
Diploma Thesis

Joint 3D surface and subsurface imaging for

geophysical archaeological prospection

submitted in satisfaction of the requirements for the degree

Diplom-Ingenieur

of the TU Wien, Faculty of Mathematics and Geoinformation

Diplomarbeit

Kombinierte Oberflächen- und

Untergrundprospektion mittels Punktwolken für

geophysikalische archäologische Untersuchungen

ausgeführt zum Zwecke der Erlangung des akademischen Grads

Diplom-Ingenieur

eingereicht an der TU Wien, Fakultät für Mathematik und Geoinformation

Stefan Blochberger, BSc

Matr.Nr.: 01629030

Supervision: Assoz. Prof. Dipl. geophys. Immo Trinks, Privatdoz. PhD

Wien, March 2025

3

Affidavit
I declare in lieu of oath, that I wrote this thesis and carried out the associated research
myself, using only the literature cited in this volume. If text passages from sources are
used literally, they are marked as such. As supportive tools for coding, the Large Language
Models (LLMs) ChatGPT from OpenAI1 and, predominantly, Mistral AI’s2 Le Chat have
been utilized.

I confirm that this work is original and has not been submitted for examination elsewhere,
nor is it currently under consideration for a thesis elsewhere.

I acknowledge that the submitted work will be checked electronically-technically using
suitable and state-of-the-art means (plagiarism detection software). On the one hand, this
ensures that the submitted work was prepared according to the high-quality standards
within the applicable rules to ensure good scientific practice "Code of Conduct" at the TU
Wien. On the other hand, a comparison with other student theses avoids violations of my
personal copyright.

Place and Date: Signature:

1 https://openai.com/
2 https://mistral.ai/

https://openai.com/
https://mistral.ai/

Abstract
The integration of diverse point cloud sources – such as Terrestrial Laserscanning (TLS), Image
Based Modelling (IBM), and Ground Penetrating Radar (GPR) – enables the creation of compre-
hensive 3D models of archaeological sites, imaging both surface and subsurface structures. Each
data type captures distinct information: TLS provides detailed geometry, photogrammetry offers

texture and overall structure, and GPR reveals subsurface features. Merging these data sets into

a unified point cloud improves the visualisation and facilitates the topographic correction of GPR
data, GPR anomaly detection, and digital twin creation, which are essential for archaeological
research and cultural heritage preservation.

The proposed workflow optimises and georeferences TLS data while ensuring global consis-
tency across multiple scans. Global reference is established by using Global Navigation Satellite
System (GNSS) data of distinct features and airborne drone measurements. Comparisons to
transform parameters using the geo-located IBM data are conducted and consequently preferred
due to visual consistency. The resulting integrated 3D models not only enhance the understanding

of the investigated cultural heritage sites but also improve the accuracy of subsurface and surface
mapping by correlating overlapping structures from different sensing modalities.

This project also demonstrates an automated framework, in which all data are treated as

point clouds and merged following precise referencing. A dedicated C++ tool facilitates the
optimisation process, and the integration is performed within a Geographic Information System
(GIS) framework called Nubigon, suited for the handling of very large data sets. This type of
system is pivotal in ensuring that both high-resolution surface details and subsurface anomalies
are accurately represented, thereby supporting more effective conservation and research efforts.
The custom developed tool is set to be published as open source software, therefore facilitating free
access and the possibility of contribution by a broader user base. This encourages transparency
and accessibility of software used for the specific purpose of aligning multiple point clouds and
optimising the underlying pose graph.

GPR data revealed subsurface structures and features within the manor grounds. Anoma-

lies caused by buried walls and foundations of a suspected orangery were discovered beneath
the meadow of a terrace adjacent to the building complex. These 3D point cloud data sets and
contained structures have been jointly visualized using Nubigon, which overlays IBM surface
data with GPR subsurface data to provide a comprehensive representation.

Contents
Acronyms 7

1 Introduction 9
1.1 Choosing Imaging Methods . 10
1.2 Manors in the Baltic Sea Region . 11

1.2.1 Hafslund Manor . 11
1.2.2 Other relevant manors . 12

1.3 Creating and Visualising Unified 3D Point Cloud 12
1.4 Related Works . 12

2 Material and Methods 14
2.1 Ground Penetrating Radar (GPR) . 14

2.1.1 Electromagnetic Theory . 14
2.1.2 Reflection and Transmission of EM Waves 17
2.1.3 Scattering Mechanisms . 18
2.1.4 Processing of GPR data . 19

2.2 Image Based Modeling (IBM) . 23
Structure from Motion (SfM) . 23
2.2.1 Feature Detection and Matching . 23
2.2.2 Geometric Verification . 25
2.2.3 Incremental Reconstruction . 27
2.2.4 Bundle Adjustment . 28
2.2.5 Dense Reconstruction with Multi View Stereo (MVS) 28

2.3 Terrestrial Laser Scanning (TLS) . 30
Data Processing . 30
2.3.1 Registration and Georeferencing in Terrestrial Laser Scanning 30

2.3.1.1 Iterative Closest Point (ICP) Algorithm 31
2.3.1.2 Point-to-Plane ICP . 31
2.3.1.3 Generalized Iterative Closest Point (GICP) 32
2.3.1.4 Optimization of the pose graph 34
2.3.1.5 Georeferencing . 35

2.4 Tool for visualizing, optimizing and georeferencing of TLS data 36
2.4.1 Overview of the Tool . 36
2.4.2 Libraries and Dependencies . 37
2.4.3 Core Functionalities and Pipeline . 37

2.4.3.1 Point Cloud Import and Subsampling 37
2.4.3.2 Visualization and Interaction . 37
2.4.3.3 Alignment via GICP . 38
2.4.3.4 Optimization of the pose graph 38
2.4.3.5 Georeferencing . 39

2.5 NUBIGON . 39
2.5.1 Octree Generation . 40

6 Contents

2.5.2 X-Ray Mode . 40
2.6 Data . 40

2.6.1 TLS data . 40
2.6.2 GNSS data . 44
2.6.3 IBM data . 44
2.6.4 GPR data . 46

3 Results 47
3.1 TLS . 47

3.1.1 GICP alignment . 47
3.1.2 Pose graph optimization . 47

3.1.2.1 Weighing edges by corresponding Hessians 49
3.1.2.2 Weighing edges using adjusted stochastic model 52

3.1.3 Georeferencing the Terrestrial Laser Scanner (TLS) cloud 56
3.2 IBM data and TLS comparisons . 58
3.3 IBM data and GPR comparisons . 59
3.4 Visualization of merged 3D surface and subsurface data 59

4 Discussion 61
4.1 TLS . 61

4.1.1 GICP alignments . 61
4.1.2 Pose graph optimization . 61
4.1.3 Assessment of Wall Structure Discrepancies 62

4.2 IBM data and TLS comparison . 62
4.3 IBM data and GPR comparison . 62
4.4 Visualization of merged data in Nubigon . 63
4.5 Proposed Workflow . 66

5 Conclusion 68

6 Outlook 70
6.1 TLS aquisition and processing . 70

6.1.1 Pose graph interconnectivity . 70
6.1.2 Scan matching . 70
6.1.3 Pose graph optimization and global reference 71

6.2 LOAM . 71
6.3 VR and AR applications . 72
6.4 Closing Remarks . 72

Bibliography 74

7 Appendix 77
7.1 Custom C++ tool for TLS point cloud processing 77

7.1.1 E57 file reading . 77
7.1.1.1 Subsampling . 79

7.1.2 Generalized ICP registration . 80
7.1.3 Pose Graph Optimization . 83
7.1.4 Georeferencing . 87

7.1.4.1 Transformation matrix computation 87
7.1.4.2 GUI and E57 handling . 89

Contents 7

7.2 Convert FLD to LAZ . 93
7.2.1 Read FLD file . 95

Acronyms
AR Augmented Reality

BnB Branch and Bound

CSF Cloth Simulation Filter

DJI Da-Jiang Innovations Science and Technology Co., Ltd

GICP Generalized Iterative Closest Point

GIS Geographic Information System

GNSS Global Navigation Satellite System

GPR Ground Penetrating Radar

IBM Image Based Modelling

ICP Iterative Closest Point

IMU Inertial Measurement Unit

LiDAR Light Detection And Ranging

LM Levenberg–Marquardt algorithm

LOAM LiDAR Odometry and Mapping

MVS Multi View Stereo

PnP Perspective-n-Point

RLE Run-length encoding

SfM Structure from Motion

SVD Single Value Decomposition

TIN Triangulated Irregular Network

TLS Terrestrial Laserscanning

VR Virtual Reality

Chapter 1

Introduction
Joint 3D subsurface and surface imaging using a combination of Ground Penetrating Radar

(GPR), Image Based Modelling (IBM), and Terrestrial Laser Scanning (TLS) has emerged

as a powerful approach for noninvasive archaeological and historical site investigations and

documentation (Schmidt et al. 2023; Merkle et al. 2020; Trinks et al. 2018; Wolf et al. 2018).
Merging geoarchaeological prospection data from these methods into a unified 3D point cloud
visualization offers several benefits:

Enhanced Data Integration and Interpretation
Integrating datasets allows for a multi-layered analysis where surface and subsurface features can
be directly compared. This correlation of topographical details, obtained from IBM and laser

scanning, with buried structures identified by GPR, enhances the spatial context. Subsurface
anomalies detected by GPR can be better understood in relation to above-ground features
such as walls, ditches, or terrain changes. Merging all datasets into a common 3D environment
ensures better spatial alignment and reduces interpretation errors, providing a seamless overlay
of different data types.

Increased Accuracy in Spatial Positioning
Combining point clouds from different sources allows for cross-validation and refinement of spatial
positioning, which is particularly useful in complex terrains or forested areas where GNSS may
be unreliable. Laser scanning provides high-precision georeferencing that can be used to align
and correct IBM and GPR datasets, ensuring georeferencing consistency and improved data
registration.

Improved Visualization and Communication
A more intuitive 3D representation allows researchers, stakeholders, and the public to better
understand archaeological features by visualizing them in a realistic 3D space, including both
visible and hidden structures. Point cloud-based 3D models facilitate interactive exploration,
enabling sectioning and filtering of different data layers to focus on specific aspects. This enhanced
visualization is a powerful tool for archaeologists, heritage managers, and the public, making
discoveries more tangible and accessible, thereby improving stakeholder engagement.

Facilitating Advanced Data Processing and Analysis
Merged 3D datasets can serve as input for AI and machine learning applications, enabling

automated feature recognition, segmentation, or classification using deep learning techniques.

10 1 Introduction

Comparing GPR point clouds with surface data may allow for semi-automated reconstruction
of stratigraphic sequences. Additionally, this integration enables quantitative analysis, such as
calculating the volume of buried structures or erosion patterns.

Cross-Validation of Different Methods
The integration of different datasets allows for the confirmation of subsurface features detected
by GPR by cross-checking with terrain data from laser scanning or IBM, ruling out modern
disturbances. Differences between datasets can help refine interpretations, distinguishing natural
geological formations from archaeological structures. Furthermore, laser scanning can provide
topographic corrections for GPR, reducing errors caused by uneven terrain and improving the
overall interpretation of GPR data.

Digital Twins as Investigative Tool
Digital twins of the manor houses shall serve art historians and archaeologists in their investi-
gations. This approach is likewise applicable to the investigation of archaeological sites using
non-invasive geophysical prospection methods, such as GPR. So far, the surfaces and environment

in which a prospection survey is conducted are normally not recorded or documented, leading to
incomplete data sets. The combined surface and subsurface mapping and imaging will lead to
more comprehensive, more complete and more realistic data representations.

1.1 Choosing Imaging Methods
Image Based Modeling (IBM)
In the context of archaeological prospection, mapping the surface of sites with color and texture
information is essential for digital documenting, and can be used to virtually preserving cultural
heritage sites. For efficient and comprehensive acquisition of surface structures, IBM serves as
a well suited, low cost method. Given most archaeological sites are geometric structures with
distinct textural features, the usual pitfalls for IBM, like modeling textureless or vegetational areas,
are mostly avoided. The nature of the IBM method facilitates high resolution documentation
of textural features, while providing sufficient geometrical accuracy for archaeological purposes.
This efficient acquisition technique is suited for large scale imaging as well as high resolution
capturing of intricate textural details. Given low occlusion by surrounding objects, the GNSS
receiver onboard a drone used for IBM provides global reference of the investigated object. In
the context of this thesis, exterior structures of the Hafslund manor have been mapped using
drone powered IBM.

Terrestrial Laser Scanning (TLS)
TLS point clouds can provide more geometrically accurate data and can serve as a reference

to captured IBM data. Given sufficient overlap between adjacent scans and minimized error

in Iterative Closest Point (ICP)-based matching, structural features are acquired with higher
reliability compared to IBM. In this thesis, TLS data captured of the exterior and interior of the
manor has been processed and analyzed.

1.2 Manors in the Baltic Sea Region 11

Ground Penetrating Radar (GPR)
While TLS and IBM provide surface level data, GPR facilitates investigation of the corresponding
subsurface (Conyers 2023). Given recent developments in terms of data resolution (Trinks et al.
2018), and reliable results in near-surface archaeological investigations, this method is well suited
for efficient and robust subsurface data acquisition.

1.2 Manors in the Baltic Sea Region
In the framework of a collaboration between the University of Vienna, Vienna Institute for
Archaeological Science (VIAS), GeoSphere Austria, and the Research Centre for Manors in the
Baltic Sea Region1 of the University of Greifswald, selected manor houses have been investigated
as pilot studies. The purpose of these studies was to develop a workflow for simple and efficient
digital 3D documentation of manor houses and their surroundings, as well as to use geophysical
prospection techniques to survey areas in the vicinity of the main buildings. Predominantly
georadar measurements have been used for the geophysical archaeological prospection surveys.
One application of this joint 3D surface and subsurface imaging was attempted at Hafslund
Manor in Norway, testing and showcasing its potential for the non-destructive, comprehensive
documentation of cultural heritage sites.

1.2.1 Hafslund Manor
According to the Directorate for Cultural Heritage (Riksantikvaren)2, Hafslund is one of Norway’s
largest manor estates (figure 1.1). The features of the surrounding landscape help explain how
this power center emerged: to the west lie the Glomma River and Sarpsfossen, with its associated
industry and power production; to the north and east are National Road 118 (formerly E6)

and the railway – vital connections to international markets; and to the south unfolds a rich
agricultural landscape. The three-winged main building, constructed between 1758 and 1762, was
erected partly by reusing masonry from the structure that burned down in 1757. This masonry
dates back to the 1600s and early 1700s. Today, the north wing serves as the main wing and
comprises two full stories, while the east and west wings consist of a single story with an adapted

attic. The main building features plastered, white-painted walls with impressive rows of windows
and a high mansard roof adorned with glazed roof tiles. The external staircases, as well as the
estate’s fences and gates, were added during a restoration led by Arnstein Arneberg in 1936–37.
Although Arneberg also influenced the interiors, much of the original, high-quality 18th-century
decoration remains preserved.

As an imposing Baroque complex, Hafslund stands alongside Jarlsberg as one of Norway’s
premier manor estates. The design makes deliberate use of axes and symmetry in both the park
and the buildings. The outbuildings conclude at the main building with two pavilions rendered
in brick. Remnants of a formal parterre garden with Renaissance features and a Baroque-style
landscape park with monumental linden avenues further underscore the historical significance of
the estate.

Today, the manor houses meeting and conference facilities for Hafslund ASA3.

1 https://cdfi.uni-greifswald.de/en/history-of-art/research/research-centre-for-manors-in-the-baltic-sea-region/
2 https://riksantikvaren.no/en/
3 https://www.hafslund.no/en

https://cdfi.uni-greifswald.de/en/history-of-art/research/research-centre-for-manors-in-the-baltic-sea-region/
https://riksantikvaren.no/en/
https://www.hafslund.no/en

12 1 Introduction

Fig. 1.1: Hafslund manor, as captured by drone imaging. Photo: I. Trinks.

1.2.2 Other relevant manors
Other manor houses investigated with an approach similar to that used at Hafslund Manor –

combining IBM, TLS, and GPR – include Fossesholm in Norway, Stola in Sweden, Kolga in

Estonia, Nuhjala in Finland, and Orellen–Ungurmuiža in Latvia. The integrated surface and

subsurface imaging presented in this thesis would be highly applicable to these sites. Beyond

manor houses, the 3D documentation of Insula IV in Regio VII at Pompeii by the Austrian
Archaeological Institute, employing the same three methods, offers a comparable scenario.

1.3 Creating and Visualising Unified 3D Point Cloud
This thesis deals with the combination and integration of the different data sets collected at

Hafslund Manor by correctly referencing them to each other. All involved data sets can be
regarded and presented as 3D point clouds, which is obvious for TLS and IBM data, but less so
for GPR data. It was Kamp et al. (2014) who first suggested to visualise GPR data as a 3D point

cloud. The process of combining these point clouds involves correctly referencing individual data
sets to each other, followed by merging and visualization. The ultimate outcome of the project
will be a comprehensive workflow that outlines the acquisition, processing, and integration of 3D
surface and subsurface data.

1.4 Related Works
The approach by Merkle et al. 2020 was to combine LiDAR and GPR data, using two GNSS

antennas in combination with an Inertial Measurement Unit (IMU) in order to reference the

datasets. The main focus of this work was to provide additional subsurface information in
infrastructural use cases like utility mapping, rebar localization within concrete or void detection.

1.4 Related Works 13

Topographic correction of the GPR data, using the LiDAR data, ensures consistent ground height.
Furthermore, this work shows that the LiDAR cloud as reference, increases interpretability of
GPR data and allows measurements between subsurface and surface structures.

Trinks et al. 2018 states that over the past decade, the introduction of advanced multi-channel
GPR antenna array systems has significantly enhanced survey efficiency and spatial sampling
resolution. By utilizing GPR antenna arrays with up to 16 channels operating simultaneously,
combined with automatic positioning solutions like real-time kinematic global navigation satellite
systems or robotic total-stations, it is now feasible to map several hectares per day with a trace
spacing of 8 cm cross-line and 4 cm in-line. This substantial increase in coverage not only reduces
the costs of GPR surveys, making them more accessible for archaeological applications, but

also enables high-resolution imaging of relatively small archaeological features. For instance,
structures such as 25 cm wide post-holes from Iron Age buildings or the brick pillars of Roman
floor heating systems can now be clearly imaged, leading to much improved archaeological
interpretations of the data collected.

Based on the findings mentioned, the trend towards handling high volumes of data, poten-

tially processed and referenced in real-time, is becoming increasingly important. Developing
an efficient framework for integrating multiple datasets, particularly point clouds, is crucial for
various prospecting applications. This thesis aims to cover parts of this agenda.

Chapter 2

Material and Methods

2.1 Ground Penetrating Radar (GPR)
Ground Penetrating Radar (GPR) is a non-invasive remote sensing technology that utilizes

electromagnetic waves in the radar frequency range to create subsurface images by detecting
reflected signals. The practical result of the radiation of electromagnetic waves into the subsurface
for GPR measurements is shown by the basic operating principle that is illustrated in figure
2.1. GPR is designed primarily for investigating the shallow subsurface of the earth, building
materials, and infrastructure such as roads and bridges. Developed over the past thirty years,
GPR enables shallow, high-resolution investigations. It is a time-dependent geophysical method
that can provide a 3D pseudo-image of the subsurface, including depth estimates for many
common subsurface objects. Under favourable conditions, GPR can deliver precise information
about buried objects. Additionally, GPR can be deployed in boreholes to extend the range of
investigations away from the boundary of the hole.

Fig. 2.1: Scheme of an air-coupled GPR system (Merkle et al. 2020).

2.1.1 Electromagnetic Theory
GPR relies on the principles of electromagnetic (EM) wave propagation, rooted in Maxwell’s
equations. These fundamental equations describe the physics of electromagnetic fields and their
interaction with materials. Constitutive relationships link material properties to electromagnetic
fields. Material can be characterized based on their response to transient EM fields. The key
properties for GPR are dielectric permittivity, electrical conductivity, and magnetic permeability
(Reynolds 2011).

2.1 Ground Penetrating Radar (GPR) 15

Maxwell’s Equations and Constitutive Relationships:

Maxwell’s equations form the foundation of EM theory, describing how electric and magnetic
fields propagate and interact with materials. The constitutive relationships are:

Dielectric Permittivity (𝜖) : measures how a material polarizes in response to an electric field,
affecting how EM waves propagate through it.

D = 𝜖E = 𝜖r𝜖0E (2.1)

where:

• D is the electric displacement vector [C/m2]

• E is the electric field strength vector [V/m]

• 𝜖r is the relative permittivity

• 𝜖0 is the permittivity of free space (8.85 × 10−12 [F/m])

Electrical Conductivity (σ) : describes how free charges move to create an electric current
when an electric field is applied.

J = σE (2.2)

where:

• J is the electric current density vector [A/m2]

• E is the electric field strength vector [V/m]

• σ is the electrical conductivity [S/m]

Magnetic Permeability (µ) : measures a material’s ability to support the formation of a
magnetic field within itself.

B = µH = µrµ0H (2.3)

where:

• B is the magnetic flux density vector [T]

• H is the magnetic field strength vector [A/m]

• µr is the relative permeability

• µ0 is the permeability of free space (4π × 10−7 [H/m])

Electromagnetic Wave Propagation

In simple, isotropic, linear media, Maxwell’s equations combined with the constitutive relation-
ships describe the propagation of EM waves. The movement of electric charges generates a
current J, which produces a magnetic field B. This field induces an electric field E, perpetuating
the propagation of EM waves through the medium (see Figure 2.2).

16 2 Material and Methods

Fig. 2.2: Propagation of EM waves where changing electric fields create magnetic fields, and
vice versa (Reynolds 2011).

Wave Equation: The propagation of EM waves is described by the transverse vector wave
equation, derived from Faraday’s law, Ampere’s law, and the constitutive relations:

∇2E − µ𝜖

∂2E
∂ t2 = 0, (2.4)

where E is the electric field, µ is the magnetic permeability, and 𝜖 is the dielectric permittivity
of the medium (D. J. Daniels 2004). Both electric and magnetic fields satisfy this wave equation.

Wave Propagation in Frequency Domain: Transforming the wave equation into the frequency
domain via Fourier transformation, assuming sinusoidal time variation, the propagation constant
k is:

k = α + iβ = ω

v

√
µ𝜖

(︂
1 + i

σ

ω 𝜖

)︂
(2.5)

where:

• ω is the angular frequency

• v is the phase velocity

• α is the attenuation constant

• β is the phase constant

Lossy Media: For real earth materials, losses are often due to electrical conductivity. When
losses are low, i.e.,

ω µσ ≪ ω 𝜖 (2.6)

or equivalently,
σ ≪ ω 𝜖 (2.7)

the wave properties simplify to:
v =

1√
µ𝜖

(2.8)

α = µσ

2v
(2.9)

2.1 Ground Penetrating Radar (GPR) 17

Z =
√︂

µ

𝜖
(2.10)

where Z is the electromagnetic impedance.

Frequency and Conductivity Dependence: The variation of wave properties with frequency and

conductivity is shown in Figure 2.3. At low frequencies, wave properties are frequency-dependent.

As frequency increases, water relaxation frequency effects and scattering losses become significant
(Reynolds 2011).

Fig. 2.3: Variation of wave velocity and attenuation with frequency for different conductivities
(Reynolds 2011).

In the GPR frequency range (10 MHz – 2 GHz), velocity is generally independent of frequency
and conductivity. However, attenuation increases with both frequency and conductivity, limiting
penetration depth (Reynolds 2011).

2.1.2 Reflection and Transmission of EM Waves
When an EM wave encounters an interface between two materials with different electrical
properties, part of the wave is reflected back and part is transmitted through the interface. This
section provides a detailed scientific explanation of these processes.

Reflection Coefficient: The reflection coefficient R at an interface between two materials is
given by the ratio of the reflected electric field amplitude to the incident electric field amplitude.
For normal incidence, it can be expressed as:

R = Z2 − Z1
Z2 + Z1

(2.11)

where Z1 and Z2 are the impedances of the first and second materials, respectively. The impedance
Z is related to the permittivity 𝜖 and permeability µ of the material by:

Z =
√︂

µ

𝜖
(2.12)

Transmission Coefficient: The transmission coefficient T is given by the ratio of the transmitted
electric field amplitude to the incident electric field amplitude:

T =

2Z2
Z2 + Z1

(2.13)

18 2 Material and Methods

Snell’s Law: The angles of incidence θi and refraction θt at the interface between two materials
are related by Snell’s Law:

sin θi

sin θt
= v1

v2
=

√︂
𝜖2
𝜖1

(2.14)

where v1 and v2 are the velocities of the wave in the first and second materials, respectively.

Fig. 2.4: Reflection and transmission of an EM wave at an interface (J. J. Daniels 2000).

Wave Propagation Velocity: The velocity v of an EM wave in a material is related to the
permittivity 𝜖 and permeability µ of the material:

v =

1√
𝜖µ

(2.15)

In most non-magnetic materials, µ ≈ µ0 (the permeability of free space), so the velocity is
primarily determined by the permittivity 𝜖.

2.1.3 Scattering Mechanisms
When an EM wave encounters an object with different permittivity, various scattering mechanisms
can occur, including specular reflection, diffraction, resonant scattering, and refraction.

Specular Reflection: follows the Law of Reflection, where the angle of incidence equals the
angle of reflection:

θi = θr (2.16)

This type of scattering is common in GPR when the interface is smooth and planar (see Figure
2.5a).

Refraction Scattering: occurs when part of the wave transmits through the interface into the
second material, changing direction according to Snell’s Law (see Figure 2.5b).

Diffraction Scattering: occurs when the wave encounters a sharp boundary or obstacle, causing

the wave to bend and spread out. The behavior of diffracted waves can be described by Huygen’s
Principle (see Figure 2.5c).

Resonant Scattering: occurs when the wave impinges on a closed object, causing the wave to
resonate within the object. The resonant frequency depends on the size of the object and the
material properties (see Figure 2.5d).

2.1 Ground Penetrating Radar (GPR) 19

(a) spectral reflection scattering (b) Refraction scattering

(c) Diffraction scattering (d) Resonant scattering

Fig. 2.5: Scattering mechanisms: (a) specular reflection scattering, (b) refraction scattering, (c)
diffraction scattering, and (d) resonant scattering (J. J. Daniels 2000).

2.1.4 Processing of GPR data
The processing of GPR data is crucial for accurate interpretation and involves several steps aimed
at improving the signal-to-noise ratio and the resolution of the final image. This section builds
upon the techniques discussed by Benedetto et al. 2017 and covers data acquisition, preprocessing,
signal enhancement, migration, and interpretation.

GPR Data Representation: A-Scan, B-Scan, and C-Scan

GPR data can be represented in different formats, each providing unique insights into the
subsurface structure. The most common representations are A-scan, B-scan, and C-scan.

A-Scan: (Amplitude scan) represents a single trace of reflected signal amplitudes over time.

It provides a one-dimensional view of the subsurface at a single location. The vertical axis

represents time (or depth), and the horizontal axis represents the amplitude of the reflected
signal. The A-scan is useful for analyzing the signal characteristics at a specific point.

A(t) = R(t), (2.17)

where A(t) is the amplitude of the reflected signal at time t, and R(t) is the recorded signal.

B-Scan: (Brightness scan) is a two-dimensional cross-sectional image of the subsurface, gener-
ated by combining multiple A-scans collected along a survey line. The horizontal axis represents
the position along the survey line, while the vertical axis represents time (or depth).

B(x, t) = R(x, t), (2.18)

where B(x, t) is the B-scan image, x is the position along the survey line, and t is the time (or
depth). B-scans are also referred to as 2D GPR profile sections.

20 2 Material and Methods

C-Scan: (Constant depth scan) provides a plan view (horizontal slice) of the subsurface at

a constant depth. It is created by extracting data at a specific time (or depth) from multiple
B-scans collected over a grid of survey lines. The intensity of each pixel in the resulting image
corresponds to the amplitude of the reflected signal. The C-scan is useful for mapping the spatial
distribution of subsurface features.

C(x, y) = R(x, y , t0), (2.19)

where C(x, y) is the C-scan image, x and y are the coordinates of the survey grid, and t0 is the
selected time (or depth). C-scans are also referred to as GPR time-slices or GPR depth-slices.

(a) A-scan (b) B-scan (c) C-scan

Fig. 2.6: Illustration of A-scan, B-scan, and C-scan representations in GPR data (Benedetto
et al. 2017).

Preprocessing

Preprocessing steps include time-zero correction, dewow filtering, and gain adjustment. These
steps aim to remove noise and correct for systematic errors in the data.

Time-Zero Correction: adjusts the recorded data to ensure that the start time of each trace is
aligned. This correction is necessary because the initial pulse may not coincide with the zero-time
point due to system delays.

Dewow Filtering: removes low-frequency noise, typically caused by the GPR system’s electronics.
This is achieved by applying a high-pass filter to the data. A common approach is to use a
moving average filter to subtract the low-frequency component:

ddew ow ed(t) = d(t) − 1
N

N /2∑︁
i=−N /2

d(t + i), (2.20)

where d(t) is the original signal and N is the window size of the moving average (Cassidy and
Jol 2009).

Gain Adjustment: compensates for the attenuation of the signal with depth. This can be done
using exponential or automatic gain control (AGC):

dg ain(t) = d(t) · eαt, (2.21)

where α is a constant that controls the gain factor (Cassidy and Jol 2009).

2.1 Ground Penetrating Radar (GPR) 21

Signal Enhancement

Signal enhancement techniques include filtering, background removal, and deconvolution. These
methods improve the clarity and resolution of the GPR data.

Filtering: Band-pass filters are often used to remove both low-frequency and high-frequency
noise from the data. The filter can be represented in the frequency domain as:

Df il ter ed(f) = H(f)D(f), (2.22)

where D(f) is the Fourier transform of the original signal, and H(f) is the filter function (D. J.
Daniels 2004).

Background Removal: Background removal techniques eliminate consistent noise patterns,
such as antenna ringing. One common method is to subtract the average trace from each trace
in the data set:

dback g r ound_r emov ed(t) = d(t) − 1
M

M∑︁
i=1

di(t), (2.23)

where M is the number of traces (Cassidy and Jol 2009).

Deconvolution: aims to collapse the wavelet to a spike, improving resolution. The Wiener
deconvolution filter is commonly used:

W (f) = S∗(f)
S(f)S∗(f) + N(f)N∗(f) , (2.24)

where S(f) is the signal spectrum, N(f) is the noise spectrum, and ∗ denotes the complex
conjugate (Cassidy and Jol 2009).

Migration

Migration is the process of repositioning reflected signals to their correct locations in space,
accounting for the propagation path of the waves. The Kirchhoff migration algorithm is widely
used:

dmig r ated(x, z) =
∫︁ ∫︁

d(xs, tr)δ
(︃

tr −
√︀

(x − xs)2 + z2

v

)︃
dxsdtr, (2.25)

where xs is the source position, tr is the travel time, v is the wave velocity, and δ is the Dirac
delta function (Yilmaz 2001).

Topographic Correction

The primary goal of topographic correction is to remove the distortions caused by surface elevation
changes. In GPR surveys conducted over undulating terrain, the recorded signal travel times
are influenced by the varying distance between the radar antenna and the subsurface reflectors.
Without correction, these variations can lead to misinterpretation of subsurface features and
inaccurate depth estimations (Neal 2004).

Topographic correction involves several steps, which can be summarized as follows:

22 2 Material and Methods

1. Surface Elevation Measurement: Accurate measurement of the surface elevation at
each GPR survey point is essential. This can be achieved using differential GPS (DGPS) or
total station surveying (D. J. Daniels 2004), as well as topographic recording using image
based modelling or Lidar-based sensors (see the following sections).

2. Travel Time Adjustment: The recorded two-way travel times (tobs) are adjusted based
on the measured surface elevations. The corrected travel time (tcor r) for a given depth is
calculated using the following equation:

tcor r(x) = tobs(x) − 2h(x)
v

, (2.26)

where h(x) is the surface elevation at position x, and v is the velocity of the radar wave in
the medium (Grasmueck 1996).

3. Data Interpolation: Interpolating the GPR data onto a regular grid that accounts for
the corrected travel times. This step ensures that the subsurface reflections are accurately
represented in a consistent spatial framework.

Fig. 2.7: Example for common-offset data processing steps. (a) Raw data. (b) After trace
alignment, dewow, and mean trace removal. (c) After along-trace smoothing (window
width 10 samples), t1.2 gain, time-to-depth conversion using an RMS velocity of 0.1
m/ns, f-k migration, and along-profile smoothing (oversampling factor 4, running mean
window width 6 traces) (d) After topographic correction (Plattner 2020).

2.2 Image Based Modeling (IBM) 23

2.2 Image Based Modeling (IBM)
Image-based modeling, otherwise referred to as photogrammetry, incorporates the principles

of Structure from Motion (SfM) to reconstruct three-dimensional representations from two-
dimensional images. The fundamental idea is to estimate both the 3D structure of the scene and
the motion of the camera.

Structure from Motion (SfM)
SfM is a foundational technique within photogrammetry that enables the estimation of camera
positions and scene structure simultaneously from a set of overlapping images. This process
involves identifying common features or points across multiple images, calculating their positions
in 3D space through triangulation, and refining the camera parameters to minimize errors
(Schonberger and Frahm 2016).

The SfM pipeline typically involves the following key steps:

1. Feature Detection and Matching: Extract and match distinctive features across
multiple images.

2. Geometric Verification: Estimate the relative pose between image pairs based on the
matched features.

3. Incremental Reconstruction: Build a sparse 3D point cloud incrementally by adding
new images (see figure 2.8).

4. Bundle Adjustment: Refine the 3D structure and camera parameters by minimizing the
reprojection error.

5. Dense Reconstruction (Optional): Generate a dense 3D model from the sparse point
cloud.

Fig. 2.8: Pipeline of an incremental SfM algorithm (Schonberger and Frahm 2016).

2.2.1 Feature Detection and Matching
The first step in SfM involves detecting and matching features across images. Reliable feature
detection and matching are crucial for accurate 3D reconstruction. Common algorithms for

feature detection include the Scale-Invariant Feature Transform (SIFT) (Lowe 2004) and the
Speeded-Up Robust Features (SURF) (Bay et al. 2008).

24 2 Material and Methods

Scale-Invariant Feature Transform (SIFT)
The Scale-Invariant Feature Transform (SIFT) algorithm, developed by David Lowe (Lowe 2004),

is a key method for detecting and describing local features in images. SIFT features are robust to
scale changes, rotations, and to some extent, affine transformations and illumination variations.
The algorithm consists of several stages:

Scale-Space Extrema Detection: The first stage of SIFT is to detect potential keypoints by
finding extrema in the scale-space. Scale-space is constructed by applying Gaussian blurring at
different scales to the image (Figure 2.9a). The scale-space function L(x, y , σ) is defined as:

L(x, y , σ) = G(x, y , σ) ∗ I(x, y), (2.27)

where G(x, y , σ) is the Gaussian kernel with standard deviation σ, and I(x, y) is the input
image. To identify keypoints, a series of Difference-of-Gaussian (DoG) images are computed by
subtracting consecutive blurred images:

D(x, y , σ) = L(x, y , k σ) − L(x, y , σ), (2.28)

where k is a constant factor. Keypoints are detected as local maxima and minima in the DoG
images across both spatial and scale dimensions (Figure 2.9b).

(a) (b)

Fig. 2.9: (a) For each octave of scale space, the initial image is repeatedly convolved with

Gaussians to produce the set of scale space images shown on the left. Adjacent
Gaussian images are subtracted to produce the difference-of-Gaussian images on the
right. After each octave, the Gaussian image is down-sampled by a factor of 2, and
the process repeated. (b) Maxima and minima of the difference-of-Gaussian images
are detected by comparing a pixel (marked with X) to its 26 neighbors in 3×3 regions
at the current and adjacent scales (marked with circles) (Lowe 2004).

Keypoint Localization: Keypoints are refined to achieve sub-pixel accuracy and eliminate

keypoints that are poorly localized or have low contrast. This is achieved by fitting a 3D

2.2 Image Based Modeling (IBM) 25

quadratic function to the local neighborhood of the keypoint using Taylor expansion. The
function D(x) is:

D(x) = D + ∂ D

∂x
T

x +

1
2xT ∂2D

∂x2 x, (2.29)

where x = (x, y , σ)T is the displacement from the candidate keypoint.

Orientation Assignment: Each keypoint is assigned an orientation to achieve invariance to image
rotation. The local dominant gradient angle is computed and used as a reference orientation.

Then, the local gradient distribution is normalized with respect to this reference direction.
Gradient magnitude m(x, y) and orientation θ(x, y) are calculated as:

m(x, y) =
√︁

(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2, (2.30)

θ(x, y) = tan−1
(︂

L(x, y + 1) − L(x, y − 1)
L(x + 1, y) − L(x − 1, y)

)︂
. (2.31)

An orientation histogram is created from the gradient orientations within a region around the
keypoint, and the peak of this histogram defines the dominant orientation (see Figure 2.10).

Fig. 2.10: Reference Orientation Attribution: The gradient orientations are computed from

the scaled image (middle), collected into a histogram (right) and then smoothed
(Rey Otero 2015).

Keypoint Descriptor Generation: The final stage involves creating a descriptor for each keypoint,
which is a vector representing the local gradient distribution around the keypoint. The region
around each keypoint is divided into a 4 × 4 grid, and within each cell, an orientation histogram
with 8 bins is computed. The descriptor vector is then formed by concatenating these histograms,
resulting in a 128-dimensional vector for each keypoint (see Figure 2.11).

2.2.2 Geometric Verification
Estimation of the Essential or Fundamental Matrix
Once feature matches between pairs of images are established, the next step is to estimate the
essential or fundamental matrix. The choice between these matrices depends on whether the
intrinsic parameters of the cameras (e.g., focal length, principal point) are known.

26 2 Material and Methods

Fig. 2.11: SIFT descriptor construction: The patch around the detected keypoint is scaled
down, normalized and oriented (middle). It is further partitioned into 16 subpatches
for which orientation histograms with 8 bins are computed, resulting in a 128-
dimensional vector. Features from different images are then matched by comparing
their descriptors, typically using a nearest-neighbor search (Rey Otero 2015).

Essential Matrix: The essential matrix, denoted as E, is used when the intrinsic parameters of
the cameras (such as focal length, principal point, and lens distortion) are known. It encapsulates

the relative rotation R and translation t between two camera positions. The relationship between
corresponding points x and x′ in two images can be expressed as:

x′⊤Ex = 0, (2.32)

where E can be decomposed as E = [t]×R. Here, [t]× is the skew-symmetric matrix of the

translation vector t, and R is the rotation matrix. This equation represents the epipolar
constraint, which states that a point in one image will be mapped to a corresponding epipolar line
in the second image (Figure 2.12). The essential matrix effectively describes how the camera’s
viewpoint changes from one image to another. It is derived from the intrinsic camera calibration
and the relative pose of the cameras. The essential matrix can be estimated using the normalized
eight-point algorithm (Hartley and Zisserman 2003). This algorithm involves normalizing the
coordinates of the matched points, solving a linear system to find an initial estimate, and then
enforcing the rank-2 constraint on E.

Fundamental Matrix: The essential matrix serves as a foundation for the fundamental matrix,
F. Both matrices are instrumental in defining constraints between corresponding points in
images. However, the fundamental matrix is applicable only when the cameras are calibrated, as
it requires knowledge of the intrinsic camera parameters (matrices K and K′) for normalization
(Hartley and Zisserman 2003). Conversely, if the cameras are calibrated, the essential matrix
is valuable for determining the relative position and orientation of the cameras, as well as the
3D positions of matching image points. The relationship between the essential matrix and the
fundamental matrix is given by:

E = (K′)⊤FK−1. (2.33)

2.2 Image Based Modeling (IBM) 27

Fig. 2.12: Epipolar constraint: a point in one image will be mapped to corresponding epipolar
line in the second image, forming an epipolar plane (Pfeifer et al. 2021).

Decomposition of the Essential Matrix: Once the essential matrix is estimated, it is decomposed
to obtain the relative rotation and translation between the two camera poses. The essential
matrix E can be decomposed into R and t using Single Value Decomposition (SVD):

E = UΣV⊤ (2.34)

where U and V are orthogonal matrices, and Σ is a diagonal matrix. From U and V, the
possible solutions for R and t are derived:

R = UWV⊤ or R = UW⊤V⊤ (2.35)

t = u3 or t = −u3 (2.36)

where W is a specific rotation matrix and u3 is the third column of U (Arun et al. 1987).

Disambiguating the Correct Pose: Since the decomposition of the essential matrix provides
four possible solutions (two for rotation and two for translation), additional constraints are needed
to determine the correct pose. One common approach is to use the positive depth constraint:
the correct solution ensures that the triangulated 3D points lie in front of both cameras. This is
verified by reprojecting the 3D points into both images and checking the sign of the depth values
(Pfeifer et al. 2021).

2.2.3 Incremental Reconstruction
Once the initial pose of the cameras is estimated, the next step in the SfM pipeline is the
incremental reconstruction of the 3D scene. This step involves incrementally adding images to
the reconstruction, estimating their poses, and extending the 3D point cloud (Schonberger and
Frahm 2016).

Initial Triangulation: Starting with an initial pair of images with known relative pose, 3D points
are triangulated from the matched feature points. Triangulation involves finding the intersection

28 2 Material and Methods

of the rays corresponding to the matched points in the two images. Given two camera projection
matrices P1 and P2, and the corresponding points x1 and x2, the 3D point X can be found by

minimizing the reprojection error:

min
Xj

∑︁
i,j

‖xij − PiXj‖2 , (2.37)

where xij is the observed image point, Pi is the projection matrix for the i-th camera, and Xj is
the j-th 3D point. The reprojection error is the difference between the observed and projected
points in the images, and minimizing this error improves the accuracy of the 3D point locations
(Hartley and Zisserman 2003).

Projection Matrix: The projection matrix Pi is defined as:

Pi = K[Ri|ti], (2.38)

where K is the intrinsic camera matrix, Ri is the rotation matrix, and ti is the translation vector
for the i-th camera (Hartley and Zisserman 2003).

Adding New Images with Perspective-n-Point (PnP): New images are added to the recon-
struction one at a time using the PnP algorithm. Given a set of 3D points {Xi} and their image
projections {xi} in the newly added image, the goal is to find the rotation R and translation t
that minimize the reprojection error (compare to 2.37):

min
Ri,ti

∑︁
i,j

‖xij − PiXj‖2 , (2.39)

This problem is typically solved using iterative algorithms such as the Levenberg–Marquardt
algorithm (LM) algorithm (Lepetit et al. 2009). For details on the LM algorithm, see chapter
2.3.1.3.

2.2.4 Bundle Adjustment
Bundle adjustment is a crucial step in SfM that simultaneously refines the 3D points and the
camera parameters by minimizing the reprojection error. This optimization process ensures that
the 3D model is accurate and consistent across all images. Bundle adjustment minimizes the
following objective function (Triggs et al. 2000):

min
Ri,ti,Xj

∑︁
i,j

‖xij − PiXj‖2 , (2.40)

The optimization adjusts the camera poses {Ri, ti} and the 3D points {Xj} to minimize the
reprojection error (compare to 2.37 and 2.39) across all images. Note that 2.37, 2.39 and 2.40
show the same mathematical context, yet the adjusted parameters in order to minimize the
problem differ.

2.2.5 Dense Reconstruction with Multi View Stereo (MVS)
SfM techniques recover camera poses and 3D point clouds. However, the resultant 3D points are
typically sparse, representing only the distinctive image features that consistently match across
multiple photographs. To advance from sparse to dense 3D reconstruction, MVS algorithms

2.2 Image Based Modeling (IBM) 29

are employed. MVS algorithms enhance 3D geometric information by utilizing multiple images,
analogous to how the human visual system perceives depth by integrating information from two
eyes. In the MVS context, numerous images that observe the same point can be utilized for

depth estimation. Figure 2.13 demonstrates the fundamental process by which a basic MVS
algorithm estimates a depth value at a single pixel (Agarwal et al. 2011).

Fig. 2.13: A conventional window-based multi-view stereo (MVS) algorithm operates by hy-
pothesizing a finite number of potential depths along the viewing ray of a given pixel
and its surrounding image window. At each hypothesized depth, the image window
is projected onto the corresponding locations in the other images. The algorithm

evaluates the consistency of textures at these projected locations. The true depth,
marked in green, corresponds to the hypothesis that yields the highest consistency
score (Agarwal et al. 2011).

Point Cloud Generation: After computing the depth maps, the 3D points are extracted to

form a dense point cloud (see Figure 2.14). Each depth value is back-projected into 3D space
using the known camera parameters (intrinsics and extrinsics). The back-projection formula is
given by:

X = Z(K−1x), (2.41)

where X is the 3D point, Z is the depth value, K is the camera intrinsic matrix, and x is the
pixel coordinate in homogeneous form.

Fig. 2.14: From left to right, sample input image, structure from motion reconstructions, and
multiview stereo reconstructions (Agarwal et al. 2011).

30 2 Material and Methods

2.3 Terrestrial Laser Scanning (TLS)
Terrestrial Laser Scanning (TLS), also known as ground-based Light Detection And Ranging
(LiDAR), is a method used to capture high-resolution 3D data of objects, terrains, and infras-
tructure. The technology has gained widespread use due to its ability to generate detailed
and accurate spatial information quickly. TLS has applications in a variety of fields, including
surveying, construction, heritage conservation, forestry, and geology.

TLS operates on the principle of laser ranging, where a laser light pulse is emitted from the

scanner towards a target object. The time taken for the laser to return to the scanner after
reflecting off the object is measured, and this time-of-flight (TOF) is used to calculate the distance
between the scanner and the object while also registering azimuth and elevation. The scanner
typically rotates horizontally and vertically to capture a close to full 360-degree view of the
surroundings, generating a dense point cloud that represents the 3D structure of the environment
(Kraus 2004).

Components of a TLS System: a typical TLS system consists of several key components:
• Laser Source: The laser source emits a coherent light pulse, usually in the infrared

spectrum, towards the target. The wavelength and power of the laser determine the
scanning range and accuracy.

• Receiver: The receiver captures the reflected laser signal, and the time-of-flight is measured
to determine the distance.

• Rotating Mirror/Scanner: This component allows the laser beam to be directed across
the scene in both horizontal and vertical planes, enabling the acquisition of a comprehensive
high-resolution 3D point cloud.

• Control Unit: The control unit processes the data collected by the scanner and manages
the scanning process.

• Data Storage: The collected data is stored in the form of a 3D point cloud, which can be
processed and analysed later.

Data Processing
The raw data obtained from a TLS system typically consists of a large set of 3D points, each with
x, y, and z coordinates, collectively known as a point cloud. Additional point fields for color or
intensity information are common. Color is often assigned to 3D points by capturing additional
digital photographs with a camera integrated into or mounted on the laser scanner system. This
process involves mapping the pixel colors from the photographs to the corresponding points in the
3D scan (Abdelhafiz 2013). A survey might consist of several scan positions, each representing
the recording of an independent point cloud of the same object. The consequential overlap
of those scans being conducted from varying perspectives is a prerequisite to align and merge
consecutive clouds to a consistent data set, and to eliminate shadow zones (Pfeifer 2018).

2.3.1 Registration and Georeferencing in Terrestrial Laser Scanning
Registration and georeferencing are critical steps in processing TLS data. Registration involves
aligning multiple point clouds from different scans into a single coordinate system, while geo-

referencing refers to placing this registered point cloud into a global coordinate system. This

2.3 Terrestrial Laser Scanning (TLS) 31

section focuses on two key methods: the Iterative Closest Point (ICP) algorithm and specifically
Generalized ICP (GICP) for registration and georeferencing via targets.

2.3.1.1 Iterative Closest Point (ICP) Algorithm

the ICP algorithm, developed by Besl and McKay (Besl and McKay 1992), is a widely used
method for aligning 3D point clouds. The core idea behind ICP is to iteratively minimize the
distance between two point clouds by finding the best rigid transformation, consisting of rotation
and translation, that aligns them (see Figure 3.1).

Algorithm Workflow: The ICP algorithm operates in the following steps:

1. Initial Alignment: A rough initial alignment of the two point clouds is required. This

can be achieved through manual alignment or using an algorithm that provides a coarse
registration.

2. Correspondence Matching: For each point in the source point cloud, the algorithm
identifies the closest point in the target point cloud.

3. Transformation Estimation: Using the matched pairs, the algorithm computes the
best rigid transformation (rotation and translation) that minimizes the distance between
corresponding points.

4. Application of Transformation: The estimated transformation is applied to the source
point cloud.

5. Iteration: Steps 2 to 4 are repeated iteratively until the alignment converges, i.e., the
change in the alignment error between iterations falls below a predefined threshold.

Challenges and Variations: While ICP is powerful, it has limitations. A major challenge is its
reliance on a good initial alignment; without it, the algorithm may converge to a local minimum,
resulting in incorrect registration. Additionally, ICP assumes that the point clouds overlap
significantly and that one point cloud is a subset of the other, which may not always be the case,

leading to false correspondences and poor alignment. To address these issues, several variations of
ICP have been developed. The most relevant adaptions for the scope of this thesis are explained
in the following chapters.

2.3.1.2 Point-to-Plane ICP

Unlike the standard point-to-point ICP, which minimizes the Euclidean distance between cor-
responding points, point-to-plane ICP minimizes the error along the surface normal at each
correspondence, thereby increasing robustness to noise and outliers (Chen and Medioni 1992).

Instead of minimizing the sum of squared Euclidean distances:

T = arg min
T

∑︁
i

||T · bi − mi||2, (2.42)

where mi is the corresponding point in the reference cloud, the point-to-plane algorithm minimizes
the projection of the residual error onto the surface normal:

32 2 Material and Methods

T = arg min
T

∑︁
i

wi||ηi · (T · bi − mi)||2, (2.43)

where ηi is the surface normal at mi, and wi is an optional weighting term that can be used to
model uncertainty (Segal et al. 2009).

This modification improves convergence by favoring alignment along locally estimated sur-
face structures rather than treating all dimensions equally. The approach is particularly effective
when dealing with structured environments, such as indoor mapping and robotic perception,
where planar surfaces are common.

2.3.1.3 Generalized Iterative Closest Point (GICP)

Generalized Iterative Closest Point (GICP) extends the traditional Iterative Closest Point (ICP)
algorithm by incorporating probabilistic models for point cloud alignment (Segal et al. 2009).

Unlike standard ICP, which minimizes the Euclidean distance between corresponding points,

GICP refines the optimization by attaching a probabilistic model to the transformation step
while maintaining efficiency.

Formulation of GICP: Given two point clouds, A = {ai}N
i=1 and B = {bi}N

i=1, GICP assumes
that each measured point ai and bi is generated from an underlying true set Â and B̂ according
to Gaussian noise:

ai ∼ N (âi, CA

i), bi ∼ N (b̂i, CB

i), (2.44)

where CA
i and CB

i are covariance matrices describing the uncertainty of each point. Assuming
perfect correspondences and an ideal transformation T ∗, we obtain:

b̂i = T ∗âi. (2.45)

The alignment is then performed by solving for the transformation T that maximizes the likelihood
of the observed correspondences, which leads to minimizing the Mahalanobis distance:

T = arg min
T

∑︁
i

d
(T)⊤
i (CB

i + T CA

i T ⊤)−1d
(T)
i , (2.46)

where d
(T)
i = bi − T ai is the residual error.

Special Cases and Interpretation: The standard point-to-point ICP algorithm emerges as a
special case of GICP when:

CB

i = I , CA

i = 0, (2.47)

which reduces the cost function to:

T = arg min
T

∑︁
i

||d(T)
i ||2. (2.48)

Similarly, the point-to-plane ICP variant, which minimizes distances along surface normals, is
derived by setting:

CB

i = P −1
i , CA

i = 0, (2.49)

2.3 Terrestrial Laser Scanning (TLS) 33

where Pi is the projection onto the local plane at bi.

Plane-to-Plane Generalization: GICP can be further extended to plane-to-plane alignment by
incorporating covariance information from both scans. Given surface normals µi at bi and νi at
ai, the covariance matrices are constructed as:

CB

i = Rµi

 ε 0 0

0 1 0

0 0 1

  R⊤
µi

, CA

i = Rνi

 ε 0 0

0 1 0

0 0 1

  R⊤
νi

, (2.50)

where ε is a small constant representing uncertainty along the surface normal. Intuitively, this
can be interpreted as knowing the positions of the sampled points along the surface normals
with very high confidence, while low confidence is attributed to the location along its local plane.
This model improves alignment robustness by leveraging local surface structure from both scans.
Figure 2.15 demonstrates the algorithm’s behavior in an extreme scenario. Here, all points along
the vertical section of the green scan are erroneously associated with a single point in the red
scan. Due to inconsistent surface orientations, the plane-to-plane method automatically discounts
these matches.

Fig. 2.15: Illustration of the plane-to-plane generalization (Segal et al. 2009).

Optimization and Implementation: The transformation T is iteratively computed using non-
linear optimization techniques such as LM (Levenberg 1944, Marquardt 1963). Each iteration
refines T by linearizing the error function and solving the resulting system:

(H + λI)Δx = −b, (2.51)

where H is the system Hessian, representing the second order derivative of the error function, b
is the gradient, and λ is the damping factor in the LM framework. The final transformation is
obtained as:

T ∗ = T̂ + Δx∗. (2.52)

The LM algorithm is a widely used approach for solving nonlinear least squares problems. It
combines the Gauß-Newton method, which approximates the Hessian as H = JT J , where J is
the Jacobian of the error function, with gradient descent, which introduces a damping factor λ
to improve convergence in ill-conditioned cases. The update step is given by:

(JT J + λI)Δx = −JT r, (2.53)

where r represents the residual vector. The damping term λ is adaptively adjusted:

34 2 Material and Methods

• If the error decreases, λ is reduced, making the update more Gauß-Newton-like for faster
convergence.

• If the error increases, λ is increased, shifting towards gradient descent, ensuring stability.

This balance allows LM to handle highly nonlinear problems efficiently. GICP leverages LM
optimization to refine transformations, ensuring robust and accurate point cloud alignment. The
method has been successfully applied in robotic perception and SLAM (Segal et al. 2009).

2.3.1.4 Optimization of the pose graph

In this thesis, the approach specified by Kümmerle et al. 2011 is used to optimize the pose graph
in order to minimize cumulative alignment errors. This is a necessary step to combine a large
number of scans required for surveys on sizable objects, such as buildings. The mathematical
problem can be formulated as minimizing a nonlinear least-squares objective function:

F (x) =
∑︁

(i,j)∈E
e(xi, xj , zij)T Ωije(xi, xj , zij), (2.54)

where:

• eij(xi, xj) is a vector error function that measures how well the parameter blocks xi and
xj satisfy the constraint zij . It is 0 when xi and xj perfectly match the constraint,

• Ωij is the information matrix associated with the measurement uncertainty. Ωij is usually
provided as the hessian of the error function of the GICP alignment (see formula 2.51).
Practical consequences and problems with weighing measurements based on the respective
hessians will be discussed in chapter 3.1.2.

• E is the set of edges representing constraints between state variables.

This problem can be effectively represented by a directed graph, where nodes correspond to
parameter blocks, and edges encode constraints (see fig. 2.16).

Fig. 2.16: Illustration of mathematically representing a graph based problem by constructing
an objective function F (x) (Kümmerle et al. 2011).

Least-Squares Optimization: If an initial estimate x̂ is available, numerical optimization
methods such as Gauss-Newton or Levenberg-Marquardt (LM) can be employed to solve:

x∗ = arg min
x

F (x). (2.55)

Using a first-order Taylor expansion around the estimate x̂:

eij(x̂ + Δx) ≈ eij + JijΔx, (2.56)

2.3 Terrestrial Laser Scanning (TLS) 35

where Jij is the Jacobian of eij(x) at x̂. Substituting this into the objective function gives a
quadratic approximation:

F (x̂ + Δx) ≈ c + 2b⊤Δx + Δx⊤HΔx. (2.57)

Minimizing this quadratic form leads to the normal equations:

HΔx∗ = −b, (2.58)

where H is the information matrix. The solution is updated iteratively:

x∗ = x̂ + Δx∗. (2.59)

In the LM algorithm, a damping term λ is introduced to control convergence:

(H + λI)Δx∗ = −b. (2.60)

The damping factor λ is adjusted dynamically based on error reduction in each iteration (Leven-
berg 1944; Marquardt 1963). If the error decreases, λ is reduced; otherwise, λ is increased, and
the step is reverted.

For more details on the implementation of LM in this framework, see Kümmerle et al. 2011.

2.3.1.5 Georeferencing

The custom C++ tool, discussed in chapter 2.4, allows users to define target points for transform-
ing the merged point cloud into a global coordinate system. Given a set of corresponding points
in both the local frame and the global (reference) frame, the goal is to compute the optimal rigid
transformation (rotation and translation) that minimizes the alignment error using (Arun et al.
1987).

Let the local points be pi ∈ R3 and their corresponding global coordinates be qi ∈ R3, where
i = 1, . . . , N . The optimal transformation consists of a rotation matrix R ∈ S O(3) and a
translation vector t ∈ R3, such that:

qi ≈ Rpi + t, ∀i.

To determine R and t, the centroids of both point sets are first computed:

p̄ =

1
N

N∑︁
i=1

pi, q̄ =

1
N

N∑︁
i=1

qi.

The point sets are then centered by defining:

p′
i = pi − p̄, q′

i = qi − q̄.

The cross-covariance matrix is computed as:

H =
N∑︁

i=1
p′

iq′⊤
i .

Applying SVD to H, we obtain:

36 2 Material and Methods

H = UΣV⊤.

The optimal rotation is given by:

R = VU⊤.

If det(R) < 0, ensuring a proper rotation requires adjusting V by flipping its last column:

V′ = [v1, v2, −v3],

R = V′U⊤.

Finally, the optimal translation is determined as:

t = q̄ − Rp̄.

This method ensures the least-squares optimal alignment of the point cloud in the presence of
noise (Arun et al. 1987).

2.4 Tool for visualizing, optimizing and georeferencing of TLS data
In order to facilitate the processing and analysis of large volumes of TLS data without reliance
on costly commercial software1, a specialized C++ tool has been developed, applying several
robust open-source libraries. Because other open source software solutions like Cloud Compare
provide a broad spectrum of point cloud processing capabilities but rather lack in performance
and stability for large datasets, this tool was developed with the goal of avoiding boilerplate2

and overhead code by using specialized lightweight libraries. The following chapter provides an
overview of the tool’s functionality and the underlying open-source libraries integrated into its
pipeline.

2.4.1 Overview of the Tool
The tool supports the efficient handling of large TLS datasets by incorporating the following
core functionalities:

• Point Cloud Management: Reading and processing point clouds from E57 file format.

• Alignment: Aligning point clouds using Generalized Iterative Closest Point (GICP).

• Pose Graph Optimization: Optimizing the pose graph by implementing the least
squared method.

• Global Georeferencing: Allowing users to pick target points and georeference the merged
cloud to a global coordinate system.

• Visualization: Real-time rendering of point clouds, scan positions, and connections.
1 Both commonly used commercial IBM tools AgiSoft MetaShape and Reality Capture where at the onset of this

work priced at approximately 3500 € for the professional license, both permitting the merging of IBM and TLS
point clouds. In the meantime, Reality Capture has been made available free of charge by EPIC GAMES.

2 Refers to code that is repeated in multiple places with little to no variation. When using languages that are
considered verbose, the programmer must write a lot of boilerplate code to accomplish only minor functionality
(Lämmel and Jones 2003).

2.4 Tool for visualizing, optimizing and georeferencing of TLS data 37

2.4.2 Libraries and Dependencies
The following libraries form the backbone of the tool:

Pangolin: Pangolin is a versatile and lightweight library developed by Steven Lovegrove and
Richard Newcombe. It is designed to streamline the development of 3D, numerical, and video-
based applications, particularly in the field of Computer Vision. Its primary goal is to minimize
platform-specific boilerplate while providing a simple and flexible interface for data visualization.

Pangolin simplifies tasks such as window management and video handling through intuitive
interfaces and factory methods. Additionally, it offers a range of interactive debugging tools,
including 3D manipulation, plotting utilities, adjustable variables, and a drop-down Quake-style
console for Python scripting and real-time parameter tuning (Lovegrove and Newcombe 2024).

libE57: libE57Format is a C++ library providing read and write support for the ASTM-standard
E57 file format. 3D point cloud data are stored in binary format including fields for color and
intensity as well as extensive header information for individual scans. Additionally, 2D images
(taken by a 3D imaging system) can be stored (Maloney 2024).

small gicp: small gicp is a header-only C++ library offering efficient and parallelized algorithms

for precise point cloud registration, including ICP, Point-to-Plane ICP, GICP, VGICP, and more.
It represents a refined and optimized evolution of its predecessor, fast gicp, re-engineered from
the ground up to enhance computational efficiency and accuracy in point cloud alignment tasks
(Koide 2024).

g2o (General Graph Optimization): g2o is an open-source C++ framework for optimizing

graph-based nonlinear error functions. It has been designed to be adaptable to wide range of

problems, unusually complex problems can be defined with the addition of a few new lines of
code (Kümmerle et al. 2011).

JSON for Modern C++ : JSON for Modern C++ handles JSON input/output for saving and
reading pose information and configuration data (Lohmann 2023).

2.4.3 Core Functionalities and Pipeline
2.4.3.1 Point Cloud Import and Subsampling

The newly developed tool reads point clouds from E57 files, leveraging libE57 for efficient parsing.
To handle large datasets, a subsampling routine is implemented, reducing the number of points
while retaining geometric fidelity. Customizable selections of scans can be read and visualized.
The functionality of the file reading can be viewed in the Appendix 7.1.1. Random subsampling
has been implemented, with a standard point cloud size of 500,000 points (see Appendix 7.1.1.1).
This method has been chosen in order to avoid spatial queries during the subsampling process
that potentially decrease processing speed.

2.4.3.2 Visualization and Interaction

The tool features a real-time visualization interface built with Pangolin, allowing users to

view point clouds, connections, and target points. Controls enable point picking, rendering
adjustments, and transformation previews. The current main interface is shown in figure 2.17.

38 2 Material and Methods

Fig. 2.17: Interface of custom C++ tool, after selecting E57 files required for processing.

Metadata is monitored by displaying verbose information about various processing steps in a
terminal window.

Visualization Pipeline

• A display is initialized using Pangolin, rendering the loaded scans and their respective
connections.

• Users can adjust rendering settings, including point size, distance thresholds, and display
of scan positions or connections.

• Custom handlers allow for point picking and the creation of georeferencing targets.

2.4.3.3 Alignment via GICP

Pairwise alignment between scans is performed using the small gicp library, which allows for
downsampling and iterative optimization of correspondences (see Chapter 2.3.1.3). The tool
organizes these transformations into a pose graph by saving GICP results to a JSON file. The
code used for this step is specified in Appendix 7.1.2.

2.4.3.4 Optimization of the pose graph

The established pose graph can be optimized by approaching the mathematical problem as
specified by Kümmerle et al. 2011 (see Chapter 2.3.1.4). The tool saves the resulting parameters
such as optimized poses and covariances to a JSON file, enabling further analysis and visualization.
The corresponding code segment for this step can be found in Appendix 7.1.3.

2.5 NUBIGON 39

2.4.3.5 Georeferencing

By selecting corresponding points in the local TLS frame using the main interface (figure 2.17)
and providing ASCII information of the geopositioning of the targets, the computation of the
transformation parameters is executed as specified in Chapter 2.3.1.5. An interface is provided
to streamline the selection of included targets (figure 2.18). The implementation of this step is
described in Appendix 7.1.4.

(a)

(b)

Fig. 2.18: Interface of the custom C++ tool for computing transformation parameters (a) and
complementary terminal output (b).

2.5 NUBIGON
NUBIGON 3 is a software tool designed for the visualization and analysis of large point cloud

data sets, particularly in the field of reality capture. It enables the display, examination, and
presentation of point cloud datasets with great efficiency, accessing in each case only those points

that are necessary to fill the display screen. This capability is beneficial for the joint visualization
of surface and subsurface structures, especially in archaeological contexts.

3 https://www.nubigon.com/

https://www.nubigon.com/

40 2 Material and Methods

2.5.1 Octree Generation
Upon initial loading, NUBIGON converts point cloud data into an octree structure. This hierar-
chical data format optimizes rendering performance and visual quality. The octree generation
process occurs only once at data import, allowing the software to manage very large datasets
consisting of many billions of 3D points effectively.

2.5.2 X-Ray Mode
NUBIGON ’s X-ray mode allows users to visualize hidden structures and details within point

clouds by automating transparency in respect to the camera position. In the context of this

thesis, it was utilized to simultaneously visualize surface and subsurface features in order to
characterize archaeological sites.

2.6 Data
2.6.1 TLS data
The TLS dataset from Hafslund Manor was acquired using the BLK360 G1 stationary terrestrial

laser scanner (see figure 2.19), developed and manufactured by Leica Geosystems4. The technical
details of the scanner are summarized in table 2.1.

Fig. 2.19: BLK360 laser scanner positioned on table in Hafslund. Photo: I. Trinks.

Using the Cyclone Field app, provided by Leica Geosystems, the point clouds from individual
scans can be coarsely aligned through the application of an ICP algorithm. The aligned point
clouds can be exported to an E57 file and visualized in the custom C++ tool (fig. 2.21). The
coarse cloud-to-cloud registrations result in misalignments of structural features, with deviations
reaching magnitudes of up to several decimeters (fig. 2.22).

4 https://leica-geosystems.com/products/laser-scanners/scanners/blk360

https://leica-geosystems.com/products/laser-scanners/scanners/blk360

2.6 Data 41

Fig. 2.20: Panoramic image captured by the BLK360’s internal camera.

Terrestrial laser scanners (TLS) equipped with in-built RGB cameras, such as the BLK360,
capture both range measurements and spherical panoramic images. The laser scanner generates
a point cloud with 3D coordinates, while the camera provides color information (fig. 2.20). Once
registered, the color information from the panoramic images is mapped onto the point cloud. This
is achieved by intersecting the line connecting each point in the point cloud with the scanner’s
position and the corresponding pixel in the panoramic image. The color of the intersecting pixel
is then assigned to the point (Abdelhafiz 2013).

42 2 Material and Methods

Category Specification
SCANNING
Distance measurement system High speed time of flight enhanced by

Waveform Digitizing (WFD) technology
Laser class Class 1 (in accordance with IEC

60825-1:2014)
Wavelength 830 nm
Field of view 360° (horizontal) / 300° (vertical)
Range Min. 0.6 – up to 60 m at 78% albedo
Point measurement rate Up to 360,000 pts/sec
Ranging accuracy 4 mm @ 10 m / 7 mm @ 20 m
Measurement modes 3 user-selectable resolution settings

IMAGING
Camera system 15 Mpixel 3-camera system, 150 Mpx full

dome capture, HDR, LED flash
Calibrated spherical image, 360° x 300°

Thermal camera FLIR technology-based longwave infrared

camera
Thermal panoramic image, 360° x 70°

PERFORMANCE
Measurement speed < 3 min for complete fulldome scan, spherical

image, thermal image
3D point accuracy 6 mm @ 10 m / 8 mm @ 20 m all at 78%

albedo
Tab. 2.1: Specifications of the BLK360 G1 stationary laser scanner. The table summarizes

scanning, imaging, and performance features of the device. All parameters were
taken from the official BLK360 G1 specification sheet provided by Leica Geosystems.
Accuracy data is presented in terms of standard deviation.

2.6 Data 43

Fig. 2.21: TLS data as exported from Cyclone Field (Leica Geosystems) and visualized using
the custom C++ tool.

Fig. 2.22: Exemplary alignment issues in the exported raw TLS data.

44 2 Material and Methods

2.6.2 GNSS data
During the measuring campaign at Hafslund manor several distinct features have been used
as targets for global referencing (fig. 2.23). By additionally extracting the corresponding local
coordinates of these features from the TLS point cloud, a global reference can be established
(see Chapter 2.3.1.5).

Fig. 2.23: GNSS measurements used as targets for transforming TLS data.

2.6.3 IBM data
Based on geopositioned RGB images taken from an sub-249 g heavy airborne DJI 5 Mini 3 Pro
drone complemented by terrestrial imaging using a handheld Sony ZV-1 photo camera, a globally

referenced point cloud of the manor and its surroundings was computed using Agisoft Metashape
professional6 (fig. 2.25a). The theoretical approach to acquire 3D information from images has

been specified in Chapter 2.2. Figure 2.24 illustrates the estimated camera poses computed by
Metashape, overlaid onto the resulting surface model. The visualization also includes the sparse
point cloud and the resulting colored dense point cloud, providing a view of the data integration
process (see Chapter 2.2).

5 Da-Jiang Innovations Science and Technology Co., Ltd (DJI)
6 https://www.agisoft.com/

https://www.agisoft.com/

2.6 Data 45

(a)

(b)

(c)

Fig. 2.24: IBM surface model created in Agisoft Metashape and estimated camera poses as blue
rectangles (a), sparse point cloud (b) and dense point cloud (c).

46 2 Material and Methods

2.6.4 GPR data
The topographically corrected GPR data is provided in the 3D field format FLD. This format
has been developed by Alois Hinterleitner from GeoSphere Auastria, formerly Zentralanstalt für
Meteorology and Geodynamics, Archeo Prospections® and LBI ArchPro, and is used to store
GPR data as a 3D data block in a single binary file. Depth-slices of gridded GPR prospection
data, computed by ApRadar (ZAMG Archeo Prospections®), are stored and extended with
geodetic information. The format enables a lossy compression and Run-length encoding (RLE)
of no data values.

The FLD file was converted to a LAZ point cloud (Isenburg 2013) by using a python script,
based on the open source project ApInsight, a Ground Penetrating Radar Data Analysis Tool
(Nau 2024). The algorithm developed for this thesis involves omitting zero values received by the
matrix of the FLD data format.The code for this step is specified in Appendix 7.2.

(a) (b)

Fig. 2.25: IBM point cloud created in Agisoft Metashape (visualized in CloudCompare) (a) and
GPR data (C-scan) of the study area Hafslund manor at surface level (b).

Chapter 3

Results

3.1 TLS
3.1.1 GICP alignment
Based on the .e57 files received from the Leica Cyclone Field app, coarse alignments of the scans
showed discrepancies in distinct structural features (fig. 2.22 and fig. 3.1a). Without metadata
on ICP linkage between scans, manual selection of potential matches was necessary. GICP was
applied to the respective pairs of scans and, provided convergence was achieved (compare to

Chapter 2.3.1.3), visually verified as appropriate. Figure 3.1 visualizes the effect of successful

convergence to the global minimum of the error function 2.46. The LM algorithm starts off

with higher values for λ, which is typical of the optimization behavior of the gradient descent
method, which shifts the pose parameters in the direction of the steepest decline and therefore
prioritizes stability over convergence speed in the early iterations. During the algorithm, λ is

being decreased, providing the error decreases. The update becomes more Gauß-Newton-like,
accelerating convergence (compare to paragraph 2.3.1.3). The initial and new errors are depicted
as well in figure 3.1c, while the initial error describes the euclidean distances between point
correspondences and the new error the distances of the same correspondences di after minimizing
the error function 2.46. Note that in each iteration new correspondences are established, conse-
quently reducing the initial error of the next iteration compared to the new error of the previous
iteration. The overall rapid decrease in initial and new errors especially in the early iterations
demonstrates the effectiveness of the LM-algorithm in finding the global minimum of the error
function. The stabilization of error parameters, translational and rotational increments suggests
convergence to an optimal solution.

GICP was applied to all possible matches and the final residuals were scaled by the number of
point correspondences (see fig. 3.2 left). The magnitude of the residuals is mostly in accordance
with the scanners ranging accuracy (compare to table 2.1) when also considering influences
from parameters like point density on overlapping features, scanner pose distances and overall
geometric feature richness of the scanned objects. The scatter plot in figure 3.2 shows a trend of
increasing scaled errors with larger pose distances, while some higher error values also occur in
close proximity scan alignments.

3.1.2 Pose graph optimization
By aligning all scans to their respective matches by using GICP a pose graph was established.
Alignment parameters computed by GICP represent edges or constraints while the poses of the
scans can be abstracted as nodes. The optimization algorithm as described in chapter 3.1.2
demands a-priori stochastic information used as weighing factors for edges. In some cases, the
initial estimates of the relative poses were of higher quality than the resulting GICP alignment.
For these circumstances, the initial estimates were fixed by applying artificially low uncertainty

48 3 Results

(a) (b)

(c)

Fig. 3.1: Before (a) and after (b) applying GICP with the C++ package small gicp (Koide 2024)
on two scans of the Hafslund dataset. (c) shows parameter development during the
LM algorithm. The expected tendencies of decreasing values in λ, cumulative distance
error of correspondences (red and blue) and step sizes in translation and rotation
(green and magenta) are presented.

Fig. 3.2: Scaled residuals of all GICP alignments (left) and residuals against pose distances
(right).

values. In order to assess values for the remaining matrices Ωij in formula 2.54, two approaches
were tested.

3.1 TLS 49

3.1.2.1 Weighing edges by corresponding Hessians

By using the resulting Hessian matrix Hij from formula 2.51 of the GICP algorithm, full
information on the alignment behavior can be included in the pose graph optimization process.
Hij describes the curvature of the error surface with respect to the transformation parameters.
It captures the second-order partial derivatives of the error function (formula 2.46), providing
information about how the error changes as the parameters vary. The Hessian matrix Hij with
respect to the pose parameters pij = [xij , yij , zij , αij , βij , γij], is given by:

Ωij = Hij =

 

∂2Eij

∂ x2
ij

∂2Eij

∂ xij∂ yij

∂2Eij

∂ xij∂ zij

∂2Eij

∂ xij∂ αij

∂2Eij

∂ xij∂ βij

∂2Eij

∂ xij∂ γij

∂2Eij

∂ yij∂ xij

∂2Eij

∂ y2
ij

∂2Eij

∂ yij∂ zij

∂2Eij

∂ yij∂ αij

∂2Eij

∂ yij∂ βij

∂2Eij

∂ yij∂ γij

∂2Eij

∂ zij∂ xij

∂2Eij

∂ zij∂ yij

∂2Eij

∂ z2
ij

∂2Eij

∂ zij∂ αij

∂2Eij

∂ zij∂ βij

∂2Eij

∂ zij∂ γij

∂2Eij

∂ αij∂ xij

∂2Eij

∂ αij∂ yij

∂2Eij

∂ αij∂ zij

∂2Eij

∂ α2
ij

∂2Eij

∂ αij∂ βij

∂2Eij

∂ αij∂ γij

∂2Eij

∂ βij∂ xij

∂2Eij

∂ βij∂ yij

∂2Eij

∂ βij∂ zij

∂2Eij

∂ βij∂ αij

∂2Eij

∂ β2
ij

∂2Eij

∂ βij∂ γij

∂2Eij

∂ γij∂ xij

∂2Eij

∂ γij∂ yij

∂2Eij

∂ γij∂ zij

∂2Eij

∂ γij∂ αij

∂2Eij

∂ γij∂ βij

∂2Eij

∂ γ2
ij

 
where Eij is the error function for the constraint of the i-th and j-th poses being minimized,
and xij , yij , zij represent the translational parameters, while αij , βij , γij represent the rotational
parameters around the x-, y-, and z-axes, respectively.

Fig. 3.3: Scaled local uncertainty ellipses and third axis color coded after optimization.

Figure 3.3 visualizes the local uncertainty ellipses (according to 95% confidence) of the poses
after optimization by g2o. Note that pose graph estimation was performed in the local frame.

50 3 Results

The rank deficiency in formula 2.54 refers to the ambiguity in global pose estimation, effectively
allowing the entire graph to be translated or rotated without violating relative constraints. By
fixing the first node of the graph, a reference frame is established, reducing the degrees of freedom
and ensuring a unique solution. The fixed node is marked as a black dot in the center of the
graph in figure 3.3. As a consequence of fixing on node and error propagation, a wide range of
uncertainty ellipsoid axis length can be observed with smaller uncertainties at poses closer to the

fixed node and higher uncertainties at poses with a greater edges path length between the nodes.

Fig. 3.4: Residuals of edges after pose graph optimization.

Figure 3.4 visualizes the residuals of the edges following optimization. These residuals represent
the discrepancies between the relative positions derived from GICP and the relative positions of
the optimized estimates, expressed as distances. Comparing these values to table 2.1 and figure
3.2, similar magnitudes of the a-posteriori residuals, GICP alignment errors and scanner ranging
accuracy can be observed. Figure 3.4 exhibits higher frequencies in the millimeter range and a
more pronounced decline towards higher magnitudes compared to figure 3.2.

Fig. 3.5: Eigenvalue Spectrum per pose (left) and Eigenvalue Spectrum of the whole pose graph
(right).

3.1 TLS 51

The Eigenvalues of the pose uncertainty ellipsoids are presented in figure 3.5. The spectrum
on the left depicts a trend of insignificant differences in Eigenvalue magnitudes per pose with few

outliers in this regard. The spectrum to the right shows a steep decline in Eigenvalue magnitude
towards higher Eigenvalue indices, when sorted by value.

In the scatter plot presented in Figure 3.6, a trend of increasing axis lengths across all el-

lipsoid dimensions is evident. Specifically, within the range of 0.18 m to 0.05 m for the major
axis, the second axis – which can be interpreted as the minor axis in the 2D context – appears
to plateau for a significant number of poses.

Fig. 3.6: Relation of confidence ellipses after optimization using corresponding Hessian matrices.

A negative consequence of optimizing the pose graph with the GICP-derived Hij as a-priori
stochastic information Ωij (see formula 2.54) is depicted in figure 3.7. Persistent misalignment
in structural features is evident across the optimized point clouds, particularly with respect to
rotational inconsistencies. Furthermore, Figure 3.8 illustrates a sharp decline in χ2 alongside a
systematic reduction in λ. After approximately 25 iterations, no substantial improvement in χ2

is noticable. The final χ2/DoF ratio, where DoF refers to the degrees of freedom in the pose
graph, is given by:

χ2

DoF = 260.01

with χ2/DoF ≫ 1 being strongly indicative of overfitting (Bevington and Robinson 1969).

52 3 Results

Fig. 3.7: Alignment issue after optimization using GICP Hessians as a-priori stochastic infor-
mation. In GICP alignments of TLS point clouds congruency of overlapping features
is expected. This visualization exhibits displacement of those features.

Fig. 3.8: Optimization process using the GICP-derived Hij as a-priori stochastic information
Ωij .

3.1.2.2 Weighing edges using adjusted stochastic model

To address the issue of overfitting, the underlying stochastic model was adjusted. The following
matrix was applied to formula 2.54:

Ωij =

 

1
σ2

t
0 0 0 0 0

0 1
σ2

t
0 0 0 0

0 0 1
σ2

t
0 0 0

0 0 0 1
σ2

r
0 0

0 0 0 0 1
σ2

r
0

0 0 0 0 0 1
σ2

r

 
where σt = 0.008 (given in table 2.1) and σr = 0.00023, in order to apply low uncertainty to
rotations which, from experience, are well estimated. By omitting a-priori correlations between
rotation and translation, this approach reduces the risk of overparametrisation and overfitting,
leading to a more flexible and generalizable model. The rotational component σr was adjusted to
achieve a fitting a-priori stochastic model by χ2/DoF ≈ 1. This behavior is visualized in Figure

3.1 TLS 53

3.9, where convergence is achieved at χ2/DoF = 1.05. Initially, there is a steep decline in χ2 over
the first five iterations, accompanied by a logarithmic decrease in λ values until iteration 13.
After iteration 10, no significant change in χ2 is observed. Towards the end of the optimization
process, λ values exhibit a sharp increase, indicating that the algorithm is struggling to find
parameter adjustments that further reduce the error. This, combined with the stabilization of
χ2, triggers the termination of the optimization. The lack of improvement in χ2 suggests that
the algorithm has likely reached a minimum, potentially the global minimum.

Fig. 3.9: Optimization process using the adjusted Ωij as a-priori stochastic information.

Figure 3.10 illustrates the confidence ellipses at a 95% significance level following pose graph
optimization using Ωij , where only the diagonal elements are non-zero. The ellipses exhibit
reduced eccentricity compared to those in Figure 3.3. Additionally, the negative error propagation
is less pronounced, as evidenced by the more uniform sizes of the ellipses.

Fig. 3.10: Scaled local uncertainty ellipses and third axis color coded after optimization using
Ωij .

54 3 Results

Figure 3.11 illustrates the residuals of the edges following optimization, using Ωij as a-priori
stochastic information. The discrepancies between the GICP results and the optimization results
are reduced compared to optimization using Hij (compare to figure 3.4), as indicated by the

high frequency of residuals below 1 mm. The distribution exhibits a sharp decline towards
higher residuals, with the most extreme values remaining under 1 cm. Upon further comparison
of these residuals with the GICP-derived errors depicted in Figure 3.2, it is evident that the
post-optimization residuals exhibit a significantly lower magnitude than the measurement errors.

Fig. 3.11: Residuals of edges after pose graph optimization using Ωij .

Figure 3.12 illustrates a more homogeneous Eigenvalue spectrum compared to the spectrum
obtained using Hij as a-priori stochastic information. On the left, the eigenvalues of individual
poses exhibit a somewhat proportional relationship, with a significantly lower mean and standard
deviation. On the right, there is a steep decline in Eigenvalues at lower indices, followed by a
more evenly distributed tail.

Fig. 3.12: Eigenvalue Spectrum per pose (a) and Eigenvalue Spectrum of the whole pose graph
(b). Both spectra visualize the Eigenvalues in respect to the positions of the scans.

3.1 TLS 55

In the scatter plot depicted in Figure 3.13, the grouping of data points occurs at higher values

compared to Figure 3.6. Notably, the magnitudes of the minor and major axes, both for individual
poses and across the entire pose graph, appear more evenly distributed. The plateauing effect
observed in Figure 3.6 is not evident in Figure 3.13. However, there is a higher visual density
in the range of 0.04m to 0.06m of the major axis and 0.04m to 0.05m of the second axes. The
extreme value at [0.0, 0.0, 0.0] corresponds to the fixed pose used to address global ambiguity.

Fig. 3.13: Relation of confidence ellipses after optimization using Ωij .

Assessment of positioning quality through wall structure comparison To evaluate the quality
of the pose graph over extended edge path distances, an analysis of the northern facade was

conducted and compared to the inner wall structure. By assuming parallel surfaces on both
the interior and exterior, it was possible to compare unconnected scans, thereby assessing the
overall quality of the pose graph. Specifically, scans from the top floor were compared to exterior

scans to the north, which are significantly distant in terms of edge path. Figure 3.14 displays the
segmented point cloud, highlighting the wall structure. The color coding indicates the distances
between the interior and exterior surfaces, offering a clear visualization of spatial variations.
Note that in the central section, higher distances are visible due to the thicker wall structure in
this area.

56 3 Results

Fig. 3.14: Wall structure of the northern wall as seen from the interior. The color bar to the
right refers to the cloud-to-cloud distances in relation to the exterior facade.

The variation in distances with increasing height is evident in Figure 3.15 on the left. Note that
the central section mentioned above was removed for the purpose of highlighting the suspected
trend. The trend indicates a difference in wall thickness of approximately 10 cm from the floor
to the ceiling on the top floor. Additionally, a lateral deviation of about 5 cm is detectable across
the approximately 40 m long wall front. The degree to which the walls taper is noted above the
scatter plots.

Fig. 3.15: Wall structure trend regarding its thickness.

3.1.3 Georeferencing the Terrestrial Laser Scanner (TLS) cloud
To reference the optimized TLS point cloud to the global frame, GNSS measurements were

utilized. The targets were visually selected in the optimized local point cloud, corresponding

to the features measured by GNSS, and the residuals were calculated as shown in table 3.1.
Through an iterative process of deselecting the targets with the highest residuals, a set of four
residuals, each below 5 cm, was achieved.

3.1 TLS 57

Point ΔX [m] ΔY [m] ΔZ [m] |Δ| [m]
TP002 0.015 -0.028 -0.028 0.042

TP003 -0.035 0.017 0.026 0.046

TP005 -0.012 0.007 -0.003 0.014

TP007 0.031 0.004 0.005 0.032
not selected

TP004 -0.180 -0.222 -0.038 0.289

TP006 -0.133 -0.056 -0.569 0.587

TP008 -0.007 -0.344 -0.092 0.356

TP018 -1.010 0.412 2.065 2.336

Tab. 3.1: Transformation residuals based on GNSS targets.

By utilizing the geo-located IBM point cloudfor target references, more precise transformation
parameters were obtained, as demonstrated by the residuals in table 3.2. This approach allowed
for the inclusion of additional targets, as the residuals for all selected targets were lower compared
to table 3.1.

Point ΔX [m] ΔY [m] ΔZ [m] |Δ| [m]
IB1 -0.018 0.036 -0.013 0.042

IB2 -0.010 0.032 -0.007 0.035

IB3 0.014 -0.010 -0.015 0.023

IB4 0.019 -0.026 0.031 0.045

IB5 -0.006 -0.032 0.003 0.033

Tab. 3.2: Transformation residuals based on IBM targets.

Figure 3.16 visualizes the previously mentioned residuals. While the GNSS-targets better
encompass the study area, the IBM-targets contribute to a more reliable transformation result
as more targets could be included.

(a) (b)

Fig. 3.16: Transformation residuals using (a) GNSS targets and (b) IBM targets. In the left
plot (a), targets not used for the computation of the transformation parameters are
colored red (see residuals in table 3.1).

58 3 Results

3.2 IBM data and TLS comparisons
As a consequence of the IBM-target-based transformation, the point clouds of the IBM approach
and the transformed TLS data were analyzed. A simple cloud-to-cloud distance visualization is
presented in figure 3.17.

Fig. 3.17: Cloud-to-cloud distances (in meters) of the IBM point cloud, referenced against the
TLS point cloud, computed in CloudCompare post-georeferencing.

(a) (b)

Fig. 3.18: Segmented TLS point cloud visualized with RGB information (a) and cloud-to-cloud
distances of the same section (b) with distances referred to in meters. Points with
values above 0.2 m are colored in dark red.

3.3 IBM data and GPR comparisons 59

Figure 3.18 displays a section of the TLS point cloud, highlighting parts of the facade and
tree structures. Significantly higher residuals are observed in vegetated areas, particularly tree
crowns (see also figure 3.17). Surfaces with low textural topography exhibit residuals around
10 cm, while fragile structures such as fences also show elevated residuals.

3.3 IBM data and GPR comparisons
To compare ground features captured by IBM and GPR, ground points from both datasets were
extracted. The gridded nature of the GPR data and consequently the point cloud, allowed for
determination of the highest data point in each column, representing a ground point. By creating
a Triangulated Irregular Network (TIN) from the ground points, a ground mesh for the GPR
data was generated. Additionally, using the Cloth Simulation Filter (CSF) method by W. Zhang

et al. 2016, a corresponding ground mesh for the IBM data was computed, as illustrated in figure
3.19. Vertical mesh to mesh distances were computed in CloudCompare. Figure 3.20 illustrates
the resulting height residuals to the right. Discrepancies of approximately 20 cm are noticable
across most areas, with some regions exhibiting significantly higher differences exceeding 50 cm.
Notable patterns are evident around the small path perpendicular to the central avenue and in

other areas featuring embankments.

Fig. 3.19: Illustration of the CSF algorithm. The simple physical process of a cloth pulled onto

the inverted surface points is simulated to extract the ground points of the IBM data
(W. Zhang et al. 2016).

3.4 Visualization of merged 3D surface and subsurface data
The GPR data reveals distinct buried anomalies of strongly reflective and geometric nature, sug-
gesting an anthropogenic origin. These anomalies exhibit clear patterns indicative of structured,
human-made features rather than natural formations. Specifically, the data highlights wall-like
structures arranged in a perpendicular formation, which is characteristic of architectural design.
This configuration suggests the presence of building remains and related structures, such as pipes
(see fig. 3.21).

60 3 Results

(a) (b)

Fig. 3.20: Top view of IBM point cloud with superimposed slope map [degrees] (a) and mesh
to cloud distances between IBM surface points and top GPR mesh [m] (b).

Fig. 3.21: Visualization of merged 3D GPR and IBM data in Nubigon.

Chapter 4

Discussion

4.1 TLS
4.1.1 GICP alignments
By selecting the Generalized ICP (GICP) as the alignment technique, more robust computation of

alignments was achieved compared to using the conventional ICP algorithm. GICP’s consideration
of surface structure allows for the discarding of faulty point correspondences, resulting in more
robust outcomes (Segal et al. 2009). However, coarse alignment of scans remains necessary to
ensure successful convergence to a global minimum. The TLS data used in this thesis meets this
requirement, as coarse manual alignment was performed using the Cyclone Field app prior to data

export. Alignment errors, as illustrated in Figure 3.2, are influenced by several factors, including

point density, structural characteristics in overlapping areas, scanner pose distances, and ranging

accuracy. The highly featured structures within the manor grounds, such as vegetation and gravel
surfaces, present challenges for accurate capture and alignment. These surfaces exhibit intricate
structural compositions that are difficult to reliably and accurately match across adjacent scans.
The limitations in ranging accuracy and point density of the sensor used further worsen these
issues, leading to inaccuracies in the GICP alignment process.

4.1.2 Pose graph optimization
By using the Hessian matrices obtained in the GICP algorithm as a priori stochastic information
for pose graph optimization, intricate details about the translational and rotational parameters
and their correlations can be included for pose estimation. Intuitively, this approach assigns
lower weights for alignments with less accuracy and higher weights to those with greater precision
(Niemeier 2008). Distinctions in weighting within the parameter space define the quality of

the GICP alignment in relation to environmental conditions. For instance, lengthy corridors
contribute to higher accuracy perpendicular to the corridor axis, while accuracy parallel to the
corridor axis is lower. The variation in weighting is evident in Figure 3.4, where high residuals of

approximately 6 cm indicate an edge with low weight, necessitating a more significant adjustment.

Meanwhile, the histogram displays the expected behavior across most other areas. Analyzing the

Eigenvalue spectrum in figure 3.5, the pose graph exhibits notable characteristics. A sharp decline
in Eigenvalues, when sorted by decreasing value per pose, indicates low isotropy, resulting in a
confidence ellipse with higher eccentricity. Additionally, the sharp decline in the Eigenvalue spec-

trum to the right of figure 3.5 is significant. The more evenly distributed portion of the spectrum

corresponds to interior poses, characterized by shorter pose distances, higher overlaps, and favor-

able structures. Conversely, the sharply inclined portion to the left corresponds to exterior poses,

which exhibit opposite characteristics. This behavior is typical for unfavorable error propagation,
a consequence of fixing a single pose to eliminate global ambiguity (Niemeier 2008). Confidence
ellipses of poses within the interior of the manor exhibit an increase in the major axis, while the
magnitudes of the second and third axes remain stable (Figure 3.6). This suggests a relationship

62 4 Discussion

between the nature of interior structures and error propagation. The adjustments at edges
with lower weight, combined with the over-parameterization from correlating translational and
rotational parameters, result in undesired structural misalignments, as seen in Figure 3.7. This is

particularly evident in rotational discrepancies. The resulting χ2/DoF ≫ 1 indicates a poor model
fit, suggesting an underestimation of the measurement covariances (Bevington and Robinson
1969). Consequently, the Hessian matrices appear to apply an overly optimistic weighting scheme.

Addressing the mentioned shortcomings, a simpler stochastic model was applied, with no correla-

tion between translational and rotational parameters (see Chapter 3.1.2.2). Notably, convergence
is achieved at significantly less iterations with a final χ2/DoF = 1.05. Figure 3.12 on the right
shows confidence ellipses with less eccentricity and a less asymptotic path of the Eigenvalue
spectrum. The residuals exhibit no significant outliers, all being below 1 cm. Error propagation
is moderate because all edges are weighted equally, regardless of their relative pose distances.
This approach, chosen experimentally, achieves satisfying visual congruency of structural features
and a χ2/DoF = 1.05. This method is justified because alignments with greater pose distances
can serve as stabilizing control elements, unlike close-proximity pose setups. This is valid when
there is sufficient coverage of critical features for matching, with ranging accuracy and resolution
being the only limiting factors. Consequently, the scatter plot in Figure 3.13 reveals a more
uniform distribution of axis lengths throughout the pose graph.

4.1.3 Assessment of Wall Structure Discrepancies
In the assessment of wall structure discrepancies, a notable disparity was identified between the
exterior facades and their corresponding interior wall structures. Assuming parallel surfaces in
situ, significant rotational inconsistencies were observed between poses on the interior of the first
floor and those on the exterior. This is expected due to the high edge path distances between
these poses, which result in unfavorable error propagation.

4.2 IBM data and TLS comparison
The comparison of transformed TLS data and IBM data reveals no systematic discrepancies
between the two point clouds. The exceptions are vegetational structures, reflective areas such as
windows, and other fine structures like fences. Given that photogrammetry struggles to capture
these features accurately, these discrepancies are expected. Additionally, strong variations in

residuals are notable in areas with little texture, such as parts of the facade, which provide
insufficient texture for feature extraction and depth estimation.

4.3 IBM data and GPR comparison
In a comparative analysis of IBM and GPR data consistency with respect to geometry, cloud-to-
mesh distances have been calculated between the IBM surface points and the GPR mesh of the
surface data points. The residuals are notably higher in areas characterized by embankments. A
plausible explanation for this discrepancy is inaccurate topographic correction of the GPR data,
which introduces inconsistencies, particularly in sloped regions such as embankments.

4.4 Visualization of merged data in Nubigon 63

4.4 Visualization of merged data in Nubigon
GPR data uncovered subsurface structures and features beneath the manor grounds. Anomalies
of buried walls, foundations and utilities were identified. Figure 3.21 illustrates these structures,
which are situated beneath the grass covered terraces adjacent to the main building complex, and
which are suspected to be part of an former orangery. The visibility and clarity of these features
in the GPR data underscore the effectiveness of this non-invasive method in detecting and
delineating subsurface archaeological remains. The identification of these structures contributes
significantly to our understanding of the site’s historical layout and potential past uses, providing

valuable insights for further archaeological investigation and interpretation. The ability to render
the GPR and surface point cloud data jointly for interactive 3D inspection in Nubigon permits
novel insights into the data and better understanding of the spatial relations. Figures 4.1 – 4.5
exhibit additional visualizations, illustrating improved interaction with the data set.

Fig. 4.1: IBM and GPR data as 3D point cloud visualisation. The x-ray mode permits the
imaging of the buried structures on the terraces south of the manor house.

64 4 Discussion

Fig. 4.2: Buried walls can be seen as dark reflections in the GPR 3D point cloud data, with low
reflection intensities rendered transparent. Overlapping structures suggests different
building phases. A linear diagonal feature is likely to be caused by a pipe.

Fig. 4.3: View of the same data as depicted in figure 4.2 from the side, showing the different
anomalies in the GPR data at different depths. By interactively moving and rotating
the data sets in Nubigon, the anomalies and their relationship to each other become
easily recognizeable.

4.4 Visualization of merged data in Nubigon 65

(a)

(b)

Fig. 4.4: (a) IBM and TLS 3D point cloud showing Hafslund manor house from NW. In the

garden and in front of the main building the TLS scan positions are visible. (b)
Additionally, the GPR 3D point cloud integrated with the IBM and TLS point clouds,
showing subsurface features in 3D.

66 4 Discussion

Fig. 4.5: TLS und IBM 3D point cloud visualisation in Nubigon using the x-ray presentation,
which permits insights into the interior of the building

4.5 Proposed Workflow
With the current capabilities in sensors, platforms, and software available for this thesis, a
workflow has been established for the efficient, comprehensive, and reliable processing of surface
and subsurface 3D point cloud data (fig. 4.6). Extensive coverage of the analyzed site using
drone images with GNSS information facilitates reliable georeferencing, provided occlusions are
minimized in a significant number of images. Incorporating images from handheld cameras

at ground level enhances the resolution and accuracy of the resulting IBM 3D point cloud.

Pose graph optimization and georeferencing of the TLS data are executed using the custom
developed C++ tool by selecting local targets within the TLS point cloud. The global reference

Fig. 4.6: Workflow established for use in future measurement campaigns on archaeological sites,
given current sensor and software capabilities available for this thesis.

4.5 Proposed Workflow 67

is established by aligning these targets with corresponding points in the global IBM cloud. GPR
data, already globally referenced and topographically corrected, is converted from FLD to LAZ
format, with GPR reflection amplitudes stored as intensity values, to facilitate merging with the
TLS and IBM datasets as point clouds. Currently, this merging is accomplished by importing
these datasets into NUBIGON, where the generation of octrees enables a smooth interaction and
further analysis of the merged dataset.

Chapter 5

Conclusion
Unifying geoarchaeological prospection data from image-based modeling (IBM) point clouds,
laser scanning (TLS), and georadar (GPR) into a single 3D point cloud visualization presents a
number of advantages. By integrating these datasets, multi-layered analysis is possible, enhancing
spatial context through the correlation of topographical details from IBM and laser scanning

with buried structures identified by GPR. This methodology improves the understanding of
subsurface anomalies in relation to surface features and ensures better spatial alignment, thereby
reducing possible interpretation errors.

The combination of point clouds from various sources facilitates cross-validation and refine-

ment of spatial positioning, which is especially valuable in complex terrains and where GNSS

reliability may be compromised. Laser scanning offers high-precision georeferencing, enabling

the alignment and correction of IBM and GPR datasets, ensuring consistency and enhancing
data registration.

Realistic digital 3D representations enable researchers, site managers, stakeholders, and the

general public to better grasp archaeological features and contexts by visualizing them in an

common 3D environment. Point cloud-based models support interactive exploration, making
discoveries more tangible and accessible, thus enhancing stakeholder engagement.

Merged 3D datasets can be utilized for automated feature recognition and quantitative analysis,
such as calculating the volume of buried structures. The integration of different datasets per-
mits the cross-verification of subsurface features detected by GPR with terrain data from laser
scanning or IBM, excluding modern disturbances and refining geophysical and archaeological
interpretations. Additionally, laser scanning and IBM data can provide topographic corrections
for GPR, mitigating errors caused by uneven terrain.

This thesis outlines the methods and challenges in processing point cloud data acquired through
IBM, TLS, and GPR. Merging this data can provide advanced means of visualization and further
benefit the extended geoarchaeological characterization of imaged anomalies. The combined
surface and subsurface mapping and imaging can result in more comprehensive, complete, and
realistic data representations. The collaboration between the Vienna Institute for Archaeological

Science (VIAS) of the University of Vienna and GeoSphere Austria, along with the Research Cen-

tre for Manor Houses in the Baltic Sea Region of Greifswald University, benefits from open-source
software solutions to efficiently process these large datasets. The outlined methods for analyzing
TLS data are proposed to qualify as such tools, with the possibility of further development to
create a comprehensive workflow for processing data acquired for geophysical and archaeological
prospecting.

While TLS , IBM and GPR data where collected independent from each other in this case

69

study, in future we are likely to see integrated survey solutions in which IBM cameras and TLS
sensors are mounted on GPR systems for semi-autonomous mapping.

Chapter 6

Outlook
To increase the quality of the data and streamline the processing, some improvements have been
researched and will be discussed here.

6.1 TLS aquisition and processing
6.1.1 Pose graph interconnectivity
To achieve higher reliability within the TLS point cloud, interconnectivity of poses within the

pose graph should be increased. Avoiding loops with lengthy edge path lengths contributes to
lower relative covariances between disonnected poses, providing better congruency of structural
features throughout the point cloud. This can be facilitated by positioning the scanner in windows
for example, consequently allowing GICP alignments of interior and exterior (see figure 6.1).

Fig. 6.1: Additional GICP matches (dashed lines) will decrease unfavorable error propagation.

6.1.2 Scan matching
To automate scan matching and pose graph optimization of TLS point clouds, initial coarse
alignment of the point clouds must also be automated. Go-ICP (Yang et al. 2015) is a robust
and efficient algorithm for global registration of 3D point clouds. It addresses the challenge of
aligning point clouds without initial pose estimates by leveraging a Branch and Bound (BnB)
optimization framework. BnB is an algorithmic strategy used for solving optimization problems,
particularly in discrete and combinatorial contexts. It systematically explores the solution

space by dividing it into smaller subsets (branching) and calculating bounds on the optimal
solution within each subset (bounding). The algorithm excludes subsets that cannot contain the
optimal solution, thereby reducing the search space and improving efficiency. BnB guarantees

6.2 LOAM 71

finding the global optimum by exhaustively searching the feasible region while eliminating non-
promising candidates (see figure 6.2). Go-ICP guarantees the discovery of the globally optimal
solution within a specified error bound, making it highly reliable for applications requiring
precise registration. The algorithm is designed to handle significant levels of noise and outliers,
ensuring robust performance in real-world scenarios. By implementing this approach in a custom
portable software solution, such as a monitoring measure on a tablet, on-site pre-registration
can be automated. This eliminates the need for commercial software like the Cyclone Field app,
providing a more flexible and cost-effective solution for point cloud registration tasks.

Fig. 6.2: Collaboration of BnB and ICP. Left: BnB and ICP collaboratively update the upper
bounds during the search process. Right: with the guidance of BnB, ICP only explores

un-discarded, promising cubes with small lower bounds marked up by BnB (Yang et al.
2015).

6.1.3 Pose graph optimization and global reference
To address unfavorable error propagation and resolve global ambiguity in pose graph optimization,
the inclusion of landmarks is recommended. These landmarks can be GNSS targets, provided
their measurement accuracy is appropriate for the scale, or other targets acquired through
methods with significantly lower uncertainty parameters, compared to GICP error propagation.
By attributing stochastic information to these landmarks, the pose graph can be adjusted

proportionally, transforming it to the global frame based on the landmarks’ coordinates and

stochastic data. This approach can be directly integrated into the g2o framework, using the

methodology used in bundle adjustment. For further details, please refer to Kümmerle et al.
2011.

6.2 LOAM
In recent years, LiDAR sensors have been extensively researched for use on moving platforms,
leading to significant improvements in autonomous mapping accuracy and position estimation.
The deployment of such sensors on moving platforms is particularly advantageous for surveying
vast areas, especially when autonomously driven. Consequently, automated positioning and
navigation within the surveyed space become critical priorities. LiDAR Odometry and Mapping
(LOAM), introduced by J. Zhang and Singh 2014, is a real-time method for odometry and mapping

that utilizes range measurements from a 2-axis LiDAR operating in 6-DOF. The primary challenge

addressed by LOAM is the asynchronous nature of range measurements, which can lead to motion

estimation errors and subsequent misalignment in the point cloud. Unlike off-line batch methods
that rely on loop closure to correct drift, LOAM achieves low-drift and low-computational

complexity without the need for high-accuracy ranging or inertial measurements (see fig. 6.3).

72 6 Outlook

Fig. 6.3: Diagram of the LOAM software system (J. Zhang and Singh 2014).

The method innovatively divides the complex problem of simultaneous localization and mapping
into two complementary algorithms: one for high-frequency, low-fidelity odometry to estimate
LiDAR velocity, and another for lower-frequency, fine matching and registration of the point
cloud. This dual approach enables real-time mapping capabilities. Extensive experiments and
evaluations on the KITTI odometry benchmark have demonstrated that LOAM achieves accuracy
comparable to state-of-the-art offline batch methods. A particularly compelling application of
such a system is as a localization method for environments with limited GNSS coverage, such
as forests. The deployment of LOAM in these settings offers a promising solution for accurate
positioning and mapping. This is especially relevant for archaeological investigations and forestry
applications (Butnor et al. 2003), where magnetometry mapping of subsurface anthropogenic
structures and potentially GPR mapping for root investigations are crucial.

6.3 VR and AR applications
Merged 3D datasets can be utilized for immersive visualization in Augmented Reality (AR)

and Virtual Reality (VR) environments. AR overlays digital information onto the real world,

while VR creates a fully immersive digital environment. These technologies provide valuable

tools for both research and public engagement by allowing users to interact with and explore
archaeological sites in a more engaging manner, as well as remotely. The generated virtual 3D
models can be augmented with additional information in form of texts, images, videos, or further
3D content.

6.4 Closing Remarks
By offering open-source access to the developed C++ tool for processing TLS data, users are
empowered to deploy the mentioned enhancements and contribute to the project. This approach
also encourages discourse about potential improvements, fostering collaboration and innovation
within the community. As a result, the tool’s capabilities can be collectively refined and expanded.
Applying the suggested changes to the current workflow of conducting the measurements and
processing will increase efficiency, accuracy and reliability of the resulting point cloud stemming
from TLS, as well as encourage more engaging interaction with the merged data set, consequently
improving the quality of the derived information from the digital twin. A well-structured 3D
dataset serves as a digital archive, preserving both archaeological and cultural heritage contexts
and landscape settings for future research and analysis. By continuing to incorporate mapping
technologies like LOAM and potentially more, the acquisition of data can be improved in terms

of flexibility, enabling the execution of such measurements in more diverse and challenging envi-
ronments. The use of AR and VR enables more engaging interaction and better communication
of the acquired results.

6.4 Closing Remarks 73

Ultimately, enhancing data interaction will improve data acquisition, and vice versa. This

thesis aims to encourage this development, contributing to advancing archaeological research
using geospatial data and enhancing public engagement with cultural heritage.

Bibliography
Abdelhafiz, A. (2013). “Laser scanner point cloud colouring algorithm applied on real site”. In:

Survey Review 45.332, pp. 343–351. issn: 0039-6265.

Agarwal, S., Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and R. Szeliski (Oct.
2011). “Building Rome in a day”. In: Commun. ACM 54.10, pp. 105–112. issn: 0001-0782.
doi: 10.1145/2001269.2001293. url: https://doi.org/10.1145/2001269.2001293.

Arun, K. S., T. S. Huang, and S. D. Blostein (1987). “Least-squares fitting of two 3-D point
sets”. In: IEEE Transactions on pattern analysis and machine intelligence 5, pp. 698–700. issn:
0162-8828.

Bay, H., A. Ess, T. Tuytelaars, and L. Van Gool (June 2008). “Speeded-Up Robust Features

(SURF)”. In: Similarity Matching in Computer Vision and Multimedia 110.3, pp. 346–359.
issn: 1077-3142. url: https://www.sciencedirect.com/science/article/pii/S1077314207001555.

Benedetto, A., F. Tosti, L. B. Ciampoli, and F. D’amico (2017). “An overview of ground-
penetrating radar signal processing techniques for road inspections”. In: Signal processing 132,
pp. 201–209. issn: 0165-1684.

Besl, P. J. and N. D. McKay (1992). “Method for registration of 3-D shapes”. In: vol. 1611. Spie,
pp. 586–606.

Bevington, P. and D. Robinson (1969). “Error Analysis for the Physical Sciences”. In.

Butnor, J. R., J. A. Doolittle, K. H. Johnsen, L. Samuelson, T. Stokes, and L. Kress (2003).
“Utility of ground-penetrating radar as a root biomass survey tool in forest systems”. In: Soil
Science Society of America Journal 67.5, pp. 1607–1615. issn: 0361-5995.

Cassidy, N. J. and H. M. Jol (2009). “Ground penetrating radar data processing, modelling and
analysis”. In: Ground penetrating radar: theory and applications, pp. 141–176.

Chen, Y. and G. Medioni (1992). “Object modelling by registration of multiple range images”.
In: Image and vision computing 10.3, pp. 145–155. issn: 0262-8856.

Conyers, L. B. (2023). Ground-Penetrating Radar for Archaeology. Rowman & Littlefield Pub-
lishers. isbn: 9781538179352.

Daniels, D. J. (2004). Ground penetrating radar. Vol. 1. Iet.

Daniels, J. J. (2000). “Ground penetrating radar fundamentals”. In: Prepared as an appendix to
a Report to the US EPA, Region V, pp. 1–21.

Grasmueck, M. (1996). “3-D ground-penetrating radar applied to fracture imaging in gneiss”. In:
Geophysics 61.4, pp. 1050–1064. issn: 0016-8033.

Hartley, R. and A. Zisserman (2003). Multiple view geometry in computer vision. Cambridge
university press.

Isenburg, M. (2013). “LASzip: lossless compression of LiDAR data”. In: Photogrammetric
engineering and remote sensing 79.2, pp. 209–217. issn: 0099-1112.

https://doi.org/10.1145/2001269.2001293
https://doi.org/10.1145/2001269.2001293
https://www.sciencedirect.com/science/article/pii/S1077314207001555

75

Kamp, N. K., S. Russ, O. Sass, G. Tiefengraber, and S. Tiefengraber (2014). “A Fusion of
GPR-and LiDAR-Data for Surveying and Visualisation of Archaeological Structures – a case
example of an archaeological site in Strettweg, District of Murtal, Austria”. In: Geophysical
Research Abstracts. Vol. 16. EGU General Assembly 2014-12621. EGU.

Koide, K. (Aug. 2024). “small_gicp: Efficient and parallel algorithms for point cloud registration”.
In: Journal of Open Source Software 9.100, p. 6948. issn: 2475-9066. doi: https://doi.org/10.
21105/joss.06948.

Kraus, K. (2004). Photogrammetrie, 7. Auflage. Walter de Gruyter Verlag, Berlin, Germany.

Kümmerle, R., G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard (2011). “g 2 o: A general
framework for graph optimization”. In: 2011 IEEE international conference on robotics and
automation. IEEE, pp. 3607–3613.

Lämmel, R. and S. P. Jones (2003). “Scrap your boilerplate: a practical design pattern for generic
programming”. In: ACM SIGPLAN Notices 38.3, pp. 26–37. issn: 0362-1340.

Lepetit, V., F. Moreno-Noguer, and P. Fua (Feb. 2009). “EPnP: An Accurate O(n) Solution
to the PnP Problem”. In: International Journal of Computer Vision 81.2, pp. 155–166. issn:
1573-1405. url: https://doi.org/10.1007/s11263-008-0152-6.

Levenberg, K. (1944). “A method for the solution of certain non-linear problems in least squares”.
In: Quarterly of applied mathematics 2.2, pp. 164–168. issn: 0033-569X.

Lohmann, N. (Nov. 28, 2023). JSON for Modern C++. Version 3.11.3. url: https ://json.
nlohmann.me.

Lovegrove, S. and R. Newcombe (Aug. 2024). Pangolin. https://github.com/stevenlovegrove/Pangolin.

Lowe, D. G. (Nov. 2004). “Distinctive Image Features from Scale-Invariant Keypoints”. In:
International Journal of Computer Vision 60.2, pp. 91–110. issn: 1573-1405. url: https :
//doi.org/10.1023/B:VISI.0000029664.99615.94.

Maloney, A. (June 2024). libE57Format. https://github.com/asmaloney/libE57Format.

Marquardt, D. W. (June 1963). “An Algorithm for Least-Squares Estimation of Nonlinear
Parameters”. In: Journal of the Society for Industrial and Applied Mathematics 11.2, pp. 431–
441. issn: 2168-3484. doi: https://doi.org/10.1137/0111030.

Merkle, D., C. Frey, and A. Reiterer (Nov. 2020). “Fusion of ground penetrating radar and laser
scanning for infrastructure mapping”. In: Journal of Applied Geodesy 15.1, pp. 31–45. doi:
10.1515/jag-2020-0004.

Nau, E. (2024). ApInsight: Ground Penetrating Radar Data Analysis Tool. url: https://github.
com/erichnau/ApInsight.

Neal, A. (2004). “Ground-penetrating radar and its use in sedimentology: principles, problems
and progress”. In: Earth-science reviews 66.3-4, pp. 261–330. issn: 0012-8252.

Niemeier, W. (2008). Ausgleichungsrechnung: Statistische Auswertemethoden. Walter de Gruyter.

Pfeifer, N. (2018). Photogrammetrie. University Lecture 122.429. TU Wien.

Pfeifer, N., C. Ressl, and W. Karel (2021). Photogrammetrie Vertiefung. University Lecture
120.027. TU Wien.

https://doi.org/https://doi.org/10.21105/joss.06948
https://doi.org/https://doi.org/10.21105/joss.06948
https://doi.org/10.1007/s11263-008-0152-6
https://json.nlohmann.me
https://json.nlohmann.me
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/https://doi.org/10.1137/0111030
https://doi.org/10.1515/jag-2020-0004
https://github.com/erichnau/ApInsight
https://github.com/erichnau/ApInsight

76 Bibliography

Plattner, A. M. (May 2020). “GPRPy: Open-source ground-penetrating radar processing and
visualization software”. In: The Leading Edge 39.5, pp. 332–337. issn: 1070-485X. doi: 10.
1190/tle39050332.1. url: https://doi.org/10.1190/tle39050332.1.

Rey Otero, I. (Sept. 2015). “Anatomy of the SIFT method”. Theses. École normale supérieure
de Cachan - ENS Cachan. url: https://theses.hal.science/tel-01226489.

Reynolds, J. M. (2011). An introduction to applied and environmental geophysics. 2. ed., 1. publ.
ISBN 9780471485360. Chichester [u.a.]: Chichester [u.a.] : Wiley-Blackwell, XII, 696 S., Ill.,
graph. Darst., Kt. url: https://permalink.catalogplus.tuwien.at/AC08527103.

Schmidt, A., T. Sparrow, C. Gaffney, V. Gaffney, A. S. Wilson, and R. A. E. Coningham
(2023). “4D with accuracy: why bother?” In: Non-Intrusive Methodologies for Large Area Urban
Research. Archaeopress Publishing Ltd, pp. 106–113.

Schonberger, J. L. and J.-M. Frahm (2016). “Structure-from-motion revisited”. In: Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4104–4113.

Segal, A., D. Haehnel, and S. Thrun (2009). “Generalized-icp.” In: vol. 2. 4. Seattle, WA, p. 435.

Triggs, B., P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgibbon (2000). “Bundle Adjustment –

A Modern Synthesis”. In: Vision Algorithms: Theory and Practice. Berlin, Heidelberg: Springer
Berlin Heidelberg, pp. 298–372.

Trinks, I., A. Hinterleitner, W. Neubauer, E. Nau, K. Löcker, M. Wallner, M. Gabler, R. Filzwieser,
J. Wilding, H. Schiel, V. Jansa, P. Schneidhofer, T. Trausmuth, V. Sandici, D. Ruß, S. Flöry,
J. Kainz, M. Kucera, A. Vonkilch, T. Tencer, L. Gustavsen, M. Kristiansen, L.-M. Bye-

Johansen, C. Tonning, T. Zitz, K. Paasche, T. Gansum, and S. Seren (2018). “Large-area
high-resolution ground-penetrating radar measurements for archaeological prospection”. In:
Archaeological Prospection 25.3, pp. 171–195. doi: https://doi.org/10.1002/arp.1599. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/arp.1599. url: https://onlinelibrary.wiley.
com/doi/abs/10.1002/arp.1599.

Wolf, J., S. Discher, L. Masopust, S. Schulz, R. Richter, and J. Döllner (2018). “Combined

visual exploration of 2D ground radar and 3D point cloud data for road environment”. In:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences XLII-4/W10, pp. 231–236. doi: 10.5194/isprs-archives-XLII-4-W10-231-2018. url:
https://isprs-archives.copernicus.org/articles/XLII-4-W10/231/2018/.

Yang, J., H. Li, D. Campbell, and Y. Jia (2015). “Go-ICP: A globally optimal solution to 3D ICP
point-set registration”. In: IEEE transactions on pattern analysis and machine intelligence
38.11, pp. 2241–2254. issn: 0162-8828.

Yilmaz, Ö. (2001). Seismic data analysis. Vol. 1. Society of Exploration Geophysicists Tulsa.

Zhang, J. and S. Singh (2014). “LOAM: Lidar odometry and mapping in real-time.” In: vol. 2. 9.
Berkeley, CA, pp. 1–9.

Zhang, W., J. Qi, P. Wan, H. Wang, D. Xie, X. Wang, and G. Yan (2016). “An easy-to-use

airborne LiDAR data filtering method based on cloth simulation”. In: Remote sensing 8.6,
p. 501. issn: 2072-4292.

https://doi.org/10.1190/tle39050332.1
https://doi.org/10.1190/tle39050332.1
https://doi.org/10.1190/tle39050332.1
https://theses.hal.science/tel-01226489
https://permalink.catalogplus.tuwien.at/AC08527103
https://doi.org/https://doi.org/10.1002/arp.1599
https://onlinelibrary.wiley.com/doi/pdf/10.1002/arp.1599
https://onlinelibrary.wiley.com/doi/abs/10.1002/arp.1599
https://onlinelibrary.wiley.com/doi/abs/10.1002/arp.1599
https://doi.org/10.5194/isprs-archives-XLII-4-W10-231-2018
https://isprs-archives.copernicus.org/articles/XLII-4-W10/231/2018/

Chapter 7

Appendix

7.1 Custom C++ tool for TLS point cloud processing
The critical functions used for the custom C++ tool are attached in this chapter. Note that the
code presented here reflects the state of the tool as of February 2025 and is subject to change.

7.1.1 E57 file reading

1 void readE57(const std::string& filename, const std::string& scanName, size_t maxPoints = 500000) {
2 std::string extension = filename.substr(filename.find_last_of(".") + 1);
3

4 if (extension != "e57") {
5 std::cout << "Unsupported file format: " << extension << std::endl;
6 return;
7 }
8

9 e57::Reader e57Reader(filename, e57::ReaderOptions());
10 std::cout << "Reading file: " << filename << std::endl;
11 std::cout << "Scans in file:" << e57Reader.GetData3DCount() << std::endl;
12

13 for (size_t scanIndex = 0; scanIndex < e57Reader.GetData3DCount(); ++scanIndex) {
14 e57::Data3D scanHeader;
15 e57Reader.ReadData3D(scanIndex, scanHeader);
16

17 if (scanHeader.name != scanName) {
18 if (!(e57Reader.GetData3DCount() == 1)) {
19 continue;
20 }
21 }
22 std::cout << "Reading Scan: " << scanHeader.name << std::endl;
23 std::string scanKey = filename + "_" + scanHeader.name;
24

25 size_t nPoints = scanHeader.pointCount;
26 std::cout << "Number of points: " << nPoints << std::endl;
27 std::vector<float> xData(nPoints), yData(nPoints), zData(nPoints);
28 std::vector<uint16_t> rData(nPoints), gData(nPoints), bData(nPoints);
29 std::vector<double> intensityData(nPoints);
30 std::vector<Eigen::Vector3f> points, colors, subsampledPoints, subsampledColors;
31

32 // Set up the buffer for reading the data

78 7 Appendix

33 e57::Data3DPointsFloat buffers;
34 buffers.cartesianX = xData.data();
35 buffers.cartesianY = yData.data();
36 buffers.cartesianZ = zData.data();
37 buffers.colorRed = rData.data();
38 buffers.colorGreen = gData.data();
39 buffers.colorBlue = bData.data();
40 buffers.intensity = intensityData.data();
41

42 // Read the data from the scan
43 e57::CompressedVectorReader dataReader = e57Reader.SetUpData3DPointsData(scanIndex,
44 nPoints, buffers);
45 dataReader.read();
46 dataReader.close();
47 std::cout << "Reading finished " << std::endl;
48

49 // read poses from scanPositions:
50 Eigen::Matrix4d localPoseMatrix;
51 for (size_t i = 0; i < scanPositions.size(); i++) {
52 if (scanPositions[i].key == scanKey) {
53 localPoseMatrix = scanPositions[i].LocalPose;
54 }
55 }
56

57 points.reserve(nPoints); // Pre-allocate memory for points
58 colors.reserve(nPoints); // Pre-allocate memory for colors
59

60 // Parallelized loop for transforming points
61 #pragma omp parallel for
62 for (size_t i = 0; i < nPoints; ++i) {
63 // Apply the transformation to the point
64 Eigen::Vector4f point(xData[i], yData[i], zData[i], 1.0f);
65 Eigen::Vector4f transformedPoint = localPoseMatrix.cast<float>() * point;
66 Eigen::Vector3f transformedPoint3f = transformedPoint.head<3>();
67

68 // If color is invalid, use intensity for grayscale rendering
69 bool isColorInvalid = (rData[i] == 255 && gData[i] == 255 && bData[i] == 255);
70 Eigen::Vector3f color;
71 if (isColorInvalid) {
72 float grayscale = static_cast<float>(intensityData[i]);
73 color = Eigen::Vector3f(grayscale, grayscale, grayscale);
74 } else {
75 // Use RGB values as they are
76 color = Eigen::Vector3f(rData[i] / 255.0f, gData[i] / 255.0f, bData[i] / 255.0f);
77 }
78

79 #pragma omp critical
80 {
81 points.push_back(transformedPoint3f);
82 colors.push_back(color);

7.1 Custom C++ tool for TLS point cloud processing 79

83 }
84 }
85

86 // Subsample points and colors
87 SubsamplePointCloud(points, colors, subsampledPoints, subsampledColors, maxPoints);
88 size_t subsize = subsampledPoints.size();
89

90 // Create PangoPointCloud using only points and colors
91 auto pangoCloudSub = std::make_unique<PangoPointCloud>(subsampledPoints, subsampledColors);
92 auto pangoCloudFull = std::make_unique<PangoPointCloud>(points, colors);
93

94 // Store scan data in the loadedScans map
95 ScanData scanData;
96 scanData.subsampledCloud = std::move(pangoCloudSub);
97 scanData.fullCloud = std::move(pangoCloudFull);
98 scanData.isRendered = true;
99

100 loadedScans[scanKey] = std::move(scanData);
101

102 std::cout << "Scan " << scanHeader.name << " loaded with " << subsize
103 << " subsampled points.\n" << std::endl;
104 }
105 }

7.1.1.1 Subsampling

1 void SubsamplePointCloud(const std::vector<Eigen::Vector3f>& points,
2 const std::vector<Eigen::Vector3f>& colors,
3 std::vector<Eigen::Vector3f>& subsampledPoints,
4 std::vector<Eigen::Vector3f>& subsampledColors,
5 size_t maxPoints) {
6 size_t n = points.size();
7 if (n <= maxPoints) {
8 subsampledPoints = points;
9 subsampledColors = colors;

10 return;
11 }
12

13 subsampledPoints.resize(maxPoints);
14 subsampledColors.resize(maxPoints);
15

16 std::random_device rd;
17 std::default_random_engine rng(rd());
18

19 #pragma omp parallel for
20 for (size_t i = 0; i < maxPoints; ++i) {
21 size_t randomIndex = rng() % n; // Pick a random point
22 subsampledPoints[i] = points[randomIndex];
23 subsampledColors[i] = colors[randomIndex];

80 7 Appendix

24 }
25 }
26

7.1.2 Generalized ICP registration

1 void ICP(const std::vector<FileEntry>& fileEntries, const int downsample) {
2

3 ProcessSelectedScans(fileEntries);
4

5 // Ensure exactly 2 scans are rendered
6 int renderedCount = 0;
7 std::vector<std::string> renderedScans; // To store the keys of the rendered scans
8 for (const auto& [key, scanData] : loadedScans) {
9 if (scanData.isRendered) {

10 renderedScans.push_back(key);
11 if (++renderedCount > 2) {
12 std::cerr << "Error: Selection of only 2 scans allowed for ICP." << std::endl;
13 }
14 }
15 }
16

17 if (renderedCount != 2) {
18 std::cerr << "Error: Exactly 2 scans must be rendered for ICP." << std::endl;
19 }
20 DrawAll();
21 DrawScanPositions(scanPositions);
22 pangolin::FinishFrame();
23

24 // Randomly assign source and target initially
25 std::srand(std::time(nullptr)); // Seed random number generator
26 int sourceIndex = std::rand() % 2;
27 int targetIndex = 1 - sourceIndex;
28 std::string extractedSource = ExtractFilepathAndSuffix(renderedScans[sourceIndex]).second;
29 std::string extractedTarget = ExtractFilepathAndSuffix(renderedScans[targetIndex]).second;
30

31 std::cout << "Source cloud (transform): " << renderedScans[sourceIndex] << "\n";
32 std::cout << "Target cloud (fixed): " << renderedScans[targetIndex] << "\n";
33

34 if (sourceIndex < 0 || sourceIndex >= renderedScans.size() ||
35 targetIndex < 0 || targetIndex >= renderedScans.size()) {
36 std::cerr << "Error: Invalid source/target index.\n";
37 }
38

39 // Access the selected scans
40 auto& sourceCloud = loadedScans[renderedScans[sourceIndex]];
41 auto& targetCloud = loadedScans[renderedScans[targetIndex]];
42

43 std::vector<Eigen::Vector3f> source_points = sourceCloud.fullCloud->getVertices();

7.1 Custom C++ tool for TLS point cloud processing 81

44 std::vector<Eigen::Vector3f> target_points = targetCloud.fullCloud->getVertices();
45

46 if (source_points.empty() || target_points.empty()) {
47 std::cerr << "Error: No points in source or target cloud.\n";
48 }
49

50 small_gicp::RegistrationSetting setting;
51 unsigned int nThreads = std::thread::hardware_concurrency();
52 std::cout << "Number of threads available: " << nThreads << std::endl;
53 setting.num_threads = nThreads;
54 float down_float = downsample / 100.0f;
55 setting.downsampling_resolution = down_float;
56 setting.max_correspondence_distance = 0.4;
57 setting.max_iterations = 10;
58 setting.verbose = true;
59

60 std::cout << "Source points size: " << source_points.size() << "\n";
61 std::cout << "Target points size: " << target_points.size() << "\n";
62

63 Eigen::Isometry3d init_T_target_source = Eigen::Isometry3d::Identity();
64

65 small_gicp::RegistrationResult result = small_gicp::align(target_points, source_points,
66 init_T_target_source, setting);
67

68 Eigen::Isometry3d T = result.T_target_source; // Estimated transformation
69 size_t num_inliers = result.num_inliers; // Number of inlier source points
70 Eigen::Matrix<double, 6, 6> H = result.H; // Final Hessian matrix (6x6)
71 bool conv = result.converged;
72 double err = result.error;
73 Eigen::Matrix<double, 6, 1> b = result.b;
74

75 std::cout << "ICP complete. Transformation matrix:\n" << T.matrix() << "\n";
76 std::cout << "Number of inliers: " << num_inliers << "\n";
77 std::cout << "Converged: " << conv << "\n";
78 std::cout << "Error: " << err << "\n";
79 std::cout << "b: " << b << "\n";
80 std::cout << "Iterations: " << result.iterations << "\n";
81

82 // Apply the transformation
83 std::vector<Eigen::Vector3f> subsampled_points = sourceCloud.subsampledCloud->getVertices();
84 for (auto& point : subsampled_points) {
85 Eigen::Vector4f homogenousPoint(point.x(), point.y(), point.z(), 1.0f);
86 Eigen::Vector4f transformedPoint = T.matrix().cast<float>() * homogenousPoint;
87 point = transformedPoint.head<3>();
88 }
89

90 for (auto& point : source_points) {
91 Eigen::Vector4f homogenousPoint(point.x(), point.y(), point.z(), 1.0f);
92 Eigen::Vector4f transformedPoint = T.matrix().cast<float>() * homogenousPoint;
93 point = transformedPoint.head<3>();

82 7 Appendix

94 }
95

96

97 // Update the source cloud vertices with transformed points
98 sourceCloud.subsampledCloud->setVertices(subsampled_points);
99 sourceCloud.fullCloud->setVertices(source_points);

100

101 Eigen::Matrix4d relPose;
102

103 for (auto& scanPosit : scanPositions) {
104 if (scanPosit.name == extractedSource) {
105 Eigen::Matrix4d updatedLocalPoseSource = T.matrix() * scanPosit.LocalPose;
106 Eigen::Matrix4d updatedGlobalPoseSource = globalShift * updatedLocalPoseSource;
107

108 scanPosit.LocalPose = updatedLocalPoseSource;
109 scanPosit.GlobalPose = updatedGlobalPoseSource;
110 scanPosit.positionLocal = updatedLocalPoseSource.block<3, 1>(0, 3).cast<float>();
111

112 std::cout << "Updated scan position for source (" << scanPosit.name << "):\n";
113 std::cout << "New global pose:\n" << scanPosit.GlobalPose << "\n";
114

115 for (auto& scanPositT : scanPositions) {
116 if (scanPositT.name == extractedTarget) {
117 // relPose in respect to the targets local coordinate frame!!
118 relPose = scanPositT.LocalPose.inverse() * scanPosit.LocalPose;
119 }
120 }
121

122 }
123 }
124

125 // Saving results to map and updating json file:
126 std::string icpKey = renderedScans[sourceIndex] + "<->" + renderedScans[targetIndex];
127 ICPResult icpR;
128 icpR = {renderedScans[sourceIndex],renderedScans[targetIndex],result,relPose};
129 icpResults[icpKey] = icpR;
130 currICP = {icpKey, icpR};
131

132 // Redraw the scene to show the transformed source cloud
133 lines = updateLinks(scanPositions);
134 pangolin::FinishFrame();
135 DrawAll();
136 DrawScanPositions(scanPositions);
137 pangolin::FinishFrame();
138 }

7.1 Custom C++ tool for TLS point cloud processing 83

7.1.3 Pose Graph Optimization

1 void OptimizePoseGraph(const std::unordered_map<std::string, ICPResult>& icpR,
2 const std::string& outputFilename, std::pair<double,double> stoch_a_priori) {
3 g2o::SparseOptimizer optimizer;
4 ConfigureOptimizer(optimizer);
5

6 // Map scan names to node IDs
7 std::map<std::string, int> nodeMap; // Maps scan names to graph node IDs
8

9 DrawAll();
10 DrawScanPositions(scanPositions);
11 pangolin::FinishFrame();
12

13 nlohmann::json optimizationResults = nlohmann::json::object();
14

15 // Add nodes (scans) to the graph
16 for (size_t i = 0; i < scanPositions.size(); ++i) {
17 const auto& scan = scanPositions[i];
18 g2o::VertexSE3* vertex = new g2o::VertexSE3();
19 vertex->setId(i);
20

21

22 std::vector<Eigen::Matrix4d> poses;
23 // Check if poses are available, otherwise use the default LocalPose
24 if (!poses.empty()) {
25 vertex->setEstimate(Eigen::Isometry3d(ComputeMeanPose(poses)));
26 } else {
27 vertex->setEstimate(Eigen::Isometry3d(scan.LocalPose));
28 }
29

30 if (i == 0) vertex->setFixed(true); // Fix the first node as the reference
31 optimizer.SparseOptimizer::addVertex(vertex);
32 nodeMap[scan.key] = i;
33

34 // Save initial vertex data
35 optimizationResults["vertices"][scan.key] = {
36 {"initialPose", MatrixToJson(scan.LocalPose)},
37 {"optimizationTransform", {}},
38 {"optimizedPose", {}}, // Will be updated later
39 {"globalPose", {}},
40 {"covariance", {}}
41 };
42 }
43

44 for (const auto& result : icpR) {
45 const std::string& sourceName = result.second.sourceName;
46 const std::string& targetName = result.second.targetName;
47

48 int sourceId = nodeMap[sourceName];

84 7 Appendix

49 int targetId = nodeMap[targetName];
50

51 // Create a new edge
52 g2o::EdgeSE3* edge = new g2o::EdgeSE3();
53

54 edge->setVertex(0, optimizer.vertex(sourceId));
55 edge->setVertex(1, optimizer.vertex(targetId));
56 edge->setMeasurement(Eigen::Isometry3d(result.second.relPose.inverse()));
57

58 // Set the edge information matrix
59 if (result.second.result.error == 0.0) {
60 info = cov.inverse() * 1e9; // Fixed pose → high weight
61 } else {
62 cov.block<3,3>(0,0) = Eigen::Matrix3d::Identity() *
63 stoch_a_priori.first*stoch_a_priori.first;
64 double sigma_squared_rot_custom = (stoch_a_priori.first / d_avg) *
65 (stoch_a_priori.first / d_avg);
66 cov.block<3,3>(3,3) = Eigen::Matrix3d::Identity() *
67 stoch_a_priori.second*stoch_a_priori.second;
68 info = cov.inverse();
69 }
70

71 // Add the edge to the optimizer
72 optimizer.SparseOptimizer::addEdge(edge);
73

74 // Save edge data
75 optimizationResults["edges"].push_back({
76 {"source", sourceName},
77 {"target", targetName},
78 {"relativePose", MatrixToJson(result.second.relPose.inverse().matrix())},
79 {"Hessian", MatrixToJson(medianHess)},
80 {"residualNorm", {}}, // Will be updated later
81 });
82 }
83

84

85 // Perform optimization
86 optimizer.setVerbose(true);
87 optimizer.computeInitialGuess();
88 std::cout << "Initial chi2: " << optimizer.chi2() << std::endl;
89

90 optimizer.initializeOptimization();
91 optimizer.optimize(1000);
92

93 std::cout << "Final chi2: " << optimizer.chi2() << std::endl;
94

95 for (const auto* edge : optimizer.edges()) {
96 const auto* e = dynamic_cast<const g2o::EdgeSE3*>(edge);
97 if (!e) continue;
98

7.1 Custom C++ tool for TLS point cloud processing 85

99 // Get the two vertices associated with the edge
100 const auto* v1 = dynamic_cast<const g2o::VertexSE3*>(e->vertex(0));
101 const auto* v2 = dynamic_cast<const g2o::VertexSE3*>(e->vertex(1));
102

103 // Get their optimized estimates
104 Eigen::Isometry3d T1 = v1->estimate();
105 Eigen::Isometry3d T2 = v2->estimate();
106 std::string source;
107 std::string target;
108 std::string sourceP;
109 std::string targetP;
110 for (auto& node : nodeMap) {
111 if (node.second == v1->id()) {
112 source = ExtractFilepathAndSuffix(node.first).second;
113 sourceP = node.first;
114 } else if (node.second == v2->id())
115 {
116 target = ExtractFilepathAndSuffix(node.first).second;
117 targetP = node.first;
118 }
119

120 }
121

122 // Compute the measured transformation from ICP
123 Eigen::Isometry3d T_measured = e->measurement();
124

125 // Compute the relative transformation from optimized poses
126 Eigen::Isometry3d T_optimized = T1.inverse() * T2;
127

128 // Compute the residual
129 Eigen::Isometry3d errorTransform = T_measured.inverse() * T_optimized;
130 Eigen::Matrix< double, 6, 1 > residual = g2o::internal::toVectorMQT(errorTransform);
131

132 // Compute the norm of the residual (optional)
133 double residualNorm = residual.norm();
134

135 // Debug output
136 std::cout << "Edge between vertices " << source << " and " << target <<
137 " has residual norm: " << residualNorm << std::endl;
138

139 // Threshold to identify outliers
140 if (residualNorm > 0.05) {
141 std::cout << "High residual detected for edge: " << source << " -> " << target <<
142 std::endl;
143 }
144

145 // Update JSON with residuals
146 for (auto& edgeJson : optimizationResults["edges"]) {
147 if (edgeJson["source"] == sourceP &&
148 edgeJson["target"] == targetP) {

86 7 Appendix

149 edgeJson["residualNorm"] = residualNorm;
150 break;
151 }
152 }
153 }
154

155 std::unordered_map<std::string, Eigen::Matrix4d> trafos;
156 // Update scan positions with optimized poses
157 nlohmann::json optimizedData = nlohmann::json::object();
158

159 for (size_t i = 0; i < scanPositions.size(); ++i) {
160 g2o::VertexSE3* vertex =
161 static_cast<g2o::VertexSE3*>(optimizer.vertex(nodeMap[scanPositions[i].key]));
162 // prevScanPoses.emplace_back(scanPositions[i].LocalPose);
163 trafos[scanPositions[i].key] = vertex->estimate().matrix() *
164 scanPositions[i].LocalPose.inverse();
165 Eigen::Matrix4d initialPose = scanPositions[i].LocalPose;
166 scanPositions[i].LocalPose = vertex->estimate().matrix();
167 scanPositions[i].GlobalPose = globalShift * scanPositions[i].LocalPose;
168 scanPositions[i].positionLocal =
169 scanPositions[i].LocalPose.block<3, 1>(0, 3).cast<float>();
170

171 // Add to JSON data
172 nlohmann::json scanJson;
173 scanJson["ID"] = scanPositions[i].key;
174 scanJson["GlobalPose"] = MatrixToJson(scanPositions[i].GlobalPose);
175 optimizedData[scanPositions[i].key] = scanJson;
176

177 // Update JSON data:
178 optimizationResults["vertices"][scanPositions[i].key] = {
179 {"initialPose", MatrixToJson(initialPose)},
180 {"optimizedPose", MatrixToJson(scanPositions[i].LocalPose)}, // Will be updated later
181 {"globalPose", MatrixToJson(scanPositions[i].GlobalPose)}
182 };
183

184 g2o::SparseBlockMatrix<Eigen::MatrixXd> spinv;
185 Eigen::MatrixXd hessianBlock;
186 if (optimizer.computeMarginals(spinv, vertex)) {
187 auto block = spinv.block(vertex->hessianIndex(), vertex->hessianIndex());
188 if (block) {
189 hessianBlock = *block;
190 // std::cout << "Hessian block for vertex:\n" << hessianBlock << std::endl;
191 }
192 }
193 const Eigen::MatrixXd covariance = hessianBlock;
194 optimizationResults["vertices"][scanPositions[i].key]["covariance"] = MatrixToJson(covariance);
195 }
196

197 // Save updated poses to a new JSON file
198 std::ofstream outFile(outputFilename);

7.1 Custom C++ tool for TLS point cloud processing 87

199 if (!outFile) {
200 throw std::runtime_error("Failed to open file for writing: " + outputFilename);
201 }
202 outFile << optimizedData.dump(4);
203 outFile.close();
204

205 for (const auto& scan : loadedScans) {
206 if (!scan.second.subsampledCloud->getVertices().empty()) {
207 std::vector<Eigen::Vector3f> subsampled_points = scan.second.subsampledCloud->getVertices();
208 for (auto& point : subsampled_points) {
209 Eigen::Vector4f homogenousPoint(point.x(), point.y(), point.z(), 1.0f);
210 Eigen::Vector4f transformedPoint = trafos[scan.first].cast<float>() * homogenousPoint;
211 point = transformedPoint.head<3>();
212 }
213 std::vector<Eigen::Vector3f> full_points = scan.second.fullCloud->getVertices();
214 for (auto& point : full_points) {
215 Eigen::Vector4f homogenousPoint(point.x(), point.y(), point.z(), 1.0f);
216 Eigen::Vector4f transformedPoint = trafos[scan.first].cast<float>() * homogenousPoint;
217 point = transformedPoint.head<3>();
218 }
219 scan.second.subsampledCloud->setVertices(subsampled_points);
220 scan.second.fullCloud->setVertices(full_points);
221

222 }
223 }
224

225 // Save results to file
226 std::string outFileG2O = "pose_optimization_results.json";
227 std::ofstream outFileG2On(outFileG2O);
228 if (!outFileG2On) {
229 throw std::runtime_error("Failed to open file for writing: " + outFileG2O);
230 }
231 outFileG2On << optimizationResults.dump(4); // Pretty print with 4 spaces
232

233 std::cout << "Optimization results saved to " << outFileG2O << std::endl;
234 outFileG2On.close();
235

236 lines = updateLinks(scanPositions);
237 DrawAll();
238 DrawScanPositions(scanPositions);
239 pangolin::FinishFrame();
240 }

7.1.4 Georeferencing
7.1.4.1 Transformation matrix computation

1 Eigen::Matrix4d computeTransformationMatrix(const std::vector<Target> matchedTargets) {
2 // Temporary vectors to store coordinates of selected targets

88 7 Appendix

3 std::vector<Eigen::Vector3d> localPoints;
4 std::vector<Eigen::Vector3d> globalPoints;
5

6 // Filter for selected points
7 for (const auto& target : matchedTargets) {
8 if (target.selected) {
9 localPoints.push_back(target.local);

10 globalPoints.push_back(target.global);
11 }
12 }
13

14 // Check for sufficient selected points
15 if (localPoints.size() < 3) {
16 std::cerr << "Insufficient selected points for transformation." << std::endl;
17 std::cout << "Transformation Matrix:\n" << Eigen::Matrix4d::Identity() << std::endl;
18 return Eigen::Matrix4d::Identity();
19 }
20

21 // Compute centroids of selected points
22 Eigen::Vector3d centroidLocal = Eigen::Vector3d::Zero();
23 Eigen::Vector3d centroidGlobal = Eigen::Vector3d::Zero();
24

25 for (size_t i = 0; i < localPoints.size(); ++i) {
26 centroidLocal += localPoints[i];
27 centroidGlobal += globalPoints[i];
28 }
29 centroidLocal /= localPoints.size();
30 centroidGlobal /= globalPoints.size();
31

32 std::cout << "local centroid: " << centroidLocal << "\n" << std::endl;
33 std::cout << "global centroid: " << centroidGlobal << "\n" << std::endl;
34

35 // Compute centered vectors
36 std::vector<Eigen::Vector3d> localCentered(localPoints.size());
37 std::vector<Eigen::Vector3d> globalCentered(globalPoints.size());
38 for (size_t i = 0; i < localPoints.size(); ++i) {
39 localCentered[i] = localPoints[i] - centroidLocal;
40 globalCentered[i] = globalPoints[i] - centroidGlobal;
41 }
42

43 // Compute cross-covariance matrix
44 Eigen::Matrix3d H = Eigen::Matrix3d::Zero();
45 for (size_t i = 0; i < localPoints.size(); ++i) {
46 H += localCentered[i] * globalCentered[i].transpose();
47 }
48

49 // Singular Value Decomposition
50 Eigen::JacobiSVD<Eigen::Matrix3d> svd(H, Eigen::ComputeFullU | Eigen::ComputeFullV);
51 Eigen::Matrix3d rotation = svd.matrixV() * svd.matrixU().transpose();
52

7.1 Custom C++ tool for TLS point cloud processing 89

53 // Ensure a proper rotation (determinant = 1)
54 if (rotation.determinant() < 0) {
55 Eigen::Matrix3d V = svd.matrixV();
56 V.col(2) *= -1;
57 rotation = V * svd.matrixU().transpose();
58 }
59

60 double scale = 1.0; // fix scale to 1
61

62 // Compute translation
63 Eigen::Vector3d localTranslation = -rotation * centroidLocal;
64 Eigen::Vector3d translation = centroidGlobal + localTranslation;
65

66 // Form the 4x4 transformation matrix
67 Eigen::Matrix4d transformation = Eigen::Matrix4d::Identity();
68 transformation.block<3, 3>(0, 0) = scale * rotation;
69 transformation.block<3, 1>(0, 3) = translation;
70

71 std::cout << "Transformation Matrix:\n" << transformation << std::endl;
72

73 return transformation;
74 }

7.1.4.2 GUI and E57 handling

1 void transformE57(std::vector<FileEntry> fileEntries) {
2 try {
3 pangolin::DestroyWindow("GeoRefHut");
4

5 // Read local points from the local.txt file
6 std::vector<Point> localPointsMap = readPointsFromFile("local.txt");
7 if (localPointsMap.empty()) {
8 std::cerr << "No local points found." << std::endl;
9 return;

10 }
11

12 // Select the target coordinates file using tinyfd
13 const char* targetCoordinatesFile = tinyfd_openFileDialog(
14 "Select target coordinates file",
15 curr_path.c_str(), // Default path (empty for user to choose)
16 1, // Number of filter patterns
17 nullptr, // No specific filter
18 "Text files (*.txt)", // Single filter description
19 0 // Don't allow multiple selects
20);
21

22

23 if (!targetCoordinatesFile) {
24 std::cerr << "No target file selected." << std::endl;

90 7 Appendix

25 return;
26 }
27 std::filesystem::path TfilePath(targetCoordinatesFile);
28 curr_path = TfilePath.parent_path();
29

30 // Step 3: Read global points from the selected target file
31 std::vector<Point> globalPointsMap = readPointsFromFile(targetCoordinatesFile);
32 if (globalPointsMap.empty()) {
33 std::cerr << "No global points found." << std::endl;
34 return;
35 }
36

37 std::vector<Target> matchedTargets;
38

39 for (const auto& localPoint : localPointsMap) {
40 for (const auto& globalPoint : globalPointsMap) {
41 if (localPoint.name == globalPoint.name) {
42 // Create a Target instance with the matched local and global points
43 Target target;
44 target.name = localPoint.name;
45 target.local = localPoint.coordinates;
46 target.global = globalPoint.coordinates;
47 target.selected = true;
48

49 // Add the target to the matched targets list
50 matchedTargets.push_back(target);
51 }
52 }
53 }
54

55 if (matchedTargets.size() < 3) {
56 std::cerr << "Insufficient corresponding points for transformation." << std::endl;
57 return;
58 }
59

60 // Compute transformation matrix
61 Eigen::Matrix4d initialTransformationMatrix = computeTransformationMatrix(matchedTargets);
62

63 for (const auto& point : matchedTargets) {
64 Eigen::Vector4d localHomog(point.local(0), point.local(1), point.local(2), 1.0);
65 Eigen::Vector3d transformed = (initialTransformationMatrix* localHomog).head<3>();
66 transformedPoints.push_back(transformed);
67 Eigen::Vector3d difference = point.global - transformed;
68 double absDifference = difference.norm();
69

70 // Format and align output
71 std::cout << std::fixed << std::setprecision(3);
72 std::cout << std::left << std::setw(8) << point.name << "|" // Left-align point name
73 << "diff:"
74 << std::right << std::setw(6) << difference(0) << " "

7.1 Custom C++ tool for TLS point cloud processing 91

75 << std::setw(6) << difference(1) << " "
76 << std::setw(6) << difference(2) << " [m] | "
77 << "abs. diff: " << std::setw(6) << absDifference << " [m]"
78 << std::endl;
79 }
80

81 // Recompute transformation matrix based on target selection
82 Eigen::Matrix4d transformationMatrix = trafoViz(initialTransformationMatrix,matchedTargets);
83

84 size_t guidCounter = 1;
85

86 std::unordered_map<std::string, Eigen::Matrix4d> optPoses;
87 std::ifstream fin("optimized_poses.json");
88 if (!posesOptimized && fin) {
89 optPoses = LoadGlobalPoses("optimized_poses.json");
90 } else {
91 for (auto& pose : scanPositions) {
92 optPoses[pose.key] = pose.GlobalPose;
93 }
94 }
95

96 // Process each input E57 file
97 for (const auto& file : fileEntries) {
98

99 std::filesystem::path firstInputPath(file.filepath);
100 std::string outputFilename;
101 if (fileEntries.size() < 2) {
102 outputFilename = firstInputPath.stem().string() + "_georef.e57";
103 } else {
104 outputFilename = firstInputPath.stem().string() + "_georef.e57";
105 }
106

107 std::filesystem::path outputPath = firstInputPath.parent_path() / outputFilename;
108 std::cout << "Writing E57 to: " << outputPath << std::endl;
109

110 // Create the E57 Writer for the single output file
111 e57::WriterOptions writerOptions;
112 e57::Writer e57Writer(outputPath.string().c_str(), writerOptions);
113 if (!e57Writer.IsOpen()) {
114 std::cerr << "Failed to open E57 writer for " << outputFilename << std::endl;
115 return;
116 }
117

118 // Open the current E57 file for reading
119 e57::Reader e57Reader(file.filepath, e57::ReaderOptions());
120 std::cout << "Reading E57 file: " << file.filepath << std::endl;
121

122 size_t scanCount = e57Reader.GetData3DCount();
123 std::cout << "Number of scans in the file: " << scanCount << std::endl;
124

92 7 Appendix

125 // Process each scan in the current file
126 for (size_t scanIndex = 0; scanIndex < scanCount; ++scanIndex) {
127 e57::Data3D scanHeader;
128 e57Reader.ReadData3D(scanIndex, scanHeader);
129

130 std::string scanKey = file.filepath + "_" + scanHeader.name;
131

132 // Apply the transformation to the scan pose
133 Eigen::Matrix4d poseMatrix = optPoses[scanKey];
134 Eigen::Matrix4d transformedPoseMatrix = transformationMatrix * poseMatrix;
135

136 // Update the scan header with the new pose
137 Eigen::Quaterniond eigenQuat(transformedPoseMatrix.block<3, 3>(0, 0));
138 e57::Quaternion e57Quat;
139 e57Quat.w = eigenQuat.w();
140 e57Quat.x = eigenQuat.x();
141 e57Quat.y = eigenQuat.y();
142 e57Quat.z = eigenQuat.z();
143 scanHeader.pose.rotation = e57Quat;
144 scanHeader.pose.translation.x = transformedPoseMatrix(0, 3);
145 scanHeader.pose.translation.y = transformedPoseMatrix(1, 3);
146 scanHeader.pose.translation.z = transformedPoseMatrix(2, 3);
147

148 // Assign a unique GUID for each scan
149 scanHeader.guid = generateUniqueGUID(guidCounter);
150 std::cout << "scan GUID: " << scanHeader.guid << std::endl;
151 guidCounter++;
152

153 std::cout << "Point count in scan header: " << scanHeader.pointCount << std::endl;
154

155 // Read the point data
156 e57::Data3DPointsData_t<double> buffers(scanHeader);
157

158 e57::CompressedVectorReader dataReader =
159 e57Reader.SetUpData3DPointsData(scanIndex, scanHeader.pointCount, buffers);
160 dataReader.read();
161

162

163 // Write the transformed scan data to the output file
164 int64_t dataIndex = e57Writer.NewData3D(scanHeader);
165 e57::CompressedVectorWriter dataWriter =
166 e57Writer.SetUpData3DPointsData(dataIndex, scanHeader.pointCount, buffers);
167 dataWriter.write(scanHeader.pointCount);
168 if (dataIndex != scanHeader.pointCount) {
169 std::cerr << "Error: Not all points were written!" << std::endl;
170 }
171 dataWriter.close();
172

173 std::cout << "Processed scan index " << scanIndex << " from file: " << file.filepath
174 << std::endl;

7.2 Convert FLD to LAZ 93

175 // Close the writer after all scans are written
176 e57Writer.Close();
177 if (fileEntries.size() < 2) {
178 std::cout << "Transformed E57 point cloud written to " <<
179 outputPath.string() << std::endl;
180 } else {
181 std::cout << "Merged and transformed E57 point cloud written to " <<
182 outputPath.string() << std::endl;
183 }
184 }
185 }
186

187 } catch (const e57::E57Exception& e) {
188 std::cerr << e.what() << ": " << e.errorStr() << std::endl;
189 return;
190 } catch (const std::exception& e) {
191 std::cerr << "Standard exception: " << e.what() << std::endl;
192 } catch (...) {
193 std::cerr << "Unknown exception occurred." << std::endl;
194 }
195 }
196

7.2 Convert FLD to LAZ

1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
3 """
4 Created on Wed Mar 13 17:11:13 2024
5

6 @author: stefa
7 """
8 # from read_fld_optimized import read_fld
9 from read_fld import read_fld

10 import time
11 from PyQt5.QtWidgets import QApplication, QFileDialog
12 import numpy as np
13 import laspy
14 import os
15

16

17 def select_file():
18 app = QApplication([])
19 file_paths, _ = QFileDialog.getOpenFileName(None, "Select GPR-fld file")
20 return file_paths
21

22 def replace_extension(file_path, ext):
23 base_name, _ = os.path.splitext(file_path)

94 7 Appendix

24 return base_name + ext
25

26 def create_xyz_amplitude_array(fld):
27 #fld_data, xpixels, ypixels, zpixels, pixelsize, y_coor, x_coor, pixelsize_z
28 rows, cols, z = fld[2], fld[1], fld[3]
29 matrix = fld[0]
30 pixel_size_xy = fld[4]
31 pixel_size_z = fld[7]
32 initial_y = fld[5]
33 initial_x = fld[6]
34 initial_z = 0 #for now!!!
35

36 # Find the positions of nonzero elements
37 nonzero_indices = np.nonzero(matrix)
38

39 # Extract the x, y coordinates from the nonzero indices
40 z_coords, y_coords, x_coords = nonzero_indices
41

42 # Extract intensity values at nonzero positions
43 intensity_values = matrix[nonzero_indices]
44

45 #transform intensity values to [0,255]:
46 intensity_values = (intensity_values/np.max(intensity_values))*255
47

48 #mirror values around 255/2:
49 intensity_values = 255-intensity_values
50

51 # compute coordinates:
52 x_coords = initial_x + x_coords*pixel_size_xy
53 y_coords = initial_y - y_coords*pixel_size_xy
54 z_coords = initial_z - z_coords*pixel_size_z
55

56 return x_coords, y_coords, z_coords, intensity_values
57

58

59 # file = sys.argv[1]
60 file = select_file()
61 start_time = time.time()
62 fld = read_fld(file)
63

64 file_new = replace_extension(file, ".laz")
65

66 # Create a Las
67 las = laspy.create(point_format=0)
68

69 las.x, las.y, las.z, las.intensity = create_xyz_amplitude_array(fld)
70

71 laspy.compression.LazBackend(0)

7.2 Convert FLD to LAZ 95

72 las.write(file_new)
73 print(f"Time taken: {time.time() - start_time:.2f} seconds")

7.2.1 Read FLD file
This function has been taken from Nau 2024.

1 import struct
2 import concurrent.futures
3 import numpy as np
4 import os
5 import matplotlib.pyplot as plt
6 import time
7

8 def read_fld(file_path):
9 base_name = os.path.splitext(file_path)[0]

10 output_npy = base_name + '.npy'
11

12 with open(file_path, mode='rb') as f:
13 file_content = f.read()
14

15 xpixels, ypixels, zpixels, pixelsize, y_coor, x_coor, pixelsize_z = read_fld_header(file_content)
16

17 data_start = read_fld_data_specs(file_content, zpixels)
18 start_bits, stop_bits, number_of_values = get_start_stop_bits(file_content, zpixels, data_start)
19

20 fld_data = read_fld_with_threads(file_content, xpixels, ypixels, zpixels, start_bits, stop_bits,
21 number_of_values, output_npy)
22

23 plt.imshow(fld_data[0], cmap='Greys', vmin=4, vmax=24)
24 plt.show()
25

26 return fld_data, xpixels, ypixels, zpixels, pixelsize, y_coor, x_coor, pixelsize_z
27

28 def read_fld_header(file_content):
29 header_data = np.frombuffer(file_content[:40], dtype=np.dtype('>i4, >i4, >i4, >i4, >i4, >i4,
30 >i4, >i4, >i4, >i4'))
31 _, xpixels, ypixels, zpixels, x_start, x_end, _, _, z_start, z_end = header_data[0]
32 _, xpixels, ypixels, zpixels, x_start, x_end, y_start, y_end, z_start, z_end = header_data[0]
33

34 pixelsize = ((x_end-x_start) / xpixels) / 100
35 #pixelsize = ((x_end-x_start) / xpixels) / 100
36 pixelsize_z = ((z_end - z_start) / zpixels) / 100
37

38 x_coor = np.frombuffer(file_content[198:206], dtype='>f8')[0]
39 y_coor = np.frombuffer(file_content[214:222], dtype='>f8')[0]
40

41 x_coor_end = np.frombuffer(file_content[206:214], dtype='>f8')[0]
42 y_coor_end = np.frombuffer(file_content[222:230], dtype='>f8')[0]

96 7 Appendix

43

44 pixelsize = round(((x_coor_end-x_coor) / xpixels), 2)
45

46 return xpixels, ypixels, zpixels, pixelsize, y_coor, x_coor, pixelsize_z
47

48

49

50 def read_fld_data_specs(file_content, z_size):
51 start_b = 246
52 start_num = start_b + z_size * 4 + 4
53 stop_num = start_num + 4
54

55 num_dt = np.frombuffer(file_content[start_num:stop_num], dtype=np.dtype('>i4'))[0]
56

57 start_num_velo = stop_num + (num_dt * 4 * 2) * 2
58 stop_num_velo = start_num_velo + 4
59

60 num_velo = np.frombuffer(file_content[start_num_velo:stop_num_velo], dtype=np.dtype('>i4'))[0]
61

62 data_start = stop_num_velo + num_velo * 2 * 4 + 4
63

64 return data_start
65 def get_start_stop_bits(file_content, number_of_layers, data_start):
66 start_bits = []
67 stop_bits = []
68 number_of_values = []
69

70 for layer_index in range(number_of_layers):
71 # Determine the size of the layer
72 number_of_values_layer = struct.unpack('q', file_content[data_start:data_start + 8])[0]
73 number_of_values.append(number_of_values_layer)
74

75 # Determine the end position of the layer data
76 data_stop = data_start + 16 + number_of_values_layer * 2
77

78 start_bits.append(data_start)
79 stop_bits.append(data_stop)
80

81 # Update the start position for the next layer
82 data_start = data_stop
83

84 return start_bits, stop_bits, number_of_values
85

86 def process_layer(layer_index, file_content, x_size, y_size, start_bits, stop_bits):
87 data_start = start_bits[layer_index]
88 data_stop = stop_bits[layer_index]
89

90 min1, max1 = struct.unpack('>f', file_content[data_start + 8:data_start + 12])[0], \
91 struct.unpack('>f', file_content[data_start + 12:data_start + 16])[0]
92

7.2 Convert FLD to LAZ 97

93 data_values = np.frombuffer(file_content[data_start + 16:data_stop], dtype='>i2')
94 data_values = np.where(data_values > 0, min1 + (data_values - 1) *
95 ((max1 - min1) / 32760), data_values)
96 data_unpacked = []
97

98 # start_time = time.time()
99 for value in data_values:

100 if value < 0 and value.is_integer():
101 data_unpacked.extend([0] * int(abs(value)))
102 else:
103 data_unpacked.append(value)
104 # print(f"Time taken: {time.time() - start_time:.2f} seconds")
105 data_unpacked = np.asarray(data_unpacked, dtype=float)
106

107 data_unpacked = data_unpacked.reshape(y_size, x_size)
108 # print(f"Time taken: {time.time() - start_time:.2f} seconds")
109 return layer_index, data_unpacked
110

111 def read_fld_with_threads(file_content, x_size, y_size, number_of_layers,
112 start_bits, stop_bits, number_of_values, output_npy):
113 data = np.empty((number_of_layers, y_size, x_size), dtype=np.float32)
114

115 with concurrent.futures.ThreadPoolExecutor(max_workers=8) as executor:
116 futures = [executor.submit(process_layer, layer_index, file_content, x_size, y_size,
117 start_bits, stop_bits) for layer_index in range(number_of_layers)]
118

119 for future in concurrent.futures.as_completed(futures):
120 layer_index, data_unpacked = future.result()
121 data[layer_index, :, :] = data_unpacked
122

123 data = data.transpose((0, 1, 2))
124 data = np.flip(data, axis=1)
125

126 return data

	Acronyms
	1 Introduction
	1.1 Choosing Imaging Methods
	1.2 Manors in the Baltic Sea Region
	1.2.1 Hafslund Manor
	1.2.2 Other relevant manors

	1.3 Creating and Visualising Unified 3D Point Cloud
	1.4 Related Works

	2 Material and Methods
	2.1 Ground Penetrating Radar (GPR)
	2.1.1 Electromagnetic Theory
	2.1.2 Reflection and Transmission of EM Waves
	2.1.3 Scattering Mechanisms
	2.1.4 Processing of GPR data

	2.2 Image Based Modeling (IBM)
	Structure from Motion (SfM)
	2.2.1 Feature Detection and Matching
	2.2.2 Geometric Verification
	2.2.3 Incremental Reconstruction
	2.2.4 Bundle Adjustment
	2.2.5 Dense Reconstruction with MVS

	2.3 Terrestrial Laser Scanning (TLS)
	Data Processing
	2.3.1 Registration and Georeferencing in Terrestrial Laser Scanning
	2.3.1.1 Iterative Closest Point (ICP) Algorithm
	2.3.1.2 Point-to-Plane ICP
	2.3.1.3 Generalized Iterative Closest Point (GICP)
	2.3.1.4 Optimization of the pose graph
	2.3.1.5 Georeferencing

	2.4 Tool for visualizing, optimizing and georeferencing of TLS data
	2.4.1 Overview of the Tool
	2.4.2 Libraries and Dependencies
	2.4.3 Core Functionalities and Pipeline
	2.4.3.1 Point Cloud Import and Subsampling
	2.4.3.2 Visualization and Interaction
	2.4.3.3 Alignment via GICP
	2.4.3.4 Optimization of the pose graph
	2.4.3.5 Georeferencing

	2.5 NUBIGON
	2.5.1 Octree Generation
	2.5.2 X-Ray Mode

	2.6 Data
	2.6.1 TLS data
	2.6.2 GNSS data
	2.6.3 IBM data
	2.6.4 GPR data

	3 Results
	3.1 TLS
	3.1.1 GICP alignment
	3.1.2 Pose graph optimization
	3.1.2.1 Weighing edges by corresponding Hessians
	3.1.2.2 Weighing edges using adjusted stochastic model

	3.1.3 Georeferencing the Terrestrial Laser Scanner (TLS) cloud

	3.2 IBM data and TLS comparisons
	3.3 IBM data and GPR comparisons
	3.4 Visualization of merged 3D surface and subsurface data

	4 Discussion
	4.1 TLS
	4.1.1 GICP alignments
	4.1.2 Pose graph optimization
	4.1.3 Assessment of Wall Structure Discrepancies

	4.2 IBM data and TLS comparison
	4.3 IBM data and GPR comparison
	4.4 Visualization of merged data in Nubigon
	4.5 Proposed Workflow

	5 Conclusion
	6 Outlook
	6.1 TLS aquisition and processing
	6.1.1 Pose graph interconnectivity
	6.1.2 Scan matching
	6.1.3 Pose graph optimization and global reference

	6.2 LOAM
	6.3 VR and AR applications
	6.4 Closing Remarks

	Bibliography
	7 Appendix
	7.1 Custom C++ tool for TLS point cloud processing
	7.1.1 E57 file reading
	7.1.1.1 Subsampling

	7.1.2 Generalized ICP registration
	7.1.3 Pose Graph Optimization
	7.1.4 Georeferencing
	7.1.4.1 Transformation matrix computation
	7.1.4.2 GUI and E57 handling

	7.2 Convert FLD to LAZ
	7.2.1 Read FLD file

