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Passive microwave observations at Ka-band (36-37 GHz) have been widely
available for decades, but their full potential for land applications has been
hardly exploited. This study analyzed Ka-band observations at different spatial
scales. Between September andOctober 2019, a series of airborne flights carrying
L- and Ka-band instruments were conducted at the Yanco study area in
southeastern Australia. Complementary satellite-based passive microwave
data, including Ka-band observations from the Advanced Microwave Scanning
Radiometer 2 (AMSR2), were also collected. These data were compared against
LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) and
Landsat 8, as well as vegetation indices such as the Normalized Difference
Vegetation Index (NDVI). A strong correlation (R2 = 0.98) was found between
Ka-band vertically polarized brightness temperature from AMSR2 andMODIS LST
over a 12-year period. Airborne Ka-band observations similarly showed a strong
spatial correlation with Landsat 8 LST (R2 = 0.70), but only for areas with dense
vegetation (NDVI ≥ 0.6). At lower NDVI values, the observations became more
sensitive to soil surface characteristics, particularly soil wetness (soil moisture >
0.3 m3 m−3), causing up to 20 K drops in brightness temperature. The Ka-band
Vegetation Optical Depth (VOD) was derived using a radiative transfer model for
both satellite and airborne data. The satellite-derived Ka-band VOD closely
matched published VOD products from other frequencies, and the aircraft-
based VOD provided realistic spatial patterns over different landscapes. At the
satellite scale, a clear relationship between VOD and NDVI was observed. The
aircraft-based VOD signal was noisier and had a weak spatial correlation with
NDVI, although it demonstrated similar trends as at the satellite scale. These
results highlight the promising capability of Ka-band observations for land
applications, and its varying sensitivity across scales, with local variability being
more pronounced at higher spatial resolutions.
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1 Introduction

The use of passive microwave observations for the derivation of
land surface information has a long history. It started in the 1970s
with multiple field (Njoku and Kong, 1977; Wang et al., 1980), and
airborne (Schmugge et al., 1974) campaigns, with a strong focus on
soil moisture. This was further accelerated by the launch of the
Scanning Multichannel Microwave Radiometer (SMMR) on board
NASA’s Nimbus-7 satellite in 1978. In the 1980s, when data from
this satellite sensor became more accessible to researchers, multiple
algorithms and methods were developed to extract various land
surface properties. Owe et al. (1988) used SMMR observations in
combination with optical data to derive soil moisture over the US
Southern Great Plains. Chang et al. (1987) developed a
multifrequency approach to derive snow cover parameters, and
Becker and Choudhury (1988) introduced a passive microwave-
based vegetation index for detecting desertification. During this
period, the Ka-band (37 GHz) measurements of SMMR garnered
significant interest and were frequently used. This was particularly
true for vegetationmonitoring, and a series of studies were published
to demonstrate how this frequency could be used to characterize
vegetation dynamics (e.g., Choudhury, 1993; Choudhury et al., 1990;
Van de Griend and Owe, 1994).

In 1988, a field experiment was conducted in Northern Italy
involving radiometric measurements of different frequencies,
including Ka-band. The measurements were taken over bare and
vegetated soils from a ground-based platform and a helicopter
(Paloscia et al., 1993; Paloscia and Pampaloni, 1992). In this
experiment, the researchers concluded that the sensitivity of Ka-
band was too low for practical applications in vegetation and soil
moisture monitoring. Other experiments conducted in the 1990s in
Southeast France, using a radiometer mounted on a mobile crane
over a soybean field (Wigneron et al., 1993) and a dense wheat field
(Wigneron et al., 1995) demonstrated similar results. In these
experiments the Ka-band could only detect the initial stages of
crop growth and exhibited very limited sensitivity to soil moisture
(Calvet et al., 2011). These findings somewhat contradicted studies
in which satellite observations of the Ka-band were used for
vegetation characterization, suggesting a change in sensitivity to
moisture and vegetation at the Ka-band when moving to higher
spatial resolution.

Over the years, interest in using satellite Ka-band observations
for vegetation monitoring purposes began to wane. Its sensitivity to
precipitable water in the atmosphere and its rapid saturation over
dense vegetation cover made it a less attractive frequency for that
purpose. In the present, only the lower frequencies (<20 GHz) are
used for vegetation monitoring (Frappart et al., 2020; Moesinger
et al., 2019). The ability to simultaneously isolate vegetation
information, in terms of the Vegetation Optical Depth (VOD),
and soil moisture with a retrieval model (e.g., Jones et al., 2009;
Konings et al., 2016; Liu et al., 2011) played an important role, as it
enabled the derivation of vegetation characteristics from lower
frequencies, which are less sensitive to atmospheric conditions.
Nowadays, VOD has become a crucial microwave vegetation
parameter in a relatively short period of time. Numerous
examples illustrate the applications for VOD information,
including but not limited to, quantifying above ground biomass
(Rodríguez-Fernández et al., 2018), improving evaporation fluxes

(Kumar et al., 2020; Miralles et al., 2024), determining woody
encroachment (Andela et al., 2013), identifying water stress
(Konings et al., 2021), predicting tree mortality (Rao et al., 2019),
and estimating gross primary production (Teubner et al., 2019; Wild
et al., 2022).

A Ka-band-based VOD could complement existing VOD
products, because it has shown sensitivity to short vegetation in
semi-arid regions (Choudhury et al., 1990). It offers higher spatial
resolution than other microwave frequencies, and remains relatively
unaffected by radio frequency interference (Shen et al., 2019).
Furthermore, Ka-band observations have been continuously
available from satellites since 1978. With the anticipated launch
of ESA’s Copernicus Imaging Microwave Radiometer (CIMR), the
spatial resolution at Ka-band is expected to improve to 4.5 km
(Donlon, 2023). However, no study has yet utilized a Ka-band-based
VOD product.

Beyond well-established work on snow (e.g., Larue et al., 2018;
Tedesco et al., 2015; Wang et al., 2021), research on the Ka-band
frequency over land has focused more on the derivation of surface
emissivity (Prigent et al., 2006; 1997) and Land Surface
Temperatures (LST) (Duan et al., 2020; Holmes et al., 2009; Owe
and Van De Griend, 2001). While surface emissivity has primarily
been used to support atmospheric and cloud parameter retrievals
(Prakash et al., 2018), researchers have also employ it as input for
deriving LST (Prigent et al., 2016). Microwave observations are
particularly attractive for LST monitoring because they provide
reliable temperature estimates even during cloudy conditions
(Parinussa et al., 2016). Therefore, microwave observations are
considered a useful alternative when traditional approaches using
thermal infrared sensors fail due to unfavorable atmospheric
conditions. Various LST retrieval approaches have been
developed, ranging from simple linear relationships (Holmes
et al., 2009) to more sophisticated emissivity models (Prigent
et al., 2016) and multifrequency approaches (Sun et al., 2019). In
general, Ka-band based LST estimates achieving a Root Mean
Square Error (RMSE) ranging from 2 to 5 K (Duan et al., 2020).

Despite advancements in satellite observations, ground and
airborne experiments with Ka-band over land surfaces remain
rare. After the ground and aircraft experiments conducted in the
1980s and 1990s in Italy (Paloscia et al., 1993) and France
(Wigneron et al., 1993), only a handful of experiments have been
executed. Morland et al. (2003) studied the sensitivity of horizontally
polarized Ka-band aircraft data for soil moisture over Ontario
(Canada), while Montpetit et al. (2018) analyzed Ka-band
brightness temperature data from ground sensors over frozen
soils in Northeastern Canada. More recently, He et al. (2021)
analyzed the differences in Ku- and Ka-band observations for
various surfaces using a mobile platform at the Xianghe
observation site in China. Most of these studies focused on the
derivation of surface parameters rather than the changes in
sensitivity when transitioning from ground observations to
satellite scale. This gap can be addressed by leveraging a recent
series of Ka-band aircraft campaigns over a well-known study area
in Australia (Wu et al., 2019).

The goal of this study is to demonstrate the differences and
similarities in sensitivities to vegetation and temperature dynamics
between satellite and aircraft observations at Ka-band. This analysis
will provide key insights into the suitability of Ka-band for land
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monitoring at different spatial scales. To our knowledge a
comprehensive study in which both aircraft and satellite data of
Ka-band observations have been compared and analyzed has never
been conducted. Such a study can help improve our understanding
of the mismatch between the promising satellite-based vegetation
studies in the 1990s (e.g., Choudhury, 1993; Choudhury et al., 1990;
Van de Griend and Owe, 1994) and the more pessimistic results
from ground and aircraft studies (e.g., Paloscia et al., 1993;
Wigneron et al., 1993; Calvet et al., 2011).

To this end, satellite data, aircraft data, and additional ground
data have been collected for the Yanco research area in southeastern
Australia. The analysis began with Ka-band data from a satellite for
LST mapping, which was followed by an analysis using aircraft
observations. These observations were then compared to
independent LST datasets, and their sensitivity to moisture and
vegetation was investigated. Subsequently, the analyses shifted focus
to vegetation. Ka-band VOD was derived using a radiative transfer
model for both satellite and aircraft observations, and the results
were compared to other available vegetation datasets. Overall, this
study aims to demonstrate the importance of these airborne
campaigns in advancing the use of both existing and future
passive microwave satellite missions.

2 Study region and datasets

2.1 Study region

The airborne campaign was conducted over a 40 km × 40 km
region in the Yanco study region, located in the western flat plains of
the Murrumbidgee catchment. This semi-arid region has been
studied extensively in numerous other campaigns (e.g., Du et al.,
2022; Merlin et al., 2008; Panciera et al., 2014; Ye et al., 2021). The
vegetation cover is predominantly cropland and grassland, with
some forest patches in the eastern part of the region. A 3-week

campaign took place in September-October 2019 and was part of the
P-band Radiometer Inferred Soil Moisture Project (PRISM). PRISM
is a series of tower and airborne campaigns initiated in 2017. Data
from this campaign, referred to as PRISM-19 (Wu et al., 2019),
included airborne P-band, L-band and Ka-band observations, along
with additional ground-based measurements. Figure 1 presents the
location of the study area with a land use map in the background.
This land use map is based on the 50 mCatchment Scale LandUse of
Australia data (CLUM) from December 2020 (ABARES, 2021).

2.2 Datasets airborne campaign

2.2.1 Instruments on the aircraft
During the campaign, the aircraft carried a payload with

multiple scientific instruments (Wu et al., 2019). Here, only the
instruments used in this study are described. The Polarimetric
K-band Scanning Radiometer (PKSR) was used for the Ka-band
measurements. It is a horn-shaped radiometer with a center
frequency of 36.5 GHz (λ = 0.008 m) and a bandwidth of
1.8 GHz. It measured the brightness temperatures in both
vertical (V) and horizontal (H) polarizations, with a 3 dB width
of 3.9°. The Polarimetric L-band Multibeam Radiometer (PLMR)
was also used in this study and measured brightness temperatures in
both V and H polarizations at a center frequency of 1.413 GHz (λ =
0.212 m) with a bandwidth of 24 MHz. The PLMR used a single
receiver and measured at approximate incidence angles of 7°, 21.5°,
and 38.5°. Warm and sky calibration were conducted for both the
PLMR and PKSR before and after the flights, and water calibration
was performed over Lake Wyangan during each flight.

2.2.2 Flights
Multiple flight strategies with various purposes were executed

during the PRISM-19 campaign. For this study, three strategies were
utilized. The first strategy, referred to as DS (Down Scaling)

FIGURE 1
Location of the Yanco study region in southeastern Australia, with the areas captured by the various flights represented in different colors. The land
use map in the background is based on the 50 m CLUM data (ABARES, 2021).
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according to the original workplan (Wu et al., 2019), providedmulti-
angle observations of the Ka-band from the PKSR over the entire
40 km × 40 km region. The flights were conducted at an altitude of
approximately 3,100 m (ASL), resulting in 3 dB footprints ranging
from 200 to 400 m. For this study, the L-band PLMR observations
from these DS flights were also utilized. These observations had
larger footprints, ranging from 700 to 1,600 m. Five DS flights were
included in this study to isolate and analyze the vegetation
information from the Ka-band observations.

The second strategy, called SM (Soil Moisture) consisted of
seven useful flights. These flights employed a fixed incidence angle of
15° and were conducted at a very low altitude of 300 m (ASL),
resulting in 3 dB footprints ranging from 10 to 14 m. The SM flights
were performed early in the morning to align with the overpass time
of the Soil Moisture Active Passive (SMAP) satellite mission.

The third strategy used in this study was called MA (Multi-
Angle). Although its name suggests otherwise, the Ka-band
observations were taken at a fixed angle of 21°. The 7 MA flights
took place on the same days as the SM flights but occurred later in
the day. These flights were operated at a slightly higher altitude of
approximately 430 m (ASL), resulting in 3 dB footprints of 20–24 m.
Both the SM and MA flights were used in the LST analysis.

Table 1 provides a summary of all the flights used in this study
and more details of this flight campaign can be found in Wu
et al. (2019).

2.2.3 Ground sampling
Surface soil moisture sampling was measured at a depth of

0–5 cm was done using the Hydroprobe Data Acquisition System
(HDAS) (Merlin et al., 2007). Measurements were taken across
multiple agricultural fields at 50 m spacing over a 3-week period
between 29 September and 18 October 2019. Ancillary information,
including irrigation and vegetation type was collected alongside the
soil moisture measurements. The soil moisture data was used in this
study to analyze the sensitivity of the PKSR Ka-band observations to
variations in moisture under different types of vegetation cover.

2.3 Satellite datasets

2.3.1 AMSR2
AMSR2 Level 3 (v.2.2, standard product) 0.25-degree gridded

vertically and horizontally polarized brightness temperatures (Maeda
et al., 2016) were collected for the study region, centered at 34.8528°S,
146.2276°E. The instrument is a conical scanning passive microwave
radiometer onboard the Global Change Observation Mission–Water
(GCOM-W) satellite platform of the Japan Aerospace Exploration
Agency (JAXA). The satellite operates at an altitude of 700 km, with
an ascending equator crossing time of 1:30 p.m. and a descending time
of 1:30 a.m. Both the ascending and the descending observations of the
36.5 GHz channel were used. This frequency has a bandwidth of
1,000 MHz, a 3 dB ground resolution of 7 km × 12 km, and a
radiometric resolution and sensitivity (i.e., Noise Equivalent delta
Temperature NEdT) of 0.6 K. The instrument has an incidence
angle of approximately 55°. Data for the period from July 2012 to
October 2024 were obtained from the JAXA data portal (JAXA, 2024).

2.3.2 MODIS
Vegetation, LST and atmosphere products from the Moderate

Resolution Imaging Spectroradiometer (MODIS) instrument on the
Aqua spacecraft were used as reference data in this study. Daily day
and night 1 km LST (MYD11A1 v6.1), 250 m NDVI
(MYD13Q1 v6.1), and 1 km 16-day NDVI (MYD13A2 v6.1)
products were obtained from the Application for Extracting and
Exploring Analysis Ready Samples (AppEEARS, 2024) using the
boundaries of the study region. Daily 1° total column precipitable
water vapor (MYD08_D3 v6.1) and daily mean liquid cloud water
(MYD08_D3 v6.1) were collected from the Earth Observing System
Data and Information System (EOSDIS, 2024) for the period
spanning July 2012 to October 2024.

2.3.3 Landsat
Two Landsat 8 images were used in this study. The Landsat

scenes of October 2 and 18 October 2019, with path 93 and row 84,

TABLE 1 Summary of the flights used in this study. The same flight IDs as described in Wu et al. (2019) are used, and the location of these flights is shown in
Figure 1.

PRISM-19 ID Date/Time(local) Incidence angle 3 dB footprint size Altitude

DS 01/10: 10:00–12:18 h
03/10: 07:55–10:08 h
10/10: 10:08–12:07 h
12/10: 06:50–09:02 h
15/10: 07:17–09:29 h

5°–45° (PKSR)
7°,21.5°,38.5° (PLMR)

200–400 m (PKSR)
700–1,600 m (PLMR)

3,100 m

SM 02/10: 05:56–08:21 h
04/10: 05:53–08:11 h
07/10: 05:42–08:10 h
09/10: 05:49–08:08 h
11/10: 05:36–07:47 h
16/10: 05:43–07:55 h
18/10: 05:43–08:04 h

15° (PKSR) 10–14 m (PKSR) 300 m

MA 02/10: 10:39–13:06 h
04/10: 09:32–11:54 h
07/10: 09:52–12:36 h
09/10: 09:50–12:16 h
11/10: 08:58–11:16 h
16/10: 09:08–11:31 h
18/10: 09:55–12:39 h

21° (PKSR) 20–24 m (PKSR) 430 m
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were selected. The overpass time of these images was approximately
10:08 a.m. local time. NDVI was calculated from the Level 2 surface
reflectance estimates of the red band (Band 4) and the near-infrared
band (Band 5), with a spatial resolution of 30 m. LST was derived
from the thermal infrared Band 10, which has a resolution of 100 m.
These two Landsat scenes only cover the area of the SM and MA
flights. All data was obtained from the Earth Explorer data portal
(Earth Explorer, 2024).

2.3.4 Satellite derived VOD and soil moisture
Moreover, VOD products were obtained from the VOD Climate

Archive v2 (VODCA v2) dataset (Zotta et al., 2024a). Data for the
study region, centered at 34.8528°S, 146.2276°E were collected. The
data were available at a daily temporal resolution and a spatial
resolution of 0.25°. Single frequency VOD data was extracted from
this data set and made available for this study. AMSR2-based VOD
data from C-, X-, and Ku-band were extracted for the period from
July 2012 to December 2021. For L-band, the SMAP-based VOD
data was extracted from the same dataset. For this frequency data
were obtained for the period from April 2015 to December 2021.
VOD was derived using the Land Parameter Retrieval Model (Owe
et al., 2008; van der Schalie et al., 2017). Data from VODCA v2 are
freely accessible and described in detail by Zotta et al. (2024b).

Soil moisture time series from the same period were extracted
from the European Space Agency Climate Change Initiative Soil
Moisture (ESA CCI SM) data record (Dorigo et al., 2017; Gruber
et al., 2019). ESA CCI SM (v08.1) was downloaded from the
Comprehensive Environmental Data Archive (CEDA, 2024) and
for this study, only the passive microwave retrievals from SMAP at
0.25° resolution were used.

3 Methods

Passive microwave Ka-band observations over land, as derived
from the satellite and airborne platform, were investigated. Various
statistical techniques were applied and a radiative transfer model
was used for the extraction of the vegetation signal from the original
Ka-band observations. In the following sections, both the model and
the statistical analysis are described.

3.1 Radiative transfer model for Ka-band

The brightness temperatures measured by microwave
radiometers can be simulated by radiative transfer models. Here,
the updated model for Ka-band prediction introduced by Holmes
et al. (2009) was used, which is based on a commonly used
description of microwave emission of vegetation cover (Mo et al.,
1982). Accordingly, the brightness temperature as measured at the
satellite can be described by

TB,P � TB,extra + TB,P,au + Γa Γv 1 − Rrs,P( )TS + 1 − Γv( ) 1 − ω( )Tv[
+ 1 − Γv( ) 1 − ω( )TvRrs,PΓv + TB,P,adRrs,PΓ2v] (1)

where TB,extra is the extraterrestrial background cosmic radiation.
This is estimated to be 2.7 K and is independent of frequency and
incidence angle (Ulaby et al., 1981). TB,P,au and TB,P,ad are the

upward and downward atmospheric brightness temperature at
polarization P ([V] or [H]) and Γa is the atmospheric
transmissivity. Γv is the vegetation transmissivity, ω is the single
scattering albedo of the vegetation and Rrs,P the rough surface
reflectivity. The rough surface reflectivity (Rrs,P) is equal to
1 minus the rough surface emissivity (ers,P). TS is the soil
temperature and Tv the vegetation canopy temperature, both
in Kelvin.

The rough surface reflectivity can be derived from the Fresnel
relationships in combination with a roughness model. Fresnel
describes the smooth surface reflectivity (Rss,P), as a function of
the dielectric constant of the soil. The dielectric constant of the soil is
directly linked to soil moisture and can be modelled with a dielectric
mixing model (e.g., Calvet et al., 1995; Park et al., 2019; Wang and
Schmugge, 1980). The rough surface reflectivity (Rrs,P) can be
calculated from the smooth surface reflectivity (Rss,P), by
correcting for the effect of roughness using the Q parameter for
cross polarization and h for the roughness height (Wang and
Choudhury, 1981) according to

Rrs, V[ ] � QRss, H[ ] + 1 − Q( )Rss, V[ ]( )exp−h cos u( ) (2)
Rrs, H[ ] � QRss, V[ ] + 1 − Q( )Rss, H[ ]( )exp−h cos u( ) (3)

where u is the incidence angle.
The atmospheric transmissivity is a function of the zenith

atmospheric opacity (τa) and incidence angle (u) and can be
described by

Γa � exp−τa sec u( ) (4)

The atmospheric opacity τa is a function of atmospheric water
content and can be estimated using the approximation of
Choudhury et al. (1992) where the τa of Ka-band was described
as a function of precipitable water (V) and cloud liquid water
content (L) in mm according to

τa � 0.030 + 0.0022V + 0.155L (5)
Moreover, TB,P,au is a function of the effective air temperature

(Te) and Γa according to

TB,P,au � Te 1 − Γa( ) (6)
while TB,P,ad is equal to the sum of TB,P,au and the cosmic
background radiation TB,extra. The vegetation transmissivity is a
function of VOD (τv) and the incidence angle (u) such that

Γv � exp−τv sec u( ) (7)

The VOD (τv) can be derived using the analytical solution of
Meesters et al. (2005) as

τv � cos u( ) ln ad +
�����������
ad( )2 + a + 1

√( ) (8)
where

a � 1
2

ers, V[ ] − ers, H[ ]( )
MPDI

− ers, V[ ] − ers, H[ ][ ] (9)

and

d � 1
2

ω

1 − ω( ) (10)
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The Microwave Polarization Difference Index (MPDI) is
defined as

MPDI � TB, V[ ] − TB, H[ ]
TB, V[ ] + TB, H[ ]

(11)

The VOD (τv) is presented in numerous studies and Frappart
et al. (2020) provides a review of this complex parameter. It is
determined by the dielectric properties of the vegetation layer as well
as by the vegetation architecture (e.g., density, structure and
orientation) (Grant et al., 2016). When describing the VOD as a
measurement of attenuation of radiation by the vegetation it can be
expressed as

τv � Hv
4π
λ

��
ε″v

√( ) 1
1 − ω

(12)

where is Hv is the height of the vegetation layer in m, λ the
wavelength in m, and ε″v the imaginary part of the dielectric
constant of the vegetation layer. The dielectric constant of the
vegetation is strongly related to the vegetation water content.

For observations close to the Earth surface (i.e., ground
observations, or observations from an aircraft) the microwave
signal does not have to cross the entire atmosphere. Therefore,
for the aircraft observations, Equation 1 can be simplified to

TB,P � Γv 1 − Rrs,P( )TS + 1 − Γv( ) 1 − ω( )Tv

+ 1 − Γv( ) 1 − ω( )TvRrs,PΓv + TB,P,adRrs,PΓ2v (13)

3.2 Statistical analysis

The Ka-band satellite and aircraft data were analyzed to
reveal their sensitivity to temperature and vegetation at
different scales. First, the vertically polarized Ka-band satellite
brightness temperatures were compared to MODIS LST to better
understand their relationship for the study region. Regression
analyses were applied to quantify this relationship, and the
influence of vegetation and moisture was investigated using
MODIS NDVI and SMAP soil moisture. A similar analysis
was then conducted on the aircraft data, using LST and
vegetation (NDVI) data from Landsat, and ground
observations of soil moisture from HDAS. Only the SM and
MA flights were used because these flights produced the highest
spatial resolution and had similar overpass times to Landsat and
the ground observations. By using this two-step approach, the
similarities and differences in sensitivity between the Ka-band
observations from the aircraft and those from the satellite were
demonstrated.

Second, the VODwas calculated using a radiative transfer model
for Ka-band as described in the previous section using Equation 1 –
13. The VODwas calculated for both the satellite and aircraft data to
isolate the vegetation signal. The Ka-band VOD at satellite scale was
compared to VOD satellite products from other frequencies,
including L-, C-, X-, and Ku-band. These single frequency VOD
products were extracted from the VODCA v2 dataset. In addition,
NDVI maps from MODIS were also included in this comparison
analysis and regression analyses were applied to obtain the
relationship between the different data products.

The aircraft Ka-band VOD was derived from the observations
with an incidence angle between 35° and 45° degrees and compared
to MODIS NDVI maps. Here, only the observations from the DS
flights were used, as these flights provided observations at angles
greater than 35°. These wider angles impose a constraint on
providing a realistic VOD derivation using the analytical solution
of Meesters et al. (2005), as described in Equations 8–11. In addition,
the aircraft Ka-band observatons were also compared to L-band
aircraft observations (PLMR) to assess the change in vegetation
sensitivity across frequencies. These statistical analyses allow for a
better assessment into the usability of the Ka-band observations for
land monitoring applications at different scales.

4 Results

4.1 Land surface temperature (LST)

4.1.1 Satellite observations
The Ka-band vertically polarized brightness temperatures as

measured by the AMSR2 satellite instrument were compared to the
daily LST data from MODIS for the Yanco study region for the
period from July 2012 to October 2024. Both instruments were on
the same platform (Aqua), which made it possible to provide
collocated measurements on both the ascending (day) and
descending (night) nodes. A regression analysis with these two
categorical covariates was applied. This resulted in an R2 of 0.98,
for 3,175 observations with a Root Mean Square Error (RMSE) of
2.1 K. The Standard Error of the estimated LST (SE) is 2.2 K for the
ascending and 2.1 K for the descending observations.

Figure 2 provides a graphical presentation of this relationship. A
regression analysis with categorical covariates was also applied to
variations in vegetation and moisture using MODIS NDVI and
SMAP soil moisture, respectively (not shown). The average soil
moisture value of SMAP was 0.19 m3 m−3 with a standard deviation
of 0.10 m3 m−3 for this region. The average MODIS NDVI was
0.43 with a standard deviation of 0.14. Despite the variability in both
soil moisture and vegetation, none of these combinations resulted in
a p-value <0.05 indicating that these categories were not able to
significantly differentiate the linear relationship between LST and
the vertically polarized Ka-band observations.

4.1.2 Aircraft observations
In Figures 3, 4, the vertically polarized brightness temperatures

measured by the PKSR were mapped for each individual flight.
Figure 3 presents the high-resolution SM flights conducted early in
the morning, while Figure 4 depicts the MA flights. For visualization
purposes the individual 3 dB footprints were enlarged by a factor of 5
(i.e., to 75m) for the SM flights, and a factor of 3 (i.e., to 75m) for the
MA flights. The images are cut-outs of the SMAPEX site as shown
in Figure 2.

Both figures show consistent spatial clusters, with low brightness
temperature values over agricultural/vegetated sites and higher
values over sparsely vegetated regions. In Figure 3, a clear
temperature trend is observed from west to east, corresponding
to a LST increase during the flight as the day progressed. This trend
is less pronounced in the MA flights, where the warming gradient is
much smaller as compared to the early morning flights.
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Additionally, low brightness temperature values are observed in the
southwestern part of both the SM and MA flights over the bare
agricultural fields. These low values start to appear around October
4 and become more evident from October 9 onwards, likely due to
irrigation events in these areas.

The vertically polarized Ka-band observations from the MA
flights on October 2 and October 18 are selected and compared to
LST and NDVI from Landsat 8. The Ka-band observations were
detrended over time to account for the temperature increase during
the flight. Only stable observations (i.e., those recorded at a flight
altitude between 420 and 440 m) were included, and the data were
limited to a 1.5-h time frame relative to the Landsat overpass.
Observations over water bodies and drainage canals were
excluded from the analysis.

Figure 5 presents four scatterplots that clearly illustrate the
impact of vegetation on the spatial temperature pattens. For four
NDVI bins (i.e., < 0.2, 0.2–0.4, 0.4–0.6 and ≥0.6) the relationship
between Ka-band and LST was plotted. For the lowNDVI values (up
to 0.6) the scatter is high with low R2 values ranging from 0.24 to
0.43 as shown in Figures 5A–C. Within this NDVI range the
vertically polarized Ka-band observations appeared to be more
sensitive to surface and soil characteristics. However, with higher
NDVI values the Pearson correlation increases, reaching an R2 of
0.7 for locations with Landsat NDVI ≥0.6 as illustrated in Figure 5D.
Table 2 provides the details of this analysis including the evaluation

metrics of the individual days and the metrics where both
days are used.

The Ka-band vertically polarized brightness temperatures were
also compared to soil moisture. Observations from SM flights were
used for this analysis due to their high spatial resolution and their
overpass time being close to the in situ soil moisture measurements.
Soil moisture was measured at 50 m intervals, so only data pairs with
a maximum distance of 25 m between the soil moisture
measurements and the aircraft observations were selected.
Furthermore, only observations within a 2-h time frame of the
aircraft overpass were included, based on the assumption that soil
moisture changes were negligible within this period.

It was assumed that the Landsat NDVI image from October 2 was
representative of the flights conducted onOctober 2, 4, 7, and 9, while the
Landsat NDVI image from October 18 was considered representative of
the flights on October 11, 16 and 18. Data pairs were divided into two
groups based on the NDVI values: one group with NDVI <0.6 and
another with NDVI ≥0.6. The brightness temperatures were plotted
against the measured soil moisture (Figure 6).

The results indicate that when NDVI values were high, the
vertically polarized brightness temperatures showed limited
sensitivity to soil moisture. Conversely, when NDVI values were
low, the brightness temperatures exhibited a stronger sensitivity to
soil moisture. Particularly wet soils (soil moisture >0.3 m3 m−3) can
cause a reduction in brightness temperatures of approximately 20 K.

FIGURE 2
Comparison between vertically polarized Ka-band observations from AMSR2 and MODIS LST for the ascending (day) and descending (night)
observations.
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4.2 Vegetation optical depth (VOD)

4.2.1 Satellite observations
The VOD for the AMSR2 Ka-band satellite observations was

calculated using the radiative transfer model described in Section
3.1. Only the descending (nighttime) observations were used to align
with the available VODCA v2 products, which are soley based on
descending observations (Zotta et al., 2024b). Soil temperature (Ts)
was estimated from vertically polarized Ka-band brightness
temperatures using the equation for descending observations as
provided in Figure 2 in Section 4.1. At this time of day, the
vegetation canopy temperature (Tv) was assumed to be equal to
the soil temperature. The atmospheric opacity (τa) was
parameterized using the MODIS precipitable water vapor and
liquid cloud water products, resulting in an average opacity of
0.075 +/− 0.020. The effective air temperature (Te) was calculated
as a direct function of Ts, based on the formulation of Bevis et al.
(1992). A surface roughness height (h) of 0.1, a cross-polarization

parameter (Q) of 0.1 and a single scattering albedo (ω) of 0.03 were
used. These three parameters were iteratively derived to achieve full
convergence between the simulated and observed brightness
temperatures. The Ka-band VOD was subsequently calculated
using Equation 8 based on Meesters et al. (2005). Table 3
provides a summary of these different input parameters.

The derived AMSR2 VOD was compared to the VODCA
v2 products (Zotta et al., 2024b) at various frequencies based on
AMSR2 and SMAP. The results of this comparison are presented in
Figure 7. The Ka-band VOD exhibits a strong linear relationship
with the Ku-, X- and C-band VOD with an R2 decreasing from
0.79 to 0.69 as the frequency decreases. The L-band VOD, derived
from the SMAP satellite, showed a poor correlation with the Ka-
band VOD, with an R2 of only 0.14. The range of VOD at Ka-band
was approximately between 0.4 and 1.3. This range, as well as the
absolute VOD values, decreased for lower frequencies. For Ku-band,
the range is between 0.2 and 0.9, while at L-band, the range
narrowed further to between 0 and 0.2.

FIGURE 3
An overview of the Ka-band PKSR observations during the SM flights used in this study. The footprint size is increased by a factor of five (i.e., to 75 m)
for visualization purposes, with the background being a Landsat 8 NDVI image from 18 October 2019.

Frontiers in Remote Sensing frontiersin.org08

de Jeu et al. 10.3389/frsen.2025.1574072

https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org
https://doi.org/10.3389/frsen.2025.1574072


A time series of the VOD products is presented in Figure 8,
alongside the NDVI time series for comparison. The 1 km, 16-day
NDVI data from MODIS were averaged over the study region to
align with the spatial resolution of the VOD data. The AMSR-2
based VODs span a period over 12 years (2012–2024), while the
L-band VOD from SMAP begins in 2015 corresponding to the
satellite’s launch. The time-series revealed strong seasonal and
interannual variability in both VOD and NDVI. The Ka-, Ku-,
X-, and C- band VOD demonstrated strong temporal similarities
and matched well with NDVI variability. However, the L-band VOD
appeared noisier and less responsive to vegetation variations, as it is
more sensitive to non-green tissues like branches and trunks
(Frappart et al., 2020).

Despite the strong similarities, small phase shifts in seasonality
between the NDVI and VOD were observed. These shifts have been
found in multiple studies (e.g., Jones et al., 2012; Andela et al., 2013;
Grant et al., 2016) and reflects the biophysical differences in the

phenology parameters measured by the two different vegetation
proxies (Jones et al., 2011). The NDVI is synergistic with vegetation
greenness, whereas VOD is more related to vegetation water content
and biomass. Therefore, both may follow a different seasonal cycle
depending on vegetation type and weather conditions.

Figure 9 compares all VODs to NDVI, with both Pearson (R2)
and Spearman rank (R2s) correlation coefficients to account for
potential non-linear relationships. The Ka- and Ku-band VOD yield
similar statistics with R2svalues of 0.52 and 0.53, and R2 values of
0.45 and 0.46, respectively (Figures 9A,B). The highest correlations
were observed for the X- and C-band VOD, with R2s values of 0.58
and 0.57, respectively (Figures 9C,D). For NDVI values above 0.4,
the spread in data points increased, and maximum VOD values
appeared to saturate. At L-band, the correlation between VOD and
NDVI was weak, with an R2 value of 0.1 and a R2s value of 0.14
(Figure 9E). At this frequency, the spread in data points remained
consistent across the entire NDVI range.

FIGURE 4
An overview of the Ka-band PKSR observations during theMA flights used in this study. The footprint size is increased by a factor of 3 (i.e., to 75m) for
visualization purposes, with the background being a Landsat 8 NDVI image from 18 October 2019.
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FIGURE 5
Four scatterplots of the aircraft vertically polarized Ka-band observations from PKSR and LST from two Landsat 8 (L8) images. The black dots represent the
image of 2October and the red dots the image of 18October. In plot (A) all datawhere Landsat NDVI <0.2 are plotted, (B)only datapointswhereNDVI is between
0.2 and 0.4, (C) where NDVI is between 0.4 and 0.6 and (D) where NDVI ≥0.6. The statistics of this analysis are summarized in Table 2.

TABLE 2 Summary of the linear regression analysis between vertical polarized Ka-band observations from the MA flights and LST from Landsat 8 for four
different NDVI bins.

NDVI bins 02/10 18/10 Both days together

<0.2 y = 0.15 x + 268.52
R2 = 0.08, SE = 1.7 K
N = 267

y = 0.38 x + 196.41
R2 = 0.33, SE = 2.1 K
N = 551

y = 0.48 x + 167.02
R2 = 0.43, SE = 2.4 K
N = 818

0.2–0.4 y = 0.21 x + 247.57
R2 = 0.24, SE = 1.4 K
N = 1,498

y = 0.24 x + 235.15
R2 = 0.22, SE = 1.6 K
N = 4,078

y = 0.41 x + 185.26
R2 = 0.41, SE = 2.0 K
N = 5,576

0.4–0.6 y = 0.02 x + 304.37
R2 = 0.00, SE = 1.7 K
N = 395

y = 0.08 x + 281.75
R2 = 0.03, SE = 2.0 K
N = 534

y = 0.33 x + 208.74
R2 = 0.24, SE = 3.0 K
N = 929

≥0.6 y = 0.52 x + 148.66
R2 = 0.57, SE = 2.4 K
N = 224

y = 0.47 x + 162.57
R2 = 0.28, SE = 2.3 K
N = 262

y = 0.61 x + 122.57
R2 = 0.70, SE = 2.4 K
N = 486
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4.2.2 Aircraft observations
The VOD derivation method as proposed by Meesters et al.

(2005) and applied in this study to estimate the Ka-band VOD for
AMSR2 uses the MPDI as a tool to isolate the microwave vegetation
signal. The size and range of the MPDI are influenced by the
incidence angle. Figure 10 illustrates this effect, showing MPDI
observations from the PKSR plotted against the incidence angle
during their high-altitude DS flights. At angles below 20° the
difference between horizontally polarized and vertically polarized
brightness temperature is minimal, making it challenging to
differentiate the vegetation signal. With an increasing angle the
range in MPDI increased up to 0.03 for the highest angles.

For comparison, this relationship is also presented for airborne
L-band observations from the PLMR. Although only three angle
bins were used for L-band data, the results show a significantly larger
MPDI range at higher angles, with values increasing up to
0.01–0.05 for the largest angle bins. Notably, the MPDI range at
L-band was approximately twice as large as that at Ka-band. In
addition, the lowest MPDI values at the highest angle bins were
approximately 0.01 at L-band. At Ka-band these values were lower at
around 0.004.

When cross-comparing both plots (i.e., Figures 10A, B), the
range in MPDI values for incidence angles below 10° seems to be
substantially smaller for Ka-band (Standard Deviation (SD) MPDI =

8.23 × 10−4 for 0°–5°, and SDMPDI = 8.59 × 10−4 for 5°–10°), whereas
for L-band (SD MPDI = 2.06 × 10−3 for 5°–10°). At these low angles,
the brightness temperatures of the two different polarizations should
behave similarly; therefore, the demonstrated MPDI range could be
associated with the capabilities of each microwave instrument. This
suggests a higher sensitivity in measuring MPDI with the Ka-band
sensor compared to that of L-band. Conversely, the range at L-band
is larger for the higher angles (>35°), primarily due to its increased
sensitivity to soil moisture resulting from lower vegetation
attenuation. Consequently, both instrumental uncertainty in
measuring MPDI and the characteristics of the given frequency
define how well the vegetation dynamics can be measured.

The airborne MPDI values were also plotted against the NDVI to
analyze their relationship. The 250 m 16-day NDVI MODIS data was
used, as it matched the spatial resolution of the PKSR observations
during the DS flights and provided complete coverage of the flight area.
Landsat 8 scenes, which were used in prior analysis, were unsuitable
here due to limited coverage of the DS flight areas. Figure 11 presents
three scatter density plots, selecting only MPDI values with incidence
angles between 35° and 40° for the PKSR and PLMRmeasurements. In
Figures 11A, B, the MPDI values for the Ka-band and L-band,
respectively, were plotted against the average MODIS NDVI values
derived from data from September 30 and October 16. Both bands
showed a negative correlation with NDVI, having R2 = 0.21 (R = −0.46)

FIGURE 6
Scatter plot comparing the vertically polarized Ka-band observations of PKSR with ground measurements of soil moisture. Two subsets are
displayed. (A) scatterplot where only data with Landsat 8 NDVI values <0.6 are selected and (B) scatterplot where only Landsat 8 NDVI
values ≥0.6 are selected.

TABLE 3 Input parameters for the radiative transfer model used to derive VOD.

Parameters Satellite VOD Aircraft VOD Notes

Ts, Tv Ts, Tv = 0.81 Tb[V] + 57.73 derived from 1-km
MODIS LST

LST Ka-band relationship found in this study is used to derive Ts, Tv for the satellite VOD
model.

τa 0.075+/−0.02 0.072+/−0.015 Equation 5, is used to derive τa .

Te derived from Ts - model of Bevis et al. (1992) is used to derive Te.

h 0.1 0.1 These parameters were optimized to achieve model convergence.

Q 0.1 0.1

ω 0.03 0.05
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and R2
s = 0.26 for Ka-band (N = 3,470), while having R2 = 0.33

(R=−0.57) andR2
s = 0.32 for L-band (N= 40,958). All correlations were

statistically significant (p-value <0.05), though the correlation strength
was relatively low. The L-band demonstrated a broader range at higher
NDVI values, suggesting reduced saturation for denser vegetation cover
compared to the Ka-band. Notably, the spread in data points was high
for both bands. Figure 11C compares the MPDI values of the Ka-band
(PKSR) with those of the L-band (PLMR). Data pairs were selected
based on amaximumdistance of 100mbetween the footprint centers of
the two observations, resulting in 1925 data points. The scatter plot
indicates a positive correlation between the two bands, albeit weak, with
R2 = 0.30 and R2

s = 0.32. The correlation is statistically significant
(p-value <0.05), suggesting some degree of consistency between the two
bands despite the differences in frequency and observation
characteristics.

The VOD for the airborne Ka-band (PKSR) observations from
the DS flights was calculated for incidence angles between 35° and
45° using the radiative transfer model as described in Equation 13.

This equation considers the lower observation altitude of the aircraft
as compared to the satellite, resulting in a smaller atmospheric
contribution. Unfortunately, the soil temperature (Ts) could not be
derived from the vertically polarized Ka-band brightness
temperatures from the PKSR due to its sensitivity to variations in
surface characteristics, as demonstrated in Section 4.1.2. Therefore,
the daily 1-km MODIS LST was used as an alternative
approximation for both the soil (Ts) and the vegetation canopy
temperature (Tv). MODIS LST had different overpass times
compared to the flights, which could easily result in incorrect
temperature estimation. To mitigate this issue of time differences,
only flights with a similar morning overpass were selected. In
addition, only days when MODIS LST was not hindered by
clouds were used. This selection criterion resulted in two flights
that were eligible for the VOD calculation: the DS flights of
3 October and 15 October.

The Ka-band observations were detrended over time to
account for the temperature increase during the flight. Using

FIGURE 7
Four scatterplots showing the relationship of AMSR2 Ka-band VOD with the other frequencies. The Ka-band VOD is compared to (A) AMSR2 Ku-
band, (B) AMSR2 X-band, (C) AMSR2 C-band and (D) SMAP L-band from the VODCA v2 dataset.
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the atmospheric data of MODIS, the atmospheric opacity (τa)
was estimated to be 0.072 +/− 0.015. The surface roughness
height (h), and cross-polarization parameter (Q) were assumed
to have the same value as those at the satellite scale (both 0.1), and
a single scattering albedo (ω) of 0.05 was iteratively derived to
achieve model convergence. Table 3 provides a summary of these
input parameters. The derived Ka-band VOD from the PKSR had
a comparable range as the satellite VOD and ranged from
approximately 0.3–1. The VOD estimates are presented in
Figure 12. The VOD values of both days were plotted in one
map to achieve a better coverage. Despite the noisy spatial VOD
signal, some consistent spatial clusters were observable. In
general, high values (>0.8) were found over the agricultural/

vegetated sites and low values (<0.4) over the more sparsely
vegetated regions.

In Figure 13A, the VOD is compared to the MODIS NDVI. The
VOD of October 3 was connected to the MODIS NDVI of
September 30, and the VOD of October 15 was connected to the
MODIS NDVI of October 15. The data are scattered and exhibit a
low correlation (R2 = 0.12, p-value<0.05), although the pattern
revealed a similar increasing trend as observed in the satellite
data (see Figure 9A). In Figure 13B the VOD was compared to
L-band MPDI from the PLMR. To be consistent with the L-band
MPDI of PLMR, only the Ka-band VOD derivatives from 35° to 40°

angles were plotted. Despite the weak correlation, the negative trend
was significant (R2 = 0.27, p-value <0.05).

FIGURE 8
Time series of the satellite derived VOD (black) and MODIS NDVI (red). (A) AMSR2 Ka-VOD, (B) AMSR2 Ku-band VOD, (C) AMSR2 X-band VOD, (D)
AMSR2 C-band VOD, and (E) SMAP L-band VOD. The VOD time series as presented in (A) was derived in this study. The VODs in (B–E) are from the
VODCA v2 dataset.
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5 Discussion

5.1 LST and VOD derivation at different
spatial scales

The vertically polarized brightness temperatures at the Ka-band
frequency have been used as a key input for various LST retrieval
approaches (e.g., Holmes et al., 2009; Prigent et al., 2016). In this
study, sensitivity to temperature has been confirmed for the Yanco
study region. It was possible to derive LST using AMSR2 satellite
observations through a simple linear relationship with a high degree
of accuracy (R2 = 0.98, RMSE = 2.1 K as compared to MODIS LST).
In other studies, the RMSE for Ka-band based LST retrievals varied
between 2 and 5 K (Duan et al., 2020), illustrating that this retrieval
can be considered a high-quality retrieval. This is probably due to
the relatively stable surface emissivity at this frequency over this
region at satellite scale. The atmospheric opacity is relatively low
(average τa = 0.075 +/− 0.020), and the vegetation cover is dense

enough (average Ka-band VOD = 0.82 +/− 0.17) for this frequency
to attenuate the influence of soil moisture. With the PKSR Ka-band
observations from the PRISM-19 campaign, it was also possible to
conduct a spatial analysis of the vertically polarized brightness
temperature with a much higher resolution up to 10 m. Here, a
strong linear relationship was also found, but only for regions with
sufficient vegetation cover. The aircraft retrievals were obtained
from observations with low fixed angles of 15° and 21°, respectively,
whereas the satellite-derived LST used Ka-band observations with
an angle of 55°. They all showed a strong correlation with LST from
MODIS and Landsat, illustrating the ability to derive LST from Ka-
band observations at multiple angles.

A non-linear scaling relationship between the Ka-band
observations and their ability to estimate LST was found. At the
7 km × 12 km satellite footprint of AMSR2, the influence of local
variability in moisture and vegetation is dampened. For example,
small irrigated agricultural fields of only a few hectares in size, with
high moisture values and low vegetation cover, will most likely have

FIGURE 9
Scatterplots comparing the satellite derived VODs with NDVI. (A) Ka-band VOD, (B) Ku-band, (C) X-band VOD, (D) C-band VOD, and (E) L-band
VOD. The VOD data as presented in (A) were derived in this study. The VODs in (B–E) are from the VODCA v2 dataset. The correlation coefficients are
based on Pearson (R2) and Spearman rank (R2

s ) correlations.
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a negligible contribution to the overall measured brightness
temperatures because these fields cover less than 1% of the total
footprint. However, for the aircraft observations with a resolution of
approximately 12 m × 14 m, irrigated agricultural fields covered the
entire footprint, making the impact visible with a significant drop in
brightness temperature (up to 20 K). Similar behavior can be
observed with VOD, where the VOD signal became much noisier
and exhibited a weaker relationship with NDVI in the aircraft data
compared to the satellite. Here, local vegetation scattering and the
potential oversimplification of the radiative transfer model at the
local scale could have played a role. For example, for both satellite
and airborne VOD retrievals, the assumption was made that the soil
temperature (Ts) is equal to the vegetation canopy temperature (Tv).
While this might be true for the coarse scale descending (nighttime)
satellite observations, it is less likely to be true for the high resolution
aircraft flights. Xiao et al. (2024) addressed the impact of
oversimplication on Ts and Tv estimates for VOD retrievals. They
could increase uncertainty in VOD and therefore contribute to the
higher noise levels in the aircraft Ka-band VOD. Scaling effects like
these are generally well-known in remote sensing, and numerous
studies have addressed these issues (e.g., Pu and Bonafoni, 2021;
Peng et al., 2017; Sabaghy et al., 2020). For Ka-band, similar issues
appeared because of the strong heterogeneous dynamics of moisture,
temperature and vegetation and their influence on this frequency.
Airborne campaigns like PRISM-19 make it possible to reveal some
of these sensitivities that are not always visible at the satellite scale.

With the upcoming launch of the ESA mission CIMR, the Ka-
band frequency will most likely be measuring at a targeted footprint
size of approximately 3.3 km × 5.6 km (Donlon, 2023), which is
4.5 times sharper than AMSR2. With this new instrument, it will be
possible to better detect and monitor large irrigated fields (>1 km2)
at Ka-band, which are currently not visible to AMSR2. This will
most likely be valid for the first part of the growing season when the
vegetation cover is not yet too dense for this frequency to penetrate.
Ka-band observations will not be able to provide accurate soil
moisture values, but they should be able to detect changes when
the fields are irrigated, as shown in this study with aircraft data.

5.2 The added value of Ka-band VOD

The satellite VOD was calculated for different frequencies. The
retrieved Ka-band VOD showed strong similarities with the Ku-, X-,
andC-band observations from the sameAMSR2 instrument. The use of
this frequency for vegetation monitoring, and in particularly for the
derivation of VOD, has so far been overlooked. This study demonstrates
that it is possible to derive realistic VOD values from this frequency.
However, the Ka-band VOD was only calculated for one specific semi-
arid region in Australia. It is not yet clear how well the Ka-band VOD
retrievals will perform over other regions or land cover types, and so
more research is needed to explore this. Nevertheless, having realistic
Ka-band VOD from satellite observations could be an interesting
addition to the already available VOD products. This frequency has
a long legacy and radiometers with this frequency have been on
numerous satellites (e.g., SMMR, AMSR, AMSR2, and the Special
Scanning Microwave Imager (SSMI)). This makes it possible to
analyze data records spanning multiple decades across diurnal
variations. In the VODCA v2 dataset of Zotta et al. (2024b), C-, X-
and Ku-band VOD were merged into one VOD product. Adding an
additional Ka-band in their approach could potentially lead to a more
robust VOD product.

The current available soil moisture algorithms for passive
microwave data still struggle with the correction for vegetation.
This correction is often performed in a simplified manner, which
could lead to spurious vegetation-based signals in the soil moisture
retrievals (Crow et al., 2025; Zwieback et al., 2019). This study
demonstrated alignment between the different VODs, illustrating
how vegetation affects the microwave signals in a similar way for the
different frequencies. Using multiple frequencies instead of one
single frequency is expected to support further improvement in
the vegetation correction.

Ka-band VOD was also derived from aircraft observations.
Although the VOD signal was still noisy it captured realistic
patterns, with high values over the more densely vegetated parts of
the study regions. Conducting a fully optimized model
parameterization to retrieve the best Ka-band VOD was beyond the

FIGURE 10
The incidence angle compared to the MPDI for (A) the PKSR Ka-band observations and (B) the PLMR L-band observations. For this plot the
observations of the DS flight of 3 October 2019 were used. Plots of the other four flights provided similar results.
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scope of this study, so improvements in this study framework can still be
made. For example, a better estimation of vegetation and soil
temperature during the flights would likely lead to a more robust
VOD. In this study, the temperature was estimated using MODIS LST
data, which was not collected at the exact same time as the PKSR
observations. However, being able to derive VOD at a much higher
spatial resolution could support validation, which is still considered a
critical challenge (Feldman, 2024; Yao et al., 2024). Being able to derive
realistic VOD values from aircraft or ground observations could create
the opportunity to investigate its sensitivity to different vegetation
characteristics at a much finer scale, which could further advance
research on VOD.

5.3 Ka-band and L-band

Both the Ka-band and L-band observations from the aircraft
showed some remarkable similarities, despite the difference in

frequency and observation footprint. With data from the PKSR
and PLMR, it was possible to cross-compare the two frequencies
with similar angle bins. Here, the MPDI was used, being a direct
microwave observation and considered as a powerful index to
minimize the effect of soil and vegetation temperature (Owe
et al., 2001). Moreover, both VOD and soil moisture can be
linked to the MPDI (Meesters et al., 2005). The vegetation
influences the microwave signal of the two frequencies in a
similar way, but with different intensity. The vegetation
attenuation at Ka-band was much stronger, resulting in a smaller
MPDI range and faster saturation with low MPDI values close to
zero. At L-band the vegetation saturation level had not been reached
and so the lowest MPDI values of this frequency were still higher
than the lowest found at Ka-band. From an instrumental point of
view it seems that PKSR was able to measure the MPDI with less
uncertainty than PLMR, as illustrated by the low incidence angle
measurements in Figure 10 (i.e., the SD MPDI = 2.06 × 10−3 for
5°–10° for PLMR and the SD MPDI = 8.59 × 10−4 for 5°–10° for

FIGURE 11
Scatter density plots of MPDI observations from the DS flights at incidence angles between 35° and 40°. (A) MPDI of Ka-band (PKSR) versus NDVI
(MODIS), (B)MPDI of L-band (PLMR) versus the NDVI (MODIS), and (C) Ka-band MPDI(PKSR) compared to the L-band (PLMR). The color scale represents
the probability density, where dark blue indicates the lowest and dark red represents the highest probability density estimation.
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PKSR). This difference in uncertainty also affects the ability to
measure changes in vegetation dynamics and is probably the reason
why the relationship between MPDI and NDVI appears similar for
L-band and Ka-band aircraft observations, as shown in Figure 11.

6 Conclusion

Observations from passive microwave Ka-band instruments, as
measured from a satellite and an aircraft, were analyzed to
investigate their ability to monitor vegetation and temperature
dynamics. It was demonstrated in this study that the results

might differ when satellite data are used instead of observations
from an aircraft.

For a semi-arid study region in southeastern Australia, a strong
linear relationship between LST as derived from MODIS and
vertically polarized Ka-band observations from the
AMSR2 satellite was found. A similar relationship was found
with the aircraft data, where the Ka-band data was compared to
Landsat LST. However, here the signal was more sensitive to the
vegetation cover and substantial cover (NDVI ≥0.6) was needed to
provide a stable linear relationship. For the sparsely vegetated
conditions (NDVI <0.6), the Ka-band LST relationship became
noisier and soil moisture dynamics started to influence the

FIGURE 12
Ka-band VOD from the PKSR as derived from twoDS flights onOctober 3 andOctober 15 using observations with incidence angles between 35° and
45°. The point size was set to 400 m to approximate the actual 3 dB footprint size. The background is a 250-m MODIS NDVI image of this period.

FIGURE 13
(A) aircraft derived Ka-band VOD compared to MODIS NDVI, and (B) aircraft derived Ka-band VOD compared to L-band MPDI.
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relationship. Wet soils (i.e., surface soil moisture >0.3 m3 m−3) could
lead to a drop in brightness temperatures of approximately 20 K.

The Ka-band VOD was calculated for both the satellite and aircraft
data. A radiative transfer model was used to derive this vegetation
parameter. At the satellite scale, a strong similarity was found between
the Ka-band VOD and published VOD products from other
frequencies. The range of the Ka-band VOD values was higher
compared to the other frequencies and had a clear relationship with
NDVI, with L-band VOD being the exception here. For this region, the
vegetation dynamics had a limited influence on this frequency at the
satellite scale. For the aircraft data, only observations with incidence
angles between 35° and 45° were used to calculate VOD, as the VOD
retrieval algorithm based on the method of Meesters et al. (2005) can
only be successfully applied at these wider angles. The results provided a
similar range as at the satellite scale, with realistic spatial patterns found
over different landscapes. The aircraft-based Ka-band VOD signal was
noisier and had a weak correlation with NDVI, although it
demonstrated similar trends as at the satellite scale.

This study revealed how Ka-band could be used to monitor
temperature and vegetation. However, local variability was more
relevant at higher spatial resolutions, resulting in a clear change in
sensitivity when comparing high-spatial-resolution aircraft data
with long-term satellite observations.
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