
Implementierung von Abfragen
zur Smell-Erkennung in

Wissensgraphen der
Unternehmensarchitektur

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Armond Alexanian, BSc
Matrikelnummer 00728633

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Associate Professor Dr. Dominik Bork
Mitwirkung: Associate Professor Dr. rer. nat. Simon Hacks, M.Sc. B.Sc.

Wien, 7. März 2025
Armond Alexanian Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Implementation of Smell
Detection Queries on Enterprise
Architecture Knowledge Graphs

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Armond Alexanian, BSc
Registration Number 00728633

to the Faculty of Informatics

at the TU Wien

Advisor: Associate Professor Dr. Dominik Bork
Assistance: Associate Professor Dr. rer. nat. Simon Hacks, M.Sc. B.Sc.

Vienna, 7th March, 2025
Armond Alexanian Dominik Bork

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Armond Alexanian, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 7. März 2025
Armond Alexanian

v

Acknowledgements

I would like to express my deepest gratitude to my supervisor, Associate Professor Dr.
Dominik Bork, and my co-supervisor, Associate Professor Dr. rer. nat. Simon Hacks,
M.Sc., B.Sc., for their unwavering guidance, insightful advice, and constant support
throughout this journey. Their invaluable support and provision of all necessary resources
made the completion of this work possible. It was a true pleasure collaborating with them,
and I deeply appreciate the freedom and time they allowed me to learn and progress at
my own pace.

Finally, I would like to thank my family for their love and endless support, especially
my sister. Without her encouragement, I would not have been able to embark on this
journey.

vii

Kurzfassung

Die Unternehmensarchitektur (Enterprise Architecture, EA) umfasst verschiedene Berei-
che, darunter die Geschäftsarchitektur, die Architektur von Informationssystemen sowie
die Infrastrukturarchitektur. Sie bietet eine ganzheitliche Sicht auf ein Unternehmen. Die
Umsetzung von Enterprise Architecture (EA) gestaltet sich oft komplex, insbesondere
bei wachsenden Unternehmen, was Herausforderungen im Design und in der Architektur
mit sich bringt. In diesem Zusammenhang wurde kürzlich die Metapher der “Enterprise
Architecture Debt” eingeführt, um die potenziellen negativen Auswirkungen einer un-
ausgereiften oder nicht optimal umgesetzten EA zu beschreiben. Dieser Begriff leitet
sich von der technischen Schuld (Technical Debt, TD) ab, die sowohl technische als auch
geschäftliche Aspekte eines Unternehmens umfasst. Da die Definition der EAD keine
konkreten Methoden zur Identifikation und Messung solcher Schulden liefert, wurde das
Konzept der EA Smells eingeführt.

EA Smells dienen als Indikatoren, um potenzielle Designfehler und Unzulänglichkeiten
innerhalb der Unternehmensarchitektur zu erkennen. Ein Katalog mit 63 EA Smells
wurde veröffentlicht, der jedoch noch in einem frühen Entwicklungsstadium ist. Für die
meisten dieser Smells fehlen derzeit präzise Definitionen und konkrete Ansätze zu ihrer
Erkennung.

EA-Modelle sind entscheidend für den Erfolg von Unternehmen und weit verbreitet
in Forschung und Industrie. Dennoch bedarf die Analyse von EA-Modellen, sowie die
umfassendere Betrachtung der Modellabläufe, mehr Aufmerksamkeit. ArchiMate ist eine
De-facto-Standardmodellierungssprache für EA, bietet jedoch keine integrierten Werk-
zeuge zur Qualitätsanalyse. Die Untersuchung von EA-Smells in ArchiMate-Modellen
unterstützt Unternehmensarchitekten bei der Identifikation von Designfehlern und Män-
geln im Modell. Die manuelle Analyse großer Modelle, kann jedoch aufgrund ihrer
Komplexität eine Herausforderung darstellen, die zu Fehlberechnungen und übersehenen
Details führen kann. Im Gegensatz dazu, kann eine automatisierte Analyse Architekten
dabei helfen, solche Fehler zu vermeiden. Ein automatisiertes Analysewerkzeug zur Er-
kennung von EA-Smells kann somit die Identifikation von Modellfehlern erleichtern und
das Bewusstsein für die negativen Folgen dieser Mängel schärfen.

Ein neuartiger Ansatz zur Interpretation von EA-Modellen als Knowledge Graph (KG)
wurde vorgestellt, der die Modellanalyse durch EA-Abfragen und Graph-Algorithmen
erleichtert.

ix

In unserer Arbeit haben wir die EA-Smells analysiert und KG-Abfragen definiert, um diese
Smells in EA-Modellen zu identifizieren. Es gelang uns, EA-Abfragen für sechsunddreißig
EA-Smells zu entwickeln. Für jeden dieser Smells haben wir den zugrunde liegenden
Smell kurz beschrieben und erläutert, wie wir ihn in die EA-Domäne, insbesondere in die
Modellierungssprache ArchiMate, übertragen und erkannt haben. Darüber hinaus haben
wir den EA-Smell-Katalog um die definierten Abfragen und ergänzende Erweiterungen
erweitert, um die Semantik der EA-Smells dort zu klären, wo dies erforderlich war.
Schließlich implementierten wir eine Erkennungsplattform zur automatischen Identifizie-
rung von EA-Smells in KGs, die ArchiMate-Modelle repräsentieren. Wir testeten unsere
Erkennungsplattform und evaluierten unseren Ansatz anhand einer großen Menge an
EA-Modellen. Das Ergebnis war vielversprechend: Unsere Plattform war in der Lage,
zahlreiche EA-Smells in realen Modellen zu erkennen. Die Korrektheit unseres Ansatzes
haben wir mithilfe von Präzisions- und Recall-Metriken bewertet und bei beiden Metriken
einen hohen Wert erzielt, was auf die Präzision unseres Ansatzes hinweist.

Abstract

Enterprise Architecture (EA) encompasses various domains, such as business architecture,
information system architecture, and infrastructure architecture, providing a holistic
view of an enterprise. Implementing EA can be complex, especially as enterprises grow,
leading to challenges in design and architecture. Recently, the metaphor of Enterprise
Architecture Debt (EAD) has been introduced to address the negative consequences of
EA. It is derived from Technical Debt (TD), which covers the enterprise’s technical and
business aspects. Since this definition does not provide a way to identify and measure
possible debts, the concept of EA Smell has been introduced. EA Smell is a means to
identify the debt in EA. A catalog consisting of sixty-three EA Smells has been published.
However, since the catalog is in its early stages of development, most Smells still do not
have precise definitions and concrete approaches for detection.

EA models are crucial for enterprise success. They are widely used in research and
industry. Yet, more attention needs to be paid to analyzing EA models and addressing
the model flaws in a more formal way. ArchiMate is a de facto standard modeling language
for EA, but does not offer quality analysis tools. Examining EA Smells in ArchiMate
models will assist enterprise architects in identifying design flaws and deficiencies in
the model. However, manually analyzing large models can be challenging due to their
complexity, which may lead to miscalculations and overlooked details. In contrast,
automated analysis can assist architects in avoiding such errors. Therefore, an automated
analysis tool for detecting EA Smells can ease the identification of model flaws and raise
awareness about those shortcomings and negative consequences.

A novel approach to interpreting EA models as Knowledge Graphs has been introduced,
which facilitates model analysis via KG queries and graph algorithms.

Based on the Knowledge Graph (KG) approach, our thesis analyzed the EA Smells
and defined KG queries to identify those Smells in EA models. We were able to define
KG queries for thirty-six EA Smells. For each of those Smells, we briefly described the
underlying Smell and how we transferred and detected it in the EA domain, particularly
the ArchiMate modeling language. Additionally, we enhanced the EA Smell catalog by
including the defined queries and supplementary extensions to clarify the semantics of EA
Smells where necessary. Finally, we implemented a detection platform to automatically
identify EA Smells in KG representing ArchiMate models. We tested our detection
platform and evaluated our approach on a large set of EA models. The results were

xi

promising. Our platform was able to detect manyEA Smells from real-world models.
Finally, we evaluated an EA model given by an EA expert containing different EA Smells.
We used precision and recall metrics to evaluate the correctness of our approach and
achieved a high ratio for both metrics, which indicates that our approach is very accurate.

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation and Problem Statement . 1
1.2 Aim of the Work . 2
1.3 Methodological Approach . 3
1.4 Thesis Outline . 5

2 Background 7
2.1 Technical Debt . 7
2.2 Enterprise Architecture Debt . 8
2.3 EA Smells . 9
2.4 ArchiMate . 10
2.5 Graph-based analysis of EA Models 15
2.6 CM2KG Platform . 16
2.7 Summary . 16

3 EA Smells Analysis 19
3.1 Detectable EA Smells via Knowledge Graphs 20
3.2 Undetectable EA Smells . 79
3.3 Out of Scope . 81
3.4 Summary . 82

4 Extension of the Enterprise Architecture Smells catalog 83
4.1 Unifying the schema of EA Smells . 84
4.2 Extending the schema and revising the EA Smells catalog 85
4.3 Summary . 93

5 Integrating the EA Smells catalog into a Knowledge Graph-based
detection platform 95

xiii

5.1 General Overview . 95
5.2 Implementation of the Detection platform 96
5.3 Summary . 101

6 Evaluation 103
6.1 Methodologies and Metrics . 103
6.2 Software Testing . 104
6.3 Empirical Experiment . 104
6.4 Precision and Recall . 108
6.5 Summary . 114

7 Related Work 115

8 Conclusion 117
8.1 Summary . 117
8.2 Future Work . 117

A ArchiMate Elements and Relationships 119

List of Figures 123

List of Tables 125

List of Algorithms 127

Acronyms 129

Bibliography 131

CHAPTER 1
Introduction

This chapter defines the current state of Enterprise Architecture Debt (EAD) and the
Enterprise Architecture (EA) Smells catalog. We explain how EA Smells can bridge the
analysis gap and help improve the quality of EA and EA models, especially those in
the ArchiMate modeling language. Our approach leverages a Knowledge Graph-based
method to detect EA Smells via Knowledge Graph queries in ArchiMate models. We
then outline the research questions we aim to address and the methodology we use to
present and evaluate our approach.

1.1 Motivation and Problem Statement
Enterprise Architecture (EA) represents a coherent set of various architectures, including
business architecture, information system architecture, and infrastructure architecture [1].
Together, these domains provide a comprehensive view of an enterprise. The implemen-
tation of an enterprise can often be complex and not always straightforward [2]. As
enterprises grow, their business operations and IT infrastructures become increasingly
intricate, complicating both design and architecture [3]. EA models are essential to
the success of an enterprise. While modeling of EA is prevalent in both research and
industry, more focus is needed on the analysis of these EA models [4, 5]. Moreover, until
recently, there was a lack of clear and formal definitions for assessing quality flaws and
the negative consequences of EA [2].

Technical Debt (TD) is a concept that addresses the shortcomings in the software
development industry that may negatively impact maintainability, development, quality,
and long-term success of producing software [6]. The original concept of TD focused on
the code level, and Code Smells analyze the source code in order to indicate potential
TD. Although TD has evolved and is now subcategorized into software architecture debt,
database design debt and documentation debt, it encompasses only the technical aspects
of IT and not the business aspects. To address this limitation, Hacks et al. [2] defined

1

1. Introduction

the concept of Enterprise Architecture Debt (EAD), which extends the TD to cover both
the technical and organizational aspects of the enterprise. EA Smells [7] are a set of
means for measuring and indicating EAD by analyzing the organization from a more
holistic viewpoint. It was initially derived from Code Smells that can be adopted in
the EA domain. Later, it was extended with some Software Architecture Smells and
Business Process Modeling (BPM) anti-patterns, resulting in a catalog of sixty-three
EA Smells [8]. Knowledge about EA smells could help EA architects to prevent design
mistakes and detect model flaws in the early stages of design.

Generally, each Smell in the catalog consists of a name, description, cause, detection, and
other attributes containing all necessary information about the specific Smell. However,
the specific definition or approach for identifying the EA Smells in EA models is missing
so far. Furthermore, some descriptions and concepts defined in the catalog are too
abstract. Therefore, a revision is required to provide a precise approach and a concrete
mechanism for detecting EA Smells and to extend the information on EA Smells.

ArchiMate [9] is a de facto standard modeling language for EA modeling but does not
provide analyzing and visualizing functions for model quality [3]. Measuring the quality of
ArchiMate models via EA Smells could give architects indications of imperfections in the
model. However, manually analyzing large models can be difficult because the complexity
of the models can lead to miscalculations, and some details may be overlooked [10]. On
the other hand, the automated analysis can prevent architects from making such errors.
Therefore, integrating EA Smells into an automated detection tool will not only increase
the quality of the EA and EA models, but also raise awareness about common bad
practices.

Knowledge Graphs have recently gained traction in the field of modeling, particularly
in EA modeling. A new approach for analyzing EA models within Knowledge Graphs
has been introduced [11]. Various algorithms and metrics can be employed to evaluate
EA models after converting them into Knowledge Graph (KG) format. KG queries are
efficient, even on larger graphs. Therefore, defining KG queries for analyzing EA models
has shown promising results [12].

1.2 Aim of the Work
The objective of this thesis consists of two parts. In the first part, we will extend the
EA Smell catalog [8] by defining KG-based queries and revising existing EA Smells
definitions. In the second part, we will create a comprehensive graph-based EA Smell
detection platform for automated analysis by transforming ArchiMate models into KG
and integrating the EA Smell catalog into that platform.

This work can serve as a guideline or an information base for detecting EA Smells in EA
models, especially in the ArchiMate modeling language. All EA Smells from the catalog
will be analyzed in the first step. The catalog contains sixty-three Smells. We will study
and interpret each EA Smell to determine whether it can be identified via KG queries in

2

1.3. Methodological Approach

the domain of the ArchiMate modeling language. Based on this analysis, we propose KG
queries for detecting EA Smells. Some queries could have one or more parameters as
query options. These options are strongly dependent on the enterprise and could differ
from organization to organization, but some default values should be defined, which can
be seen as a threshold. We will extend the EA Smell catalog by incorporating the results
of our analysis. As mentioned in the previous section, most definitions and examples
provided in the catalog are either too abstract or taken directly from Code Smells without
further adaptation in the EA domain. Therefore, we will revise the existing descriptions
to make them more precise.

Once reasonable queries for the EA Smells have been provided, and the EA Smells
catalog has been enhanced, we will develop a KG-based detection platform and integrate
the EA Smell catalog into it. Our platform will analyze the ArchiMate models as KG
and detect possible EA Smells from the given model. In order to detect EA Smells via
KG queries, we have to convert the ArchiMate models into KG. To that end, we will
use the Conceptual Model to Knowledge Graph (CM2KG) platform [13] for our model
transformation. The CM2KG is not our contribution to this thesis, we will just use
it as an external service. Our detection platform will deliver a user interface to show
analysis results in textual and visual form. Furthermore, the enterprise architects should
be able to customize Smell parameters to strengthen or weaken the conditions for Smell
detection, considering the size of the enterprise and organization use cases. Enterprise
architects with a basic understanding of ArchiMate should be able to use this platform,
although familiarity with KG queries is not required. Our detection platform should
increase the quality of EA, help enterprise architects identify weaknesses in the models,
and gain insight into possible negative consequences in the long term.

In our thesis, we aim to answer the following research questions:

1. What is an appropriate means to detect EA Smells via Enterprise Architecture KG
queries?

2. How to achieve an interoperability between the EA Smell catalog and the CM2KG
platform?

1.3 Methodological Approach
In this thesis, we will utilize the problem-solving paradigms of Design Science Research
(DSR) [14]. DSR focuses on addressing real-world problems by developing both intellectual
and computational artifacts [14]. It is essential to evaluate the “utility, quality, and
efficacy” [14] of the proposed solution. We will adhere to the six process steps outlined
by Peffers et al. [15] to create our artifact. Additionally, we will conduct empirical
evaluations to ensure the artifact’s quality and usefulness. Overall, the methodologies
employed in this thesis are as follows.

3

1. Introduction

• Literature Analysis

We will conduct a literature review collecting the relevant knowledge and theoretical
background for TD, EAD, Code Smells, EA Smells and the ArchiMate modeling
language.

• Domain Analysis and Context Mapping We will conduct a comprehensive analysis
and assessment of each EA Smell within the framework of the ArchiMate modeling
language and provide KG queries for detection. To accomplish this, we will scrutinize
the underlying Code Smell or anti-pattern to determine its relevance to EA. If
applicable, we will explore potential modifications to adapt the Smell to the new
EA domain, specially ArchiMate modeling language.

• Software Engineering

Model Transformation - In order to detect EA Smells via KG queries, we have to
transform the ArchiMate models into a graph-suited format. We will perform
an out-place model transformation via the CM2KG platform to convert the
ArchiMate Exchange File Format [16] to GraphML format.

Software Prototype - After the analysis phase, we will develop a KG-based
detection tool to assess the quality of ArchiMate models by detecting EA
Smells via KG queries.

• Evaluation

In order to evaluate the quality and correctness of our artifact, both in technological
and conceptual aspects, and get a holistic picture of our results, we will perform
both quantitative and qualitative evaluations. We will use the following methods
for our evaluations.

Qualitative

Software Testing - We will perform unit and integration tests to evaluate
the behavior of our platform and its interaction with the extended EA
Smell catalog and the CM2KG platform.

Quantitative

Empirical Experiment - We will conduct a test using a large set of real-
world models to investigate query execution time and the detectability of
EA Smells in practice.

Precision and Recall - Our detection platform will verify an EA model with
a set of EA Smells provided by an EA expert to assess the correctness
and relevance of our provided queries. In other words, it will determine
the extent to which the queries are semantically correct.

4

1.4. Thesis Outline

1.4 Thesis Outline
The remainder of this thesis is structured as follows:

Chapter 2 - Background
This chapter provides the background knowledge that forms the basis for our
thesis. We explain the concept of TD, EAD, and EA Smells catalog. We briefly
introduce the ArchiMate modeling language, KG, the CM2KG platform, and the
Neo4j database.

Chapter 3 - EA Smells analysis and defining knowledge Graph queries
We examine the EA Smells listed in the catalog, explain the process of translating
concepts from the foundational level to the EA domain, and outline the KG queries
along with their parameters and default values. Additionally, we touch upon the
EA Smells that are undetectable in the graph and those that are beyond the scope
of this research.

Chapter 4 - Extension of EA Smell catalog
We extend and unify the meta-model of EA Smells and revise the existing definition
based on our findings from the previous chapter.

Chapter 5 - Integrating the EA Smells catalog into a Knowledge Graph-
based detection platform

We introduce our detection platform and describe its interaction with the EA Smell
catalog and CM2KG platform.

Chapter 6 - Evaluation
We assess the quality and accuracy of our work, focusing on both technological and
conceptual aspects.

Chapter 7 - Related Works
This chapter describes previous research and efforts in EAD and EA Smells, identifies
the gap filled by our work and outlines our contributions.

Chapter 8 - Conclusion
The last chapter summarizes our thesis contributions and discusses required im-
provements and future works.

5

CHAPTER 2
Background

This chapter provides the necessary background information to ensure a common un-
derstanding of our thesis. We begin by introducing the concept of Technical Debt (TD)
in Section 2.1 and how it relates to the new metaphor of Enterprise Architecture Debt
(EAD) (Section 2.2). Section 2.3 delves into the idea of EA Smells and their significance in
measuring the level of EAD. In Section 2.4 we introduce the widely accepted ArchiMate
modeling language, a de facto standard modeling tool for EA models. Section 2.5
discusses the common practice of analyzing EA models as graphs in research. Finally, we
present the CM2KG platform (Section 2.6), a model transformation tool for converting
ArchiMate models into KG.

2.1 Technical Debt
Cunningham [17] introduced the metaphor of Technical Debt (TD) in 1992. TD is a
crucial issue in the software industry due to its adverse impacts on the maintenance,
quality, progress, and long-term success of software projects [6]. It refers to a circumstance
where a developer or a software team might opt for a solution that accelerates short-term
development but results in higher future costs in the form of additional work [18].

The metaphor of TD comes from financial debt. Just like financial debt incurs interest
payments, TD results in increased future costs for the development and maintenance of
software due to earlier suboptimal design and implementation choices. If the interest is
not paid in the form of re-architecting, refactoring, or improving the technological gaps
to fix these shortcomings, then the interest will become higher. The higher the interest,
the more complex the software development lifecycle becomes. Sometimes, the TD is
necessary or justified if the interest is paid off on time [19].

Martin [20] stated that TD should only be considered if a decision or design choice is
made deliberately. That is, the messy code or unintentional design shortcomings that

7

2. Background

arise due to a lack of knowledge should not be classified as TD. However, Fowler [21]
states that the distinction should not be between debt and non-debt but rather between
reckless and prudent debts. He presented the “Technical Debt Quadrant” (Figure 2.1)
and categorized debts as reckless, prudent, deliberate, and inadvertent. TD initially
focused on the code level but has been extended to documentation, testing, database
design, and many other technical areas.

Figure 2.1: Technical Debt Quadrant [21]

2.2 Enterprise Architecture Debt
The definition of enterprise diverges significantly [22]. Some understand “business” or
“organization,” while others understand “enterprise systems” [23]. The Open Group [24]
has defined the enterprise as “any collection of organizations that has a common set of
goals and/or a single bottom line.” The same applies to the meaning of architecture.
The term varies even more widely. A more common definition of architecture is a set of
artifacts that model the blueprint of an enterprise [23].

A standard definition of Enterprise Architecture (EA) is a cohesive set of ideas, methods,
and models used to design, develop, and implement a company’s organizational structure,
business processes, information systems, and infrastructure [25]. EA provides a holistic
view of an organization covering both IT and business aspects. Implementing an EA
might be challenging due to limited resources and uncertainties during the design phase.
TD is considered to raise awareness of possible technical shortcomings and design flaws in
the technical domain. However, the TD is limited to the technical and does not include
business aspects.

Hacks et al. [2] extended the concept of TD and proposed the metaphor of Enterprise
Architecture Debt (EAD) covering the organization’s IT and business aspects. The
formal definition of EAD is as follows:

“Enterprise Architecture Debt is a metric that depicts the deviation of the currently
present state of an enterprise from a hypothetical ideal state.” [2]

8

2.3. EA Smells

Figure 2.2: Placing of TD within the concept of EAD [2]

Figure 2.2 demonstrates the different layers of an EA. The TD covers the technology
and application layers. Beyond that, the EAD encompasses the TD and covers the
organization’s data and business layers.

It often arises when short-term solutions or changes are made without considering the
long-term impact on the overall architecture. This debt can be manifested as outdated
technology, incompatible systems, or inefficient processes, hindering the organization’s
ability to adapt, innovate, or meet evolving business needs.

2.3 EA Smells
Code Smells are a key component for measuring the level of TD in software systems. They
serve as a tool for identifying suboptimal code that may require refactoring. Salentin
and Hacks [7] introduced the concept of EA Smells, which are designed to measure the
level of EAD. EA Smells serve a similar purpose to Code Smells and anti-patterns in the
EA domain. Like Code Smells, EA Smells help assess EAD. The primary goal of EA
Smells is to enhance the quality of EA by addressing shortcomings and design flaws in
EA while also raising awareness of bad habits.

Salentin and Hacks [8] developed a catalog containing forty-five EA Smells derived
primarily from code Smells [7]. Later, Lehman et al. [26] expanded the catalog with
eighteen additional EA Smells that stem from process anti-patterns. Finally, Benny
Tieu [27] enriched the catalog by transferring three more software architecture Smells
into the EA domain.

At the time of writing this thesis, the catalog contains sixty-three EA Smells. It is
available as a web application 1. Figure 2.3 demonstrates an EA Smell from the catalog.
Each Smell has a name, aliases, description, consequences, detection, etc. They provide
information describing an EA Smell. Detailed information about the current metamodels
of the EA Smells in the catalog is given in Section 4.1 (Table 4.1).

1https://swc-public.pages.rwth-aachen.de/smells/ea-smells/

9

2. Background

The EA Smell catalog is still in its early stages and includes the Smells relevant to the EA
domain. However, many of the EA Smells in the catalog require more specific definitions
and a precise approach to identification. Currently, most definitions are too abstract or
taken directly from related Code Smells or anti-patterns without being properly adapted
to suit the EA context.

For example, the Combinatorial Explosion EA Smell, illustrated in Figure 2.3 currently
lacks a precise definition of how the Smell could occur and how it should be detected. It
is obvious that the field definition is overly general, while the detection section is empty.
Additionally, the provided example belongs to the underlying Code Smell and is irrelevant
to the EA domain. Many other EA Smells face similar issues and require adjustments
and revisions to better align with the specifics of the EA domain.

This thesis aims to address existing gaps by revising current definitions and providing
specific detection mechanisms, thereby enhancing the understanding of EA Smells.

Figure 2.3: Current representation of the Combinatorial Explosion EA Smell in the
catalog

2.4 ArchiMate
ArchiMate is a widely adopted, independent modeling language designed for enterprise
architecture developed by The Open Group [9]. ArchiMate provides a comprehensive and
systematic way to describe, analyze, and visualize the structure and behavior of complex
systems within an organization. It is a powerful tool for enterprise architects, business
analysts, and other stakeholders to seamlessly communicate and align business and IT

10

2.4. ArchiMate

aspects. ArchiMate provides a common language for business processes, organizational
structures, IT, and technical infrastructure. ArchiMate’s core concepts are elements,
relationships, and viewpoints. The elements represent the building blocks of the enterprise,
while relationships depict the associations between these elements. Viewpoints offer
specific perspectives on the architecture to cater to different stakeholders.

ArchiMate core framework consists of three core layers and three aspects. The layers are
business, application, and technology. The Business Layer represents services offered to
customers, realized by business processes. Business actors perform business processes. In
the Application Layer, application services realize and support business. The Technology
Layer provides the necessary infrastructure services to support applications like processing,
storage, and communication. These services are realized through devices, communication
hardware, and system software. In addition to layers, ArchiMate has three aspects: active
structure, behavior, and passive structure. The active structure describes the structural
elements in the model. These are the elements that perform a behavior. The behavior
aspect represents functions, processes, events, and services. The passive structure signifies
the entities upon which behaviors are executed. Since version three, ArchiMate has
added one more new aspect and two more layers. The motivation aspect describes the
motivation elements, such as requirements, stakeholder concerns, and goals. The strategy
layer has elements for describing the strategic choices and directions. Architectures can
be implemented and migrated using the implementation and migration elements. Figure
2.4 demonstrates the entire framework of ArchiMate with layers and aspects.

Figure 2.4: The ArchiMate Full Framework taken from [9]

Relationships represent the associations between elements. ArchiMate has four types of
relationships.

• Structural Relationships build static coherence of the architecture. Assignment,
Realization, Aggregation and Composition relationships are four types of structural
relationship.

11

2. Background

a) Assignment relationship links active structures to behaviors. It defines
responsibility, the performance of behavior and execution. Figure 2.5 illustrates
an example of an Assignment relationship in ArchiMate. “Payment Interface”
is assigned to “Payment Service,” meaning “Payment Interface” can perform
or execute the “Payment Service.”

Figure 2.5: ArchiMate Assignment Relationship

b) Composition relationship illustrates that one element is a component of
another element in the model. Similar to the composition relationship in the
UML class diagram, it signifies an existence dependency between a whole
and its constituent parts. Figure 2.6 illustrates an example of Composition
relationships between elements. The elements “Accounting,” “Payment” and
“Billing” are part of the “Financial Processing” element.

Figure 2.6: ArchiMate Composition Relationship

c) Aggregation relationship also derived from the aggregation relationship in
the UML class diagram. Aggregation groups one or more concepts. Unlike
composition, the existence of aggregated elements does not depend on the
aggregating elements. Figure 2.7 illustrates an example of the Aggregation
relationship.

Figure 2.7: ArchiMate Aggregation Relationship

d) Realization Relationship describes the realization of an abstract or logical
element by a more concrete element. Figure 2.8 depicts a Realization relation-
ship between two elements. The “Transaction Processing” Business Function
realizes or creates a more abstract element, “Billing Service.”

12

2.4. ArchiMate

Figure 2.8: ArchiMate Realization Relationship

• Dependency Relationships outline how elements depend on each other. Serving,
Access, Influence and Association are four types of dependency relationships.

a) Access relationship indicates that a process or function interacts with a pas-
sive element. Generally, the Access relationship represents a data dependency.
Figure 2.9 demonstrates two Access relationships. The first “Create Invoice”
Business Process creates an invoice, the second “Send Invoice” Business Process
reads that invoice.

Figure 2.9: ArchiMate Access and Triggering Relationships

b) Influence relationship describes how an element may have positive or nega-
tive impact on another element. Figure 2.10 illustrates a requirement “Assign
Personal Assessment,” which has a positive impact on “Reduce Workload
of Employees” and, at the same time, a negative consequence on “Decrease
Costs.”

Figure 2.10: ArchiMate Influence relationship

c) Serving relationship illustrates that one element provides functionality to
another element. Figure 2.11 illustrates a Serving relationship between the
Application Service and Business Process elements. The “Payment Service”
serves its functionality to the “Pay Invoices.”

13

2. Background

Figure 2.11: ArchiMate Serving Relationship

d) Association Relationship is a more general or unspecified relationship.
It may also define a relationship not represented by other relationships in
the ArchiMate modeling language. Figure 2.12 illustrates an Association
relationship between the Representation and Business Object elements.

Figure 2.12: ArchiMate Association Relationship

• Dynamic relationships depict temporal order between elements. The process
chains are described by this type of relationships. Temporal and Flow are two types
of dynamic relationships.

a) Triggering relationship describes the temporal or casual order between
elements. Figure 2.13 illustrates an example of a Triggering relationship.
“Create Invoice” triggers “Send Invoice.”

Figure 2.13: ArchiMate Triggering Relationship

b) Flow relationship represents the transfer of data, information, and goods
through elements. Figure 2.14 shows an example of a Flow relationship.
“Claim Assessment” followed by “Claim Settlement.”

Figure 2.14: ArchiMate Flow Relationship

• Specialization Relationship specifies that an element is a specific type of another
element. As demonstrated in Figure 2.15, “SMS Notification” and “Mail Notification”
are specific types of “Notification.”

14

2.5. Graph-based analysis of EA Models

Figure 2.15: ArchiMate Specialization Relationship

2.5 Graph-based analysis of EA Models

Interpreting models in EA as graphs is a widely used approach in research [4]. For
instance, Aier [28] proposes the EA Builder tool that supports the identification of
clusters in graphs. These Clusters are designed to identify potential candidates for
services in a service-oriented architecture. Johnson et al. [29] interpret the modeling of
EAs as a probabilistic state estimation problem. They propose using a Dynamic Bayesian
Network to model the network, allowing for observing network traffic and predicting the
most probable configuration of IT infrastructure. Later, Bebense and Hacks [30] redefined
this approach and enhanced it by modeling the network using Hidden Markov Models
(HMMs). Hacks and Lichter [31] also provided a Probabilistic Prediction for modeling
model uncertainty and contradictory data in EA. Several efforts have been made to
leverage graphs for optimizing EA [32, 33, 34]. Recently, Smajevic and Bork [11, 35]
introduced an innovative approach for analyzing EA models within KG. They provided
a generic platform for transforming EA models into KG. Furthermore, they defined a
small set of queries for detecting EA Smells in KG representing the ArchiMate model [3].

A KG is a powerful way of organizing and representing information to capture the complex
interrelationships between different entities. At its core, it is a graph structure which
consists of nodes, relationships, and their properties. Data is stored and represented
as nodes and relationships. Nodes are vertices, and relationships are edges connecting
vertices. Both nodes and relationships have properties as key-value pairs that store
attributes and information. KG enables a flexible and efficient way of storing, querying,
and analyzing data, making it invaluable across various domains and industries. Such
information is stored in a graph database and is represented as a graph. KG’s more
general and formal definition is “a large network of entities, and instances for those
entities, describing real-world objects and their interrelations, with specific reference
to a domain or an organization” [36, p. 27]. KG is used in a wide range of industries
and applications. Well-known corporations like Google, Yahoo, Microsoft, and Facebook
have developed their KG to provide powerful semantic searches and an intelligent way to
process and distribute data [37]. Other common uses of KG are Artificial Intelligence
(AI), Internet of Things (IoT), Machine Learning (ML), and Healthcare [38, 39, 40]. In
our work, the same approach is used to analyze the EA models. By interpreting EA
models as KGs, we define KG queries to detect EA Smells in the ArchiMate models.

15

2. Background

We use the Neo4j graph database to store EA models as KGs and analyze EA models
by defining the KG queries to detect EA Smells in the ArchiMate models. Neo4j is a
popular graph database management system, which stores and queries data in a graph
format.

2.6 CM2KG Platform
The CM2KG is a generic platform for model transformation [13, 11, 35]. It stands for
From Conceptual Models To Knowledge Graphs. This platform is designed to convert
conceptual models based on EMF, ADOxx metamodels, and ECORE-based modeling
platforms into graph structures, with both input and output files in XML format. For
ArchiMate, the platform processes an Archi file in Open Exchange File Format and
converts it to GraphML format. It operates at the meta2 level, facilitating transformation
from the meta-meta model, with the potential for further customization at the modeling
language level.

Additionally, the CM2KG platform provides an interface for graph analysis tools such
as Neo4j, Gephi, yEd, and Stardog. The converted GraphML file can be imported into
these tools for analysis. Figure 2.16 depicts a general overview of the platform. In our
thesis, we use the CM2KG platform to transform ArchiMate models into graphs.

Figure 2.16: CM2KG, a generic platform for transforming models into graphs [11]

2.7 Summary
In this section, we provide essential background information to enhance understanding of
the thesis. We discuss the limitations of TD in the domain of EA while also introducing
the new metaphor of EAD and the concept of EA Smells as a metric for evaluating EAD.
We emphasize that interpreting EA models as graphs streamlines analysis through graph

16

2.7. Summary

queries and various algorithms. Additionally, ArchiMate and its relationship types are
explored. The next chapter examines EA Smells in the context of KG-based ArchiMate
models and presents corresponding KG queries.

17

CHAPTER 3
EA Smells Analysis

This chapter analyzes and describes how to detect EA Smells in the EA domain, particu-
larly in the ArchiMate modeling language via KG queries. The concept of EA Smell is
new to the research field, as are the descriptions in the EA Smell catalog. It requires
improvements and clarifications because the existing definition of EA Smells is too
abstract and lacks a precise definition and approach for detecting those Smells in the EA
domain. This chapter analyzes EA Smells from the catalog by interpreting and studying
every Smell and whether they are detectable in the context of the ArchiMate modeling
language via KG queries.

EA research has shown that EA models can be interpreted as graphs [4, 41, 28, 29, 42, 3].
Moreover, a KG-based approach for analyzing EA models and detecting a tiny set of
EA Smells has yielded a promising result [12]. This approach surpassed the previous
Java-based solution [43]. The Smell detection time using the KG query was three to five
times faster than the Java-based approach. In this chapter, we use the same KG-based
approach to detect EA Smells in graphs derived from ArchiMate models. However, we
maintain all KG queries in the Smell catalog and do not store them in the detection
platform. We separate the detection logic from the detection platform to ensure long-term
maintainability. Furthermore, users do not need to know anything about KG queries.
Section 5 describes our detection platform in more detail.

For transforming the ArchiMate models into KG, we use a platform called CM2KG [13,
11, 35]. This is not our contribution to this thesis. We use the platform only as an
external service for model transformation. We will discuss it in more detail in Section 5.

Section 3.1 describes the EA Smells in the ArchiMate models for which the KG queries,
query options, thresholds, and graphical examples are analyzed and provided.

Section 3.2 describes the EA Smells that are not detectable via KG queries together with
those that are out of the scope of this thesis. EA Smells that require more than one EA

19

3. EA Smells Analysis

model for detection are beyond the scope of this thesis and are also briefly discussed in
Section 3.3.

3.1 Detectable EA Smells via Knowledge Graphs
For each Smell in the catalog, we briefly describe the underlying Code Smell or anti-
pattern and explain how we adapt and transfer this Smell in the EA domain, particularly
in the ArchiMate modeling language. Based on our provided logic for detection, we define
the KG queries. A KG query may have one or more query parameters. The criteria for
detecting EA Smells may vary from organization to organization. Therefore, the queries
should be adjusted using query parameters. These parameters always have a default
value as a threshold. Enterprise architects may change the threshold to fit the query
based on their enterprise concerns. However, it is also possible for a KG query to have
no parameters. Alongside each KG query and its corresponding parameters, we provide
a graphical example to illustrate the EA Smell clearly and reduce misinterpretations.

To enhance the understanding of the provided KG queries, we will briefly introduce
the Neo4j query language. Cypher is a declarative graph query language designed to
express patterns and traverse the graph to retrieve data. It offers a visual approach for
identifying relationships and patterns within the data. In Cypher, nodes and relationships
are defined using parentheses and brackets. Relations in Neo4j are always directed; if a
direction is not specified, the Cypher query considers both directions. Listing 1 presents
an example of a native Cypher query. The variables a and b represent nodes, while
r represents a relationship. The label Person within the parentheses identifies a node
type, and the property name: ‘John’ inside curly brackets specifies a node attribute.
Similarly, knows denotes a relationship type, and the syntax *1..2 describes the hops
degree, indicating the minimum and maximum lengths of relationships between nodes.
The query outlined in Listing 1 aims to find the friends and friends of friends of a person
named John.

MATCH p = (a:Person{name: 'John'})-[r:knows*1..2]-(b:Person)
RETURN p

Listing 1: Simple example of a Cypher query

In this thesis, most of the KG queries we provide include query parameters, mainly
when dealing with graph traversal or the length of relationships. We have two main
reasons for setting the degree of relationships as a query parameter. First of all, the
query options for detecting EA Smells can vary between organizations. For instance,
some enterprise architects may consider a process chain with only ten edges, while others
may be interested in chains with at least twenty edges. Secondly, if no upper limit is
specified for path lengths, the query may take considerable time to execute. Therefore, it
is essential to set an upper limit to length to prevent performance issues when querying
large, densely connected data.

20

3.1. Detectable EA Smells via Knowledge Graphs

During the writing of this thesis, the latest version of Neo4j is five (5.x). According to
the Neo4j documentation, there are some limitations regarding query parameters in the
native Cypher query language. Specifically, it is impossible to set the hops degree as
a query parameter [44]. As a workaround, we utilize a library called apoc1 (Awesome
Procedures on Cypher). This library offers numerous functions and procedures that
allow us to parameterize the query in places where it is not possible within the native
Cypher query. In this thesis, we not only use native Cypher queries but also leverage
some apoc procedures to define our query parameters. We use two procedures to specify
path lengths as query parameters: apoc.nodes.cycles and apoc.path.expand.

We use the apoc.nodes.cycles to detect cyclic paths in KG’s representing the
ArchiMate models. Listing 2 illustrates the syntax of this procedure and provides a
simple example of how to call it. The procedure accepts two parameters: a list of nodes,
and configuration properties in the form of key-value pairs. The configuration properties
are not mandatory but filter the length and relation types of the cyclic path. To optimize
query performance, we parameterize the length of the paths to prevent adverse impacts
on query performance. However, we can modify the value based on the model size. The
query provided in Listing 2 looks for all cycles starting from the start nodes with up to
three intermediate nodes. Table 3.1 details the configuration parameters.

apoc.nodes.cycles(nodes :: LIST? OF NODE?, config = {} :: MAP?) :: (path
:: PATH?)�→

MATCH (m1:Start) WITH collect(m1) as nodes CALL apoc.nodes.cycles(nodes,
{maxDepth: 3}) YIELD path RETURN path�→

Listing 2: Signature and an example of apoc.nodes.cycles procedure

Table 3.1: Possible parameters for apoc.nodes.cycles procedure

Parameter Type
Node <id>|Node|list
Relationship [<]EDGE_TYPE1[>]|[<]EDGE_TYPE2[>]...
MaxDepth Number

The second apoc procedure used for querying EA Smells is apoc.path.expand. This
procedure allows us to search for a path based on multiple query parameters, including
the starting and ending nodes, minimum and maximum path lengths, labels, and the
relationships along with their directions. It takes five parameters in total. The first
parameter is the starting node, the second and third are relations and nodes. The last
two parameters are minimum and maximum values for path length. Table 3.2 illustrates
the syntax of the query parameters in more detail. The symbols “>” and “<” associated
with the relationships indicate the direction of the edges. Regarding label parameters,

1https://neo4j.com/docs/apoc/current

21

3. EA Smells Analysis

the symbol “>” or “/” before a label name signifies that the node with this label is an
end or termination node. By including a termination filter (“/”), the path will return up
to a node with the specified label. In contrast to the termination filter, the end node filter
(“>”) returns all the paths that lead to a node with a specified label, but the traversal
will continue beyond the specified end node. Additionally, filtering for labels can be done
using a whitelist or blacklist, represented by plus (+) and minus (-) signs, respectively.
Finally, the MinLevel and MaxLevel parameters are used to specify the minimum and
maximum number of hops during the traversal.

Table 3.2: Possible parameters for apoc.path.expand procedure

Parameter Possible Value(s)
Node <id>|Node|list
Relationship [<]EDGE_TYPE1[>]|[<]EDGE_TYPE2[>]|. . .
Label [+-/>]LABEL1|LABEL2|*|
MinLevel Number
MaxLabel Number

Listing 3 demonstrates a scenario with different parameters to provide a detailed expla-
nation of the query. A person node named “John” serves as the starting point. The
path navigates through nodes beginning with the name “John,” featuring an outgoing
relation labeled FOLLOWS and a bidirectional relation labeled KNOWS. The label
Engineering is marked by a plus sign (“+”), indicating a whitelist filter, which means
that all nodes in the path should have this label. Conversely, the presence of the label
Science is prohibited, denoted by the minus sign, acting as a blacklist. If there is no
whitelist or blacklist specified, all labels will be considered in the path. A label with a
backslash sign (“/”) is considered as a final node. The label Management is a terminate
node, causing the traversal to finish reaching a node with the Management label and
return the resulting path.

MATCH (p:Person {name: "John"})
CALL apoc.path.expand(p, "FOLLOWS>|kNOWS",

"+Engineering|-Science|/Management", 1, 3)�→
YIELD path
RETURN path

Listing 3: A Cypher query using apoc.path.expand procedure

We have briefly introduced the Cypher query and apoc procedures. Now we will start
with the EA Smell analysis, providing definitions and KG-queries.

3.1.1 Cyclic Dependency
The Cyclic Dependency EA Smell derives from the Circular Dependency Code Smell [45].
This Smell occurs when two or more abstractions depend on each other, resulting in a

22

3.1. Detectable EA Smells via Knowledge Graphs

cyclic path between them. For instance, in software engineering, a cyclic dependency
exists between classes A and B, if A has a reference from B and B contains a reference
from A. Therefore, any changes in class A may affect B and vice versa. This Smell leads
to tight coupling between the classes. We can demonstrate such dependencies using
a dependency graph. The Cyclic Dependency Smell is also prevalent in microservice
architecture design, where there is a cyclic communication between microservices [46].
In the context of the EA, this Smell occurs in the model once a cyclic path between
elements exists.

Table 3.3 depicts a graphical example of the cyclic path between Business Services 1, 2,
and 3. Table 3.3 also features the KG query detecting cyclic paths. We specify a relation
degree in the query for detecting cyclic paths. The query checks for cyclic paths until
they reach a certain length. We must set an upper limit on length to prevent query
performance issues with large, densely connected data. However, in a native Cypher
query, there is no possibility of setting the relation depth as a variable. Therefore, we
use a method apoc.nodes.cycles from the apoc library to set the maximum depth
for detecting cyclic paths as a parameter. We set ten as the default maximum value for
edges between nodes. The relation length is set as a query parameter, and enterprise
architects can modify the default value based on their model size. However, setting a
large value as hop degree may impact the query performance.

Table 3.3: Graphical example, Cypher query and query options for detecting Missing
Abstraction EA Smells

Properties Descriptions
Cypher Query

MATCH (m) WITH collect(m) as nodes CALL
apoc.nodes.cycles(nodes, {maxDepth: $maxDepth})
YIELD path RETURN path as p

�→
�→

Query options

"queryParams":
[

{ "name": "maxDepth",
"type": "number",
"default": 10,
"description": "The max length of a cyclic path."

}
]

Continued on next page

23

3. EA Smells Analysis

Table 3.3 – continued from previous page
Property Description

Graphical ex-
ample

3.1.2 Incomplete Pairs

The Incomplete Pairs EA Smell is derived from the Incomplete Abstraction Code Smell.
Coherence and completeness are essential aspects of an abstraction. Incomplete Abstrac-
tion arises when an abstraction fails to provide all complementary methods [45, pp. 34-35].
For example, in the case of a data structure, the abstraction must support adding and
removing elements. If either of these interrelated methods is missing, the abstraction is
considered incomplete.

We have renamed Incomplete Abstraction to Incomplete Pairs to better align with the
EA domain. We check for completeness between elements within a process. Table 3.5
illustrates an example of Incomplete Pairs EA Smell in the ArchiMate modeling language.
An element is named “start claim,” but a complementary element “stop claim” is missing.
This indicates that the model suffers from the Incomplete Pairs EA Smell.

Table 3.5 demonstrates the KG query and a complementary list of key-value pairs as
query parameters for detecting the Incomplete Pairs EA Smell. If an element name is
included in the keys, then the query checks for its counterpart. If the counterpart element
does not exist, then the model may suffer from the Incomplete Abstraction EA Smell.
Girish Suryanarayana et al. [45, p. 37] provided a set of complimentary pairs listed in
Table 3.4 for detecting Incomplete Abstraction Code Smell. By default, we provide the
same symmetric pairs as query parameters. However, enterprise architects may extend
or modify the parameters.

Table 3.4: Symmetric pairs taken from [45, p. 37]

Min/max Open/close Create/destroy Get/set
Read/write Print/scan First/last Begin/end
Start/stop Lock/unlock Show/hide Up/down

Source/target Insert/delete First/last Push/pull
Enable/disable Acquire/release Left/right On/off

24

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.5: Graphical example, Cypher query and query options for detecting Incomplete
Pairs EA Smells

Incomplete Pairs
Property Description
Cypher query

WITH apoc.map.values($pairs, keys($pairs), true) as jsonValues
MATCH(n)
WHERE any (x in keys($pairs)
WHERE toLower(n.name) starts WITH x)
WITH n
WITH [x in keys($pairs)
WHERE toLower(n.name) starts WITH x | x] as

copmplementaryPair, n�→
unwind copmplementaryPair as selectedKey
WITH collect(distinct selectedKey) as complementaryKey, n
WITH n, apoc.map.values($pairs, complementaryKey, true) as

jsonValues, complementaryKey�→
MATCH (n),(m)
WHERE not exists {
MATCH (j)
WHERE m=j and toLower(n.name) contains complementaryKey and

toLower(j.name) contains apoc.map.values($pairs,
complementaryKey, true)

�→
�→
}
return n

Query options

"queryParams":[
{

"name": "pairs",
"type": "map",
"default": {"min":"max" ,"open":"close", "start":"stop",

"create":"destroy", "get":"set",�→
"read":"write", "print":"scan", "first" :"last",

"begin":"end", "lock": "unlock", "show":"hide",
"up":"down", "source":"target", "insert":"delete",
"push":"pull", "enable":"disable",
"acquire":"release", "left":"right", "on":"off"},

�→
�→
�→
�→
"description": "A list of complementary key-value pairs."

}
]

Graphical
example

25

3. EA Smells Analysis

3.1.3 Multifaceted Abstraction
A good abstraction should only be responsible for one specific functionality, and when
it encapsulates more than one responsibility, it signifies the Multifaceted Abstraction
Smell [45, pp. 41-43]. The Multifaceted Abstraction Smell violates the single responsibility
principle and has a low cohesion, which violates the modularization principle. An example
of this Smell at the code level is the Java.Util.Calendar package, as it handles both
calendar and time functionalities [45, p. 41].

We can transfer this Smell to the EA domain by examining an abstraction performing
or realizing more than one behavior. According to the ArchiMate specification [9], the
Assignment Relationship links active structures to behaviors and states for responsibility,
execution, and performing of a behavior. The Realization Relationship signifies that
an element implements and supplies the abstract element. Table 3.6 demonstrates two
possible scenarios leading to the Multifaceted Abstraction in the ArchiMate modeling
language. The first example depicts a Business Actor element responsible for performing
two behaviors, “Business Process 1” and “Business Process 2.” The second example
illustrates an Application Component realizing two different services. Since the Business
Actor and Application Component have more than one responsibility, they are candidates
for the Multifaceted Abstraction EA Smell.

The KG query for identifying the Multifaceted Abstraction EA Smell is also represented
in Table 3.6. We consider the number of Realization and Assignment relations in our
KG query for counting the responsibilities of an active element. If an element has two or
more relationships of these types, then the model suffers from Multifaceted Abstraction
EA Smell.

Table 3.6: Graphical example and Cypher query for detecting Multifaceted Abstraction
EA Smells

Multifaceted Abstraction
Property Description

Cypher Query
MATCH

(m)-[r:AssignmentRelationship|RealizationRelationship]->(n)�→
WITH m, COUNT(r) AS rCount
MATCH p=(m)-[r:AssignmentRelationship|RealizationRelationship] ⌋

->(n)�→
WHERE rCount>1
RETURN p

Query options -
Continued on next page

26

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.6 – continued from previous page
Property Description

Graphical ex-
ample

3.1.4 Data Service
The Data Service, also known as Data Class Smell, is a SOA anti-pattern. This type of
service solely performs data retrieval and has no other capabilities [47]. The data service
does not communicate with other services and has no dependency on other services.
However, other services may use this service to retrieve data.

We transfer this anti-pattern into the EA domain by searching services that exclusively
provide access to a data source and do not initiate interaction with other components. In
the ArchiMate modeling language, the Business Object and Data Object elements serve
as data source representations. Under certain circumstances, the element Artifact can
also represent a database if it realizes a data source element or has a name that specifies
a database (e.g., “DBMS”).

Table 3.7 illustrates an example of the Data Service EA Smell in ArchiMate. The “Access
Customer Data” has access to a data source named “Customer Data Profile.” A Serving
Relationship from A to B means that A provides its functionality to B, or A is used by B.
Consequently, the “Access Customer Data” serves the data retrieval to the two services -
“Customer Administration” and “Verify Claim,” but it does not initiate interactions with
any services. Therefore, it qualifies for Data Service EA Smell.

Table 3.7 illustrates the KG query for identifying the Data Service EA Smell. The query
verifies whether a service can access a data source element and refrain from engaging with
other services. It does not possess specific types of outgoing relations to other elements.
The query takes into account Business Object, Data Object, and Artifact as data-source
elements.

3.1.5 Feature Envy
The Feature Envy Smell occurs when an abstraction becomes more focused on the
methods and fields of other abstractions rather than its functions and variables [48,
p. 293]. This issue typically arises when data and functionality that should be kept
together are separated across multiple components [49, p. 66]. For instance, a service
may contain business logic, while the data required to perform that logic is stored in

27

3. EA Smells Analysis

Table 3.7: Graphical example and Cypher query for detecting Data Service EA Smells

Data Service
Property Description
Cypher query

MATCH p = (a)-[r:AccessRelationship]-(d)
WHERE (a:ApplicationService or a:BusinessService or
a:TechnologyService) AND (d:DataObject or d:BusinessObject or

d:Artifact)�→
WITH p, a
WHERE NOT EXISTS{
(a)-[r1:AssignmentRelationship|CompositionRelationship
|AssociationRelationship|AggregationRelationship|
RealizationRelationship]-(s)
WHERE NOT s:ApplicationService or s:BusinessService
or s:TechnologyService
}
RETURN p

Query options -
Graphical
example

another service. As a result, the service with the business logic often has to invoke the
other service frequently to retrieve the necessary data. The Feature Envy Smell is often
found in conjunction with another Smell known as Data Service.

We transfer this Smell in the ArchiMate modeling language by searching for a service
that communicates with a data service to complete its task. Table 3.8 illustrates an
example of the Feature Envy combined with Data Service EA Smell in an ArchiMate
model. The “Risk Calculating Service” and “Retrieve Customer Data” both rely on the
“Access Customer Data” to obtain the required data to fulfill their tasks. Therefore, they
are candidates for the Feature Envy EA Smell. The KG query detecting Feature Envy EA
Smell is depicted in Table 3.8. The query looks for the Serving and Association relations
between the feature and service containing the data.

28

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.8: Graphical example and Cypher query for detecting Feature Envy EA Smells

Feature Envy
Property Description
Cypher query

MATCH p=(f)<-[:ServingRelationship|
AssociationRelationship]-(a)-[r:AccessRelationship]-(d)
WITH p, a
WHERE NOT EXISTS{
(a)-[r1:AssignmentRelationship|CompositionRelationship
|AssociationRelationship|AggregationRelationship|
RealizationRelationship]-(s)
WHERE NOT s:ApplicationService or s:BusinessService
or s:TechnologyService
}
RETURN p

Query options -
Graphical
example

3.1.6 Shotgun Surgery
The Shotgun Surgery Smell appears when a modification in one abstraction requires
changes in a bunch of other abstractions [50]. For example, in APACHE TOMCAT, there
is a method named isAsync within the class AsyncStateMachine. This method has
been used within 31 classes over 48 methods [51]. Any change in the isAsync method
force changes in all 48 methods.

We can similarly transfer this Smell in the EA domain. Generally, when multiple
abstractions depend on a single abstraction, any changes to the single abstraction may
force some modifications in the dependent abstractions. In the ArchiMate modeling
language, the relation types describing dependency are Serving, Association, Access, and
Influence.

To detect this Smell via KG query, we check whether a one-to-many relationship exists
using the specified relation types. The definition of ‘many’ may differ depending on
the organization or enterprise. To accommodate this variability, we establish a default

29

3. EA Smells Analysis

threshold number, which can be adjusted by the enterprise architects conducting the
detection. The default threshold is set to three. When the number of relationships
exceeds the threshold, the query identifies the Smell candidates. Table 3.9 presents two
graphical examples of the Shotgun Surgery EA Smell. In this context, an Application
Service shared by multiple services and a specific Requirement influences four goals. Any
changes to the Application Service or the Requirement could necessitate modifications to
the dependent elements, potentially leading to further changes. Table 3.9 illustrates the
KG query and the parameter used for detecting the Shotgun Surgery EA Smell.

Table 3.9: Graphical example, Cypher query and query options for detecting Shotgun
Surgery EA Smells

Shotgun Surgery
Property Description
Cypher query

MATCH (a)-[r:ServingRelationship|AssociationRelationship|
InfluenceRelationship|AccessingRelationship]-()
WITH a, COUNT(r) AS relCount
MATCH p=(a)-[r]-(b)
WHERE relCount> $abstractionsCnt
RETURN p

Query options

{
"name": "abstractionsCnt",
"type": "number",
"default" : 3,
"description": "The number of abstractions dependent on a

single abstraction."�→
}

Graphical
example

30

3.1. Detectable EA Smells via Knowledge Graphs

3.1.7 Scattered Parasitic Functionality
The Scattered Parasitic Functionality Smell occurs when two or more abstractions are
responsible for the same concern while some of them also address orthogonal concerns [52].
Spreading a concern among abstractions violates the principle of separation of concerns.

In the realm of EA, we interpret a concern as a function or a goal. We identify this
Smell in the ArchiMate model in two ways. First, in the literal sense, we are looking for
Application Components responsible for the same function. Besides, at least one of them
also performs some independent functions. Second, by looking at the analysis elements
called Assessments that emerge from stakeholder concerns. Each Assessment should
deliver a goal. If two Assessments influence the same goal and one of them also addresses
other goals at the same time, then this can also be a sign of the Scattered Parasitic
Functionality Smell in ArchiMate.

Table 3.10 shows two examples of the Scattered Parasitic Functionality EA Smell in the
application and motivation layers of ArchiMate, as well as defines KG query detecting
this Smell. We consider four types of relationships between elements. These are Influence,
Assignment, Realization and Association. Assessments influence goals, components are
assigned to functions and association is used to describe relationships between elements
that are more general or still unspecified.

Table 3.10: Graphical example and the Cypher query for detecting Scattered Parasitic
Functionality EA Smells

Scattered Parasitic Functionality
Property Description

Cypher Query
MATCH (a)-[r:AssignmentRelationship|AssociationRelationship
|InfluenceRelationship|RealizationRelationship]-(b)
WHERE (a:ApplicationFunction OR a:ApplicationService OR

a:Goal) AND�→
(b:ApplicationComponent OR b:Assessment)
WITH a, COUNT (b) AS compCount
MATCH (a)-[r:AssignmentRelationship|AssociationRelationship
|InfluenceRelationship|RealizationRelationship]-(b)
WHERE (b:ApplicationComponent OR b:Assessment) AND compCount>1
WITH a, b
MATCH p =
(a)--(b)-[r:AssignmentRelationship|AssociationRelationship|Inf ⌋

luenceRelationship|RealizationRelationship]-(orthogonal)�→
WHERE a<>orthogonal and (orthogonal:ApplicationFunction or

orthogonal:Goal)�→
RETURN p

Query options -
Continued on next page

31

3. EA Smells Analysis

Table 3.10 – continued from previous page
Property Description

Graphical ex-
ample

3.1.8 Deficient Encapsulation
If an abstraction makes its members accessible to other abstractions in a more permissive
way, which is not necessarily required, it suffers from Deficient Encapsulation Smell [45,
pp. 63]. At the code level, these abstractions are classes with public fields. Therefore, they
are directly accessible by other classes, although such access is not necessarily required.
The java.awt.Point class is an example of suffering from the Deficient Encapsulation
Smell [45, p. 64]. It has two fields for drawing points, named x and y. These fields are
declared public despite having mutators and accessors methods.

In the EA domain, particularly in the ArchiMate modeling language there are no access
modifiers. As a result, we need to slightly adjust the definition to apply this concept to
ArchiMate. Instead of modifiers, we try to identify sources of information that contain
sensitive data while the rules for accessing those data are more lenient than necessary.

In ArchiMate, the Business Objects, Data Objects, and Artifacts elements serve as
data source representations. However, there is no distinction between sensitive and
non-sensitive data sources. To address this, we can explore identifying a property that
designates a data source as confidential. Additionally, we can establish a threshold for
permissible access to sensitive data. If the number of accesses exceeds this threshold, we
may interpret it as an indication of a Deficient Encapsulation EA Smell.

Table 3.11 depicts an example of the Deficient Encapsulation EA Smell in ArchiMate.
Three elements accessing one Business Object having the property “confident.” We have
three access relationships between the data source and other elements. Since the default
permissible number of accesses for such data source is two, the model suffers from the
Deficient Encapsulation EA Smell.

32

3.1. Detectable EA Smells via Knowledge Graphs

The KG query detecting this Smell, along with its parameters, is outlined in Table 3.11.
The query requires two parameters. The first parameter specifies the property names and
their corresponding values, allowing users to search for property keys, their values, or
both. The second parameter sets the maximum permissible communication with the data
source. The default properties for identifying sensitive data in the query are “confident”
and “classified.” The query checks for these values as property key and value. The default
value for permissible access is two. However, users or enterprise architects can redefine
these query parameters as needed.

Table 3.11: Graphical example, Cypher query and query options for detecting Deficient
Encapsulation EA Smells

Deficient Encapsulation
Property Description

Cypher Query
MATCH (n)
WHERE n.ClassName ='DataObject' or

n.ClassName='BusinessObject' or n.ClassName='Artifact'�→
WITH n
WHERE ANY (x in keys(n) WHERE n[x] IN $sensitiveProperties OR

toLower(x) IN $sensitiveProperties)�→
WITH n
MATCH (n)-[r:AccessRelationship]-(m)
WITH n, count(r) as relCnt
MATCH p=(n)-[r:AccessRelationship]-(m)
WHERE relCnt>$permissibleCount
RETURN p

Query options

"queryParams":
[

{ "name": "sensitiveProperties",
"type": "list",
"default": ["confident", "classified", "sensitive"],
"description": "The list of property values specifying

an�→
element as confidential."

},
{ "name": "permissibleCount",

"type": "number",
"default": 2,
"description": "The permissible number of elements for

accessing a confidential data source."�→
}

]

Continued on next page

33

3. EA Smells Analysis

Table 3.11 – continued from previous page
Property Description

Graphical ex-
ample

3.1.9 Wrong Cuts

The Wrong Cuts Smell is originally a microservice architecture Smell. Martin Fowler [53]
defines a microservice as an independent unit with a single business capability that
can exist and deploy independently. A monolith application should break down to
microservices based on business capabilities and not the technical aspects [54, 46]. The
Wrong Cuts occurs when a business capability is distributed among many microservices,
then it violates the separation of concern design principle and increases data-splitting
complexity [46]. It also violated the autonomous nature of the microservice, affecting its
business capability since it can not fulfill its responsibility and remains dependent on the
existence of other microservices.

We can transfer the concept of Wrong Cuts into the EA domain by looking for behaviors
or business capabilities that are implemented by more than one component. According to
the specification of the ArchiMate, Application Components are independently deployable,
reusable, self-contained units [9]. They perform some functionality and expose their
services. Therefore, we can consider them as microservices.

The Wrong Cuts EA Smells can occur in ArchiMate once two or more Application
Components implement the same Application Function or Application Service. Table 3.12
illustrates an example of Wrong Cuts EA Smell in the ArchiMate modeling language, where
two Application Components are involved in realizing the same Application Function. This
means that the same functionality is shared in both application components. Hence, both
components violate the single responsibility and separation of concern design principles.
The KG query used to identify the Wrong Cuts EA Smell is depicted in Table 3.12. The
query checks for multiple realizations of the same behavior across different Application
Components.

34

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.12: Graphical example and Cypher query for detecting Wrong Cuts EA Smells

Wrong Cuts
Property Description
Cypher query

MATCH (c:ApplicationComponent)-[r:RealizationRelationship]-(f: ⌋
ApplicationFunction|ApplicationProcess|ApplicationService)�→

WITH f, COUNT(c) AS compCount
MATCH p =

(c:ApplicationComponent)-[r:RealizationRelationship]-(f)�→
WHERE compCount> 1
RETURN p

Query options -
Graphical
example

3.1.10 Dead Component

The EA Smell Dead Component is inspired by the concept of the Code Smell Dead Code.
Dead Code refers to sections of code that are no longer needed or relevant but remain
in the project. This typically happens during refactoring, when certain code segments
become obsolete or redundant but are not removed for safety reasons [45, p. 51] [55, p. 49].
These outdated sections linger in the codebase, consuming resources and potentially
causing confusion, despite not contributing to the functionality of the application.

In the EA domain, the name of the Smell has been adjusted to Dead Component [7]. It
might refer to a component or module in an EA system that is no longer in use but is
retained for various reasons, even though it serves no purpose in the current system.

We can detect the Dead Component EA Smell via KG query when a component has
neither incoming nor outgoing edges. Table 3.13 depicts a graphical example of the Dead
Component EA Smell in the ArchiMate model and the KG query for detection.

35

3. EA Smells Analysis

Table 3.13: Graphical example and Cypher query for detecting Dead Component EA
Smells

Dead Component
Property Description
Cypher query

MATCH p = (n)
WHERE NOT (n)--()
RETURN p

Query options -
Graphical
example

3.1.11 Vendor Lock-In
The Vendor Lock-In is an anti-pattern when a software product becomes strongly
dependent on a technology provided by a vendor [55, pp. 91-92]. Being overly reliant on
a vendor’s technology impacts the software quality, and the cost of switching to another
technology becomes so high that the software is forced to stick with the current vendor.
Generally, an Isolation layer is a solution to avoid such a strong coupling between the
product and vendor’s implementation [56].

In the EA domain, internal and external services expose their functions to users and
other services. A vendor product can be an external service, and an interface can act as
an isolation layer between the vendor’s technology and the rest of the organization.

In ArchiMate, there is no clear distinction between external and internal services. Hence,
it is reasonable to presume that a property or element’s designation should indicate
the service as an external offering from a vendor. The element name should reflect the
vendor’s product or the element should possess a property signifying its external nature.
After identifying such an element within the model, our next step is to verify whether
it has an interface functioning as an isolation layer. If such layer is missing, the model
suffers from theVendor Lock-In EA Smell.

Table 3.14 illustrates an example of a service offered by a vendor. The external service
“Document Management Back-Up” has a property named “vendor” with a value “AWS.”
Since there is no interface between the vendor project and elements in the model, there
is a risk that the whole organization is tightly coupled to the vendor’s project, which
could be a sign of the Vendor Lock-In EA Smell.

Table 3.14 depicts the KG query and the query parameters for the Smell detection.

36

3.1. Detectable EA Smells via Knowledge Graphs

The query checks whether or not a property or an element name exists indicating the
element is a vendor product. If such an element exists and does not have an isolation
interface, then the element is a candidate for Vendor Lock-In EA Smell. The query has
two parameters. The first parameter is a property name that indicates the element as
external. The default values are “external” and “vendor.” The second parameter is the
vendor’s name. The default values are “IBM,” “Microsoft,” and “Amazon.” The query
searches for these parameters in property names and their values. Nevertheless, a list
of words to specify vendor products can be defined by enterprise architects in order to
extend or replace the default parameters.

Table 3.14: Graphical example, Cypher query and query options for detecting Vendor
Lock-In EA Smells

Vendor Lock-In
Property Description

Cypher Query

MATCH p = (n)
WHERE n.name in $external
AND NOT EXISTS{

(n)--(i) where toLower(i.classname) contains "interface"
}
RETURN p
UNION
MATCH p = (n)
where ANY (x in keys(n) WHERE n[x] IN $vendors OR toLower(x)

IN $external)�→
AND NOT EXISTS{

(n)--(i) where toLower(i.classname) contains "interface"
}
RETURN p

Continued on next page

37

3. EA Smells Analysis

Table 3.14 – continued from previous page
Property Description

Query options

"queryParams": [
{

"name": "external",
"type": "list",
"default": ["external", "vendor"],
"description": "The name or the property of the element

that marks it as external."�→
},
{

"name": "vendors",
"type": "list",
"default": ["IBM", "Microsoft", "Amazon"],
"description": "The name or the property of the element

that marks it as external."�→
}
]

Graphical ex-
ample

3.1.12 No Legacy

The No Legacy anti-pattern refers to a situation where an organization decides to rebuild
a system from scratch instead of modernizing the existing legacy systems and integrating
them into the new one [57]. Developing and implementing new systems can be a time-
consuming and expensive process that may require excessive investments. Furthermore,
it may not be necessary if the legacy systems still function well and can be smoothly
integrated in the new system. Often, this anti-pattern is combined with the Big Bang
anti-pattern where the entire system is built all at once [58].

While the ArchiMate modeling language lacks a dedicated syntax or element for denoting
legacy components, these can still be inferred based on their names or properties.
Additionally, we can pinpoint components that have a limited duration as they are
intended to be replaced by new ones.

In ArchiMate, a plateau is an element type representing a stable state that exists for a
specific period. Table 3.15 illustrates the legacy system “Main Frame CRM,” which is
set to replace a new component, “Microservice CRM.” The terms “Baseline” and “Vision”

38

3.1. Detectable EA Smells via Knowledge Graphs

represent Plateau elements. The baseline reflects the current state of the legacy system
“Main Frame CRM,” providing a reference point for comparison with the new system’s
envisioned state, “Vision.” These states remain relevant only temporarily until the legacy
system is fully replaced. The replacement process is managed by the “Replace Main
Frame” element, categorized as a Work Package. A Work Package contains a set of
actions aimed at completing a specific task within a defined timeframe, in this case,
creating the “Microservice CRM.”

The KG query begins by identifying elements in the model that possess a specific name or
property associated with legacy components. If such an element exists, they are flagged
as legacy components. The query then evaluates whether these legacy components
have relationships with relevant Plateau and Work Package elements. A default query
parameter, “legacy,” is predefined to detect legacy components. However, enterprise
architects can modify this parameter to specify a custom list of names for identifying
legacy elements in their enterprise models. Table 3.15 illustrates the KG query and its
parameters for detecting the No Legacy EA Smell.

Table 3.15: Graphical example, Cypher query and query options for detecting No Legacy
EA Smells

No Legacy
Property Description

Cypher Query

MATCH p=(m)--(n)
WHERE any (name in $legacy where toLower(m.name) CONTAINS

toLower(name))�→
OR ANY (x in keys(m) WHERE m[x] IN $legacy OR toLower(x) IN

$legacy)�→
WITH m
MATCH p = (m)--(n:WorkPackage|Plateau)
return p

Query options

"queryParams": [
{

"name": "legacy",
"type": "list",
"default": ["legacy"],
"description": "The element names or property values

specifying legacy components."�→
}]

Continued on next page

39

3. EA Smells Analysis

Table 3.15 – continued from previous page
Property Description

Graphical ex-
ample

3.1.13 Warm Bodies
When working on a software project, it is common for developers with different skill
sets and productivity levels to collaborate in teams. However, if the team size becomes
too large, coordination between members becomes difficult, resulting in less efficient
decision-making and reduced productivity. Over time, it also leads to a loss of shared
insight. This behavior is defined as an anti-pattern called Warm Bodies [55, p. 101].

In ArchiMate, we can represent the team concept by Actor or Work package elements.
An Actor can represent several people, and a Work package can accommodate a group
of employees. Work packages in ArchiMate are similar to agile iterations and represent
designed actions for achieving a specific task within a given timeframe.

To determine the team size in these elements, we assume the existence of a property
specifying the number of team members. If such a property exists and the team size
exceeds a defined threshold, we consider the element as a potential instance of the Warm
Bodies EA Smell.

Table 3.16 demonstrates a graphical example of the Warm Bodies EA Smell in the
ArchiMate modeling language. In this example, the element “Hardware Update” includes
a property named “Members,” with a value indicating a team size of seven. According to
Edwards et al. [59], the optimal team size is four. If we set the threshold for the ideal
team size at four, the “Hardware Update" element qualifies as a candidate for the Warm
Bodies EA Smell, because its team size exceeds this threshold.

To detect the presence of the Warm Bodies EA Smell, our provided KG query evaluates

40

3.1. Detectable EA Smells via Knowledge Graphs

elements labeled as Actor or Work Package with properties indicating a team size greater
than the defined threshold, which is set to four by default. If such elements are found,
the model suffers from the Warm Bodies EA Smell.

We define a list of parameters to include potential property names representing team
size, such as “Members,” “Personnel,” and “Staff,” along with a numerical threshold. By
default, the threshold is set to four, but enterprise architects can adjust these parameters
to align with their organization’s specific needs. Table 3.16 illustrates the KG query and
its customizable options for detecting this EA Smell.

Table 3.16: Graphical example, Cypher query and query options for detecting Warm
Bodies EA Smells

Warm Bodies
Property Description
Cypher query

MATCH (n:Actor|WorkPackage)
where ANY (x in keys(n) WHERE x IN $staffProperty and n[x] >
$staffSize)
RETURN n

Query options

"queryParams": [
{

"name": "staffProperty",
"type": "list",
"default": ["Members", "staff", "Personnel"]
"description": "Property name(s) specifying the size of a

team."
},
{
"name": "staffSize",
"type": "number",
"default": 4,
"description": "The number of people in an Actor or Work

Package element."
}]

Graphical
example

41

3. EA Smells Analysis

3.1.14 Combinatorial Explosion
The Combinatorial Explosion, also referred to as the Missing Encapsulation Smell,
arises when there is a lack of abstraction or hierarchy to encapsulate implementation
variations [45, pp. 78-79]. This Smell is typically manifested in two ways. First, when a
client is directly dependent on multiple service variations, any modification in existing or
creating new services affects the client. Second, whenever there is an effort to create a
new service type in the hierarchy, an unnecessary amount of classes are produced, leading
to an “explosion of classes.” Such a design shortcoming results in a great amount of
duplicated codes with tiny variations in data and behavior.

In the EA domain, the Combinatorial Explosion Smell can also occur as a subtle form of
duplication. Table 3.17 demonstrates a graphical example of Combinatorial Explosion EA
Smell in the ArchiMate modeling language. Two application services implement identical
behavior but rely on different data sources. According to the ArchiMate specification,
if two abstractions realize the same behavior, each can fully implement the behavior.
However, both services provide identical functionality in this scenario while accessing
separate data sources, leading to duplication. This design flaw results in redundant
components with slight variations in data and behavior. The existence of Combinatorial
Explosion in the EA domain may have different reasons. For example, two services provide
the same functionality but get data from two different sources because the data cannot
be shared. In such cases, the duplication of services is unavoidable for the enterprise.
Table 3.17 illustrates the KG query for detection of Combinatorial Explosion EA Smell.

Table 3.17: Graphical example, Cypher query and query options for detecting Combina-
torial Explosion EA Smells

Combinatorial Explosion
Property Description

Cypher query

MATCH (a)-[r:RealizationRelationship]->(b)
WITH b, COUNT (a) AS implCount
MATCH p = (d)-[r1:AccessRelationship]-(a)-[r:RealizationRelati ⌋

onship]->(b)�→
WHERE implCount>1
RETURN p

Query options -
Continued on next page

42

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.17 – continued from previous page
Property Description

Graphical
example

3.1.15 Stovepipe System

It is common for an enterprise to have multiple systems designed independently at
every level of the organization. The Stovepipe System anti-pattern emerges when there
is little or no coordination and planning among these systems [55]. Thus, the design
and development of the different subsystems take place independently, leading to the
creation of isolated subsystems with limited interoperability and inhibited reusability.
Since common mechanisms for implementing subsystems are missing, reusing the existing
abstractions in different subsystems becomes inaccessible or invisible. This shortcoming
causes the creation of duplicate abstractions within subsystems, which is a sign of
Duplication Abstraction Smell [45, p. 54]. At first glance, they may not seem identical
to existing ones because they may have different names and interfaces. For this reason,
the occurrence of Smell Alternative Classes with Different Interfaces becomes more
conspicuous. In order to transform the mentioned Smell into the EA domain, we slightly
renamed it by replacing the term class with a component, which becomes Alternative
Components with Different Interfaces.

In ArchiMate, we can detect this Smell by looking for services that provide similar
functionality but have different names or interfaces. In order to detect a duplicate
abstraction, one can check for identical implementations and terms in the model. We
can not evaluate identical implementations within a graph using KG query because it
requires much more low-level details. Therefore, a process manager is required to check for
identical implementation between components. However, we can evaluate identical names
by checking if two components have the same or similar names. Table 3.18 illustrates
an example of Stovepipe System or Alternative Components with Different Interfaces
EA Smell in the ArchiMate modeling language. The components “Legal Expense CRM
System” and “General CRM System” appear to serve similar purposes but use different
interfaces, indicating duplication.

43

3. EA Smells Analysis

The KG query and the query parameters for detecting this Smell are shown in Table 3.18.
We use the Jaro-Winkler distance algorithm [60] to inspect the similarity of strings. The
algorithm produces a similarity score ranging from zero to one, where zero indicates an
exact match, and one signifies no similarity between the strings. We set a threshold of
“0.4,” meaning that any similarity score between 0 and 0.4 is considered a candidate for
duplication.

Table 3.18: Graphical example, Cypher query and query options for detecting Stovepipe
System EA Smells

Stovepipe System
Property Description

Cypher query

MATCH p1=(a)--(b:ApplicationInterface|BusinessInterface|Techno ⌋
logyInterface),
p2=(c)--(d:ApplicationInterface|BusinessInterface|Technolo ⌋
gyInterface)

�→
�→
�→
WHERE a<>c and b<>d and apoc.text.jaroWinklerDistance

(a.name, c.name) < $score�→
UNWIND [p1,p2] as p
RETURN p

Query options

"queryParams": [
{

"name": "score",
"type": "number",
"default": 0.4,
"min": 0.0,
"max": 1.0,
"step": 0.1,
"description": "List of synonyms to check whether

components are similiar."�→
}]

Graphical
example

44

3.1. Detectable EA Smells via Knowledge Graphs

3.1.16 Nanoservices
A nano service is a fine-grained service with a simple operation that implements only
a part of an abstraction and exchanges a large amount of information with a group
of services to complete an abstraction task [61]. A higher number of services can be
advantageous when it comes to scalability and changeability, but maintainability and
communication between these services cause considerable overhead. Due to numerous
interactions between nano services, often a cyclic path emerges between these kinds of
services [54]. This anti-pattern often occurs in microservice architecture when a monolith
is divided into too many small services [54].

We translate this anti-pattern in the EA domain by considering a business capability as
an abstraction consisting of many small services that are tightly coupled and fulfill the
same business capability. Each service implements only a part of that abstraction, and
they communicate with each other to fulfill that business capability as a whole.

Table 3.19 depicts an example of three nano-services interacting with each other to
fulfill the more abstract application service. A cyclic path between these services is also
apparent. Table 3.19 illustrates the KG query identifying this Smell. The query checks
if an abstraction that consists of many small services exists. In other words, the query
looks for aggregations or composition relations between a single abstraction and services
implementing that abstraction. Besides, the query checks whether a cyclic path exists
between those services implementing the abstraction. We set the default threshold to
three for the number of services, which are part of the abstraction. If the number of
services exceeds the threshold and there is a cyclic path between them, then the model
suffers from Nanoservices EA Smell. We also use the same threshold to specify the
maximum length of the cyclic path between those nano-services. The threshold specifying
the number of nanoservices, which is also used for detecting cyclic paths, is defined as a
query parameter.

45

3. EA Smells Analysis

Table 3.19: Graphical example, Cypher query and query options for detecting Nanoser-
vices EA Smells

Nanoservices
Property Description

Cypher Query
MATCH (a)-[r:CompositionRelationship]-(n)
WITH a, COUNT(n) AS cnt WHERE cnt >= $nanoServiceCount
MATCH p=(a)-[r:CompositionRelationship]-(n)
RETURN p
UNION
MATCH (a)-[r:CompositionRelationship]-(n)
WITH a, COUNT(n) AS cnt
WHERE cnt >= $nanoServiceCount
MATCH p1=(a)-[r:CompositionRelationship]-(n)
WITH p1, nodes(p1) AS nodes CALL

apoc.nodes.cycles(nodes, {maxDepth:
$nanoServiceCount}) YIELD path WITH path AS p2, p1

�→
�→
UNWIND [p1,p2] AS p
RETURN p

Query options

"queryParams": [
{

"name": "nanoServiceCount",
"type": "number",
"default": 3,
"description": "Number of nanoservices."

}]

Graphical ex-
ample

3.1.17 Overgeneralization

The EA Smell Overgeneralization originates from the Ambiguous Interface Smell [7].
According to Garcia et al. [52] the Ambiguous Interface Smell is defined as a component

46

3.1. Detectable EA Smells via Knowledge Graphs

that handles multiple functions but exposes only a single public service or method. All
incoming requests are routed through a single generic entry point, where the component
filters and directs them to the appropriate internal services. This issue is particularly
prevalent in publish-subscribe patterns [62, 52]. Concealing a component’s services behind
an ambiguous interface hinders static analysis, making the system more challenging to
analyze and comprehend.

In the context of EA, this Smell is relabeled as Overgeneralization [7]. In EA design, a
component may become overly generalized and adaptive, providing more functionalities
than necessary for maximum reusability. Since different functionalities are not exposed
via an interface and remain hidden, all requests must pass through a single provided
interface. As a result, users are required to perform additional tasks and create uniform
request objects, violating the “one and only one” principle[7].

In ArchiMate, detecting this Smell involves identifying components that perform numerous
functions and interact with various services but expose only one service through their
interface. Table 3.20 provides a graphical example of the Overgeneralization EA Smell in
the ArchiMate modeling language. An Application Component exposes a single service via
its interface, yet it executes three internal functions and communicates with two external
services. Since ArchiMate is an abstraction language with limitations in representing
detailed interface and service information, it cannot specify the number of entry points
in an interface or the public methods offered by a service.

The KG query to detect this Smell is outlined in Table 3.20. The detection parameter is
based on the sum of the provided functions and services. A default threshold of five is
set, meaning that if the total number of functions and services exceeds this threshold, the
component will be flagged as a potential candidate for the Overgeneralization EA Smell.

47

3. EA Smells Analysis

Table 3.20: Graphical example, Cypher query and query options for detecting Overgen-
eralization EA Smells

Overgeneralization
Property Description

Cypher Query
MATCH (i)-[r1:CompositionRelationship]-(c)
MATCH (c)-[r2:RealizationRelationship]-(s)
WITH c, COUNT(s) AS exposedServiceCnt, COUNT(i) AS interfaceCnt
WHERE exposedServiceCnt=1 AND interfaceCnt=1
MATCH

(c)-[r:AssociationRelationship|AssignmentRelationship]-(f)�→
WITH c, COUNT (f) AS functionOrServiceCnt
where functionOrServiceCnt > $functionOrServiceCnt
MATCH p = (c)-[r:AssociationRelationship|AssignmentRelationshi ⌋

p|RealizationRelationship|CompositionRelationship]-(f)�→
RETURN p

Query options

"queryParams":
[{"name": "functionOrServiceCnt",
"type": "number",
"default": 5,
"description": "The number of functions that performed by

the overgeneralized componennt."�→
}]

Graphical ex-
ample

48

3.1. Detectable EA Smells via Knowledge Graphs

3.1.18 Sand Pile
One common approach to implementing Service-Oriented Architecture (SOA) is to have
one elementary service per software component [58]. However, this can lead to numerous
small components sharing the same data, which leads to the Sand Pile Smell [57]. This
Smell emerges when a service’s atomic capabilities are divided into small, independent
components that all access a shared data source.

We translate this Smell into the EA domain and apply the exact definition for its detection.
We focus on identifying Application Component elements with exposed services that
rely on the same data source. An example of the Sand Pile EA Smell is illustrated
in Table 3.21, where multiple components interact with the same Data Object element
named “Data Source.” The query for identifying this Smell is presented in Table 3.21,
which identifies components with exposed services that access shared data.

Table 3.21: Graphical example and Cypher query for detecting Sand Pile EA Smells

Sand Pile
Property Description
Cypher query

MATCH (c)-[r2:AccessRelationship]-(d:DataObject)
WITH d, count(c) as cntCmps
WHERE cntCmps>1
MATCH p =(s)<-[r1:RealizationRelationship]-(c)-[r2:AccessRelat ⌋

ionship]-(d:DataObject)�→
WITH c, count (d) as dataCnt
where dataCnt =1
MATCH p =(s)<-[r1:RealizationRelationship]-(c)-[r2:AccessRelat ⌋

ionship]-(d:DataObject)�→
RETURN p

Query options -

Graphical
example

49

3. EA Smells Analysis

3.1.19 Missing Abstraction
In software development, the lack of clear conceptual boundaries for components is a
common problem due to the lack of abstraction. Data and behavior that should be
highly cohesive are spread across multiple components, which violates the principles
of encapsulation and modularization [45]. The lack of the concept of abstraction also
causes reusability problems [63]. At the code level, the Missing Abstraction Smell arises
by either one or combination of two other Smells, functional composition and Primitive
Obsession [7].

In the EA domain, the model should also contain abstract elements to illustrate a more
general point of view. The absence of such elements may indicate that the model suffers
from Missing Abstraction EA Smell. Salentin and Hacks [7] describe the detection of
Missing Abstraction in the EA model by identifying multiple elements of the same type
that are not aggregated into a more general super element. Figure 3.1 illustrates an
example of abstraction in the ArchiMate modeling language. The “Insurance Customer
Service” is an abstract element of type Business Service aggregating four concrete business
services. The concrete business services are related and fulfill a more abstract concept
called insurance service. Table 3.22 illustrates an example of Missing Abstraction EA
Smell. As can be seen, numerous services and components exist, but they lack aggregation
into a more general element. Consequently, our proposed model is affected by the Missing
Abstraction EA Smell.

We define three steps for detecting this Smell in the ArchiMate model. First, elements
belonging to the same business capability must be grouped together. Second, since
Aggregation and Composition typically link elements of the same type, a certain amount
of elements of the same type must exist within a group. Besides, we consider the minimum
number of relationships in each group. Groups with a small number of relationships
are not considered candidates for Smell detection. Finally, after filtering the candidate
groups, in the third step, we check whether Aggregation or Composition relationships
exist between elements of the same group. If these relations are missing, then the model
suffers from Missing Abstraction EA Smell. If such type of relationships exist then we
calculate a ratio by dividing the number of all edges by the number of aggregations per
group. If the ratio is below the threshold, then we can assume the EA model suffers from
Missing Abstraction EA Smell.

For grouping elements based on business capabilities, we can assume there is a high
modularity between those elements that belong to the same business capability. Graph
clustering is an approach used for grouping elements in the graph. We use a community
detection algorithm known as the Louvain method [64] for grouping nodes in the graph.
The Louvain algorithm groups elements together with a high modularity ratio, maximizing
a modularity score for each community. This score measures how well nodes are assigned
to communities based on their modularity.

Neo4j provides a Graph Data Science library (GDS)2 for using graph algorithms such
2https://neo4j.com/docs/graph-data-science/current/

50

3.1. Detectable EA Smells via Knowledge Graphs

as centrality, community detection, similarity, etc. We use the GDS library for grouping
elements based on the Louvain method. This algorithm adds an extra property called
community to all nodes. Elements are grouped based on this property. Listing 4
demonstrates two procedures: one for creating the projection and another for executing
Louvain method. Both procedures will be called by our detection platform (Chapter 5)
before executing the KG query for Missing Abstraction EA Smell detection.

#Graph projection considering all nodes and relationships

CALL gds.graph.project('ea-model', // graph name for projection
'*', // All nodes
'*'); // All relationships

#Execution of the Louvan method to write a new property called “community”
for clustering�→

CALL gds.louvain.write('myGraph', { writeProperty: 'community' })
YIELD communityCount, modularity, modularities

Listing 4: Graph projection and executing the Louvan algorithm

The key aspect lies in defining the query parameters, specifically determining the ap-
propriate group size, the number of aggregation relationships, and the elements of the
same type that must exist within the group for it to qualify for Smell detection. These
parameters may vary depending on the model size or enterprise concerns. To provide
flexibility, we have defined these values as variables that can be adjusted by enterprise
architects or users. We provide three query parameters with default threshold values. The
first parameter is the number of the elements of the same type within the communities,
and the default value is three. The second parameter is about how big the cluster should
be. We only consider clusters from a certain number of edges. Otherwise, the cluster is
not considered a candidate for Smell detection. The default value is ten. Finally, after
filtering the communities based on the first and second parameters, we check whether
some aggregation or composition relationships exist between elements. If this is the case,
then the query computes the ratio for each community by dividing the number of total
edges by the number of aggregations. A threshold value of three is set for this ratio. If
the ratio is below the threshold, the community is considered a candidate for the Missing
Abstraction EA Smell. Table 3.22 demonstrates the query and corresponding parameters
for detection.

51

3. EA Smells Analysis

Figure 3.1: An example of an abstract and many aggregated sub elements in an ArchiMate
model

Table 3.22: Graphical example, Cypher query and query options for detecting Missing
Abstraction EA Smells

Missing Abstraction
Property Description

Cypher Query
MATCH (n)
with count (n) as nodes, n.ClassName as label,
n.community as communities
where nodes > $countOfNodesOfSameType
with distinct communitiesv0 as communities
MATCH (t)-[st]->(s)
where t.community=s.community and t.community in
communities
with count (st) as relcount, communities
match (a)-[r]->(b)
where relcount > $relationsCount and a.community=b.community

and b.community in communities�→
optional match p1=(s)-[r:AccessRelationship]->(t)

where s.community=t.community and s.community in communities
with count (p1) as aggCnt, relcount, communities
match p=(a)-[r1]->(b)
where a.community=b.community and a.community in
communities and (aggCnt=0 or relcount/aggCnt > $ratio)
return p

Continued on next page

52

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.22 – continued from previous page
Property Description

Query options

"queryParams":
[{"name": "countOfNodesOfSameType",
"type": "number",
"default": 3,
"description": "Minumum number of nodes from same type

within a community."�→
},
{"name": "relationsCount",
"type": "number",
"default": 10,
"description": "Minimum number of relations within a

comminity."�→
},
{"name": "ratio",
"type": "number",
"default": 3,
"description": "Ratio threshold"

}]

Graphical ex-
ample

3.1.20 Strict Layer Violation

In software engineering, layers are defined based on conventions rather than language
concepts [65]. For example, the Data Access Object (DAO) structural pattern isolates
the persistence layer from the application and service layers. If the service layer directly
communicates with the persistence layer, it indicates the presence of Strict Layers
Violation Smell.

We can transfer this Smell with a minor modification into the EA domain. In ArchiMate,
there are three core layers: Business, Application, and Technology. The Archimate
specification outlines specific relationships among these core layers, namely Realization

53

3. EA Smells Analysis

and Serving relationships [9]. The Serving relationship applies when an element from
the upper layer utilizes services provided by the lower layer. In contrast, the Realization
relationship is relevant when a lower-level element realizes or implements a more abstract
concept from the upper layer.

Figure 3.2 illustrates the permissible relationships among the various layers. The applica-
tion and technology layers are required to communicate with the business layer using
these two specific types of relations. Although other relation types are not syntactically
prohibited, their use is generally discouraged. Table 3.23 provides an example of a Strict
Layers Violation EA Smell within the ArchiMate model. A Business Actor element is
directly associated with an Application Service. Since the relation between those elements
is neither Serving nor Realization relationship, the model suffers from Strict Layers
Violation EA Smell.

The KG query designed to detect this Smell verifies the relationships between layers,
excluding the Realization and Serving relationships. If such a path exists, it indicates a
Strict Layers Violation EA Smell. The KG query and a graphical example illustrating
this Smell are presented in Table 3.23.

(a) Relationships between Business, Application and Technology layers elements taken from [9]

(b) Relationships between Application layer and Technology layer elements taken from [9]

Figure 3.2: Permitted relationships between the core layers of ArchiMate

54

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.23: Graphical example and Cypher query for detecting Strict Layer Violation
EA Smells

Strict Layer Violation
Properties Descriptions
Cypher query

MATCH p = (a)-[r]-(b) WHERE a.ArchimateLayer <>
b.ArchimateLayer AND NOT (r.Label = 'ServingRelationship'
or r.Label ='RealizationRelationship')

�→
�→
return p

Query options -

Graphical
example

3.1.21 Message Chain
The Message Chain Smell at the code level indicates the sequence of method calls to
perform a task [50]. A message chain leads to tight coupling and affects code robustness
and testability. This Smell is also known as Service chain. At this level, it refers to
sequential service calls.

We can adapt this Smell to the EA domain by identifying consecutive service chains
within the ArchiMate model. Table 3.24 provides an example of a Service chain with a
length of five. We consider any message chain longer than four to be a potential candidate
for the Message Chain EA Smell.

The KG query designed to detect the Message Chain EA Smell is illustrated in Table 3.24.
By default, this query considers a relation length between four and ten. The relation
length is defined as a query parameter and can be adjusted by enterprise architects. We
set an upper limit on the length to avoid performance issues in large, densely connected
graphs. Since there is no possibility to specify the lengths of the relationship as a
parameter in the Cypher native query language, we utilize a method from the apoc
library called apoc.path.expand.

55

3. EA Smells Analysis

Table 3.24: Graphical example, Cypher query and query options for detecting Message
Chain EA Smell

Message Chain
Properties Descriptions
Cypher query

MATCH (p) where toLower(p.ClassName) CONTAINS 'service'
CALL apoc.path.expand(p, "TriggeringRelationship>|FlowRelation ⌋

ship>|AssociationRelationship>|AssignmentRelationship>",
"+BusinessService|+ApplicationService|+TechnlogyService",
$minLevel, $maxLevel)

�→
�→
�→
Yield path
return path as p

Query options

"queryParams":
[{"name": "minLevel",
"type": "number",
"default": 4,
"description": "The minimum length that the query considers

for detecting a message chain."�→
},
{"name": "maxLevel",
"type": "number",
"default": 10,
"description": "The maximum length that the query considers

for detecting a message chain."�→
}]

Graphical
example

3.1.22 Shared Persistency

According to microservice Smells, Shared Persistency arises when multiple services access
the same data source [46]. This Smell undermines the autonomy of microservices.

To transfer this concept into the EA domain, we examine data sources that are shared
among multiple abstractions. In ArchiMate, the elements Business Object and Data
Object represent data sources. The ArchiMate specifications define an Artifact element
within the technology layer, which can represent files, documents, and database tables.
Consequently, an Artifact element could also represent a data source.

To detect this Smell in ArchiMate, we check if two or more abstractions access the same
data source. Table 3.25 provides an example of the Shared Persistency EA Smell in the

56

3.1. Detectable EA Smells via Knowledge Graphs

ArchiMate modeling language. A Data Object element has been accessed by multiple
Application Components. Table 3.25 outlines the KG query detecting this Smell. The
query evaluates whether Business Object, Data Object, or Artifact elements are accessed
by multiple abstractions.

Table 3.25: Graphical example and Cypher query for detecting the Shared Persistency
EA Smells

Shared Persistency
Properties Descriptions
Cypher query

MATCH p=(a:BusinessObject|DataObject|Artifact)-[r:AccessRelati ⌋
onship]-(b)�→

WITH a, COUNT (r) as cnt
WHERE cnt> 1
MATCH p = (a)-[r:AccessRelationship]-(b)
RETURN p

Query options -

Graphical
example

3.1.23 Chatty Service
When a service requires multiple interactions with other services to complete a single
task, it is considered “chatty” and leads to increased overhead [66]. Typically, a chatty
service involves numerous fine-grained operations, which can result in maintainability
and performance issues [61].

We can directly translate this Smell into the EA domain by identifying services that
engage in an excessive number of interactions with other services. A graphical example
depicting the Chatty Service EA Smell is provided in Table 3.26.

To detect this Smell within the KG, we analyze the relationships between services and
set a threshold for an acceptable number of interactions. If the number of interactions
exceeds this threshold, it could be a sign of the Chatty Service EA Smell in the model. By
default, the interaction threshold is set to three. However, enterprise architects can adjust
this value to align with their requirements. The KG query for identifying the Chatty
Service Smell is detailed in Table 3.26. While the KG query offers valuable insights,

57

3. EA Smells Analysis

it alone is insufficient to determine whether a service is excessively chatty. Dynamic
analysis is also necessary to fully evaluate the extent of the issue.

Table 3.26: Graphical example, Cypher query and query options for detecting Chatty
Service EA Smells

Chatty Service
Properties Descriptions
Cypher query

MATCH (a)-[r]-(b)
WHERE toLower(a.ClassName) contains 'service' and
toLower(b.ClassName) contains 'service'
WITH a , COUNT (r) as cnt
WHERE cnt> $interactionCnt
MATCH p = (a)-[r1]-(b)
WHERE toLower(a.ClassName) contains 'service' and
toLower(b.ClassName) contains 'service'
return p

Query options

"queryParams":
[{"name": "interactionCnt",
"type": "number",
"default": 3,
"description": "The permissible number of related services

that the chatty service communicate with."�→
}]

Graphical
example

3.1.24 Infinite Loop
The Infinite Loop is a BPM anti-pattern that runs indefinitely because either a termination
condition is missing or the condition is never fulfilled [67].

The Infinite Loop EA Smell is a specific type of cyclic dependency. The key distinction
is that, unlike typical cyclic dependencies, where the process can exit the cycle after a
certain number of iterations, the process in this case is trapped in an infinite loop with
no opportunity for termination. If the execution is not aborted externally, then it will
run forever.

58

3.1. Detectable EA Smells via Knowledge Graphs

We transfer this Smell into the EA domain by considering two possible cases in the
ArchiMate modeling language. In the first case, we can consider the Infinite Loop in a
KG as a small sub-graph with at least one cyclic path and no exiting edges that escape
the loop. In the second case, there could also be an edge that escapes the loop, but the
process will never go through that edge for different reasons. For example, the condition
is never met. We cannot detect the second case via the KG query, and a dynamic analysis
is required. Therefore, the second detection case is beyond the scope of this thesis, and
we consider only the first case. Table 3.27 demonstrates an infinite loop in the ArchiMate
modeling language. As is evident, no edge can escape the loop. Hence, the process will
run forever until it is terminated externally.

Table 3.27 illustrates the KG query for identifying the Infinite Loop EA Smell. By default,
the query examines cyclic paths with a maximum length of five edges. This upper limit
is set to mitigate potential performance issues when querying large, densely connected
graphs. However, users or enterprise architects can adjust this parameter as needed. The
query is configured to identify cycles of up to five edges, as well as verify whether any
edge can escape the loop.

Table 3.27: Graphical example, Cypher query and query options for detecting Infinite
Loop EA Smells

Infinite Loop
Property Description

Cypher Query
MATCH (a) WITH collect(a) AS nodes CALL

apoc.nodes.cycles(nodes, {maxDepth: $maxDepth}) YIELD path
WITH path AS p

�→
�→
WITH nodes(p) AS loopSet
WHERE NOT EXISTS{

MATCH (a)--(b)
WHERE a IN loopSet AND NOT b IN loopSet

}
Match p=(m)--(n) WHERE m IN loopSet AND n IN loopSet return p

Query options

"queryParams":
[{"name": "maxDepth",
"type": "number",
"default": 5,
"description": "The length of a cyclic path that that an

infinite loop includes."�→
}]

Continued on next page

59

3. EA Smells Analysis

Table 3.27 – continued from previous page
Property Description

Graphical ex-
ample

3.1.25 The God Object
A God Object, or Multiservice, refers to a component or service that performs a wide
range of operations across different business functions and abstractions. However, the
lack of cohesion among these operations can impede reusability and lead to overload.
Figure 3.3 provides an example of the God Object web service with functions fulfilling
various services.

The concept of the God Object can also be practically applied and translated into the
EA domain. We consider an Application Component that implements multiple functions
exposed by a single application service. An illustration of the God Object in the ArchiMate
modeling language is presented in Table 3.28. The “God Object” component offers several
capabilities that are accessible via an Application Interface.

The KG query for detecting this Smell is depicted in Table 3.28. The query identifies
potential God Objects by checking whether an Application Component executes an
excessive number of functions exposed through a single service or interface. The query
uses a threshold parameter to define the maximum acceptable number of functions
implemented by a single component. If the number of functions exceeds the threshold,
the application component may be considered a candidate for the God Object EA
Smell. The threshold value is configurable, and the default value is set to three. It
should be noted that the KG query by itself is insufficient to determine whether the
implemented functions are associated with different business capabilities or belong to
the same capability. Consequently, in addition to utilizing the query for detection, a
human-driven review is essential for identifying the God Object EA Smell.

60

3.1. Detectable EA Smells via Knowledge Graphs

Figure 3.3: Example of a God Object Web Service anti-pattern taken from [68]

Table 3.28: Graphical example, Cypher query and query options for detecting God Object
EA Smells

God Object
Property Description

Cypher Query
MATCH (c)-[r2:RealizationRelationship]-(s:ApplicationInterface ⌋

|ApplicationService)�→
WITH c, COUNT(s) AS exposedServiceCnt
WHERE exposedServiceCnt=1
WITH c
MATCH (c)-[r:RealizationRelationship]-(n)
WITH c, COUNT(n) AS functionsCnt
MATCH p= (c)-[r:RealizationRelationship]-(n)
WHERE functionsCnt > $founctionsCount
RETURN p

Continued on next page

61

3. EA Smells Analysis

Table 3.28 – continued from previous page
Property Description

Query options

"queryParams":
[{"name": "founctionsCount",
"type": "number",
"default": 3,
"description": "The permissible number of functions

imlemented by an application componnet."�→
}]

Graphical ex-
ample

3.1.26 Lack of Synchronization
The Lack of Synchronization is a BPM anti-pattern that occurs when multiple activities
are unintentionally triggered due to control flow errors [67].

In the field of EA, the term refers to a situation where concurrent processes are not
properly synchronized, leading to unpredictable or inconsistent process flows [26]. In
the ArchiMate modeling language, a concurrent process can be represented when a
process flow is divided by an AND Junction. A Lack of Synchronization occurs when
these concurrently executed processes are merged by an OR Junction, breaking the
synchronized nature of the process.

Table 3.29 provides a graphical example of the Lack of Synchronization EA Smell in
ArchiMate. Initially, the process flow is split by an AND Junction into two concurrent
processes: “Evaluate Customer Credit” and “Process Order.” These two processes are
interdependent. For instance, if the customer lacks sufficient credit, the order must
be canceled. Thus, “Evaluate Customer Credit” and “Process Order” should remain
synchronized. However, synchronization is no longer assured when these processes merge
via an OR Junction, allowing either process to trigger the “End Event,” which can result
in an undesirable outcome.

Table 3.29 illustrates the KG query and query options detecting Lack of Synchronization

62

3.1. Detectable EA Smells via Knowledge Graphs

EA Smell. In order to avoid any issues with query performance, a parameter is used to
specify the minimum and maximum length of the process chain. By default, the query
will retrieve process chains using a length from two to five.

Table 3.29: Graphical example, Cypher query and query options for detecting Lack of
Synchronization EA Smells

Lack of Synchronization
Property Description

Cypher Query
MATCH (a)-[r]->(endNode:Junction {type: 'or'})
WITH COUNT(r) AS rCnt, endNode
WHERE rCnt>1
WITH endNode
MATCH (startNode:Junction{type: 'and'})
CALL apoc.path.expandConfig(startNode,{relationshipFilter:"Tri ⌋

ggeringRelationship>|FlowRelationship>|AssociationRelation ⌋
ship>",

�→
�→
minLevel: $minLevel,
maxLevel: $maxLevel,
endNode:[endNode]
})
YIELD path AS p
RETURN p

Query options

"queryParams":
[{"name": "minLevel",
"type": "number",
"default": 2,
"description": "The maximum length of the path for

detection."�→
},
{"name": "maxLevel",
"type": "number",
"default": 5,
"description": "The minimum length of the path for

detection."�→
}
]

Continued on next page

63

3. EA Smells Analysis

Table 3.29 – continued from previous page
Property Description

Graphical ex-
ample

3.1.27 Deadlock
In BPM, the Deadlock anti-pattern is a control flow error that halts the execution of
business processes [69]. A similar issue can occur in the EA domain, causing an EA
Process to be stuck in a stalemate [26]. We can identify and translate this anti-pattern
using the ArchiMate modeling language, as it has been outlined for BPM.

To detect the Deadlock anti-pattern in ArchiMate, we look for a business or application
flow that reaches an OR Junction, which then splits into at least two outgoing paths that
are later joined by an AND Junction. The graphical example in Table 3.30 illustrates a
deadlock scenario in ArchiMate. When “Business Process 1” reaches the OR Junction, the
execution of one of the two process flows is sufficient. However, it later becomes essential
for both “Business Process 3” and “Business Process 4” to reach the AND Junction.
Otherwise, the process will not execute further and can not proceed to “Business Process
5,” resulting in a Deadlock EA Smell.

The Cypher query for detecting the Deadlock EA Smell is illustrated in Table 3.30. We
use a query parameter to define the minimum and maximum lengths of the process chains.
By default, the query considers process chains with a maximum length of 10 edges.

64

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.30: Graphical example, Cypher query and query options for detecting Deadlock
EA Smells

Deadlock
Property Description

Cypher Query
MATCH (startNode:Junction {type: 'or'})
MATCH (endNode:Junction {type: 'and'})
CALL apoc.path.expandConfig(startNode,{relationshipFilter:"Tri ⌋

ggeringRelationship>|FlowRelationship>|AssociationRelation ⌋
ship>",

�→
�→
minLevel: $minLevel,
maxLevel: $maxLevel,
terminatorNodes:[endNode]
})
YIELD path AS p
RETURN p

Query options

"queryParams":
[{"name": "minLevel",
"type": "number",
"default": 1,
"description": "The maximum length of the path for

detection."�→
},
{"name": "maxLevel",
"type": "number",
"default": 10,
"description": "The minimum length of the path for

detection."�→
}
]

Graphical ex-
ample

3.1.28 Inconsistent Data

The Inconsistent Data is a BPM anti-pattern when there is simultaneous access to a data
source without any synchronization mechanism [70, 71].

65

3. EA Smells Analysis

To address this anti-pattern within the EA domain, it is necessary to understand how
concurrent processes arise in ArchiMate. Such a scenario may occur when a process
flow is divided by an AND Junction, resulting in multiple concurrent processes. If
these processes access the same data source, they may do so simultaneously, resulting in
inconsistent data [26].

Table 3.31 illustrates a graphical example of the Inconsistent Data EA Smell. The
“Start event” element initiates a concurrent process. The “Process order” and “Evaluate
customer credit” elements operate simultaneously and access the same data source,
“Order data.” Consequently, data consistency cannot be ensured, and any modifications
made by one element may remain unnoticed by the other.

The KG query provided to identify this Smell is illustrated in Table 3.31. The query
checks whether elements that are derived from an AND Junction share access to the
same data source. A query parameter is employed to specify the minimum and maximum
lengths of the process chains. These parameters are essential to prevent potential query
performance issues. By default, the query will encompass process chains that have a
length of at least two and, at most, ten edges. We must mention that by using the
KG query, we can only detect that elements access a data source simultaneously but
cannot check whether any synchronization mechanism exists for that simultaneous access.
Therefore, a human-driven review is still required to identify this Smell more precisely.

Table 3.31: Graphical example, Cypher query and query options for detecting Inconsistent
Data EA Smells

Inconsistent Data
Property Description

Cypher Query
MATCH (startNode:Junction {type: 'and'})
MATCH (endNode:BusinessObject|DataObject)
CALL apoc.path.expandConfig(startNode,{relationshipFilter:"Acc ⌋

essRelationship>|TriggeringRelationship>|FlowRelationship> ⌋
|AssociationRelationship>",

�→
�→
minLevel: $minLevel,
maxLevel: $maxLevel,
terminatorNodes:[endNode]
})
YIELD path AS p
RETURN p

Continued on next page

66

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.31 – continued from previous page
Property Description

Query options

"queryParams":
[{"name": "minLevel",
"type": "number",
"default": 2,
"description": "The maximum length of the path for

detection."�→
},
{"name": "maxLevel",
"type": "number",
"default": 10,
"description": "The minimum length of the path for

detection."�→
}
]

Graphical ex-
ample

3.1.29 The word Or in element name
The term The word Or in element name is derived from a BPM anti-pattern known
as “‘or’ between verbs” [72]. This anti-pattern arises when an element’s name includes
multiple significant verbs separated by the word “or” [72]. Such a structure can lead
to misunderstandings or misinterpretations, as it lacks clarity in the decision-making
process regarding which function should be executed. It remains ambiguous whether the
verbs linked by “or” are intended to be independent or mutually exclusive
We apply this anti-pattern to the EA domain by examining elements that contain the
word “or” between two or more verbs. Table 3.32 presents an example of this Smell
within the ArchiMate modeling language. In this case, the element “Execute x or y” is
not followed by an OR Junction element. Therefore, it might not be clear which path will

67

3. EA Smells Analysis

be executed under which circumstances. Such ambiguity is an indicator of the presence
of this Smell in the model. The KG query detecting The word Or in element name is
shown in Table 3.32

Table 3.32: Graphical example, Cypher query and query options for detecting The word
Or in element name EA Smells

The word Or in element name
Properties Descriptions
Cypher query

MATCH p = (a)-->(b)
WHERE toLower(a.name) contains toLower(" or ") and b.ClassName

<>'Junction'�→
RETURN p

Query options -

Graphical
example

3.1.30 Useless Test
The Useless Test EA Smell is derived from a BPM process anti-pattern. It arises when
the modeled process takes into account only a subset of possible scenarios and neglects
others [26, 72].

We adopt the same approach as described in [72] to identify this Smell within the
ArchiMate modeling language. We search for element names that denote a test. Such
verbs may include “evaluate,” “verify,” and “validate” [72]. Typically, a test scenario
can yield two potential outcomes, either successful or unsuccessful. Therefore, if the test
element is not followed by an OR Junction or has only one leaving path presenting only
one possible outcome of the test, then the model suffers from the Useless Test EA Smell.

Table 3.33 shows a graphical example of Useless Test EA Smell in ArchiMate. The
element “Evaluate money withdrawal request” yields a single possible output, “Process
money withdrawal,” while the negative case is not taken into account in the model.
Table 3.33 presents the KG query along with default parameters for detecting the Useless

68

3.1. Detectable EA Smells via Knowledge Graphs

Test EA Smell. The verbs signifying the test are given as query options and can be
modified by enterprise architects. By default, we use the verbs “check,” “test” and “verify”
as provided by Ralf Laue et al. [72].

Table 3.33: Graphical example, Cypher query and query options for detecting Useless
Test EA Smells

Useless Test
Properties Descriptions
Cypher query

MATCH p = (m)-->(n)
WHERE ANY (name in $testVerbs where toLower(m.name) CONTAINS

toLower(name))�→
and NOT EXISTS ((m)-->(:Junction {type: "or"}))
RETURN p
UNION
MATCH (m)-->(Junction {type: 'or'})-->(n)
WITH m, COUNT (n) as testReslults
WHERE testReslults=1
MATCH p=(m)-->(Junction {type: 'or'})-->(n)
WHERE any (name in $testVerbs where toLower(m.name) CONTAINS

toLower(name))�→
RETURN p

Query options

"queryParams": [
{

"name": "testVerbs",
"type": "list",
"default": ["test", "verify", "execute", "evaluate"],
"description": "List of names that indicates a test or

verification."�→
}]

Graphical
example

3.1.31 The word And in element name
The word And in element name originates from a BPM anti-pattern referred to “‘and’
between verbs“ [72]. This pattern occurs when an element’s name contains at least two
verbs connected by the word “and” [72]. A conjunction can be interpreted in two ways.
It may take place either in temporal order or simultaneously [72]. For instance, in the
task “produce and ship product,” it is evident that producing the product should occur

69

3. EA Smells Analysis

before shipping. However, ambiguity arises in cases where the process flow is unclear.
Table 3.34 illustrates an example of The word And in element name EA Smell. The
element “Update account and pay for the services” is ambiguous because it is unclear
if the updating of the account precedes payment or if both actions are intended to be
performed in parallel. Such naming may lead to misinterpretation and requires extra
information to clarify the behavior of the element. Furthermore, encapsulating multiple
concepts within a single element complicates the model’s maintenance.

We can transfer this anti-pattern into ArchiMate directly by looking at elements containing
the word “and” between two or more verbs followed by two or more elements.

The KG query that detects The word And in element name is illustrated in Table 3.34.
Here, we check if an element contains the word “and” between two verbs or phrases and
has any outgoing edges. However, the KG query cannot determine the exact meaning of
the word “and” in the element without further analysis tools, such as NLP or Process
Manager.

Table 3.34: Graphical example and Cypher query for detecting The word And in element
name EA Smells

The word And in element name
Properties Descriptions
Cypher query

MATCH p = (a)-->(b)
WHERE toLower(a.name) contains toLower(" and ")
RETURN p

Query options -

Graphical
example

3.1.32 Start Event Missing
The Start Event Missing is a BPM anti-pattern. If a process chain does not have a start
event, then it might not be clear where and when it has to be started, or it might not be
carried out at all [73]. Specifying the start event is not always necessary, especially in a
simple or short EA process. However, it adds some comprehensibility to the modeled
process.

70

3.1. Detectable EA Smells via Knowledge Graphs

In contrast to BPMN, ArchiMate lacks a start event as a a specific element type, but
an event element at the outset of the EA process can be viewed as a start event. We
can transform this Smell into the EA domain by checking process chains of a certain
length that have no event element at the beginning of the chain. Table 3.35 illustrates
an example of Start Event Missing EA Smell in the ArchiMate modeling language. As is
obvious, a business chain with a degree of five does not have an event element at the
beginning. In other words, the element “Receive Order” is not triggered by an event.

Table 3.35 also depicts the Cypher query for detecting the Start Event Missing EA Smell.
Process flows are modeled by the relationships Flow, Triggering and Association, which
connect the elements Business Process, Application Process and Technology Process. The
KG query aims to find process chains that do not contain an event at the beginning of
the process. If such a process exists, then it may indicate that the model suffers from
the Start Event Missing EA Smell. Since there is no precise definition of a simple and
complex EA process, a query parameter is set that specifies the minimum and maximum
lengths of the process chain. Additionally, specifying an upper limit on path length can
prevent query performance issues with large, densely connected data. By default, the
query looks for process chains containing a minimum of five and a maximum of twenty
edges.

Table 3.35: Graphical example, Cypher query and query options for detecting Start Event
Missing EA Smells

Start Event Missing
Property Description

Cypher Query
MATCH (startNode:BusinessProcess|ApplicationProcess|Tec ⌋

hnologyProcess)�→
WHERE NOT EXISTS((startNode)<--())
MATCH (endNode:BusinessProcess|ApplicationProcess|Techn ⌋

ologyProcess)�→
CALL apoc.path.expandConfig(startNode,{relationshipFilt ⌋

er:"TriggeringRelationship>|FlowRelationship>|Assoc ⌋
iationRelationship>",

�→
�→
minLevel: $minLevel,
maxLevel: $maxLevel,
endNode: endNode
})
YIELD path AS p
RETURN p

Continued on next page

71

3. EA Smells Analysis

Table 3.35 – continued from previous page
Property Description

Query options

"queryParams": [
{"name": "minLevel",
"type": "number",
"default": 5,
"description": "The maximum length of the path for

detection."�→
},
{"name": "maxLevel",
"type": "number",
"default": 20,
"description": "The minimum length of the path for

detection."�→
}]

Graphical ex-
ample

3.1.33 End Event Missing

The End Event Missing is a BPM anti-pattern. If a process chain does not contain an
end event, it might not be clear where it is terminated [73].

Unlike BPMN, Archimate does not have a special element type for displaying end events,
but we can assume an event element at the end of the EA process as an end event. We can
transform this Smell into the EA domain by checking process chains of a certain length
that have no event element at the end of the chain. Table 3.36 depicts the graphical
example of the End Event Missing EA Smell in ArchiMate. A process chain with length
of five has an element named “Handle Decision” at the end of the process flow which
is not followed by an event element. Therefore, we cannot be quite sure whether the
process has been completed after this step. Although an end event is not necessarily
required in a short or straightforward process chain.

The Cypher query for detecting End Event Missing EA Smell with the corresponding query
parameter is shown in Table 3.36. The relationships Flow, Triggering and Association
alongside Business Process, Application Process and Technology Process elements are
mainly used to model process flows. Consequently, the KG query attempts to identify a
process chain that includes these elements and relationships, which does not contain an
end event at the end of the process. As there is no exact definition of what constitutes

72

3.1. Detectable EA Smells via Knowledge Graphs

a simple or complex EA process, a query parameter has been defined to indicate the
minimum and maximum lengths of the process chain. Furthermore, setting an upper
limit on the path length can prevent query performance issues when dealing with large,
densely connected data. By default, the query checks for process chains with at least
five and a maximum of twenty edges. Enterprise architects may modify the length of the
process chain.

Table 3.36: Graphical example, Cypher query and query options for detecting End Event
Missing EA Smells

End Event Missing
Property Description

Cypher Query
MATCH (startNode:BusinessProcess|ApplicationProcess|Tec ⌋

hnologyProcess)�→
MATCH (endNode:BusinessProcess|ApplicationProcess|Techn ⌋

ologyProcess)�→
where not exists ((endNode)-->())
CALL apoc.path.expandConfig(startNode,{relationshipFilt ⌋

er:"TriggeringRelationship>|FlowRelationship>|Assoc ⌋
iationRelationship>",

�→
�→
minLevel: $minLevel,
maxLevel: $maxLevel,
terminatorNodes:[endNode]
})
YIELD path AS p
RETURN p

Query options

"queryParams": [
{"name": "minLevel",
"type": "number",
"default": 5,
"description": "The minimum length of the path for

detection."�→
},
{"name": "maxLevel",
"type": "number",
"default": 20,
"description": "The maximum length of the path for

detection."�→
}]

Continued on next page

73

3. EA Smells Analysis

Table 3.36 – continued from previous page
Property Description

Graphical ex-
ample

3.1.34 Missing negative case
The Missing negative case is a BPM process anti-pattern. It occurs when a model only
considers positive cases while neglecting the negative ones [72]. This anti-pattern is
transferred to the EA domain under the same name in the EA Smell catalog.

We can detect the Missing negative case EA Smell in ArchiMate, analogous to BPM
by searching for elements with positive phrases that lack corresponding negative cases
included in the model.

Table 3.37 shows an example of Missing negative case EA Smell in the ArchiMate
modeling language. In the model, there is an element “Product ordered successfully,” but
no corresponding element, that addresses the opposing case. As a result, the model suffers
from the Missing negative case EA Smell. Additionally, Table 3.37 provides the KG query
and its parameters for detection. The query evaluates elements that contain positive
expressions, provided they are not separated by an OR junction, or the OR junction
only has a single outgoing path leading to this positive case. We provide positive phrases
as query parameters. Ralf Laue et al. [72] provided standard phrases for specifying the
positive cases in BPM. These are “successfully,” “without errors” and “in time.” By
default, we use the same phrases as Ralf Laue et al. [72].

74

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.37: Graphical example, Cypher query and query options for detecting Missing
negative case EA Smells

Missing negative case
Properties Descriptions

Cypher Query
MATCH p=(m)<-[r:TriggeringRelationship|FlowRelationship]-(j)
WHERE any (name in $positivePhrases where toLower(m.name)

CONTAINS toLower(name))�→
AND not EXISTS ((m)<--(:Junction {type: "or"}))
RETURN p
UNION
MATCH p= (m)<-[r:TriggeringRelationship|FlowRelationship]-(j:J ⌋

unction {type: "or"})�→
WHERE any (name in $positivePhrases where toLower(m.name)

CONTAINS toLower(name))�→
WITH p, m,j

WHERE not exists {
MATCH (j)-->(t)
WHERE m<>t
}

RETURN p

Query options

"queryParams": [
{
"name": "positivePhrases",
"type": "list",
"default": ["successfully", "without errors", "in Time",

"Develop"],�→
"description": "positive phrase(s) for specifying the

positive cases."�→
}

]

Graphical ex-
ample

3.1.35 Missing Data

The Missing Data is identified as a data flow anti-pattern, which occurs when a process
attempts to access a data element that does not exist at that point [71]. Figure 3.4
depicts the original example describing this anti-pattern in a Workflow nets with Data
(WFD-nets) with a start and end point and a set of places and transitions. The properties

75

3. EA Smells Analysis

r, w, and d stand for read, write and delete operations. Two errors of type Missing Data
are noticeable here. First, in t1 an attempt is made to read the variable a, but a is
created later in t2, therefore reading the variable a in t1 will fail. The second case is
about the variable b. It has been created in t3 but destroyed in t4, therefore reading b in
t7 shall fail.

ArchiMate is an abstract modeling language, and typically, such low-level details are
not included in the model. In addition, reading data from a data source without first
writing it does not necessarily mean that the data does not exist, or has not been
previously retained. Nonetheless, transferring this anti-pattern to the ArchiMate model
is straightforward. We can check the process flows, if accessing specific data happens
before writing or after deletion, then it may be an indicator for Missing Data EA Smell.
We use, by default, the same properties (r, w, and d) as provided by the underlying
BPM anti-pattern and check if the specific data no longer exists or did not exist from
the beginning.

Table 3.38 illustrates an example displaying the Missing Data EA Smell in the ArchiMate
modeling language. As it is evident, the “Business Process k” accesses the data source to
retrieve the data x, but the data is deleted several steps earlier by “Business Process i.”

The KG query detecting this Smell checks the element’s properties in a process flow to
determine whether data is retrieved at a time when it does not exist yet, or no longer
exists. The default properties can be modified by enterprise architects.

Figure 3.4: Data flow errors in WFD-nets taken from [71]

76

3.1. Detectable EA Smells via Knowledge Graphs

Table 3.38: Graphical example, Cypher query and query options for detecting Missing
Data EA Smells

Missing Data
Property Description

Cypher Query
MATCH (startNode:BusinessProcess) where any (x in keys

(startNode) where x in [$delete])�→
WITH startNode
MATCH (endNode:BusinessProcess)
WHERE ANY (x in keys(endNode) where x in [$read]) and

startNode[$delete] = endNode[$read] WITH startNode, endNode�→
WITH startNode, endNode
CALL apoc.path.expandConfig(startNode,{relationshipFilter:"Tri ⌋

ggeringRelationship>|FlowRelationship>|AssociationRelation ⌋
ship>",

�→
�→
minLevel: $minLevel,
maxLevel: $maxLevel,
terminatorNodes:[endNode]
})
YIELD path AS p
RETURN p

Continued on next page

77

3. EA Smells Analysis

Table 3.38 – continued from previous page
Property Description

Query options

"queryParams": [
{
"name": "delete",
"type": "string",
"default": "d",
"description": "Property that specifies the deletion of

certain data."�→
},
{

"name": "read",
"type": "string",
"default": "r",
"description": "Property that specifies the retrieval of

certain data."�→
},
{"name": "minLevel",
"type": "number",
"default": 2,
"description": "The maximum length of the path for

detection."�→
},
{"name": "maxLevel",
"type": "number",
"default": 5,
"description": "The minimum length of the path for

detection."�→
}]

Graphical ex-
ample

3.1.36 Junction named as element
The Junction named as element EA Smell occurs when the name of a junction represents
a function or a task. In ArchiMate, a Junction is a model element that demonstrates
a conjunction or a disjunction between elements and should not describe a task that

78

3.2. Undetectable EA Smells

involves decision-making. If a Junction is named as a task, it can be overlooked by
enterprise architects or cause misunderstanding. Furthermore, it can negatively impact
the long-term maintainability of the model. Ideally, a Junction should be named as
“junction“ or remain unnamed completely. We can detect this Smell by checking the
Junction element that has a name other than “Junction.” Table 3.39 illustrates a graphical
example and the KG query for detecting this Smell.

Table 3.39: Graphical example, Cypher query and query options for detecting Junction
named as element EA Smells

Junction named as element
Properties Descriptions
Cypher query

MATCH p=(n:Junction)
WHERE NOT isEmpty(n.name) AND NOT tolower(n.name)

CONTAINS "junction"�→
RETURN p

Query options -

Graphical
example

3.2 Undetectable EA Smells
During our analysis, we encountered some EA Smells that cannot be detected either in
ArchiMate or via KG queries. We classify the undetectable Smells into three categories.
The first category includes the Smells that are not detectable in the ArchiMate modeling
language, and therefore are also undetectable via a KG query. The second category
consists of those that are detectable in ArchiMate models, but not through a KG query.
The third group contains those Smells whose detection requires a comparison between
different versions of the model (diff). Since the focus of this thesis is the detection of EA
Smells in a single graph-based ArchMate model, detecting EA Smells that require more
than one ArchiMate model is beyond the scope of this thesis. In this Chapter we explain
the EA Smells that are not detectable via KG query. Table 3.40 shows the undetectable
EA Smells with their categories.

Undefined junction condition The Undefined junction condition EA Smell is derived

79

3. EA Smells Analysis

Not detectable EA Smells
KG query ArchiMate Out of scope

Architecture by Implication Ambiguous Viewpoint API Versioning
Business Process Forever Connector Envy Big Bang
Contradiction in Input Jumble Data-Driven Migration

Dead Element Incomplete Node or Collaboration
Deficient Names Inconsistent Versioning
Golden Hammer Temporary Solution

Nothing New
Language Deficit

Layout Deficit
Shiny Nickel

Undefined junction condition

Table 3.40: Undetectable and out of scope EA Smells

from a BPM anti-pattern named Forgotten Edge Case [72]. It occurs when the
paths leaving from a Junction do not cover all possible outcomes in the model.
Figure 3.5 illustrates a scenario, where x is greater than y and vice versa. However,
the case, where x equals y, is omitted. As it can be seen, checking expressions and
statements requires additional tools and cannot be detected via KG query.

Figure 3.5: Undefined junction condition EA Smell in ArchiMate

Contradiction in Input The Contradiction in input EA Smell arises when a contra-
dictory condition impedes the process of execution [26, 74]. For example, there is a
statement that becomes true only if the two contradictory rules are valid, which is
not possible. For example the statement “x<y AND x=y” cannot be valid at the
same time and prevent the execution process. This Smell always leads to another
Smell named Dead Element.

Dead Element The Dead Element is an element that, due to some miscalculation, will
never be executed because the process never reaches or passes through that element,
although it is integrated into the model and has relations with other elements. An
example is an OR Junction that has two or more outgoing edges, but the logic
behind the junction always leads to one path, and the other will never be reached.
This Smell could be identified by Process managers or enterprise architects.

80

3.3. Out of Scope

Architecture by Implication This anti-pattern occurs when there are no architecture
specifications for a system in development [75]. Architects may assume documen-
tation is unnecessary based on their experience with previous systems. Detecting
this Smell is not possible using a KG query.

Layout Deficit The Layout Deficit is originally an anti-pattern from BPM, which
addresses the understandable problems in the layout, such as spacing, overlapping,
and position of elements in the model [67]. In a graph-based ArchiMate model,
we cannot check the positions or reading directions of elements via KG query.
Therefore, identifying this Smell requires the involvement of a process manager or
an enterprise architect.

Language Deficit The Language Deficit EA Smell originates from the BPM anti-
pattern. It addresses the issues of the vague or unsuited text labels for describing
elements that do not follow the naming conventions [67]. The ArchiMate specifica-
tions suggest some naming rules for elements. For example, the name of a Business
Object should be preferably a noun, and the name of Business Process should be a
verb or a verb-noun combination. By using a KG query, we are not able to verify
whether an element has an appropriate name. In this case, enterprise architects
can manually check the Smell, or some Natural Language Processing (NLP) tools
are required to check the naming conventions automatically.

Deficient Names Deficient Names EA Smell is derived from Ambiguous Name [76],
also known as Ambiguous Service. This anti-pattern arises when the name chosen
for components is meaningless and does not make sense semantically and syntacti-
cally [77, 76]. Deficient Names in ArchiMate cannot be detected through a KG
query. It could be identified by a process manager or an enterprise architect.

3.3 Out of Scope
There is a group of EA Smells whose detection requires checking more than one EA
model. Namely, we have to go through different versions of the same EA model in order
to be able to detect those Smells. For example, we consider the Inconsistent Versioning
EA Smell. This Smell derives from API Versioning Smell [46]. It arises when the correct
versioning of EA models does not follow the versioning standards and has an inconsistent
and poor versioning. In order to check whether the versioning is semantically correct, we
have to compare the different versions of the model. However, this thesis evaluates only
one EA model at a time. Therefore, detecting such Smells is beyond the scope of this
thesis. Another EA Smell that requires different versions of the model is Data-Driven
Migration. This anti-pattern is relevant when migrating to a microservices architecture
from a monolithic application [78]. In order to check whether the functionality is migrated
first and then the data, we are required to compare different versions of the model. Big
Bang is also a migration process when the whole new model is built at once. We can only
check whether there are many changes in the new model by comparing it with previous

81

3. EA Smells Analysis

ones. The same applies to Temporary Solution in this case, we need to examine several
versions of the model to determine if a temporary solution has been removed at any
point.

3.4 Summary
In this chapter, we analyzed all EA Smells from the catalog. We described how we
transformed the concepts from underlying Code Smells and BPM anti-patterns to the
EA Smells. We provided more accurate and appropriate definitions suitable for the EA
domain. We were able to provide queries with corresponding parameters for thirty-six
EA Smells. As mentioned at the beginning of this chapter, there were some KG queries
for a small set of EA Smells in [12]. We have also improved and redefined some of these
queries where there was room for improvement. However, we did not include all of those
queries in this work as they required no intervention. In the next chapter, we will extend
the catalog by incorporating our findings from this effort. In particular, we will update
the catalog with provided queries and parameters, and will revise some Smell descriptions
to bring more clarity and integrity to the catalog.

82

CHAPTER 4
Extension of the Enterprise
Architecture Smells catalog

This chapter describes the process of extending and revising the current EA Smell
catalog [8], which builds on the findings of the previous chapter.

The current EA Smells catalog necessitates further clarifications as the existing definitions
are overly abstract and lack a precise mechanism for detecting these Smells within the EA
domain. Additionally, the structure and meta-models used to describe EA Smells in the
catalog are not uniform, with varying fields for different Smells. Therefore, unification is
required to have the same information structure for all EA Smells. In addition, some
descriptions and examples of EA Smells are either too abstract or taken directly from
Code Smells and anti-patterns without being adequately adapted to the EA domain.
Therefore, a revision is underway to refine the information on EA Smells. This will
involve adding new properties to the catalog schema and, where necessary, revising the
definitions based on the analysis from the previous section.

In the following sections, we begin by outlining the two schemes that represent EA
Smells in the catalog, and we demonstrate how we consolidate them by providing a
unified structure for all EA Smells. In the second step, we revise the existing definitions
for EA Smells where required, aiming to make them more precise and suitable in the
EA domain. We also extend the scheme with new properties for KG queries, query
parameters, thresholds, and graphical examples based on our analysis and findings from
Chapter 3. We demonstrate the revision process, including unification and extension
for some EA Smells. Accordingly, the final result is updated in the EA Smells catalog
website [8].

83

4. Extension of the Enterprise Architecture Smells catalog

4.1 Unifying the schema of EA Smells

The catalog contains 63 EA Smells. Generally, every Smell in the catalog consists of
name, description, consequences, detection, solution and others. However, some Smells
have more properties than others. Table 4.1 presents the two schemes used to describe
the EA Smells in the catalog. The first scheme presented by Salentin and Hacks [7]
has twelve properties. This scheme has been provided for representing 45 EA Smells
derived from the Code Smells and anti-patterns. The second scheme provided by Lehman
et al. [26] has seven properties and represents the 18 EA Smells derived from BPM
anti-patterns. The scheme provided by Salentin and Hacks [7] includes all the properties
from the second scheme, except the field Graphical Definition. We rename the property
to Graphical Example and adjust the second scheme to match the first one by adding the
missing properties from the first scheme, creating a standardized format for describing
all Smells in the catalog. As an example, we explain the unification process for the
Useless Test EA Smell in Section 4.2. A unified scheme for all EA Smells will ease the
maintenance and automation process of detection which we discuss in Chapter 5.

Table 4.1: Two schemes for representing EA Smells

1-Scheme provided by Salentin and Hacks [7]
Property Description
Name Name of the EA Smell
Also known as Other aliases in the literature
Description Describing the Smell and how it can arise
Context Underlying Smell, which the EA Smell is derived from
Consequences Possible negative impacts
Cause explains the reasons for an EA Smell
Detection How to detect the Smell
Solution A suggestion for refactoring
Example Example for better understanding of the Smell
Evidence how often it occurs
Related Items Relatedness with other Smells
Tags Categories related to a Smell

2-Scheme provided by Lehman et al [26]
Property Description
Name Name of the EA Smell
Description Describing the Smell and how it can arise
Consequences Possible negative impacts
Solution A suggestion for refactoring
Graphical Definition Graphical representation
Related Items Relatedness with other Smells
Tags Categories related to a Smell

84

4.2. Extending the schema and revising the EA Smells catalog

4.2 Extending the schema and revising the EA Smells
catalog

Apart from unification, we further extend the scheme to include the Cypher queries,
query parameters, and graphical examples based on our analysis from Chapter 3. The
new properties are Cypher query, Query options, and Graphical example. The Cypher
query field references the KG query for detecting the corresponding EA Smell. If the
query has some parameters, these parameters and their data types are listed in Query
options. Furthermore, every query option has a default value as a threshold. Depending
on the enterprise characteristics, it can be changed by users or enterprise architects. The
Graphical example field depicts an image of the Smell in ArchiMate to facilitate a better
understanding of the EA Smell and to avoid misinterpretations. These fields are optional,
because as mentioned in Section 3.2, some EA Smells cannot be detected through a KG
using KG query or in the ArchiMate modeling language. Concurrently, we revise some of
the information describing EA Smells to make it more precise and relevant in the EA
domain.

In order to describe the processes of the scheme extension and revision of the catalog, we
demonstrate these processes for Useless Test, Deficient Encapsulation, and Multifaceted
Abstraction EA Smells. We first look at the existing definitions of the Smell, and then
we add new fields and revise the descriptions where required. For the Useless Test EA
Smell, apart from extension and revision, a unification is also required.

Figure 4.1: Current representation of the Useless Test EA Smells in the catalog

Useless Test: The current representation of the Useless Test EA Smell in the catalog is
illustrated in Figure 4.1. As it can be seen, the meta-model describing this EA Smell has
fewer properties than other Smells. Thus, unification is required by adding the missing
properties as described in Section 4.1. Besides, the information pieces describing this
Smell are vague and might be misunderstood. Therefore, a revision is also necessary to
make them more understandable and suitable for the EA domain. Finally, we extend

85

4. Extension of the Enterprise Architecture Smells catalog

the scheme by adding the new properties Cypher query, Query Options, and Graphical
example based on our analysis from Section 3.1.30. Table 4.2 illustrates the unified,
revised version of existing definitions and extended properties.

Table 4.2: Useless Test EA Smell after unification, extension and revision

Useless Test
Property Description

Description The Useless Test EA Smell is derived from a BPM process anti-pattern.
It arises when the modeled process takes into account only a subset of
possible scenarios and neglects others.

Example The element “Evaluate money withdrawal request” has only one possible
output “Process money withdrawal,” but a negative case is not considered
in the model.

Consequences Not considering all possible outcomes in models hinders enterprise archi-
tects to analyze other outcomes and handle the unexpected behavior.

Detection We search for element names that denote a test. Such verbs may include
“evaluate,” “verify,” and “validate”. Typically, a test scenario can yield
two potential outcomes, either successful or unsuccessful. Therefore, if
the test element is not followed by an OR Junction or has only one
leaving path presenting only one possible outcome of the test, then the
model suffers from the Useless Test EA Smell.

Cypher query
MATCH p = (m)-->(n)
WHERE ANY (name in $testVerbs where toLower(m.name) CONTAINS

toLower(name))�→
and NOT EXISTS ((m)-->(:Junction {type: "or"}))
RETURN p
UNION
MATCH (m)-->(Junction {type: 'or'})-->(n)
WITH m, COUNT (n) as testReslults
WHERE testReslults=1
MATCH p=(m)-->(Junction {type: 'or'})-->(n)
WHERE any (name in $testVerbs where toLower(m.name) CONTAINS

toLower(name))�→
RETURN p

Continued on next page

86

4.2. Extending the schema and revising the EA Smells catalog

Table 4.2 – continued from previous page
Property Description

Query options

"queryParams": [{
"name": "testVerbs",
"type": "list",
"default": ["test", "verify", "execute", "evaluate"],
"description": "List of names that indicates a test or

verification."�→
}]

Graphical
example

Deficient Encapsulation: Figure 4.2 shows the current scheme and information
describing this Smell. As it is seen, the information describing this Smell is generally
taken from Code Smell, and most of it is not valid for the EA domain, especially the
ArchiMate language. For example, the detection’s text fits only the underlying Code
Smell, and the description is too general. We rewrite these definitions and also extend the
current scheme with new properties based on our analysis from Section 3.1.8. Table 4.3
shows the revised version of the Deficient Encapsulation EA Smell.

Table 4.3: Deficient Encapsulation EA Smell after extension and revision

Deficient Encapsulation
Property Description

Description This Smell occurs when an abstraction makes its members accessible to
other abstractions in a more permissive way, which is not necessarily
required. In the EA domain, particularly in the ArchiMate modeling
language there are no access modifiers. As a result, we need to slightly
adjust the definition to apply this concept to ArchiMate. Instead of
modifiers, we try to identify sources of information that contain sensitive
data while the rules for accessing those data are more lenient than
necessary.

Consequences Not restricted sensitive data can be retrieved and modified by other
abstractions unintentionally or imperceptibly.

Continued on next page

87

4. Extension of the Enterprise Architecture Smells catalog

Table 4.3 – continued from previous page
Property Description

Detection In ArchiMate, Business Objects, Data Objects and Artifacts serve as
data source representations. However, there is no distinction made
between sensitive and non-sensitive data sources. To address this, we
can explore identifying a property that designates a data source as
confidential. Additionally, we can establish a threshold for permissible
access to sensitive data. If the number of accesses exceeds this threshold,
we may interpret it as an indication of a Deficient Encapsulation EA
Smell.

Cypher Query
MATCH (n)
WHERE n.ClassName ='DataObject' or

n.ClassName='BusinessObject' or n.ClassName='Artifact'�→
WITH n
WHERE ANY (x in keys(n) WHERE n[x] IN $sensitiveProperties OR

toLower(x) IN $sensitiveProperties)�→
WITH n
MATCH (n)-[r:AccessRelationship]-(m)
WITH n, count(r) as relCnt
MATCH p=(n)-[r:AccessRelationship]-(m)
WHERE relCnt>$permissibleCount
RETURN p

Query options

"queryParams":
[

{ "name": "sensitiveProperties",
"type": "list",
"default": ["confident", "classified", "sensitive"],
"description": "The list of property values specifying

an�→
element as confidential."

},
{ "name": "permissibleCount",

"type": "number",
"default": 2,
"description": "The permissible number of elements for

accessing a confidential data source."�→
}

]

Continued on next page

88

4.2. Extending the schema and revising the EA Smells catalog

Table 4.3 – continued from previous page
Property Description

Graphical ex-
ample

Multifaceted Abstraction: The current representation of the Multifaceted Abstraction
EA Smell in the catalog is illustrated in Figure 4.3. The field Description is too general.
The text for Detection and Example is mostly applicable to the underlying Code Smell,
rather than EA domain. It is also noticeable that a concrete approach for detecting this
EA Smell in ArchiMate is missing. We extend and revise this Smell based on our analysis
from section 3.1.3. Table 4.4 illustrates the revised version of the EA Smell and the new
properties Cypher query, Query options and Graphical example. Since the KG query has
no query parameter, the Query options remain empty.

For the rest of EA Smells, we use the same approach for unification, extension and
revision.

Table 4.4: Multifaceted Abstraction EA Smell after extension and revision

Multifaceted Abstraction
Property Description

Description A good abstraction should only be responsible for one specific function-
ality, and when it encapsulates more than one responsibility, it signifies
the the Multifaceted Abstraction Smell. This Smell violates the single
responsibility principle and has a low cohesion, which also violates the
principle of modularization.

Example A business actor performing more than one business processes, or an
Application component realizing two different Services.

Consequences The Multifaceted Abstraction Smell violates the single responsibility
principle, which also violates the principle of modularization. The main-
tainability of such a service may be reduced. It may be more difficult to
analyze and grasp all provided service functionality. The business logic
is not reusable, because it contains service-specific implementation. Low
cohesion and possibly low availability with high response times.

Continued on next page

89

4. Extension of the Enterprise Architecture Smells catalog

Table 4.4 – continued from previous page
Property Description

Detection We can transfer this Smell in the EA domain by examining an active
structure performing or realizing more than one behavior. According to
the ArchiMate specification, the Assignment Relationship links active
structures to behaviors and states for responsibility, execution, and
performing of a behavior. The Realization Relationship signifies that an
element implements and supplies the abstract element.

Cypher Query
MATCH

(m)-[r:AssignmentRelationship|RealizationRelationship]->(n)�→
WITH m, COUNT(r) AS rCount
MATCH p=(m)-[r:AssignmentRelationship|RealizationRelationship] ⌋

->(n)�→
WHERE rCount>1
RETURN p

Query options -

Graphical ex-
ample

90

4.2. Extending the schema and revising the EA Smells catalog

Figure 4.2: Current representation of the Deficient Encapsulation EA Smell in the catalog

91

4. Extension of the Enterprise Architecture Smells catalog

Figure 4.3: Current representation of the Multifaceted Abstraction EA Smell in the
catalog

92

4.3. Summary

4.3 Summary
This chapter described unification, extension, and revision of EA Smells from the catalog.
We demonstrated these processes for three EA Smells and applied the same approach
to the rest of EA Smells. We have extended and revised forty-four EA Smells from the
catalog. The updated information is now available on the EA Smells catalog website [8].

93

CHAPTER 5
Integrating the EA Smells catalog

into a Knowledge Graph-based
detection platform

This chapter provides an overview of the development of the graph-based detection
platform used to automatically identify the EA Smells.

The analysis of EA Smells and the KG queries is detailed in Chapter 3. Following that,
Chapter 4 expands the EA smell catalog to include those queries. This chapter introduces
an automated graph-based detection tool specifically designed to identify EA Smells
within graphs that represent ArchiMate models. The Section 5.1 describes the platform’s
architecture and its interaction with the EA Smells catalog and the CM2KG service.
Sections 5.2.1 and 5.2.2 describe how our detection platform achieves an interoperability
between EA Smell catalog and the CM2KG Platform 5.2.2. Finally, Section 5.2.4 describes
the User Interface of our detection platform in more details.

5.1 General Overview
The main purpose of our detection platform is to identify EA Smells using KG queries in
graph-based ArchiMate‘s models. To accomplish this, we use the CM2KG platform, an
external service for model transformation. It transforms ArchiMate files from ArchiMate
Open Group Exchange FILE Format into GraphML, which contains all the information
about ArchiMate elements, relations, types, and properties. The detection platform then
imports the transformed model into Neo4j database. Additionally, the detection platform
retrieves EA Smells, including KG queries, query parameters and descriptions from the
catalog. At this stage, the detection platform is capable of identifying potential EA
Smells in KG through queries obtained from the catalog.

95

5. Integrating the EA Smells catalog into a Knowledge Graph-based detection
platform

The component diagram in Figure 5.1 illustrates the abstract view of the architecture.
Our detection platform, shown in turquoise, along with the extended parts of the catalog,
indicated in blue, represents our contributions to this thesis. The yellow components,
which include the CM2KG platform and the Neo4j Database, are not our contributions;
we utilize them as services.

Figure 5.1: General overview of the EA Smell detection platform

5.2 Implementation of the Detection platform
The detection platform interacts with the CM2KG platform, the EA Smell catalog, and
the Neo4j graph database, and relies on these systems being up and running. Their
absence affects the functionality of the detection platform. Additionally, the platform
provides a User Interface that allows users to filter out Smells and adjust the thresholds.
The results can be displayed in both tabular and graphical forms. We use Java 17 and
the Spring Boot Framework 3.4 to implement the detection platform. Additionally, we
use Spring Data Neo4j to simplify access to Neo4j graph databases.

5.2.1 Catalog Integration
The EA Smell catalog has been updated in Chapter 4 to include detection queries and
parameters. The EA Smells are stored as a JSON object in the catalog. Listing 5 provides
an example of an EA Smell in JSON format.

To integrate the EA Smell catalog into our platform, we do not store them in our detection
platform, but retrieve all properties and information about EA Smells as JSON arrays
from the catalog. We keep the EA Smells detection logic in the catalog and outside of
our platform, so that any changes in the catalog do not affect the platform, and vice
versa. This ensures a long-term maintainability. Communication between the detection
platform and the EA Smell catalog occurs through the HTTP call. We initiate an HTTP
request and receive a list of JSON objects in response. The structure of the HTTP
request and response from the EA Smells catalog is detailed in Table 5.1.

Detection platform has numerous interactions with the catalog. Each time we refresh
the UI page or filter Smells by tags or names, a request is sent to EA Smell Catalog to
retrieve the Smells. Since the catalog is not often updated, we cache the EA Smells into
the detection platform to reduce the number of requests sent to the EA Smell catalog.

96

5.2. Implementation of the Detection platform

Table 5.1: REST API for retrieving EA Smells from the catalog

Method GET
URI https://swc-public.pages.rwth-

aachen.de/smells/ea-smells/assets/result.json
Request parameter -
Response JSON array

A single JSON object representing an EA Smell
is depicted in Listing 5

Figure 5.2 illustrates a sequence diagram which outlines the process interactions between
the detection platform and the catalog. When the EA Smells are fetched from the catalog
they still remain in cache for a period of the configured time. Once the cache expires,
the EA Smells are automatically removed from the cache and will have to be retrieved
from the catalog again.

Figure 5.2: Interactions between the detection platform and the EA Smell catalog

97

5. Integrating the EA Smells catalog into a Knowledge Graph-based detection
platform

{
"name": "Deficient Encapsulation",
"aliases": ["Too Much Information"],
"description": "This smell occurs when the accessibility of one or more

members of an abstraction is more permissive than actually required.",�→
"context": "...",
"detection": "ArchiMate does not differentiate between sensitive and

non-sensitive data sources. Therefore, we can search for a property that
specifies the data source as sensitive. In addition to that, we set a
threshold to specify a permissible number for accessing sensitive data.
If the number of accesses exceeds the given number, then we can
interpret it as a sign of Deficient Encapsulation EA Smell.",

�→
�→
�→
�→
�→
"consequences": "...",
"cause": "...",
"solution": "...",
"example": "",
"cypher": "MATCH (n)
 WHERE n.ClassName='DataObject' or

n.ClassName='BusinessObject' UNWIND keys(n) as nkeys WITH nkeys, n
 WHERE ANY (regex in $sensitiveProperty where n[nkeys] contains regex)

 WITH n
 MATCH (m)-[r:AccessRelationship]-(n)
 WITH
n,m, COUNT (r) as accessCount
 WHERE accessCount>
$permissibleCount
 RETURN m, n",

�→
�→
�→
�→
�→
"sources": [],
"tags": ["soa", "microservices", "business", "application", "technology"],
"queryParams": [
{

"name": "sensitiveProperty",
"type": "list",
"default": ["confident", "sensible"],

"description": "The property values specifying an element as
confidential."�→

},
{

"name": "permissibleCount",
"type": "number",
"default": 2,
"description": "The permissible number of elements for accessing a

confidential data�→
source."

}
]

}

Listing 5: Structure of JSON object for representing single EA Smell

5.2.2 CM2KG Platform

The CM2KG acronym stands for “From Conceptual Models to Knowledge Graphs” [13].
This platform can convert conceptual models such as EMF, ADOxx meta-modeling, and
Ecore-based modeling platforms into KG [11]. In the context of this thesis, we utilize the
CM2KG platform to convert Archi exchange files into Knowledge Graphs. Figure 5.3

98

5.2. Implementation of the Detection platform

provides a more detailed illustration of the out-of-place transformation at the metadata
level. Models can be converted using an API provided by the CM2KG platform. The
detection platform sends an HTTP multipart request with an ArchiMate model in an
Exchange File Format 1 and receives a new transformed file in GraphML format 2. Both
the input and output files are in XML format. The GraphML format is well-suited for
graph databases such as Neo4j. The transformation endpoint, along with the request
and response structure, is presented in Table 5.2.

Figure 5.3: CM2KG model transformation taken from [13]

5.2.3 Initializing the Neo4j database

Once the Archi models have been converted into GraphML files, the next step is to ini-
tialize the Neo4j Database. We use an apoc procedure called apoc.import.graphml3

to import the GraphML files into the database. Before each import is made, we make
sure that the previous schema is deleted from the database. After importing the graph

1https://www.opengroup.org/xsd/archimate/
2http://graphml.graphdrawing.org/
3https://neo4j.com/docs/apoc/current/import/import-graphml/

99

5. Integrating the EA Smells catalog into a Knowledge Graph-based detection
platform

Table 5.2: REST API for transforming Archi exchange files to GraphML

Method GET
URI /api/transformation/archi
Request parameter Multipart file <ArchiMate Exchange File xml

file content>
Response "id": <uuid>

"transformedGraph": <GraphML xml file con-
tent>

into the database, we also make some minor adjustments by adding additional labels
to elements and relationships. We ensure that element and relation types are stored as
Neo4j labels. Finally, during initialization, we invoke two procedures for graph projection
and the Louvan algorithm, which we have defined in Chapter 3, Listing 4). Clustering is
required for detecting Missing Abstraction EA Smell (Section 3.1.19).

5.2.4 UI
The user interface of the detection platform is a single-page application (SPA). Since the
entire UI is not clearly visible in a single image, we have split it into two images, Figure 5.4
and Figure 5.5. Figure 5.4 shows three tabs: Home, Model Transformation and Smell
Detection. The home tab provides information about the platform and its interconnected
components. In the Model Transformation tab, we upload the selected file to the CM2KG
platform and import the transformed result into a Neo4j Database. The central part
of our application is in the detection section, which is also illustrated in Figure 5.4. In
the detection part, users can filter the EA Smells by categories located on the top left
side. The EA Smells are displayed in the center based on the selected categories. Each
EA Smell has a turquoise button that displays the corresponding information from the
catalog in a pop-up window. Additionally, if a Smell has query options, a blue button
will appear. Clicking on the query parameter button for a specified EA Smell displays
one or more dynamic fields on the right side, showing the possible query options with
their default values and descriptions. Users can update the default query options and
set appropriate parameter values based on their enterprise-specific requirements or other
concerns.

Upon clicking the detect button (Figure 5.5), the names of selected EA Smells, along
with their parameters, are sent to our detection server. The server then associates the
Smells names with the queries, sets the parameters and executes them. It is important to
note that users do not have any access to the queries and cannot modify them. They only
have access to the query parameters. This approach serves two purposes. First, users
need not be familiar with query syntax and logic. Second, it prevents users from altering
the queries within the detection platform. Thus, the queries are not exchanged between
the frontend and the backend. Instead, they always remain in the backend and are linked
with the name of the Smells sent by the request. Figure 5.5 demonstrates the results of

100

5.3. Summary

Figure 5.4: General overview of the EA Smell detection platform

the detection request. The list of identified EA Smells is presented on the lower left side.
Clicking on a detected Smell will display the EA Smell in a graph form. The ArchiMate
elements are depicted as nodes, while their relationships are shown as edges. This visual
representation of a specific Smell provides users with additional insights into the model’s
flaws and drawbacks. Clicking on a node allows users to view all node properties on the
lower right side.

Figure 5.5: Detection section, illustrating detected EA Smells in textual and visual forms.

5.3 Summary
In this section, we introduced our detection platform and its integration with the EA
Smell catalog and the CM2KG platform. Our platform has the capability to perform
automated detection, filter Smells, adjust query options and present results in both

101

5. Integrating the EA Smells catalog into a Knowledge Graph-based detection
platform

textual and graphical formats. Section 6 will evaluate the correctness of our approach
and platform from both conceptual and technological standpoints.

102

CHAPTER 6
Evaluation

This chapter evaluates our approach described in Section 3 and the detection platform
provided in Section 5. Our evaluation aims to assess the quality and accuracy of our
approach from both technological and conceptual standpoints. In our evaluation, we
answer the following research questions.

RQ.1 - Feasibility: is our detection platform feasible to achieve interoperability
between EA Smell catalog and the CMKG platform to perform automation for EA Smells
detection?

RQ.2 - Correctness: How accurate are the provided KG queries in detecting EA Smells
in graphs?

6.1 Methodologies and Metrics
We utilize Software Testing and Empirical Experiment methodologies for evaluating RQ.1,
while Precision and Recall serve as correctness metrics for RQ.2.

Software Testing: In order to ensure that our platform is working correctly, we conduct
tests to check the transfer of data and interaction between various components
(Section 6.2). This test serves two purposes. First, it aims to detect a set of EA
Smells in a single EA Model. Second, it aims to confirm that the platform interacts
correctly with different components (CM2KG, EA Smell catalog, Neo4j database)

Empirical experiment: To assess how our approach performs in real-world scenarios,
we test our platform using a large number of real EA models (Section 6.3)

Precision and Recall: To evaluate the correctness of our approach, we calculate the
precision and recall ratios in section 6.4 to measure the correctness of our KG

103

6. Evaluation

queries. Hereafter, we discuss the expected and actual results of our detections and
justify the deviations (Section 6.4.2).

6.2 Software Testing
We have conducted integration tests to assess the feasibility of our platform and its
interaction with the extended catalog and the CM2KG platform. Salentin and Hacks [43]
provided an ArchiMate model smellexample.xml for their prototype demonstrating
14 EA Smells. The model initially consisted of 47 elements and 88 relationships. We
have extended this model by incorporating all graphical examples provided in Section 3.1,
resulting in 302 elements and 652 relationships. The updated model 1 now contains all
detectable EA Smells via KG queries.

We tested the extended smellexample.xml model against our detection platform. For
each EA Smell we wrote an integration test. Each test consists of the following steps:

1. The platform fetches the EA Smells from the catalog.

2. Transforms the smellexample.xml to GraphML file using the CM2KG platform.

3. Imports the transformed model into the Neo4j database.

4. The KG query fetched from the catalog should detect the specified EA Smell.

5. Changes the query parameters (if applicable) and expects a different detection
result.

In total, 36 integration tests were written and successfully performed to confirm the
desired behavior of our detection platform and its interaction with the CM2KG and the
EA Smell catalog.

6.3 Empirical Experiment
To evaluate the effectiveness of our approach in real-world scenarios, we conducted
tests on our detection platform using a large set of EA models derived from real-life
applications.

Initially, we converted these models from the ArchiMate Open Group Exchange Format
to GraphML using the CM2KG platform. Next, for each converted model, we imported
it into a Neo4j database and executed 36 KG queries with their default parameters, as
outlined in Section 3.

1https://github.com/big-thesis/Alexanian.EASmells/blob/main/graph-based.ea-
smells.detection/graph-based.ea-smells.detection/src/main/resources/SmellExample.xml

104

6.3. Empirical Experiment

6.3.1 Experiment Setup
We experiment with a large set of EA models from the FAIR repository [79]. It currently
contains 979 EA models 2 with 104,222 elements, 136,567 relations, and 715 views.
Table 6.1 provides further details about the model set. The models are stored in ArchiMate
Open Group Exchange Format which is the required format for graph transformation via
the CM2KG platform. We utilize a sandbox 3 instance of Neo4j, an online platform that
allows for exploration and experimentation with graph databases without the need to set
up a local Neo4j environment. Importing GraphML files involves using a procedure called
“apoc.import.graphML.” Each GraphML file is imported by specifying its file location
with a public URL. To streamline this process, we have uploaded all the files to a git
project. The detection platform operates on a laptop. Table 6.2 shows the specifications
of the computer utilized for hosting detection platform. It is important to note that
our local environment should not impact the model transformation or query execution
times, as both the CM2KG platform and Neo4j Sandbox are hosted and accessible on
the internet.

Table 6.1: Metadata of the real-world sets of EA Models from the FAIR repository [79]

Models 979
All elements 104,222
Business layer 39,877
Application layer 28,504
Technology layer 11,692
Motivation layer 11,936
Strategy layer 5,427
Implementation/Migration layer 160
Other 5,186
Relations 136,567
Views 715
Duplicates 242

Table 6.2: Local environment hosting the detection platform

Name HP ProBook 450 G1
Operating System Windows 10 Professional (x64)
RAM 16 GB (DDR3)
Hard drive 250 GB (SSD)

In this assessment, our goal is not only to determine the presence of different Smells
in a model but also the number of occurrence of each Smell per model. However, the
queries outlined in Section 3 have limitations when it comes to detecting the number

2https://me-big-tuwien-ac-at.github.io/EAModelSet/home
3https://neo4j.com/sandbox

105

6. Evaluation

of each Smell per model. These queries identify the Smells in a model and display the
results in graph. Since a Smell may consist of a single or multiple elements, automatically
determining the number of detections per Smell is not feasible. As a result, we had to
slightly modify the existing queries in order to create new ones that count the occurrences
of each detected Smell in the model. We had to redefine almost all queries, except for
Cyclic Dependency and Infinite Loop, because in those cases, the correct number cannot
be retrieved using Cypher queries only. Finally, we added the newly defined queries to
the EA Smell catalog by introducing a new attribute called cypher_count. However,
these new queries will not replace the ones provided in Section 3.

6.3.2 Experiment Results

The CM2KG platform was able to transform 947 of 977 models. Few models had encoding
issues or the source model in the Exchange File format was not well formed. Furthermore,
19 out of the 947 transformed models could not be imported into the Neo4J Database,
reducing the total number of models for evaluation down to 928. For these 19 transformed
models, the import process took forever and did not return a response or an exception.
It should be borne in mind that analyzing the failed models and verifying the behavior of
the CM2KG platform is beyond the scope of our thesis. We use it as an external service
for model transformation and assume that it performs correctly. Figure 6.1 demonstrates
the detection results for 928 EA models. We found 33 out of the 36 EA Smells provided
in Chapter 3. We were able to detect a total of 35,327 EA Smells from 928 models.

Figure 6.1: Number of detected EA Smells from a set of EA models from FAIR repository

The majority of identified Smells originate from the business and application layers,
followed by the technology and motivation layers. Figure 6.2 illustrates the distribution
of layers in Smells expressed as percentage. The “other” category represents elements
that do not belong to any specific layer, such as junctions or grouping elements.

106

6.3. Empirical Experiment

Figure 6.2: Involvement of ArchiMate layers in detected Smells

We have computed the total query execution time for 928 models. Figure 6.3 presents
the time taken for each model. The x-axis is the query execution time and the y-axis is
the number of elements (vertices and edges) in graph. The query execution time may
vary based on the graph’s size and structure, as well as the query’s complexity and
parameter. As shown in Figure 6.3, the execution time of the query generally increases
with increasing number of elements. Especially for graphs with a high density, the query
requires more time to traverse. Our findings reveal that the longest execution time was
47 seconds for a KG having 1,400 elements, whereas the shortest time was 9 seconds for
a KG with 11 elements. Almost 80 percent of the models had a query execution time of
less than 20 seconds. EA models with more than 1,000 elements occur rarely in the real
world [12]. Given this, we can conclude that the most optimal range of query execution
on average took approximately 14-15 seconds (min. 9.5 - max. 47.5) as the majority
of real-world cases involve graphs with fewer than 1,000 elements. These results were
obtained using our default parameters outlined in Section 3.

Figure 6.3: KG queries execution time per number of elements in the model

107

6. Evaluation

6.4 Precision and Recall
In order to address RQ2, we utilized Precision and Recall metrics. We were given an
ArchiMate model called ArchiSurance3.1CaseStudy(revised).xml 4 which had
been enhanced by an EA expert with various EA Smells. We transformed the expert
model into a GraphML file 5, imported it into a Neo4j database, and ran all Smell queries
using default parameters. Upon sharing our detection results, we received the expected
results from the EA expert for comparison.

6.4.1 Result
Our Platform has detected 825 EA Smells, of which 19 were false positive and 12 were
false negative. In total, the correct number of existing EA Smells in the model were 819.
These include both the existing ones and new ones added by the EA expert.

Table 6.3 presents the results detected by our platform alongside the expected results.
The comparison between the detected and expected results for each EA Smell is displayed.
Smells marked with an asterisk in Table 6.3 mean there is a deviation between the
expected and actual results detected by the platform.

Once we collected all the necessary values, we proceeded to calculate the Precision and
Recall for our platform. Table 6.4 presents the key values for calculating Precision and
Recall metrics. True positives (TP) refer to the correct number of detected EA Smells on
our platform. False positives (FP) indicate the number of EA Smells that our platform
incorrectly identified. True negatives (TN) represent instances where model elements
that do not belong to any EA Smell are correctly identified. However, we do not factor
in TN because our platform is designed solely to detect Smells and does not identify
elements that are unaffected by EA Smells. False negatives (FN) are the instances of EA
Smells that exist within the model but are not detected by our platform.

Table 6.4: Values of True Positive (TP), False Positive (FP) and False Negative (FN)
calculated from Table 6.3

TP= 807 FP= 19
FN= 12 TN= 0

We used the following formula to calculate the Precision of our model.

TP

(TP + FP) =⇒ 807
(807 + 19) = 0.97

4https://github.com/big-thesis/Alexanian.EASmells/blob/main/graph-based.ea-
smells.detection/graph-based.ea-smells.detection/src/main/resources/ArchiSurance3.1CaseStudy(revised).xml

5https://github.com/big-thesis/Alexanian.EASmells/blob/main/graph-based.ea-
smells.detection/graph-based.ea-smells.detection/src/main/resources/ExpertModelgraphMLv1.xml

108

6.4. Precision and Recall

Table 6.3: Actual results detected by platform vs expected results given by the EA expert

EA Smells Detected by platform Expected
*And in element name 16 1
Chatty Service 7 7
Combinatorial Explosion 3 3
Cyclic dependency 2 2
Data Service 3 3
Dead Component 610 610
Deadlock 1 1
Deficient Encapsulation 1 1
End Event Missing 4 4
Feature Envy 2 2
Incomplete Pairs 8 8
Inconsistent Data 1 1
Infinite Loop 1 1
Junction named as element 1 1
Lack of Synchronization 2 2
Message Chain 6 6
Missing Abstraction 1 1
Missing Data 0 0
Missing Negative Case 4 4
Multifaceted Abstraction 41 41
Nanoservices 63 63
No Legacy 1 1
Or in element name 1 1
*Overgeneralization 0 1
Sand Pile 2 2
Scattered Parasitic Functionality 2 2
Shared Persistency 5 5
*Shotgun Surgery 4 1
Start Event Missing 3 3
Stovepipe System 2 2
*Strict layer Violation 12 13
The God Object 1 1
Useless Test 3 3
*Vendor Lock-In 9 17
*Warm Bodies 1 2
Wrong Cuts 2 2

109

6. Evaluation

Consequently, we calculated the Recall with following formula:

TP

(TP + FN) =⇒ 807
(807 + 12) = 0.98

Despite the absence of TN, we also calculated the accuracy as follows:

TP + TN

(TP + TN + FP + FN) =⇒ 807 + 0
(807 + 0 + 19 + 12) = 0.96

Precision measures the fraction of detected EA Smells that were actually EA Smells.
Recall is the ratio of all actual detected EA Smells that were correctly classified as positive.
Accuracy refers to the ratio of all correct classifications, encompassing both positive and
negative outcomes. The lower the values of false negatives (FN) and false positives (FP),
the more accurate the results are. In our evaluation, we achieved a precision of 0.97, a
recall of 0.98 and 0.96 for accuracy. All three metrics are close to 1, demonstrating that
our approach effectively identifies EA Smells.

6.4.2 Discussion
This section discusses the differences in identifying EA Smells between our detection
platform and the expected EA Smells from the expert model. Table 6.3 compares the
actual results with the expected results, with deviations marked by asterisks.

False Positives

The number of FP was 19. It occurred by detection of The word And in element name
and Shotgun Surgery EA Smells. Our platform detected 16 instance of The word And in
element name EA Smell. However, in reality there was only one instance of this Smell
in the Model. The number of false positives (FP) for the Word And in Element Name
EA Smell was 15. Table 6.5 illustrates the detected instances by our platform. The
element “Do C and D” was added by the EA expert, while the rest were already part of
the model. In the demonstrated results, some element names contain “And” in between
but should be considered as single units, such as “Home and Away Policy” or “Policy and
Claim Management.” These should not be classified as Smell candidates. Additionally,
when examining the names and verbs as element names, the order becomes evident. For
example, “Sales and Distribution” implies that Sales occurs before Distribution, which
makes it an incorrect instance of the Smell. The same reasoning applies to “Marketing
and Sales,” as traditionally, Marketing precedes Sales. Therefore, as described in Section
3.1.31, they are not considered Smell candidates since the temporal order is clear and
visible.

We understood that detecting this Smell solely via KG may not be sufficient. Using an
alternative approach, such as Natural Language Processing (NLP), could yield more
precise results.

110

6.4. Precision and Recall

The second Smell resulting in false positives was the Shotgun Surgery. According
to the definition of the Shotgun Surgery, multiple abstractions depend on a single
abstraction, meaning any change to a single abstraction may force changes to other
abstractions as well. Thus, we have considered the dependency relationships in ArchiMate
with a given threshold to define the Shotgun Surgery EA Smell (Section 3.1.6). Our
platform detected 4 instances of this Smell. However, after comparing the result with
the expert representation of Shotgun Surgery (Figure 6.4), we have noticed that this
instance remained undetected since the EA expert utilized numerous bidirectional Flow
relationships between abstractions to demonstrate the Shotgun Surgery EA Smell. Our
defined KG query does not consider Flow relationships for detection. Consequently, we
concluded that the four instances we detected were false positives and the undetected
one was a false negative.

Figure 6.4: The Shotgun Surgery EA Smell provided by the expert in the model

False Negatives

As mentioned earlier, the undetected instance of the Shotgun Surgery EA Smell was con-
sidered as a false negative. The second variation relates to Overgeneralization. Figure 6.5
illustrates the EA Smell proposed by the expert. Our platform failed to detect this EA

111

6. Evaluation

Table 6.5: Instances of The word And in element name EA Smell identified by detection
platform

"Policy and Claim Management"
"Market and Sell Products"
"Manage Policies and Claims"
"Sales And Distribution"
"Marketing and Sales"
"Home and Away Policy Administration"
"Home and Away Financial Application"
"Home and Away LAN"
"Target: CRM, Back Office and Data Warehouse Operational"
"Project: Data Warehousing and BI"
"Homeowners and Travel Back Office"
"Home and Away Headquarters"
"Home and Away Fraud"
"Home and Away No Fly"
"Do C and D"

Smell, because our defined query only considered Assignment and Association relation-
ships, and not Realization relationships. We interpret an overgeneralized component
as one responsible for performing and executing various functions and services (Section
3.1.17). In contrast, the expert model represented the Overgeneralization Smell as one
that implements numerous functions. After discussing the discrepancies with our expert,
we concluded that both approaches allow for valid interpretation. However, we regard it
as an undetected Smell by our platform.

The third Smell was Strict Layer Violation EA. Our platform detected twelve instances
of this Smell, excluding the one highlighted by the expert. Figure 6.6 shows the example
provided by the expert, which involves an element from the technology layer that realizes
an element from the business layer. Referring to a demonstration in Table 3.2b, we
considered the Realization and Serving relationships generally acceptable between layers
(Section 3.1.20). However, realizing a Business Object with an Artifact is syntactically
permissible but not advisable, making it a potential Smell candidate.

The last two Smells were Vendor Lock-in and Warm Bodies. Our detection platform was
able to detect 9 out of 17 instances of the Vendor Lock-in EA Smell. Upon reviewing the
results, we found that detection outcomes varied based on the query parameters used.
For instance, the elements represented in the expert models included properties such
as “vendor: IBM,” “vendor: Microsoft.” By incorporating these values into our query
parameters, we were able to detect all instances of this Smell. Regarding Warm Bodies,
our platform can detect one of two cases of that Smell. However, by adjusting the query
parameters, our platform can also identify the second Smell, which was not possible with
the default query parameters.

112

6.4. Precision and Recall

Figure 6.5: The Overgeneralization EA Smell provided by the expert in the model

Figure 6.6: The Strict Layer Violation EA Smell provided by the expert in the model

113

6. Evaluation

6.5 Summary
We conducted three different tests to evaluate our provided approach. We verified our
detection platform against 36 integration tests to answer the RQ.1. Regarding RQ.2
we used a large set of EA models to test the behavior of our approach in real-world
EA models. Using our provided queries, our platform was able to detect 35,327 EA
Smells across 928 models. The query execution time was also acceptable. For nearly 80
percent of models, the query execution time was under 20 seconds. Finally, we verified
our detection platform with a different set of tests. We achieved a precision of 0.97 and
a recall of 0.98, which is considered a satisfactory outcome. Additionally, following a
discussion about Precision and Recall results with our expert, we can confidently assert
that our provided queries exhibit high precision in detecting EA Smells in ArchiMate
models.

114

CHAPTER 7
Related Work

The research area of the Enterprise Architecture Debt (EAD) [2] and EA Smells is
relatively new, and there are currently many research activities in progress. In contrast,
there has been extensive research on the TD and the associated Code Smells. Several
Code Smell detection tools have been developed, such as Jdeodorant [80], inFusion 1 [81],
PMD 2, and JSpIRIT 3 [82]. These tools are limited to the technical domain and do not
cover business aspects. As for EA analysis, there are numerous graph-based approaches
for analyzing EA models (see Section 2.5). Some analysis and visualization tools have
been provided so far [83, 84, 85, 86, 87]. However, these approaches are neither automated,
nor used in the context of EAD and EA Smell detection.

Detection Platform - Salentin and Hacks [8] were the first to attempt automated
detection of EA Smells. They created a prototype in Java [43] that took an
ArchiMate Exchange File as input, analyzed 14 EA Smells from the catalog, and
printed the detected EA Smells in the console. Benny Tieu [88] extended this
prototype for his research [27]. This approach has limitations. It is not scalable
for large EA models, and the program needs to be recompiled whenever an EA
Smell is added or removed. Additionally, the captured knowledge inside the Java
program makes maintainability challenging in the long term. Furthermore, any
change in the semantics of EA Smell detection requires modifying the program.
The second prototype used a Knowledge Graph KG-based approach for detecting
EA Smells. It was developed by Smajevic, Hacks, and Bork [12] by transforming
Conceptual Models to KG (CM2KG) [11]. The CM2KG converts ArchiMate models
to GraphML format. KG queries were used to evaluate the same 14 EA Smells as

1https://www.intooitus.com/products/infusion/
2https://pmd.github.io/
3https://sites.google.com/site/santiagoavidal/projects/jspirit

115

7. Related Work

in the previous approach. According to their analysis, KG-based solutions are three
to five times faster than the previous approach in detecting EA Smells. However,
some queries provided in this work need improvement to enhance accuracy and
precision in Smell detection. Our thesis is an extension of the work by Smajevic,
Hacks and Bork [12], however, we do not maintain the KG queries directly in
the detection platform. Instead, we store them in the EA Smell catalog. We
separate the detection logic from the detection platform. With this approach,
we can ensure long-term maintainability. Furthermore, we can easily replace our
detection platform, written in Java, with another programming language without
modifying the detection logic. If we need to change some KG queries, those changes
remain transparent to the users. Furthermore, in our approach, users do not need
to have any knowledge of KG queries.
Code Smell detection approaches are categorized into five methods, metric, history,
rules/heuristics, machine learning and optimization [89]. For EA Smell detection
we have thus far focused on metric and graph-based approaches. We use both
approaches in our thesis: we use graph queries and at the same time define some
threshold for detection.

EA Smell Catalog - Hacks et al. [2] introduced the concept of EAD as a metaphor,
but their definition did not provide a method for identifying potential debts in EA.
In response, Salentin and Hacks [7] introduced the idea of EA Smell by adapting
the prominent Code Smells to the domain of EAD. They analyzed and selected
Code Smells that are applicable in the EA domain and compiled a catalog [8].
Lehman et al. [26] examined anti-patterns in the field of Business Process Modeling
(BPM) and expanded the catalog by adding eighteen new EA Smells. Finally, Tieu
and Hacks [27] extended this catalog further by introducing additional EA Smells
derived from software architecture Smells. As discussed in Sections 2.3 and 4,
the current catalog lacks specific definitions and a clear approach to identifying
EA Smells. Most definitions are either too vague or copied from Code Smells or
anti-patterns directly without being adjusted for the EA domain. In our thesis,
we aim to expand the current catalog, introducing new fields and revising the
descriptions as needed to adapt them to the EA domain.

116

CHAPTER 8
Conclusion

8.1 Summary
We studied and analyzed the EA Smells from the catalog and provided thirty-six KG
queries. To define the queries, we briefly described each Smell at the underlying level and
explained how it can arise in the EA domain. We also explained some EA Smells that are
not detectable via KG query or in the ArchiMate modeling language. We extended the
catalog by incorporating our findings and redefined some definitions in the catalog, having
made the descriptions more precise. We also provided graphical examples in the catalog
to facilitate understanding. We implemented a platform to automate detection and
visualize the results as a graph. In order to ensure long-term maintainability, we kept the
detection logic separate from the platform, ensuring that any changes in either platform
or catalog do not impact others. We evaluated our solution in both functional and
conceptual aspects. The results are promising and provide some hints for improvements
and future work.

It is important to note that identifying EA Smells in models does not always reduce the
level of EAD. The presence of a Smell in an EA model does not necessarily imply its
existence in the real world. However, the ability to detect, understand and distinguish
between different Smells can increase awareness of their potential impact on the quality
of EA in the short and long term.

Like the metaphor of TD, having debt in EA is sometimes necessary as a trade-off
between quality and an acceptable outcome, as long as the debt is paid off in the future.

8.2 Future Work
From our evaluation results in Section 6.4 we learned that the evaluation outcome may
strongly depend on the thresholds and the query parameters. Modifying thresholds

117

8. Conclusion

and parameters will also incur changes in false negatives and false positives. The
detection results consisted of positives, false positives and false negatives. Adjusting
the thresholds and query parameters was observed to affect those results. Therefore, a
comprehensive measurement for defining thresholds and detection parameters would be
required. Furthermore, interviewing EA practitioners could provide valuable insights
into the impact of EA Smells on EA.

Additionally, another approach for detecting EA Smells could be proposed, and the
results could be compared with our work. A concrete example would be using machine
learning algorithms for pattern recognition to identify or predict potential EA Smells in
models. Furthermore, some EA Smells, such as Undefined Junction Condition, Layout
Deficits, Language Deficits and Deficient Naming, which are not detectable through KG
queries, could potentially be identified using pattern recognition and NLP techniques.

118

APPENDIX A
ArchiMate Elements and

Relationships

119

A. ArchiMate Elements and Relationships

Figure A.1: ArchiMate elements categorized by active, passive and behaviour elements
[90]

120

Figure A.2: Different types of relationships in ArchiMate [9]

121

List of Figures

2.1 Technical Debt Quadrant [21] . 8
2.2 Placing of TD within the concept of EAD [2] 9
2.3 Current representation of the Combinatorial Explosion EA Smell in the catalog 10
2.4 The ArchiMate Full Framework taken from [9] 11
2.5 ArchiMate Assignment Relationship . 12
2.6 ArchiMate Composition Relationship . 12
2.7 ArchiMate Aggregation Relationship . 12
2.8 ArchiMate Realization Relationship . 13
2.9 ArchiMate Access and Triggering Relationships 13
2.10 ArchiMate Influence relationship . 13
2.11 ArchiMate Serving Relationship . 14
2.12 ArchiMate Association Relationship . 14
2.13 ArchiMate Triggering Relationship . 14
2.14 ArchiMate Flow Relationship . 14
2.15 ArchiMate Specialization Relationship . 15
2.16 CM2KG, a generic platform for transforming models into graphs [11] . . . 16

3.1 An example of an abstract and many aggregated sub elements in an ArchiMate
model . 52

3.2 Permitted relationships between the core layers of ArchiMate 54
3.3 Example of a God Object Web Service anti-pattern taken from [68] 61
3.4 Data flow errors in WFD-nets taken from [71] 76
3.5 Undefined junction condition EA Smell in ArchiMate 80

4.1 Current representation of the Useless Test EA Smells in the catalog . . . 85
4.2 Current representation of the Deficient Encapsulation EA Smell in the catalog 91
4.3 Current representation of the Multifaceted Abstraction EA Smell in the catalog 92

5.1 General overview of the EA Smell detection platform 96
5.2 Interactions between the detection platform and the EA Smell catalog . . 97
5.3 CM2KG model transformation taken from [13] 99
5.4 General overview of the EA Smell detection platform 101
5.5 Detection section, illustrating detected EA Smells in textual and visual forms. 101

6.1 Number of detected EA Smells from a set of EA models from FAIR repository 106

123

6.2 Involvement of ArchiMate layers in detected Smells 107
6.3 KG queries execution time per number of elements in the model 107
6.4 The Shotgun Surgery EA Smell provided by the expert in the model 111
6.5 The Overgeneralization EA Smell provided by the expert in the model . . 113
6.6 The Strict Layer Violation EA Smell provided by the expert in the model 113

A.1 ArchiMate elements categorized by active, passive and behaviour elements
[90] . 120

A.2 Different types of relationships in ArchiMate [9] 121

124

List of Tables

3.1 Possible parameters for apoc.nodes.cycles procedure 21
3.2 Possible parameters for apoc.path.expand procedure 22
3.3 Graphical example, Cypher query and query options for detecting Missing

Abstraction EA Smells . 23
3.4 Symmetric pairs taken from [45, p. 37] . 24
3.5 Graphical example, Cypher query and query options for detecting Incomplete

Pairs EA Smells . 25
3.6 Graphical example and Cypher query for detecting Multifaceted Abstraction

EA Smells . 26
3.7 Graphical example and Cypher query for detecting Data Service EA Smells 28
3.8 Graphical example and Cypher query for detecting Feature Envy EA Smells 29
3.9 Graphical example, Cypher query and query options for detecting Shotgun

Surgery EA Smells . 30
3.10 Graphical example and the Cypher query for detecting Scattered Parasitic

Functionality EA Smells . 31
3.11 Graphical example, Cypher query and query options for detecting Deficient

Encapsulation EA Smells . 33
3.12 Graphical example and Cypher query for detecting Wrong Cuts EA Smells 35
3.13 Graphical example and Cypher query for detecting Dead Component EA

Smells . 36
3.14 Graphical example, Cypher query and query options for detecting Vendor

Lock-In EA Smells . 37
3.15 Graphical example, Cypher query and query options for detecting No Legacy

EA Smells . 39
3.16 Graphical example, Cypher query and query options for detecting Warm

Bodies EA Smells . 41
3.17 Graphical example, Cypher query and query options for detecting Combina-

torial Explosion EA Smells . 42
3.18 Graphical example, Cypher query and query options for detecting Stovepipe

System EA Smells . 44
3.19 Graphical example, Cypher query and query options for detecting Nanoservices

EA Smells . 46
3.20 Graphical example, Cypher query and query options for detecting Overgener-

alization EA Smells . 48

125

3.21 Graphical example and Cypher query for detecting Sand Pile EA Smells . 49
3.22 Graphical example, Cypher query and query options for detecting Missing

Abstraction EA Smells . 52
3.23 Graphical example and Cypher query for detecting Strict Layer Violation EA

Smells . 55
3.24 Graphical example, Cypher query and query options for detecting Message

Chain EA Smell . 56
3.25 Graphical example and Cypher query for detecting the Shared Persistency

EA Smells . 57
3.26 Graphical example, Cypher query and query options for detecting Chatty

Service EA Smells . 58
3.27 Graphical example, Cypher query and query options for detecting Infinite

Loop EA Smells . 59
3.28 Graphical example, Cypher query and query options for detecting God Object

EA Smells . 61
3.29 Graphical example, Cypher query and query options for detecting Lack of

Synchronization EA Smells . 63
3.30 Graphical example, Cypher query and query options for detecting Deadlock

EA Smells . 65
3.31 Graphical example, Cypher query and query options for detecting Inconsistent

Data EA Smells . 66
3.32 Graphical example, Cypher query and query options for detecting The word

Or in element name EA Smells . 68
3.33 Graphical example, Cypher query and query options for detecting Useless

Test EA Smells . 69
3.34 Graphical example and Cypher query for detecting The word And in element

name EA Smells . 70
3.35 Graphical example, Cypher query and query options for detecting Start Event

Missing EA Smells . 71
3.36 Graphical example, Cypher query and query options for detecting End Event

Missing EA Smells . 73
3.37 Graphical example, Cypher query and query options for detecting Missing

negative case EA Smells . 75
3.38 Graphical example, Cypher query and query options for detecting Missing

Data EA Smells . 77
3.39 Graphical example, Cypher query and query options for detecting Junction

named as element EA Smells . 79
3.40 Undetectable and out of scope EA Smells 80

4.1 Two schemes for representing EA Smells 84
4.2 Useless Test EA Smell after unification, extension and revision 86
4.3 Deficient Encapsulation EA Smell after extension and revision 87
4.4 Multifaceted Abstraction EA Smell after extension and revision 89

126

5.1 REST API for retrieving EA Smells from the catalog 97
5.2 REST API for transforming Archi exchange files to GraphML 100

6.1 Metadata of the real-world sets of EA Models from the FAIR repository [79] 105
6.2 Local environment hosting the detection platform 105
6.4 Values of True Positive (TP), False Positive (FP) and False Negative (FN)

calculated from Table 6.3 . 108
6.3 Actual results detected by platform vs expected results given by the EA expert 109
6.5 Instances of The word And in element name EA Smell identified by detection

platform . 112

127

Acronyms

AI Artificial Intelligence. 15

BPM Business Process Modeling. 2, 58, 62, 64, 65, 67–70, 72, 74, 76, 80–82, 84, 86, 116

BPMN Business Process Modeling Notation. 71, 72

CM2KG Conceptual Model to Knowledge Graph. 3–5, 7, 16, 19, 95, 96, 98–101,
103–106, 115, 123

DSR Design Science Research. 3

EA Enterprise Architecture. ix–xiii, 1–5, 7–10, 15–17, 19–89, 91–93, 95–98, 100–106,
108–118, 123–127

EAD Enterprise Architecture Debt. ix, xi, 1, 2, 4, 5, 7–9, 16, 115–117, 123

HMMs Hidden Markov Models. 15

IoT Internet of Things. 15

KG Knowledge Graph. ix–xi, 2–5, 7, 15–17, 19–21, 23, 24, 26–31, 33–36, 39–42, 44, 45,
47, 51, 54, 55, 57, 59, 60, 62, 66, 68, 70–72, 74, 76, 79–81, 83, 85, 89, 95, 103, 104,
107, 110, 111, 115–118, 124

ML Machine Learning. 15

NLP Natural Language Processing. 70, 81, 110, 118

SOA Service-Oriented Architecture. 27, 49

TD Technical Debt. ix, xi, 1, 2, 4, 5, 7–9, 16, 115, 123

WFD-nets Workflow nets with Data. 75, 76, 123

129

Bibliography

[1] Karl E Kurbel. Developing information systems. The making of information systems:
Software engineering and management in a globalized world, pages 155–234, 2008.

[2] Simon Hacks, Hendrik Höfert, Johannes Salentin, Yoon Chow Yeong, and Horst
Lichter. Towards the definition of enterprise architecture debts. In 2019 IEEE 23rd
International Enterprise Distributed Object Computing Workshop (EDOCW), pages
9–16. IEEE, 2019.

[3] Muhamed Smajevic and Dominik Bork. Towards graph-based analysis of enterprise
architecture models. In International Conference on Conceptual Modeling, pages
199–209. Springer, 2021.

[4] Amanda Barbosa, Alixandre Santana, Simon Hacks, and Niels von Stein. A taxonomy
for enterprise architecture analysis research. In 21st International Conference on
Enterprise Information Systems, volume 2, pages 493–504. SciTePress, 2019.

[5] Maria-Eugenia Iacob and Henk Jonkers. Quantitative analysis of enterprise archi-
tectures. In Interoperability of enterprise software and applications, pages 239–252.
Springer, 2006.

[6] Edith Tom, Aybüke Aurum, and Richard Vidgen. An exploration of technical debt.
Journal of Systems and Software, 86(6):1498–1516, 2013.

[7] Johannes Salentin and Simon Hacks. Towards a catalog of enterprise architecture
smells. In Wirtschaftsinformatik (Community Tracks), pages 276–290, 2020.

[8] Salentin J., Lehmann B., Hacks S., and Alexander P. Enterprise architecture smells
catalog (2021). https://swc-public.pages.rwth-aachen.de/smells/
ea-smells/.

[9] Omg: Archimate® 3.2 specification. the open group (2023). https://pubs.
opengroup.org/architecture/archimate3-doc.

[10] Hector Florez, Mario Sánchez, and Jorge Villalobos. A catalog of automated analysis
methods for enterprise models. SpringerPlus, 5(1):1–24, 2016.

131

https://swc-public.pages.rwth-aachen.de/smells/ea-smells/
https://swc-public.pages.rwth-aachen.de/smells/ea-smells/
https://pubs.opengroup.org/architecture/archimate3-doc
https://pubs.opengroup.org/architecture/archimate3-doc

[11] Muhamed Smajevic and Dominik Bork. From conceptual models to knowledge graphs:
A generic model transformation platform. In ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion, MODELS 2021
Companion, Fukuoka, Japan, October 10-15, 2021, pages 610–614. IEEE, 2021.

[12] Muhamed Smajevic, Simon Hacks, and Dominik Bork. Using knowledge graphs to
detect enterprise architecture smells. In IFIP Working Conference on The Practice
of Enterprise Modeling, pages 48–63. Springer, 2021.

[13] Conceptual model to knowledge graph (cm2kg) platform. https://github.com/
borkdominik/CM2KG.

[14] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. Design science in
information systems research. MIS quarterly, pages 75–105, 2004.

[15] Ken Peffers, Tuure Tuunanen, Marcus A Rothenberger, and Samir Chatterjee. A
design science research methodology for information systems research. Journal of
management information systems, 24(3):45–77, 2007.

[16] Archimate® model exchange file format for the archimate 3.1 modeling language.
https://www.opengroup.org/xsd/archimate/.

[17] Ward Cunningham. The wycash portfolio management system. ACM Sigplan Oops
Messenger, 4(2):29–30, 1992.

[18] Carolyn Seaman, Yuepu Guo, Nico Zazworka, Forrest Shull, Clemente Izurieta,
Yuanfang Cai, and Antonio Vetrò. Using technical debt data in decision making:
Potential decision approaches. In 2012 Third International Workshop on Managing
Technical Debt (MTD), pages 45–48. IEEE, 2012.

[19] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim, Philippe
Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya, et al. Managing
technical debt in software-reliant systems. In Proceedings of the FSE/SDP workshop
on Future of software engineering research, pages 47–52, 2010.

[20] RC Martin. A mess is not a technical debt, 2009.

[21] Martin Fowler. Technical debt quadrant, 2009. URL:
http://martinfowler.com/bliki/TechnicalDebtQuadrant.html, 2009. (last accessed on
2024-01-31).

[22] Patrick Saint-Louis, Marcklyvens C Morency, and James Lapalme. Defining enterprise
architecture: A systematic literature review. In 2017 IEEE 21st international
enterprise distributed object computing workshop (EDOCW), pages 41–49. IEEE,
2017.

[23] Leon Kappelman, Tom McGinnis, Alex Pettite, and Anna Sidorova. Enterprise
architecture: Charting the territory for academic research. 2008.

132

https://github.com/borkdominik/CM2KG
https://github.com/borkdominik/CM2KG
https://www.opengroup.org/xsd/archimate/

[24] Togaf as an enterprise architecture framework, 2006. https://pubs.
opengroup.org/architecture/togaf8-doc/arch/chap01.html [Ac-
cessed: (11.11.2024)].

[25] Marc Lankhorst. Enterprise Architecture at Work: Modelling, Communication and
Analysis. Springer, 2017.

[26] Barry-Detlef Lehmann, Peter Alexander, Horst Lichter, Simon Hacks, S Aydin,
T Sunetnanta, and T Anwar. Towards the identification of process anti-patterns in
enterprise architecture models. In QuASoQ@ APSEC, pages 47–54, 2020.

[27] Benny Tieu and Simon Hacks. Determining enterprise architecture smells from
software architecture smells. In 2021 IEEE 23rd Conference on Business Informatics
(CBI), volume 2, pages 134–142. IEEE, 2021.

[28] Stephan Aier. How clustering enterprise architectures helps to design service oriented
architectures. In 2006 IEEE International Conference on Services Computing
(SCC’06), pages 269–272. IEEE, 2006.

[29] Pontus Johnson, Mathias Ekstedt, and Robert Lagerstrom. Automatic probabilistic
enterprise it architecture modeling: a dynamic bayesian networks approach. In
2016 IEEE 20th International Enterprise Distributed Object Computing Workshop
(EDOCW), pages 123–129. IEEE, 2016.

[30] Björn Bebensee and Simon Hacks. Applying dynamic bayesian networks for auto-
mated modeling in archimate: a realization study. In 2019 IEEE 23rd International
Enterprise Distributed Object Computing Workshop (EDOCW), pages 17–24. IEEE,
2019.

[31] Simon Hacks and Horst Lichter. A probabilistic enterprise architecture model
evolution. In 2018 IEEE 22nd International Enterprise Distributed Object Computing
Conference (EDOC), pages 51–57. IEEE, 2018.

[32] Vassilis Giakoumakis, Daniel Krob, Leo Liberti, and Fabio Roda. Technological archi-
tecture evolutions of information systems: Trade-off and optimization. Concurrent
Engineering, 20(2):127–147, 2012.

[33] Ulrik Franke, Oliver Holschke, Markus Buschle, Per Narman, and Jannis Rake-
Revelant. It consolidation: an optimization approach. In 2010 14th IEEE Interna-
tional Enterprise Distributed Object Computing Conference Workshops, pages 21–26.
IEEE, 2010.

[34] Alan D Maccormack, Robert Lagerstrom, and Carliss Young Baldwin. A methodology
for operationalizing enterprise architecture and evaluating enterprise it flexibility.
Harvard Business School working paper series# 15-060, 2015.

133

https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap01.html
https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap01.html

[35] Muhamed Smajevic, Syed Juned Ali, and Dominik Bork. Cm2kgcloud - an open
web-based platform to transform conceptual models into knowledge graphs. Sci.
Comput. Program., 231:103007, 2024.

[36] Luigi Bellomarini, Daniele Fakhoury, Georg Gottlob, and Emanuel Sallinger. Knowl-
edge graphs and enterprise ai: the promise of an enabling technology. In 2019 IEEE
35th international conference on data engineering (ICDE), pages 26–37. IEEE, 2019.

[37] Peter Mika, Abraham Bernstein, Chris Welty, Craig Knoblock, Denny Vrandečić,
Paul Groth, Natasha Noy, Krzysztof Janowicz, and Carole Goble. The Semantic
Web–ISWC 2014: 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part II, volume 8797. Springer, 2014.

[38] L Ehrlinger and W Wofi. Towards a definition of knowledge graphs. semantics. In
Proceedings of 12th International Conference on Semantic Systems SEMANTiCS
2016, CEUR Workshop Proceedings, volume 1695, 2016.

[39] Viktor Beneš and Miroslav Svítek. Knowledge graphs for smart cities. In 2022
Smart City Symposium Prague (SCSP), pages 1–6. IEEE, 2022.

[40] Fatima Zohra Smaili, Xin Gao, and Robert Hoehndorf. Opa2vec: combining formal
and informal content of biomedical ontologies to improve similarity-based prediction.
Bioinformatics, 35(12):2133–2140, 2019.

[41] Aditya Garg, Rick Kazman, and Hong-Mei Chen. Interface descriptions for enterprise
architecture. science of Computer Programming, 61(1):4–15, 2006.

[42] Alixandre Santana, Kai Fischbach, and Hermano Moura. Enterprise architecture
analysis and network thinking: A literature review. In 2016 49th Hawaii International
Conference on System Sciences (HICSS), pages 4566–4575. IEEE, 2016.

[43] Salentin J. and Hacks S. Enterprise architecture smells prototype (2020). https:
//git.rwth-aachen.de/ba-ea-smells/program.

[44] Parameters - Cypher Manual — neo4j.com. https://neo4j.com/docs/
cypher-manual/current/syntax/parameters/. [Accessed 20-12-2023].

[45] Girish Suryanarayana, Ganesh Samarthyam, and Tushar Sharma. Refactoring for
software design smells: managing technical debt. Morgan Kaufmann, 2014.

[46] Davide Taibi and Valentina Lenarduzzi. On the definition of microservice bad smells.
IEEE software, 35(3):56–62, 2018.

[47] Francis Palma and Naouel Mohay. A study on the taxonomy of service antipatterns.
In 2015 IEEE 2nd International Workshop on Patterns Promotion and Anti-patterns
Prevention (PPAP), pages 5–8. IEEE, 2015.

134

https://git.rwth-aachen.de/ba-ea-smells/program
https://git.rwth-aachen.de/ba-ea-smells/program
https://neo4j.com/docs/cypher-manual/current/syntax/parameters/
https://neo4j.com/docs/cypher-manual/current/syntax/parameters/

[48] DM Hutton. Clean code: a handbook of agile software craftsmanship. Kybernetes,
38(6):1035–1035, 2009.

[49] Martin Fowler. Refactoring: improving the design of existing code. Addison-Wesley
Professional, 2018.

[50] Mika V Mäntylä and Casper Lassenius. Subjective evaluation of software evolvability
using code smells: An empirical study. Empirical Software Engineering, 11:395–431,
2006.

[51] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Denys
Poshyvanyk, and Andrea De Lucia. Mining version histories for detecting code
smells. IEEE Transactions on Software Engineering, 41(5):462–489, 2014.

[52] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. Identifying
architectural bad smells. In 2009 13th European Conference on Software Maintenance
and Reengineering, pages 255–258. IEEE, 2009.

[53] Martin Fowler James Lewis. Microservices, a definition of this new architectural
term). https://martinfowler.com/articles/microservices.html.

[54] Rafik Tighilt, Manel Abdellatif, Naouel Moha, Hafedh Mili, Ghizlane El Boussaidi,
Jean Privat, and Yann-Gaël Guéhéneuc. On the study of microservices antipatterns:
A catalog proposal. In Proceedings of the European Conference on Pattern Languages
of Programs 2020, pages 1–13, 2020.

[55] William J Brown, Raphael C Malveau, Hays W McCormick III, and Thomas J
Mowbray. Refactoring software, architectures, and projects in crisis. 1998.

[56] Lukas Liss, Henrik Kämmerling, Peter Alexander, and Horst Lichter. Towards a
catalog of refactoring solutions for enterprise architecture smells. In SEED/QuASoQ@
APSEC, pages 60–69, 2021.

[57] Jaroslav Kral and Michal Zemlicka. The most important service-oriented antipatterns.
In International Conference on Software Engineering Advances (ICSEA 2007), pages
29–29. IEEE, 2007.

[58] Jaroslav Král and Michal Zemlicka. Crucial service-oriented antipatterns. Inter-
national Academy, Research and Industry Association (IARIA), pages 160–171,
2008.

[59] Jeri Edwards and D. Devoe. "10 tips for three tier success, d.o.c. magazine". pages
39––42, 1997.

[60] William E Winkler. String comparator metrics and enhanced decision rules in the
fellegi-sunter model of record linkage. 1990.

135

https://martinfowler.com/articles/microservices.html

[61] Francis Palma, Naouel Moha, Guy Tremblay, and Yann-Gaël Guéhéneuc. Specifica-
tion and detection of soa antipatterns in web services. In European Conference on
Software Architecture, pages 58–73. Springer, 2014.

[62] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. Toward
a catalogue of architectural bad smells. In Architectures for Adaptive Software
Systems: 5th International Conference on the Quality of Software Architectures,
QoSA 2009, East Stroudsburg, PA, USA, June 24-26, 2009 Proceedings 5, pages
146–162. Springer, 2009.

[63] Tushar Sharma, Marios Fragkoulis, and Diomidis Spinellis. Does your configuration
code smell? In Proceedings of the 13th International Conference on Mining Software
Repositories, pages 189–200, 2016.

[64] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre.
Fast unfolding of communities in large networks. Journal of statistical mechanics:
theory and experiment, 2008(10):P10008, 2008.

[65] Martin Lippert and Stefan Roock. Refactorings in large software projects: How to
successfully execute complex restructurings, 2006.

[66] Mathieu Nayrolles, Naouel Moha, and Petko Valtchev. Improving soa antipatterns
detection in service based systems by mining execution traces. In 2013 20th Working
Conference on Reverse Engineering (WCRE), pages 321–330. IEEE, 2013.

[67] Agnes Koschmider, Ralf Laue, and Michael Fellmann. Business process model
anti-patterns: a bibliography and taxonomy of published work. 2019.

[68] Hanzhang Wang, Ali Ouni, Marouane Kessentini, Bruce Maxim, and William I
Grosky. Identification of web service refactoring opportunities as a multi-objective
problem. In 2016 IEEE International Conference on Web Services (ICWS), pages
586–593. IEEE, 2016.

[69] Ralf Laue and Ahmed Awad. Visualization of business process modeling anti patterns.
Electronic Communications of the EASST, 25, 2010.

[70] Silvia Von Stackelberg, Susanne Putze, Jutta Mülle, and Klemens Böhm. Detecting
data-flow errors in bpmn 2.0. Open Journal of Information Systems (OJIS), 1(2):1–19,
2014.

[71] Nikola Trčka, Wil MP Van der Aalst, and Natalia Sidorova. Data-flow anti-patterns:
Discovering data-flow errors in workflows. In International Conference on Advanced
Information Systems Engineering, pages 425–439. Springer, 2009.

[72] Ralf Laue, Wilhelm Koop, and Volker Gruhn. Indicators for open issues in business
process models. In International Working Conference on Requirements Engineering:
Foundation for Software Quality, pages 102–116. Springer, 2016.

136

[73] Tomislav Rozman, Gregor Polancic, and Romana Vajde Horvat. Analysis of most
common process modeling mistakes in bpmn process models. Eur SPI’2007, 2008.

[74] Markus Döhring and Steffen Heublein. Anomalies in rule-adapted workflows-a
taxonomy and solutions for vbpmn. In 2012 16th European Conference on Software
Maintenance and Reengineering, pages 117–126. IEEE, 2012.

[75] Design Patterns and Refactoring — sourcemaking.com. https://sourcemaking.
com/antipatterns/architecture-by-implication. [Accessed 13-12-
2023].

[76] Juan Manuel Rodriguez, Marco Crasso, Alejandro Zunino, and Marcelo Campo.
Automatically detecting opportunities for web service descriptions improvement.
In Software Services for e-World: 10th IFIP WG 6.11 Conference on e-Business,
e-Services, and e-Society, I3E 2010, Buenos Aires, Argentina, November 3-5, 2010.
Proceedings 10, pages 139–150. Springer, 2010.

[77] Ali Ouni, Raula Gaikovina Kula, Marouane Kessentini, and Katsuro Inoue. Web
service antipatterns detection using genetic programming. In Proceedings of the 2015
Annual Conference on Genetic and Evolutionary Computation, pages 1351–1358,
2015.

[78] Mark Richards. Microservices antipatterns and pitfalls. O’Reilly Media, Incorporated,
2016.

[79] Philipp-Lorenz Glaser, Emanuel Sallinger, and Dominik Bork. Ea modelset–a fair
dataset for machine learning in enterprise modeling. In IFIP Working Conference
on The Practice of Enterprise Modeling, pages 19–36. Springer, 2023.

[80] Nikolaos Tsantalis, Theodoros Chaikalis, and Alexander Chatzigeorgiou. Jdeodorant:
Identification and removal of type-checking bad smells. In 2008 12th European
conference on software maintenance and reengineering, pages 329–331. IEEE, 2008.

[81] Thanis Paiva, Amanda Damasceno, Eduardo Figueiredo, and Cláudio Sant’Anna. On
the evaluation of code smells and detection tools. Journal of Software Engineering
Research and Development, 5:1–28, 2017.

[82] Santiago Vidal, Hernan Vazquez, J Andres Diaz-Pace, Claudia Marcos, Alessandro
Garcia, and Willian Oizumi. Jspirit: a flexible tool for the analysis of code smells.
In 2015 34th International Conference of the Chilean Computer Science Society
(SCCC), pages 1–6. IEEE, 2015.

[83] Dominik Bork, Aurona Gerber, Elena-Teodora Miron, Phil van Deventer, Alta
Van der Merwe, Dimitris Karagiannis, Sunet Eybers, and Anna Sumereder. Re-
quirements engineering for model-based enterprise architecture management with
archimate. In Enterprise and Organizational Modeling and Simulation: 14th In-
ternational Workshop, EOMAS 2018, Held at CAiSE 2018, Tallinn, Estonia, June
11–12, 2018, Selected Papers 14, pages 16–30. Springer, 2018.

137

https://sourcemaking.com/antipatterns/architecture-by-implication
https://sourcemaking.com/antipatterns/architecture-by-implication

[84] Fabian Gampfer, Andreas Jürgens, Markus Müller, and Rüdiger Buchkremer. Past,
current and future trends in enterprise architecture—a view beyond the horizon.
Computers in Industry, 100:70–84, 2018.

[85] Knut Hinkelmann, Aurona Gerber, Dimitris Karagiannis, Barbara Thoenssen, Alta
Van der Merwe, and Robert Woitsch. A new paradigm for the continuous alignment
of business and it: Combining enterprise architecture modelling and enterprise
ontology. Computers in Industry, 79:77–86, 2016.

[86] Dierk Jugel. An integrative method for decision-making in ea management. Archi-
tecting the Digital Transformation: Digital Business, Technology, Decision Support,
Management, pages 289–307, 2021.

[87] Ben Roelens, Wout Steenacker, and Geert Poels. Realizing strategic fit within the
business architecture: the design of a process-goal alignment modeling and analysis
technique. Software & Systems Modeling, 18:631–662, 2019.

[88] Benny Tieu. Detecting enterprise architecture smells based on soft-
warearchitecture smells prototype (2021). https://github.com/bennytieu/
ea-smell-detector-prototype.

[89] Tushar Sharma and Diomidis Spinellis. A survey on software smells. Journal of
Systems and Software, 138:158–173, 2018.

[90] ArchiMate® Quick Reference Guide - SAP Signavio — sig-
navio.com. https://signavio.com/downloads/short-reads/
archimate-quick-reference-guide/. [Accessed 12-12-2023].

138

https://github.com/bennytieu/ea-smell-detector-prototype
https://github.com/bennytieu/ea-smell-detector-prototype
https://signavio.com/downloads/short-reads/archimate-quick-reference-guide/
https://signavio.com/downloads/short-reads/archimate-quick-reference-guide/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation and Problem Statement
	Aim of the Work
	Methodological Approach
	Thesis Outline

	Background
	Technical Debt
	Enterprise Architecture Debt
	ea Smells
	ArchiMate
	Graph-based analysis of ea Models
	CM2KG Platform
	Summary

	ea Smells Analysis
	Detectable ea Smells via Knowledge Graphs
	Undetectable ea Smells
	Out of Scope
	Summary

	Extension of the Enterprise Architecture Smells catalog
	Unifying the schema of ea Smells
	Extending the schema and revising the ea Smells catalog
	Summary

	Integrating the ea Smells catalog into a Knowledge Graph-based detection platform
	General Overview
	Implementation of the Detection platform
	Summary

	Evaluation
	Methodologies and Metrics
	Software Testing
	Empirical Experiment
	Precision and Recall
	Summary

	Related Work
	Conclusion
	Summary
	Future Work

	ArchiMate Elements and Relationships
	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

