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Kurzfassung

Wir entwickeln und untersuchen eine probabilistische Prozedur zur Charakterisierung
der Sicherheit von Black Box Systemen, wie neuronalen Netzwerken (NNs) oder cyber-
physikalischen Systemen (CPSs). Mit einer einzigen Stichprobe von ausreichender Größe
kann unsere Prozedur Spezifikationen in einer vorausgewählten Klasse identifizieren,
welche das System mit hoher Wahrscheinlichkeit korrekt beschreiben.
Für viele Probleme sind Lösungen basierend auf maschinellem Lernen der Stand der
Technik, doch die Komplexität dieser Systeme macht formale Beweise ihrer Sicherheit
oft unmöglich. Ohne Sicherheitsgarantien kann unvorhersehbares Verhalten und Mani-
pulationsanfälligkeit in kritischen Anwendungen nicht ausgeschlossen werden. Dies ist
vor allem für CPSs wichtig, welche physisch mit ihrer Umgebung interagieren. Deswegen
sind Sicherheitsgarantien für den Einsatz dieser Systeme oft eine Voraussetzung. Für
Black-Box Szenarien, in denen formale Methoden nicht einsetzbar sind, untersuchen wir
wie probabilistische Garantien alleine durch Zufallstests gegeben werden können.
Wir verwenden Methoden aus der Lerntheorie um—für eine gewählte Klasse von mög-
lichen Spezifikationen—zu entscheiden, welche Spezifikationen das System mit großer
Wahrscheinlichkeit korrekt beschreiben. Unsere Prozedur benötigt nur eine Stichprobe
von ausreichender Größe um eine Aussage über die gesamte Spezifikationsklasse zu treffen.
Bemerkenswerterweise ist die Größe dieser Stichprobe unabhängig von Charakteristiken
des untersuchten Systems und seiner Daten und ist nur abhängig von der Komplexität
der Spezifikationsklasse selbst, speziell ihrer Vapnik-Chervonenkis (VC) dimension.
Wir untersuchen die Anwendung unserer Methode in zwei praxisrelevanten Szenarien und
erweitern unsere Theorie um Lösungen speziell für diese Probleme zu entwickeln. Zuerst
untersuchen wir die Robustheit von NNs gegen gezielte Datenmanipulation und geben
wahrscheinlich annähernd-globale Robustheitsgarantien. Diese Garantien dienen dann als
scharfe untere Schranken für die Robustheit jeder Vorhersage eines NNs in Abhängigkeit
der Vorhersagesicherheit. Für CPS Verifizierung selbst untersuchen wir Signal-temporale
Logik (STL) als Spezifikationssprache. Erfüllt das CPS eine Bedingung für Wohlverhal-
tenheit, erhalten wir für jede in STL ausdrückbare Formel eine Oberschranke ihrer VC
Dimension. Dadurch können wir die notwendige Stichprobengröße bestimmen, mit der
jede aus den Daten gelernte Spezifikation mit hoher Wahrscheinlichkeit generalisiert.
Unsere Experimente zeigen, dass unsere Theorie in die Praxis übertragbar ist und die
Stichprobengrößen auch für komplexe Spezifikationsklassen noch handhabbar sind.
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Abstract

We devise and investigate a probabilistic procedure for verifying the safety of black-box
systems like neural networks (NNs) and cyber-physical systems (CPSs). Given a large
enough sample of observations, our procedure allows us to identify specifications in a
chosen class that correctly characterise the system with high probability. In particular,
we give guarantees for all specifications in the class without the need to resample.

Machine-learning-based solutions are state of the art in many problem settings, yet their
internal complexity often renders it infeasible to verify them for safety formally. Without
safety guarantees, these systems might behave unpredictably and are vulnerable to
manipulation in critical applications. This is especially true for CPSs, which interact with
their environment physically. Because of this, guaranteed safety is often a prerequisite
for the deployment of CPSs. For black-box settings where formal methods are infeasible,
we investigate how to give probabilistic guarantees from random observations alone.

We use tools from learning theory to decide—for a chosen class of candidate specifications—
which specifications the investigated system will adhere to with high probability. Our
procedure requires us to obtain only one sufficiently large sample of observations to make
statements about the whole class of specifications. Remarkably, the required size of the
sample is independent of any characteristics of the investigated system and observations
and only depends on the complexity of the specification class itself, specifically its
Vapnik-Chervonenkis (VC) dimension.

We apply our verification procedure to two practically relevant settings and extend our
theory to devise solutions tailored to these specific problems. We first investigate the
robustness of NNs against adversarial perturbations and give probably, approximately
global robustness guarantees. These guarantees then serve as sharp lower bounds for
the robustness of each prediction of an NN, given its prediction confidence. To tackle
CPS verification, we investigate signal temporal logic (STL) as a specification language.
Assuming the CPS is well-behaved, we can provide VC dimension bounds for any
parametrised formula expressible in STL. This allows us to quantify how many samples
are required to mine system specifications that are guaranteed to generalise.

Our experimental results show that our theory easily translates into practice and that our
requirements on the sample size are manageable even for complex specification classes.
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CHAPTER 1
Introduction

Before the deployment of cyber-physical systems (CPSs) in real-world applications, their
safety should be guaranteed. However, this is not always possible. CPSs are systems
that continuously interact with their environment, and consequently often need to be
certified together with the environment. Furthermore, they increasingly utilise machine
learning or other complex internal mechanisms. This shared complexity of the CPS and
its environment prohibits the use of formal verification techniques, which rely on exact
models and are computationally expensive. In cases where formal verification is not
possible, testing is usually the only alternative to show the safety of a system. Testing,
however, raises two additional problems. First, how to test a system, and second, for
how long.
For randomised testing, there exists a variety of statistical hypothesis tests to answer
these questions. However, the choice, application and interpretation of these tools is not
always easy. In CPS settings specifically, naive modelling easily leads to an astronomical
amount of required tests [Kalra and Paddock, 2016]. In the absence of statistical methods
to quantify the number of required tests, tools that infer statements from complex CPS
data do not quantify the uncertainty of their results [Jones et al., 2014, Jha et al., 2017].
This issue is even more pronounced when multiple properties should be tested or learned
at the same time, where naive statistical tools would impose compounding requirements
on sample size.
In this thesis, we aim to improve this situation and devise statistical tools to characterise
the required number of tests to guarantee safety up to a chosen level of uncertainty. We
tackle this problem with the use of existing methods from learning theory to devise a
sampling-based verification procedure for a predefined class of hypotheses. After obtaining
a sample of sufficient size, we can certify that all hypotheses that are consistent with all
sampled data points will hold for future observations with high probability. Our tools
are devised in an abstract setting to allow us to distinguish our method from existing
approaches and build necessary intuition. Before approaching CPS directly, we target a
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1. Introduction

more manageable problem: verification of neural nets. Neural networks suffer the same
problems as CPS with respect to formal methods, but have seen much more focused
research efforts for the verification of specific properties. Among these properties, we will
focus on robustness, the resilience of a network against small, adversarial changes to its
inputs.

Without special care, NNs used for classification tasks can often be tricked into producing
arbitrary classifications when a given input is changed carefully. These adversarial
changes are normally imperceptible to the human observer and pose a serious vulnerability
[Szegedy et al., 2014, Goodfellow et al., 2015]. Formal verification of robustness against
these attacks is often not feasible for NNs due to computational costs. We apply our
probabilistic verification procedure to this problem to give robustness guarantees that are
conditioned on the prediction confidence. The special nature of NN robustness requires
us to extend our theory to provide probabilistic statements that are faithful relaxations of
the formal property. We experimentally demonstrate how well our guarantees characterise
the behaviour of the network on unseen data and test it with a variety of tools for the
quantification of NN robustness.

After the special case of NN robustness, we approach the more general setting of CPS
verification by focusing specifically on the specification language signal temporal logic
(STL). As our method relies only on the complexity of the specification class we want
to use to characterise a system, we investigate methods to bound this complexity. The
focus here is to augment our certification method to allow us to certify CPS with respect
to any class of specifications expressible in STL. This then allows us to quantify the
certainty of any preexisting method that mines STL specifications from a sample.

1.1 Research Questions
Our research questions are phrased to focus on the different settings we investigate
throughout this thesis. We aim to find high probability answers to the following
questions.

MAIN-RQ How many random tests are required to characterise a given black-box
system with respect to a given class of properties?

NN-RQ1 How many samples do we need to decide for all levels of confidence
and robustness whether the neural network can be both confident and
non-robust?

NN-RQ2 How can we obtain sharp lower bounds for NN robustness, conditioned
on the prediction confidence, that generalise to unseen data?

CPS-RQ1 For any given STL specification template, how many simulation traces
of real-time CPSs do we need to certify that all specifications we can
mine are valid?

2



1.2. Structure of the Thesis

1.2 Structure of the Thesis
This thesis is structured in three self-contained chapters and a concluding chapter for
discussions. In Chapter 2, we give the necessary background in learning theory, introduce
our theory and set it into context with other statistical tools. The concepts introduced
in this chapter are central for our results in later chapters and serve as blueprints for our
later theorems.

Chapter 3 investigates NN robustness verification. We first formally define local robustness
in NNs and give an overview of existing work in statistical and formal verification of
NNs. We then introduce our own probabilistic definition of global robustness and give
a verification procedure that expands on our theory in Chapter 2. Our experimental
evaluation shows that our procedure translates well into practice, scales well with NN
size and can be adapted easily to different notions of robustness.

Finally, in Chapter 4 we apply our theory to statistical model checking of CPSs. In this
more general setting, we investigate the specification language STL. Our aim is to obtain
VC dimension bounds for parametrised specifications in this language. Once we have
these VC dimension bounds, we apply our theory to guarantee that mined specifications
will hold for future observations. We demonstrate the practicality of our results with
experiments in anomaly detection.

Finally, in Chapter 5 we conclude this thesis with a short summary of our results in the
context of our initial research question.

3





CHAPTER 2
Epsilon Nets for Verification

In this chapter, we present our theoretical findings for probabilistic verification in an
abstract setting. We introduce the necessary background knowledge in probability theory
and learning theory to both understand our main results and contrast them with other
statistical tools that might be used for similar purposes. The setting we assume serves
as an abstraction of our two applications in NN verification and CPS verification, and
allows us to keep the notation light, for now.

We investigate a given black-box system we call f , which is only accessible to us by
sampling random observations. These observations follow a fixed but unknown probability
distribution. We are then given a class of candidate specifications R and are tasked
with identifying which of the specifications in R describe f . That is, we want to identify
specifications that will be true for any future random observation with high probability.

The procedure we present to achieve this utilises ε-nets, a concept from computational
geometry that gives a notion of coverage in probabilistic settings. We require only a
single random sample of sufficient size to achieve coverage of all specifications in R likely
to be violated. All the remaining specifications can be certified to be true in future
observations with high probability.

2.1 Preliminaries: Probabilities and Learning Theory
The notation and definitions for concepts we present in this section follow the presentation
in Mitzenmacher and Upfal [2017] where possible. We are given a system f from which
we can sample observations. Each observation is a point x ∈ X , in some metric space X .
The observations are sampled independently identically distributed (i.i.d.) according to
the unknown, but fixed distribution D over X . Probabilities will be defined with respect
to D and be denoted Pr. We use X as a random variable for an observation following
D, i.e., X∼ D. Sets of n ∈ N data points sampled from D will be denoted N ∼ Dn.

5



2. Epsilon Nets for Verification

In general, we reserve lower-case bold font letters for specific data points and reserve
upper-case letters for random variables and sets.

We introduce further notation along with the corresponding concepts later in this section.

With this notation introduced, we start to investigate random events in D. The random
events of interest for us might be the safety specifications of the system f , as illustrated
in the following example.

Example 2.1.1 (Two-State System). In the simplest case, our observations of a given
system f just consist of the information if it is in a safe state (0) or an unsafe state (1)
with X = {0, 1}. We do not know the distribution D but want to know how likely the
system is in an unsafe state, i.e. Pr(X = 1). We can estimate this probability by taking
some sample N ∼ Dn of size n ∈ N, as

Pr(X = 1) ≈ |{x ∈ N : x = 1}|
n

. (2.1)

In words, the fraction of successes in a sample of Bernoulli trials estimates the true
success probability.

As n increases in Example 2.1.1, the estimate will approach the true probability. In
general, however, we are not interested in merely estimating but rather upper-bounding
the probability of being in an unsafe state, as a guarantee. Bounds for the deviation
from sample estimates are commonly achieved with concentration-inequalities, especially
Chernoff and Hoeffding bounds [Mitzenmacher and Upfal, 2017, chapter 4]. Out of these
inequalities, the Chernoff bound for the sum of Bernoulli trials (or Poisson trials, where
the success probability might differ between trials) is especially prominent in various
statistical verification methods we discuss in later chapters.

Theorem 2.1.2 (Chernoff Bound, Mitzenmacher and Upfal 2017). Let N = {X1, . . . , Xn}
be a set of i.i.d. Bernoulli trials such that Pr(Xi = 1) = p. Let S be the random variable
of the sum of trials, S = ∑︁n

i=1 Xi with E[S] = np. Then for a deviation from the
expectation 0 < ε < 1, the following two bounds hold:

Pr
(︃

np − S

np
≥ ε

)︃
≤ exp

(︄
−npε2

2

)︄
(2.2)

Pr
(︃ |np − S|

np
≥ ε

)︃
≤ 2 exp

(︄
−npε2

3

)︄
(2.3)

In words, the probability that S deviates from its expected value by more than an ε-fraction
decreases exponentially with the size of the sample.

This is a powerful and well-known result, which allows us to give the desired bound for
our estimate in Example 2.1.1.

6



2.1. Preliminaries: Probabilities and Learning Theory

Example 2.1.3 (Sample Complexity for Two-State System). Inspired by Mitzenmacher
and Upfal [2017, Section 4.2.3], we continue Example 2.1.1 and want to guarantee the
quality of our estimate by providing a 1 − δ confidence interval for the true probability
p = Pr(X = 1) of width 2ε based on a random sample N ∼ Dn and the estimate p̂ = S/n.
That is, we want to find the appropriate (smallest) sample size |N | = n, such that for
any given choice of 0 < ε, δ < 1

Pr(|p − p̂| > ε) < δ. (2.4)

In words, the probability that our estimate is more than ε-bad is bounded by δ. We
proceed with Theorem 2.1.2.

Pr(|p − p̂| > ε) = Pr
(︃ |np − S|

n
> ε

)︃
(2.5)

= Pr
(︃ |np − S|

np
>

ε

p

)︃
(2.6)

≤ Pr
(︃ |np − S|

np
≥ ε

p

)︃
(2.7)

≤2 exp
(︄−np( ε

p)2

3

)︄
(2.8)

≤2 exp
(︄

−nε2

3p

)︄
< δ (2.9)

We do not know the exact value of p, but we know the expression is maximal for large p.
We use p ≤ 1 and find a lower bound for n with some standard calculations.

−nε2

3 < ln δ

2 (2.10)

−n <
3
ε2 ln δ

2 (2.11)

n >
3
ε2 ln 2

δ
(2.12)

For any choice of parameters ε, δ, we now know how large our sample needs to be to give
a confidence interval with the required width 2ε and probability mass δ.

For the purpose of verification, or more precisely estimation with deviation bounds,
no matter what property or specification is investigated, the required sample size is in
O

(︂
1
ε2 ln 1

δ

)︂
. If we obtain a sample of size Equation (2.12), we know the true probability

p differs from our estimate at most ε, in a 1 − δ fraction of the samples we produce. Even
though this is very useful for many use cases, there is one essential drawback to this use
of Chernoff bounds. This method not only assumes no information about the system but
also about the specification of interest. If we are interested in multiple specifications, we
need to sample again and again to apply Chernoff bounds as described in Example 2.1.3.

7



2. Epsilon Nets for Verification

This approach is overly naive for many settings, and other tools are better fitted to
investigate groups of more complex specifications in these situations.

We illustrate this with a final abstract example, the issue of providing real-valued quantile
bounds in a distribution-free setting.

Example 2.1.4. We observe pressure levels from a system and want to certify that
the pressure stays below some critical threshold t ∈ R. That is, X = R and our safety
property is X ≤ t. Assume we model this property as boolean predicate with t1 = 5, and
after an i.i.d. sample N of size n > 3

ε2 ln
(︂

2
δ

)︂
, we can give an ε, δ confidence interval for

the probability of the pressure exceeding t1, that is pt1 = Pr(X > t1).

Now assume we are also interested in pt2 = Pr(X > t2) for t2 = 6. Naively, the Chernoff
bound gives us no information about Pr(X > t2). If we wish to re-use N for the
certification of this second property, this is another, potentially unrelated hypothesis
to be tested. The probability of both p̂t1 and p̂t2 being ε-good estimates of the true
probabilities is then not 1 − δ, but 1 − 2δ, by the union bound. Similarly, the more
hypotheses we want to test this way, the weaker the guarantees inherently become, so
Chernoff bounds alone might not be best suited for this task.

There are more powerful statistical tools that can improve this situation. For Exam-
ple 2.1.4, the Dvoretzky-Kiefer-Wolfowitz-Massert (DKW) inequality [Dvoretzky et al.,
1985, Massart, 1990, Naaman, 2021] helps us to obtain a sample complexity to bound
the worst-case deviation from the true distribution function in a sample.

Definition 2.1.5 (Multivariate DKW inequality, Naaman 2021). For a k ∈ N variate
continuous cumulative distribution function (cdf) F and an empirical cdf Fn estimated
from n i.i.d. samples, it holds that

Pr
(︄

sup
a∈Rk

|Fn(a) − F (a)| > ε

)︄
≤ k(n + 1)e−2nε2

. (2.13)

Adapted to our question in the univariate case in Example 2.1.4, it is defined [Massart,
1990] as

Pr
(︄

sup
t∈R

|pt − p̂t| > ε

)︄
< 2 exp(−2nε2), (2.14)

resulting in a sample complexity of O
(︂

1
ε2 ln 1

δ

)︂
, similar to Chernoff bounds with worse

constants. While the DKW inequality can overcome the issue of multiple hypothesis
testing Chernoff bounds have, we discuss in this thesis that the dependence on 1/ε2 can
be drastically improved upon, if we move from estimation to testing for low likelihood.
We will show that this strategy allows us to make more flexible statements with some
additional background from learning theory.
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2.1. Preliminaries: Probabilities and Learning Theory

2.1.1 Concepts from Learning Theory

In addition to the introduced statistical concepts for sample-based estimation of pa-
rameters, we also heavily rely on computational learning theory. One of the central
concepts we use, the Vapnik-Chervonenkis (VC) dimension [Vapnik and Chervonenkis,
2015], allows us to quantify how expressive a class of specifications of interest is. For this,
we first formally define what we mean by a class of specifications.

Definition 2.1.6 (Range space). Let X be a (possibly infinite) set and R a set of subsets
of X called ranges, that is ∀R ∈ R : R ⊂ X . The tuple (X , R) is then called a range
space (or hypothesis space or set system).

This definition of a given range R ∈ R is analogous to the set-semantic definition of
(unary) predicates in first-order logic, where we define the specification or property R as
the set of elements in X that satisfy R. The VC dimension then defines the combined
expressivity of a given range space (X , R).

Definition 2.1.7 (Vapnik-Chervonenkis Dimension). Let (X , R) be a range space. The
VC dimension VC(X , R) is then defined as the size of the largest set S ⊂ X that can be
shattered by (X , R), which means that

∀S′ ⊆ S, ∃R ∈ R : S ∩ R = S′. (2.15)

If (X , R) can shatter sets of arbitrary size, VC(X , R) is unbounded.

VC dimensions are a central concept in learning theory and have been studied extensively.
They intuitively capture how expressive or flexible a range space is, for example, the
range space that is expressed by a given machine learning algorithm. In the later sections
of this thesis, we study fragments of certain logics as range spaces and investigate their
VC dimension as a basis for our results. We provide a demonstration of a typical VC
dimension proof for a range space, which will serve as a template for VC dimension proofs
later.

Example 2.1.8 (VC dimension of axis-aligned halfspaces). Consider the range space
(Rk, R≤) for k ∈ N+, with R≤ = {R≤t : t ∈ Rk} where we define each range Rt as

R≤t =
{︄

x ∈ Rk :
k⋀︂

i=1
xi ≤ ti

}︄
. (2.16)

In words, R≤t is defined by a set of k thresholds, and contains all points x ∈ Rk which
exceed none of these threshold values. This generalises the setting in Example 2.1.4.

Lemma 2.1.9. For (Rk, R≤) it holds that VC(Rk, R≤) = k.

9



2. Epsilon Nets for Verification

Proof. We first show VC(Rk, R≤) ≥ k by example. Consider the set S = {e(1), . . . , e(k)} ⊂
Rk of canonical basis vectors, i.e., for i ∈ [1, k] : e(i)

i = 1 and for ∀j ̸= i : e(i)
j = 0. For any

subset S′ ⊂ S, we define t = ∑︁
e∈S′ e. Then ∀e ∈ S′ : e ∈ Rt. Further, ∀e(i) /∈ S′ : ti = 0,

so ∀e(i) /∈ S′ : e(i) /∈ Rt. Consequently, (Rk, R≤) shatters S, and we have shown the
lower bound.

Now we show VC(Rk, R≤) ≤ k by contradiction. Assume ∃S with |S| = k + 1, such
that (Rk, R≤) shatters S. As S is shattered, for each S′ ⊆ S there exists a Rt such that
Rt ∩ S = S′. We now consider

S′ =
{︄

x ∈ arg max
x′∈S

x′
i : i ∈ [1, k]

}︄
, (2.17)

a subset of S of points that are maximal in one dimension. We know |S′| ≤ k and for
any range Rt such that S ⊂ Rt, ti ≥ maxx∈S xi. This, however, implies S \ S′ ⊂ Rt, a
contradiction to S ∩ Rt = S′. Any set S with |S| = k + 1 cannot be shattered.

For a given range space and under a fixed probability distribution D, we can now introduce
a notion of coverage central to our approach. This construct from computational geometry
is called ε-net.

Definition 2.1.10 (ε-net Haussler and Welzl 1986, Mitzenmacher and Upfal 2017). Let
(X , R) be a range space, D be a distribution over X and X be a random observation
sampled from D. A finite set N ⊂ X is called ε-net, if and only if

∀R ∈ R :
(︂

Pr(X ∈ R) ≥ ε =⇒ N ∩ R ̸= ∅
)︂
. (2.18)

In words, N is an ε-net if and only if it intersects all the ε-likely ranges in R.

Section 2.1.1 illustrates an ε-net for a range space of circles in R2 with some distribution.
The ε-net just ensures that all probably enough ranges will be intersected at least once.
In contrast to, e.g. Chernoff bounds, we cannot know if the size of the intersection
between the ε-net and any particular range is representative of the true probability. A
finite set that satisfies this additional requirement of representative intersection sizes is
called ε-sample.

Definition 2.1.11 (ε-sample Vapnik and Chervonenkis 2015, Mitzenmacher and Upfal
2017). Let (X , R) be a range space, D be a distribution over X and X be a random
observation sampled from D. A finite set N ⊂ X is called ε-sample, if and only if

∀R ∈ R : |Pr(X ∈ R) − |N ∩ R|
|N | | ≤ ε (2.19)

In words, N is an ε-sample if and only if it estimates the true probabilities of all ranges
in R with an error of at most ε.

10



2.2. ε-Nets

(a) A couple of circles (b) An ε-net

Figure 2.1: Example for an ε-net. Figure 2.1a illustrates a range space. Circles with
probabilities larger than or equal to ε are tinted blue. The set of points in Figure 2.1b
intersects all blue circles.

As a final result, we present a very helpful result for VC dimension bounds that we will
use in later chapters. Goldberg and Jerrum [1993] investigated parametrised range spaces,
where each range is definable with real-valued parameters and membership tests are fixed
boolean formulas over polynomial inequalities.

Theorem 2.1.12 (VC dimension of Parametrised Range Spaces, Goldberg and Jerrum
1993). Let (Xn, Rk) be a range space, where elements x ∈ Xn are representable by n real
values, and each range R ∈ Rk is representable by k real values. Suppose all membership
tests x ∈ R can be expressed as a fixed boolean formula Φk,n. The formula Φk,n is built
over η = η(k, n) distinct atomic predicates, each predicate being a polynomial inequality
over k + n variables, of degree at most ℓ = ℓ(k, n). Then, for the VC dimension of
(Xn, Rk) it holds that

V C(Xn, Rk) ≤ 2k log2(8eℓη) (2.20)

That is, the VC dimension scales linearly with the number k of parameters for each range,
logarithmically with the degree of polynomials ℓ and the number η of distinct inequalities,
but is independent of the dimensionality of X .

2.2 ε-Nets
In this section, we use the tools we introduced in Section 2.1 to present and motivate
our approach to probabilistic verification. An ε-net, by definition, intersects any prob-
able enough range in a range space. If our aim is to identify many high-probability
specifications in R, we can do so with a single ε-net.

Observation 2.2.1. Given an ε-net N for a range space (X , R), we can identify low-
probability ranges. Definition 2.1.10 with contraposition gives

∀R ∈ R :
(︂
N ∩ R = ∅ =⇒ Pr(X ∈ R) < ε

)︂
(2.21)
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2. Epsilon Nets for Verification

(a) An ε-net for circles in R2 (b) All empty circles have low probability mass

Figure 2.2: Example for probabilistic inference with an ε-net. Figure 2.2a illustrates a
range space with an ε-net. Circles with probabilities larger than or equal to ε are tinted
blue. Figure 2.2b shows a different set of circles. With the ε-net, we can infer that all
empty circles have a probability mass smaller ε. The dashed blue circles intersect the
ε-net, so no statement about them can be made.

We can use this observation to identify high probability ranges under the complement.
Let Rc denote the complement of the range R, i.e., Rc = Q \ R and analogously
Rc = {Rc : R ∈ R}. as Pr(X ∈ R) = 1 − Pr(X ∈ Rc), we can use ε-nets to identify
specifications that hold with probabilities of at least 1 − ε. More specifically, these
high-probability specifications are nearly never violated in the investigated system.
Remarkably, similar to the DKW-inequality, ε-nets allow us to check all ranges in Rc

without weakening our statement. In order to avoid confusing language, we utilise this
argument of reasoning under the complement implicitly going forward. We provide an
example of the utility of our observation in a simple range space.

Example 2.2.2 (ε-net over circles). We again consider the range space (R2, R) with
each R ∈ R being a set of points contained in a circle. We now assume we have an ε-net
N , illustrated in Example 2.2.2. Any circle we can construct without intersecting N , can
be certified to contain a probability mass smaller ε, as shown in Figure 2.2b. If a given
circle intersects any point in N , we cannot make a statement about its probability mass.

While we often cannot construct ε-nets deterministically, they can be obtained via i.i.d.
samples for range spaces with bounded VC dimension, as stated by the following theorem.

Theorem 2.2.3 (ε-nets from i.i.d. samples, Mitzenmacher and Upfal 2017). Let (X , R)
be a range space with VC dimension d and let D be a probability distribution over X . For
parameters 0 < ε, δ < 1

2 , an i.i.d. sample from D of size s is an ε-net for (X , R) with
probability at least 1 − δ for some

s = O
(︃

d

ε
ln d

ε
+ 1

ε
ln 1

δ

)︃
(2.22)

This is a well-known result in learning theory and computational geometry, where the
main interest is describing asymptotic behaviour. We, however, want to sample small
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ε-nets for the purpose of verification and are interested in obtaining the tightest possible
sample complexity. The following proposition reconstructs the proof of Mitzenmacher
and Upfal [2017, Theorem 14.8] for Theorem 2.2.3 but more carefully keeps track of
constants, in order to obtain a finite expression for the sample complexity of ε-nets.

Proposition 2.2.4 (ε-nets from i.i.d. samples). Let (Q, R) be a range space with VC
dimension d and let D be a probability distribution over Q. For parameters 0 < ε, δ < 1

2 ,
an i.i.d. sample from D of size s is an ε-net for (Q, R) with probability at least 1 − δ if s
satisfies

s ≥ 2
ln(2)ε

(︃
ln 1

δ
+ d ln(2s) − ln

(︃
1 − exp

(︃−sε

8

)︃)︃)︃
(2.23)

Proof. See Appendix A.

Careful inspection shows that Proposition 2.2.4 is worse than one of the inequalities
in the final lines of the proof in Mitzenmacher and Upfal [2017, Theorem 14.8]. This
discrepancy is due to an omitted constant factor of ln(2) in their derivation of the proof,
inconsequential to their result. With Proposition 2.2.4 we are now able to obtain a precise
integer that is guaranteed to be a sufficient sample size. We denote this integer with the
following expression going forward and use a simple numerical method like binary search
to find the smallest suitable integer.

s(ε, δ, d) = min
{︃

s′ ∈ N : s′ ≥ 2
ln(2)ε

(︃
ln 1

δ
+ d ln(2s′) − ln

(︃
1 − exp

(︃−s′ε
8

)︃)︃)︃}︃
(2.24)

In the spirit of Example 2.2.2, we can now identify certifiably low probability ranges
in R with a single sample. The following section describes our verification procedure
and discusses differences between the use of ε-nets and other, more common tools like
Chernoff bounds for verification in detail.

In the following, we investigate how exactly inference based on ε-nets differs from other
sampling-based methods.

2.3 Taxonomy of Sampling-Based Inference Methods
As we choose ε-nets for our approach to probabilistic verification, it is important to
motivate this choice in contrast to other, more established constructs used in related work.
In this section, we highlight the differences between different mechanisms to achieve a
distribution-agnostic bound with a small taxonomy. For the sake of completeness of
this taxonomy, we will introduce a construct we call binomial tail bound. This is an
elementary result, obtained with basic probability theory and introduced here purely to
paint a more complete picture.
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Lemma 2.3.1 (Binomial Tail Bound). Let X be a real-valued random variable, following
some unknown distribution D over R. Then, for an i.i.d. random sample N ∼ Ds and
parameters 0 < ε, δ < 1

2 , if s satisfies

s ≥ ln 1
δ

ln(1 − ε) (2.25)

then for a given N it holds with probability of at least 1 − δ that

Pr(X > max(N)) < ε (2.26)

Proof. Consider the (unknown) 1 − ε quantile X1−ε of X, that is X1−ε = infx : Pr(X ≤
x) ≥ 1−ε. Per definition of quantiles Pr(X > X1−ε) < ε, but also Pr(X < X1−ε) ≤ 1−ε.
Now, if max(N) ≥ X1−ε, it holds that Pr(X > max(N)) ≤ Pr(X > X1−ε) < ε. We can
now obtain a bound for

Pr(max(N) < X1−ε) = Pr(∀x ∈ N : x < X1−ε) (2.27)
= Pr(X < X1−ε)s (2.28)
≤ (1 − ε)s ≤ δ (2.29)

s ≥ ln 1
δ

ln(1 − ε) (2.30)

Lemma 2.3.1 allows us to use the maximum value of our sample (or any value higher than
the maximum) as an upper bound for a high quantile in the distribution. Remarkably,
it allows us to make the same statement Chernoff bounds give, but only for the special
case where the observed probability of a given event is 0. An important observation here
is that ln 1

δ / ln(1 − ε) = O
(︂

1
ε ln 1

δ

)︂
. We can now suddenly see how different mechanisms

of estimating probabilities relate in terms of their sampling complexity, as illustrated in
Figure 2.3. This figure is reductive by design but illustrates an important insight into
the costs in terms of sample size we have to pay for different types of information. It is
comparatively cheap to check if a probability p < ε, but to estimate any value of p with
an error of ε requires a number of samples quadratic in 1

ε . Orthogonally to this, if we
want to learn the parameter p of a Bernoulli trial, our sample is much smaller than for
more complex range spaces. We need to compensate for range spaces with larger VC
dimensions d with a factor of d ln 1

ε . The trick used in many settings where Chernoff
bounds are applied is that testing for any boolean property can be modelled as a series
of Bernoulli trials. We do not need to think about the property in question; we just need
to check the fraction of trials in which the property is true to get a good estimate of the
true probability. This, however, means we have to pay the cost factor of 1

ε , and we cannot
easily test multiple complex properties at once. Even when we—instead of Chernoff
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2.3. Taxonomy of Sampling-Based Inference Methods

Bernoulli Trials

Any Range Space

Chernoff Bounds/DKWBinomial Tail Bounds

Epsilon Nets Epsilon Samples

LearningTesting

Figure 2.3: Different sampling-based inference methods with their associated sample
complexities. The relative costs in terms of sample sizes are illustrated row- and column-
wise. The relationships between bounds mainly serve for intuition: marginally tighter
bounds can be obtained for ε-nets and ε-samples [Mitzenmacher and Upfal, 2017, Exercise
14.11].

bounds—use DKW bounds, we can only multi-test within a small class of specific range
spaces1.

As an alternative to the use of Chernoff bounds, we investigate the other trade-off
depicted in our taxonomy. We restrict ourselves to testing if a probability is close to 0,
but explicitly model more complex range spaces. This allows us to simultaneously test
all properties in the chosen range space. While this does, in fact, cost more samples,
depending on the VC dimension of the range space, for many use cases d ≪ 1

ε , as we
will see in later sections. Consequently, the effective sample complexity of ε-nets is much
smaller than for Chernoff bounds. We illustrate the qualitative difference in information
obtained by different methods in an example.

Example 2.3.2 (Shooting Range Spaces). Assume we observe archers at a shooting range,
noting down the hit pattern in dependence on the wind speed observed in Figure 2.4.
We group the shots by wind speed: low wind ( ), medium wind( ) and strong wind
( ). We observe the i.i.d. sample N depicted in Figure 2.4a. Depending on the inference
method we use, we can now answer different questions.

With Chernoff bounds, there is no restriction on how we choose our hypothesis, we always
have the same sample complexity. One possible hypothesis is depicted in Figure 2.4b,
which checks if there was a hit in a specific area of the target during either low or high
wind. From the sample, we estimate this probability as 7

12 and know the true probability
of this random event is ε-close to our estimate for a 1 − δ fraction of samples N . We

1We recall DKW bounds are designed for the estimation of cumulative distribution functions, which
corresponds to learning thresholds or halfspaces.
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(a) A shooting range sample (b) A Chernoff range (c) One of many ε-net ranges

Figure 2.4: An i.i.d. sample at a shooting range with different range spaces. Figure 2.4a
shows an i.i.d. sample of 12 shots. Figure 2.4b shows a range of and shots in a
specific area. Figure 2.4c shows one of the ranges in R = {points ≥ x ∨ wind = w : x ∈
[1, 10], w ∈ { , , }}.

cannot, however, estimate the probability of other random events without additional
information.

With an ε-net, the size of the sample depends on the range space. We can, for example,
pick the set of ranges R = {(points ≥ x) ∨ (wind = w) : x ∈ [1, 10], w ∈ { , , }}.
Figure 2.4c illustrates one of these ranges R(7, medium), for a threshold 7 points and
medium wind. We cannot reliably estimate the probability of the illustrated range, but
we can identify the range R(9, medium) to be empty, and assuming N is an ε-net, we
now know that, with medium wind, it is less than ε-likely to shot for 9 points or above.
From the same sample, we also know that with high wind, most shots will score less than
8 points. All this information is obtainable by checking ranges in R to be empty or not,
without a need to resample. Furthermore, the range space (R3, R) has a VC dimension
of d = 3 and for reasonable levels of uncertainty d ≪ 1/ε. Consequently, for a similar
uncertainty ε, δ we require much smaller samples for ε-nets than for Chernoff bounds.

The difference between ε-nets and Chernoff bounds or bounds by the DKW inequality
becomes apparent from our example: for constant d and δ, both of these two concentration
inequalities give sample complexities in O

(︂
1
ε2

)︂
, but the ε-net only grows with O

(︂
1
ε ln 1

ε

)︂
.

This difference in asymptotic behaviour allows us to obtain samples for very small ε, at
the cost of only being able to make a statement about empty ranges. While the sample
complexity of an ε-net increases with d, this is not a drawback, but rather a strength
of the method. In our context, the concentration inequalities cannot explicitly utilise
the structure of our range space. The more complex ε-samples can be used in cases
where we explicitly want to combine the capabilities of both tools, but come at a high
cost in terms of sample complexity. Going forward, we choose ε-nets as our tools for
probabilistic statements, and can now present our verification procedure.
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2.4 A Sampling-Based Probabilistic Verification Procedure
In the previous sections, we gave an intuitive explanation for our use of ε-nets and
motivated our choice. In this section, we formalise our main approach to verification in an
abstract setting. Before this, however, we introduce an additional concept called quality
space, which is key to the application of our result in the later chapters. This quality
space, while not having any utility in isolation, helps us to build powerful intuition for
the complexity of range spaces.

We recall that the aim of this thesis is a procedure that is applicable to complex systems
like NNs and CPS. If we take an NN for image classification as an example, even in a
black-box setting, we have to deal with its complex and high-dimensional data. Departing
slightly from our previous notation, an NN is a function f : X → Y. Specifications like
robustness, which we will discuss in detail in the next chapter, are input-output relations
X × Y → {0, 1}, and might also take some accessible latent information into account.

A naive approach to defining range spaces seems futile here. The combined space X × Y
might be very complex, and a relation R on elements of this space will be difficult to
formalize. In most cases, however, we are not directly interested in specific elements in
X × Y, but rather only a few qualities that we can describe in a formal language. We
formalise this observation with the introduction of a space Q, the quality space. We
assume access to a quality transformation q with q : X × Y → Q that observes the
qualities we are interested in. With a slight abuse of notation, we denote q as a unary
function from the input space X going forward, assuming it can access f internally. For
example, if we would like to investigate if some function f always produces an output
with a larger norm than its input, we could define q(x) = (∥x∥, ∥f(x)∥) with Q = R2.
The concept of a quality transformation allows us to make explicit a key observation in
our setting: Even if we want to reason over complex spaces, if our properties R can be
defined in a projection of our space into Q, only the structure of (Q, R) matters.

This intuition is formalised in the following lemma, which describes the VC dimension of
range spaces under preprocessing.

Lemma 2.4.1 (Preprocessing). Let (X , RX ) be a range space, q : X → Q be a function
from X into an arbitrary space Q. Let q(R) be the image of R ∈ RX . Then let

R = {q(R) : R ∈ RX }. (2.31)

If q preserves the ranges, that is,

∀R ∈ RX : ∀x ∈ X : x /∈ R =⇒ q(x) /∈ q(R), (2.32)

then it holds that
VC(X , RX ) ≤ VC(Q, R) (2.33)

In words, if we can project (X , RX ) onto some range space (Q, R) with a function q,
then the VC dimension is at most that of the projective range space.
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Proof. We show the claim by contradiction. Assume VC(Q, R) = d and there exists a
set S ⊂ X that is shattered by (X , RX ), with |S| > d. As S is shattered, we know

∀T ⊆ S : ∃RX ∈ RX : S ∩ RX = T (2.34)
We then know that |q(S)| = |S| > d, as for each x ∈ S there is a range in RX which
contains only this point and, per Equation (2.32), there is also a range in R which
contains only q(x). Consequently, all points in S must be unique under projection with
q. This, however, implies

∀T ⊆ S : ∃R ∈ R : q(S) ∩ R = q(T ) (2.35)
which means q(S) is shattered by (Q, R), a contradiction.

Together with the concept of the quality space, Lemma 2.4.1 helps us to formalize the
quasi-independence of our method—and with that our sample complexities—from the
properties of the spaces X and Y . As long as (Q, R) has a simple structure with a small
VC dimension, we can obtain good guarantees with a small number of samples. The
following theorem now presents our verification procedure to bound the probability of
intersecting a given range in X , without the need to directly characterise it.

Theorem 2.4.2. Let D be a probability distribution over some space X , (Q, R) be a
range space with VC(Q, R) = d and q : X → Q be a quality transformation.
For parameters 0 < ε, δ < 1

2 , consider a random sample N ∼ Ds with s = s(ε, δ, d), as
defined in Equation (2.24). Then, with a probability of at least 1 − δ, it holds that

∀R ∈ R :
(︁
q(N) ∩ R = ∅ =⇒ Pr(q(X) ∈ R) < ε

)︁
(2.36)

Proof. By Proposition 2.2.4, q(N) is an ε-net for (Q, R) with probability of at least 1 − δ.
If q(N) is an ε-net, it holds that

∀R ∈ R :
(︁

Pr(q(X) ∈ R) ≥ ε =⇒ q(N) ∩ R ̸= ∅)︁
. (2.37)

By contraposition, this statement is equivalent to
∀R ∈ R :

(︁
Pr(q(X) ∈ R) < ε ⇐= q(N) ∩ R = ∅)︁

. (2.38)

With this theorem, we can now confidently—given just one sample of sufficient size—
bound the probability of any specification in R that was never intersected with ε.
Importantly, we do not need to consider the potentially very complex space X and
construct a range space there, but we can directly work in Q. In order to apply our
method, we have just two more requirements. First, we need to obtain a VC-dimension
bound for a given range space (Q, R), which will be the subject of later chapters in this
thesis for specific cases. Second, in order to make use of the bound in Theorem 2.4.2,
we need to choose a range space with ranges that carry meaning in isolation. This
point is more of a qualitative remark to our method, similar to what we discussed in
Example 2.3.2. We discuss meaningful range spaces in the following section.

18



2.5. The Choice of Range Spaces and Coverage Guarantees

2.5 The Choice of Range Spaces and Coverage Guarantees
Not all range spaces are made equal. In this section, we briefly and informally discuss the
fact that properties in formal specification languages are especially advantageous for our
method. This helps to motivate our formalisms in the following chapters. Theorem 2.4.2
allows us to bound the probability of any particular range in R based on a single sample
N , but individual ranges must still be selected and tested one by one. If individual
(empty) ranges do not bear any meaning, we cannot easily profit from the guarantee
provided by an ε-net. In fact, the guarantee allows us to make statements precisely about
individual empty ranges as noted in Observation 2.2.1. If we want to make a global
statement, we can just reason over unions of empty ranges, which makes interpretation
difficult for arbitrary geometric shapes. Specification languages like logic are well-suited
for this, as their semantics under negation and union are well-defined. Especially formulas
over linear inequalities just form intersections and unions of halfspaces, and ease analysis
of VC-dimension bounds, as well as interpretation.

We contrast the choice of linear inequalities to the approach by Indri et al. [2024], where
the chosen range space consisted of metric balls in the input space of a NN. This work was
an early iteration of our method and investigated ε-nets for verification of NN robustness
in a slightly different context than this thesis. While metric balls serve as a natural
definition of coverage or a similarity relation, the use of ε-nets for establishing coverage
leads to problems. Our ε-net N allows us to only make definite statements about ranges
that do not intersect N . If any particular empty range—in the case of [Indri et al.,
2024] a particular metric ball—does not bear meaning to us, we cannot easily avoid our
guarantee being vacuous for any particular point in the input space. Furthermore, if we
want to make statements about the total probability mass of our distribution D that is
covered in a given region, we need to reason through negation. The following corollary
briefly formalises the only coverage guarantee we can give with an ε-net:

Corollary 2.5.1 (ε-net Coverage). Let (Q, R) be a range space, and N ⊂ Q be an ε-net.
Let R′ ⊂ R be a finite set of ranges with |R′| = k such that

∀R′ ∈ R′ : R′ ∩ N = ∅ (2.39)

Then for the set C ⊂ Q defined as

C =
⋃︂

R′∈R′
R′ (2.40)

it holds that
Pr(X ∈ C) < kε (2.41)

In words, if a set C is the union of k empty ranges, we can bound its probability with kε.

Proof. The statement follows directly from Definition 2.1.10 with union bounds.
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2.6 Summary
In this chapter, we presented our sampling-based verification procedure in Theorem 2.4.2
and contrasted it to other probabilistic approaches. Our main results here include
Proposition 2.2.4 that gives us specific sample complexity bounds for ε-nets, given desired
ε,δ and VC dimension d. With the concept of quality spaces and Lemma 2.4.1, we have a
tool to obtain good VC bounds for our specific problem settings in the next two chapters.
Finally, we have two results that allow us to give guarantees for individual specifications
(Theorem 2.4.2) and sets of them for notions of global coverage (Corollary 2.5.1). In the
next chapter, we will apply these tools to a specific problem setting.
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CHAPTER 3
Sampling-Based Verification of

Neural Network Robustness

In the previous chapter, we motivated our theoretical approach to sampling-based
verification with ε-nets for any range space with a bounded VC-dimension. We also
mentioned that the quality and wealth of information that can be obtained with ε-nets
heavily depend on the chosen properties. In this chapter, we move towards one specific
application of our verification procedure: checking NN robustness. We first give an
overview of (robustness) verification for NNs, from a formal and adversarial perspective.
Based on the existing literature, we introduce a notion of probabilistic robustness and
the concept of a robustness oracle. These oracles encapsulate local robustness checks
for us, and this definition enables us to choose which type of robustness is fitting for a
given scenario. Our focus on one specific property in this chapter allows us to expand
our theoretical results from Chapter 2, and give sharp lower bounds that generalise to
new data with high probability. Finally, we present experimental results that illustrate
the practicality and the flexibility of our method in NN verification.

3.1 Preliminaries: Robustness in Neural Networks

In this section, we will introduce the formal notion of NN robustness we consider, as
well as all the necessary notation. We largely adhere to our conventions in the previous
chapter, with some adaptations better suited to express the notion of a NN as a function.
With our notation in place, we give an overview of related work investigating robustness,
especially the certification of robustness, rather than methods to increase it. This section
will first discuss local robustness formally and discuss relevant related work. We then
discuss formal definitions and limited related work for global robustness afterwards.
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3. Sampling-Based Verification of Neural Network Robustness

3.1.1 Local Robustness
We are interested in certifying NNs for classification for their robustness against small
input perturbations. We formalise a given classifier as a function f : X → Rn, for an
n-class classification task. Here, in contrast to Chapter 2, X is specifically the input-
space of the network. We then say that f predicts class i ∈ [1, n] if and only if the i-th
component of f is maximal. That is, for x ∈ X we define

classf (x) = arg max
i∈[1,n]

fi(x). (3.1)

We then formally define the local robustness of f as follows.

Definition 3.1.1 ((Local) Robustness of a Classifier). Let X be a metric space with a
norm ∥·∥ and the function f : X → Rn be a classifier. For a point x ∈ X and a parameter
ρ ∈ R+, we say f is (locally) ρ-robust if and only if

∀x′ ∈ X :
(︂
∥x − x′∥ ≤ ρ =⇒ classf (x) = classf (x′)

)︂
. (3.2)

In words, f is (locally) robust around x, if in a metric ρ-ball centred around x, the
classification of f is constant.

In principle, the choice of metric balls is arbitrary. We can more generally define some
bounded neighbourhood around a point x. However, the specific choice of the neighbour-
hood does not bear any noteworthy consequence on the verification process. We will,
therefore, consider metric balls as the natural choice of neighbourhoods and acknowledge
that results trivially transfer to other (well-behaved) neighbourhood definitions.

Local robustness can be either assessed with heuristic adversarial attacks on a classifier
or formally proven with formal methods. Both approaches have been investigated
independently and offer complementary advantages and disadvantages. Formal methods
can prove local robustness, but require full knowledge of the model and are intractable
for large NNs with many non-linearities, as verifying robustness is hard [Katz et al., 2017].
Adversarial methods can scale well with model complexity and can work with limited
information or complete black-box settings. However, they cannot prove robustness, only
find specific counterexamples. Furthermore, Carlini and Wagner [2017b] demonstrated
that adversarial attacks do not detect all counterexamples to robustness in practice.

The following sections give an overview of established methods to assess or prove local
robustness for NNs. Afterwards, we move on to the more complex issue of global
robustness.

3.1.2 Adversarial Methods
NN Robustness has been widely investigated since Szegedy et al. [2014] showed in
a seminal work that NNs are susceptible to adversarial examples. These inputs are
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3.1. Preliminaries: Robustness in Neural Networks

constructed to be very similar to some specific input, yet having a drastically different
prediction. Goodfellow et al. [2015] were among the first to show that such examples can
be found easily, with limited access to the classifier. Their Fast Gradient Sign Method
(FGSM) accesses the input gradients of a classifier to move towards a close point with
a different class. Project Gradient Descent (PGD) [Madry et al., 2018] is an iterative
adaptation of FGSM. PGD can be intuitively understood to optimize the input of a
network towards a different class prediction with gradient descent, with the constraint of
staying close to the original input. In addition to this, the Carlini and Wagner [2017a]
(C&W) attack uses line-search to find adversarial examples that are particularly close
to the original data points. All these methods purely aim to find adversarial examples
for one given point, their statements are constrained to the corresponding region in the
input space X . We discuss how to certify the global robustness of a network with these
approaches later in this chapter.

3.1.3 Formal Methods

All the discussed methods to assess NN robustness are heuristic so far. They use
techniques to find adversarial examples quickly, but might not find all of them. In
contrast to this, methods for formal verification can prove the absence of adversarial
examples. Formal methods have been applied to and heavily optimised for NN robustness
verification, with various specialised tools currently in use [Meng et al., 2022, Brix et al.,
2024]. These tools internally often use satisfiability modulo theory (SMT) solvers or
mixed integer programming (MIP) to find a counterexample of local robustness. More
formally, they show robustness by disproving (showing unsatisfiability) for a given input

∃x′ ∈ X :
(︂
∥x − x′∥ ≤ ρ ∧ classf (x) ̸= classf (x′)

)︂
. (3.3)

Two of the most noteworthy examples for us are αβ-CROWN [Xu et al., 2020, 2021,
Wang et al., 2021, Zhang et al., 2022, Shi et al., 2024] and Marabou [Katz et al., 2019,
Wu et al., 2024]. In recent competitions [Brix et al., 2024], αβ-CROWN was shown to
be the fastest and most versatile formal verification tool for NNs currently recognised.
It is composed of a variety of components using different integer-bound propagation
techniques to speed up verification and offers efficient implementations that utilise modern
GPU architectures well. Given adequate hardware, αβ-CROWN has been reported to
tackle even networks with millions of parameters within a few minutes [Brix et al., 2024].
Adequate hardware for αβ-CROWN and its implementation in the LiRPA software
library [Xu et al., 2020], however, is outside the reach of consumers for larger networks.
Marabou, while not offering the same performance as αβ-CROWN, is designed to be a
self-contained, user-friendly NN verification tool. It offers a convenient interface for the
Python programming language and can be used out of the box. In this thesis, we use
both Marabou and LiRPA for our verification procedure.
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3. Sampling-Based Verification of Neural Network Robustness

3.1.4 Global Robustness
So far, we have introduced methods that certify robustness around a given point in the
input space. However, in order to allow NNs to be safely deployed in safety-critical
environments, it is not sufficient to show robustness for one point or even a predefined
dataset. The NN should be perturbation-robust everywhere. This issue has been addressed
with different approaches in the literature. Many different training regimes incorporate
adversarial attacks into their training regime, producing more robust NNs [Zhang et al.,
2019]. Post-processing methods like randomised smoothing [Cohen et al., 2019] can
effectively make any given NN certifiably robust, by adding noise to the datapoint before
prediction. The NN then produces multiple predictions and returns the average of them.
While this result gives robustness guarantees, this does not directly imply absolute
resistance to adversarial attacks, due to the stochastic nature of the resulting ensemble
model [Maho et al., 2022].

Methods to improve robustness aside, a common approach to assess robustness is via
benchmarking. The model is attacked on a set of points and the fraction of successful
attacks is calculated, similar to the evaluation of, e.g., accuracy [Kim et al., 2023].
Commonly, not a lot of thought is given to how the result on the given dataset is
representative to the behaviour of the NN as a whole. One noteworthy exception here is
the work of Baluta et al. [2021], where a Chernoff bound on NN robustness is produced
via sampling, similar to Example 2.1.3. The authors improve on the sample complexity
obtained from Theorem 2.1.2, by using an adaptive process with the goal to show that
the fraction of robust points is above a specified threshold.

In the realm of formal methods, global robustness has seen limited attention due to the
computational limitations of exhaustive methods. Leino et al. [2021], Athavale et al.
[2024] use different formalisations of global robustness with the aim of certification. Both
of these methods acknowledge that demanding local robustness (Definition 3.1.1) for all
inputs is not reasonable, as this would require NNs to give constant predictions across the
whole input space. Rather, they give the network the option to abstain from predictions
and consider only predictions where the network chooses to predict a class. While Leino
et al. [2021] introduce an additional class to the network, Athavale et al. [2024] use
the prediction confidence as a basis for which predictions to consider. The (softmax)
confidence is a natural choice for classification tasks. When the network predicts class
c ∈ [1, n], i.e., classf (x) = c, the confidence conf f (x) is defined as

conf f (x) = exp(fc(x))∑︁n
i=1 exp(fi(x)) . (3.4)

In principle, different indicators of prediction confidence could be considered. However,
the softmax confidence is widely used for classification tasks and is in fact proportional
to the distance to the class boundary in the output space, that is,

conf f (x)∝ arg min
x′∈X

∥f(x) − f(x′)∥ s.t. classf (x) ̸= classf (x′). (3.5)
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In other words, a larger change in the output of f is needed to change the predicted
class and, in expectation, this means a larger change in the input space X is needed.
Because of this, we expect the network to exhibit increasing robustness for more confident
predictions. There are different sensible relaxations for global robustness we briefly
discuss here. Similarly to Athavale et al. [2024], Kabaha and Drachsler-Cohen [2024] use
confidence-based robustness, but choose margin-based confidence instead of softmax. The
authors use MIP formulations to then prove margin-confidence-based global robustness
with a variety of different neighbourhoods, but are limited to a few thousand neurons
in their experiments. Wang et al. [2022] investigate a property that is akin to Lipschitz
continuity, where they identify the largest perturbation in the output space of a given
NN, given a bounded L∞ change in the input. The method of the authors focuses on
formal verification as well, and their experiments consider networks up to a size of a few
thousand neurons. These different definitions of robustness are all reasonable, depending
on the exact research questions at play. We use a softmax-confidence-based definition
of global robustness, similar to Athavale et al. [2024], because it is the most natural for
a classification setting. However, there are no technical limitations that motivate this
choice, and our statements can, in principle, be adapted to other definitions of robustness
as well.

Definition 3.1.2 (Global Robustness of a Classifier). Let X be a metric space and the
function f : X → Rn be a classifier. For a point x ∈ X , a robustness parameter ρ ∈ R+
and a real-valued confidence threshold 0 < κ < 1, we say f is globally ρ, κ-robust if and
only if

∀x, x′ ∈ X :
(︂
(conf f (x) ≥ κ) ∧ (∥x − x′∥ ≤ ρ) =⇒ classf (x) = classf (x′)

)︂
(3.6)

In words, for all x ∈ X where f is κ-confident, the classification of f is constant in a
metric ρ-ball centred around x.

3.2 Probably Approximately Global Robustness
In the previous section, we have defined concepts already used in existing literature, and
have motivated our choice of confidence-based global robustness, following the approach
of Athavale et al. [2024], Kabaha and Drachsler-Cohen [2024]. In order to stay flexible
with respect to the exact mechanism used to quantify robustness locally, we now introduce
the notion of a robustness oracle.

Definition 3.2.1 (Robustness Oracle). Let X be a metric space and f : X → Rn be a
classifier. We call a function robf : X → R robustness oracle, if it finds an adversarial
example x′ using a specified attack model and returns ∥x − x′∥.

We can then redefine local robustness as in Definition 3.1.1 with respect to any given
oracle.
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3. Sampling-Based Verification of Neural Network Robustness

Definition 3.2.2 (Local Robustness according to oracle). Let X be a metric space, the
function f : X → Rn be a classifier and robf be a robustness oracle. For a point x ∈ X
and a parameter ρ ∈ R+, we say f is (locally) ρ-robust according to robf , if and only if

robf (x) ≥ ρ (3.7)

We can now define a probabilistic relaxation of Definition 3.1.2 with respect to some
robustness oracle.

Definition 3.2.3 (Approximately Global Robustness). Let X be a metric space, the
function f : X → Rn be a classifier and robf be a robustness oracle. For parameters
ρ ∈ R+ and 0 < κ, ε < 1, we say f is approximately globally robust under a probability
distribution D according to robf if and only if

Pr(robf (X) < ρ | conf f (X) ≥ κ) < ε. (3.8)

The objective of our verification procedure now is to choose a particular κ and infer for
which ρ we can obtain a guarantee for this bound. As an extension of the approach
described in Chapter 2, we aim to bound a conditional probability here. While this
requires more theory, we argue for this choice in the following section.

We choose to bound the conditional probability in particular, as it more naturally models
the idea of restricting a statement to only confident enough predictions by Athavale et al.
[2024], compared to a bound on the conjunctive probability. We can more easily see this
motivation when explicitly rewriting Equation (3.8) as follows using the product rule of
probability theory:

Pr(robf (X) < ρ | conf f (X) ≥ κ) = Pr(robf (X) < ρ ∧ conf f (X) ≥ κ)
Pr(conf f (X) ≥ κ) (3.9)

If we opt to just bound the numerator in Equation (3.9), we end up with a vacuous
bound for κ where Pr(conf f (X) ≥ κ) is small.

In the following, we present a method to obtain a bound on this conditional probability.
We can obtain an upper bound for the numerator with an ε-net, and use Chernoff (lower)
bounds for the denominator. By combining these two bounds, we can show that a given
NN is probably approximately globally robust.

3.3 Bounds for Conjunctive Probabilities
In this section, we show how to provide a high probability bound for

Pr(robf (X) < ρ ∧ conf f (X) ≥ κ) < ε. (3.10)

The result is a straightforward consequence of Lemma 2.4.1 and Proposition 2.2.4. We
begin by defining our quality space Q for this problem. As our property only depends on
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the two real-valued properties robf and conf f , we can define Q = R2 and define the
quality transformation q as

q(x) ↦→ (robf (x), conf f (x)). (3.11)

In this quality space, we define a range parametrised by a tuple ρ, κ as

R(ρ, κ) := {(ρ′, κ′) ∈ R2 : ρ′ < ρ ∧ κ′ ≥ κ}. (3.12)

With this, we can characterise global ρ-κ-robustness trivially: a point x ∈ X is a
counterexample to ρ-κ-robustness iff q(x) ∈ R(ρ, κ). We then let RNN be the set of all
these ranges, i.e.,

RNN := {R(ρ, κ) : (ρ, κ) ∈ R2}. (3.13)

Our range space (Q, RNN ) then coincides with the range space of intersections of axis-
aligned half spaces, and has a VC dimension of 2, as shown in Example 2.1.8. With this
definition in place, we are ready to obtain the following result with the aid of Lemma 2.4.1.

Lemma 3.3.1. Let f : X → Rn be a classifier, D be a probability distribution over X ,
and q be the quality transformation q(x) ↦→ (robf (x), conf f (x)).

For parameters 0 < ε, δ < 1
2 , consider an i.i.d. sample N ∼ D with |N | = s(ε, δ, 2), as

defined in Equation (2.24). Then, with a probability of at least 1 − δ, it holds that

∀ρ, κ :
(︂
q(N) ∩ R(ρ, κ) = ∅ =⇒ Pr(robf (X) < ρ ∧ conf f (X) ≥ κ) < ε

)︂
(3.14)

In words, for all tuples ρ,κ, it holds that if we do not find counterexamples in N , f is
probably approximately globally ρ-κ robust.

Proof. First, we know that VC(R2, RNN ) = 2, as shown in Example 2.1.8. Consequently,
q(N) is an ε-net for (R2, RNN ) under D with a probability of at least 1 − δ, as per
Proposition 2.2.4. The claim then follows from Theorem 2.4.2: When q(N) is an ε-net,
for all ranges R(ρ, κ) that were not intersected by q(N), we know that

Pr(q(X) ∈ R(ρ, κ)) = Pr(robf (X) < ρ ∧ conf f (X) ≥ κ) < ε. (3.15)

While we do not directly invoke our preprocessing argument from Lemma 2.4.1 here, we
still consider this result partially a consequence of the lemma. Our statement reasons
about the quality space Q as a proxy of X , our preprocessing argument gives us a general
explanation for why this is possible. With a method to obtain a bound for the conjunctive
probability, we can now continue with a bound for the denominator of Equation (3.9).
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3.4 Bounds for Neural Network Confidence

In this section, we show how to obtain a lower bound for Pr(conf f (X) ≥ κ) ≥ pmin from
an i.i.d. sample, where pmin is a parameter. We rely on Chernoff bounds to obtain a
bound for the index of a valid 1 − pmin quantile bound for confidence values in an i.i.d.
sample N . We temporarily introduce, in the interest of brevity, the real-valued random
variable C = conf f (X) and use the following lemma to obtain a bound for C based on
an i.i.d. sample.

Lemma 3.4.1. Let C be a real-valued random variable, following some distribution DC

and N be an i.i.d. sample of C. Denote with N(i) ∈ R the ith element in the sample in
ascending order, i.e., the smallest index such that |{x ∈ N : x ≤ N(i)}| ≥ i.

For the chosen parameters 0 < δ < 1
2 and 1

2 ≤ p < 1, with a probability of at least 1 − δ,
we have that

Pr(C ≤ N(i)) ≤ p (3.16)

holds for all i ∈ N, such that

i ≤ |N |p −
√︃

2|N |p ln 1
δ

(3.17)

Proof. This statement is similar to Example 2.1.3, where we obtained a confidence
interval for the success probability of a binomially distributed random variable S. For our
statement here, we can consider the p-quantile Cp ∈ R of the random variable C, and we
say that |N | = s. For this, we define the p-quantile as Cp = inf{c : Pr(C ≤ c) ≥ p}. Per
definition of Cp, we know that Pr(C ≤ Cp) ≥ p. Then we let S = |{c ∈ N : c ≤ Cp}| be
the number of elements in the sample N that are larger than Cp, with S ∼ Binom(s, p).
We proceed with the use of Theorem 2.1.2, to find a lower bound for S.

Pr
(︃

sp − S

sp
≥ ε

)︃
≤ exp

(︄
−spε2

2

)︄
(3.18)

Pr (sp − S ≥ spε) ≤ exp
(︄

−spε2

2

)︄
(3.19)

Pr (sp(1 − ε) ≥ S) ≤ exp
(︄

−spε2

2

)︄
(3.20)

Pr (S ≤ sp(1 − ε)) ≤ exp
(︄

−spε2

2

)︄
≤ δ (3.21)

For our choice of δ, p, we now want to find some index i to bound Pr (S ≤ i) ≤ δ. We
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proceed by choosing ε = sp−i
sp .

Pr (S ≤ sp(1 − ε)) ≤ exp
(︄

−spε2

2

)︄
≤δ (3.22)

Pr (S ≤ i) ≤ exp

−sp( sp−i
sp )2

2

 ≤δ (3.23)

Pr (S ≤ i) ≤ exp
(︄

−(sp − i)2

2sp

)︄
≤δ (3.24)

−(sp − i)2

2sp
≤ ln δ (3.25)

(sp − i)2

2sp
≥ ln 1

δ
(3.26)

sp − i ≥
√︃

2sp ln 1
δ

(3.27)

i ≤ sp−
√︃

2sp ln 1
δ

(3.28)

We now know Pr (S ≤ i) ≤ δ if i satisfies Equation (3.28), and consequently Pr (S > i) ≥
1 − δ. Finally, as S is the number of elements in our sample N smaller or equal to Cp, if
and only if S > i, then Cp > N(i) which means Pr(C ≤ N(i)) < p, and can be relaxed to
Pr(C ≤ N(i)) ≤ p. We have shown Pr(C ≤ N(i)) ≤ p holds with a probability of at least
1 − δ.

This result allows us to use Chernoff bounds to check which confidence values are safe
for us to give our guarantees on. We can then just abstain from giving a guarantee for
confidence values which are too rare in our sample to make a statement. For compactness
in future reference, we will use

i(s, p, δ) := max
i∈N

{︄
i : i ≤ sp −

√︃
2sp ln 1

δ

}︄
=

⌊︄
sp −

√︃
2sp ln 1

δ

⌋︄
(3.29)

In the next section, we will finally combine our two lemmas to bound Equation (3.9).

3.5 Sample-Based PAG Robustness Guarantees

Theorem 3.5.1 (PAG Robustness). Let D be a probability distribution, f : X → Rn be
a classifier and q be the quality transformation q(x) ↦→ (robf (x), conf f (x)).

For parameters 0 < ε, δ, pmin < 1
2 , consider an i.i.d. sample N ∼ Ds with s ≥ s(ε, δ/2, 2)

as per Equation (2.24) and an integer i = i(s, 1 − pmin, δ/2) as per Equation (3.29).
Let N(i) be the ith element in the sample in order of ascending confidence. Then, with
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a probability of at least 1 − δ, the following implication holds for all ρ and for all
κ ≤ conf f (N(i)):

(q(N) ∩ R(ρ, κ) = ∅) =⇒ Pr(robf (X) < ρ | conf f (X) ≥ κ) <
ε

pmin
. (3.30)

Proof. We will first show when the statement holds for all ρ and κ ≤ conf f (N(i)), where
q(N) ∩ R(ρ, κ) = ∅.

We will introduce two random events at this point for brevity. Let Er = {robf (X) < ρ}
and Ec = {conf f (X) ≥ κ}. From Lemma 3.3.1, as s ≥ s(ε, δ/2, 2), we have that with a
probability of at least 1−δ/2, our sample q(N) is an ε-net, in which case Pr(Er ∧Ec) < ε.

From Lemma 3.4.1, as i = i(s, 1−pmin, δ/2), with a probability of at least 1−δ/2, it holds
Pr(conf f (X) ≤ conf f (N(i))) ≤ 1 − pmin, implying Pr(conf f (X) ≥ conf f (N(i))) ≥ pmin
and consequently Pr(Ec) ≥ pmin.

Now, by the definition of conditional probability

Pr(Er|Ec) = Pr(Er ∧ Ec)
Pr(Ec)

(3.31)

So if q(N) is an ε-net and Pr(conf f (X) ≥ N(i)) ≥ pmin we have

∀ρ, κ ≤ N(i) : q(N) ∩ R(ρ, κ) = ∅ =⇒ Pr(Er|Ec) <
ε

pmin
, (3.32)

which is equivalent to Equation (3.30). Finally, using the union bound and De Morgan’s
law,

Pr
(︂
q(N) is an ε-net ∧ Pr(conf f (X) ≥ N(i)) ≥ pmin

)︂
≥ 1 −

(︃
δ

2 + δ

2

)︃
(3.33)

≥ 1 − δ. (3.34)

This result allows us to sample once and then check whether f is probably approximately
globally ρ, κ-robust for any pair of parameters we desire. While, in principle, there is
an unbounded number of such checks we could do, we can obtain the full information
that our ε-net can provide with just a few checks. We will now show how we can obtain
robustness lower bounds from N .

3.6 Robustness Lower-Bounds
In the previous section, we described how to obtain global ρ, κ-robustness guarantees,
given an i.i.d. sample N of sufficient size does not contain counterexamples. In this
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(b) A cover of maximal empty ranges in Q
Figure 3.1: Construction of lower bounds from an ε-net q(N), depicted in Figure 3.1a.
Every empty range R(ρ, κ) has a probability smaller than ε. Figure 3.1b shows a cover
constructed from the union of all empty ranges. The combined probability mass can be
bound by the number of highlighted data points defining the lower envelope.

section, we will exploit the structure of our range space in order to obtain robustness
lower bounds conditioned on prediction confidence.

The intuition behind our approach is quite simple: Assume we want to know how robust
we can expect f to be for a given datapoint x from our sample N . We can first measure
κ = conf f (x), and now we search for the largest robustness ρ we can certify with N . We
can build a mapping M(κ) ↦→ ρ that allows us to access this information efficiently for
all choices of κ, defined as

M(κ) :=

������
min
x∈N

robf (x)

s.t. conf f (x) ≥ κ

 if κ ≤ κmax

undefined else

(3.35)

where κmax corresponds to the confidence of N(i), with i = i(|N |, pmin, δ). M gives us a
lower envelope of our sample, as illustrated in Section 3.6. Consequently, we know for
ρ = M(κ) this is the maximal robustness we can guarantee. We do not return any bound
for κ > κmax. We can construct M in time O(|N | log |N |) with algorithm Algorithm 3.1.
The algorithm follows the following idea: we first sort q(N) by increasing robustness.
Thus, for any given pair ρ,κ we encounter, we know we will not see a point with lower
robustness than ρ at a later point. Because of this, we can fix M(κ′) for all values κ′ < κ.
We can then safely ignore all future confidence values below kappa and have a complete
mapping constructed in just a single pass over our sample. The spatial requirement to
store the mapping is just the set of tuples that define this lower envelope, highlighted in
Figure 3.1b.

With our mapping M we now have a powerful tool for probabilistic inference: we can
look at any input x for our network f , can perform a single forward pass through the
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Algorithm 3.1: Obtain ρ-κ-mapping
Input: ε-net N , confidence upper-bound κmax
Output: κ-ρ-mapping M(κ)

1 Let M = ∅
2 Let κ′ = −∞
/* iterate through the sample in order of increasing ρ */

3 for (ρ, κ) ∈ q(N) do
4 if κ′ < κ ≤ κmax then
5 M = M ∪ {κ ↦→ ρ} // add new step from κ to ρ to the

mapping
6 κ′ = κ

7 return M

network to obtain conf f (x) and use M to get a high confidence robustness bound for the
point x, without invoking the costly robustness oracle robf . However, the guarantee we
have obtained with M is conditional, we have not fully addressed how often our bound
M is correct, i.e., we have not yet obtained a bound for

Pr
(︁

robf (X) < M(conf f (X)
)︁
. (3.36)

Here, our result for ε-net coverage comes into play:

Corollary 3.6.1. Consider a classifier f : X → Rn and a ρ-κ-mapping M , constructed
from an ε-net N as in Equation (3.35). Let |M | be the size of the codomain of M . Then

Pr
(︁

robf (X) < |M | conf f (X)
)︁

< |M |ε. (3.37)

Proof. The result follows from Corollary 2.5.1. Each tuple in M defines a range; thus,
M corresponds to a set of |M | empty ranges.

3.7 Experiments
Up until now, we focused purely on theoretical statements. We are yet to demonstrate
that our procedure is useful in practical settings with real classifiers. This requires
addressing the following questions about the practicality of our approach.

Q1 We assume robf quantifies robustness, yet common methods focus on true/false
statements. How can we model robustness oracles that quantify robustness?

Q2 If we use a heuristic oracle robf , it will potentially miss close adversarial examples.
What is the precise interpretation of the guarantees if they do not consider these
overlooked examples?
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Q3 We assume we can sample from D without limit. How can we sample i.i.d. with
just a finite dataset?

Q4 The guarantees are only meaningful if the worst-case robustness of f increases with
conf f . Do NNs show this behaviour in practice?

Q5 We construct the mapping M from our sample N and plan to use it instead of
robf at inference time. A size of O(|N |) can be prohibitively large and make the
coverage guarantee in Corollary 3.6.1 vacuous. What is the size of M in practice?

We will address all these questions in this section with a demonstration that our guarantees
transfer from theory to practice. At the relevant parts, we will give a brief response to
these questions.

3.7.1 Experimental Setup
We train classifiers on two architectures with different training methods for two different
image classification datasets for our experiments. The code for the experiments, including
hyperparameter settings and training details, can be found at this GitHub repository1.

Used Software and Hardware We use PyTorch [Ansel et al., 2024] to conduct our
experiments and perform training with the MAIR library [Kim et al., 2023]. All the
experiments were run on a single desktop machine equipped with an Intel i9-11900KF @
3.50GHz CPU and an NVIDIA GeForce RTX 3080 GPU.

Architectures The smaller network is a feed-forward NN with ReLU activation func-
tions trained on the MNIST handwritten digit recognition task [Deng, 2012]. The
MNIST network is fully connected with (768,50,10) neurons for a total of 38900 param-
eters, trained for 20 epochs. The larger network architecture is a (pretrained) ResNet20
[He et al., 2016], which uses multiple convolutional layers, skip connections and batch
normalisation with ReLU activation functions. The total number of parameters is about
0.27M. The pretrained networks were obtained from Github2. and trained on CIFAR10
[Krizhevsky, 2009] for 200 further epochs.

Datasets and Splits Both MNIST and CIFAR10 are 10-class image recognition
datasets. The NN takes an image as input and has to classify the depicted digit for
MNIST, or the object for CIFAR10. Both of these datasets have predefined splits into
a training and testing part. For all experiments, we train the networks on 84% of the
training split, and randomly hold out 16% for our verification procedure. For each
experimental setup, three random seeds are used, resulting in three different splits in

1Code Repository, archived at https://anonymous.4open.science/r/pag-robustness-C500.
2Chenyao Yao, pytorch-cifar-models, GitHub repository, commit ‘d1c8e99‘ (Mar 3, 2023), archived at

https://web.archive.org/web/20250417/https://github.com/chenyaofo/pytorch-cifar-models (accessed
April 17, 2025).
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3. Sampling-Based Verification of Neural Network Robustness

train and verification data. The test split is used neither in training nor verification, but
will be used to evaluate the guarantees from the verification procedure.

Training- and Verification Procedures For both the MNIST and CIFAR10
architectures, we train three instances of each network, with three random seeds and
a mix of training procedures. First, we use standard stochastic gradient descent and
compare this with adversarial training, with different weights β on the desired robustness.
The adversarial training is performed with the TRADES method [Zhang et al., 2019].
The networks are first trained, and then the verification is performed on the dedicated
split of the data. For the verification procedure, we estimate D with Gaussian noise with
a mean of 0 and a standard deviation of 8/256 added to the verification split and sample
as many (unlabelled) noisy data points as dictated by s(ε, δ, 2). We discuss Q3 in relation
to this choice later. The values of ε and δ are chosen depending on the robustness oracles
used.

3.7.2 Robustness Oracles
We use three different robustness oracles for our verification procedures, one based on
projected gradient descent (PGD) and two based on exhaustive search with Marabou and
LiRPA. We briefly describe how we adapt these oracles in order to obtain a metric output
as an answer to Q1. Naively, most methods to measure robustness are constructive, so
the found adversarial example can be used directly to quantify robustness. This, however,
comes with some caveats depending on the method used.

PGD [Madry et al., 2018] uses input gradients in order to optimise the input towards
the class boundary. The procedure is iterative, performing a number of gradient steps
of fixed size until the predicted class of the NN changes. For normal settings, it is only
relevant if an adversarial example was found in a set number of gradient steps. For our
setting, we choose a parametrisation with a very small step size and a very high number
of steps, performing up to 500 iterations instead of the usual 10-20. While unusual and
potentially suboptimal for some settings, this choice of parameters was shown to find
very close adversarial examples if they existed and did not often lead to failed attacks.
As an alternative to our setup, a line-scan method like in the C&W attack [Carlini and
Wagner, 2017a] could be used to obtain even closer adversarial examples with additional
computational effort.

In our experiments with PGD as oracle, we choose ε = 10−4/ ln(2) and δ = pmin = 0.01.

Marabou 2.0 offers a Python interface for NN verification. We transform our MNIST
models directly into a set of constraints for Marabou and then, for a given data point
x ∈ X check the following query for satisfiability:

∃x′ ∈ X : ∥x − x′∥∞ < ρ ∧ classf (x) ̸= classf (x′) (3.38)
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While the distance constraints are simple linear inequalities, the difference in classes is
encoded as piece-wise max linear constraint for classf (x) = i as

i ̸= classf (x′) ⇐⇒ fi(x) < max
j∈[1,10]

fj(x′). (3.39)

For a given query to Marabou, we have to fix ρ, and in general, the found counterexamples
tend to be far away from x. As we want to find counterexamples that are as close to x
as possible, we can perform multiple calls as a binary search for the smallest value of ρ
where the query for a counterexample is satisfiable. In our experiments with Marabou as
oracle, we choose ε = 2.5/ ln(2) · 10−3 and δ = 0.01 and pmin = 0.05, with a four-step
binary search for ρ. This results in a sample requirement of s(ε, δ/2, 2) = 21294.

Auto LiRPA is an implementation of αβ-CROWN, and offers a python interface for
NN verification. Similar to Marabou, we perform some preprocessing on our MNIST
models and use the bound propagation capabilities of LiRPA to obtain a bound. The
LiRPA library lets us define a neighbourhood in X and gives bounds for the logits of f
in this neighbourhood. To check if the class of f stays constant around a given point x,
with classf (x) = c, we query LiRPA for an upper bound UB(x)

UB(x) = max
x′∈X

{f(x′) − fc(x′) : ∥x − x′∥∞ < ρ}. (3.40)

If this upper bound UB(x) = 0, then f is robust around x. It is worth noting that
the bounds reported by LiRPA are not necessarily tight. This means that LiRPA
might underreport robustness radii. Similarly to Marabou, we then use binary search
to find the smallest value for ρ. In our experiments with LiRPA as oracle, we choose
ε = 2.5/ ln(2) · 10−3 and δ = 0.01 and pmin = 0.05, with a six-step binary search for ρ.
This results in a sample requirement of s(ε, δ/2, 2) = 21294.

Q2: Heuristic Versus Exhaustive Oracles For large NNs, exhaustive methods like
Marabou or LiRPA are not feasible. In order to obtain guarantees with low uncertainties,
heuristic models have to be used in these cases. But this is not the only reason why a
non-exhaustive search method might be used. Exhaustive search is a natural choice for
worst-case robustness, but in some settings, a specific attack model is of interest. In these
settings, attacks are intentionally limited to partial information about the network by
assumption. In this scenario, if an attack has, e.g., access to the function output and
input gradient only, and the network is resistant to the attack, the network is robust to
this type of attack.
So, while heuristic methods cannot find all adversarial examples, this does not render
the obtained guarantees invalid, but rather guarantees PAG robustness against that
particular kind of attack.

3.7.3 Evaluation
For each of our experimental runs, it is not the NNs that are investigated, but our
verification procedure. As a consequence, we particularly want to estimate how the
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experiments relate to Theorem 3.5.1 and Corollary 3.6.1 based on the test dataset Dtest.
We construct two probability estimators for this purpose.

First, we estimate Pr(robf (X) < M(conf f (X))) with

nc = |{x′ ∈ Dtest : robf (x) < M(conf f (x))}|. (3.41)

nc/|Dtest| is an unbiased estimator, and we expect nc/|Dtest| < |M |ε, due to Corol-
lary 3.6.1.

For a given κ we estimate Pr(robf (X)) < M(κ) | conf f (X) ≥ κ) with

pκ = |{x′ ∈ Dtest : robf (x′) < M(κ) ∧ conf f (x′) ≥ κ}|
|{x′ ∈ Dtest : conf f (x′) ≥ κ}| . (3.42)

For a given κ, pκ is an unbiased estimator, and we expect all pκ < ε/pmin, if κ ≤ κmax,
due to Theorem 3.5.1.

When evaluating our experiments, we make the intentional choice not to quantify the
likelihood of these estimators exceeding our expected thresholds. The reason for this
is that we, for our specific setup, have up to around 10000 values for κ and with
that 10000 estimators pκ. Trying to quantify the likelihood that at least one of them
overestimates the true probability in a way that seemingly breaks our guarantees is
possible, but we argue this is not meaningful. Any form of hypothesis test would introduce
additional probabilistic uncertainties ad absurdum and would require a very high number
of performed experiments.

We instead opt for a qualitative investigation: we first define p̂ = maxκ≤κmax pκ and check
whether p̂ < ε/pmin. Using the maximum over all values κ is a very strict estimator, and
even in cases where our guarantee holds true, our estimate might exceed the threshold
for some κ. If now both p̂ and nc are well below our thresholds anyway, we can assume
our guarantees transfer to practice very well, and especially our estimation of the test
distribution works sufficiently well. If the estimators do not fit with our parameters ε
and δ, we need to investigate possible reasons more closely.

Besides the probabilistic statements, we want to investigate how meaningful the mappings
M are: Ideally, they should characterise the worst-case robustness of the given classifier
closely on unseen data. Further, we hope that robust and non-robust networks do show
a qualitative difference in their behaviour that is captured in the mappings. Both these
aspects aim to address Q4.

Finally, we are interested in the size of the mapping itself to address Q5.

3.7.4 Results
We report an overview of our experimental results in Table 3.1. The full results can be
found in Appendix B. Four sets of representative plots are shown in figures Figures 3.2
and 3.3. Table 3.1 shows that our estimators p̂ and nc indicate successful generalization

36



3.8. Extension to Multiple Properties

in most (62/64) of our experiments. A close inspection of the two outliers shows that p̂
only ever slightly exceeds our desired threshold of ε/pmin. One of the experiments where
this happened is illustrated in Figure 3.2a. We can observe that the apparent violation
of our theoretically guaranteed bounds only affects exactly five data points.

Besides our estimators for successful generalisation, visual inspection of our results
shows that our bounds do describe the robustness of the network in dependence of the
prediction confidence on unseen data very well. Figure 3.2b in particular shows the utility
in comparing the performance of two MNIST networks. While the adversarially trained
network is much more robust for its high-confidence predictions, the standard training
procedure shows higher robustness at lower prediction confidence. This information can
be used for conditional ensambling of multiple networks at inference time. The fact that
our procedure is able to capture nuanced behaviour like this, not only answers Q4, but
also shows additional utility of this approach compared to using a simple metric.

In order to also address Q5, the size of the mappings for each network |M | is both shown
in Table 3.1 and visually illustrated in Figures 3.2 and 3.3. We can see that in all cases,
even though our random samples N are large, |M | is always defined by fewer than 100
data points. This allows us to give tight unconditional bounds (Corollary 3.6.1), and
state that the lower bound reported by M will be correct for any data point with a
probability of at least ≈ 98% in the worst case over all experiments. If this bound is not
tight enough for some desired application, it can be artificially discretised by rounding
down. This discretisation necessarily will decrease the size of the mapping at the cost of
looser robustness bounds. With this, the uncertainty of the lower bound given by M can
be reduced in practice.

As a final point of discussion, we address Q3 and argue for our sampling procedure. We
sample from a dataset with additive Gaussian noise to approximate the true distribution
of MNIST and CIFAR10, respectively. We do not claim this procedure produces samples
that are truly i.i.d. from that data distribution. We do remark, however, that despite the
simplicity of this approach, our guarantees fit the unseen test data very well. Obtaining
i.i.d. samples in practical settings is an issue we cannot give a definitive solution to in
this thesis, but our experiments illustrate that even simple approximations seem to suffice
as an approximation for non-trivial data.

3.8 Extension to Multiple Properties
Before we end this chapter, we briefly discuss a possible extension of our method. We
can Theorem 3.5.1 to allow for a more general setting of learning Horn-style clauses over
metric properties. A Horn clause is a disjunction of literals, where at most one literal
appears unnegated, which can be expressed as a simple rule. In our setting, for a set of
k ∈ N metric properties propf , and a threshold vector a ∈ Rk, these formulas then are
of the form

robf (x) ≥ ρ ← propf (x) ≥ a, (3.43)
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(a) Scatter plot of the CIFAR10 test data set on two ResNet20 networks with PGD oracle.
Confidence parameters are ε = 10−4/ ln(2), δ = pmin = 0.01, with |N | = s(ε, δ/2, 2) = 670313.
On the right-hand side, the 5 counterexamples which cause p̂ > 0.01 are highlighted. Note
that, despite this apparent violation, M tightly fits the test data.
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(b) Scatter plot of the MNIST test data set on two feed-forward networks with PGD oracle.
For TRADES, β = 2 was used. Confidence parameters are ε = 10−4/ ln(2), δ = pmin = 0.01,
with |N | = s(ε, δ/2, 2) = 670313.

Figure 3.2: Scatter plots of the two test datasets Dtest, with |Dtest| = 10000, in the
quality space Q with PGD robustness oracles. The networks on the left are trained with
standard methods, the right networks are trained robustly with TRADES. The red lines
depict the lower bound obtained from the validation sample N . The dashed yellow lines
depict κmax, the threshold above which M is undefined.
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(a) Scatter plot of the MNIST test data set on two feed-forward networks with a four-
step Marabou oracle. For TRADES, β = 2 was used. Confidence parameters are ε =
2.5/ ln(2) · 10−3, δ = 0.01 pmin = 0.05, with |N | = s(ε, δ/2, 2) = 21294.

(b) Scatter plot of the MNIST test data set on two feed-forward networks with a six-step
LiRPA oracle. For TRADES, β = 2 was used. Confidence parameters are ε = 2.5/ ln(2)·10−3,
δ = 0.01 pmin = 0.05, with |N | = s(ε, δ/2, 2) = 21294.

Figure 3.3: Scatter plots of the MNIST test datasets Dtest, with |Dtest| = 10000, in the
quality space Q using formal robustness oracles. The networks on the left are trained
with standard methods, the right networks are trained robustly with TRADES. The red
lines depict the lower bound obtained from the validation sample N . The dashed yellow
lines depict κmax, the threshold above which M is undefined.
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Table 3.1: Summary results for all experiments. We report worst results aggregated
over 3 random seeds and over the different hyperparameter values used for the TRADES
adversarial training. For each experiment, we report the values of p̂ and nc, where
bold numbers denote that the estimators are consistent with our guarantees for all the
κ ≤ κmax, for all the runs considered. Moreover, we report the number of individual
“good runs” that are consistent with our guarantees when considering the worst-case p̂.
More extensive results are available in Appendix B.

Dataset Oracle Training p̂ · 103 ε/pmin · 103 nc |M | good runs

CIFAR PGD Standard 2 14.4 2 12 – 15 3/3
TRADES 14.8 14.4 8 19 – 38 14/15

MNIST PGD Standard 5.3 14.4 3 32 – 42 3/3
TRADES 19.2 14.4 5 7 – 73 34/35

MNIST Marabou Standard 0 72.1 0 3 1/1
TRADES 0.1 72.1 1 5 1/1

MNIST LiRPA Standard 0.1 72.1 1 16 – 20 3/3
TRADES 0.8 72.1 1 10 – 20 3/3

where ≥ is to be interpreted as component-wise comparison. We now show a corollary of
Theorem 3.5.1, that extends it to Horn-style clauses over metric properties.

Corollary 3.8.1. Let D be a probability distribution, f : X → Rn be a classifier and q
be the quality transformation q(x) ↦→ (︁

robf (x), propf (x)
)︁
.

For parameters 0 < ε, δ < 1
2 , consider an i.i.d. sample N ∼ Ds with s ≥ s(ε, δ/2, k + 1)

as per Equation (2.24).

For any given a ∈ Rk, let

p̂a =
| propf (x) ≥ a|

|N | . (3.44)

and

ξ =

√︄
1

2n
ln k(n + 1)

2δ
(3.45)

Then, with a probability of at least 1 − δ, the following implication holds for all ρ and for
all a ∈ Rk, for which p̂a > ξ:

(︁
q(N) ∩ R(ρ, a) = ∅)︁

=⇒ Pr(robf (X) < ρ | propf (X) ≥ a) <
ε

p̂a − ξ
(3.46)

Proof. We first show that Pr
(︂
∀a ∈ Rk : pa ≥ p̂a − ξ

)︂
≥ 1 − δ

2 , by derivation analogous

40



3.8. Extension to Multiple Properties

to Lemma 3.4.1. We use the multivariate DKW inequality from Definition 2.1.5.

Pr
(︄

sup
a∈Rk

|pa − p̂a| > ξ

)︄
≤ δ

2 (3.47)

k(n + 1) exp(−2nξ2) ≤ δ

2 (3.48)

exp(−2nξ2) ≤ δ

2k(n + 1) (3.49)

−2nξ2 ≤ ln δ

2k(n + 1) (3.50)

2nξ2 ≥ ln k(n + 1)
2δ

(3.51)

ξ ≥
√︄

1
2n

ln k(n + 1)
2δ

(3.52)

If Equation (3.52) holds, then we have Pr (supa∈Rk |pa − p̂a| > ξ) ≤ δ
2 , and consequently

also Pr
(︂
∀a ∈ Rk : pa ≥ p̂a − ξ

)︂
≥ 1 − δ

2 .

We now continue in analogy to Theorem 3.5.1. We define the random events Er{robf (X) <
ρ} and Ea = {propf (X) ≥ a}. From Lemma 3.3.1, as |N | ≥ s(ε, δ/2, k + 1), we have
that with a probability of at least 1 − δ/2, our sample q(N) is an ε-net, in which case
Pr(Er ∧ Ea) < ε.

From Equation (3.52), we have that with probability of at least 1 − δ
2 , Pr(Ea) ≥ p̂a − ξ.

Again, we have
Pr(Er | Ea) = Pr(Er ∧ Ea)

Pr(Ea) (3.53)

So if q(N) is an ε-net and ∀a : pa ≥ p̂a − ξ we have

∀ρ, ∀a : (p̂a > ξ) ∧ (q(N) ∩ R(ρ, a) = ∅) =⇒ Pr(Er | Ea) <
ε

p̂a − ξ
, (3.54)

Which is equivalent to Equation (3.46). Finally, using the union bound and De Morgan’s
law,

Pr(q(N) is an ε- net ∧ ∀a : pa ≥ p̂a − ξ) ≥ 1 −
(︃

δ

2 + δ

2

)︃
≥ 1 − δ. (3.55)

This result is a straightforward extension of the rest of our theory. It is interesting to
explore properties that might be useful for this form of robustness guarantees besides
conf f , but this question is, unfortunately, out of scope for this thesis. Similarly, using
the DKW inequality for the tail bound enables to capture explicitly how weak the bound
becomes for any given probability. This, however, leads to a weaker worst-case bound, as
the DKW-inequality is weaker than Chernoff bounds for small values of the probability p.
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3.9 Summary, Limitations, and Future Work for NN
Robustness

We conclude this section with a summary of our results and briefly mention possible future
directions of this procedure for NNs. We have applied our sampling-based verification
procedure to effectively “convert” the subjective reported prediction confidence of an
unknown classifier f to a more objective estimate of metric robustness. This approach
can be used regardless of how robustness is defined, as long as access to an oracle robf

can be assumed for the construction of our guarantees. After this initial construction
phase, we can guarantee that our mapping M provides a lower bound for robf with
high probability. Our sample complexities are independent of f and robf , only on ε and
δ. Our experiments showed that, depending on the utilised oracle, we can certify large
NNs in a negligible time compared to their training time. Furthermore, our experimental
results illustrated that prediction confidence is a natural choice for predicting confidence,
as real NNs showed a strong increase in local robustness for more confident points. This
resulted in informative and meaningful guarantees that showed to hold under non-ideal
conditions, i.e., real datasets that might not follow our estimated sampling distribution.

We showed a possible direction for future work with Corollary 3.8.1. Besides this and
other trivial adaptations of our method, there is one interesting aspect of robustness
oracles we did not investigate: their locality in the input space. While our abstraction led
to favourable sample complexities, we gave up on the information on how close two data
points in our sample are in the input space. Explicitly utilising this information might
reduce the number of local robustness checks that need to be performed even further.

Another aspect we did not discuss in this nor the previous chapter is how to interpret the
parameter δ. For the event that our procedure fails and our sample does not constitute an
ε-net or a valid tail bound, we do not make a statement. In future work, it would be helpful
to explicitly mention and formalise the relationship between ε and δ for fixed sample
size, and present a statement that combines these two parameters to aid interpretability.
An additional important aspect to consider is the precise interpretation of the condition
conf f (x) ≥ κ we use for a given data point x in contrast to conf f (x) = κ. The bound we
obtain from Theorem 3.5.1 bounds Pr(robf (x) < ρ | conf f (x) ≥ κ), which means for all
predictions with confidence equal to or more than κ, we bound the probability of observing
a non-robust data point. This is not only different from Pr(robf (x) < ρ | conf f (x) = κ),
which gives a bound precisely for κ confident predictions, but also weaker. Assuming
robustness increases with confidence, it holds that

Pr(robf (x) < ρ | conf f (x) ≥ κ) ≤ Pr(robf (x) < ρ | conf f (x) = κ). (3.56)

This means that our bound should be interpreted precisely as choosing a fixed confidence
threshold κ and then giving a probability about how robust the model is when restricted
to predictions above this threshold. If we instead want to condition our guarantee on
conf f (x) = κ, we would need other statistical tools, like density estimation. Which
bound is preferable depends on the desired interpretation.
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CHAPTER 4
Description-Based Verification of

Cyber-Physical Systems

Our previous application of NN robustness focuses on one particular and well-motivated
type of specification. At the end of Chapter 3, we briefly touch on potential generalisation
to Horn Clauses but do not investigate the setting further. In this section, we will
apply our theoretical results in Chapter 2 to a different setting: the verification of
Cyber-Physical Systems (CPSs). In this chapter, we investigate how we can certify not
one specific, but any class of specifications expressible in a particular language: signal
temporal logic (STL). STL is a widely used specification language for CPSs. STL extends
linear temporal logic (LTL), which is commonly used in model checking applications to
deal with real-valued and real-time behaviour common in CPS settings.

In this chapter, we apply our theory to obtaining STL specifications guaranteed to
generalise to new observations. We first formally introduce all the additional required
notation and definitions we need to translate our theory to a CPS setting, focusing
on parametrised STL (PSTL) formulas. We then briefly overview related disciplines in
CPS verification, especially statistical model checking, specification mining, and anomaly
detection. After this overview of related work, the remainder of this chapter focuses on
obtaining VC-dimension bounds for PSTL formulas. These VC-dimension bounds are the
one requirement we need to apply our verification procedure in this setting. For this, we
differentiate between two settings: a general setting where we make no assumption about
system behaviour, and the setting of bounded variability systems. We will show that,
while the statements we can make in general settings are limited, bounded variability
allows us to give a VC-dimension bound for any PSTL formula.
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4.1 Preliminaries: Verification in Cyber-Physical Systems

This section introduces central concepts in CPS verification, along with the necessary
notation. We first formally introduce signals along with the syntax and semantics of STL
as a logic that reasons over signals. We then define parametrised STL, which explicitly
distinguishes between constants and parameters. Finally, we briefly discuss the concept
of well-behaved signals before giving an overview of related work in probabilistic methods
in CPS verification.

4.1.1 Signals and Systems

CPSs interact with their environment in real-time, not taking individual points as input
but transforming a signal. In this section, we formalise what a system in the context of
CPS verification is. We try to adhere to the notation of Bartocci et al. [2022], with some
adaptations to stay consistent with the syntax we introduced for NNs. We first define
the time domain T to be a finite interval of the form T = [0, tmax] ⊂ R≥0. A real-valued
signal w then is a curve in some space X , i.e., w : T → X . A system f interacts with
the environment and produces signals as output. We assume these signals follow a fixed,
but unknown distribution D over T → X , and call a randomly sampled signal W with
W ∼ D. We use (potentially multiple) fixed functions g : X → R to interpret a signal at
a given instant t ∈ T with g(w[t]) ∈ R. In analogy to the NN setting, the systems we
consider here do not act as functions over points but as functions over curves. The output
space we consider at a given instant is implicitly defined as some real space, defined by
the real-valued functions g that interpret the value w at that time.

4.1.2 Signal Temporal Logic

Signal Temporal Logic (STL) [Maler and Nickovic, 2004] is a modal logic, more specifically
an extension of Linear Temporal Logic (LTL) to reason over real-valued signals in
continuous time. The syntax of an STL formula ϕ is defined as

ϕ ::= ⊤ | g(w) > c | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1UIϕ2 | ϕ1SIϕ2. (4.1)

Here UI and SI are the temporal operators until and since, the subscript I is a time
interval in Q≥0 ∪ {∞} and g(w) > c is a predicate constructed over the fixed function g
and a magnitude value c ∈ Q. With abuse of notation, we will use g(w) > c for both a
specific signal w or to denote a free term variable in the formula. In a similar manner, we
will often not make the difference between the function symbol g and a specific function
in an interpretation explicit.

The semantics of a formula ϕ in STL is then defined with the relation (w, t) |= ϕ as
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follows [Maler and Nickovic, 2004, Bartocci et al., 2022] for w ∈ T → X and t ∈ T.

(w, t) |= ⊤ (4.2)
(w, t) |= g(w) > 0 iff g(w[t]) > 0 (4.3)
(w, t) |= ¬ϕ iff (w, t) ̸|= ϕ (4.4)
(w, t) |= ϕ1 ∨ ϕ2 iff (w, t) |= ϕ1 or (w, t) |= ϕ2 (4.5)
(w, t) |= ϕ1UIϕ2 iff ∃t′ ∈ t ⊕ I : (w′, t′) |= ϕ2 and ∀t′′ ∈ (t, t′) : (w, t′′) |= ϕ1 (4.6)
(w, t) |= ϕ1SIϕ2 iff ∃t′ ∈ t ⊖ I : (w′, t′) |= ϕ2 and ∀t′′ ∈ (t′, t) : (w, t′′) |= ϕ1 (4.7)

Here ⊕ is the Minkowski sum, defined as t ⊕ I = {t + a : a ∈ I}, and ⊖ analogously
denotes the Minkowski difference t ⊖ I = {t − a : a ∈ I}. Using U and S we can then
define other standard connectives, like ⊥, ∧, →, the other ordering relations =, ≤, ≥, >
in their usual interpretation over the reals and the modal operators eventually/finally:
FIϕ = ⊤UIϕ and always/globally GIϕ = ¬FI¬ϕ. For t /∈ T and all STL formulas ϕ:
(w, t) ̸|= ϕ. In the following, we will not explicitly mention S to simplify notation, but all
our statements can be rephrased to explicitly include S.
Aside from the interpretation over continuous time, STL differs from LTL in another
critical aspect. The (only) predicates in STL are constructed as inequalities over real-
valued functions. This imposes an inherent partial order over STL formulas with the
same structure, but different timing intervals I and magnitude values c: a formula can
be made stricter or less strict by changing these values alone.
In many settings, we want to keep a formula partially fixed but allow for some of the
timing or magnitude values to change. We are then interested in finding parameterisations
for which the formula is valid for a given system. We will follow Bartocci et al. [2022]
and formally introduce parametric STL (PSTL) to allow for easy differentiation between
constant and parametric magnitudes and intervals, with some adaptations to notation.
We define a set of magnitude parameters A = {α1, . . . , αm} and a set of timing parameters
T = {τ1, . . . , τk} with their respective domains Qm and Qk. We then define a PSTL
template ϕ as an STL formula, where magnitude and timing constants have been replaced
by parameters in A and T . We can then transform a PSTL template back to an STL
formula ϕv with a set of parameter values v ∈ Qm × Qk. Parameters are simply specific
term variables, and v induces a variable assignment. In order to illustrate how PSTL is
used, we will give an example.

Example 4.1.1 (Time to Stopping). Consider PSTL template of the form ϕ = G[τ,∞)ψ
with timing parameter τ and some STL formula ψ. In the setting of describing autonomous
vehicles, with a constant ε, this could be a formula like

G[τ,∞)(velocity(w) < ε) (4.8)

This formula states that at time τ the vehicle is (close to) stationary. For a system f ,
we are then interested in checking for which values of v ∈ Q the STL formula ϕv is
true for all possible signals w produced by f . Further, we can observe that the possible
valuations of ϕ form a total order: For v1 < v2: (w, t) |= ϕv1 =⇒ (w, t) |= ϕv2 .
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4.1.3 Well-Behaved Signals
A signal w : T → X is a curve over continuous time, and the truth of a formula ϕ with
respect to w is interpreted at each instant. This raises issues concerning the variability of
these signals: in principle, signals can exhibit pathological behaviour that is unrealistic
and severely restricts theoretical analysis. An example given by Maler and Nickovic
[2004] illustrates this issue.

Example 4.1.2 (Dirichlet Signals). We consider the STL formula ϕ = g(w) > 0 and
the signal w which is defined for T = [0, 1] as the Dirichlet [1829] function

w[t] =
{︄

1 if t ∈ Q
0 else

(4.9)

In the finite interval [0, 1] (and any subinterval [a, b] with 0 ≤ a < b ≤ 1), the truth value
of ϕ changes an infinite number of times when evaluated on w.

Clearly, the possibility of infinite state changes is problematic when a formula should be
evaluated on a signal. This evaluation process, called monitoring of signals, is nontrivial
and has to keep track of the instants where the truth value of subformulas could change.
Maler and Nickovic [2004] present a monitoring algorithm for STL specifications, which
assumes well-behavedness of the monitored signals. We will see in later sections that
pathological signals also lead to arbitrarily high VC dimensions in most cases. To prevent
this, we introduce their additional well-behavedness assumption for signals: non-Zeno
behaviour, or bounded variability.

The term Zeno behaviour—named after the Greek Philosopher Zeno of Elea—describes a
system that exhibits an unbounded number of discrete state transitions in a finite time
[Teel et al., 2009]. The term was coined as a reference to Zeno’s paradox, put into writing
by Aristotle [Sachs and Aristotle., 1995] and embellished by Simplicius [Simplicius, 1989].
A more modern version will be briefly summarised here [Teel et al., 2009]:

A tortoise challenges Achilles to a footrace. Since Achilles is much faster than the tortoise,
the tortoise requests two conditions. First, the tortoise gets a head start. Second, Achilles
has to keep track of where the tortoise is when he starts running. By the time Achilles
has reached the starting position of the tortoise, it has moved forward some distance.
Achilles then needs to note where the tortoise currently is again, and so on, every time he
reaches the spot the tortoise previously was. Clearly, Achilles can overtake the tortoise
in a finite amount of time. However, to do so, he needs to perform an infinite number of
tasks: every time he completes a segment of his race, the tortoise has moved on already.

Zeno behaviour is a phenomenon widely recognised and, without careful modelling, can
even appear in simple systems, like a model of a bouncing ball [Teel et al., 2009]. We
do not plan to investigate this behaviour in this thesis beyond its acknowledgement. To
restrict analysis to non-zeno signals, we follow an approach similar to Maler and Nickovic
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[2004], Aichernig et al. [2013], Waga et al. [2019] and impose a specific finite variability
of signals later.

When we require bounded variability, evaluating the semantics of STL simplifies: Maler
and Nickovic [2004], Aichernig et al. [2013] argue we can now reduce checking whether a
STL formula ϕ holds on a given signal w to first detecting events—a well-known problem
in numerical integration [Mosterman, 1999]—and subsequently evaluation of ϕ with w
only for one instant in a time interval. In particular, Waga et al. [2019] extend this idea
to PSTL, where intervals can be defined symbolically based on timing parameters. This
intuitively means that we can unroll our STL formula into a first-order logic formula
with inequalities, addition and no other predicates (FO[<,+]) of bounded length. This
is similar to the concept of standard translation [Kamp, 1968, Blackburn et al., 2001],
which is a procedure to translate LTL formulas to FO[<].

4.1.4 Statistical Model Checking and Sequential Testing
Analogous to robustness verification for NNs, both formal and probabilistic methods
are used in CPS verification. We are only investigating settings where f is a potentially
stochastic black-box system in this thesis. Without a formal model of the system f ,
formal methods are generally not applicable, and so-called statistical model checking
(SMC) has to be performed. The basic approaches in the field are summarised by Agha
and Palmskog [2018], Legay et al. [2019] and are briefly presented here. SMC employs
simulation-based statistical methods to make statements about the likelihood of specific
events in future observations. Depending on the required type of information, SMC
differentiates between quantitative approaches, where parameter estimation is performed
and qualitative approaches, which employ hypothesis testing. In the qualitative approach,
the task is to confidently decide whether the probability of a specified property ϕ exceeds
a given threshold p0, i.e., whether Pr((W, 0) |= ϕ) > p0, for a randomly sampled trace
W . For each approach, the applicable methods depend on the specific sampling strategy.

Fixed-size sampling is comparable to the standard scenario in statistical hypothesis testing,
and admits the application of the standard arsenal of statistical tools [Adcock, 1997]. In
sequential testing, the idea is that the individual elements of a sample are presented as a
data stream. Then the idea is to either accept or reject the tested hypothesis as early
as possible. A common test for this setting is the Bayesian sequential probability ratio
test (SPRT) [Agha and Palmskog, 2018, Wald, 1992]. SPRT can test the hypotheses
Pr((W, 0) |= ϕ) = p0 vs. Pr((W, 0) |= ϕ) = p1 if after a sample N of size |N | = s the
specification ϕ holds true in sϕ = |{w ∈ N : (w, 0) |= ϕ}|. SPRT keeps track of the
likelihood ratio, for wi ∈ N :

s∏︂
i=1

Pr((wi, 0) |= ϕ | p = p1)
Pr((wi, 0) |= ϕ | p = p0) = p

sϕ

1 (1 − p1)s−sϕ

p
sϕ

0 (1 − p0)s−sϕ
(4.10)

and rejects or accepts the null hypothesis if the ratio exceeds preset thresholds, which
need to be chosen depending on the desired confidence in the result [Tartakovsky et al.,
2015].
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The assumption underlying all the mentioned statistical hypothesis tests is that the
investigated system f is stationary, and these tests generally require a fully specified
alternative hypothesis. If, instead, the goal is to detect changes in the behaviour of f over
time, so-called changepoint detection techniques can be employed [Tartakovsky et al.,
2015, Montgomery, 2020]. There is a variety of approaches for this problem with nuanced
assumptions and properties that are not in the scope of this thesis. As a commonly
used method, we briefly introduce the cumulative sum (CUSUM) algorithm [Page, 1954,
Tartakovsky et al., 2015]. This statistic accumulates deviations from a process mean over
time. If the deviation from the mean exceeds a certain threshold at any given point, the
process can be considered to be out of control or, in our context, the distribution of the
system has changed. The CUSUM statistic Ci at the ith simulation in a sequence with a
log-likelihood-ratio of LLRi for Xi = 1(wi,0)|=ϕ is defined as [Tartakovsky et al., 2015, eq.
(8.72)]

Ci = max{0, Ci−1 + LLRi} = max
{︄

0, Ci−1 + ln
(︄(︃

p1
p0

)︃Xi
(︃1 − p1

1 − p0

)︃1−Xi
)︄}︄

. (4.11)

If, after some point in time i, the CUSUM statistic exceeds a chosen threshold h, an
anomaly is reported. Choosing h balances false alarm rate with changepoint detection
speed, and is often done using a Monte Carlo simulation to tune for the desired average
run length of simulations under the null hypothesis until an anomaly is (wrongly) detected.
The CUSUM statistic is widely used in statistical quality control settings [Montgomery,
2020] and sometimes in anomaly detection settings [Olufowobi et al., 2019], even though
state-of-the-art anomaly detection mechanisms in industrial CPS settings commonly
use more involved machine learning based approaches [Acquaah and Roy, 2024]. In
our experiments, we will still use this statistically well-founded method to illustrate an
application of our results.

In the context of SMC, the setting we investigate, qualitative black-box verification, has
seen limited interest. Younes and Simmons [2002] uses an approach based on SPRT
we described above. Similar to our approach, Sen et al. [2004], Younes [2005] give
statistical guarantees specifically for passively observed (i.i.d. ) systems with hypothesis
testing. They specifically take the structure of the properties into account to increase the
efficiency of their approach compared to standard SPRT. A Bayesian approach for the
same problem setting is explored by Zuliani et al. [2013]. The common theme of these
works is that they use pre-existing statistical tools and apply them to CPS with a focus
on one individual hypothesis. Our additional tools from learning theory will allow us to
make statements about classes of hypotheses at once.

4.1.5 Specification Mining
Specification mining in CPS [Bartocci et al., 2022] is a closely related problem to model
checking. In qualitative SMC, the question is to check whether a given specification ϕ
holds with a given probability. In specification mining, we are interested in knowing
for which parametrisations v a given PSTL specification ϕv is valid (or holds with high
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probability). The aim is for these mind specifications ϕv to characterise the system
well. As there is typically an unbounded number of admissible parametrisations v, most
methods try to find strict solutions. Among the existing work in specification mining,
Jones et al. [2014], Jha et al. [2017] specifically assume the setting of passive simulation
and learning from positive examples. In their settings, they are given a set of simulation
traces and try to find STL specifications that tightly describe the system behaviour.
While existing work in specification mining is concerned with the question of how to
obtain specifications, in this thesis, we investigate how we can guarantee the quality of
STL specifications obtained with such procedures. With this, we aim to bridge the gap
between specification mining and SMC to obtain guarantees not only for individually
selected hypotheses, but for all hypotheses that can be obtained with any particular
specification mining procedure.

4.2 PSTL Formulas as Range Spaces
In order to apply our theoretical machinery to PSTL formulas, we first need to formally
define range spaces in this context. STL formulas are interpreted by tuples of signals
w : T → X and instants t ∈ T. For the context of VC-dimension analysis, we do not
need to pay special attention to instants t of evaluation, as we will not restrict the classes
of possible signals in a time-dependent manner. If there exists a signal w such that ϕ is
true at some t, we can, in general, construct, via time shifting, signals w′ such that ϕ is
true at any other given t′ ∈ T′. We will therefore define range spaces for PSTL formulas
(which are, in essence, just families of STL formulas), as follows:

Definition 4.2.1 (PSTL Range Spaces). Let ϕ be a PSTL formula with magnitude
parameters A, timing parameters T . Let W be a family of signals w ∈ W , such that for
some space X and some time domain T it holds w : T → X .

We define the PSTL range space (W, ϕ) to be the range space over the ground set W
where each range Rv is defined by a valuation v of ϕ as

Rv = {w ∈ W : w, 0 |= ϕv} (4.12)

With this definition of range spaces in place, we need to be careful in differentiating
constants from parameters in our formulas. We therefore introduce a bit of additional
notation. In the following, we denote with ϕ a PSTL formula, and with ψ a parameter-free,
or constant formula in STL. For temporal operators like U, we explicitly write their
bounds as [τ1, τ2] for timing parameters, [t1, t2] for timing constants. As an example, the
operator U[t1,τ2] is bound from the constant t1 to some variable instant τ2.

With all this notation established, we also need to differentiate between families of
possibly Zeno or strictly non-Zeno signals. Allowing Zeno behaviour in signals easily
leads to unbounded VC-dimensions, as is illustrated by the following example.
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Example 4.2.2 (Families of Pathological Signals). We define the set of signals W =
{wi : i ∈ N+} in the time domain T = [0, 2], denoting with ri the ith prime number, with

wi[t] =
{︄

1 if ∃k ∈ N+ : t = 1
rik

0 else
(4.13)

Each wi, has an unbounded amount of instants t where wi[t] = 1 for t → 0. Now we
consider the PSTL formula ϕ = G[τ,τ ]g(w) = 0, where τ is a timing parameter. We can
shatter a set of signals of unbounded size in W as follows:

Assume we select a set I of indices and want to find a parameter valuation v ∈ Q such
that

(wi, 0) |= ϕv ⇐⇒ i ∈ I. (4.14)

We can simply choose v = 1/
∏︁

i∈I ri. For i ∈ I we have that (wi, 0) |= ϕv as

t = 1
ki

∏︁
j∈I\{i} rj

. (4.15)

For i /∈ I we have that (wi, 0) ̸|= ϕv, as can be seen by contradiction: If (wi, 0) |= ϕv,
then

∃k ∈ N+ : v = 1∏︁
j∈I rj

= 1
rik

(4.16)

∃k ∈ N+ :
∏︂
j∈I

rj = rik (4.17)

ri divides
∏︂
j∈I

rj . (4.18)

Equation (4.18) is a contradiction to Euclid’s lemma: if ri divides the product, it must
divide at least one factor. However, all factors are primes other than ri.

We have shown that we can find v such ϕv evaluates to true for an arbitrary subset (of
unbounded size) of W. The VC dimension of VC(W, ϕ) is unbounded.

This example shows that even seemingly simple PSTL formulas can have an unbounded
VC dimension if signals with unbounded variability are allowed. We will conduct a
more thorough analysis of this setting in the following section. We will show that a
wide class of formulas has unbounded VC dimensions and will highlight special cases in
which we are able to derive finite bounds. Afterwards, we will see that disallowing Zeno
behaviour solves the problem of unbounded VC dimensions, and we give a general result
for non-Zeno settings. After our theoretical results, we will briefly see how our theory
can connect to practical settings in specification mining and anomaly detection.
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4.3 VC-Dimension Bounds for PSTL Formulas in General
Settings

In Chapter 3, we argued about the VC dimension of formulas over real-valued thresholds
by equating them to intersections of axis-aligned half spaces. The simple structure of
these formulas allowed for near-trivial bounds. We now perform a more involved analysis
of exact (in contrast to asymptotic) VC-dimension bounds of parametrised formulas.
In this first step of our analysis, we consider any type of signal without an assumption
of bounded variability. We will start with structurally simple formulas, without any
temporal operators.

Proposition 4.3.1. Let W be the set of all signals over the time domain T and ϕ∧ be a
PSTL formula with magnitude parameters A = {α1, . . . , αm} of the form

ϕ∧ ≡
m⋀︂

i=1
gi(w) > αi. (4.19)

Then it holds that VC(W, ϕ∧) ≤ m.

Proof. Each fixed function gi maps signals to a real value. When ϕ∧ is evaluated at a
fixed instant t, this range space coincides with the range space over axis-aligned half
spaces.

We can extend this result to arbitrary structures of temporal-operator-free formulas, by
using the weaker bound of Theorem 2.1.12 by Goldberg and Jerrum [1993].

Corollary 4.3.2. Let W be the family of all signals over the time domain T and ϕF O be
a temporal-operator-free PSTL formula with magnitude parameters A = {α1, . . . , αm},
constructed over a number n of distinct inequalities of the form g(w) > αi. Then it holds
that VC(W, ϕF O) ≤ 2m log2(8en).

Proof. The result follows from Theorem 2.1.12.

As the next step, we can simplify the range spaces we analyse by omitting constant
subformulas and some temporal operators. In the following, we present a series of small
results for such simplifications.

Proposition 4.3.3. Let W be the family of all signals over the time domain T and ϕ be
a PSTL formula with magnitude parameters A = {α1, . . . , αm} of the form

ϕ ≡ GI(ψ → ϕ∧), (4.20)

such that the subformula ψ and the interval I are parameter free and the subformula ϕ∧
is a conjunction of m PSTL literals. Then it holds that VC(W, ϕ) ≤ VC(W, ϕ∧) ≤ m.
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Proof. We can apply the preprocessing Lemma (Lemma 2.4.1) to prove the claim. We
define a quality transformation q, that maps signals w to signals q(w) such that

(w, 0) |= ϕ ⇐⇒ (q(w), 0) |= ϕ∧. (4.21)

The idea is the following: for each atom of the form gi(w) > αi in ϕ∧, we define q(w)
such that

gi(q(w)[0]) = min
t∈I:(w,t)|=ψ

gi(w[t]). (4.22)

This preserves classification as defined in Equation (2.32) and proves our claim.

Corollary 4.3.4. Let W be the family of all signals over the time domain T and ϕ be a
PSTL formula with magnitude parameters A = {α1, . . . , αm} of the form

ϕ ≡ FI(ψ ∧ ¬ϕ∧) (4.23)

Where the subformula ψ is parameter-free and the subformula ϕ∧ is a conjunction of m
PSTL literals. Then it holds that VC(W, ϕ) ≤ VC(W, ϕ∧) ≤ m.

Proposition 4.3.5. Let W be the family of all signals over the time domain T and ϕ
be a PSTL formula with magnitude parameters A = {α1, . . . , αm}, for ◦ ∈ {∧, ∨} of the
form

ϕ ≡ ψ ◦ ϕ1 (4.24)
Where the subformula ψ is parameter-free and the subformula ϕ1 has VC dimension d.
Then it holds that VC(W, ϕ) ≤ VC(W, ϕ1) ≤ d.

Proof. Let wlog ◦ = ∧. For any signal w in a shattered set (w, 0) |= ψ, as otherwise
the signal could not be classified positively under any parametrisation. Consequently,
(W, ϕ1) can shatter all sets that are shattered by (W, ϕ), which proves the claim.

Proposition 4.3.6. Let W be the family of all signals over the time domain T and ϕ be
a PSTL formula with magnitude parameters A = {α1, . . . , αm}, of the form

ϕ ≡ (¬ϕ∧)UIψ (4.25)

Where I is a fixed timing interval, the subformula ψ is parameter-free, and the subformula
ϕ∧ is a conjunction of m literals. Then it holds that VC(W, ϕ) ≤ VC(W, ψ) ≤ m.

Proof. Maler and Nickovic [2004] show that ϕ can be rewritten as

ϕ ≡
m⋁︂

i=1

(︁
gi(w) > αiUIψ

)︁
(4.26)

Then, by a similar argument as in Proposition 4.3.3, we can preprocess any signal w for
which ψ is true at some instant in I, with t′

w = arg mint∈I(w, t) |= ψ

gi(q(w)[0]) = min
t∈I:t≤t′w

gi(w[t]) (4.27)

This preserves classification. we then have a purely disjunctive clause of literals, and by
negation and Proposition 4.3.1 we can show VC(W, ϕ) ≤ m.
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Proposition 4.3.7. Let W be the family of all signals over the time domain T and ϕ be
a PSTL formula with magnitude parameters A = {α1, . . . , αm}, of the form

ϕ ≡ ψUI(¬ϕ∧) (4.28)

Where I is a fixed timing interval, the subformula ψ is parameter-free, and the subformula
ϕ∧ is a conjunction of m literals. Then it holds that VC(W, ϕ) ≤ VC(W, ϕ∧) ≤ m.

Proof. Again, we first consider individual atoms, as ϕ = ⋁︁m
i=1 ψUI

(︁
gi(w) > αi

)︁
. With

t′ = mint∈I(w, t) ̸|= ψ, we can then preprocess w such that

gi(q(w)[0]) = min
t∈I:t≤t′w

gi(w[t]) (4.29)

and have that

(w, 0) |= ψUI

(︁
gi(w) > αi

)︁ ⇐⇒ (q(w), 0) |= gi(q(w)) > αi (4.30)

If (w, 0) ̸|= ψ, we can let q(w) assume some signal that makes some inequality in
ϕ∧ false under every parametrisation. By similar reasoning as before, we have that
VC(W, ϕ) ≤ VC(W, ϕ∧) ≤ m.

If we want to include temporal operators in our formulas with parameters, the VC
dimension is unbounded in most cases. In the following, we show that even seemingly
simple formulas outside the classes defined above are of unbounded VC dimension.

Proposition 4.3.8. The following formulas in PSTL have an unbounded VC dimension.

1. F[0,τ ]g(w) > α

2. F[τ1,t2]g(w) > α

3. F(g1(w) > α1 ∧ g2(w) > α2)

4. g1(w) > α1U g2(w) > α2

Proof. We prove each claim by constructing sets of signals of unbounded size that can
be shattered.

1. ϕ = F[0,τ ]g(w) > α. We assume w.l.o.g. that T = [0, n!] and denote with πj the
jth permutation of n numbers by some arbitrary numbering. We construct the set
of signals for n ∈ N, Wn = {wi : i ∈ N, i ≤ n}, such that g(wi[t]) = ⌊t⌋ + 1

π⌊t⌋(i) .
We note that ∀w, w′ ∈ Wn : g(w[t + 1]) > g(w′[t]), as 0 < 1

π⌊t⌋(i) ≤ 1. or any
subset W ′ ⊆ Wn, there exists some instant t∗, where ∀w′ ∈ W ′, ∀w ∈ Wn \ W ′ :
g(w′[t∗]) > g(w[t∗]). f we set τ = t∗ and α = maxw∈Wn\W ′ g(w[t]), our formula is
only true for signals in W ′. As n is not bounded, the VC dimension VC(ϕ, W) is
unbounded as well. Figure 4.1a visualizes this construction.
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(a) Shattering of F[0,τ ]g(w) > α (b) Shattering of g1(w) > α1Ug2(w) > α2

Figure 4.1: Visual Examples of shattered sets of signals of arbitrary size for two PSTL
formulas. Figure 4.1a depicts two parametrisations of F[0,τ ]g(w) < α. A signal satisfies
the formula if it touches the corresponding box at any point. Figure 4.1b depicts one
parametrisations of g1(w) < α1Ug2(w) < α2. The dash length of the signals indicates
time, with later times resulting in shorter dashes. A signal satisfies the formula if it stays
above the dotted blue line (α1) until it is to the right of the solid blue line (α2) In the
depicted set of signals, this corresponds to touching the green box.

2. ϕ = F[τ1,t2]g(w) > α the argument is symmetric (as well as the signals) with the
function values of g(wi[t]) = −⌊t⌋ − 1

π⌊t⌋(i) .

3. ϕ = F(g1(w) > α1 ∧ g2(w) > α2). The argument is analogous to the previous
examples. We define a set of signals such that ∀w, ∀t ∈ T it holds g2(w[t]) = t and
proceed as before.

4. ϕ = g1(w) > α1Ug2(w) > α2. The construction of the set of signals is analogous
to the previous formulas. We define g1(w[t]) = −⌊t⌋ − 1

π⌊t⌋(i) and g2(w[t]) = t.
Similarly to our other examples, we can find a parametrisation for ϕ that is true
only for any given subset W ′, by finding an instant t∗ where ∀w′ ∈ W ′, ∀w ∈
Wn \ W ′ : g1(w′[t∗]) > g1(w[t∗]) and choosing α1 = minw∈Wn\W ′ g1(w[t∗]) and
α2 = t∗. This is visualised in Figure 4.1b.

4.4 Signals with Limited Variability
In order to avoid the issues caused by Zeno behaviour, we need a precise definition for
bounded variability. As briefly mentioned in Section 4.1.3, we restrict variability similar
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to, e.g., Maler and Nickovic [2004], Waga et al. [2019], who assume interval covers of
bounded length. However, our setting requires a very precise definition to allow us
to establish specific bounds with Theorem 2.1.12. We recall the requirements for the
theorem. First, to apply the bounds to a range space, each range needs to be parametrised
with a fixed number of real-valued parameters. This requirement is naturally satisfied
in our setting. Second, we need to be able to express membership tests as a boolean
formula over polynomial inequalities. The problem in our STL setting is the fact that
we potentially evaluate formulas on our signal for an infinite number of instants. If we
were to try to translate our STL formula to FO[<,+], this would result in a potentially
unbounded number of inequalities. This is where interval covers for formulas come into
play. Let us assume, for a signal w and an STL formula ψ, the existence of an interval
cover Iw with ⋃︁

I∈Iw = T, such that

∀I ∈ Iw : ∀t, t′ ∈ I :
(︂
(w, t) |= ψ ⇐⇒ (w, t′) |= ψ

)︂
. (4.31)

With an interval cover Iw we just need to check one instant t per interval I ∈ Iw, in order
to check the truth value of ψ over the whole time domain. This is, however, not enough
for us yet. We would require constant truth values not only for one specific valuation of a
given PSTL formula, but rather for all possible valuations of subformulas. Only then is it
ensured that a bounded number of checks is enough to evaluate our formula over the whole
time domain and over all possible valuations of a PSTL formula. We will address the
issues caused by magnitude and timing parameters separately. For magnitude parameters,
we impose the restriction of piecewise-constant signals, where only a bounded number of
jumps in g(w) is allowed for any particular function g and signal w. While this restricts
our statements, we require this behaviour in order to be able to apply Theorem 2.1.12.
Allowing even piecewise-linear signals increases the difficulty of translating PSTL to
FO[<,+] significantly for us. In the scope of this thesis, we will, therefore, only consider
piecewise-constant signals and define bounded variability as follows, similar to Maler and
Nickovic [2004], Younes [2005]. To deal with timing parameters, we can just include them
in our definition of intervals, symbolically. Depending on their position in the formula,
timing parameters shift the instants at which we need to monitor our system. We need
a definition of intervals that incorporates these symbolic shifts, which is addressed by
Waga et al. [2019].

Definition 4.4.1 (Bounded Variability Signals). Let w be a signal over the time domain
T and ϕ be a PSTL formula. We say w has a variability ζ = ζ(w, ϕ) with respect to ϕ
iff over all fixed functions g that occur in ϕ, the function value g(w) changes at most ζ
times in T. More formally, we require the existence of a symbolic interval cover of size ζ,
a set of intervals Iw, with |Iw| ≤ ζ and ⋃︁

I = T, such that for all valuations of timing
parameters and all subformulas ϕ′ that appear in ϕ

∀I ∈ Iw : ∀t, t′ ∈ I :
(︂
(w, t) |= ϕ′ ⇐⇒ (w, t′) |= ϕ′)︂. (4.32)

In words, w is piecewise-constant, and can change its observed values at most ζ − 1
times, regardless of the value of timing parameters. We call the interval cover symbolic,
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as the concrete values might be shifted by timing parameters. Going forward, for an
interval cover Iw, we say with abuse of notation that ti ∈ Iw is the first instant of the
i-th interval in Iw.

We give a simple example for such an interval cover for the toy PSTL formula ϕ ≡ g(w) >
0 ∧ G[τ1,τ1]G[τ2,τ2]g(w) > 0 in T = [0, k]. We assume that for some signal w we monitor,
the value of g(w) can change only at integer times {0, . . . , k}. The interval cover Iw can
then constructed as Iw = {0, . . . , k} ∪ {0 + τ1 + τ2, . . . , k + τ1 + τ2}. This definition makes
sure that w is correctly monitored, regardless of the values of τ1, τ2. If we restrict the
values of the parameters to integer values, the size of Iw does not increase. We will make
this silent assumption for our experiments for the sake of simplicity, although the use
of the full result by Waga et al. [2019] would increase the expressiveness of our method.
This aspect is left to future work.

4.5 VC-Dimension Bounds for PSTL Formulas in Limited
Variability

In previous sections, we saw that we often have an unbounded VC dimension in PSTL
settings. In this section, we show how our assumption of bounded variability can prevent
this. We again use the result of Goldberg and Jerrum [1993] and unroll PSTL formulas
over signals with bounded variability into FO[<,+] formulas, similar to the approach of
Aichernig et al. [2013] and the general standard translation method in LTL [Blackburn
et al., 2001]. Regardless of the variability, we will assume that constants are eliminated
if possible.

To first illustrate how bounded variability prevents unbounded VC dimension, we first
inspect Example 4.2.2 again with this added assumption.

Example 4.5.1 (Pathological Signals in non-Zeno Settings). We define the family of
signals Wζ with a variability for the formula G[τ,τ ]g(w) > 0 of at most ζ in the time
domain T = [0, 2]. That means there exists, for each signal w ∈ Wζ , an interval cover Iw,
where the truth value of G[τ,τ ]g(w) > 0 does not change. We can translate this formula
for a signal w to FO[<,+] as follows

(w, 0) |= G[τ,τ ]g(w) > 0 ⇐⇒
⋀︂

ti∈Iw

((τ ≤ ti) ∧ (ti ≤ τ) → g(w[ti]) > 0). (4.33)

This formula can be expressed as a conjunction over at most ζ clauses, with exactly three
inequalities each, where ti are terms that include τ . We can now apply Goldberg and
Jerrum [1993]: Each parametrisation is characterised by exactly one real value, the value
of q. We have a total of 3ζ inequalities of degree 1. With this, we can now bound the
VC dimension VC(Wζ , ϕ) ≤ 2 log2(24eζ). We do not have an unbounded VC dimension,
and in particular, the VC dimension scales only logarithmically with variability ζ.
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The contrast between Example 4.2.2 and Example 4.5.1 is substantial. While the un-
bounded VC dimension in Zeno settings might seem surprising, a logarithmic dependence
on variability now might seem counterintuitively low. This scaling does, however, fit the
examples we gave in Zeno settings: to increase the size of a shattered set by one, we
effectively had to consider twice the number of instants in the time domain. Similarly
to this example, we can now obtain VC bounds for all PSTL formulas in a ζ-variability
setting, by translating the formula from PSTL into a FOL formula of a length bounded
by ζ and then applying the theorem of Goldberg and Jerrum [1993]. This translation
takes heavy inspiration from the standard translation of Kamp [1968] from LTL to FOL,
and the more accessible version provided by Blackburn et al. [2001].

Definition 4.5.2 (ζ-PSTL Standard Translation). For some integer ζ, let t, t′, t′′ be
fresh first-order variables. We define the standard translation STt, translating PSTL
formulas for ζ-variable signals w to FO[<,+] formulas inductively as follows

STt(⊤) = ⊤ (4.34)
STt(g(w) > c) =g(w[t]) > c (4.35)

STt(¬ϕ) =¬ STt(ϕ) (4.36)
STt(ϕ1 ∨ ϕ2) = STt(ϕ1) ∨ STt(ϕ2) (4.37)

STt(ϕ1U[a,b]ϕ2) =∃t′ ∈ t ⊕ [a, b] :
(︂

STt′(ϕ2) ∧ ∀t′′ ∈ [t + a, t′] : STt′′(ϕ1)
)︂

(4.38)

The standard translation presented here is adapted from Blackburn et al. [2001] with
minor adjustments. Our temporal operators have bounded scopes, necessitating ad-
ditional checks. Each signal w is then represented by a set of variables g(w[t]) and
the corresponding time terms t. To avoid an unbounded number of variables in this
formulation, we now use bounded variability: given a symbolic interval cover Iw with
|Iw| ≤ ζ, we can reformulate our standard translation as a set of quantifier-free clauses.
In each interval, represented by its first instant ti, we know that the truth values of
all subformulas are constant regardless of the parameter values, so we can just check
one instant per interval. This results in the following unrolled form of our standard
translation.

STt(⊤) =⊤ (4.39)
STt(g(w) > c) =g(w[t]) > c (4.40)

STt(¬ϕ) =¬ STt(ϕ) (4.41)
STt(ϕ1 ∨ ϕ2) = STt(ϕ1) ∨ STt(ϕ2) (4.42)

STt(ϕ1U[a,b]ϕ2) =
⋁︂

ti∈Iw

(︄
(t + a ≤ ti) ∧ (ti ≤ t + b) ∧ STti(ϕ2)∧

(︃ ⋀︂
tj∈Iw

(t + a ≤ tj) ∧ (tj ≤ ti) → STtj (ϕ1)
)︃)︄ (4.43)
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In this translation, t, all values ti and g(w[t]) are first-order term variables. The bounds
of temporal operators a, b might be variables or constants, depending on whether they
are timing parameters of ϕ.

Proposition 4.5.3. Let ϕ be a PSTL formula, with a set A of magnitude parameters
with |A| = m, a set T of timing parameters with |T | = k, and a total of ℓ ≥ 1 occurrences
of temporal operators and n unique inequalities. For a PSTL range space (Wζ , ϕ), where
Wζ is the set of all ζ-variable signals over time domain T with respect to ϕ, we have

VC(Wζ , ϕ) ≤ 2(m + k) log2(8e((n + 3)ζ + (4ℓ − 3)ζ2)) (4.44)

Proof. To show our claim, we count the number of unique inequalities and free variables
in the standard translation ST0(ϕ), and then apply Theorem 2.1.12. The number of
parameters is m + k by definition. Then, each inequality of the form g(w) > c in ϕ
introduces one literal in the standard translation for each instant in Iw, on which the
inequality is evaluated, up to ζ. For guarding inequalities on either ti or tj , we introduce
ζ literals in the standard translation, as ti and tj take all values in Iw. There are 3 such
inequalities per occurrence of an until operator that include t, and 1 such inequality
where both ti and tj appear. The inequalities containing t introduce 3ζ literals for each
instant in Iw, on which the inequality is evaluated, up to 3ζ2. The inequalities containing
both ti and tj introduce ζ2 literals in the translation. In total, the worst-case number of
literals in the translated formula is as follows

• nζ literals, for inequalities of the form g(w[t]) > c, evaluated at ζ instants,

• 3ζ literals of the form (t + a ≤ ti), (t + a ≤ tj), (ti ≤ t + b), evaluated only at time
0 for the first temporal operator,

• ζ2 literals of the form (tj ≤ tj) for the first temporal operator,

• 3ζ2 literals of the form (t + a ≤ ti), (t + a ≤ tj), (ti ≤ t + b), evaluated at up to ζ
instants for the remaining ℓ − 1 temporal operators,

• ζ2 literals of the form (tj ≤ tj) for the remaining ℓ − 1 temporal operators.

Together, this amounts to nζ + 3ζ + ζ2 + 4(ℓ − 1)ζ2, or (n + 3)ζ + (4ℓ − 3)ζ2.

This result is coarser than a direct translation and counting of STL inequalities, but
offers the advantage of being general purpose.
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4.6 Sample-Based PSTL Validity Guarantees
After our fight through notation and definitions, Proposition 4.5.3 is the result we were
hoping to obtain. It allows us to apply the theory from Chapter 2.

Theorem 4.6.1 (Learning Probably Approximately Valid PSTL Parametrisations). Let
ϕ be a PSTL formula, with a set A of magnitude parameters with |A| = m, a set T of
timing parameters with |T | = k, and a total of n unique inequalitiesand ℓ ≥ 1 occurrences
of temporal operators. For parameters ε, δ < 1

2 and a probability distribution Dζ of
ζ-variable signals, for a random sample N of signals of size s

(︁
ε, δ, 2(m + k) log2(8e((n +

3)ζ + (4ℓ − 3)ζ2))
)︁

according to Equation (2.24), with a probability of at least 1 − δ and
denoting with W a random signal sampled from Dζ , it holds that

∀v ∈ Rm+k :
(︂
(∀w ∈ N : (w, 0) |= ϕv) =⇒ Pr((W, 0) ̸|= ϕv) < ε

)︂
. (4.45)

In words, if ϕ is always true in N with a parametrisation v, the probability of it being
false on a random signal W in Dζ is smaller than ε.

Proof. We know that VC(Wζ , ϕ) ≤ 2(m + k) log2(8e((n + 3)ζ + (4ℓ − 3)ζ2)), by Proposi-
tion 4.5.3. Then, N is an ε-net with probability of at least 1 − δ by Theorem 2.4.2. The
claim follows from the definition of ε-nets.

With Theorem 4.6.1, we now have a result to apply our verification procedure to any
parametrised formula in STL, as long as we can assume bounded variability. In Chapter 3,
we continued with the aim of obtaining sharp conditional robustness lower bounds. In this
much more general setting, however, we have no motivation to obtain such conditional
bounds and will stop our theoretical analysis at this point. The VC-dimension bounds
we obtained are, unfortunately, not a single result we can apply indiscriminately. For
structurally simple formulas, we can apply our various specialised results, even without
assumptions. For more complex formulas, we require limited variability of the system we
investigate and need to fall back to the general, but looser Proposition 4.5.3.

Before we continue with an experimental evaluation of our method, we want to set our
result in Theorem 4.6.1 into context with some of the existing literature in comparable
settings: learning specifications passively from positive examples. While maybe slightly
different in their objective, Jha et al. [2017] learn in settings where Theorem 4.6.1 can be
applied, even post-hoc.

In their paper Jha et al. [2017] learn parameters for five PSTL templates in an autonomous
driving setting, e.g.:

1. ϕ1 = G[0,2.2·1011](((angle(w) ≥ 0.2) ∨ (angle(w) ≤ −0.2)) → (speed(w) ≤ α))

2. ϕ2 = G[0,2.2·1011]((angle(w) ≥ 0.06) → (torque(w) ≥ α))

59



4. Description-Based Verification of Cyber-Physical Systems

3. ϕ3 = G[0,2.2·1011]((torque(w) ≤ 0.0) → F[0,1.2·108](angle(w) ≤ α))

In their more recent work, Nicoletti et al. [2024] consider partially defined STL templates
of the form

4. ϕ4 = G((⋀︁d
i=1 F[τi1,τi2](αi1 ≤ gi(w) ≤ αi2)) → Fψ), for an integer d and temporal-

operator-free formula ψ.

We can now immediately and without bounded variability bound the VC dimension of
ϕ1, ϕ2 as 1, via Proposition 4.3.3. For ϕ3, we claim that the VC dimension of the PSTL
template is unbounded without finite variability. We do not provide a formal proof of
this, but argue that this formula can emulate Example 4.2.2. Assuming some bound
variability ζ, Proposition 4.5.3 gives the bound VC(Wζ , ϕ3) ≤ 2 log2(8e(5ζ + 5ζ2)). For
the excessively high value ζ = 2.2 · 1011, which is not the number of samples in the trace,
but the length of the trace in nanoseconds, this gives VC(Wζ , ϕ3) ≤ 164. The actual
number of samples per simulation trace in their experiments was much lower, 13205
samples per trace, giving a VC-dimension bound of 68.

Finally, for ϕ4, we need to apply Proposition 4.5.3 as well. We assume ψ contains nψ

unique inequalities and then get the bound VC(Wζ , ϕ4) ≤ 8d log2(8e((2d + nψ + 3)ζ +
4(d − 1)ζ2)). As their codebase shows, Nicoletti et al. [2024] mine specifications up to
d = 3, with small nψ, and discuss traces of length up to ζ = 106. Thus, the highest
complexity they consider is VC(Wζ , ϕ4) ≤ 1161, although their actual setup is much
more limited in the choice of parameter values.

The complexity of these formulas is comparable to, or in the case of ϕ4, with 12 free
parameters, even above the complexity of STL templates in comparable work [Bartocci
et al., 2022]. Based on the VC-dimension bounds we obtained for these formulas from
existing literature, we can give examples for our required sample sizes per Theorem 4.6.1.
We fix the parameter δ = 0.01, as it has little impact on the sample complexity and
present the results in Table 4.1. We note that the required number of samples for the
complex specifications ϕ3 and ϕ4 is in the hundreds of thousands, if not millions. As
these amounts of simulation traces might be computationally costly to obtain, we try
to set this number into context and conduct experiments for specification mining and
anomaly detection ourselves.

4.7 Experiments on Anomaly Detection in CPS
In the previous section, we have connected our theoretical results to practical settings
in a passive manner. For a selection of specifications used in related literature, we gave
the required number of i.i.d. simulation traces required to obtain the guarantees offered
by Theorem 4.6.1 for any mined specification. However, this comparison is limited as
typically not a lot of attention is given to the amount of simulation traces. In this section,
we actively conduct an experiment for anomaly detection to demonstrate how our results
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Specification Variability ζ VC dimension ε

0.1 0.01 0.001
ϕ1, ϕ2 − 1 320 3 919 46 294

ϕ3 13205 68 21 022 259 533 3 808 748
ϕ3 2.2 · 1011 164 55 070 668 853 7 854 135
ϕ4 106 1161 460 163 5 428 325 62 467 182

Table 4.1: Required sample complexities s(ε, δ, VC(W, ϕ)) as per Equation (2.24) for
different PSTL specifications from existing literature given their associated variability
and a fixed δ = 0.01.

connect to practice. Similarly to our experiments in Chapter 3, we do not claim to
establish empirical evidence for our guarantees. For this, a large-scale experiment would
be required to provide evidence beyond all the sources of uncertainty in our setting.
We know our sample complexity bounds to be true from theoretical analysis alone, and
rather aim to illustrate how our theoretical findings can be used in practice. We want to
address the following questions.

Q1 We assumed bounded variability for our theory, and in particular, we needed an
interval cover Iw for our VC-dimension bound. How can we obtain such an interval
cover in practical settings?

Q2 Simulation in CPS is very costly compared to inference in NNs. In addition, our
VC-dimension bounds are much larger. How long does it take to obtain the required
number of samples for complex specifications?

Q3 We assume i.i.d. samples of time series data. Outside of simulations, is i.i.d.
sampling a reasonable assumption?

Q4 Do the obtained specifications characterise the CPS well and generalise? Are
the sample complexities we require too conservative for mining specifications that
generalise?

4.7.1 Experimental Setup
We conduct experiments on a classical toy example in reinforcement learning: the cart-
pole balancing problem, studied by—among others—Sutton and Barto [2018], Watkins
[1989]. We will set up and train a simple agent with a deep Q-network (DQN) architecture
on the cart-pole problem. Once trained, we mine specifications from the system and
obtain probabilistic guarantees for their validity from Theorem 4.6.1. Afterwards, we
simulate a slow drift in the system by letting the agent perform random actions with
increasing probability across simulations. Our hope is that we can detect anomalous
system behaviour before a critical failure occurs. We do not claim this setup is comparable
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to practically relevant CPS, but it is sufficient to illustrate a practical use case of our
method. The code for the experiments, including all hyperparameter settings and training
details, can be found at this GitHub repository1.

Used Software and Hardware We use PyTorch [Ansel et al., 2024] and the Gym-
nasium library [Brockman et al., 2016] to conduct our experiments in reinforcement
learning. All experiments were run on a single desktop machine equipped with an Intel
i9-11900KF@3.50GHz CPU and an NVIDIA GeForce RTX 3080 GPU.

Environment and Architectures Our agent is trained in the CartPole-v1 envi-
ronment, where it learns to balance a pole vertically against gravity, by moving a cart on
a small rail either to the left or to the right. Each simulation begins with the cart and
the pole at a random position and speed, each value chosen uniformly in a small range
around 0. The simulation lasts for 500 instants and is concluded successfully if the pole
has remained upright and the cart is close to a central position for the entire duration.
Illustrations of this environment are depicted in Section 4.7.1.
The agent used in the experiments uses a DQN architecture consisting of two three-layer
networks and was trained until mastery of the task. For exact training details, we refer
to the GitHub repository. For the sake of simulating anomalous behaviour, the agent
is given a runtime parameter padv, which controls the probability it performs a random
action at each instant during the simulation.

Verification Procedure We sample two specification templates for the agent.

ϕ1 = G
(︁
abs_pole_angle(w) < α1 ∧ abs_cart_position(w) < α2

)︁
(4.46)

which describes the maximal amount of perturbation of the systems per simulation run,
with a VC dimension of 2. Figure 4.2a depicts this specification as bounding boxes
around the agent. In contrast to this simple property, we will also investigate

ϕ2 =G[10,500]
(︂(︁
abs_pole_angle(w) > α1 ∨ abs_cart_position(w) > α2

)︁
→ F[0,τ ]

(︁
abs_pole_angle(w) < α3 ∧ abs_cart_position(w) > α4

)︁)︂
(4.47)

The specification template ϕ2 imposes a constraint on how quickly the system returns
to a stable state after perturbation. Figure 4.2b depicts this specification as two sets of
bounding boxes around the agent. If the agent leaves the orange boxes, it has to return
to the stable state inside the green boxes in a short amount of time. We parametrize
all inequalities in ϕ2, resulting in a higher VC dimension for a variability of ζ = 500 of
VC(Wζ , ϕ2) ≤ ⌊2 · 5 log2(8e(7ζ + 5ζ2))⌋ = 247. For both of our specifications, we like to
obtain an ε-net with the parameters ε = δ = 0.01. The resulting sample complexities are
sϕ1 = s(0.01, 0.01, 2) = 6824 and sϕ2 = s(0.01, 0.01, 247) = 1038007.

1“Probably_approximately_valid_STL_mining”, Pietreus, GitHub repository, archived at https:
//github.com/Pietreus/Probably_approximately_valid_STL_mining.
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(a) Simple specification ϕ1 (b) Complex specification ϕ2

Figure 4.2: Illustration of the CartPole-v1 environment and the specification templates
we use in our experiments. Figure 4.2a defines bounding boxes the agent must stay in
for the entirety of the simulation. Figure 4.2b defines two sets of bounding boxes. If the
agent leaves an acceptable state, i.e., the orange set of boxes, it must return to a stable
state inside the green boxes quickly.

Once we have obtained our simulation traces, we mine specifications with simple methods.
For ϕ1 there is one unique strictest parametrization, for ϕ2 we manually choose some
parameters based on the behaviour of the system, and then choose the strictest admissible
parametrisations for the remaining parameters.

Once our parametrisations have been obtained, we test our chosen specifications in an
anomaly detection setting using a CUSUM statistic for changepoint detection, as defined
in Equation (4.11). This serves the purpose of demonstrating the practical applicability
of our theory and allows us to qualitatively assess how well the mined specifications
describe the system. If they do not generalise, we expect to see false alarms during
nominal behaviour; if they are not specific enough, they will not detect anomalies before
the system fails. We freely choose the parameters for this statistic as null probability
ε = 0.01 and alternative probability of 2ε = 0.02. The resulting CUSUM statistic is

Ci = max
{︃

0, Ci−1 + Xi log 2ε

ε
+ (1 − Xi) log 1 − 2ε

1 − ε

}︃
(4.48)

= max
{︃

0, Ci−1 + Xi log 2 + (1 − Xi) log 0.98
0.99

}︃
(4.49)

We detect an anomaly at simulation i if Ci > h, where we estimate h via Monte Carlo
simulation as h = 1.75.This simple method is in accordance with standard literature
[Tartakovsky et al., 2015], as in practice the specific choice of h depends on desired
properties which are out of scope of this analysis.

Equipped with this anomaly detection test, we check our specifications in different
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settings, where we introduce gradual changes to the agent with its parameter padv. We
will produce 10 sequences of length 20 000 of traces, where the system behaves normally
for the first 10 000 traces and then the agent will, for the remaining 10 000 traces, behave
randomly with slowly drifting probability. That is

p
(i)
adv = max{0, (i − 104)/(105)} (4.50)

Further, we will produce 10 sequences of length 20 000 of traces where the probability of
adversarial movement increases in steps of 0.5% every 1000 traces.

p
(i)
adv = max{0, (⌊i/103⌋)/200} (4.51)

On each of these sequences, we will then calculate our CUSUM statistic for each of the
obtained specifications to see how quickly we detect anomalies and whether false positives
are detected.

Q1 All our signals are sampled from a simulator at a regular sampling frequency, and
we assume piecewise constant signals. This naturally provides us with an interval cover.
Furthermore, as our simplistic specification mining process only considers integer values for
the timing parameter, the size of this interval cover is identical to the number of samples
in the signal. While the assumption of piecewise constant signals is restrictive, signals
could be super-sampled artificially to more closely describe more complex behaviour.
We then still have piecewise constant signals, but the sampling frequency is artificially
increased to reduce potential modelling errors. Other ways to bypass these restrictions
could rely on symbolic guards for magnitudes, similar to our symbolic definition of
interval covers [Waga et al., 2019].

Q2 With a simple setup without multiprocessing, we can simulate around 50 full simu-
lation traces per second of this agent in this environment. With the simple specification
template ϕ1, this means we are able to obtain reasonable probabilistic guarantees about
our agent in approximately two minutes of simulation. For the much more complex
specification ϕ2, we would expect around five hours of runtime to sample our ε-net.
These runtimes are certainly reasonable, if not surprisingly low. For simple enough
specifications like ϕ1, the temporal aspects do not influence the VC dimension. In these
cases, the sample complexity can even be considered to be of negligible cost compared to
training a system.

4.7.2 Evaluation
For our experimental runs, it is not the agent that is investigated, nor how we chose
our parameterisations. We want to instead demonstrate the practical feasibility of our
verification procedure and the usefulness of its guarantees. We choose the setting of
anomaly detection for two reasons. First, a rigorous detection method will require us to
know how likely a specification is to hold in a system. Second, the response time and
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the false positive rate of any anomaly detection method are coupled to the quality of
the specifications used. If the specification is too strict, it does not generalise well, and
false positives will be detected. If it is too loose, the specification is non-informative
and the system might fail before actual anomalies are detected. Consequently, we want
to see that our CUSUM statistics never detect anomalies for simulation traces i where
p

(i)
adv = 0, but does detect even small strictly positive p

(i)
adv relatively quickly. Further, we

will use our specification mining procedure with a small subset of our samples to see if
this smaller amount of samples is still sufficient to produce specifications that generalise
sufficiently well. We will report for each parametrisation in each setting the smallest,
average and maximum value of p

(i)
adv at which an anomaly is detected, as well as if system

failure was successfully predicted. In addition, we will briefly investigate if our sample
complexities are overly conservative. We will assess this by rerunning the experiments
with parameterisations obtained from the first 10% of our sampled traces.

4.7.3 Results
We mine one specification for ϕ1 (“Optimal”) and four for ϕ2 (“Balanced”, “Angle”,
“Position”, “Combined”), described in detail in Appendix C. The results of our experiments
are reported in Table 4.2 and visualised in Figures 4.3 and 4.4. In all 20 experimental
runs, not once a process deviation is falsely detected at padv = 0. Furthermore, with one
exception, each specification detected anomalies before the first system failure in at least
18/20 trials.

The single specification obtained for ϕ1 proves to be particularly effective and, in the
worst trial, detects a deviation from nominal behaviour at padv ≈ 1.53%. For the different
specifications of ϕ2, even though in each α3 and α4 are chosen as strictly as possible, they
show drastic differences in their sensitivity. Both the “Angle” specification as well as the
“Position” specification detect deviations with reasonable effectiveness. The “Balanced”
specification, however, does not register anomalous behaviour in the system in 17/20
trials. As their conjunction, the “Combined” specification benefits from the sensitivity
of all three specifications, and still does not falsely report anomalies at any point, in
accordance with Corollary 2.5.1.

In summary, our experimental results demonstrate that our theoretical findings translate
into practice with reasonable effectiveness. For the simple PSTL template ϕ1, the
simulation runtime is negligible for our simulator, and even the more complex formula
ϕ2 requires only a few hours of simulation runtime in order to require enough traces
for our guarantee. Without fail, our specifications show to be conservative: none of our
specifications ever reports nominal system behaviour as anomalous. Table 4.3 and the
respective figures Figures 4.3 and 4.5 show that the conservative nature of our sample
complexity bounds holds for complex specifications. When repeating the experiments
the same way with specifications mined from a number of samples of about 10% of the
sample complexity Equation (2.24), our anomaly detection setup partially breaks down.
Figure 4.3c in particular shows that in nearly all the traces, anomalies are falsely detected
during nominal behaviour. With this, we justify our prior assumption for Q4: for settings
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like anomaly detection, we need to know violation probabilities of the specifications we
use, otherwise we cannot detect deviations from them reliably with statistical methods.
This also shows an advantage of our method in contrast to Chernoff bounds: Estimating
this violation-probability directly requires an amount of samples quadratic in ε.

In contrast to ϕ1, in Figure 4.5 we can observe that even a fraction of 10% of the
required samples is sufficient for our parametrisations to generalise well. Likely reasons
for this are that both our sample complexity bound from Equation (2.24) and mainly our
VC-dimension bound from Proposition 4.5.3 are not tight. For more complex formulas,
these bounds, while still practically feasible, are conservative. Furthermore, to address
Q3, we acknowledge that the use of full-length, individual traces is statistically inefficient
in most cases. For a specification like ϕ1, we reduce a full simulation of 500 instants in
time to only one data point. Realistically, we could likely consider multiple instants in
the same simulation trace as independently sampled from the stationary distribution of
the system, and thus obtain the required sample size from a much smaller number of
simulation traces.

4.8 Summary, Limitations, and Future Work for CPS
Verification

We conclude this chapter with a summary of our results and briefly mention possible
future directions for this procedure for CPS verification. While our NN setting was
confined to one specific property, in this chapter, we utilised STL as a specification
language to allow our results to generalise. We showed that, without any assumption
on the traces emitted by the system, most specification templates have unbounded VC
dimension. This prevents us from providing a sample complexity bound in the general
case. With our assumption of bounded variability, as defined in Definition 4.4.1, we can
extend our results to any PSTL formula, by providing a general VC-dimension bound,
parametrised by the allowed signal variability and the number of free parameters. As our
experiments illustrated, the sample complexities required by our certification procedure
are low enough for practical feasibility for actual, albeit small CPS simulations, like the
CartPole problem, with a DQN agent. Our method is useful for specification mining
settings, as it certifies any parametrisation consistent with the obtained sample. To the
best of our knowledge, no existing method can provide comparable probabilistic bounds
for mined specifications. We further believe anomaly detection is a useful application of
our method, as our generalisation guarantees provide the required prior knowledge for
changepoint detection methods.

For more complex specifications, we noticed the sample complexity of our procedure
is overly conservative. Besides the slackness of our bounds, this is likely caused by
reducing each sampled trace to an individual data point. Future work could investigate
settings where relax i.i.d. sampling assumptions and instead sample from, e.g., hidden
Markov models, or other models that are better suited to utilise the time-dependent
nature of CPS. In addition to this, our bounded variability assumption, together with
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(a) CUSUM for full sample parametrisation. (b) CUSUM for full sample parametrisation.

(c) CUSUM for 10% sample parametrisation. (d) CUSUM for 10% sample parametrisation.

Figure 4.3: CUSUM statistics for different parametrisations of ϕ1. The yellow line is the
anomaly detection threshold h, the vertical red line marks the beginning of anomalous
behaviour. The CUSUM should first cross the yellow line soon after anomalous behaviour
begins.

the VC dimension bound we give, can certainly be improved with more involved analysis
of the particular formulas. The symbolic monitoring method by Waga et al. [2019]
together with a detailed standard translation process from STL to FO[<,+] can certainly
drastically reduce the obtained bound. Combining both of these aspects, much lower
sample complexities might be possible to obtain guarantees for complex PSTL formulas.
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1038007

(a) CUSUM for full sample parametrisation for stepwise increasing padv.

1038007

(b) CUSUM for full sample parametrisation for drifting padv.

Figure 4.4: CUSUM statistics for different parametrisations of ϕ2 from the full sample.
The yellow line is the anomaly detection threshold h, the vertical red line marks the
beginning of anomalous behaviour. The CUSUM should first cross the yellow line soon
after anomalous behaviour begins.
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103800

(a) CUSUM for 10% sample parametrisation for stepwise increasing padv.

103800

(b) CUSUM for 10% sample parametrisation for drifting padv.

Figure 4.5: CUSUM statistics for different parametrisations of ϕ2 mined from only 10%
of the sample size s(ε, δ, d). The yellow line is the anomaly detection threshold h, the
vertical red line marks the beginning of anomalous behaviour. The CUSUM should first
cross the yellow line soon after anomalous behaviour begins.
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Table 4.2: Summary of the CPS experimental results. For each parametrisation, in the
two experimental setups, the simulation index of the first alarm, i.e., the smallest index
i where Ci > h, as well as the corresponding value padv are reported. The last column
reports how often the anomaly was detected before the first failure of the system.

Setup Specification First Alarm padv · 103 Failure
Prevented

min mean max min mean max

Drift

ϕ1 Optimal 10899 11228.3 11527 8.99 12.29 15.27 10/10

ϕ2

Balanced 13286 15222.9 16137 32.86 52.23 61.14 1/10
Angle 10778 11420 12276 7.78 14.20 22.76 10/10

Position 10919 12599.4 14011 9.19 26.00 40.11 10/10
Combined 11223 11841.7 12563 12.23 18.42 25.63 9/10

Steps

ϕ1 Optimal 1258 1942 2364 5 8.5 10 9/10

ϕ2

Balanced 5226 6864.4 7784 25 32 35 2/10
Angle 1565 2477.6 3055 5 10.5 15 9/10

Position 3223 4130.2 4983 15 17.5 20 8/10
Combined 2114 3067.7 4256 10 14 20 9/10

Table 4.3: Summary of the CPS experimental results for the parametrisations mined from
only 10% of the sample size s(ε, δ, d). For each parametrisation, in the two experimental
setups, the simulation index of the first alarm, i.e., the smallest index i where Ci > h, as
well as the corresponding value padv are reported. The last column reports how often
the anomaly was detected before the first failure of the system. Bold font indicates false
alarm.

Setup Specification First Alarm padv · 103 Failure
Prevented

min mean max min mean max

Drift

ϕ1 Optimal 738 5810.5 10778 0 1.2 7.78 10/10

ϕ2

Balanced 13286 15222.9 16137 32.86 52.22 61.37 1/10
Angle 10778 11358.2 11886 7.78 13.58 18.86 10/10

Position 10908 11757 12676 9.08 17.57 26.76 10/10
Combined 10750 11476.4 12176 7.50 14.76 21.76 9/10

Steps

ϕ1 Optimal 216 1240 1750 0 4.5 5 9/10

ϕ2

Balanced 5226 6864.4 7784 25 32 35 2/10
Angle 1565 2429.2 3044 5 1 15 9/10

Position 2454 3195.5 3925 10 13.5 15 9/10
Combined 2054 2828.9 3442 10 12.5 15 9/10
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CHAPTER 5
Discussion

We conclude this thesis with a short summary of our results in the context of our initial
research questions. For detailed discussions about the individual chapters, we refer to
their respective discussion sections.

5.1 MAIN-RQ

How many random tests are required to characterise a given black-box system
with respect to a given class of properties?

We investigate this question in Chapter 2. Our main result is the probabilistic certification
procedure in Theorem 2.4.2. After one random sample of observations of size s(ε, δ, d),
Theorem 2.4.2 allows us to certify all properties in our class of properties that are
consistent with the sample. This means that we know with high probability (1 − δ) that
all properties that were valid in our random sample will be true in any future observation
with probability at least 1 − ε, for a class of properties of Vapnik-Chervonenkis (VC)
dimension d. We introduce the construct of quality transformation in Lemma 2.4.1, as
a tool to obtain low VC dimension bounds for interesting properties in the following
chapters.

In contrast to the common approach of estimating the probability of an individual given
specification, where Chernoff bounds or similar concentration inequalities are utilised,
we base our guarantees on ε-nets. This results in a required sample size s that scales
better with the desired error probability ε than methods using concentration inequalities.
The exact number of samples s(ε, δ, d) required to obtain our guarantees is given by
Equation (2.24).
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5.2 NN-RQ1

How many samples do we need to decide for all levels of confidence and
robustness whether the neural network can be both confident and non-robust?

We investigate this question in Chapter 3, and answer it with Lemma 3.3.1. The required
number of samples follows from our general result in Equation (2.24). The surprising
aspect of our result is that certifying confidence-based NN robustness has a constant
VC dimension of 2. This means that, independent of the architecture of the NN, the
dimensionality of its data or even the precise definition of robustness, we require the
same number of data points to give robustness guarantees.

This high degree of abstraction from the specific notion of NN robustness allows us to
perform local robustness tests with either formal or heuristic methods, and extend their
individual local statements to a probabilistic global guarantee about the network.

5.3 NN-RQ2

How can we obtain sharp lower bounds for NN robustness, conditioned on
the prediction confidence, that generalize to unseen data?

As the bounds we obtain from Lemma 3.3.1 are conjunctive, they will vacuously certify
NNs to be robust for high confidence values. We motivate the use of a conditional
definition of confidence-based robustness in Equation (3.9) to avoid this and present a
method to give these conditional guarantees in Theorem 3.5.1.

This conditional bound, together with Corollary 2.5.1, enables us to construct a mapping
from our sample that, for each confidence value, returns the highest robustness radius we
can certify. At test time, we can use this mapping to obtain robustness lower bounds for
future predictions that hold with high probability for each new observation.

Our experiments show that the lower bounds we obtain from this mapping characterise
the NN well and do generalise from seen to unseen data in practice, even when i.i.d.
assumptions might not be fully met. Figures 3.2 and 3.3 illustrate this empirical sharpness.

5.4 CPS-RQ1

For any given STL specification template, how many simulation traces of
real-time CPSs do we need to certify that all specifications we can mine are
valid?

In order to answer this question, we dedicate Chapter 4 to obtaining VC dimension
bounds for parametrised signal temporal logic (PSTL) specifications, which would then
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allow us to use Theorem 2.4.2. Our results are mixed. Without any assumption on the
system we investigate, we can give bounds for some structurally simple classes of STL
templates. For many cases, however, we can show that the continuous time semantics of
STL lead to unbounded VC dimension. In this case, we cannot apply our verification
procedure.

If we assume that our system has a bounded variability as in Definition 4.4.1, however,
we can overcome this issue. This definition is comparable to existing definitions of
“well-behaved” signals, and allows us to give a VC-dimension bound for any parametrised
STL formula in Proposition 4.5.3. With this bound, we can extend our procedure to give
guarantees for any CPS specification expressible in the language, via Theorem 4.6.1.

We illustrate the practicability of our method with experiments in specification mining
and anomaly detection. Our experimental results show that the sample complexity we
require is feasible in practical settings, with only a few thousand simulation traces required
to obtain high-confidence statements for simple specifications. Because we can quantify
the uncertainty of specifications we mined, we can readily combine them with existing
tools for anomaly detection. Changes in the system resulted in more frequent violations
of our guarantees than expected, which can be detected as anomalous behaviour.
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Overview of Generative AI Tools
Used

The Grammarly browser plugin has been used to detect individual spelling mistakes and
suggest changes for language style.

High-level feedback from Chat-GPT variants 4o, o3 and o4-mini was considered for the
improvement of text passages. The models were asked to provide feedback on existing
text only, and their output was not directly used to change the manuscript.
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Appendix

A Proofs

Proposition 2.2.4 (ε-nets from i.i.d. samples). Let (Q, R) be a range space with VC
dimension d and let D be a probability distribution over Q. For parameters 0 < ε, δ < 1

2 ,
an i.i.d. sample from D of size s is an ε-net for (Q, R) with probability at least 1 − δ if s
satisfies

s ≥ 2
ln(2)ε

(︃
ln 1

δ
+ d ln(2s) − ln

(︃
1 − exp

(︃−sε

8

)︃)︃)︃
(2.23)

Proof. We follow the argument of "double sampling" from Mitzenmacher and Upfal [2017,
Theorem 14.8]. We first define E1 as the random event that a sample N of size |N | = s
is not an ε-net:

E1 =
{︁∃R ∈ R :

(︁
Pr(X ∈ R) ≥ ε

)︁ ∧ (︁
R ∩ N = ∅)︁}︁

(1)

We aim to show Pr(E1) ≤ δ for large enough s. We proceed by choosing a second sample
T with |T | = s and define E2 as the event that some range R does not intersect N , but
has a large intersection with T .

E2 =
{︃

∃R ∈ R :
(︁

Pr(X ∈ R) ≥ ε
)︁ ∧ (︁

R ∩ N = ∅)︁ ∧
(︃

|R ∩ T | ≥ εs

2

)︃}︃
(2)

The idea is that, because E(|T ∩ R|) = εs, the probability of |R ∩ T | ≥ εs
2 should be large,

and hence E1 and E2 should have similar probability in total.

Mitzenmacher and Upfal [2017] formalize this intuition with the following expression,
where they consider some fixed range R′, such that R′ ∩ N = ∅ and Pr(X ∈ R) ≥ ε. In
particular, as E2 ⊂ E1 and consequently E2 = E2 ∩ E1, we know

Pr(E2)
Pr(E1) = Pr(E1 ∩ E2)

Pr(E1) = Pr(E2 | E1) ≥ Pr
(︃

|T ∩ R′| ≥ εs

2

)︃
(3)

For some fixed range R′ the random variable S = |T ∩ R′| follows a binomial distribution,
and we can proceed similarly to Example 2.1.3. We recall Theorem 2.1.2 for a relative
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error µ = εs − εs
2

Pr
(︃

sp − S

sp
≥ µ

)︃
≤ exp

(︄
−spµ2

2

)︄
(4)

Pr
(︃

sp − S

sp
≥ 1

2

)︃
≤ exp

(︃−sp

8

)︃
≤ exp

(︃−sε

8

)︃
(5)

Here, the last inequality uses the fact that p ≥ ε. While Mitzenmacher and Upfal [2017]
relax this expression to the constant 1

2 we continue without relaxation in the interest of
obtaining tighter bounds. Thus,

Pr(E2)
Pr(E1) = Pr(E2 | E1) ≥ Pr

(︃
|T ∩ R′| ≥ εs

2

)︃
≥ 1 − exp

(︃−sε

8

)︃
(6)

and finally we have Pr(E1) ≤ Pr(E2)
1−exp( −sε

8 ) . As a next step, we bound the probability
Pr(E2) with a larger event E′

2. For this, we first consider some specific fixed range R
again, with

ER = {(R ∩ N = ∅) ∧ (|R ∩ T | ≥ k)} (7)

We want to show that Pr(ER) is small. The intuition here is that both N and T are
random samples, but all the k = εs

2 sampled points that intersect some specific range R
belong to T and none to N .

Of the
(︁2s

s

)︁
possible partitions of N ∪ T , in exactly

(︁2s−k
s

)︁
of them, no element of R is in

N . Consequently

Pr(ER) ≤ Pr(N ∩ R = ∅ | |R ∩ (N ∪ T )| ≥ k) (8)

≤
(︁2s−k

s

)︁(︁2s
s

)︁ (9)

= (2s − k)!s!
(2s)!(s − k)! (10)

= s(s − 1) · · · (s − k + 1)
(2s)(2s − 1) · · · (2s − k + 1) (11)

≤ 2−k = 2−εs/2 (12)

The inequality in the last line does relax the result, but only very marginally so, as k ≪ s.
We then finally consider the event E′

2 via the union bound over all the ranges R ∈ R,
that is

E′
2 = {∃R ∈ R : (R ∩ N = ∅) ∧ (|R ∩ T | ≥ sε

2 )} (13)

We then use the Sauer-Shelah Lemma [Sauer, 1972, Shelah, 1972] to argue that we can
consider at most (2s)d ranges when projecting R onto N ∪ T . By the union bound we
have

Pr(E′
2) ≤ (2s)d2−sε/2 (14)
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Finally, we arrive at

Pr(E1) ≤ Pr(E2)
1 − exp

(︁−sε
8

)︁ ≤ (2s)d2−sε/2

1 − exp
(︁−sε

8
)︁ ≤ δ. (15)

We are now left with the strenuous task of simplifying this expression. Routine calculation
gives

(2s)d2−sε/2 ≤ δ

(︃
1 − exp

(︃−sε

8

)︃)︃
(16)

d ln(2s) +
(︃−sε

2

)︃
ln(2) ≤ ln(δ) + ln

(︃
1 − exp

(︃−sε

8

)︃)︃
(17)

d ln(2s) +
(︃−sε

2

)︃
ln(2) ≤ ln(δ) + ln

(︃
1 − exp

(︃−sε

8

)︃)︃
(18)

d ln(2s) +
(︃−sε

2

)︃
ln(2) ≤ ln(δ) + ln

(︃
1 − exp

(︃−sε

8

)︃)︃
(19)

s
ε

2 ln(2) ≥ ln
(︃1

δ

)︃
+ d ln(2s) − ln

(︃
1 − exp

(︃−sε

8

)︃)︃
(20)

s ln(2) ≥ 2
ε

(︃
ln

(︃1
δ

)︃
+ d ln(2s) − ln

(︃
1 − exp

(︃−sε

8

)︃)︃)︃
(21)

s ≥ 2
ln(2)ε

(︃
ln

(︃1
δ

)︃
+ d ln(2s) − ln

(︃
1 − exp

(︃−sε

8

)︃)︃)︃
(22)

B Detailed Experimental Results in NN Robustness
For each of our experimental runs, we report the training procedure used (Procedure), the
seed, the TRADES robustness-accuracy parameter β, the mapping size |M |, the number
of predictions for which κ is smaller than κmax denoted by |xκ≤κmax |, the estimators nc

and p̂κ from Section 3.7.4, the runtime, and the accuracy. We report individual metrics
for our experiments in Tables 1 to 4.

C Detailed Experimental Results in CPS Verification
In our experiments in Section 4.7.3, we mine specifications from simulation traces for the
two PSTL formulas

ϕ1 = G
(︁
abs_pole_angle(w) < α1 ∧ abs_cart_position(w) < α2

)︁
(23)

and

ϕ2 =G[10,500]
(︂(︁
abs_pole_angle(w) > α1 ∨ abs_cart_position(w) > α2

)︁
(24)

→F[0,τ ]
(︁
abs_pole_angle(w) < α3 ∧ abs_cart_position(w) > α4

)︁)︂
. (25)
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Table 1: Results for the MNIST dataset using PGD as a local robustness oracle.

Procedure seed β |M | |xκ≤κmax | nc p̂κ runtime (s) accuracy

TRADES 10

0.001 31 9743 0 0 85 0.96
0.01 46 9687 2 0.0017 92 0.98
0.02 61 9668 1 0.0014 92 0.98
0.05 50 9794 0 0 79 0.98
0.1 66 9772 2 0.0002 87 0.98
0.2 70 9764 5 0.0010 98 0.98
0.5 58 9874 3 0.0022 67 0.97
1 49 9904 5 0.0192 67 0.96
2 57 9879 3 0.0004 64 0.93
5 47 9894 4 0.0009 64 0.90
10 40 9893 5 0.0004 101 0.82
20 56 9924 1 0.0020 99 0.58

TRADES 20

0.001 39 9816 1 0.0020 79 0.95
0.01 49 9686 1 0.0010 90 0.98
0.02 48 9651 0 0 91 0.97
0.05 53 9764 0 0 85 0.98
0.1 61 9776 3 0.0002 59 0.98
0.2 73 9811 5 0.0011 58 0.97
0.5 69 9849 0 0 92 0.97
1 50 9894 2 0.0003 100 0.95
2 55 9873 6 0.0118 70 0.92
5 58 9892 0 0 94 0.88
10 26 9875 4 0.0016 56 0.78

TRADES 30

0.001 42 9739 0 0 90 0.96
0.01 44 9840 0 0 55 0.98
0.02 53 9746 2 0.0030 75 0.98
0.05 61 9805 0 0 57 0.98
0.1 67 9810 2 0.0008 58 0.98
0.2 72 9762 3 0.0031 79 0.97
0.5 69 9851 3 0.0034 94 0.97
1 64 9884 2 0.0025 63 0.95
2 38 9877 0 0 75 0.93
5 36 9877 0 0 64 0.90
10 36 9884 5 0.0082 105 0.79
20 7 9879 0 0 95 0.65

Standard 10 0.1 34 9836 3 0.0053 71 0.97
Standard 20 0.1 32 9794 0 0 90 0.96
Standard 30 0.1 42 9858 0 0 77 0.94
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Table 2: Results for the MNIST dataset using Marabou as a local robustness oracle.

Procedure seed β |M | |xκ≤κmax | nc p̂κ runtime (s) accuracy

TRADES 20 2 5 9659 1 0.0001 ≈ 216000 0.92
Standard 20 2 3 9585 0 0 ≈ 216000 0.96

Table 3: Results for the MNIST dataset using LiRPA as a local robustness oracle.

Procedure seed β |M | |xκ≤κmax | nc p̂κ runtime (s) accuracy

TRADES 10 2 20 9726 1 0.0009 484 0.93
TRADES 20 2 17 9659 1 0.0002 481 0.92
TRADES 30 2 10 9628 0 0 480 0.93
Standard 10 2 16 9624 0 0 483 0.96
Standard 20 2 20 9575 0 0 484 0.96
Standard 30 2 18 9627 1 0.0001 483 0.94

Table 4: Results for the CIFAR-10 dataset using PGD as a local robustness oracle.

Procedure seed β |M | |xκ≤κmax | nc p̂κ runtime (s) accuracy

TRADES 10

0.1 22 9691 2 0.0004 561 0.76
0.2 24 9735 7 0.0148 639 0.67
0.5 33 9754 0 0 833 0.69
1 31 9738 5 0.0022 892 0.81
2 29 9770 0 0 1087 0.79

TRADES 20

0.1 19 9728 2 0.0010 596 0.82
0.2 20 9727 2 0.0003 608 0.64
0.5 31 9717 0 0 947 0.72
1 38 9800 0 0 1025 0.70
2 42 9746 2 0.0005 1165 0.82

TRADES 30

0.1 29 9771 8 0.0025 608 0.67
0.2 21 9717 1 0.0004 666 0.63
0.5 22 9672 3 0.0009 591 0.83
1 29 9738 2 0.0025 945 0.81
2 36 9785 2 0.0052 1184 0.79

Standard 10 0.1 12 9708 0 0 345 0.70
Standard 20 0.1 12 9564 0 0 331 0.75
Standard 30 0.1 15 9694 2 0.0020 423 0.48
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Our simple specification mining procedure works as follows. We partially choose parameter
values by hand, and find the strictest parametrisation of the remaining parameters
admissible by our samples. This procedure is performed twice: one time on the full
sample and one time on 10% of our sample to investigate if smaller sample sizes would
still lead to good specifications.

For ϕ1, there is a unique strictest parametrisation, which we call “Optimal”. For ϕ2, we
partially choose three of the five parameters by hand, and optimise the remaining two
parameter values with different weights for getting a tight parametrisation for

• both the angle and the position with equal weights: “Balanced”

• just the angle independent of the position: “Angle”

• just the position independent of the angle “Position”

In addition, we take the conjunction of these three parametrisations as per Corollary 2.5.1
for the specification “Combined”. We expect that the combined specification holds true
with a probability of at least 1 − 3ε. The mined parameter values for the full sample are
depicted in Table 5 and in Table 6 for the subset of our sample.

Formula Specification mined parameter values
α1 α2 α3 α4 τ

ϕ1 Optimal 0.09213 0.27972 - - -

ϕ2

Balanced 0.05 0.27 0.06739 0.29564 20
Angle 0.08 10 0.04549 0.12342 5

Position 1.00 0.25 0.01830 0.29970 10

Table 5: Mined parameter values for the experiments in Section 4.7.3 using the full
samples for the respective specification. Bold parameter values were chosen manually.

Formula Specification mined parameter values
α1 α2 α3 α4 τ

ϕ1 Optimal 0.08847 0.27588 - - -

ϕ2

Balanced 0.05 0.27 0.06688 0.29564 20
Angle 0.08 10 0.04407 0.12160 5

Position 1.00 0.25 0.01235 0.29970 10

Table 6: Mined parameter values for the experiments in Section 4.7.3 using 10% of the
samples for the respective specification. Bold parameter values were chosen manually.
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