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A B S T R A C T

Threshold voltage hysteresis (ΔVh) in two-dimensional transistor transfer characteristics poses a bottleneck in 
achieving stable 2D CMOS integrated circuits. Hysteresis is primarily attributed to traps at the channel/oxide 
interface as well as in the oxide. In this study, we present a physics-based self-consistent modeling framework to 
investigate the impact of border and interface traps on ΔVh and apply it to monolayer (1-L) MoS2 field-effect 
transistors (FETs). The transient trapping and detrapping of charges during gate voltage sweeps across a wide 
range of frequencies and temperatures is analyzed using a two-state non-radiative multi-phonon (NMP) model. 
Our results reveal distinct dynamic responses for slow border and fast interface traps, with border traps 
exhibiting slower time constants due to larger relaxation energies and interface traps showing fast nuclear 
tunneling-dominated dynamics resulting from the smaller relaxation energies. These simulations highlights the 
critical role of the spatial and energetic distributions of the traps in determining ΔVh, providing insights into the 
stability of 2D FETs and paving the way for improved device engineering.

1. Introduction

For the continuation of Moore’s law into the sub-decananometer 
regime, the use of two-dimensional (2D) materials has been suggested 
[1–3]. Among them, two-dimensional molybdenum disulfide (2D MoS2) 
is widely studied as a promising channel material for atomically scaled 
transistors [4,5]. In contrast to conventional silicon technology, mono-
layer (1-L) MoS2 offers a sizeable mobility at atomic thinness, ideally a 
clean surface, as well as direct electronic band gap. This was first 
demonstrated by Radisavljevic et al. in 2011 by integrating a 1-L MoS2 
with a double gated FET architecture [6]. These devices exhibited ON- 
OFF current ratios of about 108 and a sub-threshold swing (SS) of 74 
mV/dec.

While 2D FETs show promising electrical and mechanical properties, 
their stability and reliability has not yet met the rigorous standards set 
by silicon technologies [7]. Most importantly, due to material quality 
issues and unfavorable electronic band alignments, 2D FETs exhibit 
threshold voltage (Vth) drifts in the ID(VG) transfer characteristics as a 
result of charge trapping from pre-existing oxide traps [8–10]. Such 
instabilities pose a challenge for achieving stable 2D complementary 
metal-oxide semiconductor (CMOS) technology. The resulting 

electrostatic degradation highlights the sub-par quality of current 2D 
channel/oxide interfaces and the significant trap density in gate in-
sulators deposited on the 2D materials as a result of the weak out-of- 
plane van der Waals interactions [8]. It is well-known that one of the 
primary reasons for the observed threshold voltage hysteresis (ΔVh) in 
the ID(VG) up/down gate voltage sweep originates from charge carriers 
being trapped at localized trap states. However, ΔVh is sensitive to the 
spatial and energetic position of these traps within the oxide. In this 
context, traps can be classified into slow border and fast interface traps. 
Oxide traps located within a few nanometers from the channel are 
referred to as border traps. Their energy levels, relaxation energy and 
spatial distribution results in broad time constant (τ) distributions. 
Particularly in amorphous insulators such as HfO2 and Al2O3, these 
distributions can be exceptionally wide. On the other hand, traps in the 
channel have a narrow τ distribution due to the more crystalline envi-
ronment. In addition, the time constants are typically much smaller 
since the charge carriers are in very close vicinty to the traps. Extensive 
studies on these border and interface traps were conducted by Fleet-
wood et al. on the conventional Si/SiO2 system [11]. Similarly, a 
comprehensive physics-based framework is needed to understand the 
impact of border and interface traps on the stability of 2D channel/oxide 
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systems.
In our recent study [12], we have reported a physics-based modeling 

technique for border and interface traps and their impact on ΔVh in 1-L 
MoS2 FETs. Although the study used suitable trap relaxation energies 
(ER) and trap level (Et) for modeling the traps, an in-depth investigation 
of the factors affecting ΔVh is required. In this study, we employ a self- 
consistent modeling approach using our 1-D TCAD simulator Comphy 
[13,14]. Slow border and fast interface traps are modeled using avail-
able trap parameters from literature [15,16]. We employ a two-state 
non-radiative multi-phonon (NMP) model in the simulation frame-
work to describe transient trapping/detrapping of charges. We analyzed 
ΔVh dynamics over a wide range of sweep frequencies (1/tsweep) to 
develop a closer understanding of the intricate trapping/detrapping 
dynamics. While it is commonly suggested that interface traps are too 
fast for observable ΔVh [17], our dynamic simulations show that 
degradation from some interface traps could be measured at lower 
temperatures.

2. Device under test and simulation framework

In this study, an example 1-L MoS2 FET is analyzed within the 
simulation framework. The device schematic is illustrated in Fig. 1(a). 
The device architecture employs an atomically thin 1-L MoS2 with an 
electronic band gap of 2.06 eV [18–20], deposited on 12 nm thick 
hafnium dioxide (HfO2) along with a 4.3 nm thick HfO2 layer on top of 
the 1-L MoS2 acting as a top gate (TG) insulator. The work function (Ew) 
of the palladium TG is assumed to be 5.2 eV [21]. The device dimensions 
are identical with our previous work [12] with W= 1 μm and L= 5 μm. 
The electronic band gap of HfO2 is 5.7 eV [22]. Furthermore, the elec-
tron affinity (χs) of 1-L MoS2 and HfO2 is set to 4.2 eV [23] and 2.7 eV 
[24] respectively. The carrier mobility is assumed to be 80 cm2/Vs along 
with an electron mass (m*

e) of 0.56 and a hole mass (m*
h) of 0.55 [25]. 

The device ID(VTG) is evaluated with VTG ∈ [ − 1.5 V,2 V] for 
increasing drain voltage VD ∈ [0.01 V,0.5 V] in Fig. 1(b) and (c) at 
room temperature. In this 1D compact model, the ID(VTG) characteristics 
are obtained by using an analytic drift-diffusion based approach 
described in [26].

3. Physics based modeling

The time-dependent threshold voltage drift (ΔVth) in the ID(VTG) is 
modeled using the NMP model. In our 1D model, the ΔVth that results 
from the capture of a single electron is evaluated using the charge sheet 
approximation (CSA) that assumes a uniform distribution of the net 
oxide charge (Qt) parallel to the channel/oxide interface at a distance 
(xT): 

ΔVth(t) = − Qt

(

1 −
xT

tox

)
tox

ϵ0ϵrWL
(1) 

Here, the net oxide charge (Qt) is determined by the elementary 
charge multiplied by the trap occupation probability, tox represents the 
oxide thickness, ϵ0 is the vacuum permittivity and ϵr is the relative 
permittivity of the oxide. The NMP model approximates the two 
different trap charge states as parabolic energy curves (PECs) shown in 
Fig. 2, where a trap is characterized by ER, ET, xT and the PEC minima 
offset (ΔQ) [13,27,28]. In the classical limit, the charge transfer between 
the trap and the reservoir occurs by overcoming a thermal barrier (ϵ12)

given by the intersection points of the PECs. This thermal barrier is 
governed by the parameters introduced above. The charge transition 
rates (k12) depend exponentially on the thermal barriers and are given 
by [13,14,28]: 

k12 = nvthσϑe− (ϵ12 − EF+ECB)/kBT (2) 

where n represents the channel electron density, υth is the thermal ve-
locity, σ denotes the capture cross section, EF is the Fermi level in the 
channel, ECB is the channel conduction band energy and ϑ is the Went-
zel-Kramers–Brillouin (WKB) tunneling coefficient. It is important to 
note that the trap occupation probability is a function of k12 which then 
influences ΔVth. To model the border traps in HfO2, the previously 
extracted trap parameters ET=1.9 eV above MoS2 valence band maxima 
(VBM), ER=1.2 eV and ΔQ= 3 amu1/2Å were used [15,16,28] along with 
σET and σER of 0.1 eV and 0.3 respectively [29]. Typically, traps located 
within the first few nanometers of the oxide contribute to an observable 
ΔVh. Fig. 2(a) shows the PECs of both states (1 and 2) with an 

Fig. 1. (a) 3-D schematic of the 1-L MoS2 FET. Simulated ID(VTG) characteristics for increasing drain voltages (VD): (b) linear scale, (c) logarithmic scale.

R. Ghosh et al.                                                                                                                                                                                                                                  



Microelectronic Engineering 299 (2025) 112333

3

intersection between the two minima, indicating the strong electron- 
phonon coupling regime which is well described by Eq. (2). The 
comparatively large ER of traps in the oxide together with the tunneling 
distance xT leads to slower trap dynamics.

However, interface traps are right at the channel/oxide interface, 
meaning that xT=0. In addition, since the channel is crystalline, ER is 
small [30]. This typically results in weak electron-phonon coupling. To 
model interface traps, we use parameters typically for sulfur vacancies 
in MoS2, ET=1.5 eV above MoS2 VBM and ER=0.1 eV [12,30]. Compared 
to border traps, a much smaller value of σET , 0.05 eV is used. Hereby ΔQ 
is the crucial parameter as its value determines the nuclear tunneling 

probability which can (in many cases) be larger than the low probability 
to go over the thermally activated intersection point [13,28] as shown in 
Fig. 2 (b). Here, we use ΔQ= 1 amu1/2Å [28,31]. In this regime, Eq. (2)
cannot be used. Instead, full quantum mechanical (QM) charge transi-

tion rates 
(

kQM
12

)
based on Fermi’s golden rule have to be used [32]: 

kQM
12 (T) =

2π
ℏ
|θ12|

21
Z
∑

αβ

⃒
⃒
〈
η1α|η2β

〉⃒
⃒2δ

(
E1α − E2β

)
e− E1α/kBT (3) 

where θ12 represents the electronic matrix element, E1α and E2β are the 
vibrational eigenenergies of each charge states. Here, the eigenenergy 
indices are denoted as α and β, η1α and η2β are the vibrational wave 
functions and Z is the canonical partition function. The parameters used 
are consistent with the crystalline nature of the semiconductor (here 1-L 
MoS2), which means that smaller ER increases overlapping of the 
vibrational wave functions, allowing nuclear tunneling-mediated charge 
state transitions.

The impact of the gate bias on the trap occupation is shown in the 
energetic band diagrams in Fig. 3. Note that the border trap band is 
located within the MoS2 electronic band gap. In Fig. 3(a), as VTG be-
comes more positive, the border trap band bends downward, resulting in 
an increased number of trapping events within the oxide. On the con-
trary, since there is no spatial distribution of the interface traps as shown 
in Fig. 3(b), the trapping events are mostly independent of the oxide 
electric field (Fox). A border trap density (Nbt) of 1019 cm− 3 based on 
earlier studies [29] and an interface trap density (Nit) of 1012 cm− 2 [25] 
is used in our simulations. The density of the occupied traps increases 
when the Fermi level (EF) is swept across the band gap, shifting Vth 
during the corresponding up/down sweep. ΔVh is extracted at 1/tSweep=

103 Hz, shown in Fig. 4. Here, tSweep represents the sweep time for a 
complete up 

(
Vup

)
and down sweep (Vdown). To establish a consistent 

extraction method, a current criterion of 10− 5 mA/μm is used. ΔVh is 
extracted using this criterion by interpolating Vup and Vdown near Vth. 
Fig. 4 (a) shows an observable ΔVh ≈ 18.6 mV for the slow border traps 
while a significantly smaller ΔVh ≈ 0.01 mV is obtained from the fast 
interface traps in Fig. 4 (b). The capture (τc) and emission (τe) time 

Fig. 2. Configuration coordinate diagram and the associated parameters (ER, 
ET, xT, ΔQ) defining charge exchange within the harmonic approximation for 
(a) a border trap (b) an interface trap used in the NMP model. C1, C2 are the 
curvatures, R is the ratio of curvatures and ΔE is the energetic difference of the 
two PECs.

Fig. 3. Energy band diagram representing electron trapping in 1-L MoS2/HfO2 with suitable ET for (a) border traps (b) interface traps.
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constants as a function of VTG are investigated for a selected border and 
interface trap in Fig. 4 (c) and (d), respectively. Traps can only actively 
contribute to ΔVh if they can capture an electron during the up sweep 
but are too slow to emit it during the down sweep. In other words, this 
requires τc < τe at the highest VTG and τc > τe at the lowest VTG [25]. As 
discussed above, the slow border traps are associated with larger τ dis-
tributions which is consistent with Fig. 4 (c). Unlike slow border traps, 
fast interface traps can exchange carriers instantly with the semi-
conductor bands via nuclear tunneling, meaning that τe is independent 
of Fox as shown in Fig. 4(d).

To study the complete ΔVh dynamics, it has been suggested to 
consider a wide range of 1/tSweep [10,12,33,34]. In this work, we used 
1/tSweep ∈

[
10− 6 Hz,109 Hz

]
for the theoretical analysis with an assumed 

measurement window of 1/tSweep ∈
[
10− 4 Hz,104 Hz

]
[10,33,34]. ΔVh, 

when evaluated across a wide range of 1/tSweep values typically yields a 
bell-shaped curve. At slow 1/tSweep, the traps remain close to their 
equilibrium state at every bias condition, which results in a small ΔVh. A 
small ΔVh is also observed at fast enough 1/tSweep since there is insuf-
ficient time for charge trapping/detrapping. Hence, ΔVh at the peak 
1/tSweep is the combination of suitably fast and slow sweeps. Fig. 5 (a)-(c) 
focuses on the dynamic response of ΔVh as a function of 1/tSweep across 
different temperatures. Contrary to the slow border traps (blue line), the 
ΔVh from fast interface traps (red line) lies mostly outside the mea-
surement window for the studied temperatures. Notably, the validity of 
the NMP model at 1/tSweep > 1 MHz remains uncertain due to factors 
such as the failure of the drift-diffusion model [35] and the frequency 
dependence of the permittivity [36]. Based on [37], the ΔVh shift across 
1/tSweep with temperature can be explained from the temperature 

Fig. 4. ΔVh extraction from the ID(VTG) profiles for (a) border traps and (b) interface traps. The capture and emission time constants for a single trap as a function of 
VTG for (c) a selected border and (d) interface trap at room temperature.

Fig. 5. Extracted ΔVh vs. 1/tSweep for slower border (blue) and fast interface 
(red) traps at (a) 200 K (b) 300 K and (c) 400 K. Shaded regions show the 
1/tSweep space outside the measurement window. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web 
version of this article.)
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dependence of the time constants. Therefore, an increase in the tem-
perature reduces τ, making the traps faster thereby shifting ΔVh towards 
faster 1/tSweep. A key takeaway is that the Gaussian tail for the interface 
traps ΔVh can shift inside the measurement window at lower tempera-
tures, meaning that device degradation due to fast interface traps could 
be measurable at lower temperatures.

4. Conclusions

In this work, we have employed a physics-based self-consistent 
modeling framework to investigate the impact of border and interface 
traps on ΔVh in 1-L MoS2 FETs. Our simulations reveal that the spatial 
and energetic position critically influence their dynamic behavior. 
Border traps exhibit slower time constants due to large thermal barriers 
resulting from the large ER, while the small ER of interface traps results 
in the dominance of nuclear tunneling and shorter time constants. These 
findings provide a detailed understanding of the mechanisms governing 
ΔVh, offering clarity on why border traps dominate within the typical 
measurement window, while interface traps can only contribute under 
specific conditions, such as lower temperatures or high sweep fre-
quencies. Overall, the modeling approach presented lays the foundation 
for future studies exploring hysteresis phenomena in other 2D material 
systems or more complex device architectures.
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