  greater  pose  distances
can  serve  as  stabilizing control  elements,  unlike  close-proximity  pose  setups.  This  is  valid  when
there  is  sufficient  coverage  of  critical  features  for  matching,  with  ranging accuracy  and  resolution
being the  only  limiting factors.  Consequently,  the  scatter  plot  in  Figure 3.13 reveals  a more
uniform  distribution  of  axis  lengths  throughout  the  pose  graph.

4.1.3 Assessment  of  Wall  Structure  Discrepancies
In  the  assessment  of  wall  structure  discrepancies,  a notable  disparity  was  identified  between  the
exterior  facades  and  their  corresponding interior  wall  structures.  Assuming parallel  surfaces  in
situ,  significant  rotational  inconsistencies  were  observed  between  poses  on  the  interior  of  the  first
floor  and  those  on  the  exterior.  This  is  expected  due  to the  high  edge  path  distances  between
these  poses,  which  result  in  unfavorable  error  propagation.

4.2 IBM  data and  TLS  comparison
The  comparison  of  transformed  TLS  data and  IBM  data reveals  no systematic  discrepancies
between  the  two point  clouds.  The  exceptions  are  vegetational  structures,  reflective  areas  such  as
windows,  and  other  fine  structures  like  fences.  Given  that  photogrammetry  struggles  to capture
these  features  accurately,  these  discrepancies  are  expected.  Additionally,  strong variations  in  

residuals  are  notable  in  areas  with  little  texture,  such  as  parts  of  the  facade,  which  provide
insufficient  texture  for  feature  extraction  and  depth  estimation.

4.3 IBM  data and  GPR  comparison
In  a comparative  analysis  of  IBM  and  GPR  data consistency  with  respect  to geometry,  cloud-to-
mesh  distances  have  been  calculated  between  the  IBM  surface  points  and  the  GPR  mesh  of  the
surface  data points.  The  residuals  are  notably  higher  in  areas  characterized  by  embankments.  A
plausible  explanation  for  this  discrepancy  is  inaccurate  topographic  correction  of  the  GPR  data,
which  introduces  inconsistencies,  particularly  in  sloped  regions  such  as  embankments.
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4.4 Visualization  of  merged  data in  Nubigon
GPR  data uncovered  subsurface  structures  and  features  beneath  the  manor  grounds.  Anomalies
of  buried  walls,  foundations  and  utilities  were  identified.  Figure 3.21 illustrates  these  structures,
which  are  situated  beneath  the  grass  covered  terraces  adjacent  to the  main  building complex,  and
which  are  suspected  to be  part  of  an  former  orangery.  The  visibility  and  clarity  of  these  features
in  the  GPR  data underscore  the  effectiveness  of  this  non-invasive  method  in  detecting and
delineating subsurface  archaeological  remains.  The  identification  of  these  structures  contributes
significantly  to our  understanding of  the  site’s  historical  layout  and  potential  past  uses,  providing 

valuable  insights  for  further  archaeological  investigation  and  interpretation.  The  ability  to render
the  GPR  and  surface  point  cloud  data jointly  for  interactive  3D  inspection  in  Nubigon  permits
novel  insights  into the  data and  better  understanding of  the  spatial  relations. Figures 4.1 – 4.5
exhibit  additional  visualizations,  illustrating improved  interaction  with  the  data set.

Fig.  4.1: IBM  and  GPR  data as  3D  point  cloud  visualisation.  The  x-ray  mode  permits  the
imaging of  the  buried  structures  on  the  terraces  south  of  the  manor  house.
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Fig.  4.2: Buried  walls  can  be  seen  as  dark  reflections  in  the  GPR  3D  point  cloud  data,  with  low
reflection  intensities  rendered  transparent.  Overlapping structures  suggests  different
building phases.  A linear  diagonal  feature  is  likely  to be  caused  by  a pipe.

Fig.  4.3: View  of  the  same  data as  depicted  in  figure 4.2 from  the  side,  showing the  different
anomalies  in  the  GPR  data at  different  depths.  By  interactively  moving and  rotating
the  data sets  in  Nubigon,  the  anomalies  and  their  relationship  to each  other  become
easily  recognizeable.
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(a)

(b)

Fig.  4.4: (a)  IBM  and  TLS  3D  point  cloud  showing Hafslund  manor  house  from  NW.  In  the  

garden  and  in  front  of  the  main  building the  TLS  scan  positions  are  visible.  (b)
Additionally,  the  GPR  3D  point  cloud  integrated  with  the  IBM  and  TLS  point  clouds,
showing subsurface  features  in  3D.
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Fig.  4.5: TLS  und  IBM  3D  point  cloud  visualisation  in  Nubigon  using the  x-ray  presentation,
which  permits  insights  into the  interior  of  the  building

4.5 Proposed  Workflow
With  the  current  capabilities  in  sensors,  platforms,  and  software  available  for  this  thesis,  a
workflow  has  been  established  for  the  efficient,  comprehensive,  and  reliable  processing of  surface
and  subsurface  3D  point  cloud  data (fig. 4.6).  Extensive  coverage  of  the  analyzed  site  using
drone  images  with  GNSS  information  facilitates  reliable  georeferencing,  provided  occlusions  are
minimized  in  a significant  number  of  images.  Incorporating images  from  handheld  cameras  

at  ground  level  enhances  the  resolution  and  accuracy  of  the  resulting IBM  3D  point  cloud.  

Pose  graph  optimization  and  georeferencing of  the  TLS  data are  executed  using the  custom
developed  C++  tool  by  selecting local  targets  within  the  TLS  point  cloud.  The  global  reference

Fig.  4.6: Workflow  established  for  use  in  future  measurement  campaigns  on  archaeological  sites,
given  current  sensor  and  software  capabilities  available  for  this  thesis.
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is  established  by  aligning these  targets  with  corresponding points  in  the  global  IBM  cloud.  GPR
data,  already  globally  referenced  and  topographically  corrected,  is  converted  from  FLD  to LAZ
format,  with  GPR  reflection  amplitudes  stored  as  intensity  values,  to facilitate  merging with  the
TLS  and  IBM  datasets  as  point  clouds.  Currently,  this  merging is  accomplished  by  importing
these  datasets  into NUBIGON,  where  the  generation  of  octrees  enables  a smooth  interaction  and
further  analysis  of  the  merged  dataset.



Chapter  5 

Conclusion
Unifying geoarchaeological  prospection  data from  image-based  modeling (IBM)  point  clouds,
laser  scanning (TLS),  and  georadar  (GPR)  into a single  3D  point  cloud  visualization  presents  a
number  of  advantages.  By  integrating these  datasets,  multi-layered  analysis  is  possible,  enhancing
spatial  context  through  the  correlation  of  topographical  details  from  IBM  and  laser  scanning 

with  buried  structures  identified  by  GPR.  This  methodology  improves  the  understanding of
subsurface  anomalies  in  relation  to surface  features  and  ensures  better  spatial  alignment,  thereby
reducing possible  interpretation  errors.

The  combination  of  point  clouds  from  various  sources  facilitates  cross-validation  and  refine-  

ment  of  spatial  positioning,  which  is  especially  valuable  in  complex  terrains  and  where  GNSS  

reliability  may  be  compromised.  Laser  scanning offers  high-precision  georeferencing,  enabling 

the  alignment  and  correction  of  IBM  and  GPR  datasets,  ensuring consistency  and  enhancing
data registration.

Realistic  digital  3D  representations  enable  researchers,  site  managers,  stakeholders,  and  the  

general  public  to better  grasp  archaeological  features  and  contexts  by  visualizing them  in  an  

common  3D  environment.  Point  cloud-based  models  support  interactive  exploration,  making
discoveries  more  tangible  and  accessible,  thus  enhancing stakeholder  engagement.

Merged  3D  datasets  can  be  utilized  for  automated  feature  recognition  and  quantitative  analysis,
such  as  calculating the  volume  of  buried  structures.  The  integration  of  different  datasets  per-
mits  the  cross-verification  of  subsurface  features  detected  by  GPR  with  terrain  data from  laser
scanning or  IBM,  excluding modern  disturbances  and  refining geophysical  and  archaeological
interpretations.  Additionally,  laser  scanning and  IBM  data can  provide  topographic  corrections
for  GPR,  mitigating errors  caused  by  uneven  terrain.

This  thesis  outlines  the  methods  and  challenges  in  processing point  cloud  data acquired  through
IBM,  TLS,  and  GPR.  Merging this  data can  provide  advanced  means  of  visualization  and  further
benefit  the  extended  geoarchaeological  characterization  of  imaged  anomalies.  The  combined
surface  and  subsurface  mapping and  imaging can  result  in  more  comprehensive,  complete,  and
realistic  data representations.  The  collaboration  between  the  Vienna Institute  for  Archaeological  

Science  (VIAS)  of  the  University  of  Vienna and  GeoSphere  Austria,  along with  the  Research  Cen-  

tre  for  Manor  Houses  in  the  Baltic  Sea Region  of  Greifswald  University,  benefits  from  open-source
software  solutions  to efficiently  process  these  large  datasets.  The  outlined  methods  for  analyzing
TLS  data are  proposed  to qualify  as  such  tools,  with  the  possibility  of  further  development  to
create  a comprehensive  workflow  for  processing data acquired  for  geophysical  and  archaeological
prospecting.

While  TLS  ,  IBM  and  GPR  data where  collected  independent  from  each  other  in  this  case
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study,  in  future  we  are  likely  to see  integrated  survey  solutions  in  which  IBM  cameras  and  TLS
sensors  are  mounted  on  GPR  systems  for  semi-autonomous  mapping.
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Outlook
To increase  the  quality  of  the  data and  streamline  the  processing,  some  improvements  have  been
researched  and  will  be  discussed  here.

6.1 TLS  aquisition  and  processing
6.1.1 Pose  graph  interconnectivity
To achieve  higher  reliability  within  the  TLS  point  cloud,  interconnectivity  of  poses  within  the  

pose  graph  should  be  increased.  Avoiding loops  with  lengthy  edge  path  lengths  contributes  to
lower  relative  covariances  between  disonnected  poses,  providing better  congruency  of  structural
features  throughout  the  point  cloud.  This  can  be  facilitated  by  positioning the  scanner  in  windows
for  example,  consequently  allowing GICP  alignments  of  interior  and  exterior  (see  figure 6.1).

Fig.  6.1: Additional  GICP  matches  (dashed  lines)  will  decrease  unfavorable  error  propagation.

6.1.2 Scan  matching
To automate  scan  matching and  pose  graph  optimization  of  TLS  point  clouds,  initial  coarse
alignment  of  the  point  clouds must  also be  automated.  Go-ICP (Yang et  al. 2015)  is a robust
and  efficient  algorithm  for  global  registration  of  3D  point  clouds.  It  addresses  the  challenge  of
aligning point  clouds  without  initial  pose  estimates  by  leveraging a Branch  and  Bound  (BnB)
optimization  framework.  BnB  is  an  algorithmic  strategy  used  for  solving optimization  problems,
particularly  in  discrete  and  combinatorial  contexts.  It  systematically  explores  the  solution  

space  by  dividing it  into smaller  subsets  (branching)  and  calculating bounds  on  the  optimal
solution  within  each  subset  (bounding).  The  algorithm  excludes  subsets  that  cannot  contain  the
optimal  solution,  thereby  reducing the  search  space  and  improving efficiency.  BnB  guarantees
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finding the  global  optimum by  exhaustively  searching the  feasible  region while  eliminating non-
promising candidates  (see  figure 6.2).  Go-ICP  guarantees  the  discovery  of  the  globally  optimal
solution  within  a specified  error  bound,  making it  highly  reliable  for  applications  requiring
precise  registration.  The  algorithm  is  designed  to handle  significant  levels  of  noise  and  outliers,
ensuring robust  performance  in  real-world  scenarios.  By  implementing this  approach  in  a custom
portable  software  solution,  such  as  a monitoring measure  on  a tablet,  on-site  pre-registration
can  be  automated.  This  eliminates  the  need  for  commercial  software  like  the  Cyclone  Field  app,
providing a more  flexible  and  cost-effective  solution  for  point  cloud  registration  tasks.

Fig.  6.2: Collaboration  of  BnB  and  ICP.  Left:  BnB  and  ICP  collaboratively  update  the  upper
bounds  during the  search  process.  Right:  with  the  guidance  of  BnB,  ICP  only  explores  

un-discarded,  promising cubes  with  small  lower  bounds  marked  up  by  BnB  (Yang et  al.
2015).

6.1.3 Pose  graph  optimization  and  global  reference
To address  unfavorable  error  propagation  and  resolve  global  ambiguity  in  pose  graph  optimization,
the  inclusion  of  landmarks  is  recommended.  These  landmarks  can  be  GNSS  targets,  provided
their  measurement  accuracy  is  appropriate  for  the  scale,  or  other  targets  acquired  through
methods  with  significantly  lower  uncertainty  parameters,  compared  to GICP  error  propagation.
By  attributing stochastic  information  to these  landmarks,  the  pose  graph  can  be  adjusted  

proportionally,  transforming it  to the  global  frame  based  on  the  landmarks’  coordinates  and  

stochastic  data.  This  approach  can  be  directly  integrated  into the  g2o framework,  using the  

methodology  used  in  bundle  adjustment.  For  further  details,  please  refer  to Kümmerle  et  al.
2011.

6.2 LOAM
In  recent  years,  LiDAR  sensors  have  been  extensively  researched  for  use  on  moving platforms,
leading to significant  improvements  in  autonomous  mapping accuracy  and  position  estimation.
The  deployment  of  such  sensors  on  moving platforms  is  particularly  advantageous  for  surveying
vast  areas,  especially  when  autonomously  driven.  Consequently,  automated  positioning and
navigation  within  the  surveyed  space  become  critical  priorities.  LiDAR  Odometry  and  Mapping
(LOAM),  introduced  by  J.  Zhang and  Singh 2014,  is  a real-time  method  for  odometry  and  mapping 

that  utilizes  range  measurements  from  a 2-axis  LiDAR  operating in  6-DOF.  The  primary  challenge  

addressed  by  LOAM  is  the  asynchronous  nature  of  range  measurements,  which  can  lead  to motion  

estimation  errors  and  subsequent  misalignment  in  the  point  cloud.  Unlike  off-line  batch  methods
that  rely  on  loop  closure  to correct  drift,  LOAM  achieves  low-drift  and  low-computational  

complexity  without  the  need  for  high-accuracy  ranging or  inertial  measurements  (see  fig. 6.3).
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Fig.  6.3: Diagram  of  the  LOAM  software  system  (J.  Zhang and  Singh 2014).

The  method  innovatively  divides  the  complex  problem  of  simultaneous  localization  and  mapping
into two complementary  algorithms:  one  for  high-frequency,  low-fidelity  odometry  to estimate
LiDAR  velocity,  and  another  for  lower-frequency,  fine  matching and  registration  of  the  point
cloud.  This  dual  approach  enables  real-time  mapping capabilities.  Extensive  experiments  and
evaluations  on  the  KITTI  odometry  benchmark  have  demonstrated  that  LOAM  achieves  accuracy
comparable  to state-of-the-art  offline  batch  methods.  A particularly  compelling application  of
such  a system  is  as  a localization  method  for  environments  with  limited  GNSS  coverage,  such
as  forests.  The  deployment  of  LOAM  in  these  settings  offers  a promising solution  for  accurate
positioning and  mapping.  This  is  especially  relevant  for  archaeological  investigations  and  forestry
applications  (Butnor  et  al. 2003),  where  magnetometry  mapping of  subsurface  anthropogenic
structures  and  potentially  GPR  mapping for  root  investigations  are  crucial.

6.3 VR  and  AR  applications
Merged  3D  datasets  can  be  utilized  for  immersive  visualization  in  Augmented  Reality  (AR)  

and  Virtual  Reality  (VR)  environments.  AR  overlays  digital  information  onto the  real  world,  

while  VR  creates  a fully  immersive  digital  environment.  These  technologies  provide  valuable  

tools  for  both  research  and  public  engagement  by  allowing users  to interact  with  and  explore
archaeological  sites  in  a more  engaging manner,  as  well  as  remotely.  The  generated  virtual  3D
models  can  be  augmented  with  additional  information  in  form  of  texts,  images,  videos,  or  further
3D  content.

6.4 Closing Remarks
By  offering open-source  access  to the  developed  C++  tool  for  processing TLS  data,  users  are
empowered  to deploy  the  mentioned  enhancements  and  contribute  to the  project.  This  approach
also encourages  discourse  about  potential  improvements,  fostering collaboration  and  innovation
within  the  community.  As  a result,  the  tool’s  capabilities  can  be  collectively  refined  and  expanded.
Applying the  suggested  changes  to the  current  workflow  of  conducting the  measurements  and
processing will  increase  efficiency,  accuracy  and  reliability  of  the  resulting point  cloud  stemming
from  TLS,  as  well  as  encourage  more  engaging interaction  with  the  merged  data set,  consequently
improving the  quality  of  the  derived  information  from  the  digital  twin.  A well-structured  3D
dataset  serves  as  a digital  archive,  preserving both  archaeological  and  cultural  heritage  contexts
and  landscape  settings  for  future  research  and  analysis.  By  continuing to incorporate  mapping
technologies  like  LOAM  and  potentially  more,  the  acquisition  of  data can  be  improved  in  terms  

of  flexibility,  enabling the  execution  of  such  measurements  in  more  diverse  and  challenging envi-
ronments.  The  use  of  AR  and  VR  enables  more  engaging interaction  and  better  communication
of  the  acquired  results.
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Ultimately,  enhancing data interaction  will  improve  data acquisition,  and  vice  versa.  This  

thesis  aims  to encourage  this  development,  contributing to advancing archaeological  research
using geospatial  data and  enhancing public  engagement  with  cultural  heritage.
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Chapter  7 

Appendix

7.1 Custom  C++  tool  for  TLS  point  cloud  processing
The  critical  functions  used  for  the  custom  C++  tool  are  attached  in  this  chapter.  Note  that  the
code  presented  here  reflects  the  state  of  the  tool  as  of  February  2025 and  is  subject  to change.

7.1.1 E57 file  reading

1 void readE57(const std::string& filename, const std::string& scanName, size_t maxPoints = 500000) {
2 std::string extension = filename.substr(filename.find_last_of(".") + 1);
3  

4 if (extension != "e57") {
5 std::cout << "Unsupported file format: " << extension << std::endl;
6 return;
7 }
8  

9 e57::Reader e57Reader(filename, e57::ReaderOptions());
10 std::cout << "Reading file: " << filename << std::endl;
11 std::cout << "Scans in file:" << e57Reader.GetData3DCount() << std::endl;
12  

13 for (size_t scanIndex = 0; scanIndex < e57Reader.GetData3DCount(); ++scanIndex) {
14 e57::Data3D scanHeader;
15 e57Reader.ReadData3D(scanIndex, scanHeader);
16  

17 if (scanHeader.name != scanName) {
18 if (!(e57Reader.GetData3DCount() == 1)) {
19 continue;
20 }
21 }
22 std::cout << "Reading Scan: " << scanHeader.name << std::endl;
23 std::string scanKey = filename + "_" + scanHeader.name;
24  

25 size_t nPoints = scanHeader.pointCount;
26 std::cout << "Number of points: " << nPoints << std::endl;
27 std::vector<float> xData(nPoints), yData(nPoints), zData(nPoints);
28 std::vector<uint16_t> rData(nPoints), gData(nPoints), bData(nPoints);
29 std::vector<double> intensityData(nPoints);
30 std::vector<Eigen::Vector3f> points, colors, subsampledPoints, subsampledColors;
31  

32 // Set up the buffer for reading the data
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33 e57::Data3DPointsFloat buffers;
34 buffers.cartesianX = xData.data();
35 buffers.cartesianY = yData.data();
36 buffers.cartesianZ = zData.data();
37 buffers.colorRed = rData.data();
38 buffers.colorGreen = gData.data();
39 buffers.colorBlue = bData.data();
40 buffers.intensity = intensityData.data();
41  

42 // Read the data from the scan
43 e57::CompressedVectorReader dataReader = e57Reader.SetUpData3DPointsData(scanIndex,
44 nPoints, buffers);
45 dataReader.read();
46 dataReader.close();
47 std::cout << "Reading finished " << std::endl;
48  

49 // read poses from scanPositions:
50 Eigen::Matrix4d localPoseMatrix;
51 for (size_t i = 0; i < scanPositions.size(); i++) {
52 if (scanPositions[i].key == scanKey) {
53 localPoseMatrix = scanPositions[i].LocalPose;
54 }
55 }
56  

57 points.reserve(nPoints); // Pre-allocate memory for points
58 colors.reserve(nPoints); // Pre-allocate memory for colors
59  

60 // Parallelized loop for transforming points
61 #pragma omp parallel for
62 for (size_t i = 0; i < nPoints; ++i) {
63 // Apply the transformation to the point
64 Eigen::Vector4f point(xData[i], yData[i], zData[i], 1.0f);
65 Eigen::Vector4f transformedPoint = localPoseMatrix.cast<float>() * point;
66 Eigen::Vector3f transformedPoint3f = transformedPoint.head<3>();
67  

68 // If color is invalid, use intensity for grayscale rendering
69 bool isColorInvalid = (rData[i] == 255 && gData[i] == 255 && bData[i] == 255);
70 Eigen::Vector3f color;
71 if (isColorInvalid) {
72 float grayscale = static_cast<float>(intensityData[i]);
73 color = Eigen::Vector3f(grayscale, grayscale, grayscale);
74 } else {
75 // Use RGB values as they are
76 color = Eigen::Vector3f(rData[i] / 255.0f, gData[i] / 255.0f, bData[i] / 255.0f);
77 }
78  

79 #pragma omp critical
80 {
81 points.push_back(transformedPoint3f);
82 colors.push_back(color);
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83 }
84 }
85  

86 // Subsample points and colors
87 SubsamplePointCloud(points, colors, subsampledPoints, subsampledColors, maxPoints);
88 size_t subsize = subsampledPoints.size();
89  

90 // Create PangoPointCloud using only points and colors
91 auto pangoCloudSub = std::make_unique<PangoPointCloud>(subsampledPoints, subsampledColors);
92 auto pangoCloudFull = std::make_unique<PangoPointCloud>(points, colors);
93  

94 // Store scan data in the loadedScans map
95 ScanData scanData;
96 scanData.subsampledCloud = std::move(pangoCloudSub);
97 scanData.fullCloud = std::move(pangoCloudFull);
98 scanData.isRendered = true;
99  

100 loadedScans[scanKey] = std::move(scanData);
101  

102 std::cout << "Scan " << scanHeader.name << " loaded with " << subsize
103 << " subsampled points.\n" << std::endl;
104 }
105 }

7.1.1.1 Subsampling

1 void SubsamplePointCloud(const std::vector<Eigen::Vector3f>& points,
2 const std::vector<Eigen::Vector3f>& colors,
3 std::vector<Eigen::Vector3f>& subsampledPoints,
4 std::vector<Eigen::Vector3f>& subsampledColors,
5 size_t maxPoints) {
6 size_t n = points.size();
7 if (n <= maxPoints) {
8 subsampledPoints = points;
9 subsampledColors = colors;

10 return;
11 }
12  

13 subsampledPoints.resize(maxPoints);
14 subsampledColors.resize(maxPoints);
15  

16 std::random_device rd;
17 std::default_random_engine rng(rd());
18  

19 #pragma omp parallel for
20 for (size_t i = 0; i < maxPoints; ++i) {
21 size_t randomIndex = rng() % n; // Pick a random point
22 subsampledPoints[i] = points[randomIndex];
23 subsampledColors[i] = colors[randomIndex];
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24 }
25 }
26

7.1.2 Generalized  ICP  registration

1 void ICP(const std::vector<FileEntry>& fileEntries, const int downsample) {
2  

3 ProcessSelectedScans(fileEntries);
4  

5 // Ensure exactly 2 scans are rendered
6 int renderedCount = 0;
7 std::vector<std::string> renderedScans; // To store the keys of the rendered scans
8 for (const auto& [key, scanData] : loadedScans) {
9 if (scanData.isRendered) {

10 renderedScans.push_back(key);
11 if (++renderedCount > 2) {
12 std::cerr << "Error: Selection of only 2 scans allowed for ICP." << std::endl;
13 }
14 }
15 }
16  

17 if (renderedCount != 2) {
18 std::cerr << "Error: Exactly 2 scans must be rendered for ICP." << std::endl;
19 }
20 DrawAll();
21 DrawScanPositions(scanPositions);
22 pangolin::FinishFrame();
23  

24 // Randomly assign source and target initially
25 std::srand(std::time(nullptr)); // Seed random number generator
26 int sourceIndex = std::rand() % 2;
27 int targetIndex = 1 - sourceIndex;
28 std::string extractedSource = ExtractFilepathAndSuffix(renderedScans[sourceIndex]).second;
29 std::string extractedTarget = ExtractFilepathAndSuffix(renderedScans[targetIndex]).second;
30  

31 std::cout << "Source cloud (transform): " << renderedScans[sourceIndex] << "\n";
32 std::cout << "Target cloud (fixed): " << renderedScans[targetIndex] << "\n";
33  

34 if (sourceIndex < 0 || sourceIndex >= renderedScans.size() ||
35 targetIndex < 0 || targetIndex >= renderedScans.size()) {
36 std::cerr << "Error: Invalid source/target index.\n";
37 }
38  

39 // Access the selected scans
40 auto& sourceCloud = loadedScans[renderedScans[sourceIndex]];
41 auto& targetCloud = loadedScans[renderedScans[targetIndex]];
42  

43 std::vector<Eigen::Vector3f> source_points = sourceCloud.fullCloud->getVertices();
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44 std::vector<Eigen::Vector3f> target_points = targetCloud.fullCloud->getVertices();
45  

46 if (source_points.empty() || target_points.empty()) {
47 std::cerr << "Error: No points in source or target cloud.\n";
48 }
49  

50 small_gicp::RegistrationSetting setting;
51 unsigned int nThreads = std::thread::hardware_concurrency();
52 std::cout << "Number of threads available: " << nThreads << std::endl;
53 setting.num_threads = nThreads;
54 float down_float = downsample / 100.0f;
55 setting.downsampling_resolution = down_float;
56 setting.max_correspondence_distance = 0.4;
57 setting.max_iterations = 10;
58 setting.verbose = true;
59  

60 std::cout << "Source points size: " << source_points.size() << "\n";
61 std::cout << "Target points size: " << target_points.size() << "\n";
62  

63 Eigen::Isometry3d init_T_target_source = Eigen::Isometry3d::Identity();
64  

65 small_gicp::RegistrationResult result = small_gicp::align(target_points, source_points,
66 init_T_target_source, setting);
67  

68 Eigen::Isometry3d T = result.T_target_source; // Estimated transformation
69 size_t num_inliers = result.num_inliers; // Number of inlier source points
70 Eigen::Matrix<double, 6, 6> H = result.H; // Final Hessian matrix (6x6)
71 bool conv = result.converged;
72 double err = result.error;
73 Eigen::Matrix<double, 6, 1> b = result.b;
74  

75 std::cout << "ICP complete. Transformation matrix:\n" << T.matrix() << "\n";
76 std::cout << "Number of inliers: " << num_inliers << "\n";
77 std::cout << "Converged: " << conv << "\n";
78 std::cout << "Error: " << err << "\n";
79 std::cout << "b: " << b << "\n";
80 std::cout << "Iterations: " << result.iterations << "\n";
81  

82 // Apply the transformation
83 std::vector<Eigen::Vector3f> subsampled_points = sourceCloud.subsampledCloud->getVertices();
84 for (auto& point : subsampled_points) {
85 Eigen::Vector4f homogenousPoint(point.x(), point.y(), point.z(), 1.0f);
86 Eigen::Vector4f transformedPoint = T.matrix().cast<float>() * homogenousPoint;
87 point = transformedPoint.head<3>();
88 }
89  

90 for (auto& point : source_points) {
91 Eigen::Vector4f homogenousPoint(point.x(), point.y(), point.z(), 1.0f);
92 Eigen::Vector4f transformedPoint = T.matrix().cast<float>() * homogenousPoint;
93 point = transformedPoint.head<3>();
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94 }
95  

96  

97 // Update the source cloud vertices with transformed points
98 sourceCloud.subsampledCloud->setVertices(subsampled_points);
99 sourceCloud.fullCloud->setVertices(source_points);

100  

101 Eigen::Matrix4d relPose;
102  

103 for (auto& scanPosit : scanPositions) {
104 if (scanPosit.name == extractedSource) {
105 Eigen::Matrix4d updatedLocalPoseSource = T.matrix() * scanPosit.LocalPose;
106 Eigen::Matrix4d updatedGlobalPoseSource = globalShift * updatedLocalPoseSource;
107  

108 scanPosit.LocalPose = updatedLocalPoseSource;
109 scanPosit.GlobalPose = updatedGlobalPoseSource;
110 scanPosit.positionLocal = updatedLocalPoseSource.block<3, 1>(0, 3).cast<float>();
111  

112 std::cout << "Updated scan position for source (" << scanPosit.name << "):\n";
113 std::cout << "New global pose:\n" << scanPosit.GlobalPose << "\n";
114  

115 for (auto& scanPositT : scanPositions) {
116 if (scanPositT.name == extractedTarget) {
117 // relPose in respect to the targets local coordinate frame!!
118 relPose = scanPositT.LocalPose.inverse() * scanPosit.LocalPose;
119 }
120 }
121  

122 }
123 }
124  

125 // Saving results to map and updating json file:
126 std::string icpKey = renderedScans[sourceIndex] + "<->" + renderedScans[targetIndex];
127 ICPResult icpR;
128 icpR = {renderedScans[sourceIndex],renderedScans[targetIndex],result,relPose};
129 icpResults[icpKey] = icpR;
130 currICP = {icpKey, icpR};
131  

132 // Redraw the scene to show the transformed source cloud
133 lines = updateLinks(scanPositions);
134 pangolin::FinishFrame();
135 DrawAll();
136 DrawScanPositions(scanPositions);
137 pangolin::FinishFrame();
138 }
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7.1.3 Pose  Graph  Optimization

1 void OptimizePoseGraph(const std::unordered_map<std::string, ICPResult>& icpR,
2 const std::string& outputFilename, std::pair<double,double> stoch_a_priori) {
3 g2o::SparseOptimizer optimizer;
4 ConfigureOptimizer(optimizer);
5  

6 // Map scan names to node IDs
7 std::map<std::string, int> nodeMap; // Maps scan names to graph node IDs
8  

9 DrawAll();
10 DrawScanPositions(scanPositions);
11 pangolin::FinishFrame();
12  

13 nlohmann::json optimizationResults = nlohmann::json::object();
14  

15 // Add nodes (scans) to the graph
16 for (size_t i = 0; i < scanPositions.size(); ++i) {
17 const auto& scan = scanPositions[i];
18 g2o::VertexSE3* vertex = new g2o::VertexSE3();
19 vertex->setId(i);
20  

21  

22 std::vector<Eigen::Matrix4d> poses;
23 // Check if poses are available, otherwise use the default LocalPose
24 if (!poses.empty()) {
25 vertex->setEstimate(Eigen::Isometry3d(ComputeMeanPose(poses)));
26 } else {
27 vertex->setEstimate(Eigen::Isometry3d(scan.LocalPose));
28 }
29  

30 if (i == 0) vertex->setFixed(true); // Fix the first node as the reference
31 optimizer.SparseOptimizer::addVertex(vertex);
32 nodeMap[scan.key] = i;
33  

34 // Save initial vertex data
35 optimizationResults["vertices"][scan.key] = {
36 {"initialPose", MatrixToJson(scan.LocalPose)},
37 {"optimizationTransform", {}},
38 {"optimizedPose", {}}, // Will be updated later
39 {"globalPose", {}},
40 {"covariance", {}}
41 };
42 }
43  

44 for (const auto& result : icpR) {
45 const std::string& sourceName = result.second.sourceName;
46 const std::string& targetName = result.second.targetName;
47  

48 int sourceId = nodeMap[sourceName];
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49 int targetId = nodeMap[targetName];
50  

51 // Create a new edge
52 g2o::EdgeSE3* edge = new g2o::EdgeSE3();
53  

54 edge->setVertex(0, optimizer.vertex(sourceId));
55 edge->setVertex(1, optimizer.vertex(targetId));
56 edge->setMeasurement(Eigen::Isometry3d(result.second.relPose.inverse()));
57  

58 // Set the edge information matrix
59 if (result.second.result.error == 0.0) {
60 info = cov.inverse() * 1e9; // Fixed pose → high weight
61 } else {
62 cov.block<3,3>(0,0) = Eigen::Matrix3d::Identity() *
63 stoch_a_priori.first*stoch_a_priori.first;
64 double sigma_squared_rot_custom = (stoch_a_priori.first / d_avg) *
65 (stoch_a_priori.first / d_avg);
66 cov.block<3,3>(3,3) = Eigen::Matrix3d::Identity() *
67 stoch_a_priori.second*stoch_a_priori.second;
68 info = cov.inverse();
69 }
70  

71 // Add the edge to the optimizer
72 optimizer.SparseOptimizer::addEdge(edge);
73  

74 // Save edge data
75 optimizationResults["edges"].push_back({
76 {"source", sourceName},
77 {"target", targetName},
78 {"relativePose", MatrixToJson(result.second.relPose.inverse().matrix())},
79 {"Hessian", MatrixToJson(medianHess)},
80 {"residualNorm", {}}, // Will be updated later
81 });
82 }
83  

84  

85 // Perform optimization
86 optimizer.setVerbose(true);
87 optimizer.computeInitialGuess();
88 std::cout << "Initial chi2: " << optimizer.chi2() << std::endl;
89  

90 optimizer.initializeOptimization();
91 optimizer.optimize(1000);
92  

93 std::cout << "Final chi2: " << optimizer.chi2() << std::endl;
94  

95 for (const auto* edge : optimizer.edges()) {
96 const auto* e = dynamic_cast<const g2o::EdgeSE3*>(edge);
97 if (!e) continue;
98
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99 // Get the two vertices associated with the edge
100 const auto* v1 = dynamic_cast<const g2o::VertexSE3*>(e->vertex(0));
101 const auto* v2 = dynamic_cast<const g2o::VertexSE3*>(e->vertex(1));
102  

103 // Get their optimized estimates
104 Eigen::Isometry3d T1 = v1->estimate();
105 Eigen::Isometry3d T2 = v2->estimate();
106 std::string source;
107 std::string target;
108 std::string sourceP;
109 std::string targetP;
110 for (auto& node : nodeMap) {
111 if (node.second == v1->id()) {
112 source = ExtractFilepathAndSuffix(node.first).second;
113 sourceP = node.first;
114 } else if (node.second == v2->id())
115 {
116 target = ExtractFilepathAndSuffix(node.first).second;
117 targetP = node.first;
118 }
119  

120 }
121  

122 // Compute the measured transformation from ICP
123 Eigen::Isometry3d T_measured = e->measurement();
124  

125 // Compute the relative transformation from optimized poses
126 Eigen::Isometry3d T_optimized = T1.inverse() * T2;
127  

128 // Compute the residual
129 Eigen::Isometry3d errorTransform = T_measured.inverse() * T_optimized;
130 Eigen::Matrix< double, 6, 1 > residual = g2o::internal::toVectorMQT(errorTransform);
131  

132 // Compute the norm of the residual (optional)
133 double residualNorm = residual.norm();
134  

135 // Debug output
136 std::cout << "Edge between vertices " << source << " and " << target <<
137 " has residual norm: " << residualNorm << std::endl;
138  

139 // Threshold to identify outliers
140 if (residualNorm > 0.05) {
141 std::cout << "High residual detected for edge: " << source << " -> " << target <<
142 std::endl;
143 }
144  

145 // Update JSON with residuals
146 for (auto& edgeJson : optimizationResults["edges"]) {
147 if (edgeJson["source"] == sourceP &&
148 edgeJson["target"] == targetP) {
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149 edgeJson["residualNorm"] = residualNorm;
150 break;
151 }
152 }
153 }
154  

155 std::unordered_map<std::string, Eigen::Matrix4d> trafos;
156 // Update scan positions with optimized poses
157 nlohmann::json optimizedData = nlohmann::json::object();
158  

159 for (size_t i = 0; i < scanPositions.size(); ++i) {
160 g2o::VertexSE3* vertex =
161 static_cast<g2o::VertexSE3*>(optimizer.vertex(nodeMap[scanPositions[i].key]));
162 // prevScanPoses.emplace_back(scanPositions[i].LocalPose);
163 trafos[scanPositions[i].key] = vertex->estimate().matrix() *
164 scanPositions[i].LocalPose.inverse();
165 Eigen::Matrix4d initialPose = scanPositions[i].LocalPose;
166 scanPositions[i].LocalPose = vertex->estimate().matrix();
167 scanPositions[i].GlobalPose = globalShift * scanPositions[i].LocalPose;
168 scanPositions[i].positionLocal =
169 scanPositions[i].LocalPose.block<3, 1>(0, 3).cast<float>();
170  

171 // Add to JSON data
172 nlohmann::json scanJson;
173 scanJson["ID"] = scanPositions[i].key;
174 scanJson["GlobalPose"] = MatrixToJson(scanPositions[i].GlobalPose);
175 optimizedData[scanPositions[i].key] = scanJson;
176  

177 // Update JSON data:
178 optimizationResults["vertices"][scanPositions[i].key] = {
179 {"initialPose", MatrixToJson(initialPose)},
180 {"optimizedPose", MatrixToJson(scanPositions[i].LocalPose)}, // Will be updated later
181 {"globalPose", MatrixToJson(scanPositions[i].GlobalPose)}
182 };
183  

184 g2o::SparseBlockMatrix<Eigen::MatrixXd> spinv;
185 Eigen::MatrixXd hessianBlock;
186 if (optimizer.computeMarginals(spinv, vertex)) {
187 auto block = spinv.block(vertex->hessianIndex(), vertex->hessianIndex());
188 if (block) {
189 hessianBlock = *block;
190 // std::cout << "Hessian block for vertex:\n" << hessianBlock << std::endl;
191 }
192 }
193 const Eigen::MatrixXd covariance = hessianBlock;
194 optimizationResults["vertices"][scanPositions[i].key]["covariance"] = MatrixToJson(covariance);
195 }
196  

197 // Save updated poses to a new JSON file
198 std::ofstream outFile(outputFilename);
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199 if (!outFile) {
200 throw std::runtime_error("Failed to open file for writing: " + outputFilename);
201 }
202 outFile << optimizedData.dump(4);
203 outFile.close();
204  

205 for (const auto& scan : loadedScans) {
206 if (!scan.second.subsampledCloud->getVertices().empty()) {
207 std::vector<Eigen::Vector3f> subsampled_points = scan.second.subsampledCloud->getVertices();
208 for (auto& point : subsampled_points) {
209 Eigen::Vector4f homogenousPoint(point.x(), point.y(), point.z(), 1.0f);
210 Eigen::Vector4f transformedPoint = trafos[scan.first].cast<float>() * homogenousPoint;
211 point = transformedPoint.head<3>();
212 }
213 std::vector<Eigen::Vector3f> full_points = scan.second.fullCloud->getVertices();
214 for (auto& point : full_points) {
215 Eigen::Vector4f homogenousPoint(point.x(), point.y(), point.z(), 1.0f);
216 Eigen::Vector4f transformedPoint = trafos[scan.first].cast<float>() * homogenousPoint;
217 point = transformedPoint.head<3>();
218 }
219 scan.second.subsampledCloud->setVertices(subsampled_points);
220 scan.second.fullCloud->setVertices(full_points);
221  

222 }
223 }
224  

225 // Save results to file
226 std::string outFileG2O = "pose_optimization_results.json";
227 std::ofstream outFileG2On(outFileG2O);
228 if (!outFileG2On) {
229 throw std::runtime_error("Failed to open file for writing: " + outFileG2O);
230 }
231 outFileG2On << optimizationResults.dump(4); // Pretty print with 4 spaces
232  

233 std::cout << "Optimization results saved to " << outFileG2O << std::endl;
234 outFileG2On.close();
235  

236 lines = updateLinks(scanPositions);
237 DrawAll();
238 DrawScanPositions(scanPositions);
239 pangolin::FinishFrame();
240 }

7.1.4 Georeferencing
7.1.4.1 Transformation  matrix computation

1 Eigen::Matrix4d computeTransformationMatrix(const std::vector<Target> matchedTargets) {
2 // Temporary vectors to store coordinates of selected targets
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3 std::vector<Eigen::Vector3d> localPoints;
4 std::vector<Eigen::Vector3d> globalPoints;
5  

6 // Filter for selected points
7 for (const auto& target : matchedTargets) {
8 if (target.selected) {
9 localPoints.push_back(target.local);

10 globalPoints.push_back(target.global);
11 }
12 }
13  

14 // Check for sufficient selected points
15 if (localPoints.size() < 3) {
16 std::cerr << "Insufficient selected points for transformation." << std::endl;
17 std::cout << "Transformation Matrix:\n" << Eigen::Matrix4d::Identity() << std::endl;
18 return Eigen::Matrix4d::Identity();
19 }
20  

21 // Compute centroids of selected points
22 Eigen::Vector3d centroidLocal = Eigen::Vector3d::Zero();
23 Eigen::Vector3d centroidGlobal = Eigen::Vector3d::Zero();
24  

25 for (size_t i = 0; i < localPoints.size(); ++i) {
26 centroidLocal += localPoints[i];
27 centroidGlobal += globalPoints[i];
28 }
29 centroidLocal /= localPoints.size();
30 centroidGlobal /= globalPoints.size();
31  

32 std::cout << "local centroid: " << centroidLocal << "\n" << std::endl;
33 std::cout << "global centroid: " << centroidGlobal << "\n" << std::endl;
34  

35 // Compute centered vectors
36 std::vector<Eigen::Vector3d> localCentered(localPoints.size());
37 std::vector<Eigen::Vector3d> globalCentered(globalPoints.size());
38 for (size_t i = 0; i < localPoints.size(); ++i) {
39 localCentered[i] = localPoints[i] - centroidLocal;
40 globalCentered[i] = globalPoints[i] - centroidGlobal;
41 }
42  

43 // Compute cross-covariance matrix
44 Eigen::Matrix3d H = Eigen::Matrix3d::Zero();
45 for (size_t i = 0; i < localPoints.size(); ++i) {
46 H += localCentered[i] * globalCentered[i].transpose();
47 }
48  

49 // Singular Value Decomposition
50 Eigen::JacobiSVD<Eigen::Matrix3d> svd(H, Eigen::ComputeFullU | Eigen::ComputeFullV);
51 Eigen::Matrix3d rotation = svd.matrixV() * svd.matrixU().transpose();
52
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53 // Ensure a proper rotation (determinant = 1)
54 if (rotation.determinant() < 0) {
55 Eigen::Matrix3d V = svd.matrixV();
56 V.col(2) *= -1;
57 rotation = V * svd.matrixU().transpose();
58 }
59  

60 double scale = 1.0; // fix scale to 1
61  

62 // Compute translation
63 Eigen::Vector3d localTranslation = -rotation * centroidLocal;
64 Eigen::Vector3d translation = centroidGlobal + localTranslation;
65  

66 // Form the 4x4 transformation matrix
67 Eigen::Matrix4d transformation = Eigen::Matrix4d::Identity();
68 transformation.block<3, 3>(0, 0) = scale * rotation;
69 transformation.block<3, 1>(0, 3) = translation;
70  

71 std::cout << "Transformation Matrix:\n" << transformation << std::endl;
72  

73 return transformation;
74 }

7.1.4.2 GUI  and  E57 handling

1 void transformE57(std::vector<FileEntry> fileEntries) {
2 try {
3 pangolin::DestroyWindow("GeoRefHut");
4  

5 // Read local points from the local.txt file
6 std::vector<Point> localPointsMap = readPointsFromFile("local.txt");
7 if (localPointsMap.empty()) {
8 std::cerr << "No local points found." << std::endl;
9 return;

10 }
11  

12 // Select the target coordinates file using tinyfd
13 const char* targetCoordinatesFile = tinyfd_openFileDialog(
14 "Select target coordinates file",
15 curr_path.c_str(), // Default path (empty for user to choose)
16 1, // Number of filter patterns
17 nullptr, // No specific filter
18 "Text files (*.txt)", // Single filter description
19 0 // Don't allow multiple selects
20 );
21  

22  

23 if (!targetCoordinatesFile) {
24 std::cerr << "No target file selected." << std::endl;
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25 return;
26 }
27 std::filesystem::path TfilePath(targetCoordinatesFile);
28 curr_path = TfilePath.parent_path();
29  

30 // Step 3: Read global points from the selected target file
31 std::vector<Point> globalPointsMap = readPointsFromFile(targetCoordinatesFile);
32 if (globalPointsMap.empty()) {
33 std::cerr << "No global points found." << std::endl;
34 return;
35 }
36  

37 std::vector<Target> matchedTargets;
38  

39 for (const auto& localPoint : localPointsMap) {
40 for (const auto& globalPoint : globalPointsMap) {
41 if (localPoint.name == globalPoint.name) {
42 // Create a Target instance with the matched local and global points
43 Target target;
44 target.name = localPoint.name;
45 target.local = localPoint.coordinates;
46 target.global = globalPoint.coordinates;
47 target.selected = true;
48  

49 // Add the target to the matched targets list
50 matchedTargets.push_back(target);
51 }
52 }
53 }
54  

55 if (matchedTargets.size() < 3) {
56 std::cerr << "Insufficient corresponding points for transformation." << std::endl;
57 return;
58 }
59  

60 // Compute transformation matrix
61 Eigen::Matrix4d initialTransformationMatrix = computeTransformationMatrix(matchedTargets);
62  

63 for (const auto& point : matchedTargets) {
64 Eigen::Vector4d localHomog(point.local(0), point.local(1), point.local(2), 1.0);
65 Eigen::Vector3d transformed = (initialTransformationMatrix* localHomog).head<3>();
66 transformedPoints.push_back(transformed);
67 Eigen::Vector3d difference = point.global - transformed;
68 double absDifference = difference.norm();
69  

70 // Format and align output
71 std::cout << std::fixed << std::setprecision(3);
72 std::cout << std::left << std::setw(8) << point.name << "|" // Left-align point name
73 << "diff:"
74 << std::right << std::setw(6) << difference(0) << " "
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75 << std::setw(6) << difference(1) << " "
76 << std::setw(6) << difference(2) << " [m] | "
77 << "abs. diff: " << std::setw(6) << absDifference << " [m]"
78 << std::endl;
79 }
80  

81 // Recompute transformation matrix based on target selection
82 Eigen::Matrix4d transformationMatrix = trafoViz(initialTransformationMatrix,matchedTargets);
83  

84 size_t guidCounter = 1;
85  

86 std::unordered_map<std::string, Eigen::Matrix4d> optPoses;
87 std::ifstream fin("optimized_poses.json");
88 if (!posesOptimized && fin) {
89 optPoses = LoadGlobalPoses("optimized_poses.json");
90 } else {
91 for (auto& pose : scanPositions) {
92 optPoses[pose.key] = pose.GlobalPose;
93 }
94 }
95  

96 // Process each input E57 file
97 for (const auto& file : fileEntries) {
98  

99 std::filesystem::path firstInputPath(file.filepath);
100 std::string outputFilename;
101 if (fileEntries.size() < 2) {
102 outputFilename = firstInputPath.stem().string() + "_georef.e57";
103 } else {
104 outputFilename = firstInputPath.stem().string() + "_georef.e57";
105 }
106  

107 std::filesystem::path outputPath = firstInputPath.parent_path() / outputFilename;
108 std::cout << "Writing E57 to: " << outputPath << std::endl;
109  

110 // Create the E57 Writer for the single output file
111 e57::WriterOptions writerOptions;
112 e57::Writer e57Writer(outputPath.string().c_str(), writerOptions);
113 if (!e57Writer.IsOpen()) {
114 std::cerr << "Failed to open E57 writer for " << outputFilename << std::endl;
115 return;
116 }
117  

118 // Open the current E57 file for reading
119 e57::Reader e57Reader(file.filepath, e57::ReaderOptions());
120 std::cout << "Reading E57 file: " << file.filepath << std::endl;
121  

122 size_t scanCount = e57Reader.GetData3DCount();
123 std::cout << "Number of scans in the file: " << scanCount << std::endl;
124
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125 // Process each scan in the current file
126 for (size_t scanIndex = 0; scanIndex < scanCount; ++scanIndex) {
127 e57::Data3D scanHeader;
128 e57Reader.ReadData3D(scanIndex, scanHeader);
129  

130 std::string scanKey = file.filepath + "_" + scanHeader.name;
131  

132 // Apply the transformation to the scan pose
133 Eigen::Matrix4d poseMatrix = optPoses[scanKey];
134 Eigen::Matrix4d transformedPoseMatrix = transformationMatrix * poseMatrix;
135  

136 // Update the scan header with the new pose
137 Eigen::Quaterniond eigenQuat(transformedPoseMatrix.block<3, 3>(0, 0));
138 e57::Quaternion e57Quat;
139 e57Quat.w = eigenQuat.w();
140 e57Quat.x = eigenQuat.x();
141 e57Quat.y = eigenQuat.y();
142 e57Quat.z = eigenQuat.z();
143 scanHeader.pose.rotation = e57Quat;
144 scanHeader.pose.translation.x = transformedPoseMatrix(0, 3);
145 scanHeader.pose.translation.y = transformedPoseMatrix(1, 3);
146 scanHeader.pose.translation.z = transformedPoseMatrix(2, 3);
147  

148 // Assign a unique GUID for each scan
149 scanHeader.guid = generateUniqueGUID(guidCounter);
150 std::cout << "scan GUID: " << scanHeader.guid << std::endl;
151 guidCounter++;
152  

153 std::cout << "Point count in scan header: " << scanHeader.pointCount << std::endl;
154  

155 // Read the point data
156 e57::Data3DPointsData_t<double> buffers(scanHeader);
157  

158 e57::CompressedVectorReader dataReader =
159 e57Reader.SetUpData3DPointsData(scanIndex, scanHeader.pointCount, buffers);
160 dataReader.read();
161  

162  

163 // Write the transformed scan data to the output file
164 int64_t dataIndex = e57Writer.NewData3D(scanHeader);
165 e57::CompressedVectorWriter dataWriter =
166 e57Writer.SetUpData3DPointsData(dataIndex, scanHeader.pointCount, buffers);
167 dataWriter.write(scanHeader.pointCount);
168 if (dataIndex != scanHeader.pointCount) {
169 std::cerr << "Error: Not all points were written!" << std::endl;
170 }
171 dataWriter.close();
172  

173 std::cout << "Processed scan index " << scanIndex << " from file: " << file.filepath
174 << std::endl;
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175 // Close the writer after all scans are written
176 e57Writer.Close();
177 if (fileEntries.size() < 2) {
178 std::cout << "Transformed E57 point cloud written to " <<
179 outputPath.string() << std::endl;
180 } else {
181 std::cout << "Merged and transformed E57 point cloud written to " <<
182 outputPath.string() << std::endl;
183 }
184 }
185 }
186  

187 } catch (const e57::E57Exception& e) {
188 std::cerr << e.what() << ": " << e.errorStr() << std::endl;
189 return;
190 } catch (const std::exception& e) {
191 std::cerr << "Standard exception: " << e.what() << std::endl;
192 } catch (...) {
193 std::cerr << "Unknown exception occurred." << std::endl;
194 }
195 }
196

7.2 Convert  FLD  to LAZ

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Wed Mar 13 17:11:13 2024
5  

6 @author: stefa
7 """
8 # from read_fld_optimized import read_fld
9 from read_fld import read_fld

10 import time
11 from PyQt5.QtWidgets import QApplication, QFileDialog
12 import numpy as np
13 import laspy
14 import os
15  

16  

17 def select_file():
18 app = QApplication([])
19 file_paths, _ = QFileDialog.getOpenFileName(None, "Select GPR-fld file")
20 return file_paths
21  

22 def replace_extension(file_path, ext):
23 base_name, _ = os.path.splitext(file_path)
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24 return base_name + ext
25  

26 def create_xyz_amplitude_array(fld):
27 #fld_data, xpixels, ypixels, zpixels, pixelsize, y_coor, x_coor, pixelsize_z
28 rows, cols, z = fld[2], fld[1], fld[3]
29 matrix = fld[0]
30 pixel_size_xy = fld[4]
31 pixel_size_z = fld[7]
32 initial_y = fld[5]
33 initial_x = fld[6]
34 initial_z = 0 #for now!!!
35  

36 # Find the positions of nonzero elements
37 nonzero_indices = np.nonzero(matrix)
38  

39 # Extract the x, y coordinates from the nonzero indices
40 z_coords, y_coords, x_coords = nonzero_indices
41  

42 # Extract intensity values at nonzero positions
43 intensity_values = matrix[nonzero_indices]
44  

45 #transform intensity values to [0,255]:
46 intensity_values = (intensity_values/np.max(intensity_values))*255
47  

48 #mirror values around 255/2:
49 intensity_values = 255-intensity_values
50  

51 # compute coordinates:
52 x_coords = initial_x + x_coords*pixel_size_xy
53 y_coords = initial_y - y_coords*pixel_size_xy
54 z_coords = initial_z - z_coords*pixel_size_z
55  

56 return x_coords, y_coords, z_coords, intensity_values
57  

58  

59 # file = sys.argv[1]
60 file = select_file()
61 start_time = time.time()
62 fld = read_fld(file)
63  

64 file_new = replace_extension(file, ".laz")
65  

66 # Create a Las
67 las = laspy.create(point_format=0)
68  

69 las.x, las.y, las.z, las.intensity = create_xyz_amplitude_array(fld)
70  

71 laspy.compression.LazBackend(0)
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72 las.write(file_new)
73 print(f"Time taken: {time.time() - start_time:.2f} seconds")

7.2.1 Read  FLD  file
This  function  has  been  taken  from  Nau 2024.

1 import struct
2 import concurrent.futures
3 import numpy as np
4 import os
5 import matplotlib.pyplot as plt
6 import time
7  

8 def read_fld(file_path):
9 base_name = os.path.splitext(file_path)[0]

10 output_npy = base_name + '.npy'
11  

12 with open(file_path, mode='rb') as f:
13 file_content = f.read()
14  

15 xpixels, ypixels, zpixels, pixelsize, y_coor, x_coor, pixelsize_z = read_fld_header(file_content)
16  

17 data_start = read_fld_data_specs(file_content, zpixels)
18 start_bits, stop_bits, number_of_values = get_start_stop_bits(file_content, zpixels, data_start)
19  

20 fld_data = read_fld_with_threads(file_content, xpixels, ypixels, zpixels, start_bits, stop_bits,
21 number_of_values, output_npy)
22  

23 plt.imshow(fld_data[0], cmap='Greys', vmin=4, vmax=24)
24 plt.show()
25  

26 return fld_data, xpixels, ypixels, zpixels, pixelsize, y_coor, x_coor, pixelsize_z
27  

28 def read_fld_header(file_content):
29 header_data = np.frombuffer(file_content[:40], dtype=np.dtype('>i4, >i4, >i4, >i4, >i4, >i4,
30 >i4, >i4, >i4, >i4'))
31 _, xpixels, ypixels, zpixels, x_start, x_end, _, _, z_start, z_end = header_data[0]
32 _, xpixels, ypixels, zpixels, x_start, x_end, y_start, y_end, z_start, z_end = header_data[0]
33  

34 pixelsize = ((x_end-x_start) / xpixels) / 100
35 #pixelsize = ((x_end-x_start) / xpixels) / 100
36 pixelsize_z = ((z_end - z_start) / zpixels) / 100
37  

38 x_coor = np.frombuffer(file_content[198:206], dtype='>f8')[0]
39 y_coor = np.frombuffer(file_content[214:222], dtype='>f8')[0]
40  

41 x_coor_end = np.frombuffer(file_content[206:214], dtype='>f8')[0]
42 y_coor_end = np.frombuffer(file_content[222:230], dtype='>f8')[0]
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43  

44 pixelsize = round(((x_coor_end-x_coor) / xpixels), 2)
45  

46 return xpixels, ypixels, zpixels, pixelsize, y_coor, x_coor, pixelsize_z
47  

48  

49  

50 def read_fld_data_specs(file_content, z_size):
51 start_b = 246
52 start_num = start_b + z_size * 4 + 4
53 stop_num = start_num + 4
54  

55 num_dt = np.frombuffer(file_content[start_num:stop_num], dtype=np.dtype('>i4'))[0]
56  

57 start_num_velo = stop_num + (num_dt * 4 * 2) * 2
58 stop_num_velo = start_num_velo + 4
59  

60 num_velo = np.frombuffer(file_content[start_num_velo:stop_num_velo], dtype=np.dtype('>i4'))[0]
61  

62 data_start = stop_num_velo + num_velo * 2 * 4 + 4
63  

64 return data_start
65 def get_start_stop_bits(file_content, number_of_layers, data_start):
66 start_bits = []
67 stop_bits = []
68 number_of_values = []
69  

70 for layer_index in range(number_of_layers):
71 # Determine the size of the layer
72 number_of_values_layer = struct.unpack('q', file_content[data_start:data_start + 8])[0]
73 number_of_values.append(number_of_values_layer)
74  

75 # Determine the end position of the layer data
76 data_stop = data_start + 16 + number_of_values_layer * 2
77  

78 start_bits.append(data_start)
79 stop_bits.append(data_stop)
80  

81 # Update the start position for the next layer
82 data_start = data_stop
83  

84 return start_bits, stop_bits, number_of_values
85  

86 def process_layer(layer_index, file_content, x_size, y_size, start_bits, stop_bits):
87 data_start = start_bits[layer_index]
88 data_stop = stop_bits[layer_index]
89  

90 min1, max1 = struct.unpack('>f', file_content[data_start + 8:data_start + 12])[0], \
91 struct.unpack('>f', file_content[data_start + 12:data_start + 16])[0]
92
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93 data_values = np.frombuffer(file_content[data_start + 16:data_stop], dtype='>i2')
94 data_values = np.where(data_values > 0, min1 + (data_values - 1) *
95 ((max1 - min1) / 32760), data_values)
96 data_unpacked = []
97  

98 # start_time = time.time()
99 for value in data_values:

100 if value < 0 and value.is_integer():
101 data_unpacked.extend([0] * int(abs(value)))
102 else:
103 data_unpacked.append(value)
104 # print(f"Time taken: {time.time() - start_time:.2f} seconds")
105 data_unpacked = np.asarray(data_unpacked, dtype=float)
106  

107 data_unpacked = data_unpacked.reshape(y_size, x_size)
108 # print(f"Time taken: {time.time() - start_time:.2f} seconds")
109 return layer_index, data_unpacked
110  

111 def read_fld_with_threads(file_content, x_size, y_size, number_of_layers,
112 start_bits, stop_bits, number_of_values, output_npy):
113 data = np.empty((number_of_layers, y_size, x_size), dtype=np.float32)
114  

115 with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
116 futures = [executor.submit(process_layer, layer_index, file_content, x_size, y_size,
117 start_bits, stop_bits) for layer_index in range(number_of_layers)]
118  

119 for future in concurrent.futures.as_completed(futures):
120 layer_index, data_unpacked = future.result()
121 data[layer_index, :, :] = data_unpacked
122  

123 data = data.transpose((0, 1, 2))
124 data = np.flip(data, axis=1)
125  

126 return data
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