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Inż. Lukasz Sobocinski

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 20. Februar 2025
Lukasz Sobocinski

v





Acknowledgements

First of all, I would like to thank my motivated and supportive supervisors Georg Langs
and Philipp Seeböck from the Medical University of Vienna. Your support and guidance
throughout the practical part and your valuable feedback on my thesis were indispensable.
I have learned a lot from you.

I would also like to thank Allan Hanbury from TU Wien for supervising the project and
for the finalizing comments on my thesis.

Many thanks to the Computational Imaging Research Lab at the Medical University
of Vienna for giving me the opportunity to work on this interesting project. It was a
pleasure to join this motivated and helpful team.

Also, I am grateful to the Department of Biomedical Imaging and Image-guided Therapy
at the AKH hospital in Vienna for providing the data and support. Thank you, Julia,
Johaness and Karl-Heinz.

Finally, I would like to thank my caring girlfriend, my family and all my friends who
accompanied me during my studies, through both the highs and the lows of this journey.
Your support was irreplaceable. Thanks to you my studies were not only educational,
but also fun.

vii





Kurzfassung

Das Meningiom ist der häufigste primäre intrakranielle Tumor. Die Prognose und Behand-
lung dieser Erkrankung hängen stark vom Schweregrad des Tumors ab, der durch den
WHO-Grad definiert ist. Daher ist es von entscheidender Bedeutung, dass die Diagnose im
frühestmöglichen Stadium gestellt wird. Deep Learning Modelle haben sich bei ähnlichen
Aufgaben als sehr genau erwiesen und können daher zur nichtinvasiven Diagnostik des
Schweregrades anhand von MRT-Bildern eingesetzt werden. Das Training dieser Modelle
erfordert oft große Datenmengen, so dass es schwierig ist, genügend Proben zu sammeln
Proben ohne interinstitutionelle Zusammenarbeit zu sammeln. Federated Learning ist
eine neue Methode, die eine solche Zusammenarbeit erleichtert. Ihre Leistung wird je-
doch oft durch statistische Heterogenität der Daten in den verschiedenen Einrichtungen
beeinträchtigt.

Diese Arbeit untersucht die Machbarkeit des Einsatzes von Deep Learning und Federated
Learning zur Bestimmung des WHO-Grades von Meningeomen anhand von MRT-Scans.
Der Fokus liegt auf dem Vergleich von Modellen, die mir drei verschiedenen Architekturen
des Federated Learning trainiert wurden und zentral trainierten Modellen. Es bewertet
speziell die negativen Auswirkungen statistisch heterogener Daten über Institutionen
hinweg auf Federated Learning und stellt eine neuartige Methode namens Federated
Localized Ensemble vor, um diese zu verringern. Die Methode besteht darin, ein Ensemble
von Modellen zu erstellen, die von jedem Kunden trainiert wurden, wobei jedes Modell
entsprechend seiner Klassifizierungsgenauigkeit gewichtet wird.

Die Methoden werden anhand eines Datensatzes evaluiert, der aus 186 MRT-Aufnahmen
des Gehirns von Patienten besteht, bei denen ein Meningiom diagnostiziert wurde. Da
der Datensatz aus nur einer Einrichtung stammt, wird Federated-Learning-Umgebung
durch die Integration spezifischer Bildgebungsmerkmale simuliert.

Die Ergebnisse zeigen, dass sowohl Deep-Learning- als auch Federated-Learning-Techniken
das Potenzial haben, die nicht-invasive Klassifizierung von Meningeomen zu erleichtern.
Sowohl die zentral trainierten als auch die mittels Federated Learning trainierten Modelle
erreichten trotz der anspruchsvollen Aufgabe eine hohe Vorhersagegenauigkeit. Dies
war auch im Szenario der statistischen Heterogenität der Fall, obwohl die Leistung des
Federated Learning geringer war und zwischen den Methoden variierte. Das Federated
Localized Ensemble übertraf die bestehenden Methoden nicht.
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Abstract

Meningioma is the most common primary intracranial tumour. The prognosis and
treatment of this disease is highly dependent on the severity of the tumour, which is
defined by its WHO grade. Thus, it is crucial that it is diagnosed at the earliest possible
stage. Deep learning models have been shown to achieve high accuracy in similar tasks
and may therefore be used to non-invasively assess this grade from MRI images. Training
of these models often requires large amounts of data, making it difficult to collect enough
samples without inter-institutional collaboration. Federated learning is an emerging
method that facilitates such collaboration. However, its performance is often negatively
affected when the data is statistically heterogeneous across institutions.

This thesis evaluates the feasibility of using deep learning and federated learning to assess
the WHO grade of meningiomas from MRI scans. It focuses on a comparison between
models trained using three different federated learning architectures and models trained
centrally. It specifically evaluates the negative impact of statistically heterogeneous data
across institutions on federated learning, and introduces a novel method termed Federated
Localized Ensemble to reduce it. The method involves the creation of an ensemble of the
models trained by each client, with each model weighted by its classification accuracy.

The methods are evaluated on a dataset consisting of 186 brain MRIs of patients diagnosed
with meningioma. As the dataset comes from a single institution, the federated learning
environment is simulated by introducing specific imaging characteristics.

The results show that both deep learning and federated learning techniques have the
potential to facilitate non-invasive grading of meningiomas. Both centrally trained and
federated learning trained models achieved predictive accuracy despite the challenging
task. This was also the case in the statistical heterogeneity scenario, although the
performance of federated learning was lower and varied between the methods. The
Federated Localized Ensemble approach did not outperform the existing methods.
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CHAPTER 1
Introduction

Meningioma is the most common primary intracranial tumour. It arises from the meninges
in the brain and accounts for 13% to 36.6% of all primary tumours of the central nervous
system [46]. Most meningiomas grow slowly for years without causing any symptoms,
but in some cases they can cause severe risk to the patient. The severity of meningiomas
is described by the World Health Organization (WHO) tumour grade, which can range
from 1 (benign tumour) to 3 (the most aggressive form). The prognosis and treatment
of the patient is highly dependent on this grade, so it is important that it is identified
as early as possible. Most meningiomas are benign (in about 90% of cases) and rarely
require surgery [62, 46]. However, surgery is the reference treatment for grade 2 and
3 meningiomas, as they are associated with a higher rate of recurrence and pose a
much higher risk to the patient [46]. Table 1.1 shows the age-adjusted incident rate of
meningiomas by WHO grade and sex in the USA (adapted from [30]).

1.1 Motivation

Currently, the grading is determined by pathological examination, which presents many
challenges. These include the difficulty and risk of obtaining enough tissue for examination
and the need to observe meningiomas for several years to monitor disease progression.
Therefore, the idea of grade assessment from MRI scans is an interesting alternative
or complement to pathological examination. However, this task is challenging even for
trained clinicians [23]. Thus, there are several approaches to how technology can help
clinicians make faster and more accurate diagnoses using medical imaging. One of these
is Machine Learning (ML), where the information present in the historical data is used
to infer predictions for unseen samples.
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1. Introduction

WHO Grade Male Female
1 3.68 8.56
2 0.26 0.30
3 0.08 0.09

Table 1.1: Table shows the age-adjusted incident rate of meningiomas by WHO grade
and sex in the US based on the study described (adapted from [30])

1.2 Machine Learning in Medical Imaging
In the literature, several traditional ML models have been used to analyse medical
images. They produce results of varying quality from task to task, with some yielding
satisfactory outcomes. However, given the fact that the tasks in the medical domain
are often challenging, these models often lack predictive power [56, 32]. In addition,
traditional models are not designed for image processing by default. One of the reasons
is that it is difficult for them to exploit the spatial relationships between the objects.
There are feature engineering methods that can be applied to overcome these problems,
such as Radiomics [59], but it is often difficult to fine-tune them for a specific task.

Another ML approach to the problem is Deep Learning (DL). It has been shown to
perform well in a wide range of scenarios, including various applications in radiology [56,
32, 28]. Unlike traditional ML methods, it requires little to no feature engineering. In
addition, the DL models are well suited to image analysis because they can encode
spatial relationships well. In some cases, they perform as well as or better than trained
radiologists [37, 36, 9]. For example, such models are already being used in commercial
medical imaging products, such as the one described in [3], which assists the clinician
during a colonoscopy procedure.

DL has proved effective in classifying and segmenting several types of brain tumours,
including meningioma [27, 6, 2, 42]. Given the limitations of the current histopathological
examination method described above, the development of a model that could accurately
diagnose grading from MRI images would be valuable. As well as reducing the need
for biopsies, this would make diagnosis cheaper, easier and they could be made more
frequently [2, 42, 23]. Some studies explored this idea using both DL and traditional ML,
but there is no definitive solution yet, as determining the grading of meningiomas from
MRIs is a challenging task [2, 42, 23].

One limitation of DL models is that they require a substantial amount of data to work [12].
There are many ways to overcome this problem, such as transfer learning [10]. These can
help to some extent, but still require a dataset that is sufficiently representative of the
population. In medicine, the population distribution is very broad and depends on many
factors. In addition, the amount of annotated data is small because labelling requires
highly trained practitioners and is expensive. As a result, data from a single institution
is often insufficient to produce generalizable results. There are not many public datasets,
so there is a need to share data between institutions. However, in the medical field,
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1.3. The Role of Federated Learning

most data is private. Therefore, data sharing requires a lot of coordination and official
approvals, and in practice it is often impossible.

1.3 The Role of Federated Learning
To overcome this problem, [40] proposed a method to train a shared ML model using
the data available on different sites without sharing the data itself, thus preserving the
privacy. This method is called Federated Learning (FL). It is an interesting alternative
to standard anonymisation because it does not require the data to be shared at all.
Several experiments have shown that it has a high potential [72]. Apart from the privacy
improvements, it showed a much lower communication cost compared to other methods
such as the synchronised stochastic gradient descent approach [52].

Although FL achieves good results in many real-world applications, there are still many
challenges and issues to work on. One of these is the challenge posed by statistically
heterogeneous and Non-independent and identically distributed (Non-IID) data between
institutions. This is often the case in the medical field, as not only does the population
vary between sites, but the methods of data collection can also be different. Even
though simple methods such as Federated Averaging (FedAvg) can deal with some
degree of statistical heterogeneity between clients [40], the performance degradation is
inevitable when working with heterogeneous datasets [71]. Improving ways to address
these challenges has been identified as important in several studies [12, 72, 64, 66, 71].

Therefore, given the importance of meningioma grading and the limitations of current
diagnostic methods, it would be beneficial to enable grading of meningiomas from MRI
images. The DL models, which have shown good performance in similar tasks, could be
an interesting solution. However, they usually require large annotated datasets to achieve
satisfactory results. Data from a single institution is often not enough, especially for rare
diseases such as meningioma. Data must therefore be shared between different medical
institutions, which is often difficult due to privacy and technical issues. In addition,
the fact that populations and data distributions are often highly heterogeneous across
institutions needs to be addressed.

1.4 Aims of the Work
The thesis has two main objectives. The first is to develop a DL model capable of
predicting the histological grade of meningiomas. The second aim is to compare models
trained in a federated fashion, in particular, to evaluate a framework to mitigate the
difficulties caused by heterogeneous data distribution between different sites participating
in the training.

1.4.1 Research Questions
The following research questions were defined:

5



1. Introduction

RQ1: How accurately can a DL model predict the histological grading of
meningiomas? The main aim of this question is to investigate the accuracy of identify-
ing the WHO grading of meningiomas from MRI scans in the Independent and identically
distributed (IID) data scenario. The answer to this question indicates whether a DL
model can produce clinically useful results on the given dataset.

RQ2: How does the classification accuracy of state-of-the-art FL approaches
compare to that of centralised training on the given dataset? By design, models
trained with FL achieve either the same or worse results than centrally trained models,
as the training process is less optimal. It is therefore important to compare the quality
of a federated model with that of a centrally trained model.

RQ3: To what extent does Non-IID data across FL clients affect classification
accuracy on the given dataset? Statistical heterogeneity of data across clients can
significantly affect the performance of FL [12, 72, 64, 66, 71]. The aim of this question is
to understand the extent of the phenomenon on the given dataset and understand how
different FL frameworks can address it.

RQ4: Can a FL framework based on model ensembling reduce the adverse
impact on classification accuracy when data is Non-IID between clients?
Since the Non-IID data between clients often hinders the performance of the existing FL
frameworks, a novel FL framework was implemented and evaluated on the dataset.

1.4.2 Hypotheses

Based on the research questions, two hypotheses were formulated:

Hypothesis 1 Statistical heterogeneity of data across clients significantly hinders the
performance of FL on the given dataset.

Hypothesis 2 Models trained using different FL frameworks have different prediction
accuracies on the given dataset.

1.5 Structure of the Work
The structure of the thesis is as follows:

Chapter 1 outlines the background information on meningioma, explains the motivation
and introduces the problem statement. The second part of the chapter formulates the
research questions and hypotheses.
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1.5. Structure of the Work

Chapter 2 introduces the scientific background and the state of the art in Deep
Learning and Federated Learning. It provides an overview of related work in these areas
with a focus on cancer imaging and meningioma.

Chapter 3 describes the methodology used in the experiments. In the first part, it
defines the prediction targets, introduces data preprocessing methods and describes
the classifier used to make the predictions. The second part introduces the Federated
Localized Ensemble FL framework.

Chapter 4 explains the experimental setup and the evaluation methodology. It
introduces the dataset, the image augmentation techniques, and describes how the
comparison of the different FL frameworks was performed. Additionally, it details the
methodology used to simulate the Non-IID data across the clients.

Chapter 5 describes the results of the experiments. The first section focuses on
comparing the results obtained using different FL frameworks, and the centrally trained
classifier. The results are reported for both the IID and the Non-IID scenarios.

Chapter 6 discusses the findings and results of the experiments, summarises the
findings and answers the research questions and hypotheses.

Chapter 7 formulates the conclusions of the thesis and indicates the future directions
of work.
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CHAPTER 2
Background

This chapter presents the background and state of the art relevant to the thesis. The
first section starts with an outline of the main DL concepts used in the thesis, focusing
on classification using Convolutional Neural Networks (CNN)s, transfer learning, and
methods of image preprocessing and augmentation. It also presents approaches to cope
with limited data availability. Afterwards, it provides an overview of the DL methods used
in cancer imaging. It includes examples of studies addressing the problem of meningioma
grading, which may serve as an overview of the complexity of the task and the methods
applied to it in the literature.

The second section introduces the concept of FL. It begins with an explanation of the
most popular FL framework and the methods of model evaluation in the federated fashion.
Then, an introduction to the problem of Non-IID data across institutions is outlined,
together with a description of different types of Non-IID scenarios. Finally, several papers
and frameworks that address this problem are presented.

The final section focuses on the use of FL in the medical domain. It is outlined why FL
can significantly improve the quality of models, with several examples from the literature.
Additionally, selected papers describing and addressing the problem with Non-IID data
are presented.

2.1 Deep Learning
ML is a branch of computer science in which algorithms are trained to solve various
problems or tasks by learning from historical data. Currently, most commercially
available ML methods use the traditional “supervised” ML methods. There, the model
is provided with the ground truth, such as the name of a disease, to learn an optimal
decision boundary within a given feature space [35].
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2. Background

The DL models consist of multiple (usually more than three) layers of connected nodes
called a neural network. It the main principle, they attempt to simulate the way how the
human brain works. Each layer takes an input from the neurons in the previous layers,
conducts a mathematical transformation (such as averaging, convolutions, summing), and
passes it on to the neurons in the next layer. The different layers in a DL architecture
aim to generate differt features and apply various mathematical operations to return a
prediction.

2.1.1 Convolutional Neural Networks
While there are many DL model architectures, CNNs are the basis of the majority of
the ones used for the computer vision tasks, including classification of medical images.
The structure of CNN aims to mimic the connectivity patterns of neurons in the visual
cortex of animals and humans[17], where individual neurons only respond to stimuli from
a limited part of an image. In the context of the image processing, it means that CNNs
can capture the spatial dependencies between the components and pixels in an image
and place each of them in the context of its surrounding components.

The input image is provided a CNN as a matrix of pixel values. It then goes through
three types of building blocks or layers: convolutional layers, pooling layers, and the
classification layers. These layers are arranged in various ways to form specific CNN
architectures, which are then trained by finding appropriate kernels, filters, and weights
which try to learn a mapping between the input image and the ground truth labels
provided in the training dataset.

In general, the predictive power of DL models comes from their depth and large number
of layers. The training process aims to minimise the differences between the model’s
output and the given true labels through a process called gradient descent. However, in
regular CNN models, adding more layers tends to result in significantly lower gradients
in later layers than in earlier layers. This phenomenon is called the “vanishing gradient”
problem, and it makes training deep models very difficult or sometimes impossible.

Residual neural network (ResNet) is a variant of the CNN architecture that aims to
reduce this problem. In 2015, [21] proposed a novel model structure that reduces this
problem, allowing much deeper networks to be developed. Their structure is based on
the concept of residual blocks, which are blocks of layers where the input is added to the
final output through a skip connection. An example of such a layer is shown in Figure 2.1.
These skip connections allow the deeper layers to receive inputs in the earlier layers, thus
avoiding the “vanishing gradient” problem.

2.1.2 Data Augmentation
Data augmentation involves artificially increasing the size and diversity of a dataset by
applying transformations to existing data. This is an important technique for improving
model generalisation and reducing overfitting. By introducing variation into the training
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2.1. Deep Learning

Figure 2.1: A residual block which skips two sequential layers.

data, augmented datasets simulate real-world variability and enable models to perform
better on unseen examples [55].

In image processing, data augmentation techniques include any combination of affine
transformations (rotations, flips, translations), cropping, occlusion, intensity adjustment,
and noise addition [11]. For example, flipping an MRI image horizontally creates a new
image that retains the same label, but adds variety to the dataset.

This increases artificially the size and variability of the dataset, which then increases the
robustness of the model and reduces the need for large-scale data collection.

2.1.3 Transfer Learning
Transfer learning is a technique where a pre-trained model which was developed for one
task is adapted instead to a different but related task. This approach leverages knowledge
that a model has already gained in the previous training (usually over a larger dataset)
and adds new domain-knowledge from a dataset which is usually much smaller. This
makes it very beneficial in situation where the collection and appropriate labelling of
data is challenging; for example, in the case of medical imaging.

For example, a CNN model trained on ImageNet, a huge dataset containing millions
of images across different categories, can be fine-tuned for a specific use case such as
Alzheimer’s diagnosis/prognosis and tumour segmentation. Rather than training a model
from scratch, which requires extensive computing resources and data, transfer learning
enables faster model development and often achieves higher accuracy by building on the
basic features learned during pre-training.

This approach is growing in popularity and suggests that fine-tuning all parameters,
rather than just the final layers (which is a more traditional approach), has shown
significant improvements in accuracy [58, 10].

2.1.4 Gradient-weighted Class Activation Map
Historically, DL networks in general and CNN in particular have provided significant
performance boosts in image classification tasks compared to traditional machine learning
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2. Background

methods. However, explainability remains a major challenge with DL networks due to
the black-box nature of these algorithms, where an output is generated by not necessarily
clear neuron activations in some sort of structure. Gradient-weighted Class Activation
Map (Grad-CAM) is a technique that visualises areas considered important by a CNN[50].

The method calculates the gradient of the final model output with respect to the final
feature map or layer in a CNN and then takes the global average and multiplies this by
the feature map. It is then reasonable to assume that higher values or gradients would
be areas that the model considered important contributors to the final model score. This
can then be displayed and interpreted as heat maps over the input image.

In [14], the researchers showed that the global average pooling at the end of the Grad-
CAM process occasionally tends to highlight irrelevant locations that the model did not
actually pay attention to. As an alternative, they proposed HiResCAM, which multiplies
the gradients element-wise with the feature map instead of the global average gradient.
It is shown that this better reflects the model’s computations and the actual Region of
Interest (ROI)s.

2.2 Deep Learning in Cancer Imaging
The DL models are also used in many fields of medicine, and they prove to achieve
satisfying results across various tasks and workloads both in academia [32, 56, 28, 69]
and industry [3]. They often outperform traditional ML models and require less or no
task-specific feature extraction [28, 69]. Their flexibility allows them to achieve high
performance in various tasks such as classification, segmentation, image registration,
image reconstruction or object detection, which are tasks often encountered in the medical
field [3, 69, 56].

Their high performance is especially noticeable in the imaging tasks, where ML can
provide a non-invasive and cheap way of diagnosis. Techniques such as CNNs, Recurrent
Neural Network (RNN)s and Generative adversarial network (GAN)s allow processing
large amounts of data and understanding the spatial relationships and patters to provide
clinically useful results. As a result, DL is often used in radiology, where it not only assists
clinicians and speeds up diagnosis, but sometimes achieves higher diagnostic accuracy
than trained radiologists [2]. Such assistance is particularly valuable in cancer imaging,
where the accuracy of diagnosis is critical and difficult even for trained clinicians.

[27] presents a study aimed at classifying gliomas, one of the most common brain tumours.
Similar to the problem in the thesis, the paper classifies the grading of the tumour from
MRIs. It uses a CNN model called AlexNet [29]. The model achieves a relatively high
level of accuracy, even though neither augmentation nor transfer learning was used.
However, the researchers mention that the use of a pre-trained model would probably be
beneficial.

Also in [6], the researchers report good results for glioma classification. In the study, the
model is set up to predict the isocitrate dehydrogenase (IDH) status of gliomas from
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MRI images with manually marked ROIs. Instead of using the entire 3D volume, the
three central slices of each axis were extracted and used as input to a ResNet model. The
researchers utilized augmentation to improve the training process and achieve reasonable
prediction accuracy.

2.2.1 Computational Meningioma WHO Grading Classification
Treatment and disease progression of meningiomas are highly dependent on tumour
grading and need to be monitored over time. However, the grading is currently only
obtainable by an invasive histopathological examination. It is therefore an area of
considerable interest. Nevertheless, grading from imaging data alone is a difficult task [42,
39, 23].

The task of automatically grading meningiomas from MRI images has been addressed
in the literature. Several retrospective studies using ML for this task are summarised
in [42] and [39]. Researchers approach the problem using both traditional ML and DL
techniques. Traditional methods often use radiomics [59] and other feature extraction
methods to convert images into a tabular format and make a prediction. One such
study [9], reported a classification accuracy similar to that of a trained clinician. However,
the accuracy of the model was still relatively low.

Although DL has been shown to have high performance for brain tumour classification, a
relatively small number of studies have applied it to meningioma grading. The existing DL
papers use a variety of different CNN models, such as InceptionV3 [57] or AlexNet [29],
to approach the task. They also use different MRI modalities, often more than one at a
time. However, most papers train and evaluate the methods on rather small datasets,
as larger public datasets (for example the Brats dataset [41]) rarely include the WHO
grading of meningiomas. The datasets are also heavily skewed towards grade 1, due to
the relatively low prevalence of grades 2 and 3. Therefore, papers sometimes transform
the task into a two-class classification problem. [42, 39]

The papers report different results, with accuracies ranging from 55% to 95% [42, 39].
For example, in [68], a CNN model achieved an accuracy of 81.5% on a relatively large
dataset of 5088 samples. However, most studies evaluated the methods on much smaller
datasets with a high label bias. Therefore, the reported results should often be taken
with a grain of salt.

2.2.2 Approaches to Cope with Limited Training Data
Training of DL models usually requires a lot of data. In the medical field, it is often a
challenge to collect sufficiently large datasets. This is because data collection is often
expensive and time-consuming, and labelling the data requires skilled professionals. In
addition, medical data is mostly private, and it is difficult to share datasets between
institutions [10]. Thus, methods for reducing the amount of data required for training
are needed.
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One of these, which is widely used in the medical field, is transfer learning. Its main
principles were outlined in the section 2.1.3. As mentioned, there are a number of
publicly available pretrained models. Most of them have been trained on large public
datasets containing a huge variety of real-world images. However, medical images
have a very specific structure and properties that are often not well represented in the
large benchmark datasets such as ImageNet [13]. Therefore, pretrained models tuned
specifically for use in the medical domain can facilitate transfer learning and improve
results [10]. An interesting pretrained model called MedicalNet has been proposed
in [10] and implemented in Pytorch1. The researchers propose multiple 3D ResNet
models that have been trained on data containing different modalities, target organs and
pathologies. It is shown that using MedicalNet for transfer learning can enhance the
model performance.

Another method of improving results with limited data is data augmentation. It is also
used in other fields, but it is important to tailor it to the specific task. There are many
augmentation methods in the literature that are optimised for medical imaging. Many of
them are described in [11].

Often the size of a dataset available at one institution is too small to train an accurate
model, even using the techniques described above. It is therefore necessary to share data
between institutions. However, this may not be possible due to privacy and technical
issues. Many papers propose to use FL to overcome this problem. An overview of the
main principles and publications on this method can be found in the next sections.

2.3 Federated Learning

The term “Federated Learning” was first introduced in [40]. The paper proposed a method
to train a shared DL model using the data available on different client sites without
sharing the data itself, thus preserving the data privacy. It is an interesting alternative to
standard anonymization, as it removes the need to share the data completely. Experiments
showed that his method has a high potential, even in the case of unbalanced and Non-IID
data across the clients. Also, apart from the privacy improvements, it showed a much
lower communication cost compared to other methods like the synchronized stochastic
gradient descent approach [52].

The section begins by introducing examples of the use of FL in industry. Then, it
describes two FL frameworks that will be used in the experiments. Afterwards, the
existing methods for model evaluation are outlined. Lastly, the problems that arise
when data is Non-IID across clients are presented, together with an overview of existing
approaches to tackle this problem.

1https://github.com/Tencent/MedicalNet
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2.3.1 Federated Learning in the Industry
Federated learning has already been used in the commercial settings. One of its first
applications was made by Google and described in [20]. An RNN language model was
trained there using FL. It allowed using the data stored on edge devices without the
need to share it with the server, thus increasing the privacy of the users. In the paper,
centralized training using stochastic gradient descent is compared to the FL approach
using the FedAvg algorithm. Model trained using FL achieved a better performance than
a model trained just on the data available on the server side, as more data could be
used to train the model. This was the case even though the data was highly Non-IID
distributed.

Another example from the industry is a white paper that focused on applying FL in
the commercial setting [38]. In the work, an end-to-end FL framework is proposed.
Except for the FL algorithms themselves, it implements various technical aspects of the
process, like communication protocols between the participating parties, coordination of
the learning process and handling data heterogeneity.

There are multiple approaches to perform FL. Two of these, implemented and evaluated
in the thesis, are described in the next sections.

2.3.2 Federated Averaging
There are several different approaches on how to perform FL. Amongst those, FedAvg is
the most well-known framework, and it often serves as a baseline for evaluation of the
novel methods [72]. Even though the idea is relatively simple, it yields satisfying results
in many settings [72, 12, 52].

Server is the main player in the framework. It orchestrates the training process and
aggregates the results of the clients participating in training. A simplified graph visualizing
the training process can be seen in 2.2. The training starts by initializing a global model
on the server side. Then, the training itself starts. It is an iterative process consisting of
4 steps, which are repeated for a predefined number of rounds:

1. Server sends the global model parameters to the clients participating in the training.
Depending on the training settings, it uses all the clients or just a subset of them.

2. Clients fine-tune the global model over a predefined number of epochs nlocal epochs
using the locally available data without sharing it.

3. Clients send to the server the weight vector updates obtained by fine-tuning the
global model.

4. Server aggregates the weight updates from the clients. In this framework, a simple
weighted average is used. The update from each site is weighted by the number of
samples that the site has. It can be expressed by the following formula:
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Figure 2.2: A simplified schema depicting the training steps of the most common FL
approach called FedAvg.

wi+1 = wi + 1
n

K�
k=1

nk · Δwk
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Where:

• wi are weights of the global model at a time point i.
• K is the number of clients participating in a round.
• Δwk is a weight update coming from a fine-tuned model on the client k.
• n is the total number of samples.
• nk is the number of samples available on a client k.

Then, after the weights of the global model are updated, the next round starts.

Those steps are repeated for a predefined number of rounds nrounds. Then, after the
last round, the best global model is returned and can be used by all the clients to make
inferences. [40, 72, 20, 61, 67]

Apart from the training itself, the methodology for selecting the best model generated
during training has to be defined. In the regular centralized training, this choice is made
by selecting the model that performed best on a dedicated validation set. A similar
approach is adapted to work in the FL setting. A portion of the data at each institution
is designated as its validation set. After each round of training, the server sends the
global model to each client. The clients then evaluates this global model on their local
validation sets and reported the classification performance to the server. A simplified
diagram of this procedure is shown in Figure 2.3. At the end of training, the model
with the best prediction performance is selected as the final global model. The whole
procedure was implemented using the Flower library2.

2.3.3 FedProx Framework
Another framework, called FedProx federated optimization algorithm (FedProx), was
also implemented and evaluated in the thesis. It aims to reduce the impact of Non-IID
data across clients, which often occurs in the medical field. The framework has been
implemented using the guidelines described in the paper that introduced this method [33].
However, only the part of the methodology that proposes a modification of the loss
function has been implemented.

The framework is very similar to FedAvg described in the section 3.4. The training
procedure is the same, the only difference is the loss function used to train the models
on the client side. The loss function is extended by the proximal term, which measures
the deviation of the local model from the global model. The extended loss function can
be formulated as

lossi = lossm
i + µ

2 ||ωi − ωg||2

where,
2https://flower.ai/
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Figure 2.3: A diagram illustrating the process of selecting the best model in the FedAvg
framework.

1. lossm
i is the loss of the model computed in the traditional way, i.e. the cross-entropy

loss as described in the section 3.3.1.

2. µ a hyperparameter defining the strength of the regularisation.

3. ωi denotes the weights of the local model at the local training epoch i.

4. ωg are the weights of the global model.
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It is important to note that choosing the correct value of µ is crucial. [33] suggests setting
it empirically.

2.3.4 Model Evaluation in Federated Learning
The evaluation procedure in FL is different from the centralized approach. To evaluate
the performance of the model robustly, one has to have a validation dataset with a
distribution that is representative of the population. If it is not the case, the evaluation
might be biased and not applicable to the unseen data. Getting such a dataset might be
challenging in a FL setting, as the data resides on different sites, and there might be no
global dataset. Moreover, the variance between the sites might be high, different data
biases might be present, etc. Getting a good validation dataset is especially cumbersome
in the medical domain, as the variance between the distributions of the data from the
different centers might be significant there [70].

One possibility to tackle this problem is to create a shared, preferably public dataset. It
should be done using the data from various, preferably diverse sites [72]. If done right, such
a dataset can be a good proxy for simulating the population distribution [64, 61]. It can
be used by the server to validate the global model after each global round. Additionally,
this approach improves the reproducibility of the research, as the data can be shared with
the community. Nevertheless, in order to do it, parties need to share their private data.
Thus, creating such a dataset often is impossible due to issues like privacy concerns, lack
of incentive to share the private data or the lack of technical capabilities. Additionally, it
may be difficult to build a uniformly distributed dataset, as the population distribution
across the clients is not known. Thus, often other evaluation schemas must be employed.
[12, 72, 52, 40, 64]

Another approach for the model evaluation is to perform Leave-One-(institution)-Out
testing. This approach proposed in [52], is a variant of leave-one-out cross-validation.
In this approach, one leave-one-out score is calculated for each institution taking part
in the training. In order to calculate this score for an institution, during fitting, this
institution is left out from the training set. Then, the obtained global model is sent
to that institution so that it evaluates the model on its local data. After calculating
the leave-one-out score for each institution, the average is calculated and reported as
the model score. This validation method can be performed without sharing the data
by the clients, which makes it more flexible. Also, it is a good estimator of the model
performance [52]. Nevertheless, it is a very costly approach, as one must fit one model
for each left-out institution.

An alternative, less time-consuming approach is to designate a portion of the data at
each institution as a validation set. After each training round, the server can transmit
the global model to each client. Then, the clients can assess the model on their local
validation sets and report the results to the server.

Apart from the model validation during and after training, one also needs to evaluate if
a methodology used for FL yielded good results. Thus, a baseline is needed. One of the
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most commonly used baselines is to compare the model created by a FL approach to
the model yielded by Collaborative Data Sharing (CDS) [72, 12]. CDS in this context
describes a scenario where all the institutions share their data with one center, and a
centralized training is performed there. This evaluation method compares a FL approach
to the “easiest” scenario, so one where the data is not distributed. Using this technique,
one can see how much of a performance decrease one has to expect, if FL approach
is used. Nevertheless, private data of each institution needs to be shared for this
method to work, which might be impossible. Another idea, widely used to estimate the
performance improvement of a novel FL algorithm, is to compare its results to the FedAvg
framework [70].

2.4 Main Challenges in Federated Learning
Even though FL achieves good results in many real-world applications, there are still
many challenges and issues to work on. The main fields of research in FL were first
defined in [40]. They are often recognized and addressed in the literature [12, 72]:

• The data across nodes is unbalanced and statistically heterogeneous.

• The data distributions across different clients are Non-IID.

• Communication across different nodes might be limited and unreliable.

• Often the number of nodes is very high compared to the average number of data
points at a node.

In addition, two other difficulties are often mentioned in the literature [72]. The first is
that even if the private data is not directly shared, some personal information may still
be leaked during a FL process [54]. For example, in [45], it was shown that just sharing
of the model parameter updates may pose a threat to the privacy of the data in FedAvg.
Secondly, the architecture and scalability of a FL system can be cumbersome [38].

2.4.1 Challenges Arising from Non-IID Data across the Clients
This thesis focuses on coping with the challenges coming from statistically heterogeneous
and Non-IID data. Those properties are often encountered in the real world datasets; thus,
it is important to study them [12, 72, 64, 70, 16, 66, 71]. Even though FedAvg can deal
with some degree of statistical heterogeneity between the clients [40], degradation of the
performance is rather unavoidable when working with heterogeneous or highly Non-IID
datasets [71].

Firstly, it is crucial to understand why the performance of FedAvg deteriorates when
the data across the clients is heterogeneous. The main challenge is that the weights of
the local models might diverge significantly from the global model. In other words, even
though at the beginning of each round every local model starts from the same set of
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weights, they can diverge quickly during the local fine-tuning. It is caused by the fact that
each model overfits to the training data available at a site, which might have a different
distribution than the global dataset. The grade of divergence depends strongly on the
degree of the data heterogeneity. This phenomenon may be even stronger if the number
of epochs for the fine-tuning is high, as then the local models overfit to the client-specific
distribution even more. If the local models are significantly different, the global model
obtained by averaging might diverge significantly from the “perfect” model (the model
that would be obtained if trained by CDS). It leads to a much slower convergence of
the training, and in the case of strongly Non-IID data it might even fail to converge at
all [65, 72]. For example, in [71] it was shown that the weights of the CNN model diverge
more in the Non-IID setting.

There are several categories of Non-IID data. Amongst those, there are two, which are
commonly encountered in the real-world settings [72]. The first one is the attribute skew.
It refers to a situation where the distribution of features differs between clients, resulting
in different distributions of the model inputs X. This can be caused by factors such
as different populations that are available to the clients or different data acquisition
methods. Another frequent Non-IID data type is the labels skew. It occurs when the
distributions of the target y are different between the clients.

Although these biases are often present in existing datasets, it is often necessary to
simulate Non-IID data in order to evaluate novel FL methods. Many papers, due to the
data scarcity, simulate the FL by splitting a dataset between several virtual clients [12].
There are multiple approaches to emulating both the attribute and label skews in such
an artificial split. Often it is possible to analyze the dataset properties and try to identify
clusters of samples with similar attributes. For instance, samples can be clustered by the
method of data collection, or the location where the sample was taken. Each cluster can
then be assigned to a different site. This approach facilitates the creation of meaningful
differences between clients, similar to what occurs in the real world. However, datasets
often lack metadata and do not have enough data points to create a good proxy for
a real-world scenario. Thus, simpler methods of Non-IID data simulation are needed,
particularly if the dataset comes from only a single institution.

When dealing with image data, the simulation of label skew is typically easier [72, 71].
For instance, in [70], the data heterogeneity was solely simulated through the introduction
of a label skew between clients. The paper outlines a series of experiments, each of which
incorporates a different level of data heterogeneity between the client. The label skew was
achieved there by dividing the dataset into imbalanced subsets, and then assigning them to
different clients. The researchers used a two-sample Kolmogorov–Smirnov test (KS test) to
quantify the degree of data heterogeneity. The test statistic, called Kolmogorov–Smirnov
test statistic (KS test statistic) was calculated between each pair of institutions [47]. The
higher the statistic, the greater the difference between the clients’ distributions. This
approach is a simple, yet highly interpretable method for simulating label skew. It might
also simulate the attributes skew indirectly; nevertheless, it is not guaranteed [72].
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2.4.2 Methods to Reduce the Impact of Non-IID Data

As mentioned above, there is a lot of research aimed at solving challenges arising from
the Non-IID distribution across the clients. There are few main directions how the
researches approach the problem.

Data Augmentation

Data augmentation can be used to enrich the datasets available at the client sites to
solve the data imbalance issue. One approach using this technique was proposed in [15].
In the paper, it was proposed to first calculate a median number of samples for each
class. Then, each client with a lower sample size for a class than the median for this
class, augmented its private training dataset to match this value.

Another approach to augment the clients’ datasets is to use a GAN. For example, in [8]
and [4] Dual-GANs were utilized to improve the classification of skin lesions. In order to
augment the private datasets, a generator was initially trained on the server site. This
was done using a set of discriminators, one on every participating client. All the sites
trained the generator simultaneously, thus enabling the generator to access indirectly the
distributions residing on every site. Once the generator training completes, then it can
be used to augment the private datasets with samples that aim to simulate the global
distribution. The paper reported a satisfactory performance of the method.

Modification of the Weights Averaging Method

The methodology used for the aggregation of weights on the server side can significantly
impact the performance of a FL framework. This is especially true in the Non-IID
setting [71]. There are multiple approaches in the literature that aim at improving the
weighting algorithm used in FedAvg.

One such method is the Inverse Distance Aggregation algorithm, which was first introduced
in [63]. The method is similar to that of the FedAvg framework, with the exception that
it de-weights updates coming from models that deviate significantly from the average
weight update. The update from each model is weighted by the inverse distance of the
client parameters to the average model of all clients. This helps to minimise the negative
impact (also called model poisoning), coming from diverging models. Additionally, the
paper proposes an extension of this weighting called Inverse Training Accuracy. This
extension penalises overfitted models based on their training accuracy.

A similar idea is also proposed in [26]. The paper defines two approaches called RegAgg
and SimAgg that modify the weighting function used in FedAvg. The collaborators
are assigned a weighting based on their similarity to the average model parameters.
Furthermore, the paper introduces a sliding window for selecting the clients participating
in each global round. It is demonstrated that this approach can stabilize the training
process and improve the results in the Non-IID scenario.
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The authors of [22] present another framework that addresses model parameters divergence.
They propose to add momentum to the weight update on the server side to improve the
convergence. To demonstrate the impact of Non-IID data distribution between clients
and to evaluate the novel method, the authors use synthesised datasets.

Modification of the Training Methodology

The literature proposes several training methodologies to improve the results of FL in
the Non-IID scenario. Their objective is to modify the training process in order to account
for the statistical heterogeneity across the clients. One of such approaches, called FedProx,
was proposed in [33]. The framework imposes a penalty on the local Stochastic Gradient
Descent (SGD) if it deviates from the global model. To achieve it, the paper proposes to
modify the loss function on the client side by including a proximal term to it. The proximal
term is calculated as a square root of a sum of deviations of the local model parameters
from the global model. This number is then multiplied by a hyperparameter µ, which
defines the strength of the regularization. The researches showed that this alternation
improves the stability of the training, thereby improving its results on synthetic datasets
with statistical heterogeneity across the clients. Additionally, the paper provides guidance
on how to select the optimal µ.
Model ensembling techniques were also often used in the literature to address statistical
heterogeneity across the clients. In [19], the authors propose using an ensemble to reduce
the communication cost between server and clients in a density estimation tasks. The
paper assumes that the server has a set of pre-trained models from each client. Then,
the weights to be assigned to each model in the ensemble are learned in a FL manner
to improve the performance of the global model. However, the paper focuses on the
ensemble weighting methodology and does not provide guidance on training the initial
pre-trained models.
Another interesting approach to achieving better results for client-specific data is using
personalization layers. It was introduced in [1, 34]. The proposed method divides the
layers of the model into two categories: shared base layers and personalized layers, with
each client having their own set of personalized layers. The shared layers are trained
using a classical FL approach, while the personalized layers are fine-tuned on the client
side to match its local data distribution. In the methodology defined in [34], the shared
layers are the shallow layers of a DL model which focus on extracting high level features
from the data. The personalized layers are deep layers that use those features to make
the inference. The results reported in the papers were promising; however, the focus of
these methodologies is to improve the performance of each client, rather than creating a
single global model.

2.5 Federated Learning in Medical Imaging
FL is a promising method that could help overcome the scarcity of annotated datasets
in the medical domain. It could provide a way to train better and more generalizable
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models, as the data from multiple centres could be used. Also, it could help overcome
the privacy issues connected to sharing the data [12]. There are several examples of the
use of FL in cancer research in the literature. Most of them simulate the decentralized
setting by artificially partitioning the dataset; however, there are several projects using
real-world multicenter data.

2.5.1 Performance of Federated Learning in Cancer Imaging
Several papers compare the performance of FL approaches to the performance of collabo-
rative data sharing. They implement multiple FL frameworks that deliver satisfactory
results for various tasks in Medical Imaging. One example of such frameworks was
implemented in [52]. There, the performances of three different methodologies to train
a DL model without sharing private the data between institutions were compared. Even
though the basic FedAvg was used, FL achieved almost as good results as CDS and
yielded the best results out of those 3 methods. Moreover, it was shown that the model
trained using FL performs significantly better than the models trained only using the
private data of each institution. The paper utilized the BraTS dataset [41]. It contains
multi-modal brain tumor scans together with their segmentations that were gathered
from multiple institutions. This dataset is widely used as a benchmark for medical
imaging segmentation in oncology [12].

[7] utilized the same dataset to evaluate a FL framework. The framework utilizes the
concept of GANs to train a global model. The method proposes to train a generator
of synthetic images on the server side using discriminators on all the clients. The
discriminators residing at every client learn to differentiate between its local data and
the synthetic images generated by the server, while simultaneously training the server’s
generator. Once the generator has been trained, it is then utilized to generate images on
which a conventional U-Net is trained.

In [51], the authors present a comparison between a U-Net trained using the FL approach
and U-Nets trained by each participating institution separately. The models are evaluated
on a glioblastoma MRI scans segmentation task. The paper shows that the FL approach
produces superior results, with the final model reaching 99% of the performance of a
model trained by CDS.

Multiple large, multi-institutional projects have been developed to facilitate and streamline
the collaboration on FL projects, both in academia and industry [48]. For example,
Melloddy project [43] focuses on orchestrating end-to-end FL training for drug discovery.
Another interesting initiative is German Cancer Consortium’s Joint Imaging Platform [49],
which aims to support the treatment and diagnosis studies in the field of cancer research
using FL.

Another interesting large-scale project in the field of medical imaging is FetS [44] FL
tool. In addition to providing support for FL, the tool offers many utilities, including
generation of automatic annotation or built-in augmentation methods. The tool is
currently tuned specifically to the tasks on neuro-radiological mpMRI scans; however,
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it is intended to be extended to other applications. Additionally, the paper points out
several challenges associated with conducting a FL training across multiple institutions,
such as different image acquisition protocols across institution or systems heterogeneity.
The researchers have also organised Federated Tumor Segmentation Challenge3. It is a
competition focused on advancing the FL methods for medical imaging and dealing with
the statistical heterogeneity of the medical image data across different institution. More
details on copying with the statistical heterogeneity across institutions are presented in
the next section.

2.5.2 Federated Learning Frameworks Reducing the Impact of
Non-IID Data

The challenges with the statistical heterogeneity across the clients outlined in the Sec-
tion 2.4.1 are also relevant to medical imaging tasks. In [66] and [52], it was shown
that DL is prone to overfitting on differences and biases between different institutions.
The models often tend to use the subtle differences between scanners, different patient
populations and other confounding factors, rather than the pathological information
available in a scan [44, 66, 16]. These biases bias often lead to poor performance of
the DL models, especially when applied on the data from an institution that did not
participate in the training. Therefore, much of the research in the medical imaging field,
focuses on the problems posed by Non-IID data across the clients. [66, 12, 44]

[12] summarizes several methods that aim to overcome these challenges. Many focus on
improving the weight aggregation methodology to account for the statistical heterogeneity
across the network. For example, in [60], the researchers modify the weight aggregation
of FedAvg to one in which the weights of each client are set dynamically. The weights
are set depending on the data distribution across the institutions. The work has been
evaluated on two multi-institutional medical imaging tasks.

There are also papers that focus on improving the training methodology already on the
client side. In [25], the authors show that the order in which the samples are presented
to the optimizer affects the final model. They propose a memory-aware algorithm, which
optimises this ordering and reduces the likelihood that the final global model will forget
part of the samples presented to it during training. The method was evaluated on a
multi-site breast cancer classification task.

[18] applies FL to several MRI reconstruction tasks. It used an adversarial domain
identifier to align latent features extracted by the clients without sharing the data
between them. The method was evaluated on four different public MRI datasets and was
shown to achieve a performance close to a model trained with CDS for all of them.

Another heterogeneity-aware framework called SplitAvg was proposed in [70]. It suggests
splitting the network into two subnetworks. A copy of the first subnetwork, which contains
the shallow layers of the model, resides on each client. The second subnetwork, which

3https://github.com/FETS-AI/Challenge
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contains the deeper layers of the model, resides on the server and is shared between the
clients. During the forward pass, the low-level features are extracted by each subnetwork
on the clients’ side, aggregated and passed to the server. The server then uses them to
train the subnetwork responsible for classification. The paper evaluates the method using
the BraTS dataset [41], which contains the data from multiple different institutions. It
was shown that although the performance of the basic FedAvg plummets in the Non-IID
scenario, the performance of the SplitAvg framework is only slightly lower than in the IID
scenario.

The papers often compare their novel methods with other FL frameworks and the centrally
trained models to evaluate their performance. In particular, the basic FedAvg and the
more sophisticated FedProx[33] are often used as the baseline FL frameworks.

2.5.3 Ensemble Federated Learning in Cancer Imaging

The concept of ensemble models, which is widely used in ML, can also be applied to FL.
There are some studies that explore this idea. In [16], FL is used to create a model to
classify COVID from X-ray scans. The researchers propose to use a family of existing FL
frameworks to train one model using each framework on the same dataset. These models
can then be used as a majority voting ensemble. The authors claim that this approach
can mitigate the biases introduced by each FL framework and improve the performance
in the Non-IID scenarios. However, it requires performing the training multiple times,
which can be resource intensive.

[31] proposes to use Shapley Values to rank the contributions of different institutions
to the final model. The first step, is to train a global model using the classical FedAvg
algorithm. Then, each site trains a logistic regression classifier using the feature vector
created by applying the last layer of the global model to its data. Those local classifiers
can then be used to perform a majority voting classification and calculate the Shapley
values. In the experiments, the method achieved a similar performance to the FedAvg
approach.

2.6 Summary
In recent years, DL has proven to be a powerful tool in image recognition, including medical
imaging. For example, it has been used to classify the WHO grading of meningiomas.
However, the task is challenging, mainly due to the scarcity of annotated training data.
To increase the amount of training data, FL is emerging as a promising alternative to
the standard CDS. The chapter outlines several existing FL frameworks, two of which
(FedAvg and FedProx) were evaluated and compared experimentally in the course of the
thesis.

In addition, the chapter describes the problems arising from the heterogeneity of the
data across the clients participating in FL. These challenges were investigated in the
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thesis, with a focus on their impact on the accuracy of the models and ways to minimise
their negative effects.
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CHAPTER 3
Methodology

This chapter describes the details of the methods used in the experiments. It builds
on the background and state of the art presented in the previous chapter. The chapter
starts with the definition of the prediction targets and the classification tasks. Then,
the data preprocessing methods are presented. Finally, the chapter details the methods
used to overcome the challenges presented in the problem statement and to enable
meningioma grading prediction in the centralized and FL environments. The main goal
of the experiments is to compare the performance of the centralized training with FL
frameworks in different data heterogeneity settings. The code used to run the experiments
is available at 1.

3.1 Input Data and Prediction Targets
The dataset consists of T1 weighted brain MRI sequences of meningiomas. Each scan
is accompanied by a WHO grading of the tumour obtained from histopathological
examination, which is considered to be the most reliable measure for grade assessment [39].
The grading is denoted by an integer between 1 (benign tumour) and 3 (the most aggressive
form). Additionally, the tumour segmentation annotated by one clinician is available for
each scan. The segmentations include the tumour together with the edema (if present).
An example of a middle slice from one of the 3D volumes is shown in Figure 3.1.

Two classification tasks were defined: three-class classification and two-class classification.
In both tasks, the WHO grading of the meningiomas is the prediction target, the difference
is how it is mapped to the sample labels.

Three-class classification scenario: In this scenario, all three WHO grades had to
be discriminated.

1https://github.com/Fidelisus/meningioma_dl
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Figure 3.1: The middle slice for each plane of a randomly selected scan. At the top is the
MRI scan and at the bottom is the segmentation of the lesion as marked by a clinician.

Two-class classification scenario: As the three-class classification task is often
challenging [23], a simpler scenario with only two classes as the prediction target was
also defined. After consultation with a clinician from the AKH, samples graded 2 and 3
were grouped as label 2, while scans graded 1 formed label 1. This grouping was chosen
because grade 2 and 3 meningiomas often require medical intervention, whereas grade 1
meningiomas usually only require observation to monitor disease progression.

Let’s denote those components as:

• Ii ∈ R: Three-dimension MRI sequence of meningioma.

• Si ∈ {0, 1}: Tumour segmentation of sample i.

• y3C
i ∈ {1, 2, 3}: Label of sample i in the three-class classification scenario.

• y2C
i ∈ {1, 2}: Label of sample i in the two-class classification scenario.

• f3C(I, S): Three-class classifier.
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• f2C(I, S): Two-class classifier.

3.2 Image Preprocessing
Medical images are often noisy and the intensity of the pixels varies greatly depending
on the type of scanner. Similarly, the image resolution can vary between the scanners.
In addition, images can sometimes be corrupted. Therefore, the scans had to be pre-
processed in order to unify their characteristics and prepare them for the modelling.

First, a simple visual check of the images was carried out. This was done by visualising
the centre slice of each of the 3 planes in the image and assessing whether there were
any significant data errors, such as corrupted scans. Then, a preprocessing pipeline was
applied to each scan. The image preprocessing can be described by the following formula:

g(Ii, Si) = Ip
i

where Ip
i is the preprocessed image and g denotes the preprocessing function. The

parameters of g were chosen in a series of preliminary experiments. The final preprocessing
pipeline consisted of the following steps executed sequentially:

1. Reorientation: This operation unifies the image orientation across all scans.

2. Resampling: This ensures that each voxel in the image has the same size in each
scan. In this case, the voxel size was set to 1mm ∗ 1mm ∗ 1mm. Without this step,
the volume represented by one voxel could be different in different samples, making
modelling more difficult.

3. Foreground cropping using tumour segmentation: In this step, the image
was cropped using the tumour segmentation. First, the tumour mask was increased
by 20% in order to include the tissue around the tumour, as it may also contain
valuable information. Then the intensity of the whole area outside the mask was
set to 0. This step is important to remove the unimportant parts of the image to
make it easier for the model make a correct classification.

4. Image padding: This step pads the cropped images so that their dimensions
are the same as the dimensions of the largest segmentation mask. The scans were
padded with zeros. This is necessary because the ResNet model requires all input
samples to have the same shape.

5. Intensity normalisation: The final step in the pipeline, which normalises the
intensities of the images to reduce the differences between the scanners.

The preprocessing was done using an open source Monai library [5]. Examples of the
preprocessed scans can be seen in Figure 3.2.
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Figure 3.2: The figure shows three randomly selected examples of MRI scans of menin-
gioma after preprocessing. The central slices of each plane are shown for each scan.

3.3 Deep Learning Model
The preprocessed image Ip

i serves as an input to model that predicts the label yi. The
prediction procedure can be expressed by the following formulas:

f3C(Ip
i ) = ˆy3C

i for the three-class scenario

f2C(Ip
i ) = ˆy2C

i for the two-class scenario

The thesis uses a classical 3D-ResNet model implemented in the Pytorch library2. ResNet
is a well-established and flexible CNN model that has proven its high accuracy in many
tasks, including meningioma classification [39]. MedicalNet from [10] was used as the

2https://pytorch.org
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Figure 3.3: A simplified diagram of the training process. At the top is the pipeline used
for training. At the bottom is the validation pipeline.

pre-trained model. It was chosen because the paper reported promising results on several
medical imaging tasks.

The models f were trained using a standard SGD procedure. A simplified diagram of
the training process is shown in Figure 3.3.

3.3.1 ResNet Model Hyperparameters
After the initial experiments, the main parameters of the model and the training process
were defined. The ResNet10 model, which is one of the smallest in the family of ResNet
models, was selected. It was chosen because a smaller model meant that the training
time was reduced and therefore more experiments could be carried out. In addition, as
high classification accuracy was not the main goal of the thesis, the additional predictive
power of the larger models was not needed.

A fully connected layer responsible for classification was added as the last layer of
the ResNet10 model. It had 2 output neurons for f2C and 3 output neurons for f3C . The
network used the Adam optimiser and the batch size was set to 4. Loss function lossm

was set to cross-entropy weighted by the number of samples in each class. It could not
be set higher than 4 due to GPU memory limitations. The learning rate lr was decayed
over epochs using an exponential learning rate scheduler. It sets the learning rate at each
epoch to lrt = γ ∗ lrt−1, where γ was set to 0.99.

As transfer learning was used in the experiments, the number of shallowest layers to be
frozen during fine-tuning had to be defined. As shown in Figure 3.4, the ResNet model
consists of four main layers as described in [21]. Experiments were carried out for zero,
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Figure 3.4: The diagram illustrates the main building blocks of the ResNet10 classifier.
It consists of 4 main layers and ends with a fully connected layer that is responsible for
the classification.

one, two and three frozen layers. The layers were frozen starting with the shallowest
layers, so the layers responsible for the extraction of the low-level features. For example,
freezing two layers meant that layer0 and layer1 from Figure 3.4 were frozen during
training. This parameter will be referred to as lfrozen in the following chapters.

3.4 State-of-the-art Federated Learning Frameworks
Two state-of-the-art FL frameworks were implemented in the thesis: FedAvg and FedProx.
They were implemented as described in the sections 2.3.2 and 2.3.3 and used to train the
f2C model.

3.5 Federated Localized Ensemble Framework
The main idea behind the framework was inspired by the concept of model ensembling.
It is widely used in DL and sometimes adapted for FL. However, to the best of my
knowledge, the proposed approach has not yet been described in the literature. There are
some approaches similar to this idea, such as SplitAvg [70] and Personalisation Layers [1],
but the details of the method differ.

When it comes to model ensembling, there are two main questions to answer. The first is
how to train the models that form the ensemble, and the second is how their predictions
are aggregated.

3.5.1 Training of the Site-Specific Models
Training consists of the following two steps:

Pre-training of the base model. First, any existing FL framework, such as FedAvg,
is used to train the base model fbase, as described in the section 2.3.2. It has a similar
goal to the idea behind transfer learning.
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Figure 3.5: A diagram illustrating the process of fine-tuning of the site-specific models in
Federated Localized Ensemble framework.

Fine-tuning of the site-specific models. In this step, fbase is used as the initial
model to train site-specific models fc for each client c. Each client fine-tunes its fc for
ntuning epochs. Then the model is returned to the server. A diagram of this process
is shown in Figure 3.5. In addition, ltuning

frozen layers of fbase are frozen during the tuning
process, similar to transfer learning. This is done to avoid overfitting to the client’s local
data.

The final ensemble model consists of all fc trained during fine-tuning, one for each client
involved in the training.

3.5.2 Weighting of the Models in the Ensemble
The next step is to aggregate the predictions made by all the site-specific models. Majority
voting is often used for this purpose. However, as this approach is often too simple,
another idea has been proposed. It takes into account the performance of the individual
site-specific models.

Two types of weights are derived. The first set of weights, called global weights, is
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optimised to work well on any client’s data. The second is called local weights and is
optimised for the local data of the client.

Global Weights

The first step is to calculate the performance of each fc on the local data of each client.
To calculate this, all models fc are sent to all clients, which evaluate them on the local
data. They then send a score for each model fc back to the server. Let’s call this score
scorefc

c .

Then the weight ωfc of each model is calculated as

ωfc = 1
C

C�
c=1

scorefc
c

where C is the total number of clients. Therefore, the better a model fc performs on
each client, the higher its weight will be in the ensemble model. The final prediction of
the ensemble model can then be expressed by the formula

y = arg max
l

(ωfc ∗ logitfc

l )

where logitfc

l is the logit function returned by the output layer for label l.

Local Weights: the Weights Optimised for the Client’s Local Data

The local weights are calculated in a similar way to the global weights. The only difference
is that the model fc is only evaluated on the client for which the weights are optimised.
Therefore, the models that perform better on the client’s local data will be weighted
more in the ensemble.
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CHAPTER 4
Experimental Setup and

Evaluation

4.1 Dataset
The dataset used in the project consists of 186 brain MRIs of patients diagnosed with
meningioma. All the data comes from the AKH hospital in Vienna. The classes are
relatively balanced, with 73 WHO grade 1, 71 WHO grade 2 and 42 WHO grade 3
samples, as shown in Table 4.1. Scans come from different patients, except for two
patients for which there are two examinations. It is noteworthy that the class distribution
in the dataset differs significantly from the real population distribution. In the real world,
grade 1 meningiomas make up about 90% of meningioma tumours [46]. Therefore, the
class distribution is much more skewed in the underlying population.

The data was split into training and test sets. As the classes are slightly unbalanced,
stratified random sampling was used. From all the samples, 41 samples were randomly
selected to become the test set. This number would preferably be higher in order to
assess the performance of the classifier more reliably. However, given the rather small size
of the dataset, this number was the most that could be afforded. The test set images are
only used at the end of the experiment to assess the performance of the final models. A
separate validation set created from the training set is used for model evaluation during
training and hyperparameter tuning.

4.2 Image Augmentation
Several augmentations were applied to the preprocessed scans to improve the generalis-
ability of the model. The following augmentation operators were defined:
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WHO Grade 1 2 3 Total
Number of samples 73 71 42 186

Table 4.1: Table shows the number of MRI scans with each WHO grade.

Random intensity shift. It shifts the intensity of the image by α∗std(I) where std(I)
is the standard deviation of an image and α is a randomly sampled factor.

Adding random Gaussian noise. It adds gaussian noise to the image, with mean
m = 0 and standard deviation std with the value depending on the pipeline.

Random affine transformations: rotation, zoom and translation. The param-
eters of these transformations were randomly sampled from the following domains: z
defining possible zoom values, β containing the possible rotations and t determining the
translation.

Adding random bias field. The bias field is a linear combination of varying basis
functions and is often present in MRI scans. It is described by two parameters, as
described in the open source Monai library [5]: degree of the polynomials, which was set
to 3 and the coefficients randomly sampled from a domain c.

Random image contrast adjustment with gamma transform. It randomly
changes image intensity with gamma transform, which strength is regulated by the γ
parameter.

The augmentation pipeline consisted of several operators. It was employed to each
sample during training; however, not every step in the pipeline was always applied. The
probability in which an augmentation step was applied to a sample was specified by
the augmentation steps probabilities hyperparameter, termed augprob.

Three augmentation pipelines were tested, each implementing different augmentation
method haug:

Basic pipeline containing all the operators excluding random bias field and random
image contrast adjustment.

Strong pipeline using the same operators as the Basic pipeline, but the parameters
of each step have been set to ones that apply stronger augmentation to the scans.

Extended pipeline applying all the operators.

The parameters of the augmentation operators for different pipelines can be seen in
Table 4.2.
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Basic Strong Extended
Intensity shift α ∈ [−0.05, 0.05] α ∈ [−0.2, 0.2] α ∈ [−0.2, 0.2]
Gaussian noise std = 0.1 std = 0.15 std = 0.15

Zoom z ∈ [0.9, 1.1] z ∈ [0.8, 1.2] z ∈ [0.8, 1.2]
Rotation β ∈ [−π/4, π/4] β ∈ [−π/4, π/4] β ∈ [−π/4, π/4]

Translation t ∈ [−5, 5] t ∈ [−20, 20] t ∈ [−20, 20]
Bias field - - γ ∈ [0.8, 1.5]

Contrast Adjustment - - c ∈ [0.0, 0.1]

Table 4.2: The parameters of augmentation operators for different pipelines.

Augmentations were only applied to the scans during model training. For model validation,
only image preprocessing was used. This process can be described by the following
formulas:

f(haug(Ip
i )) → ŷi during training

f(Ip
i ) → ŷi during validation

Figure 4.1 shows the results produced by each pipeline on the same randomly selected
scan.

4.3 Federated Learning Scenario Simulation
All the samples in the dataset come from one medical institution. Thus, the FL en-
vironment had to be simulated. Three different scenarios were defined, one assuming
the IID distribution across clients and two simulating the Non-IID distribution. All the
scenarios were simulated for 3 FL clients. This number of clients is often higher in the
real world, but this lower number was chosen due to the small size of the dataset. All
the FL experiments were carried out for the two-class classification task, as this is an
easier task than the three-class classification. In other worlds, the target variable for all
the experiments will be y2C , as described in the section 3.1.

4.3.1 Simulation of the IID Data
The IID data was simulated by distributing the training samples across the clients using
stratified random sampling. Thus, each client had a similar class distribution. It often
leads to an IID distribution of attributes; however, it is not guaranteed [72]. This strategy
was often used in the literature as described in section 2.4.1.

4.3.2 Simulation of Label Frequency Difference
The first Non-IID scenario was simulated by distributing the samples in way that yielded
different class distributions at each client. This idea has often been used in the literature
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Figure 4.1: The figure shows the result of different augmentation pipelines for three
randomly chosen scans. The central slice of the Saggital plane is shown for each scan.

for simulating Non-IID scenarios, as described in section 2.4.1. The idea of quantifying
the degree of label difference was inspired by [70]. A two-sample KS test was used to
quantify the degree of data heterogeneity. The test statistic, called KS test statistic, was
calculated between each pair of institutions [47] and averaged. The higher the statistic,
the greater the difference between the client distributions. It was decided to use a split
with a KS test statistic equal to 0.4. Figure 4.2 shows an example bar chart of the class
distributions for each client.

4.3.3 Simulation of Imaging Difference
The second Non-IID scenario simulated a difference in imaging technology between clients.
This is common in practice, as different medical facilities often use different types of
scanners. This scenario is more difficult to simulate as the imaging differences are hard to
quantify systematically. Therefore, it was decided to use a simple approach that focuses
on only one image characteristic. One of the image properties that often depends on the
type of scanner is the voxel intensities, and in particular their distribution [53].
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Figure 4.2: Figure display an exemplary bar chart of class distributions at each client.

To obtain a different distribution of voxel intensities, the image intensity histogram was
shifted differently between clients. The transformation was carried out using a RandHis-
togramShift method implemented in the well-established Monai library1. The method
applies a random non-linear transformation to the intensity histogram. The strength of
the distribution shift is defined by the number of control points parameter, which defines
the non-linear intensity mapping. A smaller value of this parameter results in larger
intensity shifts.

The following transformations were applied to the client as the last step of the prepro-
cessing pipeline described in the section 3.2:

• Client 1: No histogram shifts.

• Client 2: Medium histogram shift with number of control points equal to 10.

• Client 3: Strong histogram shift with number of control points equal to 5.

Figure 4.3 shows a visual comparison of example preprocessed samples for these clients.

1https://monai.io/
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Figure 4.3: The figure shows a visual comparison of the preprocessed samples for different
clients in the imaging difference simulation. The central saggital slice is shown for each
scan.

4.4 Evaluation of the Resulting Classifiers
All methods were evaluated on the same test set defined in 4.1. This test set was only
used as a final form of evaluation, it was not used for hyperparameter tuning. It consisted
of only 41 samples, which is a relatively small number. In such cases, the inter-model
variability might be high. In this context, inter-model variability is the difference between
models trained on the same data. It occurs when the training dataset is small and
small differences in the input data significantly alter the convergence, resulting in high
variability in model performances. This phenomenon has been studied extensively in [24].

In order to understand the origin of this phenomenon, it is first necessary to define a
methodology for selecting the best model at the end of training. This is not trivial, as
the last model may not be the best due to the overfitting phenomenon. To make the
selection, the F1 score of the model on the validation set was calculated for each epoch.
The model with the highest F1 score was then returned as the best model. Therefore,
the selection of the best models depends strongly not only on the training set but also
on the validation set.
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To provide a more robust estimate of model performance, multiple models were trained
and evaluated for each method. To calculate the performance of a method in each
experiment, 10 models were trained. They were trained using 5-fold Cross-validation
(CV), with two models with different seeds trained for each fold. The model were then
evaluated on the test set and the average score of these 10 models was calculated. The
following three metrics were used: F1 − score, Precision and Recall. A diagram of this
process is shown in Figure 4.4. The metrics were computed differently for the two and
three class classification tasks:

Three-class classification:
m =

�3
l vlnl�3
l nl

where vl is a metric derived separately for the label l and nl is the number of samples
with label l.

Two-class classification:
m = v1 + v2

2
Thus, in this case, no weighting by the number of samples for a label was performed.

In addition, a baseline model was introduced to help understand the meaning of the
metrics. It was set to a classifier predicting the majority class.

4.5 Experimental Setup
4.5.1 Hyperparameter Tuning
The experiments began with hyperparameter tuning. First the hyperparameters were
tuned for the m3C model and then for the m2C model, both trained centrally. The second
step was to optimise the hyperparameters of each FL framework. All models were trained
over 200 epochs and evaluated using the same validation set.

ResNet Model

The search space of the model’s hyperparameters consisted of the following four hyperpa-
rameters:

• lr ∈ �
10−4, 10−3, 10−2, 2 ∗ 10−2, 0.1, 0.2

�
• augprob ∈ {0.5, 0.8, 1.0}

• haug ∈ {Basic, Strong, Extended}

• lfrozen ∈ {0, 1, 2, 3}
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Figure 4.4: The diagram illustrates the evaluation process. In the first step, 10 models
are fitted using CV and each of these models is evaluated against the same test set. The
metrics are then calculated as the average of the scores obtained by the models.

Due to limited computational resources, a grid search for the best hyperparameters could
not be performed. Therefore, different hyperparameters to try were iteratively selected
manually based on the results for other hyperparameters. The process is described in
detail in the section 5.7. The hyperparameters for which the model achieved the highest
score on the validation set were used in the remaining experiments. The hyperparameters
for the m3C and m2C models were tuned separately, so both could have different optimal
hyperparameters.

Federated Learning Frameworks

The search for optimal hyperparameters was carried out in the scenario with IID data
between clients, for both frameworks separately.

Federated Averaging: It started with the identification of the optimal nlocal epochs and
proportion of clients per round. These are the main parameters identified as important to
optimise for FedAvg in [20]. The search space for the number of local epochs consisted of
four possible settings: 1, 2, 5 and 20. The proportion of clients per round hyperparameter
was set to either 1.0 or 2/3. Therefore, either all or 2 clients were sampled in each global
round. In all experiments, the total number of epochs was 200.
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FedProx: Additionally, for the FedProx framework, the hyperparameter µ had to be
set. The guidelines proposed in [33], which introduced FedProx, were followed. Six
different µ values were evaluated: 10−1, 10−2, 10−3, 3 ∗ 10−3, 10−4 and 10−5.

Federated Localized Ensemble Framework

The two main hyperparameters configured for the Federated Ensemble method were
the number of frozen layers during fine-tuning ltuning

frozen and the number of fine-tuning
epochs ntuning. The search space of the ltuning

frozen hyperparameter was 0, 1, 2 and 3 deepest
layers. In addition, one experiment was run where 2 shallowest layers were frozen. All
experiments were run with nrounds set to 100, nlocal epochs set to 1 and ntuning set to 50
or 100.

Additionally, as no client-specific test data was available, only the global weighting method
was evaluated.

4.5.2 Comparison of Centralized Training and Federated Learning in
the IID Scenario

The goal of this experiment was the comparison between the models trained centrally
and with different FL frameworks. All the models were trained and evaluated on the
two-class classification tasks. Evaluation was carried out on the same test data for each
method, using the evaluation process described in the section 4.4.

The experiments used the optimal hyperparameters of all the methods obtained during
the procedure described in the section 4.5.1 Performance was reported for centralised
training and three FL frameworks: FedAvg, FedProx and Federated Localized Ensemble
approach. The FL frameworks were evaluated in the IID scenario.

4.5.3 Comparison of Federated Learning Frameworks in the Non-IID
Scenario

The aim of this experiment was to observe the impact of Non-IID data across clients
on the performance of FL. Although in the IID scenario the performance of models
trained with FL can match that of centrally trained models, the Non-IID may be more
challenging [71].

Two Non-IID scenarios were simulated as described in section 4.3. To analyse the
differences between the methods, the three FL described in the chapter 3 were evaluated
and compared in each Non-IID scenario. The models were evaluated on the two-class
classification task.
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CHAPTER 5
Results

This chapter presents the results of the experiments. It starts with the comparison of
the models trained centrally and using the FL frameworks. Then, the comparison of the
prediction accuracy of the FL frameworks in different Non-IID scenarios is presented. It
is followed by the results achieved by the classifier trained centrally. Lasty, additional
insights into the methods and hyperparameter tuning are presented. All models were
evaluated on the same test set defined in section 4.1. A detailed evaluation methodology
is presented in the section 4.4.

5.1 Comparison of Centralized Training and Federated
Learning in the IID Scenario

The goal of this experiment is to compare the models trained centrally with those trained
using different FL frameworks. All models were trained and evaluated on the two-class
classification tasks.

Table 5.1 displays F1, Precision and Recall achieved on the test set by the models
trained with different methods. The metrics are reported together with their standard
deviations. The F1-scores of the models trained during evaluation process are also
displayed as violin plots in Figure 5.1. Table 5.2 presents the confusion matrices created
by aggregating the predictions generated by all the models grouped by the training
framework.

Given the similarity of the scores, two-sample t-tests were conducted to quantify the
differences. Their aim was to assess whether the performance of the FL methods is
comparable to that achieved through centralized training. The test showed that the
performance of the models trained using FedProx and the novel method is significantly
worse than for the models trained centrally. However, they still achieved much better
F1-score than the baseline.
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F1-score Recall Precision
AVG SD AVG SD AVG SD

Two-class Baseline .2400 N/A .5000 N/A .1578 N/A
Centralized training .5796 .0380 .5859 .0396 .5942 .0410
FedAvg .5664 .1099 .5783 .0967 .5720 .1096
FedProx .4571 .0865 .4849 .0779 .4634 .1141
Federated Localized Ensemble .4201 .0744 .4955 .0472 .4125 .1393

Table 5.1: The figure present F1, Precision and Recall achieved on the test set by the
models trained with different methods. The means are reported together with their
standard deviations. Scores achieved by the baseline model predicting majority class are
displayed alongside the predictions.

Figure 5.1: Violin plots of F1 achieved on the test set by the 10 models trained during
the evaluation process using different training methodologies. Blue plot shows the model
trained centrally, red displays FedAvg, green FedProx and purple the Federated Localized
Ensemble framework.

The test didn’t show a significant difference between FedAvg and the model trained
centrally, with a p-value of 0.723. Therefore, it is probable that FedAvg had a similar F1
on the test set to the model trained centrally.

The discrepancy between recall and precision for each training method is small. It is
therefore not straightforward to define whether the model is returning a greater number
of False Positives (FP) or False Negatives (FN). It is confirmed by the structure of the
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5.2. Comparison of Federated Learning Frameworks in the Non-IID Scenario

Centralized Federated
training FedAvg FedProx Ensemble

Predicted 1 2 1 2 1 2 1 2

True 1 76 84 66 94 31 113 12 148
2 76 174 64 186 72 194 21 229

Table 5.2: Confusion matrices created by aggregating the predictions on the test set of all
the models throughout the evaluation process. Every column corresponds to the models
trained by a different method.

confusion matrices in Table 5.2, which indicate that the frequency of each type of error
is in a similar range. All the models are prone to a considerable number of errors, with
the ratio of FP and FN frequently exceeding the number of True Positives (TP).

The standard deviation of the performance metrics of the centrally trained model was
found to be lower than for all the FL methods. This behaviour is clearly visible in
Figure 5.1, where all the violin plots of the FL methods are much wider than the one of
centralized training. Therefore, although FedAvg can achieve a similar mean performance
to the centralized training, the models created by this method are less stable. This
behavior was also visible in the learning curves plotted during training, where validation
losses of FL trainings were much noisier.

5.2 Comparison of Federated Learning Frameworks in the
Non-IID Scenario

This section presents a comparative analysis of the results obtained using different FL
frameworks when the data was Non-IID across the clients. As presented in Section 5.1,
the performance of the models trained using FL can reach that of the models trained
centrally. Nevertheless, in practice, the data is often heterogeneously distributed between
the clients, which may result in a decline in the models’ performance. In the experiments
described in Section 5.1 the data was randomly split between the clients. Given that all
the data came from the same institution and was labelled by the same clinician, it was
assumed that the data is IID across the clients.

In this section, experiments on two scenarios of Non-IID data across the network were
carried out. The first scenario simulated label frequency difference between the clients,
while the second imitated a situation when imaging technology varies across the sites.
The methodology employed for the simulation is described in detail in Section 4.3.

Table 5.1 presents the results achieved for all the three scenarios in which the FL
frameworks were tested. F1, Precision and Recall are reported. Figure 5.2 depicts same
results in the form of grouped bar charts, where each bar chart illustrates the F1-score of
the model together with its standard deviation.
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F1-score Recall Precision
M SD M SD M SD

Baseline Model .2400 N/A .5000 N/A .1578 N/A

IID
FedAvg .5664 .1099 .5783 .0967 .5720 .1096
FedProx .4571 .0865 .4849 .0779 .4634 .1141

Federated Ensemble .4201 .0744 .4955 .0472 .4125 .1393
Non-IID:

Label
frequency

FedAvg .4637 .0832 .4848 .0734 .4717 .1007
FedProx .4961 .0894 .5404 .0686 .5095 .1312

Federated Ensemble .4147 .0373 .4961 .0283 .4847 .1620
Non-IID:
Imaging

difference

FedAvg .5458 .1109 .5861 .0940 .6213 .1416
FedProx .5605 .1039 .5764 .1054 .5763 .1088

Federated Ensemble .3902 .0259 .4954 .0153 .3704 .1116

Table 5.3: The table presents the results achieved for the two-class classification in all
the three scenarios in which the FL frameworks were tested. F1, Precision and Recall
are reported. Scores achieved by a baseline model predicting majority class are displayed
on top to facilitate comparison.

The label frequency difference scenario yielded the lowest scores across the models. In
other the two scenarios (IID and imaging difference), the models performed visibly better,
achieving similar average performances. However, it is important to note that in the
imaging difference scenario, the metrics had higher standard deviations.

The FedAvg framework proved to be the best in the IID scenario, with the F1 of 0.5664.
In the Non-IID scenarios it performed worse; however, it still achieved relatively high
scores in comparison to the other FL frameworks. The FedProx framework performed
visibly worse that FedAvg in the IID data setting. It achieved the F1 of 0.4571 that is
20% lower than for FedAvg. In the Non-IID scenarios, FedProx trained model achieved
the highest F1-scores of all the methods, with the performance of FedAvg being only
slightly worse.

Given the high standard deviations of the metrics, a t-test was performed to statistically
compare the F1 of the methods in different scenarios. The test was conducted pairwise for
all FL frameworks in each scenario. The results are presented in Figure 5.3. Each matrix
represents a single scenario. The colour red indicates that the F1 is statistically different,
whereas green means that it is not. The results show that there was no statistically
significant difference between FedAvg and FedProx methods in any of the scenarios.
Therefore, despite that the F1 of FedAvg seemed much higher in the IID scenario, due to
the high variance of the scores, it was statistically insignificant. In the Non-IID scenarios,
both methods showed almost identical performance. Thus, it can be stated that FedAvg
and FedProx demonstrated comparable performance across all scenarios. The highest
difference between the two was in the IID setting, where FedAvg performed better.
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Figure 5.2: The bar chart presents the results achieved for all the three scenarios in
which the FL frameworks were tested. Bars are grouped by the scenario, and each bar
chart shows the F1 achieved for a FL framework.

Figure 5.3: The figure shows the results of a t-test conducted to compare the F1 of
the FL frameworks in different scenarios. The test was conducted pairwise for all FL
frameworks in each scenario. The colour red indicates that the F1 is statistically different,
whereas green means that it is not.

The novel ensemble framework performed significantly worse than the other two frame-
works. As illustrated in 5.3, despite having similar performance across all the scenarios,
its metrics were almost always significantly lower than the other frameworks. It achieved
better results than the baseline, yet they were much worse than the other two frameworks.
To investigate it, the learning curves of the process of fine-tuning on the client side were
analysed. They were flat, with minimal classification accuracy improvements visible
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over the epochs. The highest F1-score was typically achieved in the initial stages of
fine-tuning; specifically, on average around the 10th epoch.

5.3 Performance of Centrally Trained Classifiers
This section presents the results of the classification achieved by models trained centrally.
The results are reported for both two-class and three-class classification.

Table 5.4 shows the results achieved by the best models. To facilitate the comparison, they
are reported together with the scores achieved by a baseline model predicting majority
class. Each metric is reported along with its standard deviation to show the model
stability. Table 5.5 displays confusion matrices produced by aggregating the predictions
generated by all 10 models on the test set throughout the evaluation process. Alongside
the matrices, sensitivity and specificity for each class are displayed.

The prediction accuracy is higher in the 2-class classification than in the 3-class classi-
fication setting (with the test set F1 of 0.5796 and 0.4960 respectively). Additionally,
standard deviations of the metrics are higher in the 3-class case; thus, signalling higher
differences between performances of the models.

In the 3-class setting, the model tends to predict class 3 less often than classes 1 and 2,
even though the dataset imbalance is not that significant. This leads to the fact that the
sensitivity for class 3 is only 0.2111 compared to 0.7125 and 0.5188 achieved for classes 1
and 2. Yet specificity for class 3 is 0.9533; thus, much higher than 0.6240 and 0.6560
obtained for classes 1 and 2 respectively. An opposite behaviour is visible in the 2-class
classification case. There, the higher specificity and lower sensitivity was achieved for
class 1. Nevertheless, in both settings, many of the predictions are correct signalling the
predictive power of the model.

To reliably verify that the F1 of the ResNet model is higher than the majority voting
baseline model, a one-sample t-test was performed. It showed that the performance
metrics were statistically higher than the baseline for both models.

The models were also evaluated against the validation data, with each model assessed
against its own validation set used in the evaluation procedure. The confusion matrices
obtained from this procedure were aggregated and can be seen in Table 5.6 It is visible
that the models perform less accurately on the test data than on the validation data.
Nevertheless, the confusion matrices have a similar structure. The three-class classification
model rarely attempts to predict class 3, which makes sensitivity obtained for this label
the lowest. A considerable number of samples of class 3 were erroneously predicted by
the model as label 1, further indicating problems in correctly identifying the grade 3
tumours.

Figure 5.4 shows examples of the scans from the test set that were identified correctly
and incorrectly by the two-class model with the highest validation score. The images
are arranged in the form of a confusion matrix. Images in the top-left corner are TP, in
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F1-score Recall Precision
M SD M SD M SD

Two-class Baseline .2400 N/A .5000 N/A .1578 N/A
Three-class Baseline .2191 N/A .3902 N/A .1523 N/A

Two-class ResNet .5796 .0380 .5859 .0396 .5942 .0410
Three-class ResNet .4960 .0805 .5268 .0642 .5114 .0981

Table 5.4: An overview of the results achieved on the test data by the models trained
centrally. The numbers are reported as a mean of the metric of the 10 models trained
during the evaluation procedure. Scores achieved by a baseline model predicting majority
class are displayed alongside the predictions.

Two-class (a)
Predicted

Label 1 2

True 1 76 84
2 76 174

Three-class (b)
Predicted

Label 1 2 3

True
1 114 43 3
2 66 83 11
3 28 43 19

Sensitivity and Specificity (c)
Label Sensitivity Specificity

1 .4750 .6960
2 .6960 .4750

Sensitivity and Specificity (d)
Label Sensitivity Specificity

1 .7125 .6240
2 .5188 .6560
3 .2111 .9533

Table 5.5: The tables (a) and (b) show confusion matrices created by aggregating the
predictions on the test set of all 10 models trained during the evaluation procedure. Table
(c) and (d) display sensitivity and specificity achieved for each distinct class.

the top-right corners there are FN, on the bottom-left there are FP and in the bottom-
right True Negatives (TN) are displayed. Only a few examples were selected; nevertheless,
one can observe similarities and differences between the tumours of different severity.

5.4 Analysis of the Predictive Features
This section presents the results of an analysis of the features that are important for
classification. It begins with a description of the results obtained using the Grad-CAM
method. The second part presents the result of the analysis of the relationship between
the location of the tumour in the brain and its WHO grading.

5.4.1 Class Activation Mapping Visualization
Figure 5.5 shows a comparison of Grad-CAM visualisation for the same MRI scan as
applied to different models trained during the evaluation procedure. The Grad-CAM was
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Two-class (a)
Predicted

Label 1 2

True 1 68 47
2 31 144

Three-class (b)
Predicted

Label 1 2 3

True
1 82 27 6
2 25 78 6
3 37 19 10

Table 5.6: Table shows aggregated confusion matrices of the predictions made by each
model trained during the evaluation procedure on its own validation set. Figure (a)
shows the 3-class setting, while figure (b) portraits 2-class classification.

applied to the last layer of the ResNet model. Red shows the negative contribution to
the predicted label, while green shows the positive contribution. All the models shown in
the figure predicted the same label that matched the true label of the sample. However,
they identified different parts of the image as important for the classification. For two
models on the right, the centre of the tumour provided most of the contribution, while
for the other two, its edge was the most informative. Similar differences were identified
for several samples analysed with Grad-CAM.

5.4.2 Positions of the Tumours
During the experiments, only the part of the MRI that was segmented as the tumour
and its surroundings was used in the model, as described in the section 3.2. This means
that the position of the tumour in the brain was not taken into account in the modelling.
Therefore, the distributions of the positions of the tumours of different grades were
analysed. Figure 5.6 shows a visualisation of the position of the tumour segmentation
centre coloured according to its WHO grading. A few vague clusters could be visually
identified during the analysis.

5.5 Correlation of the Scores on the Test and Validation
Sets

The validation set is used to select the best model during training and hyperparameter
tuning. This is because the model’s results on the validation set should serve as a “proxy”
for its results on the test set. So, in theory, the better the score on the validation
set, the better the model should generalise to the unseen data. To check it, a linear
correlation was calculated between the validation and test F1-scores for each method.
The result is illustrated in Figure 5.7. It presents a single scatter plot for each training
methodology. Each scatter plot shows the F1-scores on the test set vs on the validation
set, together with the correlation coefficient. A negative correlation indicates that a
higher validation score results in a lower test score. The correlation was negative for the
models trained centrally and the Ensemble FL method, with coefficients of −0.2034 and
−0.3176 respectively. Therefore, for these methods, a higher validation F1-score yields,
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Figure 5.4: The figures show examples of the scans from the test set that were identified
correctly and incorrectly by the two-class model with the highest validation score. The
images are arranged in the form of a confusion matrix. Images in the top-left corner
are TP, in the top-right corners there are FN, on the bottom-left there are FP and in
the bottom-right TN are displayed. The scans displayed in the figure were selected at
random and all show the middle sagittal slice of the tumour.

on average, a lower score on the test set. For FedAvg and FedProx, the correlation was
positive, showing the expected relationship between validation and test set performance.
Specifically, a better performance on the validation set resulted in a higher prediction
accuracy on the test set.
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Figure 5.5: A comparison of Grad-CAM visualization for the same MRI scan for different
models trained during the evaluation procedure. It was applied on the last layer of the
ResNet model. Red colour shows the negative contribution to the predicted label, while
green shows positive contribution. All the displayed models predicted the same label
that matched the true label of the sample.
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Figure 5.6: Figure shows a visualisation of the position of the tumour segmentation
centre coloured according to its WHO grading. In the background, the middle slice for
each plane of a randomly selected scan is displayed.
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Figure 5.7: Figure presents a single scatter plot for each training methodology. Each
scatter plot shows the F1-scores on the test set vs on the validation set, together with
the correlation coefficient. A negative correlation indicates that a higher validation score
results in a lower test score.
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5.6 Weights Assigned to the Models in the Federated
Ensemble Method

This section presents insights into the weights assigned to each ensemble model in the
Federated Ensemble framework. Both local and global weights were analysed, but only
the latter was evaluated in the experiments.

5.6.1 Global Weighting

The global model is an ensemble of the models trained by each client together with their
weights, where the weights should favor the models that perform better on the validation
data. In most cases, the method assigned a similar weighting to the models within the
global ensemble, with a median of 0.33. There were no instances in which a weight was
set to a value exceeding 0.44 (where all 3 weights sum up to 1.0).

Local Weighting

In addition to creating a set of weights for the models in the global ensemble, each client
also creates a set of the weights that optimise the ensemble for the client’s local data. In
this context, the weight can be assigned either to the model trained on the client’s local
data or to the model fine-tuned by other clients. Figure 5.8 presents a box plot of the
weights assigned to the models fine-tuned on the client’s local data. In the IID scenario,
the models fine-tuned to the local datasets of the clients appear to be weighted the same
as the models fine-tuned to the data of the other clients. The maximum weight assigned
to the local model was 0.45, which is not much higher than its median of 0.33. While the
median of the weights in the Non-IID scenarios shows a similar behaviour, the variance is
higher. Thus, there are some ensemble models that give more weight to the local model.

5.7 Insights from Hyperparameter Tuning

5.7.1 ResNet Hyperparameter Tuning

This section describes the experiments that were carried out to find the best hyperparam-
eters for the ResNet model. All the models were trained over 200 epochs and evaluated
using the same validation set. Initially, the hyperparameters were first tuned for the
three-class setting, and subsequently for the two-class setting.

Learning Rate

First, the learning rate hyperparameter was tuned. Six distinct learning rates were
evaluated, and other hyperparameters were set to values deemed reasonable based on
preliminary experiments. The augprob hyperparameter was fixed at 0.2 and lfrozen was
set to 3.
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Figure 5.8: Figure presents a box plot of the weights assigned to the models fine-tuned on
the client’s local data. One weight was assigned to each of the 3 models in the ensemble,
and the weights summed up to 1.0.

Figure 5.9 illustrates the comparison of F1-scores for varying learning rates. The highest
F1-score of 0.5527 was achieved for the learning rate of 10−3. Notably, relatively high
scores were also achieved for the learning rates of 0.01 and 0.2. However, for the higher
learning rates, the learning curves were very noisy, which may indicate that the learning
rate is too high. In the case of lower learning rates (equivalent to or below 0.01), the
learning curves were more stable. Nevertheless, despite the initial decrease in validation
loss in line with training loss during the initial epochs, validation loss increased rapidly
later on, signalling overfitting. An exemplary learning curve for a learning rate of 10−3 is
presented in Figure 5.10.

Even though overfitting was visible in the training process, the resulting models demon-
strated a predictive power and achieved higher results than the baseline model.
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Figure 5.9: Comparison of F1-scores for different learning rates.

Figure 5.10: Learning curve for a run with a learning rate of 10−3 that signals overfitting
when there is too little image augmentation. The red curve illustrates the training loss,
and the blue curve illustrates the validation loss.

Image Augmentation

Given the high degree of overfitting observed, experiments were conducted to assess
if image augmentation could reduce it. Initially, a number of image augmentation
procedures were evaluated visually, as outlined in 4.2. Then different augprob and haug

settings were tried out. An in-depth description of the augmentation techniques can be
found in Section 4.2.
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Augmentation Augmentation Probability
Pipeline 0.5 0.8 1.0

Basic .5219 .5449 .5513
Strong .5021 .5375 .5634

Extended .5057 .5348 .5777

Table 5.7: Table shows an overview of the F1-scores across different settings of augmen-
tation. Every row of the matrix corresponds to a different augmentation type and every
column to a different augmentation probability. The F1 for each cell is calculated using
the results of experiments with three different learning rates, namely 10−4, 10−3, 10−2.

Table 5.7 presents an overview of the scores across different hyperparameter settings. Ev-
ery row of the matrix corresponds to a different augmentation methods and every column
to a different augmentation step probability. The F1 for each cell is calculated using the
results of experiments with three different learning rates, namely 10−4, 10−3, 10−2. It can
be observed that a higher augmentation probability leads to an improved performance of
the model. Setting the augmentation probability correctly is a more influential factor for
optimizing performance than the specific augmentation method. The Extended augmen-
tation method with the augmentation probability of 1.0 achieved the best results, with a
F1 of 0.5777.

The learning curves in the majority of the experiments indicated less overfitting in
comparison to those with minimal augmentation described in the Section 5.7.1. One of
the learning curves is displayed in Figure 5.11. It can be observed that the validation loss
begins to increase much later than in Figure 5.10. Based on those results, the Extended
augmentation method with an augmentation probability of 1.0 and a learning rate of
0.001 was selected for use in the remaining experiments.
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Figure 5.11: Learning curve of a run with a higher augmentation. The red curve illustrates
the training loss, and the blue curve illustrates the validation loss.

Number of Layers to Freeze

The final stage of the hyperparameter tuning process was to determine the optimal
lfrozen. Four different settings were experimented with, namely 0, 1, 2 or 3. Two different
learning rates were tried out: 0.01 and 0.001. Other ResNet hyperparameters were set to
those obtained in the previous section.

It was observed that freezing two or three layers resulted in underfitting. The model
with those settings achieved relatively low scores of 0.5143 and 0.4190 respectively. The
models with one and no frozen layers achieved a better performance, with F1-scores of
0.5549 and 0.6197 respectively. The model with no frozen layers yielded more stable
training and validation losses, leading to more accurate predictions. Figure 5.12 shows
the comparison between the learning curves of the models with three and zero frozen
layers. Training loss of the model with three frozen layers converged worse than the
model with no frozen layers, indicating underfitting. Thus, it was decided that no layers
will be frozen in the later experiments.

Considering the results, the following optimal hyperparameters were selected for the
three-class classification ResNet: the learning rate of 0.001, the Extended haug with an
augprob of 1.0 and lfrozen equal to 0.

Furthermore, it was observed that the results depend strongly on the random seed used
for the model training. Consequently, a considerable inter-model variability, leading to a
considerable variance in results, is to be expected.
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Figure 5.12: The figure presents a comparison between the learning curves of the models
with three and zero frozen layers. The model with zero frozen layers is displayed at the
top, while the model with three frozen layers is displayed at the bottom. The red curve
illustrates the training loss, and the blue curve illustrates the validation loss.

Two-class Classification

A similar hyperparameter tuning procedure was conducted for the two-class problem.
An analogous hyperparameter space was explored. Considering the results, the following
optimal hyperparameters were selected for the three-class classification ResNet: the
learning rate of 0.01, the Extended haug with an augprob of 1.0 and lfrozen equal to 0.

5.7.2 Federated Learning Hyperparameter Tuning
This section presents the results of hyperparameter tuning of the FL frameworks. All
the experiments evaluated the frameworks in the two-class classification scenario. The
optimal ResNet hyperparameters identified in the previous section were used across all
the subsequent experiments. FL was simulated using the flower library1 with the number
of clients set to 3.

Federated Averaging

The optimal hyperparameters search started with the identification of the optimal
nlocal epochs and proportion of clients per round for FedAvg. The hyperparameters search

1https://flower.ai/
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Proportion of
nlocal epochs nrounds Clients per Round F1-score

1 200 1.0 .6801
1 200 2/3 .6900
2 100 1.0 .6362
2 100 2/3 .6480
5 40 1.0 .6557
5 40 2/3 .6524
20 10 1.0 .6136
20 10 2/3 .6649

Table 5.8: The table shows an overview of the F1 across different hyperparameters
of FedAvg. For each set of the hyperparameters, the F1 of two runs with different seeds
is reported. Due to the observed high inter-model variability, the experiments were run
twice for each setting.

space was defined as described in the section 4.5.1. Similarly to the previous experiments,
a high degree of inter-model variability was observed. Consequently, the experiments
were run twice with different seeds for every hyperparameters’ setting. The results of the
search are displayed in Table 5.8.

The highest F1-score of 0.6900 was achieved by the run with nlocal epochs set to 1, and the
proportion of clients per round equal to 2/3. This score was only slightly worse than the
score achieved in the centralized approach. The experiments conducted with the higher
nlocal epochs yielded inferior results. The learning curves demonstrated that increasing
nlocal epochs resulted in a slower convergence of the loss.

The proportion of clients for each round set to 2/3 achieved better results and higher
validation loss stability than using all the clients for each round. Additionally, setting
this parameter to the lower value accelerates the training process. Thus, the proportion
of clients for each round will be set to 2/3 in the subsequent experiments.

Nevertheless; it is notable that despite some differences, the F1-score was similar across
all the hyperparameter settings.

FedProx

After identifying the optimal parameters for FedAvg, the optimal µ for the FedProx
framework was set. The best F1-score of 0.7029 was achieved for the µ of 10−5. This
setting applies the lowest penalty on deviations from the global model.

Federated Localized Ensemble Framework

The best results were achieved by the models with ltuning
frozen equal to 2. The mean validation

F1-score achieved by them was 0.5066, which is inferior to the results obtained by the
other FL frameworks. Nevertheless, it was still better than the baseline.
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Additionally, an experiment was carried out with ntuning set to 50. The achieved F1-score
was 0.5132, which was not significantly higher than the score of the run with ntuning

equal to 100. Nevertheless, this setting was selected, as it also speeds up training.
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CHAPTER 6
Discussion

6.1 Dataset
The dataset used for experiments is one of the most important parts of any ML project.
In this case, the experiments were performed on a real-world dataset from one institution.
The dataset was small, consisting of only 186 samples. It is difficult to collect a lot of
data for this particular disease because meningioma is rare and annotating the data is
a costly process. Thus, the results may not be generalisable to other datasets as the
data may not be representative. For example, the class distribution in the dataset differs
significantly from the population distribution.

The true label of each sample was obtained by biopsy, which is a very precise measurement.
However, the segmentations were labelled by only one clinician, so some errors are possible.

6.2 Comparison of Centralized Training and Federated
Learning in the IID scenario

The first experiment focused on comparing the models trained with FL to those trained
centrally. Even if the models trained using FL were slightly worse, the benefits of training
them on more data might outweigh the performance drop [72]. This is particularly true
for rare diseases, where each sample may be very difficult to obtain.

According to the experiments and statistical tests, FedAvg performed similarly to the
centralized training, indicating the potential of the method. However, the standard
deviation of the achieved scores was higher. This means that the models trained with FL
had higher inter-model variability. It was also visible on the feature importance maps
generated using Grad-CAM. Variability may happen due to the fact that the dataset
size is small. In general, FL is better suited to working on larger datasets, especially as
the method itself is designed to allow easier inter-institutional collaborations [72, 12].
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The FedProx framework achieved a lower score than the basic FedAvg, but the t-test
did not show the difference to be significant. As the main aim of this framework is to
reduce the impact of the Non-IID on the training, a slightly lower score could indicate
that the data in the first simulation was indeed IID, and there is no benefit to changing
the training process from the basic FedAvg.

In addition, the validation sets used to select the best model obtained during training
were too small and not representative enough. It was shown in the section 5.5 that
sometimes higher scores on the validation set correlated with lower performance on the
test set. This also means that the hyperparameter tuning procedure may have been
misleading, as the hyperparameters were chosen based on the score on the validation set.

6.3 Federated Learning in the Non-IID Scenario
The experiments showed that the prediction accuracy of the models decreased in the Non-
IID scenarios, which is expected [71]. It was most affected in the first scenario, where
the label frequency difference was simulated. The Non-IID scenario, which simulated the
imaging difference had little effect on the accuracy of the models. However, although the
performance of FL was affected,the FedAvg and FedProx frameworks achieved not much
worse results than the centrally trained models.

Apart from the accuracy drop, the inter-model variability increased. This shows that
in the Non-IID case the training is less predictable and there is a higher risk of poor
training convergence and overfitting.

In both Non-IID scenarios, the FedProx framework produced better results than the
other FL frameworks, although it was worse in the IID setting. This was the case even
though µ may not have been set optimally. It shows its usefulness in dealing with data
heterogeneity across the institutions.

The performance of the Federated Ensemble framework was significantly worse than
the other frameworks. It performed similarly in all the FL scenarios, but the prediction
accuracy was low most of the time. Also, the framework seemed to usually assign similar
weights to all models in the ensemble, so the weighting method did not bring much
benefit. However, the weighting method optimised for the client’s local data was not
evaluated.

Additionally, during the fine-tuning of the site-specific models, almost no improvement
of the validation loss was observed. This may be because the client-side dataset was
too small to train the model by itself. This is likely as the number of model parameters
is significant and therefore a training dataset in the range of 30 samples may not be
sufficient. In addition, the validation set available at each site was very small, often
around 8 samples. Therefore, in most cases it was unlikely to be representative of the
dataset. If this was the case, the selection of the best model during training was highly
biased and the calculation of global weights was almost impossible with the current
methodology. However, it could also be that the method itself simply does not work well.
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Although Federated Localized Ensemble did not produce satisfactory results, it does have
some advantages. First, an institution can join after the initial training by simply adding
its model to the ensemble. Also, institutions can set the weights of the ensemble models
to optimise the model for their local data distribution. Finally, the method requires lower
communication costs as there is no need to exchange models during the second part of
the training.

6.4 Performance of the Centrally Trained Classifiers
The models trained centrally showed predictive accuracy and managed to achieve higher
scores than the baseline model, both for two- and three-class classification, even though
the task of meningioma WHO grading classification is known to be very hard [23].
However, they still made a lot of mistakes.

The three-class classification task was more difficult for the classifier. The WHO grade 3
tumours were most difficult to identify correctly, while benign tumours were the easiest
to classify.

The automatic grading of meningiomas from MRIs has also been addressed in the
literature. The papers report different results, with accuracies ranging from 55% to
95% [42, 39]. Most studies evaluated the methods on small datasets, which is not
surprising as meningioma is a rare disease. Therefore, the datasets are likely to be very
different to the one used in this paper, for example in terms of label distribution, making
it difficult to compare accuracy between methods. This points to what probably was the
hardest issue in the thesis - the small size of the dataset. Given that the task is very
challenging [23], this small number of samples may have been enough to achieve very
good results. Given that the task is very challenging [23], this small number of samples
may have been enough to achieve very good results.

Some possible improvements to the method were identified. Firstly, the decision to use
the 3D data representation may have been detrimental. It resulted in a large number of
parameters in the model and a long training time. Also, cropping by the segmentation
mask often left a large empty space, which could be problematic for the model. Finally,
another transfer learning network could be tried.

In addition, some additional features could be added as input to the model, such as the
position of the tumour. Many studies also use multiple MRI sequences for classification to
give the model more information. For example, T1-weighted contrast-enhanced (T1CE)
sequences are often used [42, 39].
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CHAPTER 7
Conclusion and Future Work

The aim of the study was to investigate the possibility of classifying meningioma WHO
grading from MRI images, which is an important but challenging task. A DL model,
called ResNet, was used to approach the task. It was trained and evaluated in different
environments. The first environment, which was also the simplest, was centralised
training. It assumes that all the data can be collected on the same machine. Although
the accuracy of the model trained in this way was not very high, it showed predictive
accuracy. This suggests that ML has the potential to help in the non-invasive grading of
meningiomas. This was the case even though the dataset size was rather small.

In the medical field, small datasets are often an issue, making it difficult to develop
accurate models. This is also the case for meningioma, as it is a rare disease (like all
brain tumours), and the collection of large datasets often requires inter-institutional
collaboration. Therefore, the main focus of the thesis was FL. Experiments showed
that the models trained in this way performed similarly to centrally trained models.
This shows that training models using FL may be an interesting alternative to CDS for
meningioma grading classification, although this idea has not been widely explored in
the literature.

Nevertheless, the dataset used in the experiments was collected at one institution, so
the FL environment was simulated. Thus, the frameworks were evaluated in a simplified
environment. Therefore, the experiments were also conducted in two environments that
simulated heterogeneous data distribution across the FL clients. Although the simulation
was artificial, it was shown that the performance of the models was negatively affected.
Nevertheless, the models still produced reasonable results, not much worse than the
centrally trained models. In particular, the FedProx framework was promising and could
probably achieve even better results if more time was spent on hyperparameter tuning.

Moreover, a novel framework was proposed to address the negative impact of Non-IID
data across clients. However, it did not produce satisfactory results, mainly because it was
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7. Conclusion and Future Work

not well suited to the small amount of samples available at each client. Nevertheless, it
would be interesting to evaluate it on a larger dataset, as its design has some advantages.

As the models and the FL framework itself showed promising results, several future
directions were identified. First, the underlying DL model could probably be improved.
For example, additional input data, such as a different MRI sequence or tumour location,
could be used. Also, the 3D volumes could be transformed into 2D slices to reduce the
number of parameters in the model. Another idea would be to also test different DL
networks. Secondly, although the evaluation methodology addressed the small size of
the dataset to some extent, a larger dataset, preferably including data from several
institutions, would be recommended. Finally, other state-of-the-art FL frameworks could
be evaluated, especially those that address the issue of statistical heterogeneity.
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Overview of Generative AI Tools
Used

DeepL Write: It was used only to check and improve the grammar. It was not used
for any actual content generation.
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