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Abstract

Unmanned ground vehicles (UGVs) enable autonomous operation in challenging and
dynamic environments, making them valuable for applications such as search-and-rescue,
industrial automation, and exploration. The effectiveness of UGVs depends on robust
sensing and mapping capabilities, typically provided by sensor systems such as Light
Detection and Ranging (LiDAR) sensors and vision-based cameras. However, these
technologies have limitations. LiDAR, while accurate, is expensive and struggles with
reflective surfaces, while stereo vision has depth estimation problems in low texture
environments. Alternative or complementary technologies are needed to improve UGVs
performance.

This study investigates the integration of 3Di cameras as an alternative sensing
modality for UGV applications. The 3Di sensor captures high-resolution depth in-
formation, which is processed and incorporated into a LiDAR-based Simultaneous
Localization and Mapping (SLAM) framework. The primary objective of this study is
to assess the capability, accuracy, and repeatability of 3Di-based SLAM applications
compared to a state-of-the-art LiDAR system. The data show that LiDAR achieves an
average mapping error of 0.5mm, 80% less than the 3Di camera. However, the camera
accuracy is not affected by lighting. Both sensors encounter difficulties with transparent
surfaces, but are capable of detecting light absorbing materials. The presence of uneven
structures causes inaccuracies, especially with the 3Di camera. Though, the camera
outperforms LiDAR in cliff detection, identifying cliffs up to 0.6m away, while LiDAR
does not detect them at all.

With the given SLAM settings, LiDAR provides high accuracy mapping but is not
capable of detecting hazards such as cliffs. The 3Di overcomes these drawbacks and
thus improves navigation safety, highlighting its potential as a complementary sensor
for UGV applications.
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Kurzfassung

Unbemannte Bodenfahrzeuge (Unmanned Ground Vehicles, UGVs) ermöglichen einen
autonomen Betrieb in anspruchsvollen und dynamischen Umgebungen, was sie für
Anwendungen wie Such- und Rettungsdienste, industrielle Automatisierung und Ex-
ploration interessant macht. Die Zuverlässigkeit von UGVs hängt von der Robustheit
der Sensoren ab, wobei LiDAR und Stereokameras am weitesten verbreitet sind. Diese
Technologien haben jedoch ihre Grenzen. LiDAR ist zwar genau, aber teuer und hat
Probleme mit spiegelnden Oberflächen, während Stereokameras Probleme mit der Tiefen-
schätzung in Umgebungen mit geringer Textur haben. Alternative oder ergänzende
Technologien sind erforderlich, um die Qualität von UGVs zu verbessern.

In dieser Arbeit wird die Integration einer 3Di Kamera als Sensor für UGV-
Anwendungen untersucht. Der 3Di Sensor erfasst hochauflösende Tiefeninformationen,
die verarbeitet und in ein LiDAR-basiertes SLAM-System integriert werden. Das
Hauptziel ist die Fähigkeit, Genauigkeit und Wiederholbarkeit von 3Di-basiertem
SLAM im Vergleich zu einem modernen LiDAR-System zu bewerten. Die Daten zeigen,
dass Karten, die mit LiDAR-Daten erstellt werden, einen durchschnittlichen Fehler
von 0.5mm aufweisen, was 80% weniger ist als bei Kameradaten. Die Genauigkeit
der Kamera wird jedoch nicht durch unterschiedliche Lichtverhältnisse beeinflusst.
Beide Sensoren haben Schwierigkeiten mit transparenten Oberflächen, erkennen aber
absorbierende Materialien. Unebene Strukturen führen vor allem bei der Kamera zu
Ungenauigkeiten. Außerdem übertrifft die Kamera LiDAR bei der Erkennung von
Klippen. Diese können bis zu 0.6m im Voraus erkannt werden, während der LiDAR sie
nicht erkennen kann.

Mit dem verwendeten SLAM Algorithmus bietet LiDAR eine genaue Kartierung.
Die Fähigkeit der 3Di Kamera Gefahren wie Klippen zu erkennen, erhöht jedoch die
Navigationssicherheit und unterstreicht ihr Potenzial als Sensor für UGV Anwendungen.
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CHAPTER 1

Introduction

The rapid development of Industry 4.0 creates novel opportunities and requirements
for products and applications [1]. A variety of key technologies are facilitating new
possibilities, including big data and augmented reality, as well as robotics applications.

In the contemporary industrial context, a multitude of robotic solutions are being
developed and implemented, as displayed in Figure 1.1. Regardless of their function,
accuracy class, limb form factor, or dimensions, these robots can be classified into two
main categories [2]. Mobile robots, which move freely in inertial space, and fixed robots,
which are rigidly attached to a surface. Although stationary robotic and automated
systems are more prevalent, advanced, and widely utilized, the potential of mobile robots
has yet to be fully recognized, making their development an increasingly promising area
of research and innovation.

Mobile robots are utilized predominantly in service applications, such as surveil-
lance, search-and-rescue, cargo transport, and environmental monitoring [4]. Those
applications necessitate substantial autonomous mobility. From a mechanical point of

Figure 1.1: Classification of robot types by environmental interaction [3]
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CHAPTER 1. INTRODUCTION

Figure 1.2: Components of a robotic system [5]

view, a mobile robot comprises one or more rigid bodies equipped with a locomotion
system [5]. While a distinction can be drawn between aquatic, airborne, and terrestrial
systems, ground-based robots, so-called unmanned ground vehicle (UGV)s, are in the
focus of current research with regard to their navigation, actuator, and sensor systems.

Despite the presence of design discrepancies, all robotic systems are composed of
the same fundamental components. As shown in Figure 1.2 a robotic system consists
of three primary elements, additionally to the platform itself: control, sensors, and
actuators. The control system functions as the robot intelligence, processing data
collected by the sensors and generating commands for the actuators to execute a given
task [6]. Actuators enable the robot to move and actually perform that task, while
sensors provide information about the robot’s surroundings and determine its position.

The sensors play a crucial role in UGV robotic systems, as a considerable proportion
of these tasks are conducted in environments that are not known in advance. In contrast
to UGVs operating in controlled settings, such as warehouse robots that rely on fixed
routes, predefined maps, or external tracking systems, UGVs used in search-and-rescue,
exploration, or agricultural applications must be capable of navigating dynamically
in unknown environments without requiring modifications of their surroundings [7].
Consequently, sensor systems that do not rely on environmental adaptations are essential
to ensure autonomous operation in unknown terrain.

1.1 Motivation

In order to achieve this level of autonomy, UGVs rely on multiple sensing technologies
for environmental perception and navigation [8]. Commonly used depth-sensing tech-
nologies are LiDAR and stereo cameras. These sensors are fundamental for SLAM, a
key technique that enables UGVs to create a map of an unknown environment while
simultaneously estimating their own position within it [9]. The necessity for SLAM
arises from the absence of external positioning systems such as GPS. In such cases,
an UGV must rely solely on onboard sensors to determine its position and the sur-
rounding environment. The absence of SLAM would leave an UGV unable to navigate
autonomously in new environments, as it would lack both spatial awareness and the

2



1.2. SCOPE OF THE THESIS

ability to plan efficient paths.

However, the accuracy and reliability of SLAM depend on the quality of the sensor
data. Common sensors used in SLAM applications include LiDAR and RGB-D cameras,
such as stereo vision or structured light cameras. The presence of errors can be attributed
to the limitations of different sensor technologies. LiDAR, despite its high accuracy, is
expensive and power-intensive, and can struggle with certain reflective or transparent
surfaces [7]. Stereo vision requires high computational resources and performs poorly
in low-texture or low-light conditions. These limitations create challenges for UGVs,
particularly in dynamic, cluttered, or visually complex environments.

In order to address these challenges, iToF sensors have emerged as a promising
alternative for real-time depth perception in UGV applications. iToF sensors measure
depth by emitting modulated infrared light and the subsequent analysis of the phase
shift of the reflected signal [10]. Compared to LiDAR and stereo vision, iToF technology
offers several advantages, including the ability to operate in real-time, a compact form
factor, cost-efficiency, and improved performance under low-light conditions. However,
limitations such as multipath interference, range constraints, and reduced accuracy on
highly reflective or absorptive surfaces affect sensor performance.

1.2 Scope of the Thesis

The aim of this thesis is to evaluate the feasibility of iToF sensors for real-time depth
perception in UGVs operating in unknown environments. By utilizing an iToF sensor as
the sole sensor for SLAM, this research aims to exploit its ability to provide direct depth
measurements while maintaining a compact and cost-effective design. Additionally, this
work seeks to combine the advantages of different SLAM approaches by processing the
iToF data ready to be used in an existing, reliable, and efficient SLAM framework.

1.3 Outline

The structure of the thesis is as follows: Chapter 2 provides an overview of the state-of-
the-art technologies relevant to this research, including depth sensing and SLAM. This
chapter establishes the foundation by discussing the strengths and limitations of these
technologies in the context of UGV navigation.

In Chapter 3 the system setup is introduced, detailing the hardware components
and sensor integration, while Chapter 4 focuses on the software implementation and
data processing pipeline. This chapter describes the methods used to process iToF
sensor data.

Chapter 5 presents the methodology for system testing, outlining the experimental

3



CHAPTER 1. INTRODUCTION

procedures used to evaluate the proposed approach. This chapter also discusses the
results, analyzing the system’s accuracy, reliability, and performance under different
environmental conditions.

The conclusion of the thesis is provided in the final chapter, which summarizes
the key findings, discusses their implications, and provides an outlook on potential
future research directions to further improve the use of iToF sensors in SLAM for UGV
applications.

4



CHAPTER 2

State of the Art

This chapter provides insights into the state-of-the-art technology for navigation appli-
cations on mobile robotic platforms. First, depth camera technologies are presented,
with a focus on Time-of-Flight cameras. Next, Simultaneous Localization and Mapping
is introduced as a key navigation method for autonomous robots. Afterwards, the
Robot Operating System is discussed as a framework for integrating these technologies.
Finally, the research questions of this thesis are introduced.

2.1 Depth Cameras

Depth cameras, in contrast to color cameras, are sensors for measuring the depth
of a scene and provide depth images instead of color images [11]. These cameras
are also referred to as 3D cameras, as a 3D point cloud can be calculated from the
depth image. There are two main principles for depth calculation. One, known as the
geometric approach or triangulation, uses the geometric relations of the sensor and the
perceived image to calculate the depth. The other estimates the depth directly using
the Time-of-Flight (ToF) principle.

The geometric approach, shown in Figure 2.1a, is achieved by stereoscopy, using
two cameras, or with structured-light cameras, using one camera and a structured
light projector [11]. Stereo cameras are highly dependent on the appearance of the
scene. Visual features are needed to perform triangulation, as distinct points are
used to match two images and estimate the depth [12]. Even in scenes with visual
features, correspondence problems can occur. Structured light technology reduces these

5
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(a) Triangulation (b) Direct depth estimation

Figure 2.1: Comparison between 3D camera measurement principles from a top view.
The 3D shapes of interest are represented as orange boxes, and cameras
are represented as blue boxes. In triangulation, both boxes are cameras
(stereo) or one is a camera and the other a projector (structured-light). The
cameras’ field of view is shown with dashed blue lines, and the gray area
marks partial shadows [11].

problems by projecting a coded and structured pattern onto the scene, providing an
usable reflection for triangulation. Patterns are optimized for various factors, such as
scene dynamics, surface texture, and lighting conditions. The selected pattern type
plays a crucial role in mitigating correspondence problems and ensuring accurate depth
reconstruction. Furthermore, as triangulation requires that the scene has to be viewed
from two perspectives, the base length - the relative positions of the two devices - must be
known to calculate the scene’s depth. Thus, for geometric depth calculation an extrinsic
calibration is inevitable. Figure 2.1b shows direct depth estimation arrangement, where
only one device and therefore no external information is needed. Consequently, direct
depth measurement can be described using simple camera models, as discussed in the
following section.

2.1.1 Camera Model

A fundamental camera model is the pinhole model [11]. As shown in Figure 2.2a it is an
idealized representation of a camera to showcase the projection of a 3D scene point M

to a 2D image point m. It uses a global coordinate system, x, y, and z, where the image
plane is positioned on the z-axis parallel to the global plane (x,y) and is described with
(u,v) coordinates. The pinhole model assumes that light rays pass through a single
point, the projection origin C, as they travel towards the camera. This perspective
projection is displayed in Figure 2.2b and results in

M = {X, Y, Z}T → m = {u, v}T =

�
f
X

Z
, f

Y

Z

�T

, (2.1)
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2.1. DEPTH CAMERAS

(a) frontal perspective (b) trigonometrical representation

Figure 2.2: Pinhole camera model. The frontal perspective illustrates the geometric
relationshop between a 3D point M, the camera center C, and the projected
point m on the image plane in (u, v) coordinates. The principal axis of the
camera aligns with the s-axis. The trigonometric representation provides a
side view of the projection process, emphasizing how the image coordinates
are computed. The point M is projected onto the image plane at m,
following the principle of similar triangles. The focal length f and the depth
Z determine the scaling factor, leading to the projection equations u = f X

Z

and v = f Y
Z

[11].

where f represents the focal length.

Although the basic pinhole model describes the main principles of a camera, real
camera characteristics are not mapped. These need to be obtained by intrinsic camera
calibration, extending the pinhole model [11]. The parameters included in intrinsic
calibration are the focal length in both directions (fx, fy), a principal point (cx, cy),
and the so-called skew parameter s. The calibration parameters are combined in the
calibration matrix

K =


fx s cx
0 fy cy
0 0 1


 . (2.2)

In comparison to Equation (2.1) the focal length f is now split in order to deal with
non-square sensor pixels. Different horizontal and vertical unit vectors, described using
mx and my for the number of pixels per length unit along the x- and y-axis, lead to
two different focal lengths fx and fy

fx = f ·mx, fy = f ·my. (2.3)

The principal point (cx, cy) translates the optical center C to a corner of the image
plane. The skewness parameter s = f cos(α) introduces a correction factor. It can be
used if the pixels do not have a rectangular shape with perpendicular sides, where α is
the angle between two sides of the pixel. Usually, the correction factor is assumed to be
zero (α = 90◦).

Moreover, extrinsic camera calibration can be incorporated into the camera model.
The parameters define the camera’s position to the global coordinate system. Therefore,

7
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it includes a rotation matrix R and a translation vector t. Combining the camera
parameters with the projection equation results in

m = K · [R|t] ·M. (2.4)

In addition, the camera model can be extended to take lens distortion into account.
Since lens imperfections lead to distortion errors, the camera deviates from the model
in Equation (2.4) [12]. The imaging system actually measures the distorted coordinates
m̂ = {û, v̂}. To find the correct pixels u and v, the anti-distortion models are needed.
Hereby, the Heikkila model is widely used and was tested to adequately correct the
distortions of most imaging systems [13]. The equation for distortion compensation is

m = Ψ−1(m̂) =

�
û(1 + k1r

2 + k2r
4 + k3r

6) + 2d1ûv̂ + d2(r
2 + 2û2)

v̂(1 + k1r
2 + k2r

4 + k3r
6) + d1(r

2 + 2v̂2) + 2d2ûv̂

�
, (2.5)

where Ψ is the Heikkila model, k1, k2, k3 are distortion parameters for radial distortion,
d1 and d2 are distortion parameters for tangential distortion, and

r =
�

(û− cx)2 + (v̂ − cy)2. (2.6)

Whereas these particular camera models demonstrate the formal working principles
of 2D projection, in the next section, the necessary components for a ToF camera will
be discussed, along with the methodology of depth calculation and the characteristics
of this type of sensor.

2.1.2 Time-of-Flight Cameras

For ToF sensors, two measurement principles must be distinguished. Direct ToF
technology is the method used in applications such as LiDAR and radar [14]. The
depth image is calculated using the stopwatch principle. The sensor measures the time
between sending out a light pulse and receiving the reflection. Thus, direct ToF systems
rely on precise time measurements. Indirect ToF cameras, also called 3Di cameras,
measure the phase shift from the transmitted signal to the received signal. Despite the
different measurement principles, all ToF systems share the same key components.

Components of Time-of-Flight Systems

ToF systems are built from two main components, a transmitter (or illuminator) TX
and a receiver (or sensor) RX, as shown in Figure 2.3 [12]. The transmitter emits a
light signal sE(t) to a scene at a known time (e.g. t = 0). Subsequently, the receiver
detects the back-reflection sR(t) at time τ . When the signal is detected at the receiver,
it has traveled to the scene and back, covering a distance of 2d, where d is the distance
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2.1. DEPTH CAMERAS

Figure 2.3: Schematic representation of a depth sensing system based on modulated
signals. The transmitter (TX) emits modulated signals toward the scene.
The receiver (RX) captures the reflection through an optical system. The
phase or time lag detection module processes the received signals to compute
depth information, generating a depth map that represents the scene’s three-
dimensional structure [12].

between the camera and the scene. The relationship between time τ and distance d is
described with Equation (2.7), where c is the speed of light. This relationship defines
the basic principle of direct ToF sensors. Considering Equation (2.7), it can be seen
that the depth resolution is limited by the ability to measure small times [15]. For
example, a distance of 30 centimeters is traveled out and back in 1 ns. Additionally, the
maximum measurable distance is dependent on the intensity of the light source and the
characteristics of the sensor.

d =
c · τ

2
(2.7)

The basic functions and structure of the transmitter and the receiver are deter-
mined by the modulation method utilized [12]. Most current commercial solutions use
homodyne amplitude modulation (AM) with a sinusoidal or square continuous wave
(CW) signal. This signal can be effectively implemented with current complementary
metal-oxide-semiconductor (CMOS) technology. Moreover, it uses a single modulation
frequency fm and does not require a large bandwidth. A drawback is that the homodyne
AM is not robust against multipath and other propagation artifacts. These disturbance
sources also appear with other often used signal modulations, such as pseudo-noise
modulation and pulse modulation. Furthermore, CW modulation itself could be hetero-
dyne AM or frequency modulation (FM) with chirp signals, instead of homodyne AM.
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These modulations would face drawbacks of homodyne AM, but are not yet ready to
be implemented in matrix sensor electronics.

The light source at the transmitter is a laser or a light-emitting diode (LED), as
they are inexpensive and can be easily modulated by signals within the high-frequency
and low very high-frequency bands [12]. The scene is illuminated by a 2D wavefront
that is modeled in Equation (2.8) [16]. sE(t) denotes the emitter near infrared (NIR)
signal, f is the NIR frequency, ϕ is the phase, and mE(t) the modulating signal. The
modulating signal mE(t) describes an AM of sinusoidal or square wave type.

sE(t) = mE(t) sin(2πft+ ϕ) (2.8)

As shown in Figure 2.3 the signal is diffused to the scene by suitable optics and
subsequently the echoed reflection is collected and imaged in the receiver [12]. Here, an
optical band-pass filter with center-band is included, tuned to the NIR carrier frequency
of the transmitter to increase the signal-to-noise ratio.

The receiver is a 2D sensor array of individual pixels. The receiver design has
evolved over the last decades aiming for higher accuracy, and faster and longer range
distance measurements [15]. Starting with CMOS and charge-coupled device (CCD)
imagers, similar to conventional 2D imagers, receivers are now built using single-photon
avalanche diode (SPAD) in CMOS integrated circuits. The ability to detect single
photons makes this system suitable for direct and indirect ToF systems. The signal
received at each pixel can be described by Equation (2.9), where mR(t) represents the
transformation of the modulating signal mE(t) as it reaches the receiver, and nR(t) is
the background wideband light noise at the receiver input [12].

sR(t) = mR sin(2πft+ ϕ′) + nR(t) (2.9)

This NR × NC receiver matrix of ToF depth cameras is equivalent to the image
plane in the previously discussed camera model (see 2.1.1). It contains the components
measuring the relevant values required to calculate the scene depth. As the calculation
for direct ToF sensors is fully explained with Equation (2.7), the following chapter
focuses on depth calculation for indirect ToF sensors.

Depth Calculation

Indirect ToF faces the problem of measuring small time units that occur in direct ToF
technologies, and instead calculates depth via the phase shift [17]. In order to do so,
the scene is illuminated with an amplitude modulated CW signal.

A common approach for iToF depth calculation is four-bucket sampling, as shown
in Figure 2.4 [18]. The sensor takes four intensity measurements, each sample phase-
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Figure 2.4: Four-bucket sampling for indirect Time-of-Flight depth calculation. The
light source emits a modulated signal. The reflected signal is sampled across
four channels, C1-C4, at four distinct phase offsets during the integration
times. Each channel measures the intensities at its offset, represented by
the shaded regions (Q1, Q2, Q3, Q4). The measured intensities are used to
determine the phase shift of the reflected signal [18].

shifted by 90◦. The phase angle ϕ is calculated from the intensity measurements Qi

with i ∈ {1 . . . 4} using

ϕ = arctan

	
Q3 −Q4

Q1 −Q2



. (2.10)

The distance is then determined by inserting the phase ϕ into

d =
c

2f
·
ϕ

2π
=

c ϕ

4πf
, (2.11)

where c denotes the speed of light and f the used modulation frequency. It is evident
from Equation (2.10), that this method eliminates any constant offsets by comparing
two pairs of measurements, (Q1−Q2) and (Q3−Q4). Additionally, the quotient of these
serves to mitigate the impact of any constant gains from the distance measurements,
for example circuit amplification and attenuation, or the reflected intensity.

With these four measurements, additional characteristics can be calculated, such as
the amplitude A and offset B, shown in Equation (2.12) and Equation (2.13) respectively
[19]. The amplitude A functions as a direct indicator of the depth resolution achieved.
The offset B facilitates the identification of saturation, which has the potential to
introduce distortion in depth measurements.

A =

�
(Q1 −Q2)2 + (Q3 −Q4)2

2
(2.12)
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B =
Q1 +Q2 +Q3 +Q4

4
(2.13)

Whereas in direct ToF systems the measurable range depends on the laser strength,
in indirect ToF cameras the maximal distance is defined via the modulation frequency
used for the light source [18]. Since the modulation frequency is periodic with 2π, the
wavelength defines the maximal measurable distance

dmax =
c

2f
, (2.14)

also often referred to as ambiguity distance damb. Obstacles in the scene at greater
distances than dfm can be detected, assuming that the light source possesses sufficient
intensity, but the measured distances are subject to a wrapping-error. The sensor is
only capable of indicating position within a single wavelength. It cannot detect how
often the signal was repeated from sending to receiving. The true distance is calculated
using

dgt = d+ k dmax k ∈ N, (2.15)

where k points out the phase wrapping.

As indicated by Equation (2.14), a lower modulation frequency allows a wider
unambiguous measurement range [11]. However, this increased range is accompanied
by an increase in depth uncertainty, as shown in Figure 2.5. The precision of the depth
measurement is directly proportional to the uncertainty in phase estimation. Assuming
a normal distribution for phase estimation uncertainty, the resulting distance error will
also follow a normal distribution, as delineated in Equation (2.11).

An alternative approach to enhance the detection range without reducing the
modulation frequency is the multi-frequency technique [20]. This method utilizes two or
more frequencies with distinct ambiguity distances dfx,max

, allowing the true position of
an object to be determined at the point where these frequencies converge. This concept
is illustrated in Figure 2.6, where the true location is found in the third wrap of both
modulation frequencies. Adapting Equation (2.15) to the dual-frequency method results
to

dgt = d1 + k1 · df1,max

= d2 + k2 · df2,max
,

(2.16)

where dgt describes the ground truth distance. Indices 1 and 2 describe the two
modulation frequencies used, with d as the distance measured by the sensor for one
frequency and dmax as the belonging ambiguity distance. The factor k outlines the
phase wrapping.

To determine the true distance between the sensor and the scene in a dual-frequency
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2.1. DEPTH CAMERAS

Figure 2.5: Comparison between modulation frequencies on depth measurements in
indirect Time-of-Flight cameras. (a) shows depth measurement with a
low modulation frequency, where no ambiguity appears, but the depth
uncertainty is higher. (b) displays a higher modulation frequency, where
the phase wraps multiple times, causing depth ambiguity, but the depth
uncertainty is smaller [11].

modulation system,

0 =
f2
fdual

· (k1 + ϕ1)−
f1
fdual

· (k2 + ϕ2) (2.17)

must be solved [21]. The unknown integers k1 and k2 are resolved by minimizing the
function, where ϕ1 and ϕ2 are normalized phase values, ϕ1, ϕ2 ∈ [0, 1) and k1, k2 ∈ N

with k2 ≤ k1 and f2 < f1. fE is defined via the greatest common divisor (gcd) from f1
and f2

fdual = gcd(f1, f2), (2.18)

the maximal unambiguously measurable distance of the dual-frequency system can be
calculated using (2.14) again [22]. Once k1 and k2 are found, the distance of the scene
can be calculated using one of the Equation (2.16) [20].

In addition to the issues related to maximum distance and phase wrapping, there
are other system and environmental characteristics associated with ToF sensors.

System Characteristics and Error Sources

Indirect ToF cameras offer numerous advantages, including the capacity to capture
dense depth and intensity images at high frame rates, a compact and lightweight design,
and auto-illumination, thus eliminating the need for external light sources [17]. However,
these systems are also subject to inherent limitations. The accuracy of the measurements
is constrained by the power of the emitted infrared signal, and the amplitude of the
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Figure 2.6: Comparison of single-frequency and dual-frequency modulation in indirect
Time-of-Flight cameras. The top illustration shows depth ambiguity in
single-frequency modulation, where multiple possible locations exist due
to phase wrapping. The bottom illustration demonstrates dual-frequency
modulation, which combines two different modulation wavelengths damb1

and damb2 to resolve ambiguity and correctly identify the true location [11].
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reflected signal varies depending on the material and color of the object surface [23].
Furthermore, depth accuracy and frame rate are constrained by the required integration
time, where longer integration times enhance accuracy but limiting the capability to
capture moving objects at fixed frame rates.

These limitations lead to various errors that affect the accuracy and reliability of
depth measurements [17]. These errors in iToF cameras are categorized into two classes:
systematic and non-systematic. Systematic errors are intrinsic to the sensor and can be
mitigated through calibration. This includes errors such as depth distortion (wiggle
error), integration-time-related errors, receiver-related errors, and temperature-related
errors. Non-systematic errors are strongly related to scene content and reduction
techniques mainly rely on spatial and temporal averaging [16]. Such errors occur
through ambient light, which cannot be completely removed from the signal, multi-
camera interference, or multi-path mitigation [10].

Despite the implementation of calibration and filtering, not all errors can be
completely mitigated, making it essential to evaluate the overall performance of the
sensor.

2.1.3 Sensor Analysis

The accuracy of a sensor is analyzed by measuring its trueness and precision [24]. The
trueness of a sensor is defined as the degree to which the arithmetic mean of a large
number of test results matches the true or accepted reference value. Precision signifies
the level of agreement between the test results themselves.

According to the foregoing definition, trueness µ is calculated using

µ = |d0 − µd|, (2.19)

where d0 is the true distance. The average depth obtained through the test measurements
is

µd =
1

N · n2

N�
i=1

n�
u,v

Ii(u, v), (2.20)

with the number of measurements denoted as N , the size of the measured region as n,
and (u, v) as the corresponding coordinate in the 2D depth image Ii.

Precision is declared using

precision =

���	
1

N · n2

N�
i=1

n�
u,v

Ĩi(u, v)2


− µ̃2

d, (2.21)

where Ĩ is the corrected fronto-parallel depth image and µ̃d is the average depth of Ĩ
calculated using Equation (2.20).
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The characteristics of ToF sensors discussed in this section allow depth cameras
to perform tasks that extend beyond the mere acquisition of spatial data. Thus,
ToF sensors enable systems to perceive, interpret, and navigate their surroundings.
The subsequent section will therefore focus on SLAM, a state-of-the-art navigation
technologies in which these sensors are used.

2.2 Simultaneous Localization and Mapping (SLAM)

The ability to navigate unknown environments represents a significant challenge in
the field of mobile robotics [25]. In known environments, where an accurate map is
available, navigation is a relatively straightforward process. However, in unknown
environments and without external reference systems, such as GPS, map acquisition
becomes particularly difficult. Therefore, algorithms that process data from on-board
sensors to a map while simultaneously determining the robots position within it are
required. This specific problem is called Simultaneous Localization and Mapping
problem.

The fundamental concept of SLAM systems is shown in Figure 2.7 [26, 27]. The
system is fed with sensor data and returns an estimated robot pose and a map. The
implementation of such a system is divided into two distinct algorithms, a front-end
algorithm and a back-end algorithm. The front-end is responsible for converting the
sensor data into a format that can be utilized by the following back-end algorithm,
which solves the original SLAM problem.

In this subchapter, the initial focus is on the SLAM problem and its associated
solutions. This is followed by an examination of the processes involved in the preparation
of the sensor data. Subsequently, possibilities to display the resulting map are discussed.
Finally, common ready-to-use SLAM algorithms are presented.

2.2.1 Back-End Approaches

As illustrated in Figure 2.7 in the back-end section, there are three common algorithms
to solve SLAM. Although they can be divided into two different approaches, namely
smoothing and online (also called filtering), they all are based on the same problem.

Probabilistic Formulation of SLAM

A SLAM system uses data from different sensors to estimate position and build a map
[25]. Due to sensor measurement noise, SLAM is described in a probabilistic method

p(x1:T ,m | z1:T ,u1:T ,x0}, (2.22)
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Figure 2.7: Overview of the SLAM algorithm, illustrating its front-end and back-end
processing stages. The front-end handles feature extraction and data associ-
ation, including short-term feature tracking and long-term loop closure. The
back-end is responsible for map and pose estimation using techniques such as
graph-based optimization, particle filtering and the Extended Kalman Filter,
ultimately producing an estimated environment map and robot trajectory
[26, 27].
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Figure 2.8: Dynamic Bayesian Network of the SLAM process. Observed variables are
highlighted in orange, while white nodes represent the estimated robot
trajectory x1:T and the environment map m. The recursive pattern is
governed by the state transition model, shown by arrows leading to xt,
which represents the probability of transitioning from xt−1 to xt based on
the odometry ut and the observation zt [25].

where p describes the probability of a certain trajectory of the robot. Since the
robot moves in an unknown environment, the trajectory is given as a sequence of
x1:T = {x1, ...,xT}, the hereby acquired odometry measurements are named u1:T =
{u1, ...,uT}, and the perceptions from the environment are declared as z1:T = {z1, ..., zT}.
x0 describes the initial position of the map and can be chosen arbitrarily.

Estimating the probability p in Equation (2.22) involves high-dimensional state
spaces that can lead to an intractable formulation [25]. Therefore, certain assumptions
are needed. The first one is the static world assumption and the second one is the
Markov assumption, which assumes that the following step of a process is entirely
dependent on the current state. Considering those, the problem can be described with
the structure of a dynamic Bayesian network (DBN), as displayed in Figure 2.8. The
observed variables are colored orange, while white nodes show the estimated trajectory
of the robot x1:T and the map of the environment m. The recursive pattern of the DBN
is characterized by the state transition model and the observation model. The state
transition model, see Equation (2.23), shown by arrows leading to xt represents the
probability of the robot moving from xt1 to xt given the odometry information ut.

p(xt|xt−1,ut) (2.23)

The observation model, see Equation (2.24), shown by arrows leading to zt, represents
the probability of an observation zt given the robot’s position xt and the map m.

p(zt|xt,m) (2.24)

Since the DBN representation of SLAM captures the system’s temporal dependencies,
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it inherently admits sequential estimation methods. Such methods are called filter-
based algorithms, they are complemented by another main method called smoothing or
graph-based algorithms.

Filter-Based Approach

Filter-based approaches, of which the Extended Kalman Filter (EKF) SLAM and
Particle Filter-based SLAM are examples, maintain a probabilistic belief about the
robot’s state and update it recursively as new observations are made [28]. Earlier
approaches aimed to improve the performance of EKF-SLAM while preserving its core
linear Gaussian assumptions. In contrast, FastSLAM introduced a novel approach based
on particle filtering, also common as recursive Monte Carlo sampling, condensation,
or survival of the fittest [29]. Thus, FastSLAM became the first method to explicitly
represent both the nonlinear process model and the non-Gaussian pose distribution
[28]. Although the observation model is still linearized, this simplification is generally
a reasonable approximation for range-bearing measurements when the robot’s pose is
known. However, the efficacy of these methods is optimized primarily for small-scale
environments. Mapping in large-scale environments encounters challenges due to the
substantial increase in computational complexity that accompanies the number of
landmarks and observations. This behavior not only results in scalability issues, but
also in reduced accuracy in long-term operation.

Graph-Based Approach

Graph-based approach, in contrast, constructs a graph representation of the environ-
ment [25]. Within this graph, each node represents a robot’s position along with the
measurement taken at that location. An edge between two nodes defines a probability
distribution over the spatial constraint between the corresponding robot poses. As the
observation model in Equation (2.24) suggests, one observation zt can lead to multiple
edges, each edge denoting a distinct potential connection between different poses. It is
evident that the consideration of all possible models in the estimation process would
result in substantial combinatorial complexity. To maintain computability, the most
practical approaches of graph-based SLAM restrict the model to the most likely graph
topology. Once the graph has been constructed, the next step is to resolve the error
minimization problem using techniques such as nonlinear least squares, and thereby
minimizing the overall error in the graph. This approach requires significant computa-
tional resources to handle optimization processes, but allows efficient corrections and
making it more robust in large-scale environments.

While the back-end operates on abstract representation of the data solving the
optimization problem, the front-end’s task is to select the most probable constraint
from observation.
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2.2.2 Front-End Approaches

As Figure 2.7 displays, the front-end tasks involve feature extraction from the incoming
data and data association from new data with existing data [27]. Data association is
split into short-term and long-term association. Short-term association includes feature
tracking and comparing the current frame to the last few frames, while long-term
association is about loop closure algorithms. The front-end of the algorithm directly
deals with the sensor input data. Therefore, it is heavily dependent on the type of
sensors used. To consider the characteristics with different sensor types, visual-based
SLAM and LiDAR-based SLAM is distinguished.

Visual-based SLAM

Visual SLAM is an active research area that focuses on SLAM solutions that use
different camera technologies, such as RGB cameras, RGB-D sensors [30]. There are two
common techniques: direct SLAM and feature-based SLAM. Direct SLAM estimates
pixel movement and camera pose at the same time [31]. Therefore, images are aligned
and the photometric error is minimized. With this approach, raw image data is processed
directly, while feature-based SLAM relies on detecting and tracking key features across
frames first. The position is estimated afterward by minimizing the geometric error
between the features. Both principles are commonly used with RGB and RGB-D
cameras. These approaches have gained popularity due to their cost effectiveness,
ability to collect large amounts of information, and wide measurement range [30].
Nonetheless, state-of-the-art visual SLAM algorithms face challenges, particularly in
real-time applications [31]. Theoretically, the frame rate of the camera limits the
processing speed, but in practice, issues often arise from frame losses caused by peaks
in processing time. Even when an algorithm operates at the camera frame rate, those
peaks suggest that information is lost in real-time forced conditions, where the most
recently received image is processed at each time.

LiDAR-based SLAM

LiDAR-based SLAM has become a widely adopted mapping technology due to its
simplicity and accuracy [32]. Compared to visual-based SLAM, LiDAR-based SLAM
achieves low-drift motion estimation while maintaining an acceptable level of compu-
tational complexity. Tracking is done using scan matching methods, where successive
LiDAR scans are aligned to estimate motion. A prevalent technique used for this
purpose is the Iterative Closest Point (ICP) algorithm.

The ICP algorithm is used to align newly acquired LiDAR scans with previously
mapped LiDAR data [30]. The method is shown on two consecutive scans, scan i
and scan i + 1, as shown in Figure 2.9a and Figure 2.9b. First, a guess about the
initial transformation is made, followed by a nearest-neighbors search, see Figure 2.9c.
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Table 2.1: Comparison: Visual-based vs. LiDAR-based SLAM

Feature Visual-based SLAM LiDAR-based SLAM

Sensor Cost Low High
Accuracy Moderate High
Illumination Sensitivity High Low
Robustness in Textureless Areas Low High

The algorithm then refines the transformation to minimize the distances between the
corresponding points. This leads to aligned scans at the end of the algorithm, as shown
in Figure 2.9d. However, ICP has several notable limitations. Firstly, the algorithm
requires a computationally expensive search to establish point correspondences between
scans. Secondly, its accuracy and convergence are highly dependent on a good initial
transformation guess. Due to these constraints, ICP alone is not sufficient for SLAM
and therefore is combined with one of the previously described back-end algorithms.

Table 2.1 summarizes the key differences between visual-based SLAM and LiDAR-
based SLAM, underscoring the strengths and limitations of each approach. The
comparison includes factors such as sensor cost, accuracy, sensitivity to illumination
changes, and performance in texture-less environments. The classification is based
on the properties discussed above. Although visual-based SLAM is generally more
cost-effective, it is highly dependent on lighting conditions and struggles in texture-less
areas. In contrast, LiDAR-based SLAM offers greater accuracy and robustness in diverse
environments, but comes at a higher sensor cost.

Following a comprehensive exposition of the SLAM algorithms, the subsequent
stage is to examine the storage and structuring of the obtained spatial data.

2.2.3 Mapping Techniques

The output map can be structured in many different ways depending on the sensor data
and the used algorithm. The most common map representation is a set of sparse 2D
or 3D landmarks [26]. Here, the stored 2D or 3D landmarks correspond to distinctive
features determined in the front-end algorithm. This approach, widely used in visual-
based environments SLAM, has been observed to encounter difficulties in low-texture
environments.

Dense map representation, on the other hand, captures unstructured point clouds.
As this comes with significant storage demand, geometric primitives, such as planes or
surfaces, can be extracted from point clouds to optimize performance. This makes it
useful for obstacle avoidance, if sufficient computational power is provided.

Grid-based representation is a method of dividing space into 2D grids or 3D voxels,
with each cell assigned a state of free, occupied or unknown based on probabilistic
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(a) Scan at time i (b) Scan at time i+ 1

(c) First guess of transformation and near-
est neighbors search

(d) Transformation after the last distance
minimization

Figure 2.9: Principle of the Iterative Closest Point algorithm used for aligning two scans.
(a) shows a scan taken at time i, followed by (b) with another scan at time
i+ 1. In (c), an initial transformation guess is applied and nearest neighbor
correspondences between the scans are identified. The transformation is
refined iteratively by distance minimization until convergence is reached.
As a result, the scans are aligned in (d) [30].
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models. This method, returning the so-called Occupancy Grids, has been shown to be
effective for path planning and obstacle avoidance.

After exploring both front- and back-end SLAM algorithms, as well as different
mapping representations, the final step involves examining SLAM solutions that integrate
these components into practical and deployable systems.

2.2.4 Ready-to-use SLAM Algorithms

This section introduces common open-source implementations for SLAM with a special
focus on SLAM Toolbox, as it is one of the most recently developed algorithms.

ORB-SLAM

Of these, ORB-SLAM is the only implementation that processes data from RGB and
RGB-D cameras [33]. It provides accurate and real-time camera trajectory and spare
3D reconstructions of various environments. However, it is important to note its reliance
on trained vocabulary for feature matching and loop closure detection.

Hector SLAM

Examining LiDAR-based SLAM algorithms, Hector SLAM is a fully optimized filter-
based SLAM algorithm designed exclusively for LiDAR information. It functions
utilizing solely LiDAR data and, due to its efficiency, is particularly well-suited for
real-time applications. However, due to the absence of odometry information, it is
entirely dependent on scan matching, which can result in accumulated drift over time
and inaccurate long-term mapping.

Gmapping

Conversely, Gmapping, a 2D filter-based SLAM, is heavily reliant on odometry in-
formation and is capable of efficiently constructing grid-based maps. Unfortunately,
due to the high impact of odometry, it tends to drift, reducing accuracy in dynamic
environments.

Karto SLAM

In comparison to Gmapping, Karto SLAM, which also returns grid-based maps, is
a graph-based method that uses the current pose and the complete map to process
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the current data. Consequently, the Karto SLAM system demonstrates enhanced
map consistency in large environments. Nonetheless, the system’s computational
complexity is proportional to the number of landmarks, which can compromise its
real-time performance in large-scale environments.

SLAM Toolbox

SLAM Toolbox, which is based on Karto SLAM, has been developed for the purpose of
accurate and scalable mapping in large and dynamic environments [34]. It improves upon
previous SLAM solutions by offering multiple mapping modes, real-time localization,
multi-session mapping, and improved graph optimization.

SLAM Toolbox provides two principal mapping modes: synchronous and asyn-
chronous [35]. In synchronous mode, all sensor measurements are processed, ensuring
high accuracy but potentially causing delays in large environments if computational
resources are limited. This mode is typically used in offline mapping for optimal map
quality. Conversely, asynchronous mode functions on a best-effort basis, processing data
as computational capacity allows. This mode is suited for online mapping, enabling
real-time navigation on systems with limited processing power.

However, its reliance on 2D LiDAR data may restrict its applicability in highly
unstructured 3D environments [34]. Furthermore, although it offers improved computa-
tional efficiency, handling extremely large-scale or highly dynamic environments with
continuous map updates remains a challenge.

SLAM Toolbox is an integral component of the Robot Operation System (ROS), a
framework designed for the development and management of robotic applications. The
following section will provide a comprehensive exploration of ROS and its architectural
framework.

2.3 Robot Operating System

Robot Operation System (ROS) is an open-source software that facilitates the develop-
ment of robotic applications [36]. Initially developed as ROS, it has become a widely
adopted software solution within the robotics community. Despite its success, ROS has
several limitations, particularly in real-time applications and distributed multi-robot
systems [37]. Furthermore, the absence of built-in security mechanisms leaves systems
vulnerable to cyber threats. To overcome these limitations, Robot Operation System 2
(ROS2) was developed with the aim of real-time performance and enhanced security
[36]. The next section outlines which changes in system architecture were necessary to
make ROS2 more suitable for the latest system requirements.
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Figure 2.10: Comparison between ROS1 and ROS2 architecture. ROS1 relies on a master
node for communication and uses TCPROS/UDPROS for transport. In
contrast, ROS2 replaces the master with DDS, an abstract DDS layer, and
an intra-process API for improved efficiency. ROS2 also supports multiple
operating systems, including Linux, Windows, Mac, and RTOS, improving
cross-platform compatibility [36].

2.3.1 System Architecture

Figure 2.10 displays the differences in the architecture of ROS and ROS2 [36]. As shown
in the application layer, both ROS applications are composed of independent computing
processes known as nodes. The nodes utilize a publisher-subscriber model, in which
messages are exchanged through designated topics. Each topic serves as an identifier
for the type of message that is transmitted. When a node publishes a message on a
topic, any subscribing node receives and processes it. This publisher-subscriber model
promotes modularity and is well-suited for distributed systems, since it enhances fault
isolation, accelerates development, and supports code re-usability. Another method of
communication between nodes is services [38]. While topics enable nodes to publish
continuous updates and receive data streams, services use a call-and-response model.
Thus, servers only provide data when specifically invoked by a client.

Although the applications have a similar structure in ROS and ROS2, there are
major differences in the communication system. As shown in Figure 2.10 on the left,
ROS has an additional node in the application layer, the so-called ROS master, which
is a centralized process for managing communication. In addition, ROS utilities TCP
and UDP (TCPROS/UDPROS) as a middleware for communication. The Subscriber
and publisher nodes first interact with the master node, which manages the topics.
Subsequently, subscribers establish direct connections with publishers. The ROS master
is important for connecting the nodes, but is not involved in data transmission. This
setup using a ROS master is a major drawback of the system, as the master is a
single-point-of-failure in the system and limits scalability. This architectural constraint
is inherent in the design of ROS. In contrast, ROS2 is built on top of Data Distribution
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Table 2.2: Explanation of common QoS policies [39]

Policy Description

Deadline detects if a data is written or read within a set
amount of time, if period ̸= ∞

Ownership specifies if there is one publisher to one topic
(exclusive) or more than one (shared)

Reliability controls whether samples can be dropped under
specific circumstances (best_effort) or every
value has to be delivered (reliable)

Transport_Priority prioritizes data in the transport layer,
if value > 0

System (DDS), eliminating the need for a master process, as illustrated on the right side
of Figure 2.10. This separate DDS abstraction layer enables high-level configurations
and has a significant impact on scalability and fault tolerance.

2.3.2 Data Distribution System

DDS is a mature middleware protocol [37]. It employs the Data-Centric Publish-
Subscribe (DCPS) model, wherein a global data space contains DDS topics, analogous
to ROS topics, see Figure 2.11. Processes that publish or subscribe to these topics are
designated as participants, and their communication is managed through configurable
Quality of Service (QoS) parameters [39]. These QoS parameters are a form of service
contract and are used to define the needed reliability or timing requirements. Two
parties can only communicate if they show compatible QoS policies. Hereby aspects of
data transmission, such as reliability, durability, latency, and deadline constraints, are
controlled. The most common QoS parameters are listed in Table 2.2.

Moreover, Figure 2.11 shows the interaction between ROS2 and the DDS via abstract
DDS Application Programming Interfaces (APIs) [37]. The user-defined application logic
is processed by the ROS2 Client Library (RCL) to establish node-based communication,
which is then translated by the ROS2 DDS Middleware (RMW) into DDS structures and
configurations. At runtime, ROS2 nodes map directly to DDS participants, converting
node actions into DDS API calls for communication.

The improvements from ROS to ROS2, such as real-time capabilities and enhanced
security, further establish ROS2 as a state-of-the-art technology for diverse robotic
applications. With its extensive set of software libraries and development tools, ROS2
provides a robust framework for building and deploying modern robotic systems [40].
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Figure 2.11: ROS2 DDS architecture with DCPS protocol. Nodes publish and subscribe
to topics within ROS2 System Structure, while DDS manages data exchange
through a global data space for efficient communication [37].

2.4 Research Questions

The state-of-the-art analysis indicates that Simultaneous Localization and Mapping
(SLAM) is imperative for mobile robotics, as it facilitates autonomous navigation and
interaction in uncharted environments. Nevertheless, attaining precise and dependable
SLAM algorithms remains a challenge due to limitations in sensor technology, computa-
tional constraints, and the necessity for robustness in dynamic conditions. A critical
aspect of SLAM research concerns the selection of sensor modality, with vision-based
and LiDAR-based approaches being the most prevalent. While vision-based SLAM
offers affordability and compact sensors, it struggles with lighting variations and scale
estimation. Conversely, LiDAR-based SLAM provides high accuracy and robustness,
but at a higher cost and complexity. To address this trade-off, the use of indirect
Time-of-Flight cameras, which provide direct depth measurements while remaining
compact and cost-effective, in SLAM algorithms is investigated. This raises the first
research question:

Research Question 1

Is it feasible to run SLAM algorithms for mobile robot platforms using solely the
depth information of a ToF camera?

In the context of exploring the applicability of an indirect ToF camera in SLAM
applications, it is imperative to consider the reliability of depth measurements when
confronted with variations in environmental conditions. As indirect ToF cameras depend
on modulated light signals, their performance is prone to being influenced by different
lighting conditions and surface materials. This leads to the second research question:
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Research Question 2

Is the chosen ToF camera more robust against different light conditions and
materials in SLAM applications compared to an UGV setup equipped with a
state-of-the-art LiDAR sensor?
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System Setup

This chapter presents the system setup for the integration of a 3Di camera into a mobile
robot platform for SLAM. First, the used 3Di camera is introduced, followed by a
description of the mobile robotic platform and the LiDAR sensor, which serves as a
comparative reference in the experiments. Subsequently, the communication framework
connecting these components is presented. Finally, sensor placement is examined,
emphasizing the impact of the field of view (FOV) on collision avoidance and cliff
detection.

3.1 3Di Camera

Key considerations for sensors in SLAM are depth accuracy, resistance to ambient light
variations, frame rate, and integration capability. Hence, a suitable candidate is the 3Di
camera from Infineon, namely the model 2877C, and thus is used in this setup. Due to
its compact size and practical form factor, it is well-suited for UGV applications. The
Infineon 2877C sensor is an indirect ToF single-chip sensor with illumination control
and digital data output [41] as shown in Figure 3.1. The sensor has a FOV of 68◦

horizontally and 50◦ vertically. Its main advantage is the small form factor with high
pixel resolution. It features a VGA system resolution achieved by a 640 x 240 twin
pixel array within a compact 4 mm image circle. In addition, the sensor incorporates
a patented Suppression of Background Illumination circuitry in every pixel, therefore
enhancing robustness against strong sunlight. Interference with other ToF systems is
prevented using Spread Spectrum Clock where the clock frequency - which controls the
timing of light pulses and signal processing - is slightly varied over time. This reduces
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Table 3.1: Use cases specification of Infineon iToF sensor 2877C

Parameter use case 0 use case 1 use case 2 use case 3

fmod,1 [MHz] 80.32 60.24 80.32 80.32
fmod,2 [MHz] 60.24 - - 60.24
fmod,dual [MHz] 20.08 - - 20.08
Max Distance [m] 7.47 2.49 1.87 7.47
Max Exposure [µs] 1200 1000 1000 640

the likelihood of multiple sensors operating at the exact same frequency, minimizing
crosstalk, and ensuring accurate measurements.

Furthermore, the sensor is equipped with four predefined use cases, as indicated in
Table 3.1. These use cases vary in terms of modulation frequency and exposure time.
Two of these use cases (1 and 2) are optimized for short-range applications and use a
single modulation frequency. The remaining two use cases (0 and 3) use dual-frequency
modulation, enabling longer-range measurements. The maximal exposure times for
these use cases are different and are necessary to maintain compliance with eye-safety
regulations. Within these constraints, the exposure time and the frame rate can be
modified to ensure optimal sensor performance. Following the completion of each frame,
these settings and the current use case selected can be adapted, facilitating the sensor
for real-time adjustments. The Infineon 2877C is already used in various applications,
such as secure face authentication, and automotive applications. In cars it is used for
driver monitoring, smart airbags, and short-range car exterior, not for driving-related
tasks.

In terms of connection, the sensor supports integration with either a Raspberry Pi
or an NVIDIA Jetson platform. In the proposed use in a SLAM application, this sensor
is used with a Raspberry Pi 4B, which is a high-performance single-board computer
[42]. The device supports dual-band Wi-Fi (2.4 GHz/5.0 GHz), Bluetooth 5.0, and
Gigabit Ethernet for reliable communications. The 8GB RAM version is used to
ensure sufficient memory, high efficiency, and low power consumption - critical for
battery-powered operation on the mobile robotic platform.

3.2 Mobile Robotic Platform

The used mobile robotic platform is the TurtleBot 4 Lite, a compact state-of-the-art
robot platform designed for SLAM applications, in the following just referred to as
TurtleBot [43]. The platform is built upon the iRobot Create 3 mobile base, which
provides mobility and sensor integration, and operates on ROS2 enabling modular
software development and integration with additional sensors and actuators.

The TurtleBot is composed of two on-board computing units: the Create 3 and
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Figure 3.1: Infineon iToF sensor 2877C connected to Raspberry Pi 4B

Figure 3.2: Slamtec LiDAR sensor RPLIDAR A1M8

the Raspberry Pi 4B. These are connected via an USB-C cable, which serves the dual
purpose of powering the Raspberry Pi and establishing an Ethernet connection between
the units. Both units are equipped with Wi-Fi cards. The Create 3 connects to 2.4 GHz
networks, while the Raspberry Pi connects to 2.4 GHz and 5 GHz networks. For best
performance, a router capable to support both bands is used.

While Create 3 is seen as the integrated control unit of the TurtleBot, the Rasp-
berry Pi comes into use, if additional sensors are connected to the platform. The
TurtleBot 4 Lite is equipped with an additional sensor, namely the RPLIDAR A1M8
LiDAR sensor, shown in Figure 3.2, which is used as the state-of-the-art technology for
comparison with the Infineon 2877C iToF camera.

The RPLIDAR A1M8 sensor is connected to the Raspberry Pi via micro USB cable
for power supply and data transmission. The sensor has a scan rate ranging from 2 Hz
to 10 Hz adjustable via the motor signal [44]. Performance characteristics depend on
the selected scan rate. At 5.5 Hz the sensor provides a maximum range of 12 meters,
with 8000 samples per second, and an angular resolution of 1◦.

In order to establish data transmission between the presented systems components,
a communication network is required, which will be elaborated in the following section.
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(a) Robot Platform with mounting plate (b) Side-view to outline setup height

Figure 3.3: Turtlebot 4 Lite mobile robot platform by iRobot equipped with RPLIDAR
A1M8

3.3 Communication Network

The communication network ensures data exchange between the components. Figure 3.4
displays all the system components and their connection.

The camera setup, which provides the depth image, is shown on the left. The depth
image stream is provided to the PC via TCP/IP over Wi-Fi, as indicated by the dashed
arrow. The PC processes the incoming depth images and functions as an execution
environment for the utilized SLAM. Therefore, it is connected via Wi-Fi with the robot
platform using ROS2.

For ROS2-based communication, a network configuration has to be chosen. The
setup with Turtlebot 4 provides two possible configurations: Simple Discovery and
Discovery Server [45]. Simple Discovery relies on multicast communication, allowing
nodes to automatically detect each other on the same network. This method is generally
effective in straightforward setups. However, issues can arise in dual-band networks,
potentially affecting communication reliability. Alternatively, the Discovery Server
method centralizes node discovery, reducing network overhead and improving stability
in more complex or resource-constrained environments. This approach is particularly
useful when multicast traffic is restricted or when a more controlled discovery process
is required.

Simple Discovery mode is recommended for systems with one to two robots and
should match the requirements. In this mode ROS2 combined with Turtlebot 4 works
with two different DDS vendors, FastDDS, and CycloneDDS. Here, FastDDS, the
default vendor for the used ROS2 distribution, ROS2 Humble, is used. Furthermore,
Simple Discovery allows to controll the Turtlebot 4 soley via Create 3. Therefore, the
Raspberry Pi integrated in the Turtlebot 4 platform will only be used for experiments
with the comparison technology, as it is used to integrate the LiDAR into the system.
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Figure 3.4: System setup components and connections. Solid lines represent wired
connections, while dashed lines represent Wi-Fi communications. Sensors
are shown in square boxes and computing units are shown with rounded
edges. Gray elements represent additional devices for comparison technology.

3.4 Sensor Placement

A crucial point in the deployment of the presented Infineon iToF camera within a SLAM
system is the considered sensor placement on the mobile robot platform. In order to
make a trade-off between a wide range and near-field detection capability, the sensor is
mounted on the front-top section of the mobile robot platform. The system now reaches
a high of 14 cm, with the lens positioned at 11.5 cm. With the vertical FOV of the
camera of 50◦ obstacles higher in the scene enter the camera’s view at a distance of
5 cm from the sensor. Due to the high mounting point, the floor becomes visible from
a distance of 25 cm. The floor detection range is particularly relevant for identifying
potential cliffs preemptively, such as staircases, which is critical for safe navigation in
various applications.
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Figure 3.5: Sensor placement on the Turtlebot 4 with the resulting minimum distances
for detecting head collisions or cliffs
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Software Implementation

This chapter outlines the software implementation for processing depth images into
input data for the SLAM algorithm. The steps are outlined in Figure 4.1. The image
processing steps ensure that all relevant environmental features contribute to the
mapping task, which provides the estimated environment map.

In the preprocessing steps, the raw depth image data is reduced by removing
unnecessary information with the goal of keeping only obstacles relevant for SLAM
tasks. This includes a plane segmentation algorithm to remove the floor plane from
the image. To enhance safety, a preemptive cliff detection mechanism is incorporated,
utilizing points from the removed floor plane to detect negative obstacles. Finally,
the image data are processed using a histogram-based filter heuristic in order to
remove noise. The gained data are then ready to be transferred into a laser-scan-like
representation. This transformation facilitates integration with SLAM algorithms that
rely on LiDAR-based input, ensuring compatibility and robust environmental mapping.

4.1 Preprocessing

The preprocessing steps, comprising downsampling, point cloud transformation, and
floor detection, apply filters to the raw depth image data to keep only the pixels relevant
for obstacle detection.
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Figure 4.1: Data flow and software steps in the SLAM process, starting with data
input from the 3Di sensor. The front-end processes the images, applying
preprocessing, cliff detection and noise filtering. The back-end estimates the
map using the ROS2 SLAM Toolbox to generate an estimated environment
map.
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4.1.1 Downsampling and Point Cloud Transformation

The initial image processing steps serve to reduce computational effort while preserving
essential information. Therefore, the input depth image undergoes a downsampling
process, where only every fifth column is retained. The selection of every fifth column
was empirically determined to achieve optimal balance between depth information and
computational efficiency. The downsampling is set to delete columns instead of rows, as
the horizontal resolution is higher than the vertical resolution. Moreover, the last step
of the software implementation, where the 3D image data is transformed to a 2D array,
scans the image along the horizontal FOV. By downsampling the columns, a higher
computational advantage is achieved while losing less information. Subsequently, a
filter is applied in order to remove all points with z-values that fall outside the camera’s
valid depth range.

In order to disregard points that are irrelevant for the purpose of obstacle detection,
such as the floor or points that are outside the range of the robot, the downsampled
depth image is transformed into a point cloud. This is achieved by inverting the
projection equation from the 2D image depth values in order return the 3D scene points

M = K
−1


uv
1


 , (4.1)

where D(u, v) is the depth value in the image in position (u, v). The inverse intrinsic
matrix K

−1 removes the effects of the intrinsic properties of the camera and leaves a
normalized direction vector, which is scaled by depth. K is defined in Equation (2.2).
The intrinsic parameters necessary for the matrix are calculated from the FOV and the
image size in pixels of the Infineon 2877C. The intrinsic parameters in x-direction are
calculated using the horizontal field of view FOVh of 68◦, and the image width of 640
pixels, which results in a principal position cx and a focal length fx of

cx =
NC

2
, and (4.2)

fx = cx
1

tan(FOVh/2)
. (4.3)

The intrinsic parameters in y-direction are calculated using the vertical field of view
FOVv of 50◦, and the image height of 240 pixels, resulting in a principal position cy
and a focal length fy of

cy =
NR

2
, and (4.4)

fx = cy
1

tan(FOVv/2)
. (4.5)
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With the calculated parameters, the projection matrix for the Infineon 2877C is

K =


fx s cx
0 fy cy
0 0 1


 =


474.42 1 320

0 257.34 120
0 0 1


 . (4.6)

As the cameras extrinsic parameters are not considered in Equation (4.1), the
resulting 3D points are perceived in a 3D coordinate system with its origin in the
camera center.

Since the point cloud still contains the entire scene, more filtering is necessary in
order to focus on the obstacle data for SLAM.

4.1.2 Floor Detection

The next step is to delete the points corresponding to the floor plane from the downsam-
pled point cloud. As this setup operates in indoor applications, a level floor is assumed.
Therefore, a Random Sample Consensus (RANSAC) algorithm is used to detect the
floor plane in the point cloud.

RANSAC is an iterative method for estimating model parameters from a dataset
[46]. It selects random subsets, constructs a model based on this subset, and evaluates
their fit to the dataset. Widely used in computer vision and geometry processing,
RANSAC detects geometric primitives such as planes, spheres, and cylinders in point
clouds. This implementation uses Open3D’s built-in RANSAC function for floor plane
detection.

Since RANSAC only returns the plane model that best fits the majority of points
in the scene, this can be a problem, for example, if the robot starts in front of a
wall. Therefore, the basic RANSAC algorithm is adjusted to only accept a detected
plane model if it matches the floor. The adapted RANSAC algorithm is outlined in
Algorithm 1, where θ defines the geometric form. For plane detection θ includes the
plane parameters [a, b, c, d] from the plane equation

0 = ax+ by + cz + d. (4.7)

To check if the detected plane model matches the floor, it is analyzed at a reference
point, as the position of the floor is evident at the camera’s position. This reference
point is then utilized to validate the detected plane by leveraging the known mounting
height of the camera and the fact that the point cloud originates from the camera’s
coordinate system (x, y, z), as illustrated in Figure 2.2. Consequently, the tilt of the
plane is not predetermined, but rather its offset d, which is used for verification. The
algorithm is thus modified to accept the detected plane model only if it aligns with the
expected parameters.
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In the event that the initial run does not meet this criterion, it is probable that
a wall has been detected instead of the floor. To enhance floor detection, the point
cloud is cropped at a height of y = 10 cm, only the points below remain, and the plane
estimation is performed again. This increases the likelihood that more floor points than
wall points remain in the scene, allowing for a more accurate estimation of the floor
plane model.

Algorithm 1: Adapted RANSAC Algorithm
Input: - Dataset P

- Model parameters θ
- Max iterations N
- Inlier threshold ϵ

Output: best model parameters θ∗

Initialize best model θ∗ ← ∅
Best inlier count n∗ ← 0
Initialize floor model not found
Run RANSAC:
while floor model not found do

for i ← 0 to N do

Select a random subset of k points from P
Estimate model parameters θ from the selected points
Compute the number of inliers in P that fit θ within threshold ϵ
if n > n∗ then

Update best model θ∗ ← θ
Update best inlier count n∗ ← n

end

end

Check if the detected plane matches floor:
if plane is floor then

floor model found
end

if plane not floor then

Cut point cloud at height of 10 cm over the expected floor
Initialize best model θ∗ ← ∅
Best inlier count n∗ ← 0

end

end

return best model θ∗

To limit the computational effort of the plane estimation, the RANSAC algorithm
is only performed at the beginning of the program. This implies that the floor is even
and that no ramps occur as the robot moves through the scene. If this is not the case,
plane estimation has to be executed in the program for every new input image or every
few input images.

Once the ground plane is identified, it is used to separate the points associated with
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(a) Original scene captured
by an RGB camera

(b) Raw depth image of the
whole scene showing noise

(c) Depth image after prepro-
cessing

Figure 4.2: Floor detection and invalid pixel removal on an example scene with a gray
box 1.5m in front of the camera, and a wall 3.5m in front of the camera.
On the left of the scene is a aluminium pillar, and on the right of the scene
is a table.

the ground from the image. Therefore, the distance from every point in the point cloud
to the floor plane is calculated and every point in a threshold of ±1.5 cm is marked as
a floor point and deleted from the point cloud. This threshold serves to counteract the
uncertainty of ground points that do not perfectly match the plane model.

The preprocessing steps are shown on a basic scene example, displayed in Figure 4.2a.
A gray box is positioned at a distance of db = 1.5m in front of the camera, whereas
the wall is at a distance of dw = 3.5m. On the left an aluminum pillar is placed, and
on the right a part of a table is visible. This scene results in a depth image shown in
Figure 4.2b. After the processing steps, pixels outside of the camera range and pixels
irrelevant for obstacle detection and mapping are deleted. This results in Figure 4.2c,
where clearly the floor and some noise are removed.

If the environment is known and free of stairs or other significant elevation changes,
the processed point cloud can be forwarded directly to noise filtering and laser scan
generation. However, if the presence of such obstacles is uncertain, a cliff detection
algorithm is implemented.

4.2 Cliff Detection

Mobile robot platforms, such as the Turtlebot, are equipped with cliff detection sensors.
These sensors are usually mounted on the bottom of the platform in front of the first
wheel. With these infrared sensors, the robot detects if no floor is in front and stops
driving. Unless the robot is exactly in front of the cliff, it is not observed with any
sensor. To enhance planning for autonomous driving applications, a preemptive cliff
detection algorithm is implemented in this setup.

The proposed algorithm is based on the assumption that a cliff can be inferred
by the absence of floor points in the recorded depth image. Due to the camera’s low
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(a) Scene 1 with a cliff in 1m distance from
the camera origin

(b) Scene 2 with a cliff in 0.4m distance from
the camera origin

Figure 4.3: Example scenes for cliff detection algorithm with cliffs at different distances
from the camera position

mounting position and its perpendicular orientation to the floor, according to Figure 3.5,
the observed floor area is limited. To ensure reliable cliff detection, a dense distribution
of floor points must be present within the analyzed region. In the event that the density
of detected floor points is deemed insufficient, a cliff is assumed in that area. For this
setup, the analyzed region for cliff detection extends from 0.3m to 0.6m on the z-axis
of the camera origin, and from −0.2m to 0.2m on the x-axis. This area is expected to
contain a sufficiently dense distribution of floor points.

The algorithm for preemptive cliff detection is explained using two examples, where
scene 1 represents a scenario with a cliff 1m in front of the robot, as shown in Figure 4.3a,
and scene 2 represents a scenario with a cliff 0.4m in front of the robot, as displayed in
Figure 4.3b. The depth images from the scenes are shown in Figure 4.4a and Figure 4.5a,
where violet areas depict the ground plane, blue areas represent the walls at a distance
of 2m and 2.5m, respectively, and yellow pixels represent noise.

The idea of the method is to add information about detected cliffs to the preprocessed
depth image, which at this step contains only information about obstacles in the scene
and noise. By adding a barrier to the region of the point cloud where no floor could be
found, an obstacle will be detected in the next step of the algorithm and therefore the
cliff is mapped as obstacle in the resulting map from SLAM. Subsequently, the area
behind the cliff is avoided in path planning for autonomous driving.

In the first step of the algorithm, the designated floor region is transformed into a
top-down view depth image. This facilitates a structured analysis of floor coverage. As
the region of interest is chosen in distances where dense floor points can be expected,
the resulting floor image should appear as a continuous square for the analyzed region,
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(a) Original depth image of scene 1 with floor
in front

(b) Resulting depth image after floor removal
and cliff detection

(c) Detected floor plane shows dense floor
points (light gray) in the area 0.3-0.6m in
front of the camera in scene 1, top-view

(d) Detected cliff plane shows no cliff (no light
gray pixels) in the area 0.3-0.6m in front
of the camera in scene 1, top-view

Figure 4.4: Cliff detection algorithm applied on scene 1, with original depth image,
intermediate steps and the resulting depth image
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(a) Original depth image of scene 2 with floor
in front, yellow points determine noise

(b) Resulting depth image after floor removal
and cliff detection, violet points in the
middle display the barrier at cliff distance

(c) Detected floor plane shows only floor
points (light gray) in the area 0.3-0.4m in
front of the camera in scene 2, top-view

(d) Detected cliff plane shows a cliff (light
gray) in 0.2m distance from the camera
in scene 2, top-view

Figure 4.5: Cliff detection algorithm applied on scene 2, with original depth image,
intermediate steps and the resulting depth image
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if no cliff is in the designated area.

For scene 1, where the cliff is 1m ahead, the transformed floor image is displayed in
Figure 4.4c. The image data displays a top-down view. The robot is added to the figure
to capture the context. Floor points detected using plane segmentation are displayed in
light gray, while dark gray pixels indicate areas where no floor point is detected. In
scene 2, where the cliff is at a distance of 0.4m, the resulting top-down view of the floor
is displayed in Figure 4.5c. The light gray pixels indicate the area up to 0.4m away
from the robot, where floor points are detected. Furthermore, on the right on the cliff
noise is detected at floor level, leading to a less sharp edge detected.

It is important to note that missing pixels may appear in the ground plane. These
gaps are analyzed, and if they are identified as outliers within an otherwise dense region,
they are removed to preserve the continuity of the detected floor plane. The processed
image is then analyzed in order to determine whether it forms a complete square or
whether there are missing floor pixels. In regions where floor pixels are absent, the
presence of a cliff is inferred.

The goal is to add a barrier to the point cloud data at the position of the detected
cliff. Therefore, the image is inverted so that missing floor areas appear as distinct
pixels, while detected floor points are removed. This step is displayed in Figure 4.4d
for scene 1. The figure shows that for this scenario, no cliff is detected, as all points
are deleted. In contrast, the result for scene 2 is presented in Figure 4.5d. The cliff
is displayed in light gray points, while the floor points are deleted, as they are not
necessary for mapping.

In the last step, the identified cliff points are projected back into the three-
dimensional space using the known transformation parameters and incorporated into
the existing point cloud, which is the result of the preprocessing method. For scene 1 the
result after the preemptive cliff detection algorithm is shown in Figure 4.4b. Compared
to the raw input image of the scene only the floor is removed, as no cliff is detected,
and thus the algorithm is not adding any data points to the image. The result for scene
2 is shown in Figure 4.5b. In this case a cliff is detected, and the added data points are
displayed in the middle of the image, representing a barrier at the cliff distance of the
robot.

Up to this point in the analysis, the processing has focused on identifying the
floor, detecting cliffs, and accounting for the camera’s limited range. However, the
resulting point cloud still contains noise, which has the potential to interfere with
further processing. Therefore, in the next step, a noise filter is applied, and the filtered
data is immediately transformed into the scan information necessary for SLAM.
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4.3 Heuristic Histogram-based Noise Filter

The transformation of depth data into a ROS2 scan messages, suitable for the LiDAR-
based SLAM algorithm, necessitates further extraction of the relevant depth information
from the point cloud. The 3D depth information is transformed to a 2D scan information
sufficient to solve the SLAM problem. As the preprocessed data is still affected by noise,
a filtering step is required to ensure that the generated scan accurately represents the
nearest obstacles.

For scan messages, a specified message type exists in ROS2 [47]. Additional to
the header information, which includes information, such as the timestamp, which
is necessary for every ROS2 message, a scan message has to contain the following
information:

Listing 4.1: Laser Scan Parameters

float32 angle_min

float32 angle_max

float32 angle_increment

float32 range_min

float32 range_max

float32 [] ranges

The angle parameters angle_min and angle_max result from the horizontal FOV,
while the variable angle_increment is a result of the number of range values over the
FOV. The range minimum and maximum range_min and range_max is necessary to
filter invalid scan points and are identically to the sensor range. The ranges array
includes the scan data. This data is extracted from the depth image after the cliff
detection is performed.

In order to realize this, a heuristic histogram-based filter with an adaptive threshold
is applied to filter noise and simultaneously extract the relevant depth values for the
2D scan message for the SLAM algorithm. As the filter processes depth images, the
preprocessed point cloud is transformed to a depth image again.

The scan information is selected by analyzing the transformed depth image along
the horizontal FOV. The concept is shown in Figure 4.6. The depth image on the left
represents the input image for the filter algorithm. The filter determines the range
values along the horizontal FOV and stores them in a scan message array, as emphasized
below the depth image. The method for obtaining the range value for an area is based
on a histogram, as shown on the right. The function in the histogram represents the
threshold function. As soon as one histogram bin shows values higher than the threshold
function, an obstacle is detected at this distance, and the belonging distance is assigned
to the scan array. The ordinate section defines the number of values at a direct distance
from the camera εmax. As distance increases, fewer values are required, at least εmin at
the maximum camera range.
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Algorithm 2: Heuristic Histogram Filter
Input: Depth image image
Output: Filtered depth scan scan
set scan variables:

coefficient of scan values over image width scan_index
num_steps ← width/scan_index
sample_size

Initialize histogram-based filtering parameters:
histogram bin-size resolution
y-offset of the threshold function εmax

gradient of the threshold function εk
for i ← 0 to num_steps do

sample_image ← columns around position i to achieve sample_size
sample ← valid points from sample_image
Check if sample includes valid points, otherwise continue with the next sample

Compute histogram bins:

calculate num_bins ← int

�
max(sample)−min(sample)

resolution

�

Compute histogram:
hist ← histogram(sample, num_bins)
Compute adaptive threshold for the distances of each bin:

ε ← int(εmax − disthist · εk)
Update scan value at position i with first distance-value where histogram
value > ε

end

return scan
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Figure 4.6: 2D scan information extracted from a preprocessed depth image, one sample
is abstracted at a time (left). The sample is analyzed with a histogram-based
filter approach (right), where a threshold function is used to identify the
closest obstacle. All histogram bins that remain below the function are
considered noise. The obstacle distance is stored in a scan message array.

In the algorithm for histogram-based noise filtering, as displayed in Algorithm 2,
the image is divided into areas, the so-called samples. In Figure 4.6 one sample image
column i is marked. The scan array of size n stores the determined depth value from
the histogram at position i.

The resolution of the scan array is defined via two parameters, the scan index and
the sample size. The scan index defines how many scan values are extracted from
the depth image, while the sample size defines how wide the analyzed area is around
the actual position of the scan value. Depending on the scenes, the sample size is an
important value to ensure the detection of obstacles that are stretched in width, not in
height. In this application, the sample size is set to 5 columns per sample. In order to
half the computational effort, the scan index is set to 2.

With the parameters set, the local depth sample data is extracted for one area
after the other and a histogram is generated. In order to remove noise while ensuring
accurate depth estimation, an adaptive threshold ε is applied

ε = εmax − dhist · εk = εmax − dhist ·
εmax − εmin

dcam,max

, (4.8)

where εmax and εmin determine the threshold at maximum and minimum camera
range respectively. dhist is the distance on the x-axis of the histogram, and dcam,max

is the maximum camera range. While the camera range is set for each use case, the
minimum and maximum values depend on the resolution of the scan. The threshold
decreases with increasing depth. This is due to the fact that a greater number of valid
depth measurements are available at closer distances. If the histogram contains values
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exceeding this threshold, the closest valid depth value is selected and stored in the
output array scan.

The heuristic histogram filter is used to remove noise and determine the scan
information in one step. The resulting scan message is expected to reliably capture
the closest obstacle, whether a physical barrier or a cliff, across the horizontal FOV,
ensuring the robot avoids hazardous areas. This scan information is sent to the SLAM
algorithm to perform the environment mapping.
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CHAPTER 5

Experiments and Results

In order to evaluate 3Di cameras in SLAM applications, the accuracy and applicability
of the sensor are tested in various experiments. At first a sole sensor analysis is done
to further analyze its characteristics in all available use case settings. Thereafter, the
sensor accuracy and repeatability is analyzed in the context of SLAM, measuring the
error in the SLAM output maps. The last experiment focuses on the obstacle and cliff
detection. For comparison, the SLAM related tests are additionally performed with the
state-of-the-art LiDAR technology, the RPLIDAR A1M8.

5.1 Methodology

At first, the different conditions and settings used for the experiments regarding accuracy
and repeatability, as well as the method to evaluate the accuracy from the generated
data, are outlined.

5.1.1 Testing the 3Di Camera under various Environmental

Conditions

The accuracy and the repeatability of the sensor is evaluated under different lighting
conditions and on different surfaces commonly found in indoor environments. The
analyzed lighting conditions are:
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• closed blinds, with no artificial lighting turned on to achieve a dark room sur-
rounding,

• office lighting, with closed blinds and artificial lights turned on, and

• daylight, where the blinds are opened, but no additional artificial lighting is turned
on.

The analyzed surface materials are:

• black fabric, to test the sensor on light absorbing material,

• foam material, to test the sensor on uneven surfaces, and

• glass, to test the sensor on transparent surfaces.

The measurements under different light conditions are performed against white
walls, whereas the measurements on different surface materials are performed with
closed blinds. All tests are performed moderate outdoor lighting conditions, without
direct sunlight incidence on the device under test.

5.1.2 Data Analysis

To measure the accuracy of the Infineon 2877C sensor, the trueness µ is calculated, as
introduced in Equation (2.19). The trueness represents the absolute mean error on a
dataset. The closer the value is to zero, the higher is the accuracy of the dataset. One
dataset consists of one or more measurements with the 3Di camera performed under the
same conditions, from the same distance, on the same surface, with the same lighting
conditions.

To get a more general representation of the data accuracy, the mean trueness µ is
introduced as

µ =
1

S

S�
s=0

µs, (5.1)

where S defines the total number of datasets, and µs represents the trueness of one
dataset.

To analyze the accuracy and repeatability of the 3Di camera and the LiDAR sensor
in SLAM applications, the error is calculated by comparing the occupancy grids returned
after performing the SLAM algorithm with the ground truth map, as shown in Figure 5.1.
The occupancy grid map is color coded with three colors, where white represents free
space, black represents obstacles, and gray represents unknown terrain. The resulting
occupancy grid map is scattered, while the ground truth is of a sharp square shape.
For data analysis, only pixels relevant for collision avoidance are considered. This is
done by keeping only the interior outline of the found obstacle pixels, which are used to
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Figure 5.1: Comparison between an occupancy grid map and the ground truth to evalu-
ate the accuracy of 3Di camera and LiDAR sensors. Free space, obstacles,
and unknown terrain are color-coded, while the red outline represents the
ground truth. Only the interior obstacle boundaries from the scattered
occupancy grid for error analysis.

calculate the error between the obstacles found and the ground truth distances, and
thus results in the accuracy value µ.

To analyze the repeatability, the standard deviation on the datasets is calculated
by comparing the trueness µi of one frame i to the trueness of one dataset µ with n
frames in total. This results in the repeatability

σ =

�	n

i=1(µi − µ)2

n
. (5.2)

5.1.3 SLAM Parameters

SLAM parameters are used to tune the SLAM characteristics of the used ROS2 SLAM
Toolbox. The parameters are divided into correlation parameters and map and general
SLAM parameters. Correlation parameters define scan matching characteristics, while
the map and general slam parameters specify variables such as a coefficient of trust in
odometry and map update intervals.

The map parameters are especially relevant for the following experiments, as they
define the accuracy of the occupancy grid map. As the map is the basis for the analysis,
the resolution defined in the SLAM settings represents a bottleneck for accuracy analysis.
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For the accuracy and repeatability experiments, the map resolution is set to 0.005m.
With the angle increment between depth values of the incoming scan measurements and
the measurement ranges of the used sensors, a map resolution of 0.005m provides maps
without a lack of information on the sensors FOV. For the experiments on obstacle and
cliff detection, the resolution is set to 0.05m. As the scene for this test is wider, a higher
resolution ensures a consistent mapping. For all tests, scan matching is deactivated, to
achieve better comparison between the 3Di camera and the LiDAR. This is relevant,
since LiDAR has a horizontal FOV of 360◦ and therefore provides more information
than the camera with a horizontal FOV of 68◦, which will result in better scan matching
and more accurate maps under uneven conditions.

5.1.4 Experimental Setup for Static Sensor Analysis

The objective of this experiment is to analyze the performance of the 3Di camera under
various conditions to determine the optimal sensor settings for a subsequent SLAM
algorithm. The sensor is tested with all use cases (cf. Table 3.1) at different distances,
light conditions, and surface materials to evaluate its accuracy in terms of trueness and
precision.

For each measurement procedure, lighting and surface material are specified. One
procedure consists of several measurements at predefined distances from the surface.
The sensor is analyzed from 0.05m to 5m. With the sensor specifications in Table 3.1
only the maximal unambiguous range can be calculated, but information regarding a
minimum range is not known. Therefore, the spatial increments at closer distances
to the analyzed surface are set smaller. The test points are at 0.05m, 0.1m, 0.15m,
0.2m, 0.25m, 0.5m, 1m, 1.5m, 2m, 2.5m, 3m, 3.5m, 4m, 4.5m, and 5m. At each
distance, ten consecutive measurements are recorded for each of the four camera use
cases to improve statistical repeatability. Afterward, a 20× 20 pixel sample is extracted
from the center of each image. The narrow sample region facilitates the reduction of
potential distortions from lens effects and edge artifacts. This sample serves as the
basis for further analysis.

At first, a comparison of all use cases over the distance is provided. The measurement
is compared by its trueness µ at each measurement position. From these data, a
conclusion about the reliable measurement range of each use case is made. Subsequently,
the mean error across all measurements in the reliable range is determined by calculating
the mean trueness µ to ensure a robust comparison of all use cases.

While this experiment serves to analyze the sensor itself, the following focus on the
sensor in SLAM applications.
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(a) white walls (b) black fabric (c) foam material

Figure 5.2: Experiment setup to test the accuracy and repeatability of the 3Di camera
and the LiDAR in SLAM. To compare the results with different surfaces
involved, one wall at a time is replaced with the material of interest.

5.1.5 Experimental Setup for Accuracy and Repeatability Tests

in SLAM

For this experiment the setup is installed as in Section 3.4 with the depth camera
mounted on the Turtlebot. The robot is positioned in a 1.2 m × 1.14 m square space
surrounded by four walls, ensuring a controlled test environment. The goal is to
analyze sensor accuracy and repeatability under the introduced light conditions and on
the different surface materials. The camera operates in use case 0, see Table 3.1 for
specifications. The LiDAR sensor is used to perform the same tests with a state-of-the-
art sensor for comparison.

For each scenario, five datasets are collected using SLAM. For map generation the
robot rotates 360◦ with a rotation velocity of 0.15 rad/s. The resulting map from one
frame can look like Figure 5.1. By comparing the received data with the ground truth
map, accuracy and repeatability can be calculated for every scenario. The setup for
testing the different light conditions is shown in Figure 5.2a. The impact of different
surface materials is assessed by replacing one of the white walls with black fabric, see
Figure 5.2b, or foam, see Figure 5.2c to evaluate surface effects.

5.1.6 Experimental Setup for Obstacle and Cliff Detection

Accuracy Tests

To test setup accuracy in a practical context, SLAM is performed in an environment
with some difficulties, such as obstacles of small height, and a cliff area.

The experiment is carried out on the landing of a staircase, as illustrated in
Figure 5.3a and Figure 5.3b. This environment is selected to assess the system’s
capacity to detect both obstacles, such as stairs leading upward, and cliffs, such as stairs
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(a) View on the scene from the staircase with the ground truth plane marked in black and red

(b) View on the scene from the white wall with the cliff marked in red.

Figure 5.3: Scene for evaluating the system’s ability to detect obstacles and cliffs. The
red and black lines indicate the ground truth of the floor plane, with the
red marking the cliff section. The blue marker is for orientation in the scene
and in the output map.
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leading downward. The robot is positioned on the landing platform, which measures
13.7m2 and is surrounded by a white wall. The floor and the lower part of the wall
are covered with gray tiles. As illustrated in Figure 5.3a, a sketch of the floor plane
is included, representing the ground truth that is the anticipated result of the SLAM
algorithm. The red border delineates the cliff section of the environment. The blue
marker is for orientation in the scene and in the output maps.

The test is performed once with the 3Di camera and with the LiDAR scanner. The
robot drives with an angular speed of 0.15 rad s−1 and a linear speed of 0.2m s−1. The
sensor is analyzed using the error between the ground truth map and the resulting
map. As cliff detection from LiDAR data is a known challenge, the analysis is carried
out separately. First, all map borders except the cliff, represented by black lines in
Figure 5.3a, are analyzed in one patch. Then, the data belonging to the cliff, marked in
red in Figure 5.3a, are analyzed separately.

5.2 Results

In this section, the results of the experiments are presented and analyzed. At first,
the results of the static sensor analysis are presented, followed by the results on the
accuracy of the 3Di sensor in SLAM applications.

5.2.1 Static Sensor Analysis

In Figure 5.4a and Figure 5.4b the trueness µ of the sensor is illustrated for the four
different use cases measured in a room with closed blinds. The x-axis represents the
measurement distances in meters, while the y-axis displays the trueness, also called
absolute error, in meters. The data is displayed as an error bar, where each data
point represents the trueness at a specific position, and the bars represent the standard
deviation of the measurement data at this position.

For the first measurement at distance 0.05m, see Figure 5.4a, all use cases show an
error in their maximum ambiguity range according to Table 3.1. Use case 1 and use case
3 show the minimum errors from distance 0.1m on, while use case 2 has inaccuracies
until a distance of 0.2m with errors in the range of 2.45m to 2.4m. Use case 0 and
use case 3, which have an unambiguous range of more than 7m, show a trueness of
0.03m over the distance from 0.15m to 5m. Nevertheless, in both use cases, use case 0
and use case 3, the standard deviation increases with larger distances reaching 0.67m
and 0.62m respectively at a distance of 5m between the surface and the camera, see
Figure 5.4b. At distance 3.5m use case 3 shows a standard deviation 68% smaller than
the standard deviation of use case 0, and at 5m the standard deviation is again 8%
smaller compared to use case 0.

Use case 1, which has an unambiguous range at 2.5m, shows a high trueness from
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(a) Depth error for each use case over a distance from 0.05m to 1m
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Figure 5.4: Depth error progression over the distance. For each use case the absolute
mean error and the standard deviation is observed at distances from 0.05m
to 5m.
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0.25m to 2m. At 2.5m the error rises to 0.66m, and stagnates again at 2.5m at
the distance from 3m to 4.5m, see Figure 5.4b. While the standard deviation in
the measurements remains zero for the whole distance, these two data points, where
the measurement distance between the surface and the camera is a multiply of the
unambiguous range, the standard deviation is at 1.1m. Use case 2 has a calculated
unambiguous range of 1.9m. As soon as the unambiguous range is exceeded the error
rises to 1.9m. At 4m, when the unambiguous range reaches twice the distance, the
error rises to 3.8m.

The mean trueness of the sensor demonstrated for different lighting conditions and
each designated use case is shown in Figure 5.5. The x-axis is divided in three sections
to represent the different scenarios: closed blinds, office lighting, and daylight. The
first section of the figure presents the results obtained in a darkened room with closed
blinds, the middle section presents the results under office lighting conditions, and the
final section on the right presents the results when the sensor is utilized in daylight
conditions. The y-axis displays the mean trueness in meters with values ranging from
−0.1m to 0.1m. The data is visualized using box plots, where the horizontal line
represents the median error, and the box shows the interquartile range (IQR), covering
the middle 50% of data points. Whiskers extend up to 1.5 times the IQR, with values
beyond this range considered outliers and excluded from the plot.

In the context of use case 0 in Figure 5.5, measurements at distances ranging
from 0.1m to 5m are regarded. The median error demonstrated stability at −0.024m,
consistent under both closed blinds and office lighting conditions. However, in daylight
conditions, the error increased to −0.043m. The uniformity of the measurement
spread remained consistent across all lighting conditions, as evidenced by the consistent
dimensions of the box plots with an IQR of 0.03m.

Furthermore, Figure 5.5 displays the trueness of use case 1, where measurements in
a range from 0.2m to 2.0m are considered. The absolute median error measured in the
scenarios with closed blinds and office lighting is 0.006m. At daylight conditions the
absolute median error rises to 0.014m. This dataset demonstrates the highest degree of
accuracy, exhibiting consistent performance across all lighting environments.

For use case 2, the measurement range is from 0.1m to 1.5m. Figure 5.5 indicates
a high degree of measurement inaccuracy, especially in scenarios with closed blinds
and office lighting. In these cases, 50% of all recorded errors fall within the range of
−0.04m to 0.04m. However, in daylight conditions, the variability in measurements is
reduced by 57%, yet the median error shifts downward to −0.058m.

The data from use case 3 features measurements ranging from 0.1m to 5m, exhibiting
a pattern analogous to that observed in the dataset of use case 0 in Figure 5.5. The
median error remains constant at 0.015m for both, closed blinds and office lighting
conditions. However, in daylight exposure, the median error increases by 130%, while
the variance in the measurement values remains constant, as demonstrated by the
unaffected box size of 0.03m.
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Figure 5.5: Mean depth error at three different light conditions, closed blinds, office
lighting, and daylight, for each use case over its range

The mean trueness of the sensor varies across different surface materials for each
use case, as shown in Figure 5.6. The x-axis is split into three sections to outline the
different surface materials. The initial section of the figure depicts measurements taken
on black fabric, the middle section corresponds to foam, and the last section displays
results for glass. On the y-axis the mean error is represented with a range from −2.6m
to 0.8m.

The results demonstrate similar behavior for both use cases 0 and 3, which utilize
dual-frequency modulation for distance estimation. For black fabric and foam, 50% of
the data points have an absolute trueness between 0.035m and 0.88m. In the scenario
on glass, the median error increases to 0.24m, with 50% of the data points falling
between 0.07m and 0.34m. An error of 0.4m suggests that the sensor detected the
surface behind the glass rather than the glass itself, as this is the distance between the
wall and the glass surface in the setup.

In the context of use case 1 in Figure 5.6, the median error on black fabric is
observed to be −0.035m, which is 45% lower than the median error of use case 0.
However, the median error on foam for use case 1 is found to be twice that of use case 1,
though the variance in the primary data points is reduced by 48%. When measuring
glass, a median error of 0.18m is observed. In this scenario, 50% of the data points
around the median exhibit an error range from −1.99m to 0.34m, representing the
widest range of deviations among all use cases.
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Figure 5.6: Mean depth error on surface of black fabric, foam, and glass material for
each use case over its range

Use case 2 proves an error range independent of the targeted surface material, as
can be seen in Figure 5.6. Across all tested materials, the measurement error spans a
range greater than 2.2m. The median error is −1.9m for black fabric, −1.8m for foam,
and −1.55m for glass.

5.2.2 Accuracy and Repeatability in SLAM

Figure 5.7 shows the error distribution of the sensor under three different lighting
conditions, daylight, closed blinds, and office lighting. The data is visualized in box
plots, where red boxes represent the data generated with the 3Di camera as used sensor
and blue represents the data from the LiDAR sensor. The y-axis shows the mean error
for all datasets. The axis spans an error range from −3.5mm to 0.5mm. In addition to
the accuracy data, the repeatability of all scenarios is displayed in Table 5.1.

The camera shows identical accuracy under all tested light settings. The error
ranges from −2.0mm to −3.5mm with an IQR from −2.5mm to −3.0mm.

The LiDAR performs worst in the dark room, where the measured errors range from
−1.5mm to 0.5mm, while the error at office lighting and during daylight conditions
is exactly −0.5mm for a minimum of 50% of the data points over all created maps.
Therefore, no whiskers appear in the box plot. All errors unequal to −0.5mm are
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Figure 5.7: Comparison of the mapping error of the 3Di camera and the LiDAR sensor
in SLAM at three different light conditions, closed blinds, office lighting,
and daylight

Table 5.1: Comparison of the mapping repeatability of the 3Di camera and the LiDAR
sensor in SLAM at different light conditions

σclosed blinds [mm] σoffice lighting [mm] σdaylight [mm]

3Di Camera 0.0501 0.0887 0.0532
LiDAR 0.0289 0.0325 0.0376
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Figure 5.8: Comparison of the mapping error of the 3Di camera and the LiDAR sensor
in SLAM on scenes with different surface materials involved

considered outliers.

Additionally, over all three experiments the repeatability of LiDAR data is 95%
better than the repeatability of camera data. According to Table 5.1, the worst
repeatability in the test data appears in the camera data from the tests at office lighting,
while the LiDAR data from the tests with closed blinds show the best repeatability
values. The highest discrepancy in repeatability is with office lighting conditions, where
the repeatability value of the camera is 2.73 times higher than the repeatability of
LiDAR data.

The test results for the accuracy on different surface materials are displayed in
Figure 5.8. The data is again displayed in box plots. The y-axis represents the mean
error reaching from −4.5mm to 1.5mm. The x-axis is divided in two sections, each
representing one material, black fabric on the left, foam on the right. As the tests on
glass exhibit a median depth error of minimum 0.24m in the static analysis, it will not
be further investigated on accuracy in SLAM context. The repeatability for each case
is presented in Table 5.2.

The camera accuracy in SLAM mapping with different materials is displayed in red.
The accuracy of the camera data with black fabric involved in the scene delivers exactly
the same result as with different light conditions. For the tests with foam included in
the scene, the median error decreased from −2.5mm to −2.0mm, while the accuracy
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Table 5.2: Comparison of the mapping repeatability of the 3Di camera and the LiDAR
sensor in SLAM with different surface materials involved in the scene

σblack fabric [mm] σfoam [mm]

3Di Camera 0.0789 0.0800
LiDAR 0.0216 0.1400

shows a four time higher variance of 2mm. Moreover, the repeatability of the measured
datasets is 10% smaller than the dataset with office lighting conditions, which represents
the worst repeatability of the camera data.

The LiDAR data increased their IQR for both scenarios over the measurements at
different light conditions. With black fabric involved, the errors range from −1.5mm to
0mm. With foam material, the inaccuracy increased to errors from −2.5mm to 0.5mm.
This scenario shows the least repeatable results, while the LiDAR data tested on black
fabric shows the best repeatability.

5.2.3 Obstacle and Cliff Detection Accuracy

Figure 5.9 displays the map generated using the 3Di camera under test. The camera
map is displayed in red, the ground truth is shown in green, and overlapping areas in a
mix of both. As it is commonly done in occupancy grid maps, white represents free
space and gray represents unknown areas. For orientation, the blue marker is displayed
on the same positions as in Figure 5.3a. Additionally, the area of the stairs upward and
downward is labeled.

In areas where the ground is not enclosed by stairs, the camera detects the barriers
at 0.05m to 0.1m closer than the ground truth distance. The highest inaccuracies are
observed in the corner regions. For the cliff area, where the stairs lead downward, the
detection error remains within ±0.05m.

In Figure 5.10 the map result measured with the LiDAR sensor is shown. LiDAR
data is displayed in blue, the ground truth is green and overlapping areas are in a mix
of both. Again, white represents free space and gray represents unknown areas. For
orientation, the blue marker is displayed on the same positions as in Figure 5.3a and
the area of the stairs upward and downward is labeled.

In comparison to the camera data in Figure 5.9, it can be seen that SLAM fed with
LiDAR data cannot detect the stairs downwards as barrier. The sensor detects the wall
over 6m ahead and measures the stair railing to the left and to the right. Additionally,
the map generated from LiDAR data shows higher inaccuracies in the corners.

These maps lead to the trueness values for each scenario, listed in Table 5.3. The
map built from camera data achieves 24.1% higher accuracy with obstacle detection in
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Figure 5.9: Comparison of the map generated using 3Di camera data (red) compared
to the ground truth obstacles (green)

Figure 5.10: Comparison of the map generated using LiDAR data (blue) compared to
the ground truth obstacles (green)
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Table 5.3: Comparison of the mapping trueness of SLAM in a practice context with
3Di camera data and LiDAR data

3Di Camera LiDAR

trueness µ for obstacle detection [m] 0.063 0.083
trueness µ for cliff detection [m] 0.052 6.250
total trueness µtotal [m] 0.062 1.478

this scenario. For cliff detection the error within LiDAR data is 6.35m, which, as seen
in Figure 5.10, is because the LiDAR scanner detects the wall ahead while ignoring the
level-change in the floor plane. The 3Di camera shows a trueness of 0.052m. Summing
this up in a weighted total trueness, the camera has a accuracy 95.8% better than the
LiDAR.

5.3 Discussion

In this section, the previous results are discussed, outlining the suitable sensor settings
for the Infineon 2877C iToF camera for SLAM applications and the achievable accuracy.

5.3.1 Sensor Accuracy

While the used 3Di camera shows high accuracy over all use cases and distances, some
data points in use case 1 stand out. Not only that the minimum range for this use case
is double to the minimum measurable range of the other use cases, additionally the
error increases at distance 2.5m and 5m. As this is very close to the sensors maximum
unambiguously measurable distance of 2.49m, according to Table 3.1, it is likely that
the sensor receives ambiguous signals. For some samples, the reflection represented
the beginning of the wave, which leads to measurements close to zero, while for other
samples the reflection represented the end of one wave over the wavelength resulting in
distance measurements close to 2.49m.

Analyzing Figure 5.4a and Figure 5.4b over the distances allows a more precise
use case specification. The minimal distance is added to the specifications in Table 3.1
resulting in Table 5.4.

In order to determine the most suitable sensor for different lighting conditions and
materials, the mean absolute median error for the 3Di camera and the LiDAR is listed
in Table 5.5. This value serves as a coefficient for robustness against variations in
lighting and material properties. This table shows use case 1 to achieve the highest
trueness, followed by use case 3 and use case 0.

A comparative analysis of the use cases reveals that use case 0 and use case 3 are
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Table 5.4: Adapted use case specification of Infineon iToF sensor 2877C

Parameter use case 0 use case 1 use case 2 use case 3

fmod,1 [MHz] 80.32 60.24 80.32 80.32
fmod,2 [MHz] 60.24 - - 60.24
fmod,dual [MHz] 20.08 - - 20.08
Max Distance [m] 7.47 2.49 1.87 7.47
Min Distance [m] 0.10 0.20 0.10 0.10
Max Exposure [µs] 1200 1000 1000 640

Table 5.5: Results on trueness of Infineon iToF sensor 2877C

use case 0 use case 1 use case 2 use case 3

trueness µ under different
light conditions [m] 0.0303 0.0090 0.0332 0.0227

trueness µ on different
materials [m] 0.1133 0.0957 0.5782 0.1167

trueness µ on different
materials without glass [m] 0.0510 0.0555 0.1047 0.0525

mean overall robustness [m] 0.0465 0.0282 0.0690 0.0376

the most suitable for SLAM applications. However, in scenarios where the presence of
an obstacle is known to be within a short range of maximum 2.5m, use case 1 can be
employed to obtain more reliable data, as it has been shown to demonstrate the best
performance under varying lighting conditions and with different materials.

5.3.2 Accuracy and Repeatability in SLAM

For the measurements with foam, both, the LiDAR and the 3Di camera exhibited
their least performance. Moreover, while all other measurements predominantly show
negative errors, the measurements on foam include errors closer to zero. This means
that larger distances were measured and suggests that multipath interference problems
occur with this material.

For all other scenarios except foam, the accuracy in SLAM shows no sensitivity
to different light conditions or black fabric. Since the IQR box for camera data starts
at −2.5mm for all tests, this shows a constant offset. The offset can be explained by
inaccuracies in the transformation from the camera position to the robot base. The
same phenomenon is seen in LiDAR data with a shorter offset of −0.5mm.

However, the repeatability suggests that a higher sample number for camera data
would be necessary to allow more accurate conclusions.
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5.3.3 Obstacle and Cliff Detection Accuracy

The findings of the experiments regarding the obstacle and cliff detection accuracy
demonstrate significant discrepancies between camera-based and LiDAR-based mapping
systems, particularly with regard to their capability for cliff detection.

The findings demonstrate that in environments where floor structures are unknown,
the camera-based approach exhibits significantly superior performance. The camera is
able to detect cliffs 0.6m preemptively, while the LiDAR does not detect them at all.
Although this is traced back to the working principle of this state-of-the-art LiDAR,
this shows the benefit of using a 3Di camera for SLAM applications. For such cases,
the Turtlebot is equipped with a cliff sensor, which is mounted in the front area of
the robot pointing downward to check for cliffs and stops driving as soon as a cliff is
detected. Although these sensors detect cliffs only at 20mm in advance, the camera
setup detects them 20 times earlier, thereby improving predictive planning methods.

The second observation concerns measurement inaccuracies in corners. This phe-
nomenon is not detected in the previous experiment regarding the map accuracy and
repeatability. A fundamental distinction between the present experiment and the previ-
ous lies in the manner in which the robot traverses the environment. In the previous
experiment the robot remained on the same position only executing a 360◦ rotation.
However, the incorporation of continuous movement in the present experiment intro-
duces novel sources of errors that may be attributed to data overload and inaccuracies in
odometry. Furthermore, the misalignment of sensors due to movement, in combination
with delays in data processing, has the potential to amplify the observed inaccuracies,
particularly in areas characterized by corners. The absence of scan matching in this
configuration precludes the possibility of correcting odometry drift, thereby propagating
errors in localization. This finding indicates that the SLAM algorithm, when fed with
LiDAR data, exhibits a higher reliance on scan matching as with camera data.

5.4 Summary of Results

The analysis of static sensor data indicates that use case 3 is the most suitable for
SLAM applications. Use case 3 and use case 0 exhibit the widest measurement range,
while the mean error in use case 3 is 0.038m, 20% less than with use case 0. Use case 1
can be considered for short-range measurements up to 2.5m, as it demonstrates the best
trueness of 0.028m under varying lighting conditions and different materials, further
decreasing the error by 25%.

Errors observed in SLAM accuracy tests differ from those seen in static sensor tests.
In static tests, inaccuracies are primarily attributed to variations in lighting conditions
and material properties. However, during the SLAM accuracy tests, additional errors
emerge and which can be attributed to factors such as transformation inaccuracies
between the sensor and the robot base, or delays in data processing. These issues
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contribute to greater inaccuracies for the 3Di camera and the LiDAR sensor, especially
when scanning larger environments.

The accuracy of mapping is known to increase with larger environments, which
require greater robot movement for scanning. If the robot remains stationary and
performs a 360◦ rotation, errors for obstacles scanned with the 3Di camera are at a
mean of −2.5mm, and at −0.5mm with the LiDAR scanner. However, in practical
movement tests, where the robot navigates the environment, errors increase due to
accumulation of odometry drift and the absence of scan matching. Under consideration
of the different map resolutions, the error increases from the first to the second test
by at least 26% for the camera data, and by at least 66% for the LiDAR tests. This
is particularly evident in corner areas, where movement amplifies misalignment and
data overload further affects accuracy. The LiDAR-based SLAM system typically relies
heavily on scan matching. Conversely, the LiDAR-based SLAM system supplied with
camera data is unable to perform scan matching effectively due to its constrainted field
of view.

In the context of cliff identification, the approach with the camera as sensor has
been demonstrated to be significantly more effective than the LiDAR scanner. The
camera detects cliffs preemptively from a maximal distance of 0.6m, while LiDAR does
not detect the cliff at all. As a fallback technology for LiDAR sensors, the Turtlebot
is equipped with a front-mounted cliff sensor that detects cliffs 20mm in advance.
However, this fallback technology does not contribute to preemptive navigation and
path planning.

With the employed SLAM settings, LiDAR offers enhanced accuracy for scanning
small environments with minimal robot movement involved in the scanning process.
However, the 3Di camera’s capacity to preemptively detect hazardous areas, such as
cliffs, justifies its utilization in SLAM applications, thus enhancing navigation safety.
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CHAPTER 6

Conclusion & Outlook

This thesis evaluates the feasibility of iToF sensors for unmanned ground vehicle (UGV)
applications. The primary objective is to utilize the iToF camera as the sole sensor for
SLAM, exploiting its ability to provide direct depth measurements while maintaining a
compact and cost-effective design. A review of state-of-the-art methods highlights key
challenges in SLAM: vision-based algorithms are affordable but struggle with lighting
variations and scale estimation, whereas LiDAR-based SLAM offers high accuracy at a
higher cost. This work aims to bridge the gap between these approaches by integrating
iToF sensor data into a LiDAR-based SLAM algorithm.

The proposed setup for the integration approach is a Turtlebot 4 Lite mobile robot
platform combined with an Infineon 3Di depth sensor. The RPLIDAR A1M8 is used
as a comparison technology. The used SLAM algorithm is the ROS2 SLAM Toolbox.
To prepare the depth image from the Infineon sensor for the LiDAR-based SLAM
algorithm, processing steps filter the image to keep only the obstacles relevant for
collision avoidance. Additionally, a dedicated processing step analyzes the iToF data to
detect cliffs and prevent drop-offs, enabling the system to identify cliffs in advance, an
ability typically not possible with conventional 2D LiDAR-based SLAM approaches
that rely solely on LiDAR data.

With this setup, various experiments are performed to test the 3Di camera in SLAM
applications, with a special focus on the accuracy under different light conditions and
on different surface materials. With the gained information, the following statements
regarding the research questions are made.
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6.1 Research Questions

With the known challenges in SLAM applications the first research question reads as
follows:

Research Question 1

Is it feasible to run SLAM algorithms for mobile robot platforms using solely the
depth information of a ToF camera?

Using an indirect ToF camera as a single sensor in SLAM applications is feasible, but
reliable odometry information about the robot is essential. As a 2D LiDAR-based SLAM
approach is deployed in the proposed integration approach, the narrow horizontal FOV
of the iToF camera limits the amount of information available to the SLAM algorithm
after the transformation from 3D to 2D space. This makes the processed iToF data
alone insufficient for the odometry correction. However, iToF camera data can be
modified for use in LiDAR-based SLAM in general. The thesis suggests that a wider
horizontal camera FOV is required to accurately perform SLAM functions additional to
environment mapping, such as feature matching and loop closure, and thus correct the
robot’s odometry.

In order to evaluate the suitability of an iToF camera for SLAM, the reliability of
depth measurements under various environmental conditions is crucial. IToF cameras
depend on modulated light signals, which implies that their performance may be
influenced by lighting conditions and the properties of the surface materials. This leads
to the second research question:

Research Question 2

Is the chosen ToF camera more robust against different light conditions and
materials in SLAM applications compared to an UGV setup equipped with a
state-of-the-art LiDAR sensor?

The used iToF camera shows consistent behavior under different lighting conditions
in both stand-alone and SLAM applications, but cannot match the performance of
LiDAR data. It effectively handles light absorbing materials such as black fabric.
However, with uneven materials the results do not match the behavior observed in the
other scenarios, since multipath interference problems occur. Additionally, while LiDAR
can detect objects behind glass, the iToF camera provides various ambiguous depth
measurements on glass surfaces. Nevertheless, with the implemented algorithm, the
camera is capable of identifying glass by detecting the transition where it meets another
visible material, as it analyzes the entire 3D scene within the FOV. Conversely, the
LiDAR system is only capable of detecting obstacles that are precisely at its mounting
height.
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6.2 Outlook

Although the system can be used to build environment maps with SLAM, further
improvements could enhance robot pose estimation and overall mapping accuracy.

One potential enhancement to consider is the utilization of multiple iToF sensors
mounted to achieve a wider horizontal FOV. This approach could facilitate scan
matching in a manner conventional to LiDAR-based SLAM, thereby enhancing odometry
correction and data association. Alternatively, the implementation of a scan matching
algorithm during the preprocessing stage, incorporating a comparison between depth
images, could increase the accuracy while preserving the benefits of LiDAR-based
SLAM.

Alternatively, if the key advantages of LiDAR-based SLAM, such as fast processing
and occupancy grid mapping, are not a priority, the iToF sensor can be investigated for
visual-based SLAM. Typically, RGB-D cameras are used in this approach, and further
analysis is needed to determine whether iToF data is sufficient for similar applications.
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