
MSc Economics 

A Master’s Thesis submitted for the degree of 
“Master of Science” 

supervised by 

Multi-Attribute Search with General Value Function and

Jointly Distributed Attributes

Klaus Ritzberger

Amir Kazempouresmati

1325890

Vienna, 08.06.2015

Die approbierte Originalversion dieser Diplom-/ 
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich. 
 

http://www.ub.tuwien.ac.at 
 
 
 
 

The approved original version of this diploma or 
master thesis is available at the main library of the 
Vienna University of Technology. 
 

http://www.ub.tuwien.ac.at/eng 
 



MSc Economics 

Affidavit

I,

hereby declare 

that I am the sole author of the present Master’s Thesis, 

pages, bound, and that I have not used any source or tool other than those 

referenced or any other illicit aid or tool, and that I have not prior to this date 

submitted this Master’s Thesis as an examination paper in any form in Austria or 

abroad.

Vienna,

Signature 

Amir Kazempouresmati

Multi-Attribute Search with General Value Function and Jointly Distributed Attributes

22

08.06.2015



Contents

1 Introduction 3

2 Literature Review 5

3 The model 8

3.1 Batch Search . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.1 s = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.2 s = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1.3 s = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Sequential search and optimal stopping time . . . . . . . . . 10

3.3 Recursive formulation of the value function . . . . . . . . . . 10

3.4 From independent attributes to correlated attributes . . . . 11

3.5 Two extreme cases . . . . . . . . . . . . . . . . . . . . . . . 12

3.5.1 Perfect correlation of attributes with-in alternatives

and no correlation across alternatives . . . . . . . . . 12

3.5.2 Perfect correlation of attributes across alternatives

and no correlation with-in alternatives . . . . . . . . 14

3.6 Comparative statics . . . . . . . . . . . . . . . . . . . . . . . 14

3.6.1 Increasing the search cost c . . . . . . . . . . . . . . 15

3.6.2 Decreasing the marginal utility of the attribute n . . 17

3.7 Informativeness and Marginal Utility of an Attribute . . . . 17

4 Conclusion 19

References 20

1



Abstract

A usual assumption in the multi-attribute search literature is in-

dependent distribution of attributes. This assumption is necessary

for the tractability of the model. However, in reality many eco-

nomic search problems show some degree of correlation among the

attributes, i.e., by searching an attribute the decision maker not only

resolves the uncertainty with regards to that attribute but also up-

dates her beliefs about the distribution of other values. Furthermore,

unlike it is usually assumed the decision maker’s utility function does

not need to be linear in all attributes, in fact, in most cases it is sen-

sible to consider other functional forms. The search order is thus

decided based on the marginal utility and informativeness of each

attribute. In this thesis, I introduce a simplified search model where

the decision maker seeks to choose between two objects which are de-

scribed by their two attributes. These attributes are assumed to be

jointly distributed according to a distribution function known by the

decision maker. Moreover, I will try to analyze the optimal search

and stopping rule.
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1 Introduction

The economic search models have been around for a long time. However,

most of studies have focused on the search problems where the Decision

Maker (DM) is choosing a single attribute alternative. In these problems

the value of an alternative to the DM is characterized by its single attribute,

thus, the alternatives can be ranked from the best to worst. Although the

optimal stopping time in these problems under some mild assumptions can

be derived analytically, many interesting economic problems are dealing

with multi-attribute objects. For instance a DM who is searching in the

housing market to buy a property does not only consider the advertised

price as the only factor in her decision. Other attributes such as the age,

amenities, neighbors, and the growth plans for the neighborhood are also

decisive. Thus, other than the observed price, the DM needs to acquire fur-

ther information about the other attributes which can affect the desirability

of the property.

As the dimensionality of the problem increases in a multi-attribute

search problems, the simplifying assumptions are an important part of the

models in the literature. However, the unrealistic implications of these as-

sumptions are usually overlooked.

• Independent distribution of attributes: It is assumed that at-

tribute m of every alternative is independently drawn from distri-

bution Fm. Thus, the DM cannot acquire information about other

attributes m′ 6= m of an alternative by inspecting the attribute m.

However, the level of attributes are usually correlated. Higher rental

rate is often an indicator of desirability of a neighborhood and the

age of the building. In the model presented in this paper, it is only

assumed that the joint distribution of the attributes is known by the

DM.

• Hard-wired order of search An analogue of the optimal stopping

rule in the multi-attribute search problems is the trade-off between

searching deeply in different attributes of an alternative (depth) and

searching attributes of different alternatives (breadth). It is usual to

assume the order of search is hard-wired. For instance, the DM can

only search the attributes of an alternative in a predefined order and

she can only start searching the next alternative after rejecting the
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current one. The second assumption is known as ”No Recall”. Al-

lowing for recall, the DM selects the alternative with the maximum

expected payoff. However, If the optimal search rule is of a threshold

form (e.g. select an alternative if the observed values of attributes are

higher than a predefined threshold), the DM will never pick a previ-

ously searched and discarded alternative. As she immediately selects

the alternative which its searched attributes exceed the thresholds, she

will never use the recall option. If the search order is not hard-wired,

then the DM can revisit a previously searched alternative and further

search the remaining attributes in the light of the new information ac-

quired while searching the other available alternatives. In this paper,

the search order is decided by the DM and recall is allowed.

In this paper, I introduce a simple search problem with only two al-

ternatives, each described by its two attributes. Since the attribute levels

are not independent draws, the search order is not solely decided by the

marginal utility of each attribute, but the correlation with other attributes

is also important. Thus, the decision maker also considers the informative-

ness of an attribute about the other unsearched attributes. Further, two

special joint distribution function are considered, first, perfect correlation

with-in alternatives and no correlation across alternatives, and second, per-

fect correlation across alternatives and no correlation with-in alternatives.

In line with intuition, it is shown that when attributes of an alternative

are correlated, the DM tends to search across alternatives, and when the

attributes are correlated across alternatives, the DM tends to search with-in

alternatives.
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2 Literature Review

Different studies on multi-attribute search problem can be categorized based

on the model assumptions. The simple environment of single attribute

search problems such as the one in (Weitzman 1979), makes it possible to

have an analytic form for the optimal stopping time strategy. Weitzman

considers a model where the DM seeks to choose a single attribute alterna-

tive among n <∞ choices with a known and independent distribution. To

reveal the reward of each alternative a fixed cost c > 0 should be paid. He

shows that the optimal strategy is given by a reservation price rule. How-

ever, he acknowledges an unrealistic underlying assumption in his model

which is of great importance in my paper: correlated probability distribu-

tions. It is worth noting that even though recall is allowed in this model,

the reservation price rule implies that a previously rejected alternative will

never be recalled.

A variant of the multi-attribute search problem was used in (MacQueen

1964) for experimental analysis of a boundedly rational model, namely, the

directed cognition model. They introduce an N-good game where the sub-

jects are facing an m by n matrix where each row represents a consumption

good which is characterized by its n attributes. Even though, the payoff

of an alternative is simply the sum of the values of the selected row, the

attributes are ordered by their variability.

In a more recent study, Lim, Bearden, and Smith (Lim, Bearden, and

Smith 2006) focus on a problem where the DM faces a sequential search

problem without recall. For the sake of tractability they restrict their at-

tention to the case with independently distributed attributes. They further

assume the payoff function exhibits expectation-monotonic property, i.e., if

the expected alternative value under the observation vector x is lower than

the expected value under x′, then the realization of a common outcome x′′

does not make the former preferable to the latter. Thus, the model assume

value functions which are separable in attribute values. Moreover, the order

in which the DM encounters the alternatives is fixed. The fixed order and

no recall assumptions together rule out strategies such as attributes of two

alternatives parallel to each other. They finally propose a threshold policy

which is shown to be optimal for the certain class of value functions which

exhibit the expectation-monotonic property.

Shortly after, (Bearden and Connolly 2007) propose two new multi-
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attribute search problems. In one variant of the problem the DM pays

to learn the precise value of an attribute (continuous version) and in the

second variant she pays to learn whether the value of an attribute is higher

than a threshold chosen by her (threshold version). Again, the values of

attributes are independent draws from a known distribution. In line with

the necessary condition for the value function in (Lim, Bearden, and Smith

2006), the payoff of choosing an alternative is given by the sum its attributes.

Further, they assume all attributes have the same distribution, thus, the

order in which the attributes in each alternative are searched is irrelevant

in the optimal strategy. As the experimental portion of their paper focuses

on the over-searching with-in and across alternatives the above assumptions

seem harmless to the results of their experiments.

Sanjurjo in (Sanjurjo 2014a) provides the first partial characterization

of optimal sequential search in a variant of the problem where full recall

is allowed and no restrictions on search order is assumed. The value of an

attribute is assumed to be an independent random variable with a distri-

bution centered at zero. Moreover, values of an attribute is drawn from the

same distribution across the alternatives. Similar to (Klabjan, Olszewski,

and Wolinsky 2014), it is assumed that for every two attributes, the distri-

bution of one can be obtained by a symmetric mean-preserving spread of

the other one.

There is a fixed cost to be paid for searching an additional attribute,

however, the first attribute of all alternative can be viewed at no cost. The

author introduces 4 necessary conditions for optimal search rule. Two of

these conditions are trivial and follow from the assumption of rationality

and risk neutrality, namely, the DM does not pay to view an attribute

which has already been searched and upon termination, the DM chooses an

alternative which maximizes the expected payoff.

The two other conditions focus on the depth and breadth trade-off and

distribution of attributes. The first condition holds for the case in which

there are at least three alternatives which is different from the model consid-

ered in this paper. The first condition states that attributes in an alternative

cannot be searched if there is another alternative that has both a weakly

higher number of unsearched attributes and a weakly higher expected value,

with at least one of these relations strict.

The second condition exploits the ordering of attributes’ distributions
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with respect to the second order stochastic dominance relation. This con-

dition states that the value of searching an attribute with-in an alternative

which is second order stochastically dominated by all the other attributes

is the highest. This result is similar to the one from (Weitzman 1979). San-

jurjo analyzes the results of the experiment in and finds out that agents

behaviors show a systematic deviations from the partial optimality condi-

tions explained above. In particular, he finds evidence that people search

too deeply with-in too few alternatives and switch too adjacently between

alternative (Sanjurjo 2014a).

In his other paper, (Sanjurjo 2014b) tries to explain these deviations

from the optimal search rule by introducing the concept of Working Memory

Load. Consider an agent who is searching through different elements of

the alternative-attribute matrix. Clearly, after exhaustively searching all

the alternatives, her problem is simply to choose the alternative i with

the highest realized value Vi. Possibility of recall and exhaustive searching

reduce the problem of optimal search to a trivial one, where the order of

search does not play a role in the outcome. However, this will be different

if one considers partial search of a larger matrix.

An agent who seeks to choose an alternative with the highest value,

at each stage of the search process needs to remember the search history.

This includes location and values of the searched alternatives and attributes.

Moreover, if she is following a search order which specifically determines the

next alternative and attribute to be searched, she has to remember these

instructions. As the search proceeds the DM will experience an overload

of information needed to be remembered in the next stages, which in turn

gives rise to choice errors. The author manages to explain the choice errors

observed in (Sanjurjo 2014a) by the model of working memory load.
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3 The model

A decision maker (DM) seeks to maximize her expected utility of choosing

a multi-attribute object. An object xm is characterized by its n attributes,

xm1, xm2, . . . , xmn. Unlike the usual practice in the literature the attributes

are not assumed to be independent random variables. Thus, there exists a

joint density function f over the attributes of all available alternatives. In

this paper, I will focus on a simplified version of the search problem, where,

the DM decides between two alternatives which are characterized by their

two attributes. Moreover, it is assumed that the each attribute can take on

two values, high and low. Ex-ante the DM does not have any information

about the realized values of the attributes. However, at each search step,

she can reveal the value of one attribute by paying a constant cost c > 0.

After observing the value she can decide whether to stop the search and

choose the best alternative based on her current information, or to continue

the search by revealing the value of another attribute.

It is clear that the maximum number of search steps is bounded above

by total number of attributes, in which case, all the attributes are searched

exhaustively and the DM simply picks the alternative that maximizes her

utility. The lower bound on search steps is zero, in which case, the DM pick

an alternative solely based on her belief about the joint distribution. The

utility function of the DM who chooses to select alternative m is given by:

u(xm1, xm2, s) m ∈ {1, 2}, s ∈ {0, 1, 2, 3, 4},

where, s denotes the number of search steps undertaken by the DM prior

to picking the alternative. xmn denotes the realized level of the attribute n

of alternative m, where, xmn ∈ {L,H}. The utility function is increasing

in its first two arguments and decreasing in s. Further, I assume that one

attribute, say the second attribute, has a higher marginal utility,i.e., in

particular

u(ω,H, s)− u(ω, L, s) > u(H,ω, s)− u(L, ω, s),

for ω ∈ {H,L}. Thus, u(H,H, s) > u(L,H, s) > u(H,L, s) > u(L,L, s).

3.1 Batch Search

In this section, I consider a variant of the search problem. Consider a DM

who is given s search coupons. So, the DM need not consider the optimal
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stopping rule. For instance, for s = 1, the DM is allowed to search one

attribute and pick the best alternative after learning about the value of

that attribute. Let’s define u(xm1, xm2) ≡ u(xm1, xm2, 0).

3.1.1 s = 0

The DM picks an alternative which maximizes her expected utility with

respect to the joint probability density function P (x11, x12, x21, x22). The

expected utility of choosing alternative m is given by:

E[u(xm1, xm2)] =
∑

ω,ω′∈Ω

Pr(xm1 = ω, xm2 = ω′)u(ω, ω′), (1)

where, Ω = {L,H}. The DM will then choose xm′ , where,

m′ ∈ arg max
m∈Ω

E[u(xm1, xm2)].

3.1.2 s = 1

The DM first chooses an attribute of an alternative to be inspected. After

observing the level of the attribute she chooses one of the alternatives. Let

m be the alternative and n be the attribute chosen to be inspected. The

expected utility of the agent from inspecting the attribute xmn is given by:∑
ω∈{H,L}

Pr(xmn = ω) max

(
E[u(x11, x12)|xmn = ω];E[u(x21, x22)|xmn = ω]

)
.

Denote the above value by Vmn. The DM will choose m,n ∈ {1, 2} so

as to maximize Vmn.

3.1.3 s = 2

The DM first gets to observe the value of two attributes sequentially,i.e.,

she observes the level of the first chosen attribute (L or H), then she selects

another attribute and then chooses the (expected) utility maximizing al-

ternative. Suppose the DM chooses to observe the level of x11 which turns

out to be H. At this stage, she needs to choose among the three remaining

attributes. Let Vmn(x11 = H) denote the value of searching the attribute

xmn after observing the high value for x11.

Vmn(x11 = H) := E
[

max(E[u(x11, x12)|x11 = H];E[u(x21, x22)|x11 = H])

∣∣∣∣xmn

]
=

=
∑

ω∈{H,L}

Pr(xmn = ω|x11 = H) max
m∈{1,2}

{E[u(xm1, xm2)|x11 = H, xmn = ω]}.
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In particular, if she decides to reveal the level of x12, the exact utility

of choosing alternative 1 is known to her. Thus, the expected payoff of

choosing x12 is given by:

V12(x11 = H) =

Pr(x12 = H|x11 = H) max(u(H,H);E[u(x21, x22)|x11 = H, x12 = H])+

+ Pr(x12 = L|x11 = H) max(u(H,L);E[u(x21, x22)|x11 = H, x12 = L]).

The DM chooses m and n to maximize Vmn(x11 = H). Let V ∗(x11 = H)

to be the maximum value, then the value of choosing x11 in the first search

step is given by:

V11 = Pr(x11 = H)V ∗(x11 = H) + Pr(x11 = L)V ∗(x11 = L).

Therefore, in the first step DM chooses mn to maximize Vmn, where,

Vxmn =
∑
ω

Pr(xmn = ω)V ∗(xmn = ω).

3.2 Sequential search and optimal stopping time

In this section, the number of search steps undertaken by the DM is chosen

endogenously. To this end, at each decision node, the DM also has the option

to terminate the search and pick the optimal alternative. The terminal

nodes in the tree correspond to different search steps. If the DM decides to

pick an alternative without search, the payoff is similar to the batch-search

with s = 0.

3.3 Recursive formulation of the value function

Let A to be the set of all attributes, i.e., A = {x11, x12, x21, x22}, and S ⊆ A

to be the set of attributes not searched by the decision maker so far. Note

that s, the number of search steps undertaken by the DM so far is simply

|A \ S|. Define Vxmn(S, I) as the value of searching attribute xmn given the

set of not searched attributes S and the history of searched attributes I.

And let Ve(S, I) to denote the value of terminating the search given S and
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I.

Vxmn(S, I) = max

(
Pr(xmn = H|I)Ve(S \ {xmn}, I ∪ {xmn = H})+

+ Pr(xmn = L|I)Ve(S \ {xmn}, I ∪ {xmn = L});

Pr(xmn = H|I) max
x′∈S\{xmn}

(Vx′(S \ {xmn}, I ∪ {xmn = H})+

+ Pr(xmn = L|I) max
x′∈S\{xmn}

(Vx′(S \ {xmn}, I ∪ {xmn = L})
)
,

and,

Ve(S, I) = max(E[u(x11, x12, |A \ S|)|I],E[u(x21, x22, |A \ S)|I]).

The terminal nodes are reached either after a termination decision or

after exhaustively searching all attributes, i.e., S = ∅. At such nodes all

uncertainty is resolved and the agent simply picks the alternative which

gives her higher utility.

Consider a node where the DM decides whether to search the last at-

tribute or terminate the search, Therefore, for some m,n ∈ {1, 2}, S =

{xmn}, and let x̃m′n′ to be the realized and revealed level of the other at-

tributes for m′, n′ ∈ {1, 2}, m′ 6= m or n′ 6= n. Without loss of generality

let m = 2, n = 2, then:

Vxmn({xmn}, I) = E
[

max(u(x11, x12, |A|), u(x21, x22, |A|)|I ∪ {xmn}
]

= Pr(x22 = H|I) max(u(x̃11, x̃12, |A|);u(x̃21, H, |A|))+

Pr(x22 = L|I) max(u(x̃11, x̃12, |A|);u(x̃21, L, |A|)).

Given the value of all terminal decision nodes in the tree, value of any

other node can be computed. Note that there are two classes of decision

nodes in this tree. First, those nodes where the DM decides between con-

tinuation and termination of search. Second, nodes where the DM picks an

attribute to be searched. However, in the recursive formulation of the value

function the two decisions happen simultaneously.

3.4 From independent attributes to correlated attributes

The model in this paper allows for correlated attributes. Thus, the decision

maker updates her beliefs about the joint distribution after each search step.

In this section we compare a model where the attributes are independent
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draws from a known distribution with a model where the attributes are

correlated. Suppose that the first attribute of both alternatives is drawn

from distribution F1 and the second attribute is drawn from distribution

F2. Thus, Pr(xm1 = H) = p1 and Pr(xm2 = H) = p2 for m ∈ {1, 2}. The

value of terminating the search at the initial node is given by:

E[u(xm1, xm2)] =
∑

ω,ω′∈Ω

Pr(xm1 = ω, xm2 = ω′)u(ω, ω′)

Therefore, the value of no search in this model with no search is the same

as the one with correlation. However, if the DM decides to search the

attribute xmn for some m and n and terminate the search afterward, the

value of searching xmn for m = 1, n = 1 is given by:

V11 = E[max(E[u(x11, x12))];E[u(x21, x22)]|x11]

= Pr(x11 = H) max(E[u(H, x12)];E[u(x21, x22)])+

+ Pr(x11 = L) max(E[u(L, x12)];E[u(x21, x22)]).

However, the value of searching x11 with correlated attributes as discussed

in the batch search with s = 1 is given by:

Pr(x11 = H) max(E[u(H, x12)|x11 = H];E[u(x21, x22)|x11 = H])+

Pr(x11 = L) max(E[u(L, x12)|x11 = L];E[u(x21, x22)|x11 = L]).

Clearly, the uncorrelated case is derived as a special case of the general

model in this paper, where, conditioning on the level of the searched at-

tribute does not alter the distribution with respect to which the expectation

is taken.

3.5 Two extreme cases

To better illustrate the trade off between the depth and breadth of search

as a result of the joint distribution, in this section I consider two extreme

cases:

3.5.1 Perfect correlation of attributes with-in alternatives and

no correlation across alternatives

Consider a model with two alternatives and two attributes. Assume that

the two attributes of each alternative are perfectly correlated with each
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other. Therefore, given a positive search cost the DM will never pay to

observe more than one attribute of each alternative, i.e., the maximum

number of search steps is bounded above by 2. First, I will show the optimal

search rule when the attributes are positively and perfectly correlated ,i.e.,

Pr(xm1 = ω|xm2 = ω) = Pr(xm2 = ω|xm1 = ω) = 1 for m ∈ {1, 2} and

ω ∈ {H,L}. Let p1 := Pr(x1n = H) and p2 := Pr(x2n = H) and assume

p1 > p2.Then, if the agent decides to reveal the level of one attribute of the

alternative m, she will immediately choose the alternative m if the realized

level is H and select the other alternative if the level is L. Therefore, the

DM will never pay to view more than one attribute.

Lemma 1. When the attributes are perfectly and positively correlated with-

in alternatives and uncorrelated across alternatives, then the order of search

does not matter.

Proof. First, note that since attributes are perfectly correlated, the order of

search with-in an alternative is irrelevant. The expected payoff of searching

an attribute of the first alternative is given by:

p1u(H,H, 1) + (1− p1)[p2u(H,H, 1) + (1− p2)u(L,L, 1)], (2)

and the expected payoff of searching an attribute of the second alternative

is given by:

p2u(H,H, 1) + (1− p2)[p1u(H,H, 1) + (1− p1)u(L,L, 1)].

It immediately follows that the expected payoff of searching an attribute

of the first and the second alternatives are equal. As the order of search

with-in attributes does not matter, if it is optimal for the DM to search,

she can randomly choose any attribute from any alternative.

‘

If the DM decides to pick an alternative without any search effort, she

will choose the one with higher expected payoff (the first alternative in here)

which is given by:

p1u(H,H, 0) + (1− p1)u(L,L, 0). (3)

The following proposition fully characterizes the optimal search rule of the

DM in this extreme case.
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Proposition 1. In the above model, the DM picks the alternative with a

higher expected payoff without any search if

u(H,H, 1)− u(L,L, 1) <
p1

(1− p1)p2

[
u(H,H, 0)− u(H,H, 1)

]
+

1

p2

[
u(L,L, 0)− u(L,L, 1)

]
,

otherwise, she will randomly choose an attribute of any alternative to be

searched, and selects that alternative if the level is realized to be H and

selects the other alternative if the level is realized to be L.

Proof. By lemma (1) if the DM decides to search the order does not matter,

let’s say she will search an attribute of the first alternative. The expected

value of search is then given by eq.2 and if she picks the alternative with

higher expected payoff the value of no search is given by eq.3. Subtracting

(3) from (2) and setting it equal zero makes the DM indifferent between

search and no search. Thus, when the above inequality holds the DM ter-

minates the search in the initial node.

Thus, for a given distribution, if the marginal utility of attributes in-

creases, search becomes more attractive, and if the marginal disutility of

search increases, termination of search becomes more desirable. Moreover,

for a given utility function, if p1 or p2 are close enough to zero or one,

then the DM terminates the search in the initial step. Since u(L,H, s) >

u(H,L, s) under negatively and perfectly correlated attributes, the same

argument as above still holds.

3.5.2 Perfect correlation of attributes across alternatives and no

correlation with-in alternatives

In contrast with perfect correlation with-in an alternative, as the DM can

perfectly observe the level of an attribute in other attributes she will never

search attributes of more than one alternative. Therefore, by decreasing

the correlation with-in alternatives and at the same time increasing the

correlation across alternatives the DM maker tends to increase the breadth

of the search. In this version of the model, the DM will not undertake any

search as the two alternatives are equivalent.

3.6 Comparative statics

Suppose for a joint distribution function P: {L,H}4 7→ [0, 1], the opti-

mal search rule for the DM is to search attribute xmn for some xmn ∈ A
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and terminate the search and pick the best alternative regardless of the

observed level of xmn. This implies Vxmn(A, I) ≥ Ve(A, I), and xmn ∈
arg maxx∈A Vx(A, I). This condition guarantees that the DM decides to

(i) continue searching (ii) pick xmn to be searched. After the xmn’s level is

observed, the DM needs to decide whether to terminate the search or pick

another attribute to be searched, i.e. continue the search optimally. The

four possible policies are to:

(i) terminate the search for x̃mn = H or x̃mn = L

(ii) continue searching for x̃mn = H, terminate the search for x̃mn = L

(iii) continue searching for x̃mn = L, terminate the search for x̃mn = H

(iv) continue searching for x̃mn = H or x̃mn = L

3.6.1 Increasing the search cost c

Let’s increase the fixed search cost from c to c̃, c̃ > c under the two following

assumptions.

i) ũ(xm1, xm2, s) < u(xm1, xm2, s),

ii) ũ(xm1, xm2, s)− ũ(xm1, xm2, s+ 1) > u(xm1, xm2, s)−u(xm1, xm2, s+ 1),

where, ũ is the utility function of the DM under the search cost c̃. Thus, for

a fixed number of search steps the utility of choosing alternative m is lower

under higher search cost. Moreover, the loss of utility from an additional

search step is higher under a higher search cost.

Proposition 2. Consider a decision node where the DM decides between

termination and continuation of search and it can be reached with a positive

probability. If the optimal action of the DM at this node is continuation

of search, then there exists c̄ ≥ c for which the DM is indifferent between

continuation and termination. Further, for any search cost above c̄ the

optimal action is termination of search, and for any search cost below c̄ the

optimal action is to continue the search.

Proof. If the DM chooses to continue searching at this node under cost c

then Vxmn(S, I) ≥ Ve(S, I) for some m,n ∈ {1, 2}. Without loss of gener-

ality, suppose conditional on termination at this node (not necessarily an

optimal decision) the maximum expected payoff is achieved by selecting the
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first alternative, i.e., Ve(S, I) = E[u(x11, x12, |A \ S|)|I]. Increasing the

search cost from c to c̃ the decrease in the value of termination at this node

is bounded above by ψ ≡ E
[
u(x11, x12, |A\ S|)− ũ(x11, x12, |A\ S|)

∣∣∣∣I] < 0.

The value of continuing the search (given that the xmn is the optimal

decision at this node) is a linear combination of value of each terminal node

that can be reached with a positive probability after searching the attribute

xmn. Consider the terminal nodes that are reached after a termination

decision, the value of these nodes is of the form Ve(S \ W, I ∪ Ic) where

W 6= ∅ is the set of searched attributes before the termination decision,

and Ic is the set that contains the history of realizations of attributes x ∈
W . The decrease in the value of such terminal nodes is given by ψ′ ≡

E
[
u(x11, x12, |A \ (S \ W )|) − ũ(x11, x12, |A \ (S \ W )|)

∣∣∣∣I ∪ Ic]. Since

xmn ∈ W then |A \ (S \W )| > |A \ S| and by assumption (ii) it is easy to

show ψ > ψ′, i.e., the value of each of such terminal nodes is decreased more

than the termination before inspecting xmn. Similarly, the value of terminal

nodes which are achieved after exhaustively searching all the attributes is

also decreased more than the value of termination at the starting node.

Therefore, for some c′ > c, Vxmn(S, I) < Ve(S, I).

Proposition 3. Consider a Termination-Continuation(TC) decision node

n1 and another TC node n2 that is a successor of n1. Let c̄(n) denote the c̄

at node n as defined in proposition(2). If the optimal decision at both nodes

is to continue the search, then c(n1) > c(n2).

Proof. Let x ∈ S to be the chosen attribute at n1 and x′ ∈ S \ {x} to be

the chosen attribute at n2. Since, the optimal decision is to continue the

search at both nodes, then,

Vx(S, I) > Ve(S, I),

and,

Vx′(S \D, I ′) > Ve(S \D, I ′),

where, D ⊂ S is the set of searched attributes after the node n1 such that

x ∈ D and I ′ ⊂ I is the updated history such that either x = H ∈ I ′ or

x = L ∈ I ′. Also, given the search decision at n1 the optimal choice of

the DM was to search x while x′ was also available, the value of searching
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x′ at n1 under S and I should be less than or equal to value of searching

alternative x, i.e.,

Vx′(S, I) ≤ Vx(S, I),

As the DM continues the search the difference between the value of

continuing the search and termination of search decreases. The convexity

of disutility of search implies that as the search cost increases the value of

search at n2 decreases at a faster rate than the one at n1 therefore, the

threshold search cost at n2 is smaller than n1

3.6.2 Decreasing the marginal utility of the attribute n

For a given joint distribution, suppose that the marginal utility of the at-

tribute n is decreased, e.g.,for n = 1:

υ1(ũ) ≡ ũ(H,ω, s)− ũ(L, ω, s) < u(H,ω, s)− u(L, ω, s).

Let’s further assume Vx(A) < Ve(A) for all x ∈ A \ {xmn}, i.e., value of

searching any other attribute rather than xmn is less than the value of

terminating the search.

Conjecture 1. Suppose at a decision node, searching xm1 is the optimal

decision, then there exists a utility function ũ such that υ2(ũ) = υ2(u) and

υ1(ũ) < υ1(u) for which xm1 is not the optimal decision, i.e., the optimal

decision is to search another attribute or terminate the search.

3.7 Informativeness and Marginal Utility of an At-

tribute

In the 2 attribute model let’s assume the first attribute of each alternative

is the most informative. This means that upon knowing the level of the first

attribute, the DM knows the true level of the second attribute with a high

probability, say 1− ε. So, Pr(xm2 = ω|xm1 = ω′) = 1− ε for some ε > 0 and

ω, ω′ ∈ {H,L}. To further focus on the trade off between information and

marginal utility contribution, let’s assume Pr(xm1 = ω|xm2 = ω′) < 1 − ε
for all ω, ω′ ∈ Ω. This simply says the DM cannot ascertain the level of the

first attribute via searching the second attribute equally well.
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If there exists no correlation between the attributes of the first and the

second alternative, then:

Pr(x21, x22|x11, x12) = Pr(x21, x22).

At the initial decision node, the DM needs to decide whether to start

searching an attribute or terminate the search and take the status-quo ex-

pected utility maximizing alternative. The condition for a positive search

effort by the DM is given by:

max
m,n∈{1,2}

Vmn(A, ∅) > Ve(A, ∅),

where, Ve is given by:

Ve ≡ max(E[u(x11, x12, 0)],E[u(x21, x22, 0)])

Conjecture 2. Consider a model where the attributes are uncorrelated

across alternative and suppose at a TC decision node the DM’s optimal de-

cision is to search the attribute xm2 while xm1 ∈ S and Pr(xm2 = ω|xm1 =

ω′) = 1 − ε for some ε > 0 and ω, ω′ ∈ {H,L}. There exists an ε > 0 for

which the DM optimally searches xm1 instead of xm2.
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4 Conclusion

This paper departs from the recent works on multi-attribute search prob-

lems by relaxing the assumption that the attributes are independently dis-

tributes. Further, no specific functional form is assumed for the utility

function, however, few assumptions on the marginal utility of attributes

and dis-utility of search are needed for main results of the paper.

First, I looked at the batch search case where the DM is endowed with

a number of search coupons which gives her the possibility of searching an

attribute for free. In this version of the problem, the DM does not need

to decide on the optimal stopping time as the number of search steps are

given exogenously. Hence, the optimal order of search is the main focus of

this problem.

After, a multi-attribute search problem with endogenous stopping rule

is introduced. There are two classes of decision nodes in this tree, the

one where she decides whether to continue or terminate the search and

the one where upon a continuation she decides which attribute to be in-

spected. Moreover, a recursive formulation of the value function at each

node as a function of the realized history is given. Equally important, two

extreme cases of the joint distribution, namely, perfect correlation of at-

tributes across and with-in alternatives are discussed. The condition for

optimality of a search decision is given as a function of primitives of the

model.

Finally, the last section provides the reader with a comparative statics

analysis of a continuation-termination decision. It is shown that at each TC

decision node there exists a threshold search cost for which the DM chooses

to terminate the search. Moreover, these reservation costs are decreasing

for successor nodes.
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