
D I P L O M A R B E I T

Reliability in Reinforcement Learning and

Off-Policy Evaluation

Zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Statistics – Probability – Mathematics in Economics

eingereicht von

Jakob aus der Schmitten

Matrikelnummer: 11901960

ausgeführt am Institut für Information Systems Engineering

der Fakultät für Informatik der Technischen Universität Wien

Betreuer: Associate Prof. Dr.techn. Dipl.-Ing. Clemens Heitzinger

Wien, am 27.03.2025
Jakob aus der Schmitten Clemens Heitzinger



Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Diplomarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt
bzw. die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe.

Wien, am 27.03.2025
Jakob aus der Schmitten



Acknowledgments

First, I want to thank Professor Heitzinger for his great supervision on this thesis. I also
want to thank Carlotta Tubeuf for the productive and kind collaboration.
Furthermore, this work was supported by the project “RELY – Reliable Reinforcement

Learning for Sustainable Energy Systems,” funded by the Austrian Research Funding
Agency (FFG) under the grant number #FO0999899921. Parts of the calculations were
performed using supercomputer resources provided by the Vienna Scientific Cluster (VSC).
Last and definitely not least, I would like to thank my family for supporting me through

everything and making my life so much better.

i



Abstract

This thesis discusses several approaches to distributional reinforcement learning and off-
policy evaluation that aim to increase the reliability of reinforcement learning. Furthermore,
we discuss convergence guarantees for these algorithms. The corresponding algorithms are
applied to two simulation models of a pump turbine, which is part of a pumped storage
system and therefore needs to be operated in a reliable manner.
We compare the performance of the algorithms on the environments and discuss chal-

lenges regarding the design of the reward function and the implementation of the software.
Lastly, we present some ideas on how to compare and analyze the learnt distributions.

ii



Contents

1 Introduction 1

2 Expected and Distributional Reinforcement Learning 2
2.1 Notation and Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Distributional Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . 4

3 Distributional Reinforcement Learning Algorithms 7
3.1 C51 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 One-Step Distributional Reinforcement Learning . . . . . . . . . . . . . . . 8
3.3 QR-DQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 IQN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.5 FQF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Convergence Guarantees 21

5 Off-Policy Evaluation 24
5.1 Fundamental Methodology and Terminology . . . . . . . . . . . . . . . . . . 24
5.2 High Confidence Off-Policy Evaluation . . . . . . . . . . . . . . . . . . . . . 25
5.3 Distributional Off-Policy Evaluation . . . . . . . . . . . . . . . . . . . . . . 27

5.3.1 Finite Horizon Fitted Likelihood Estimation . . . . . . . . . . . . . . 27
5.3.2 Infinite Horizon Fitted Likelihood Estimation . . . . . . . . . . . . . 30

6 Environments 32
6.1 Blow-Out Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Simulation of a Commercially used Pump Turbine . . . . . . . . . . . . . . 33

7 Results and Discussion 36
7.1 Learning an Optimal Blowout Policy . . . . . . . . . . . . . . . . . . . . . . 36
7.2 Utilization of the Learnt Return Distributions . . . . . . . . . . . . . . . . . 40
7.3 DistrRL on a Simulation Model of a Commercially used Pump Turbine . . 42

8 Conclusion 48

References 49

iii



1 Introduction

Alongside supervised and unsupervised learning, reinforcement learning (RL) is often con-
sidered as one of the fundamental paradigms of machine learning. In RL, an agent tries
to find an optimal strategy for a specific task by interacting with its environment (Sutton
and Barto, 2018). Especially in the beginning of training an agent, these interactions are
usually quite random to ensure a sufficient amount of exploration. But also after training
is finished, it is not necessarily trivial to know how the agent behaves in different situa-
tions. While unexpected behaviour might not be a problem when the agent is trained on
a simulator, it can have a massively negative impact in other problem settings. Imagine
safety-critical applications such as autonomous driving or controlling a certain physical
machine. In both cases, an unexpected action can lead to people being injured or major
financial losses, for example.
In Chapter 2, we give an introduction into RL and distributional RL by describing the

concept of RL and introducing the necessary definitions.
Five distributional RL algorithms are introduced in Chapter 3, which have empirically

proven to outperform existing RL approaches, which maximize the expected value of the
return (Bellemare et al., 2017; Dabney et al., 2017, 2018; Yang et al., 2019). Furthermore,
we present in detail pseudo code for the algorithms, which is not provided in all of the
original publications.
In Chapter 4, we discuss convergence guarantees for the algorithms introduced in Chapter

3. Especially, we discuss finite sample convergence guarantees. These can be advantageous
in practical applications, as they provide probabilistic error bounds for a finite number of
iterations.
It is often not possible in practice that the RL agent directly interacts with the envi-

ronment. Therefore, we discuss different methods for off-policy evaluation in Chapter 5.
These use a collected dataset to evaluate a policy and therefore do not need to interact
with the environment.
Another example of a risk sensitive application is the control of a pump turbine used in

a pumped hydro storage system. One can’t simply let the agent operate on such expensive
machinery, as it might cause major financial damage and such critical infrastructure needs
to be controlled reliably. More precisely, we present two physical simulation models that
respectively act as the environments for the RL algorithms in Chapter 6.

In Chapter 7, the results of the distributional RL algorithms presented in Chapter 3,
applied to the pump turbine environments are shown. We discuss the search for well
performing hyper parameters and problems we faced during learning. Furthermore, we
present methods for using the learned distributions to increase reliability.

1



2 Expected and Distributional Reinforcement
Learning

In this Chapter 2, we give a short introduction into RL. Subsection 2.1 deals with the
intuition behind RL, introduces the corresponding notation and basic definitions. The
method discussed in this subsection can be considered as the classic form of RL.
In Subsection 2.2, an advancement of classic RL is introduced by formulating the cor-

responding definitions, fundamental results and comparing it to the method described in
Subsection 2.1.

2.1 Notation and Basic Definitions

The environment the RL agent interacts with is represented by a finite, or possibly infinite
discrete or continuous, state space S. At each timestep t and corresponding state st ∈ S,
based on a policy π(st), the agent chooses an action at in the finite or possibly infinite
action space A. This action leads to a new state st+1. The transition from a state-action
pair (st, at) to another state st+1 is determined by a transition kernel P (.|st, at). After each
action, the agent receives a reward rt, based on a given reward function R, which output
is determined by the state st+1 to which the action at led. This interaction of the agent
with the environment is depicted in Figure 2.1.

Figure 2.1: Interaction of agent and environment: The agent gets an input from the en-
vironment and outputs an action, while the environment takes an action from
the agent and outputs a state and a reward (Sutton and Barto, 2018).

The whole procedure is modelled as a Markov Decision Process (MDP), given as

(S,A, R, P, γ).

Here, γ ∈ [0, 1] denotes the discount factor. It determines how much a future reward, based
on a preceding state and action, is taken into account.

2



The goal of the agent is to find a policy π that maximizes the action value function

Qπ(., .) := EZπ(., .). (1)

Where the return Zπ is given by the sum of discounted rewards, obtained from starting in
state s with action a and thereafter following a policy π (Bellemare et al., 2017), i.e.,

Zπ(s, a) :=

∞%
t=0

γtR(st, at). (2)

The states and actions at each timestep are given by

s0 = s, a0 = a, st+1 ∼ P (.|st, at), at+1 ∼ π(.|st+1),

where A ∼ B is understood as A follows the distribution/transition kernel B. Looking at
the definition of the return (2), one can see that a discount factor strictly smaller than 1
leads to rewards far in the future having much less impact on the return than rewards in
the near future. If the absolute values of the rewards are uniformly bounded by a constant
C and γ < 1, then the return can be bounded by

|Zπ(., .)| ≤ C

∞%
t=0

γt = C
1

1− γ
. (3)

Furthermore, observe that

Qπ(s, a) = ER(s, a) + γEπ,P Qπ(s′, a′), (4)

where s′ is the next state, distributed as P (.|s, a) and the next action a′ is distributed
as π(.|s). Equation (4) is fundamental in RL and widely known as the Bellman equation
(Bellman, 1957). The action value function can be maximized by solving the optimality
equation (Sutton and Barto, 2018)

Q⋆(s, a) = ER(s, a) + γEP max
a′∈A

Q⋆(s′, a′), (5)

which has a unique fixed point Q⋆. Where Q⋆ is the optimal action value function, corre-
sponding to the set of optimal policies Π⋆. Optimality of a policy is defined as follows.

Definition 1. A policy π⋆ is optimal, i.e., π⋆ ∈ Π⋆, if

Ea∼π⋆Q⋆(s, a) = max
a∈A

Q⋆(s, a).

Both, the Bellman equation (4) and the optimality equation (5), can be expressed using
the Bellman operator T π and optimality operator T . They are given by

T πQ(x, a) := ER(x, a) + γEP,π Q
�
x′, a′

�
,

T Q(x, a) := ER(x, a) + γEP max
a′∈A

Q
�
x′, a′

�
and are both contraction mappings, which yield the fixed points Qπ(., .) and Q⋆(., .), re-
spectively.

3



2.2 Distributional Reinforcement Learning

We start by introducing the definitions and crucial results for distributional reinforcement
learning and finish with a comparison to the previously described classical RL approach.

Definitions and Fundamental Results

The method described in Section 2.1 uses the expected value of the return and is called
expected reinforcement learning. It can be regarded as the classic approach of RL. Another,
more recent approach is distributional reinforcement learning (DistrRL) and was introduced
by Bellemare et al. (2017). Instead of only looking at the expected value of the return, one
considers the whole distribution of the return. In contrast to equation (4), one recursively
represents the return of a given policy π as

Zπ(s, a)
d
= R(s, a) + γZπ(S′, A′), (6)

where “
d
= ” means equality in distribution and Zπ(s, a), R(s, a), Zπ(S′, A′) and (S′, A′)

are random variables. This means that the law of the return at the state-action pair (s, a)
is the same as the law of the reward R at (s, a) plus the discounted return at the next
state-action pair (S′, A′). We will use the following definition.

Definition 2. Given a policy π and the corresponding return Zπ(s, a) at state-action pair
(s, a), we denote the return distribution as

ηπ(s, a),

which means that
Zπ(s, a) ∼ ηπ(s, a).

We set br,γ(x) := r+γx and denote the push forward measure for an arbitrary measure µ
and a function f : R → R as f#. So for any Borel set A we have (br,γ)#µ(A) = µ((A−r)/γ).

Equation (6) is called distributional Bellman equation and one defines the following
operator.

Definition 3. For a fixed policy π, the distributional Bellman operator T π : Z → Z is
given by

T πη(s, a) := ES′∼P (.|s,a), A′∼π(.|S′=s′), r∼PR(s,a)(br,γ)#η(S
′, A′), (7)

where Z is the space of return distributions with bounded moments and PR(s, a) is the
distribution of the reward R(s, a).

Using this definition, one can also write the distributional Bellman equation (6) as

ηπ = T πηπ. (8)

Given a policy π, the true distribution ηπ is a fixed point of the distributional Bellman
equation (8). Since one needs to compare distributions, probability metrics are used. Com-
mon choices are the Kullback-Leibler divergence, Wasserstein metric and Cramér distance.
A comparison of these three metrics can be found in Théate et al. (2023), for example.
We will use the Wasserstein metric at several points in this thesis and therefore define it
(Villani, 2008).

4



Definition 4. Let (X, d) be a Polish space and p ∈ [0,∞) . The p-Wasserstein metric
between any two probability measures µ and ν on X is defined as

Wp(µ, ν) :=

�
inf

π∈Π(µ,ν)

�
X
d(x, y)pdπ(x, y)

�1/p

,

where Π(µ, ν) is the set of all couplings of µ and ν.

For real valued probability measures µ and ν the p-Wasserstein metric is of the form

Wp(µ, ν) =

�� 1

0
|F−1

µ (x)− F−1
ν (x)|pdx

�1/p

,

where F−1
µ and F−1

ν are the quantile functions of µ and ν, respectively. Given two return
distributions η and ν, we set

W p(η, ν) := sup
(s,a)∈S×A

Wp(η(s, a), ν(s, a))

and call it the supremum p-Wasserstein metric. Bellemare et al. (2017) show that the
distributional Bellman operator T π : Z → Z is a γ-contraction in W p, i.e.,

W p(T πη, T πν) ≤ γW p(η, ν). (9)

According to Banach’s fixed point theorem, this means that T π has a unique fixed point.
One can see that this fixed point is given by ηπ in (6). For η0 ∈ Z and ηt+1 := T πηt, this
means that the sequence (ηt)t∈N converges to ηπ in the supremum p-Wasserstein metric,
i.e.,

lim
t→∞W p(ηt, ηπ) = 0.

So far in this Section 2.2 we were given a fixed policy π and wanted to calculate the
return distribution of this policy for each state-action pair. This setting is called policy
evaluation. Now, we consider the policy control setting, where the goal is to find a policy
that maximizes the action value function (1).

Definition 5. A return distribution η⋆ is optimal, if it is the return distribution of an
optimal policy.

Notice that an optimal return distribution is generally not unique, as there might be
multiple optimal policies with different return distributions.
Before we can define the notion of a distributional Bellman optimality operator, we need

to introduce another definition.

Definition 6. Given a return Z, a greedy policy for Z is a policy π that maximizes the
expectation of Z. We denote the set of greedy policies for Z as

GZ :=

�
π :

%
a∈A

π(a|s)EZ(s, a) = max
a′∈A

EZ(s, a′)

�
.

5



Using the notion of a greedy policy we can make the following definition.

Definition 7. Let η be the return distribution of a return Z. An operator T which
implements a greedy selection rule, i.e.,

T η = T πη , π ∈ GZ (10)

is called distributional Bellman optimality operator.

Bellemare et al. (2017) show that the distributional Bellman optimality operator T is
not as well behaved as the distributional Bellman operator T π of a policy π. Namely, T is
no contraction in any metric that separates T η and η. Furthermore, not all distributional
Bellman optimality operators T have a fixed point. Even if T has a fixed point η⋆ = T η⋆

it is not guaranteed that (ηt)t∈N converges to η⋆, where η0 ∈ Z and ηt+1 := T ηt.

Advantages of Distributional Reinforcement Learning

Calculating the whole return distribution instead of just an expected value can be beneficial
when the return is multimodally distributed. In such a case, the expected value is poor
at describing the distribution. Furthermore, Bellemare et al. (2017) claim that DistrRL
mitigates the effects of learning from a nonstationary policy. Empirical results of different
DistrRL algorithms (Bellemare et al., 2017; Dabney et al., 2017, 2018; Yang et al., 2019)
seem to confirm the advantages of the distributional approach, compared to expected RL.
The advantageous behaviour and main difference of DistrRL, compared to expected RL,
comes into play through function approximation (Lyle et al., 2019). When using tabular
methods or linear function approximation, both DistrRL and expected RL are expectation-
equivalent, in general.
Furthermore, calculating the entire distribution of the return can give a lot of information

about the risks of a given policy. Highly left skewed distributions indicate a high probability
of getting a low reward, for example. It is also possible to calculate the variance of the
return or the probability of the return being in a certain interval. All of this is important
when one looks at safety-critical applications such as self-driving cars or controlling an
expensive physical machine, where it is necessary to quantify risks. Also in finance there
are risk measures which require to know the whole distribution instead of just the expected
value.

6



3 Distributional Reinforcement Learning
Algorithms

We come to the formulation of different DistrRL algorithms. Besides introducing the theory
and definitions needed for the respective algorithms, we also provide pseudo-code for each
algorithm and discuss the convergence behaviour of certain approaches.

3.1 C51

The C51 algorithm is a DistrRL algorithm and was proposed by Bellemare et al. (2017).
We will mainly use the notation from Rowland et al. (2018) as it matches the one in this
thesis mostly and the authors deal with both policy evaluation and policy control.
This algorithm belongs to the class of categorical distributional RL (CDRL) algorithms,

as it uses a finite number of equally spaced support points z1, . . . , zN in the domain of
the return distribution together with corresponding weights p1, . . . , pN to represent an
approximation of the return distribution. The support points, which are often called atoms
in the literature, are fixed beforehand and the weights are learnt and required to sum to
one, i.e.,

&N
i=1 pi = 1. This means that for each state-action pair (s, a) ∈ S × A the

approximate return distribution at time t is represented by

η̃t(s, a) =
N%
i=1

δzipt,i(s, a), (11)

where δ. denotes the Dirac measure. We denote the set of distributions of the form (11) as
P. Note, that this approximation of the distribution is necessary as one can not represent
the whole space of probability distributions by a finite set of parameters.

Furthermore, one also approximates the distributional Bellman operator (7), because
computing expectations is usually infeasible in practice. Usually, this is the case because
of lacking knowledge of the underlying distributions or because of limited computational
resources. The approximation is done by sampling a transition (st, at, rt, st+1, a

⋆), where
a⋆ ∼ π(.|st+1) in policy evaluation and a⋆ = argmaxa′∈A ER∼η(st+1,a′)R when doing policy
control (or categorical Q-Learning as Rowland et al. (2018) call it). The approximate
distributional Bellman operator, in the policy evaluation setting, is of the form

(T̂ πηt)(st, at) = (brt,γ)#ηt(st+1, a
⋆),

(T̂ πηt)(s, a) = ηt(s, a) if (s, a) ̸= (st, at).
(12)

It is important to notice that the approximate distributional Bellman operator (12) is in
expectation equal to the distributional Bellman operator (7).
After an update, i.e., after the approximate distributional Bellman operator was applied,

the obtained distribution is in general not of the form (11) anymore. The reason for this is

7



that the operator shifts and rescales the previous distribution and in general the supports
do not coincide anymore. This issue is solved by using a projection operator ΠC , defined
as

ΠC (δy) =

��
δz1 , if y ≤ z1,
zi+1−y
zi+1−zi

δzi +
y−zi

zi+1−zi
δzi+1 , if zi < y ≤ zi+1,

δzN , if y > zN

(13)

and affinely extending ΠC to finite mixtures of Dirac measures. The projection shifts the
mass from the space between the atoms proportionally back to the positions of the atoms.
Next, a single step of gradient descent is performed on the loss

L
�
ψ, η̃t(st, at),ΠC(T̂ πη̃t(st, at))

�
, (14)

which is given by the Kullback-Leibler divergence of the prediction η̃t(st, at) from the target
ΠC(T̂ πη̃t(st, at)), with respect to the parameters ψ of η̃t(st, at). The parametrization of the
new estimate η̃t+1(st, at) is obtained by utilizing the gradient of the loss. Pseudo-code for
the C51 algorithm can be seen in Algorithm 1. Note, that the pseudo-code could be slightly
different from the original implementation by Bellemare et al. (2017), but it represents the
implementation in the CleanRL Python library (Huang et al., 2022) which we use for our
experiments.
CleanRL is an open-source library that contains peer-reviewed Deep RL algorithms.

A major advantage of the library are the single file implementations of the algorithms,
which make it fairly easy to understand the implementations and adapt them to one’s own
requirements.
Apart from calculating distributions instead of returns, the algorithmic architecture of

the C51 algorithm is similar to the (original) DQN architecture in Mnih et al. (2015).
Firstly, this means that each transition gets stored in a replay buffer of a certain size. When
the replay buffer is full, the oldest transition in the buffer gets deleted to make space for the
new transition. Instead of calculating only one update each timestep, a sample is drawn
uniformly at random from the replay buffer. The sample is calledminibatch and updates are
calculated for each element in the sample simultaneously. This method is called experience
replay and one of its advantages is a greater data efficiency. Furthermore, random sampling
breaks correlations between consecutive samples and therefore reduces the variance of the
updates. By averaging over the whole batch instead of using a single sample, oscillations
or divergence in the parameters are also avoided during learning. Another concept in
the DQN architecture is the usage of a separate neural network for generating the target
distributions. Every target network frequency steps, the parameters of the target network
are set to the current parameters of the network for categorical function approximation.
This should also lead to a smoother training.

3.2 One-Step Distributional Reinforcement Learning

The distributional Bellman optimality operator (10) is not a contraction in any metric,
according to Proposition 1 in Bellemare et al. (2017). This means that convergence is not
guaranteed in the control setting, since the distributional Bellman optimality operator does
not necessarily have a fixed point. The potential existence of multiple optimal policies is

8



Algorithm 1 C51 – Categorical DistrRL

Input: η̃0(s, a) =
&N

i=1 δzip0,i(s, a) ∀(s, a) ∈ S ×A, Policy π if policy evaluation
Output: Approximate [optimal] return distribution η̃π(s, a) [η̃

⋆(s, a)] ∀(s, a) ∈ S ×A
Parameters: Number N of atoms z., number T of total training steps, start training
after learn start steps, train every train frequency steps, update the target network every
target network frequency steps
Initialize replay buffer D
Initialize neural network with random weights ψ for categorical function approximation
Initialize target neural network with weights φ ← ψ
Reset environment to obtain initial state s0 and set terminated = False

1: for global step = 0, . . . , T do
2: if terminated then
3: reset environment and set terminated = False
4: end if
5: if (policy evaluation and greedy action selection) then
6: at ∼ π(.|st)
7: else if (policy control and greedy action selection) then
8: at ← argmaxa∈A ER∼η̃t(st,a)[R]
9: else

10: Select action at randomly
11: end if
12: Obtain reward rt and next state st+1 (or set terminated = True)
13: Add transition (st, at, rt, st+1) to the replay buffer D
14: if global step > learn start then
15: if (global step modulo train frequency = 0) then
16: Sample minibatch of transitions from D
17: for each element (st, at, rt, st+1) in minibatch do
18: if policy evaluation then
19: a⋆ ∼ π(.|st+1)
20: else if policy control then
21: a⋆ ← argmaxa∈A ER∼η̃t(st+1,a)[R]
22: end if
23: η̃(st, at) ← (brt,γ)#η̃t(st+1, a

⋆)
24: η̂(st, at) ← ΠC η̃(st, at)
25: end for
26: Calculate losses L (ψ, η̃t(st, at), η̂(st, at)) for each transition in minibatch
27: Use gradient of summed losses to update ψ
28: Use updated ψ to set η̃t+1(s, a) =

&N
i=1 δzipt+1,i(s, a) ∀(s, a)

29: end if
30: if (global step modulo target network frequency = 0) then
31: φ ← ψ
32: end if
33: end if
34: end for

9



the reason for that. While multiple optimal policies have the same optimal value function
in expected RL, they can lead to different distributions in DistrRL. Distributional control
algorithms might then mix these distributions up and never converge. Nevertheless, assum-
ing that the optimal policy is unique, DistrRL algorithms can also converge in the control
case (Rowland et al., 2018).
A one-step approach, which the authors call one-step distributional RL (OS-DistrRL),

for finite state and action spaces is introduced by Achab et al. (2023) to overcome
the non-convergence issues of CDRL. Denoting the set of probability measures on R with
bounded support as Pb(R), one can define the following two one-step operators.

Definition 8. For a fixed policy π and state-action pair (s, a) ∈ S × A, the one-step
distributional Bellman operator Tπ : Pb(R)S×A → Pb(R)S×A for any distribution function
µ is given by

(Tπµ) (s, a) =
%
s′

P
�
s′ | s, a� δR(s,a)+γ

�
a′ π(a′|s′)EZ∼µ(s′,a′)[Z]. (15)

Definition 9. For a state-action pair (s, a) ∈ S × A, the one-step distributional Bellman
optimality operator T : Pb(R)S×A → Pb(R)S×A for any distribution function µ is given by

(Tµ)(s, a) =
%
s′

P
�
s′ | s, a� δR(s,a)+γmaxa′ EZ∼µ(s′,a′)[Z]. (16)

Using these definitions, we formulate the previously described contractivity results for
the one-step operators.

Theorem 1. Let π be an arbitrary, fixed policy, then

1. for any 1 ≤ p ≤ ∞, the one-step operators Tπ and T are γ contractions in W p.

2. the Cramér-projected (13) one-step operators ΠC ◦ Tπ and ΠC ◦ T are γ contractions
in W 1.

Utilizing Theorem 1, the authors proof the existence and uniqueness of fixed points.
Before these results are stated, we introduce the notion of the value function V π(.) of a
policy π, which is given by V π(s) =

&
a∈A π(a|s)Qπ(s, a). The optimal value function

V ⋆(.) is given analogously.

Theorem 2. Let π be an arbitrary, fixed policy.

1. Then the unique fixed point νπ of Tπ is given by

νπ(s, a) =
%
s′

P
�
s′ | s, a� δR(s,a)+γV π(s′), ∀(s, a) ∈ S ×A.

2. Then the unique fixed point ν∗ of T is given by

ν∗(s, a) =
%
s′

P
�
s′ | s, a� δR(s,a)+γV ∗(s′), ∀(s, a) ∈ S ×A.

10



3. If z1 ≤ R (s, a) + γV π (s′) ≤ zK for all triplets (s, a, s′), then the unique fixed point
of ΠC ◦ Tπ is ηπ = ΠC (νπ).

4. If z1 ≤ R (s, a) + γV ∗ (s′) ≤ zK for all triplets (s, a, s′), then the unique fixed point
of ΠC ◦ T is η∗ = ΠC (ν∗).

Notice that the first statement of Theorem 2 implies that OS-DistrRL can not distinguish
between two policies with the same value functions, which would yield distinct fixed points
in CDRL.

Proofs of Theorem 1 and Theorem 2 can be found in the original work (Achab et al.,
2023). For the proof of the third statement in Theorem 2, the following Lemma 1 is used.

Lemma 1. For a discrete distribution q with finite support included in [z1, zN ], the Cramér
projection (13) ΠC is mean preserving, i.e.,

EZ∼q[Z] = EZ∼ΠCq[Z].

Proof. Let z1, . . . , zN be a set of atoms, q be a discrete distribution with support included
in [z1, zN ] and p1, . . . , pN the probability mass of the atoms respectively. By the definition
of the Cramér projection (13) and the definition of the expected value, we have

EZ∼ΠCq[Z] =

N%
k=1

pk

N%
j=1

1zj<zk≤zj+1

�
zj+1 − zk
zj+1 − zj

zj +
zk − zj
zj+1 − zj

zj+1

�

=
N%
k=1

pk

N%
j=1

1zj<zk≤zj+1

�
zj+1zj − zkzj + zkzj+1 − zjzj+1

zj+1 − zj

�
� �� �

=zk

=

N%
k=1

pkzk

= EZ∼q[Z].

■

Now, we are ready to use OS-DistrRL to design the corresponding algorithm, which
is called “OS-C51” by the authors. The OS-C51 algorithm is quite similar to the C51
algorithm, the main difference lies in the target. Where C51 has

ΠC

�
(brt,γ)#

N%
i=1

δzipt,i(st+1, a
⋆)

�
= ΠC

�
N%
i=1

δrt+γzipt,i(st+1, a
⋆)

�

as a target, the target of OS-C51 is

ΠC

�
N%
i=1

δrt+γQt(st+1,a⋆)

�
. (17)

11



One can see from (17), that the OS-C51 target does not change in case of the existence
of multiple optimal policies. Furthermore, the OS-C51 target is computationally more
efficient, since it consists of at most two atoms.

In Theorem 4.1 in Achab et al. (2023), the authors show that their “one-step cate-
gorical DistrRL” (Algorithm 1 in the paper) converges almost surely in the supremum
p-Wasserstein metric W 1(., .), in both the policy control and policy evaluation case. Nev-
ertheless, the one-step categorical DistrRL algorithm is a tabular algorithm, which means
that a finite number of states and actions is assumed. Therefore, the authors also intro-
duce the “OS-C51” (Algorithm 2 in the paper), which uses neural networks to approximate
the probability mass at the respective atoms and is therefore able to deal with continuous
state spaces. They also provide Python code for this algorithm, which is based on the C51
implementation in the cleanRL library (Huang et al., 2022). We give detailed pseudo-code
in Algorithm 2.

3.3 QR-DQN

Instead of using a fixed set of atoms and learning the probability mass of each atom to ap-
proximate the return distribution, one can also fix a number of equally spread probabilities
and learn their location. Exactly this approach is introduced by Dabney et al. (2017).
Fixing a number N of quantiles and denoting a parametric model as θ : S × A → RN ,

one can denote a quantile distribution µθ(., .) as

µθ(s, a) :=
1

N

N%
i=1

δθi(s,a) ∀(s, a) ∈ S ×A. (18)

Which means that each state-action pair (s, a) gets mapped to a uniform probability dis-
tribution supported on {θi(s, a) | i = 1, . . . , N}.
This approach has several advantages compared to CDRL. First, one does not need to

know the range of the distribution that should be represented, as the quantiles are by
definition between 0 and 1. Especially when the range of the returns varies a lot across the
states and actions, this is a huge benefit. Furthermore, one does not need the projection
step used in CDRL algorithms, as there are no issues of disjoint supports. Thirdly, the
Wasserstein-loss, which is given by the Wasserstein metric between the target and the
prediction, can be minimized using quantile regression.
One of the tools needed, is the projection of an arbitrary value distribution µ onto the

set of quantile distributions (with a fixed number of quantiles N) ZQ. This projection is
called quantile projection and defined as

ΠW1µ := argminZθ∈ZQ
W1(Zθ, µ).

For a distribution Y with bounded first moment and a uniform distribution U with support
{θ1, . . . , θN}, as it is given in (18), it holds that

W1(Y, U) =

N%
i=1

� i
N

i−1
N

((F−1
Y (ω)− θi

(( dω.

12



Algorithm 2 OS-C51 – One-Step Categorical DistrRL

Input: η̃0(s, a) =
&N

i=1 δzip0,i(s, a), ∀(s, a) ∈ S ×A
Output: Approximate optimal return distribution η̃⋆(s, a), ∀(s, a) ∈ S ×A
Parameters: Number N of atoms z., number T of total training steps, start training
after learn start steps, train every train frequency steps, update the target network every
target network frequency steps
Initialize replay buffer D
Initialize neural network with random weights ψ for categorical function approximation
Initialize target neural network with weights φ ← ψ
Reset environment to obtain initial state s0 and set terminated = False

1: for global step = 0, . . . , T do
2: if terminated then
3: reset environment and set terminated = False
4: end if
5: if (greedy action selection) then
6: at ← argmaxa∈A ER∼η̃t(st,a)[R]
7: else
8: Select action at randomly
9: end if

10: Obtain reward rt and next state st+1 (or set terminated = True)
11: Add transition (st, at, rt, st+1) to the replay buffer D
12: if global step > learn start then
13: if (global step modulo train frequency = 0) then
14: Sample minibatch of transitions from D
15: for each element (st, at, rt, st+1) in minibatch do
16: Qt(st+1, a) ←

&N
i=1 zi pt,i(s, a) ∀a ∈ A

17: η̂(st, at) ← ΠC
�
δrt+γmaxa′∈A Q(st+1,a′)

�
18: end for
19: Calculate losses L (ψ, η̃t(st, at), η̂(st, at)) for each transition in minibatch
20: Use gradient of summed losses to update ψ
21: Use updated ψ to set η̃t+1(s, a) =

&N
i=1 δzipt+1,i(s, a) ∀(s, a)

22: end if
23: if (global step modulo target network frequency = 0) then
24: φ ← ψ
25: end if
26: end if
27: end for

13



Denoting τ̂i :=
i−1
N

+ i
N

2 , Lemma 2 in Dabney et al. (2017) implies that the values

θi = F−1
Y (τ̂i) for i = 1, . . . , N (19)

minimze W1(Y, U). The value of the quantile function F−1
Y (τ), at a quantile τ , can be

characterized as the minimizer of the quantile regression loss, given as

Lτ
QR(θ) := EŶ∼Y


(Ŷ − θ)(τ − δŶ−θ<0

�
. (20)

According to (19), this means that W1(Zθ, µ) is minimized by the values {θ1, . . . , θN}, that
minimize

N%
i=1

EŶ∼Y


(Ŷ − θi)(τ − δŶ−θi<0

�
.

The minimizers {θ1, . . . , θN} can be calculated by stochastic gradient descent, because the
loss gives unbiased sample gradients.
Denoting the infinity-Wasserstein metric as W∞(C,D) := supω∈[0,1] |F−1

C (ω) − F−1
D (ω)|,

it can be shown that the combined operator ΠW1T π is a γ contraction with respect to
the supremum infinity-Wasserstein metric. Formally, for a MDP with countable state and
action spaces and two arbitrary value distributions Z1, Z2 with finite moments, it holds
that

W∞ (ΠW1T πZ1,ΠW1T πZ2) ≤ γW∞ (Z1, Z2) . (21)

This (21) implies the existence of a unique fixed point of the combined operator ΠW1T π.
Therefore, repeated application of ΠW1T π, or its stochastic approximation, leads to con-
vergence to the fixed point. Since W p(., .) ≤ W∞(., .), the convergence result holds for all
p ∈ [1,∞].
Now, a DistrRL algorithm for policy evaluation can be formulated. It is consistent with

the theoretical results obtained before and called quantile regression temporal difference
learning (QRTD) (Dabney et al., 2017). The basis for this algorithm is temporal difference
(TD) learning (Sutton, 1988) and well known in the expected RL setting. In TD learning,
the update rule for the evaluation of a policy π is

V π(s) ← V π(s) + α
�
r + γV π

�
s′
�− V π(s)

�
,

a ∼ π(· | s), r ∼ PR(s, a), s
′ ∼ P (· | s, a)

where V π(.) is the value function corresponding to π. Accordingly, the update rule for
QRTD is

θi(s) ← θi(s) + α
�
τ̂i − δ{r+γz′<θi(s))}

�
,

a ∼ π(· | s), r ∼ PR(s, a), s
′ ∼ P (· | s, a), z′ ∼ Zθ

�
s′
�
.

Where Zπ(.) is the return distribution, θi(s) the estimated value of F−1
Zπ(s) (τ̂i) in state s

and Zθ is a quantile distribution (18).
A policy control version of DistrRL using quantile regression is based on the distributional

Bellman optimality operator (10). The architecture is quite similar to the one used for

14



DQN in Mnih et al. (2015) and the authors call the algorithm quantile regression DQN
(QR-DQN). Apart from the fact that the neural networks output N quantiles, the main
difference lies in the loss function, which is a quantile Huber loss in the case of QR-DQN.
Denoting

Lκ(u) :=

�
1
2u

2, if |u| ≤ κ,

κ(|u| − 1
2κ), otherwise,

the quantile Huber loss for a quantile τ ∈ [0, 1] and predetermined hyper parameter κ ≥ 0
is given as

ρκτ (u) := |τ − 1{u<0}|
Lκ(u)

κ
, (22)

where 1{u<0} denotes the indicator function being one for u < 0 and zero otherwise. One
can see that the quantile Huber loss is an asymmetric squared loss in the interval [−κ, κ]
and reverts to the quantile regression loss (20) outside of this interval. Pseudo-code for
the algorithm we are using is given in Algorithm 3. The implementation used is from the
“Stable-Baselines3 – Contrib” Python library (Raffin et al., 2021).

3.4 IQN

While a fixed number of quantiles is learnt in Section 3.3, one could also learn the entire
quantile function. This approach is taken in Dabney et al. (2018) and has several advan-
tages, such as being capable of approximating any return distribution if the neural network
is large enough and resources for training are sufficient. Furthermore, data efficiency is
improved because updates can be done with an arbitrary number of samples, given suffi-
cient compute power. By computing an implicit representation of the return distribution,
the class of policies can be expanded to policies πβ on arbitrary distortion risk measures
β. These policies don’t simply maximize the action value functions but also consider some
kind of risk. As already mentioned, this is of utmost importance when RL policies control
expensive machinery or could have an impact on the well-being of people.
More precisely, the so called implicit quantile network (IQN) is trained to reparameterize

samples from a base distribution, which could, for example, be the uniform distribution U(.)
on the interval [0, 1], to the respective quantile values of a target distribution. We denote
the quantile function of the distribution µ evaluated at x ∈ [0, 1] as F−1

µ (x). Formally, for
a state-action pair (s, a) ∈ S × A, the state-action quantile function maps τ ∼ U([0, 1])
(or another base distribution) to a sample F−1

η(s,a)(τ) ∼ η(s, a) from the implicitly defined

return distribution η(s, a). For a distortion risk measure β : [0, 1] → [0, 1], the distorted
expectation of Z(s, a) ∼ η(s, a) is given by

Qβ(s, a) := Eτ∼U([0,1])[F
−1
η(s,a)(β(τ))], (23)

and the corresponding risk-sensitive greedy policy is given as πβ(s) = argmaxa∈AQβ(s, a).
Now, the sampled temporal difference error for two samples τ, τ ′ ∼ U([0, 1]) and policy πβ
at time t is the difference

δτ,τ
′

t := rt + γF−1
η(st+1,πβ(st+1))

(τ ′)− F−1
η(st,at)

(τ).

15



Algorithm 3 QR-DQN

Input: η̃0(s, a) =
1
N

&N
i=1 δθi(s,a) ∀(s, a) ∈ S ×A

Output: Approximate optimal return distribution η̃⋆(s, a) ∀(s, a) ∈ S ×A
Parameters: Number N of quantiles θ.(., .), number T of total training steps , start
training after learn start steps, train every train frequency steps, update the target
network every target network frequency steps, hyper parameter κ for quantile Huber loss
Initialize replay buffer D
Initialize neural network with random weights ψ for calculation of quantiles
Initialize target neural network with weights φ ← ψ
Reset environment to obtain initial state s0 and set terminated = False

1: for global step = 0, . . . , T do
2: if terminated then
3: reset environment and set terminated = False
4: end if
5: if (greedy action selection) then
6: at ← argmaxa∈A ER∼η̃t(st,a)[R]
7: else
8: Select action at randomly
9: end if

10: Obtain reward rt and next state st+1 (or set terminated = True)
11: Add transition (st, at, rt, st+1) to the replay buffer D
12: if global step > learn start then
13: if (global step modulo train frequency = 0) then
14: Sample minibatch of transitions from D
15: for each element (st, at, rt, st+1) in minibatch do

16: Q(st+1, a) ← 1
N

&N
i=1 θ

ψ
i (st+1, a) ∀a ∈ A

17: a⋆ ← argmaxa′∈AQ(st+1, a
′)

18: T θj ← rt + γ θφj (st+1, a
⋆) ∀i = 1, . . . , N

19: end for
20: Calculate quantile Huber losses

&N
i=1

&N
j=1 ρ

κ
τ̂i
(T θj − θψi (xt, at)) for each

transition in minibatch
21: Use gradient of summed losses to update ψ
22: Use updated ψ to set η̃t+1(s, a) =

&N
i=1 δθψi (s,a)

∀(s, a)
23: end if
24: if (global step modulo target network frequency = 0) then
25: φ ← ψ
26: end if
27: end if
28: end for

16



The IQN loss is given by

L(st, at, rt, st+1) =
1

N ′

N%
i=1

N ′%
j=1

ρκτi(δ
τi,τ

′
j

t ), (24)

where ρκτi(.) is the quantile Huber loss (22) and τi, τ
′
j are independent, identically distributed

(i.i.d.) samples from a uniform distribution on [0, 1]. A sample based risk-sensitive policy
can then be found by approximating Qβ(., .) (23) using K samples τ̃1, . . . , τ̃K ∼ U([0, 1])
and calculating

π̃β(s) = argmaxa′∈A
1

K

K%
i=1

F−1
η(s,a)(β(τ̃i)).

Pseudo-code for the IQN algorithm can be seen in Algorithm 4. Again, we use the imple-
mentation from the “Stable-Baselines3 - Contrib” Python library (Raffin et al., 2021).
In practice, the input to the quantile function at a certain action is given by the element-

wise (Hadamard) product ⊙ of an embedding of the probability τ and the embedded state
s. The state embedding ι : S → Rd is the same as in the DQN algorithm (Mnih et al.,
2015). The probability embedding ν : R → Rd is given by

νj(τ) = ReLU

�
n−1%
i=0

cos(πiτ)wij + bj

�
, (25)

where ReLU is the rectified linear unit widely known from neural network architectures and
w.., b. are network parameters. The network parameters of both embedding networks ι and
ν are also updated using gradient descent on the IQN loss. To ensure better readability we
stick to the notation F−1

η(s,a)(τ) instead of F−1(ι(s)⊙ ν(τ), a) in the pseudocode 4.

3.5 FQF

Instead of sampling the quantiles randomly and learning the corresponding values of the
quantile function, as it is done in Section 3.4, one could also learn the locations of the
quantiles. We will refer to these locations as quantile fractions in the following, since they
partition the interval [0, 1] into N parts. This approach is taken in Yang et al. (2019)
and the authors claim that it leads to a better approximation of the return distribution,
compared to the approaches with fixed or sampled quantile fractions as described in Section
3.3 and Section 3.4. As there can only be handled a finite number of fractions in practice,
the Fully parameterized Quantile Function (FQF) algorithm benefits of being able to utilize
this finite number of fractions as good as possible.
Denoting the quantile fractions as 0 = τ0 < τ1 < · · · < τN = 1 and the quantile values

as θ0, . . . , θN−1, the FQF algorithm approximates the distribution of the return at each
state-action pair (s, a) as

η̃(s, a) :=
N−1%
i=0

(τi+1(s, a)− τi(s, a))δθi(s,a). (26)

17



Algorithm 4 IQN

Output: Approximate quantile function F−1
η(s,a)(.) of optimal return distribution η̃⋆(s, a),

∀(s, a) ∈ S ×A
Parameters: Numbers N,N ′,K of samples to be drawn from U([0, 1]), number T of
total training steps, start training after learn start steps, train every train frequency
steps, update the target network every target network frequency steps, hyper parameter
κ for quantile Huber loss, distortion risk measure β
Initialize replay buffer D
Initialize neural network with random weights ψ for calculation of quantile function
Initialize target neural network with weights φ ← ψ
Reset environment to obtain initial state s0 and set terminated = False

1: for global step = 0, . . . , T do
2: if terminated then
3: reset environment and set terminated = False
4: end if
5: if (greedy action selection) then
6: Sample τi from U([0, 1]) for 1 ≤ i ≤ K
7: at ← argmaxa∈A

1
K

&K
i=1 F

−1
η(st,a)

(τi)
8: else
9: Select action at randomly

10: end if
11: Obtain reward rt and next state st+1 (or set terminated = True)
12: Add transition (st, at, rt, st+1) to the replay buffer D
13: if global step > learn start then
14: if (global step modulo train frequency = 0) then
15: Sample minibatch of transitions from D
16: for each element (st, at, rt, st+1) in minibatch do
17: Sample τ̃1, . . . , τ̃K from U([0, 1])
18: Q(st+1, a) ← 1

K

&K
i=1 F

−1
η(st+1,a)

(β(τ̃i)), ∀a ∈ A
19: a⋆ ← argmaxa′∈AQ(st+1, a

′)
20: Sample τi, τ

′
j from U([0, 1]) for 1 ≤ i ≤ N and 1 ≤ j ≤ N ′

21: δi,j ← rt + γF−1
η(st+1,a⋆)

(τ ′j)− F−1
η(st,at)

(τi), ∀i, j
22: end for
23: Calculate losses 1

N ′
&N

i=1

&N ′
j=1 ρ

κ
τi(δi,j) for each transition in minibatch

24: Use gradient of summed losses to update ψ
25: end if
26: if (global step modulo target network frequency = 0) then
27: φ ← ψ
28: end if
29: end if
30: end for

18



A projection is used to project each quantile function F−1
η(s,a) onto a staircase function that

is supported on {τ0, . . . , τN} and {θ0, . . . , θN−1}. The 1-Wasserstein distance

W1(η(s, a), θ, τ) =

N−1%
i=0

� τi+1

τi

|F−1
η(s,a)(ω)− θi| dω (27)

is used to measure the distortion between the approximated quantile function and the true
quantile function.
The algorithm works as follows. In each iteration of the algorithm, quantile fractions are

computed first. These quantile fractions {τ0, . . . , τN}, which minimize the 1-Wasserstein
distance (27), can be found by utilizing (19). More precisely, according to Proposition
1 in Yang et al. (2019), denoting the 1-Wasserstein loss of F−1

η(s,a) and the corresponding
projected quantile function as

W1(η(s, a), τ) :=

N−1%
i=0

� τi+1

τi

(((F−1
η(s,a)(ω)− F−1

η(s,a) (τ̂i)
((( dω,

it holds that

∂W1

∂τi
= 2F−1

η(s,a) (τi)− F−1
η(s,a) (τ̂i)− F−1

η(s,a) (τ̂i−1) ∀i ∈ (0, N) (28)

and ∀τi−1, τi+1 ∈ [0, 1], τi−1 < τi+1, ∃τi ∈ (τi−1, τi+1) s.t.
∂W1
∂τi

= 0.
Let ξ be the weights of the quantile fraction proposal network. Then an iterative appli-

cation of gradients descent to ξ, according to (28), minimizes the 1-Wasserstein distance.
Having computed the quantile fractions, one can perform a training step on the quantile

function network, which parameters we denote as ψ. Denoting the temporal difference
error at time t for two probabilities τ̂i, τ̂j as

δijt = rt + γF−1
η(st+1,at+1),ψ

(τ̂i)− F−1
η(st,at),ψ

(τ̂j),

one obtains the quantile function network loss similarly to (24).
The pseudo-code for the FQF algorithm is shown in Algorithm 5 and we use a version

of 1, which we have modified so that the code more closely resembles the structure of the
single file implementations in Huang et al. (2022).

In practice, like in the IQN algorithm, the input to the quantile function at a certain ac-
tion is given by the element-wise (Hadamard) product ⊙ of an embedding of the probability
τ (25) and the embedded state s.

1https://github.com/toshikwa/fqf-iqn-qrdqn.pytorch/tree/11d70bb428e449fe5384654c05e4ab2c3bbdd4cd

19



Algorithm 5 FQF

Output: Approximate quantile function F−1
η(s,a)(.) of optimal return distribution η̃⋆(s, a),

∀(s, a) ∈ S ×A
Parameters: Number N of quantile fractions, number T of total training steps, start
training after learn start steps, train every train frequency steps, update the target
network every target network frequency steps, hyper parameter κ for quantile Huber loss
Initialize replay buffer D
Initialize neural network with random weights ψ for approximation of quantile function
Initialize target neural network with weights φ ← ψ
Initialize neural network Γ with random weights ξ for calculation of quantile fractions
Reset environment to obtain initial state s0 and set terminated = False

1: for global step = 0, . . . , T do
2: if terminated then
3: reset environment and set terminated = False
4: end if
5: if (greedy action selection) then
6: Obtain quantile fractions τ0, . . . , τN for all state-action pairs (st, a), where a ∈ A,

from Γξ

7: at ← argmaxa∈A
&N−1

i=0 (τi+1(st, a)− τi(st, a))F
−1
η(st,a)

�
τi(st,a)+τi+1(st,a)

2

�
8: else
9: Select action at randomly

10: end if
11: Obtain reward rt and next state st+1 (or set terminated = True)
12: Add transition (st, at, rt, st+1) to the replay buffer D
13: if global step > learn start then
14: if (global step modulo train frequency = 0) then
15: Sample minibatch of transitions from D
16: for each element (st, at, rt, st+1) in minibatch do
17: Obtain quantile fractions τ̃0, . . . , τ̃N for (st+1, a), a ∈ A from Γξ

18: ˆ̃τi(st+1, a) ← τ̃i(st+1,a)+τ̃i+1(st+1,a)
2

19: Q(st+1, a) ←
&N−1

i=0 (τ̃i+1(st+1, a)− τ̃i(st+1, a))F
−1
η(st+1,a)

�
ˆ̃τi(st+1, a)

�
∀a ∈ A

20: a⋆ ← argmaxa′∈AQ(st+1, a
′)

21: δi,j ← rt + γF−1
η(st+1,a⋆)

( ˆ̃τi(st+1, a
⋆))− F−1

η(st,at)
( ˆ̃τj(st+1, a

⋆)) ∀i, j
22: end for
23: Calculate losses 1

N

&N−1
i=0

&N−1
j=0 ρκ

( ˆ̃τj(st+1,a⋆))
(δi,j) for all minibatch elements

24: Use gradient of summed losses to update ψ and ∂W1
∂τi

to update ξ
25: end if
26: if (global step modulo target network frequency = 0) then
27: φ ← ψ
28: end if
29: end if
30: end for

20



4 Convergence Guarantees

Although we already mentioned some convergence results for DistrRL algorithms in Chap-
ter 3, we will now discuss convergence results of the corresponding algorithms, or modifi-
cations of them, in more detail.

Convergence of a Categorical Distributional Reinforcement Learning Algorithm

In Rowland et al. (2018), a modified version of the C51 algorithm (1) is presented. Instead
of updating the return distribution by performing gradient descent utilizing the loss (14)
given by the Kullback-Leibler divergence, the return distribution is updated using a mixture
of the target and the prediction, i.e.,

η̃t+1(s, a) = (1− αt(s, a)) η̃t(s, a) + αt(s, a) η̂t(s, a), (29)

for all state-action pairs (s, a). Where αt(s, a) ∈ [0, 1] is a learning rate that depends on
the state-action pair (s, a) and time t. Furthermore, αt(s, a) = 0 for (s, a) ̸= (st, at).
Rowland et al. (2018) show in Proposition 1 that the heuristic projection ΠC is the

orthogonal projection (13) onto the set of categorical distributions P (11) with respect to
the Cramér metric ℓ2(., .).

Definition 10. Denoting the cumulative distribution functions of two distributions η(., .)
and µ(., .) as Fη(.,.) and Fµ(.,.), the Cramér metric of two return distributions η(., .) and
µ(., .) is given by

ℓ2(η(., .), µ(., .)) =

��
R
(Fη(.,.)(x)− Fµ(.,.)(x))

2dx

�1/2

.

The supremum-Cramér metric is defined as

ℓ̄2(η, µ) := sup
(s,a)∈S×A

ℓ2(η(s, a), µ(s, a)).

This implies that ΠC is a non-expansion with respect to ℓ2(., .) also with respect to the
supremum-Cramér metric ℓ̄2(., ), if S × A is finite. It is shown in Proposition 2, that the
distributional Bellman operator T π is a

√
γ-contraction in ℓ̄2(., .). Combining these two

results one obtains that ΠCT π is a
√
γ-contraction in ℓ̄2(., .). So repeated application of the

composition of the projection and the distributional Bellman operator leads to convergence
to a unique distribution ηC in the supremum-Cramér metric ℓ̄2(, ). More formally, this
means that for an arbitrary probability distribution η0(., .), it holds that

(ΠCT πη0)
m m→∞−→ ηC

in ℓ̄2.

21



In Theorem 1, the authors show that the modified version of the tabular C51 algorithm
(29) converges to ηC almost surely for policy evaluation. Denoting the true distribution
function as ηπ, it holds that the chosen approximation leads to the error

ℓ̄22(ηπ, ηC) ≤
1

1− γ
max
1≤i≤N

(zi+1 − zi), (30)

as long as ηπ(s, a) is supported on [z1, zN ] for all (s, a) ∈ S × A. This means that the
true return distribution can be approximated arbitrarily well by increasing the number of
support points z..

Assuming that the optimal policy is unique, it is shown in Theorem 2 that policy
control converges to some limit η⋆C almost surely. The greedy policy with respect to the
limit-distribution η⋆C is the optimal policy. The distribution η⋆C is in the space of categorical
distributions, i.e., η⋆C ∈ P.
For both Theorem 1 and Theorem 2 to hold, the learning rates α.(., .) need to satisfy the

the Robbins-Monro conditions. This means that

∞%
t=0

αt(s, a) = ∞,

∞%
t=0

αt(s, a)
2 < C < ∞

hold almost surely for all (s, a) ∈ S ×A.

Finite-Sample Analysis

Even though it is good to have convergence guarantees for the algorithm one uses, it is
even more interesting for practical applications how fast these algorithms converge, i.e.,
how many data points and iterations are required to obtain an error below some threshold.
This topic is often called complexity or finite-sample analysis.

For a γ-discounted, infinite-horizon, tabular MDP in the synchronous setting such
a non-asymptotic convergence bound can be found for policy evaluation (Peng et al.,
2024). Where synchronous means that updating the parameters of the model is done in a
synchronous manner, if multiple agents/environments are used for training. It is assumed
that in each iteration t of the algorithm, a triple (at(s), st(s), rt(s)) can be generated,
according to

at(s) ∼ π(.|s), st(s) ∼ P (.|s, at(s)), rt(s) ∼ PR(s, at(s)),

for all states s ∈ S.
Similar to (29), a modified version of the C51 algorithm is used. Given an initial distri-

bution η0 ∈ P, the update scheme is of the form

ηt+1 = (1− αt+1)ηt + αt+1ΠCTt+1ηt.

Where Tt is the approximate distributional Bellman operator (12). Since synchronous
updates are used, we can write η. instead of [η.(s)]s∈S . Once more, let ηC ∈ P be the unique
fixed point of the composition of the projection onto P and the distributional Bellman
operator.

22



Peng et al. (2024) present the finite-sample convergence result, which is of the following
form.

Theorem 3 (Peng et al. (2024)). Denote the number of atoms on which the approximate
return distribution is supported as N + 1 ∈ N. Let δ ∈ (0, 1), ε ∈ (0, 1) and suppose that
N > 4

ε2(1−γ)3
. Furthermore, let T be the total number of update steps satisfying

T ≥ C1 log
3 T

ε2(1− γ)3
log

|S|T
δ

for some large universal constant C1 > 1, i.e., T = 'O �
1

ε2(1−γ)3

�
. Where |S| is the number

of elements, i.e., the number of states, in S. Assume that the step size αt at time t satisfies

1

1 +
c2(1−√

γ)t
log t

≤ αt ≤ 1

1 +
c3(1−√

γ)t
log t

for some small universal constants c2 > c3 > 0. Then, it holds that

W̄1 (ηT , ηC) ≤ ε

with probability at least 1− δ.

Convergence of QRDQN

Looking at Quantile Temporal-Difference Learning, it can be shown that the approximating
sequence of i-th quantiles (θt(s, a, i))

∞
t=0 at state-action pair (s, a) converges to the set of

fixed points of the projected distributional Bellman operators, with probability 1. This
is shown by Rowland et al. (2024) in Theorem 5.1, using the ODE method for stochastic
approximation. Again, the result is only shown for the case of finite state-action spaces.
Furthermore, it needs to be assumed that the return distributions have finite mean.

23



5 Off-Policy Evaluation

The classic approach of RL is to evaluate or learn a policy by interacting with the en-
vironment, as described in Chapter 2 and Chapter 3. As the agent might take random
actions especially at the beginning of the training procedure, direct interaction with the
environment is a problem or entirely impossible in certain settings. An example is the
treatment of patients in intensive care units suffering from sepsis. It is not possible to try
out different, random treatment methods in order to perhaps learn a good policy for this
task. Especially, it is not possible to try out a new policy, in order to evaluate it. Another
example is the control of an expensive machinery. In the absence of a reliable simulation
model of the machinery, it is not possible to perform random actions, as these could result
in significant damage to the machinery.
In these situations, where direct interaction with the environment is not possible, off-

policy evaluation (OPE) can be a viable method to evaluate a policy. We introduce defini-
tions which are fundamental for OPE and the concept of importance sampling in Section
5.1. Furthermore, an approach of lower bounding the expected value of the return of a
given policy is discussed in Section 5.2, while a distributional variant of OPE is presented
in Section 5.3.

5.1 Fundamental Methodology and Terminology

Let π denote the policy that should be evaluated. In the context of OPE, it is often called
the evaluation policy. Furthermore, let πb denote the so-called behavior policy and let H
denote the horizon of the MDP, which we assume to be finite at first. OPE algorithms only
use trajectories

τ := (s0, a0, r0, s1, a1, r1, . . . , sH)

generated by the behavior policy πb to estimate the expected value of the return Zπ(., .)
of the evaluation policy π. Denoting the distribution of the initial state s0 as P0(.), this
means that the trajectory is distributed as

τ ∼ P0(s0)
H−1�
t=0

πb(at|st)P (st+1|st, at).

The goal is to estimate EZπ, but only trajectories according to the behavior policy πb and
therefore only returns Zπb are given. In general, it holds that EZπ ̸= EZπb and therefore
one needs to account for this discrepancy using importance sampling ratios. Before we
define the latter, an assumptions needs to be made.

Assumption 1. We assume that

π(a|s) > 0 =⇒ πb(a|s) > 0,

which is often called the assumption of coverage (Sutton and Barto, 2018).

24



Definition 11. Given an evaluation policy π, a behavior policy πb and a trajectory τ , the
importance sampling ratio

ρτ :=
P0(s0)

�H−1
t=0 π(at|st)P (st+1|st, at)

P0(s0)
�H−1

t=0 πb(at|st)P (st+1|st, at)
is the relative probability of the trajectory under the evaluation and target policy.

Therefore, the approach is called importance sampling. Notice that

ρτ =

T−1�
t=0

π(at|st)
πb(at|st) , (31)

which implies that the importance sampling ratio does not depend on the transition prob-
abilities of the MDP, but only on the trajectory and the evaluation and behaviour policies.
Utilizing the importance sampling ratio, we obtain

EZπ = E [ρτZ
πb ]

and are therefore able to estimate the expected return of the policy π by only using data
(trajectories) generated by the behaviour policy.
Nevertheless, looking at (31), one can see that large differences in the policies, can lead to

very large or diminishing importance sampling ratios. In practice one could approximate the
expected value by the arithmetic mean, i.e., one would use multiple trajectories τ1, . . . , τn
and compute

Q̂π :=
1

n

n%
i=1

ρτiZ
πb ≈ EZπ

for some n ∈ N.

Remark 1. Xie et al. (2019) show in Example 1, that Q̂π suffers from the curse of horizon
(Liu et al., 2018), which means that its variance increases exponentially as H → ∞.
Another drawback of importance sampling is that the behavior policy is often not known

in practice.

5.2 High Confidence Off-Policy Evaluation

One way of quantifying the risk of following a certain policy is to lower bound the expected
return of this policy. Thomas et al. (2015) present a method to find such a lower bound with
high probability by introducing a new concentration inequality. They call their approach
High Confidence Off-Policy Evaluation (HCOPE).
Let πθ(.|.) denote a policy with parameters θ ∈ Rnθ , where nθ is the dimension of the

parameter space of the policy. Furthermore, assume that the reward at each timestep t is
in the interval [r−, r+]. For a trajectory τ = {s0, a0, r0, . . . , sT , aT , rT } and discount factor
γ ∈ [0, 1], we set the normalized and discounted return to be

R(τ) :=

�&T
t=0 γ

trt

�
−R−

R+ −R−
∈ [0, 1].

25



Choices for the lower and upper bounds could be R− = r−(1 − γT+1)/(1 − γ) and R+ =
r+(1−γT+1)/(1−γ), if no sharper bounds can be obtained from domain-specific knowledge.
For a trajectory τ , generated by a policy πθ, we denote the performance of the policy as

ω(θ) := ER(τ).

We assume that a dataset D, consisting of n trajectories (τi)
n
i=1 generated by the behavior

policies (πθi)
n
i=1 with length at most T and corresponding labels, i.e.,

D := {(τi, θi) | i ∈ {1, . . . , n}, τi generated by πθi}
is given. Denoting the evaluation policy with corresponding parameters θ as πθ, importance
sampling is used to compute an estimate ω̂(θ, τ, θi) of the performance ω(θ) of the evaluation
policy. Where (τ, θi) ∈ D and the estimate is given by

ω̂(θ, τ, θi) := R(τ)

T�
t=0

πθ(at|st)
πθi(at|st)

. (32)

The denominators in equation (32) are always strictly greater than zero, because at would
not be an element of the trajectory τ , if πθi(at|st) = 0. Nevertheless, the authors use
Assumption 1 for simplicity, but show that the lower bound also holds without this as-
sumption.
As already mentioned in Remark 1, importance sampling can lead to large variances.

Therefore, the authors modify an empirical version of Bernstein’s inequality, which was
proposed by Maurer and Pontil (2009). More precisely, they collapse the distribution of
the random variables and normalize them to apply Maurer and Pontil’s empirical Bernstein
inequality. The result is of the following form.

Theorem 4 (Thomas et al. (2015)). Let X1, . . . , Xn be n independent and bounded real-
valued random variables which satisfy P (Xi ≥ 0) = 1 and EXi ≤ µ for all i ∈ {1, . . . , n}.
Then it holds for c1, . . . , cn ∈ R, Yi := min{Xi, ci} for all i ∈ {1, . . . , n} and δ > 0 that

µ ≥
�

n%
i=1

1

ci

�−1 n%
i=1

Yi
ci

−
�

n%
i=1

1

ci

�−1
7n ln(2/δ)

3(n− 1)

−
�

n%
i=1

1

ci

�−1
#$$" ln(2/δ)

n− 1

n%
i,j=1

�
Yi
ci

− Yj
cj

�2

(33)

with probability 1− δ.

In the context of the discussed off-policy evaluation setting, given a threshold δ > 0, this
means that one can lower bound ω(θ) =: µ by the right hand side of inequality (33) with
probability 1− δ.
Vice versa, if one is given a lower bound, it is also possible to compute the probability

that ω(θ) ≥ µ− for some µ− ≥ 0. More precisely, the probability of ω(θ) ≥ µ− is

1− δ =

�
1−min

�
1, 2 exp

�−ζ2
��

, if ζ is real and positive ,

0, otherwise,

26



for

ζ :=
−k2 +

!
k22 − 4k1k3
2k1

, k1 :=
7n

3(n− 1)
,

k2 :=

#$$$" 2

(n− 1)

n
n%

i=1

�
Yi
ci

�2

−
�

n%
i=1

Yi
ci

�2
, k3 := µ−

n%
i=1

1

ci
−

n%
i=1

Yi
ci
.

One can see in (33) that the choice of the ci is important to produce a tight lower bound.
For large ci the truncation is very moderate and the range of the Yi is very large, vice versa
the expected values of the Yi get very small and also produce a loose lower bound. In order
to deal with this trade-off, the authors propose to partition the dataset D into two subsets
and set ci = c ∈ R for all i ∈ {1, . . . , n}. The first subset is used to predict the sample mean
and sample variance of the lower bound, i.e., the right hand side of inequality (33). Using
these predictions one can maximize the lower bound with respect to c. Then Theorem 4
can be applied with this maximizing c to obtain a lower bound.

5.3 Distributional Off-Policy Evaluation

Similar to online policy evaluation and control, especially in safety-critical applications it
can be beneficial to work with the distribution of the return ηπ as opposed to solely the
expected value of the return. Wu et al. (2023) propose an algorithm which sequentially
conducts Maximum Likelihood Estimation (MLE) to evaluate the distribution ηπ of the
return of an evaluation policy π and call it “Fitted Likelihood Estimation” (FLE). More
precisely, one algorithm for finite horizon and one algorithm for infinite horizon MDPs is
proposed respectively.
In both settings, it is assumed that a dataset of size n

D := {(si, ai, ri, si+1)|i = 1, . . . , n},

was generated from to the behavior policy πb, . The elements are i.i.d. quadruples

(si, ai, ri, si+1),

where si is a state at some time t, ai ∼ πb(.|si), ri = R(si, ai) and si+1 ∼ P (.|si, ai).
For both algorithms to work, a function f is required that can generate samples z ∼

f(.|s, a) for any given state-action pair (s, a). Furthermore, the conditional likelihood
f(z|s, a) needs to be computable for any triple (z, s, a). Discrete histogram-based models,
Gaussian mixture models, flow models and diffusion models are only some examples of
function approximators that satisfy these requirements.

5.3.1 Finite Horizon Fitted Likelihood Estimation

We introduce the FLE algorithm for finite horizon MDPs, followed by corresponding con-
vergence results.

27



Algorithm

Let ηhπ(s, a) denote the distribution of the return under the policy π, starting at state-action
pair (s, a) = (sh, ah) at timestep h. Notice that

ηπ = Es∼P0(.),a∼π(s)η
1
π(s, a). (34)

The dataset D is randomly and evenly split into H subsets D1, . . . ,DH . Where the number
of subsets does not necessarily need to be H. This choice was made by the authors to
simplify the analysis later on. Furthermore, we denote F1, . . . ,FH as function classes that
contain state-action conditional distributions.
Given these subsets of the dataset (Dj)

H
j=1 and the function classes (Fj)

H
j=1, the algorithm

starts at H and iterates until h = 1. The goal is to fit the target T πf̂h+1 at each timestep h,
using f̂h+1 obtained from the previous iteration. Where T π is the distributional Bellman
operator (7) for the policy π, with a discount factor of γ = 1. As long as samples can
be drawn from f̂h+1(.|s, a) for any state-action pair (s, a), one can generate samples from
T πf̂h+1, in order to learn the target. These samples are then used to perform MLE for
fitting f̂h, which is used to estimate T πf̂h+1. After the last iteration, f̂1 is returned and
approximates η1π. Utilizing (34), one obtains an estimate of ηπ. Pseudo-code is given in
Algorithm 6.

Algorithm 6 Fitted Likelihood Estimation – finite horizon

Input: Dataset {Dh}Hh=1 and function classes {Fh}Hh=1

Output: f̂1 ≈ Zπ
1

1: for h = H, . . . , 1 do
2: D′

h = ∅
3: for (s, a, r, s′) ∈ Dh do
4: if h < H then
5: a′ ∼ π (s′)
6: y ∼ f̂h+1 (· | s′, a′)
7: z ← r + y
8: else
9: z ← r

10: end if
11: D′

h = D′
h ∪ {(s, a, z)}

12: end for
13: f̂h = argmaxf∈Fh

&
(s,a,z)∈D′

h
log f(z | s, a)

14: end for

Convergence Analysis

Let dπh be the state-action distribution induced by policy π at timestep h and set

dπ := H−1
H%

h=1

dπh. (35)

The predictive error guarantees are given in terms of the total variation distance, which we
define in the following.

28



Definition 12. For two distributions P1 and P2 on a set B, the total variation distance is
defined as

dtv(P1, P2) :=
1

2
∥P1 − P2∥1 = 1

2

�
B
|P1(x)− P2(x)|dx.

As is typical for OPE, a certain type of coverage assumption must be made.

Assumption 2 (Coverage). For each timestep h ∈ {1, . . . , H}, there exists a constant C,
such that

sup
fh∈Fh

fh+1∈Fh+1

Es,a∼dπh
d2tv (fh(s, a), [T πfh+1] (s, a))

Es,a∼πb
d2tv (fh(s, a), [T πfh+1] (s, a))

≤ C .

Let Δ(B) denote the set of all distributions over a set B. Furthermore, let f̂1, . . . , f̂H :
S × A �→ Δ([0, H]) be a sequence of functions and assume there exist ζ1, . . . , ζH ∈ R such
that �

Es,a∼πb
d2tv

�
f̂h(s, a),


T πf̂h+1

�
(s, a)

��1/2 ≤ ζh, ∀h ∈ {1, . . . , H}. (36)

Combining inequality (36) with Assumption 2 and denoting f̂ := Es∼P0(.),a∼π(s)f̂1(s, a), the
authors show that

dtv(f̂ , ηπ) ≤
√
C

H%
h=1

ζh.

This means that small supervised learning errors imply small prediction error of the previ-
ously described OPE Algorithm 6, given that Assumption 2 holds.
To answer the question of which form the ζ. in inequality (36) are, another assumption

needs to be made.

Assumption 3 (Bellman completeness).

max
h∈[H],f∈Fh+1

min
g∈Fh

Ex,a∼πb
dtv (g(x, a), [T πf ] (x, a)) = 0 (37)

This means that T πf̂h+1 ∈ Fh at each iteration of Algorithm 6. Furthermore, we need
the following definition.

Definition 13. Let F be a function class whose elements map from B to R. The bracket
[l, u] of two functions is defined as

{f | f ∈ F , ∀x ∈ B : l(x) ≤ f(x) ≤ u(x)}.

An ε bracket is a bracket [l, u], satisfying ∥l− u∥ ≤ ε. The minimum number of ε-brackets
needed to cover F is denoted as N[](ε,F , ∥.∥) and called the bracketing number of F with
respect to the metric ∥.∥.

29



Under Assumption 3, the authors show that inequality (36) holds for

ζh =

��
4H
n log(|Fh| H/δ)

�1/2
, if |Fh| < ∞,�

10H
n log

�
N[]((nH)−1,F , ∥.∥∞) H/δ

��1/2
, else.

with probability at least 1− δ for all h ∈ {1, . . . , H}.
Summing everything up, one obtains the following result.

Theorem 5 (Wu et al. (2023)). If inequality (36), Assumption 2 and Assumption 3 hold,
the error in Algorithm 6 can be bound by

dtv(f̂ , ηπ) ≤

√
C
&H

h=1

 
4H
n log (|Fh| H/δ), if |Fh| < ∞ ∀h ∈ {1, . . . , H},

√
C
&H

h=1

 
10H
n log

�
N[]((nH)−1,F , ∥.∥∞) H/δ

�
, else.

5.3.2 Infinite Horizon Fitted Likelihood Estimation

Again, we present the FLE algorithm for infinite horizon MDPs first and show the corre-
sponding convergence results afterwards.

Algorithm

In the case of infinite horizon MDPs, the discount factor γ is in the interval (0, 1). Fur-
thermore, we assume without loss of generality that the rewards are in the interval [0, 1],
which implies that Zπ(., .) ≤ 1

1−γ by (3). We denote the function class that is input to

the algorithm as F ⊂ S × A �→ Δ([0, 1
1−γ ]). The dataset D is evenly and randomly split

into T subsets, as in the finite horizon case. The algorithm starts at t = 1 and at each
timestep t, the target distribution to fit by MLE is T πf̂t−1. After the last iteration, ηπ can
be approximated by

Es∼P0(.),a∼π(s)f̂t(s, a) ≈ ηπ.

The corresponding pseudo-code is given in Algorithm 7.

Algorithm 7 Fitted Likelihood Estimation – infinite horizon

Input: Dataset {Dt}Tt=1 and function class F
Output: f̂T

1: for t = 1, . . . , T do
2: D′

t = ∅
3: for (s, a, r, s′) ∈ Dt do
4: a′ ∼ π (s′)
5: y ∼ f̂t−1 (· | s′, a′)
6: z ← r + γy
7: D′

t = D′
t ∪ {(s, a, z)}

8: end for
9: f̂t = argmaxf∈F

&
(s,a,z)∈D′

t
log f(z | s, a)

10: end for

30



Convergence Analysis

Analogously to (35), we denote the state-action distribution of a given policy π as dπ :=
(1 − γ)−1

&∞
h=1 d

π
h. Chung and Sobel (1987) have shown that the distributional Bellman

operator T π for γ < 1 is no contraction mapping in total variation distance. Therefore,
Wu et al. (2023) show that T π is a contraction mapping under the average p-Wasserstein
distance. For two distributions µ and ν, the latter is given by�

Es,a∼dπ [Wp(µ(s, a), ν(s, a)]
2p)

� 1
2p .

Furthermore, the authors show that

W p
p (µ, ν) ≤

�
sup
x,y∈S

∥x− y∥
�p

dtv (µ, ν) ,

which allows to transfer the results for the estimation error of MLE under the total variation
distance, to the Wasserstein distance. Otherwise, the procedure is quite similar to the finite
horizon MDP setting and we omit it for brevity. The final result for Algorithm 7 is the
following.

Theorem 6. Under assumptions which are analogous to Assumption 2 and Assumption
3, setting f̂ := Es∼P0,a∼π(s)f̂T (s, a) and

ι :=

�
log(|F|/δ), if |F| < ∞,

log
�
N[]

�
1−γ
n ,F , ∥ · ∥∞

�
/δ
�
, otherwise,

and picking

T = log

�
C

1
2p ι

1
2p

�
1− γ

1
2

�−1
n
− 1

2p

�
/ log

�
γ
1− 1

2p

�
,

the error in Algorithm 7 can be bound by

dw,p

�
f̂ , ηπ

�
≤ 'O�

C
1
2p ι

1
2p

(1− γ)
5
2

n
− 1

2p

�

with probability at least 1− δ.

31



6 Environments

As the number of solar and wind power plants around the world grows (Chen and Ji, 2024)
and because these sources of energy are volatile due to their dependence on sunlight and
wind, the issue of storing electricity at times of high production is becoming increasingly
important. A frequently used method are pumped hydro storage systems. During periods
of high power generation, water from a lower lying reservoir is pumped to a higher lying
reservoir. Vice versa, the water is turbinated at periods of low power generation but high
demand.
In the following, we will describe the two environments in which we apply the RL algo-

rithms. Both environments are simulation models of a reversible pump turbine implemented
in the simulation software Simulink (Documentation, 2020). The models were developed
by colleagues from the “Institute of Energy Systems and Thermodynamics” at TU Wien
as part of the “RELY – Reliable Reinforcement Learning for Sustainable Energy Systems”
project and other previous work (Tubeuf et al., 2023).
In both models, the goal of the agent is to efficiently control the pump turbine during a

specific operation sequence. A sketch of the pump turbine is shown in Figure 6.1.

Figure 6.1: Sketch of the pump turbine, which represents the RL environments. (Tubeuf
et al., 2024)

The pump turbine can operate in pump and turbine mode. Increasing the efficiency
can lead to faster switching between these modes, resulting in economic benefits and the

32



possibility to balance out more fluctuations in the electricity grid stemming from volatile
energy sources.
While Simulink is a widely used software for building complex physical simulation models,

the RL community writes most of the codebase in the Python programming language. In
principle, there are multiple options to bridge this gap. However, the number of choices is
reduced by the variable step size solvers on which our Simulink models are based and by
other requirements. The solution we use is a Python package (Brust, 2025), which runs the
simulation in Simulink and transfers input and output data between the simulation model
and the RL algorithms, which are written in Python, via TCP/IP communication.

6.1 Blow-Out Model

For pump start-up it is required to blow out the runner. This means that air from a
compressor is blown into the runner to replace the water therein by air. Doing so results
in less torque and therefore a decreased consumption of electric power and less wear and
tear, because air causes less friction than water.
The action space A is binary, with the actions corresponding to blowing air into the

runner or not. The state space S is three dimensional with two dimensions being continuous
and the third one being binary. One dimension corresponds to the water level in the runner,
taking values in the interval [0, wmax] and measured in meters. The other continuous
dimension corresponds to the total amount of air blown into the runner. Which action was
taken on the timestep before the current timestep, is encoded in the binary state. In total,
a state at time t is of the form st = (swater level, sair mass, sprevious action)t.

The reward function is given as

R(st, at) = w1 rwater level + w2 rair + w3 rprevious action,

where

rwater level =

��
−1, if swater level < lmin,

1, if lmin ≤ swater level ≤ lmax,

−swater level, if lmax < swater level

is supposed to encode the need of keeping the runner in a blown-out state, i.e., a water level
below lmax meters. Furthermore, the water level must be above a critical level of lmin meters
to prevent air dissipating into the tailwater. The costs of using the compressor to blow air
into the runner are reflected by rair = −aair. Lastly, rprevious action = −1|at,air−at−1,air|=1

reflects the costs of wear and tear caused by frequently switching the action. Summing
it up, the goal is to keep the runner in a blown-out state for as long as possible, while
minimizing the amount of air blown in and minimizing the number of action changes.
Setting the weights to w1 = 1, w2 = 0.2, w3 = 0.8, empirically turned out to lead to good

performance. Each simulation has a duration of 120 seconds and one step is taken every
second.

6.2 Simulation of a Commercially used Pump Turbine

The second environment is also a Simulink (Documentation, 2020) simulation model of
a pump turbine. While the simulation model aims to represent a pump turbine located

33



at a laboratory of TU Wien, the pump in the laboratory is modified to represent a real,
commercially used pump turbine which is part of a pumped hydro storage system in Kühtai,
Austria. This means that the states can also be measured in a real-world setting and the
actions can also be controlled in a real-world setting. While the goal for the environment
described in Section 6.1 was to only control the blow-out process, the second use case is
aiming to control the whole pump start-up process. This means that the pump turbine is
controlled from stand-still to synchronized operation by means of a steady flow rate.
The action space A consists of four actions. The “air valve” action is binary and controls

whether air is blown into the runner or not. The “guide vanes” action controls the guide
vane opening and can open/close the guide vane incrementally or keep it in its current
position. The “speed switch” action decides when the runner starts rotating and is binary.
Lastly, the “ball valve” action is binary and opens or closes the ball valve, which sits
between the pump turbine and the headwater reservoir.
The state space S consists of 19 states which are characterized in Table 6.1. The ball

valve can be opened and closed continuously and controls how much water can flow. The
same holds for the guide vane opening. Whether the draft tube can be considered as blown
out or not is signalled by the “water level switch max.”
Very roughly speaking, the control of the pump turbine works as follows. Air is blown

into the runner to displace the water therein by air. During this sequence, the ball valve
is usually closed because the air would dissipate otherwise. If the runner starts rotating
and there is a lot of water inside, a high torque acts on the machinery and causes heavy
wear and tear. However, blowing in air costs time and if too much air is blown in, i.e.,
more than can be hold in the storage air vessels, costs for not being able to run the pump
turbine until the air vessels are again filled up with compressed air arise. So the agent gets
a reward which equals these costs.
Increasing rotational speed of the runner leads to a higher flow rate of the water. Once

the rotational speed equals the synchronizational speed, the synchronizational speed is set
to be kept constant and the torque state is set to zero. This artificial adjustment doesn’t
aim to represent physical laws properly, but helps to learn a good policy, because then
the reward corresponding to torque isn’t negative anymore. This has no impact on the
simulation. After the machine unit is synchronized with the electricity grid, the ball valve
and the guide vanes are being opened until a desired flow rate is set in. Once the rotational
speed reached the target speed, the flow rate equals the target flow rate for 15 consecutive
seconds and the ball valve is open, the simulation is stopped and the environment is reset.
Denoting the last simulation time the reward was calculated for as told, the reward

function at time t is of the form

R(t) =(t− told)[f r r(t)− w1 torque(t) rot speed(t)

− w2 − w3 air mass(t)]− w4 ball valve switch(t)

− w5 air valve switch(t)− w6 guide vane action(t)− air volume(t)

− shutdown(t) + timeout.

Where flow rate reward is given as

f r r(t) =

�
w7|target flow rate− flow rate(t)|, if |target flow rate− flow rate(t)| ≤ 0.001,

−w8 flow rate(t) height(t), otherwise

34



and w1, . . . , w8 are the weights for the corresponding costs. In our case, t−told is constantly
0.2, since new states are input to the simulation every 0.2 seconds.

The costs resulting from not operating at the target flow rate are encoded in the reward
function. One can also see the negative impact of high torque at high rotational speed.
The constant negative reward reflects opportunity costs resulting from slowly reaching
operational mode. Furthermore, the costs resulting from blowing in air are also part of the
reward function. Switching the ball valve, air valve and guide vane action very frequently
leads to higher wear and tear and therefore leads to a negative reward.
As already mentioned, a one time reward is given if air volume is above a critical value.

Furthermore, blowing in too much air results in a water level in the draft tube which is
below a critical value. This is signalled by “water level switch min.” In this case, the
episode/simulation is terminated and the agent receives a high negative reward. Another
highly negative reward is given, if the head water pressure gets too high. Then the sim-
ulation is also terminated. These two rewards are given by shutdown(t) in the reward
function. A maximum episode length of 150 seconds is used. Empirical evidence has
demonstrated that values within this range yield the best training outcomes. If an episode
is not terminated before this time the agent receives a reward of timeout = −150 ∗ w9.
Experts in the field of pumped storage power plants and mechanical engineering were

conducted to determine the opportunity and material costs appearing in the reward func-
tion. Manual control, based on expert knowledge, led to a reward of −0.0625 and took
about 83 seconds. We will use these values as a baseline for our RL algorithms later on.

State Value Range Unit Description

ball valve position [0, 1] —– position of ball valve [closed, open]

rotational speed [0,∞) rpm rotational speed of the runner

torque [0,∞) Nm —–

synced {0, 1} —– rot. speed below target, or synch. speed reached

flow rate [0,∞) m³/s flow rate of the water

flow rate target {0, 1} —– flow rate below/above target, or reached

guide vane opening [0, amax] m opening of guide vane [closed, open]

water level switch max {0, 1} —– draft tube is considered blown out, or not

air mass [0,∞) kg/s current mass of air blown in per second

air valve position [0, 1] —– position of air valve

time [0, 150] s simulation time

water level switch min {0, 1} —– water in draft tube is below or above a min. level

air volume [0, Vmax] kg total amount of air blown in

max pressure {0, 1} —– pressure at critical level (no/yes)

air valve switch {0, 1} —– air valve action switches from t− 1 to t

height [0, hmax] m height diff. between water source and destination

episode done {0, 1} —– flow rate at target for 15 consecutive sec. (no, yes)

ball valve switch {0, 1} —– ball valve action switches from t− 1 to t

guide vane action {0, 1} —– guide vane action is 0 or not

Table 6.1: All 19 state dimensions in the simulation model.

35



7 Results and Discussion

In the following, we present the learning results for the environments described in Chapter
6.
Section 7.1 deals with the results for the environment described in Section 6.1. We de-

scribe the search for DistrRL algorithm hyper parameters, yielding stable results. Further-
more, we compare the performance of the algorithms presented in Chapter 6 and conclude
that an optimal policy has been found for the environment. In Section 7.2, we present some
ideas on how to leverage the distributions learned by the DistrRL algorithms to score the
reliability of the policies found. Section 7.3 is about the results for the more complex envi-
ronment described in Section 6.2. We analyze a found policy and discuss possible measures
to learn a policy that meets all objectives.

7.1 Learning an Optimal Blowout Policy

In this Section 7.1, we present the results obtained by the DistrRL algorithms introduced
in Chapter 3. All agents were trained for 305,000 timesteps and the other hyper parameters
can be seen in Table 7.1. We trained all algorithms on different sets of hyper parameters
and chose the hyper parameter setting which led to the most stable convergence and high-
est online-policy evaluation result. This choice of hyper parameters was made for each
algorithm separately which makes comparing the learning performances, especially at the
beginning of the training, harder. On the other hand, one can argue that this method
ensures that the best possible final performance, across the respective hyper parameter
sets, is depicted in Figure 7.2.
The hyper parameters which empirically turned out to have the biggest impact on the

learning results were the following:

• total number of training steps,

• learning rate(s) of optimizer(s) for neural network backpropagation,

• exploration fraction, i.e., fraction of total number of training steps where exploration
rate decreases until final exploration rate,

• initial exploration rate, i.e., exploration rate at the start of training.

The training curves are depicted in Figure 7.2. On the x−axis one can see the number of
training episodes, while the cumulative reward is displayed on the y−axis. The cumulative
reward is the sum of rewards obtained during one episode, i.e.,

&T
t=0 rt. We averaged the

cumulative reward curves over six seeds. The solid lines correspond to the mean of the
cumulative reward curves of the respective algorithm. The shaded areas around these lines
correspond to the standard deviation. To increase readability of the plot, we only plot the
cumulative reward of every 20th training episode. The dotted horizontal line corresponds
to the highest cumulative reward obtained by the optimal policy.

36



C51

Looking at the cumulative reward curve of the C51 algorithm, we can see that the algorithm
learns relatively fast compared to QR-DQN and IQN. One reason for that might be the
higher exploration fraction of the latter two algorithms. A higher exploration fraction,
leads to a slower decay of the probability of taking random actions.

OS-C51

The OS-C51 algorithm learns comparably fast at the beginning. From training episodes
1300 to about 1600, OS-C51 has a very low variance across the different seeds and out-
performs C51. Nevertheless, performance also slightly decreases at the end, similar to C51
and IQN. Furthermore, notice that the number of atoms used in the OS-C51 algorithm is
4, which is much less than the number of atoms/quantiles used in the other algorithms. It
is quite interesting that such good performance could be obtained by a comparably small
number of atoms. On the other hand, a distribution approximated by only four atoms might
be a drawback when it comes to computing risk measures from the obtained probability
distributions.

QR-DQN

QR-DQN learns faster than IQN in the beginning. This might be noteworthy, as the
exploration fraction hyper parameter for QR-DQN is 0.8, while the same hyper parameter
is 0.6 for IQN. We can also see that the variance of QR-DQN is very low during the last
600 training episodes. Furthermore, it outperforms the other algorithms on these last 600
episodes.

IQN

The IQN algorithm takes comparably long to learn a good policy, but seems to slightly
outperform C51 and OS-C51 in the end. Nevertheless, IQN has a slightly worse performance
and higher variance than QR-DQN at the last training episodes.

FQF

Looking at Figure 7.2, one can see that we have not been successful in training the FQF
algorithm. We tried out 68 different sets of hyper parameters, which is much more than the
number of sets for the other algorithms (C51: 30, OS-C51:17, QR-DQN: 10, IQN: 9). Since
the FQF algorithm trains a neural network for the quantile values and for the quantile
fractions, it is the most expensive DistrRL algorithm we applied, from a computational
perspective.

Figure 7.1 shows the training performance of the FQF implementation applied on the
“PongNoFrameskip” environment1. The environment is part of the Arcade Learning En-
vironment (Bellemare et al., 2013), which is frequently used to evaluate the performance
of RL algorithms. Figure 7.1 indicates that the FQF implementation we use is working
and we therefore assume that the performance on the pump environment might be heavily
increased by further hyper parameter tuning.

1https://gymnasium.farama.org/v0.28.1/environments/atari/pong/

37

https://gymnasium.farama.org/v0.28.1/environments/atari/pong/


Figure 7.1: Summed reward per episode during training the FQF algorithm on the
“PongNoFrameskip-v4” environment. The total number of training steps is
50,000,000, resulting in a total number of 200,000,000 frames. The dashed hor-
izontal line indicates the maximum cumulative reward that can be obtained per
episode.

Hyper Parameter C51 OS-C51 QR-DQN IQN FQF

# of atoms/quantiles 500 4 100 100 128

learning rate 0.0004 0.0005 0.0005 0.0004 0.02

train frequency 8 8 8 8 8

batch size 1024 1024 1024 1024 1024

target update interval 10,000 10,000 10,000 10,000 10,000

discount factor γ 0.9995 0.9995 0.9995 0.9995 0.9995

replay buffer size 122,880 122,880 122,880 122,880 122,880

exploration fraction 0.4 0.4 0.8 0.6 0.5

initial exploration rate 0.4 0.4 0.4 0.4 0.6

final exploration rate 0 0 0 0 0

# of steps until network starts training 1 1 122,880 122,880 30,700

soft update coefficient 1 1

# of gradient steps 1 1

# of samples τ 64

# of samples τ ′ 64

fraction learning rate 1e-08

# of cosines 64 64

Table 7.1: Hyper parameter settings of DistrRL algorithms used in the experiments.

38



Figure 7.2: Summed rewards per training episode for different DistrRL algorithms. Train-
ing results are averaged over 6 seeds. Solid lines are the mean and shaded areas
indicate the standard deviations over the seeds.

Optimal Policy

The policy which got the maximum online evaluation cumulative reward of about 96.3347
was learnt by QR-DQN. In Figure 7.3 the normalized water level in the runner, which
results from this policy is depicted. A value of 1 corresponds to wmax meters and a value
of 0 corresponds to a water level of 0 meters. The upper horizontal line indicates the
threshold below which the runner is considered to be blown out. The lower horizontal line
indicates the critical threshold below which the water level should not drop. The water
level drops instantly at the beginning of the simulation. This indicates that air is blown in.
Until about second 40 air is continuously blown into the runner, as the water level drops.
Then no more air is blown in and the water level is rising again, due to leakage effects.
This happens until the end of the simulation, where the water level is exactly below the
threshold that marks that the runner is blown out. We can see that the minimum number
of action switches is one, otherwise the water level would be outside the interval where
the runner is considered to be blown out. Furthermore, the amount of air blown in is also
minimized, since the water level is exactly below the upper threshold at the end of the
episode. Lastly, we can see that the time interval in which the water level is above the

39



threshold is minimized, as the water level drops instantly after simulation start, because
air is instantly blown in. Overall, we conclude that the learnt policy is optimal.

Figure 7.3: Normalized water level in the runner resulting from following the optimal policy.

7.2 Utilization of the Learnt Return Distributions

In this Subsection 7.2 we analyze the return distributions corresponding to the learnt
optimal policy, which we described in Section 7.1. Since each return distribution depends
on the starting state and action at time zero, we compare the distributions at different
state-action pairs (s0, a0). We assume that the compressor always has full capacity in the
beginning, which corresponds to sair mass = 0 at the beginning.
The Wasserstein distance is used for the pairwise comparison of the distributions. First,

we compare the distributions for sprevious action = 1, action a = 1 and varying values of the
water level swater level ∈ [0, wmax]. Looking at Figure 7.4 we can see the pairwise similarity of
the distributions for a different water level at the beginning. Note that we have normalized
the water level to be in the interval [0, 1]. The plot indicates that starting at a normalized
water level below 0.58 leads to similar return distributions, when the other state dimensions
and the action are fixed.
The distributions corresponding to normalized water levels above 0.9 are quite different

from the distributions of water levels below 0.7m. Intuitively, this makes sense since the

40



normalized target interval for the water level is [0.28, 0.79], so the agent needs to follow a
different policy depending on starting in the target interval or above. The different policy
then leads to a different structure of the reward sequence obtained.

Two such distributions are shown in Figure 7.5. One distribution corresponds to a
normalized initial water level of 1 and the other distribution’s normalized initial water
level is 0.43. These are approximately the water levels that lead to the largest Wasserstein
distance, according to Figure 7.4. Notice, that the support of the return distributions is
unequal to the support of the true return distribution. The reason for that is that the
neural network used in QR-DQN is not properly scaled, because scaling has no effect on
improving the policy.

The red dot in the top left corner indicates the deterministic start value of the water level,
which we used during training the agents. Moving either horizontally or vertically from
this point, one can see how much the return distribution changes, measured in Wasserstein
distance.

Figure 7.4: Pairwise Wasserstein distances of return distributions for varying normalized
water levels and sprevious action = 1, sair mass = 0, and action a = 1. The red dot
indicates the start state used during training.

We also compare the similarity of the return distributions for varying actions a ∈ {0, 1}
and varying previous actions sprevious action ∈ {0, 1}. The results are very similar to the
ones in the setting discussed above. For the sake of completeness, we have included the
plots in Figure 8.1 in the Appendix.

41



Figure 7.5: Comparison of two return distributions which are relatively different, accord-
ing to the pairwise computed Wasserstein distances. The initial states of
the distributions are (swater level/wmax, sprevious action, sair mass) = (0.43, 1, 0),
(swater level, sprevious action, sair mass) = (wmax, 1, 0) and the action is a = 1.

Next, we calculate the variance of return distributions across different initial state-action
pairs. Again, we fix sprevious action = 1 and action a = 1 at first and vary the water level in
the interval [0, wmax]. The variances are depicted in Figure 7.6. One can see that return
distributions corresponding to an initial water level in the normalized interval [0.5, 0.8] have
a much higher variance. This indicates that starting from such water levels results in a
relatively large variation in return. In other words, the policy has a relatively uncertain
outcome when the episode starts with a water level in this interval.
Changing the initial previous action state and the action, leads to a similar variance

structure across the initial water level. The corresponding plots are shown in Figure 8.2 in
the Appendix.

7.3 DistrRL on a Simulation Model of a Commercially used
Pump Turbine

Designing a reward function that represents real world costs and helps the agent to learn a
good policy at the same time is not trivial. Providing a detailed reward function that leads
the agent to learn a “good policy” means, in the extreme case, replicating a manual policy
already used by practitioners. This is why we implemented a reward function, which solely
reflects costs in the real world. The idea is that the agent will not be biased by existing
heuristics and will find policies that are more efficient than those already known.
For the more complex environment, described in Section 6.2, we applied the C51 and

42



Figure 7.6: Variances of return distribution with initial state
(swater level, sprevious action, sair mass) = (swater level, 1, 0) and action a = 1,
where swater level varies in [0, wmax].

QR-DQN algorithms to find good policies. Similar as in Section 7.1, we did training runs
on different sets of DistrRL algorithm hyper parameters. Even though, the search was
done on broader ranges and a finer grid for each hyper parameter than in Section 7.1,
the results were much less stable in terms of variance of summed episode rewards during
training across different seeds. Furthermore, we were not able to reliably find a policy that
meets all targets. A training run that is quite representative of the problems we faced is
depicted in Figure 7.7. Training episodes are shown on the x−axis and summed rewards
per episode are given on the y−axis. The dark blue line is the moving average over the
last 50 values and only every 5−th data point is plotted to increase readability. At the end
of training, the graph seems to converge. Nevertheless, the corresponding policy does not
meet all targets. In the following, we discuss the learnt policy.
The agent learns to increase the rotational speed until the target level relatively fast,

as can be seen in Figure 7.8. The amount of air blown in during this time is rather low
and therefore the torque increases fast. This can be seen in Figure 7.9. Furthermore, one
can see that no more air is blown in shortly after the target rotation speed is met. This
makes sense since blowing in more air after the rotation speed is at the target level only
introduces additional costs.
The flow rate is controlled by opening/closing the ball valve and guide vanes. These

states can be seen in Figure 7.10. The ball valve is fully open from a simulation time
of approximately 53 seconds until the end of the episode. So the target of the ball valve
being open at the end of the simulation is met. Moreover, the guide vanes are open from
a simulation time of approximately 27 seconds until the end. This is problematic since it

43



Figure 7.7: Sum of rewards per training episode. The moving average of the previous 50
episodes is shown as the dark blue line.

leads to a flow rate which is above the target flow rate, as it can be seen in Figure 7.11.
Since the ball valve is required to be open at the end of an episode, the guide vanes are not
allowed to be fully opened towards the end, if the target flow rate should be achieved.
Finally, we inspect how often the ball valve and air valve actions are switched and how

often the guide vane opening action is −1 or 1, i.e., how often the guide vane state is
changed. These quantities are given in Figure 7.12. One can see that the actions are only
switched at the beginning of the simulation. After roughly 20 seconds, the actions are kept
constant. Especially, the ball valve action is just switched once.
Summing it up, the investigated policy is able to achieve the objectives regarding the

target rotation speed and the ball valve being open at the end. Furthermore, the number
of action switches is relatively low, which leads to less wear and tear. The objective
which is not met, is the target flow rate. This mainly results from fully opened guide
vanes throughout most of the episode. The reason for that might be the penalty on guide
vane action switches, so we also tried to exclude this objective from the reward function.
Nevertheless, we were not able to reliably find a policy that achieves the target flow rate.
We believe that in order to find a policy that meets all the objectives, the structure of

the reward function will need to be changed further.

44



Figure 7.8: Target rotation speed is achieved fast.

(a) Torque increases fast until the target rota-
tion speed is met. Then the torque is con-
stantly set to zero by the environment.

(b) The air valve is sparsely opened at the be-
ginning, which means that only a small
amount of water is displaced by air. Shortly
after the target rotation speed is met, the
air valve is not opened anymore. This is
good since blowing in more air would have
no effect, but additional costs.

Figure 7.9: Torque and air valve position for a policy that does not meet the target flow
rate.

45



(a) The ball balve starts opening after about
5 seconds. At about 53 seconds it is com-
pletely open and stays open until the end of
the episode.

(b) Guide vane opening values are varied during
the first 27 seconds of the simulation. After-
wards, the guide vanes are completely open
until the end of the episode.

Figure 7.10: Positions of the ball valve and guide vanes responsible for flow rate control.

Figure 7.11: Normalized flow rate. The horizontal orange line marks the normalized target
flow rate.

46



(a) Switches of air valve action:
0 corresponds to the action
remaining the same, 1 cor-
responds to the action being
switched.

(b) Switches of ball valve ac-
tion: 0 corresponds to the
action remaining the same,
1 corresponds to the action
being switched.

(c) Guide vane action: 0 corre-
sponds to action = 0 and
1 corresponds to action ∈
{−1, 1}, i.e., guide vane is
further opened/closed.

Figure 7.12: Air valve, ball valve and guide vane actions: Switching actions frequently
causes higher wear and tear.

47



8 Conclusion

We discuss several distributional RL algorithms and provide in detail pseudo-code for them.
This type of algorithms provides more options to evaluate the reliability of the learnt
policies. We present some methods for using the learned distributions to improve reliability.
Furthermore, we discuss two approaches of off-policy evaluation which provide lower bounds
for the expected return and convergence guarantees, respectively.

Then we introduce two simulation models implemented in the simulation software Simu-
link, which represent the environments for the RL agent. They aim to accurately model
the behaviour of pump turbines which are used for pumped storage systems. Therefore, it
is important to operate the pumps as reliable as possible. We find that running the simu-
lations in Simulink is computationally expensive and makes it hard to parallelize learning.
Furthermore, a lot of adjustments were required to perform RL, since the agent tries out
policies and explores states, which are not visited during manual control of the pump.
While we were able to find an optimal policy for one environment, only two out of three

objectives were met for the second environment.
For the first environments, the weights in the reward function had a huge impact on

the training results and we believe that further adaptation of the reward function for the
second environment will also lead to better learning results. This is left for future work.
In addition, it might be interesting to investigate how learning could be parallelized by

implementing the simulation models in Python, or by simplifying the models while retaining
their ability to represent a pump turbine in the real world.

48



References

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction.
The MIT Press, second edition, 2018. URL http://incompleteideas.net/book/

the-book-2nd.html.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on rein-
forcement learning. In International Conference on Machine Learning, pages 449–458,
2017. URL https://arxiv.org/abs/1707.06887.

Will Dabney, Mark Rowland, Marc G. Bellemare, and Rémi Munos. Distributional rein-
forcement learning with quantile regression. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 32, 2017. URL https://arxiv.org/abs/1710.10044.

Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile net-
works for distributional reinforcement learning. In International Conference on Machine
Learning, pages 1096–1105. PMLR, 2018. URL https://arxiv.org/abs/1806.06923.

Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie-Yan Liu. Fully parame-
terized quantile function for distributional reinforcement learning. In Advances in Neural
Information Processing Systems, pages 6190–6199, 2019.

R. Bellman. Dynamic Programming. RAND Corporation research study. Princeton Uni-
versity Press, 1957. URL https://books.google.at/books?id=rZW4ugAACAAJ.

Thibaut Théate, Antoine Wehenkel, Adrien Bolland, Gilles Louppe, and Damien Ernst.
Distributional reinforcement learning with unconstrained monotonic neural networks.
Neurocomputing, 534:199–219, May 2023. ISSN 0925-2312. DOI: 10.1016/j.neucom.
2023.02.049. URL http://dx.doi.org/10.1016/j.neucom.2023.02.049.

Cédric Villani. Optimal Transport – Old and New, volume 338, page 105. Springer, 2008.
DOI: 10.1007/978-3-540-71050-9.

Clare Lyle, Pablo Samuel Castro, and Marc G. Bellemare. A comparative analysis of
expected and distributional reinforcement learning. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages 4504–4511, 2019. URL https:

//arxiv.org/abs/1901.11084.

Mark Rowland, Marc G. Bellemare, Will Dabney, Rémi Munos, and Yee Whye Teh. An
analysis of categorical distributional reinforcement learning. In International Conference
on Artificial Intelligence and Statistics, pages 29–37. PMLR, 2018. URL https://arxiv.

org/abs/1802.08163.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty,
Kinal Mehta, and João G.M. Araújo. CleanRL: High-quality single-file implementations

49

http://incompleteideas.net/book/the-book-2nd.html
http://incompleteideas.net/book/the-book-2nd.html
https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1710.10044
https://arxiv.org/abs/1806.06923
https://books.google.at/books?id=rZW4ugAACAAJ
http://dx.doi.org/10.1016/j.neucom.2023.02.049
https://arxiv.org/abs/1901.11084
https://arxiv.org/abs/1901.11084
https://arxiv.org/abs/1802.08163
https://arxiv.org/abs/1802.08163


of deep reinforcement learning algorithms. Journal of Machine Learning Research, 23
(274):1–18, 2022. URL http://jmlr.org/papers/v23/21-1342.html.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig
Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through
deep reinforcement learning. Nature, 518(7540):529–533, 2015. ISSN 1476-4687. DOI:
10.1038/nature14236. URL https://doi.org/10.1038/nature14236.

Mastane Achab, Reda Alami, Yasser Abdelaziz Dahou Djilali, Kirill Fedyanin, and Eric
Moulines. One-step distributional reinforcement learning. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856. URL https://arxiv.org/abs/2304.14421.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine
Learning, 3(1):9–44, 1988. ISSN 1573-0565. DOI: 10.1007/BF00115009. URL https:

//doi.org/10.1007/BF00115009.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and
Noah Dormann. Stable-baselines3: Reliable reinforcement learning implementations.
Journal of Machine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/

papers/v22/20-1364.html.

Yang Peng, Liangyu Zhang, and Zhihua Zhang. Statistical efficiency of dis-
tributional temporal difference learning. In Advances in Neural Information
Processing Systems, volume 37, pages 24724–24761. Curran Associates, Inc.,
2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/

2c15b0221da28bc6f4373a7e78b896dd-Paper-Conference.pdf.

Mark Rowland, Rémi Munos, Mohammad Gheshlaghi Azar, Yunhao Tang, Georg Ostro-
vski, Anna Harutyunyan, Karl Tuyls, Marc G. Bellemare, and Will Dabney. An analysis
of quantile temporal-difference learning. Journal of Machine Learning Research, 25(163):
1–47, 2024. URL https://arxiv.org/abs/2301.04462.

Tengyang Xie, Yifei Ma, and Yu-Xiang Wang. Towards optimal off-policy evaluation for
reinforcement learning with marginalized importance sampling. Advances in Neural In-
formation Processing Systems, 32, 2019. URL https://arxiv.org/abs/1906.03393.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of hori-
zon: Infinite-horizon off-policy estimation. Advances in Neural Information Processing
Systems, 31, 2018. URL https://arxiv.org/abs/1810.12429.

Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence
off-policy evaluation. Proceedings of the AAAI Conference on Artificial Intelligence, 29
(1), Feb. 2015. DOI: 10.1609/aaai.v29i1.9541. URL https://ojs.aaai.org/index.

php/AAAI/article/view/9541.

Andreas Maurer and Massimiliano Pontil. Empirical Bernstein bounds and sample variance
penalization. In Annual Conference Computational Learning Theory, 2009. URL https:

//api.semanticscholar.org/CorpusID:17090214.

50

http://jmlr.org/papers/v23/21-1342.html
https://doi.org/10.1038/nature14236
https://arxiv.org/abs/2304.14421
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://proceedings.neurips.cc/paper_files/paper/2024/file/2c15b0221da28bc6f4373a7e78b896dd-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2c15b0221da28bc6f4373a7e78b896dd-Paper-Conference.pdf
https://arxiv.org/abs/2301.04462
https://arxiv.org/abs/1906.03393
https://arxiv.org/abs/1810.12429
https://ojs.aaai.org/index.php/AAAI/article/view/9541
https://ojs.aaai.org/index.php/AAAI/article/view/9541
https://api.semanticscholar.org/CorpusID:17090214
https://api.semanticscholar.org/CorpusID:17090214


Runzhe Wu, Masatoshi Uehara, and Wen Sun. Distributional offline policy evaluation with
predictive error guarantees. In International Conference on Machine Learning, pages
37685–37712. PMLR, 2023. URL https://arxiv.org/abs/2302.09456.

Kun-Jen Chung and Matthew J. Sobel. Discounted MDP’s: Distribution functions and
exponential utility maximization. SIAM Journal on Control and Optimization, 25(1):
49–62, 1987. DOI: 10.1137/0325004. URL https://doi.org/10.1137/0325004.

Guanying Chen and Zhenming Ji. A review of solar and wind energy resource projection
based on the earth system model. Sustainability, 16(f8), 2024. ISSN 2071-1050. DOI:
10.3390/su16083339. URL https://www.mdpi.com/2071-1050/16/8/3339.

Simulink Documentation. Simulation and model-based design, 2020. URL https://www.

mathworks.com/products/simulink.html.

Carlotta Tubeuf, Felix Birkelbach, Anton Maly, and René Hofmann. Increasing the flex-
ibility of hydropower with reinforcement learning on a digital twin platform. Energies,
16(4), 2023. ISSN 1996-1073. DOI: 10.3390/en16041796. URL https://www.mdpi.com/

1996-1073/16/4/1796.

Carlotta Tubeuf, Jakob aus der Schmitten, René Hofmann, Clemens Heitzinger, and
Felix Birkelbach. Improving control of energy systems with reinforcement learn-
ing: Application to a reversible pump turbine. In Energy Sustainability, volume
87899, page V001T01A001. American Society of Mechanical Engineers, 2024. DOI:
10.1115/ES2024-122475. URL https://doi.org/10.1115/ES2024-122475.

Johannes Brust. Simulink Gym, 2025. URL https://github.com/johbrust/simulink_

gym.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253–279, June 2013. ISSN 1076-9757. DOI: 10.1613/jair.3912. URL http://dx.doi.

org/10.1613/jair.3912.

51

https://arxiv.org/abs/2302.09456
https://doi.org/10.1137/0325004
https://www.mdpi.com/2071-1050/16/8/3339
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mdpi.com/1996-1073/16/4/1796
https://www.mdpi.com/1996-1073/16/4/1796
https://doi.org/10.1115/ES2024-122475
https://github.com/johbrust/simulink_gym
https://github.com/johbrust/simulink_gym
http://dx.doi.org/10.1613/jair.3912
http://dx.doi.org/10.1613/jair.3912


Appendix

In the following, the supplementary plots from Section 7.2 are shown.

(a) sprev action = 0, action a = 0 (b) sprev action = 1, action a = 0 (c) sprev action = 0, action a = 1

Figure 8.1: Pairwise comparison of return distributions for varying initial state-action pairs.
The difference is measured in Wasserstein distance.

(a) sprev action = 0, action a = 0 (b) sprev action = 1, action a = 0 (c) sprev action = 0, action a = 1

Figure 8.2: Variances of return distributions for varying initial state-action pairs.

52


	Introduction
	Expected and Distributional Reinforcement Learning
	Notation and Basic Definitions
	Distributional Reinforcement Learning

	Distributional Reinforcement Learning Algorithms
	C51
	One-Step Distributional Reinforcement Learning
	QR-DQN
	IQN
	FQF

	Convergence Guarantees
	Off-Policy Evaluation
	Fundamental Methodology and Terminology
	High Confidence Off-Policy Evaluation
	Distributional Off-Policy Evaluation
	Finite Horizon Fitted Likelihood Estimation
	Infinite Horizon Fitted Likelihood Estimation


	Environments
	Blow-Out Model
	Simulation of a Commercially used Pump Turbine

	Results and Discussion
	Learning an Optimal Blowout Policy
	Utilization of the Learnt Return Distributions
	DistrRL on a Simulation Model of a Commercially used Pump Turbine

	Conclusion
	References

