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Abstract
Understanding the actions and context within a video comes naturally to human observers.
However, replicating this ability through artificial intelligence to automate the time-
consuming manual video analysis in areas like security and healthcare remains a challenging
task in computer vision. While most existing video understanding algorithms try to localize
and classify all actions within a video, they often depend on heavily annotated datasets or
can not deal with the complexities found in multi-person environments. Consequently, in
many real-world environments like the operating room (OR), featuring multiple individuals
performing concurrent actions and experiencing frequent occlusions - and where public
datasets are scarce due to the sensitive nature of the video content - a significant gap
remains in automatic action detection and video summary generation.

This thesis addresses these gaps with two key contributions. First, it presents the
Unsupervised Spatio-Temporal Action Boundary Localization (UnSTABL) framework,
which leverages person-specific action information to localize significant action boundaries
in an unsupervised manner. By focusing on each individual independently, the framework
is able to effectively handle multi-person environments. Secondly, it improves the base
framework specifically for the challenging OR environment. This "collision-robust" frame-
work successfully handles brief person overlaps during boundary detection. It additionally
improves the accuracy of a state-of-the-art person tracker by detecting and correcting ID
swaps using the previously extracted action information.

To evaluate the performance of our proposed contributions, we conduct a two-step
validation process. Using two datasets, the UnSTABL framework is initially benchmarked
against existing unsupervised action boundary detection methods. This benchmark estab-
lishes a performance baseline in single-person environments, revealing that our framework
is able to identify action boundaries with state-of-the-art accuracy. It successfully detects
ground-truth action segments of various durations, ranging from several seconds up to
almost a minute, showing a high flexibility in action length.

In the second part of the evaluation, we perform a qualitative assessment of the
framework’s performance in the complex OR setting to verify the benchmark results in
multi-person environments. We assess the accuracy of the detected action boundaries, the
improvements in person tracking, and identify the limitations of our proposed framework.
While our person-specific approach proved effective in moderately crowded scenes, deliver-
ing similar results as in both benchmarks, densely crowded and collaborative tasks reveal
certain limitations. Due to continuous, long person overlaps, neither framework reliably
detects action boundaries in these scenarios.

Despite these limitations, the framework demonstrates strong results in moderately
crowded scenes, making unsupervised action boundary detection feasible in multi-person
environments without sacrificing accuracy. Additionally, the proposed ID Swap Correction
Module is able to correct about 50% of the tracker’s incorrect ID Swaps, successfully
improving the tracking accuracy in this challenging setting.
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Kurzzusammenfassung
Menschen erfassen den Kontext und die Handlungen in Videos intuitiv und schnell. Die
Entwicklung intelligenter, automatisierter Systeme, die in der Lage sind, die zeitaufwändige
manuelle Videoanalyse in Bereichen wie dem Gesundheitswesen oder der Überwachung zu
ersetzen, bleibt jedoch eine große Herausforderung im Bereich der Computer Vision.

Aktuelle Algorithmen im Bereich der automatisierten Videoanalyse zielen darauf ab, alle
Aktionen im Video zu lokalisieren und zu klassifizieren. In den meisten Fällen benötigen
diese Algorithmen jedoch große Datensätze, um ihre Netzwerke zu trainieren, oder sie
scheitern an der Komplexität von Mehrpersonenumgebungen. In hochkomplexen Umge-
bungen wie dem Operationssaal (OP), wo öffentlich zugängliche Datensätze aufgrund ihres
sensiblen Inhalts praktisch nicht existieren, besteht daher eine erhebliche Forschungslücke
im Bereich der automatisierten Aktionserkennung und Videozusammenfassung.

Diese Masterarbeit schließt diese Lücke durch zwei wesentliche Beiträge: Erstens zeigt
das entwickelte UnSTABL-Framework, dass es möglich ist, signifikante Aktionsübergänge
in komplexen Ein- und Mehrpersonenumgebungen auf der Basis von personenspezifischen
Aktionsinformationen zu identifizieren, ohne dass Trainingsdaten zur Verfügung stehen.
In einem zweiten Schritt wird das Basis-Framework speziell für die anspruchsvolle OP-
Umgebung weiterentwickelt. Das "kollisionsrobuste" Framework ist in der Lage, kurze
Überlappungen von Personen bei der Aktionserkennung zu berücksichtigen. Darüber
hinaus verbessert es die Genauigkeit eines State-of-the-Art-Personentrackers, indem es
ID-Verwechslungen anhand der extrahierten Aktionsinformationen erkennt und korrigiert.

Zur Bewertung des Frameworks wird ein zweistufiger Evaluierungsprozess durchgeführt.
Zunächst wird das UnSTABL-Framework anhand von zwei Benchmark-Datensätzen mit
bestehenden State-of-the-Art-Methoden verglichen. Dabei können wir zeigen, dass unser
Framework in der Lage ist, Handlungsgrenzen in Ein-Personen-Umgebungen mit der
gleichen State-of-the-Art-Genauigkeit zu erkennen. Die identifizierten "Ground-Truth"-
Aktionen umfassen Längen von wenigen Sekunden bis fast zu einer Minute, was eine sehr
hohe Flexibilität hinsichtlich der erkennbaren Aktionslängen zeigt.

Im zweiten Schritt erfolgt eine qualitative Evaluierung beider Systeme im komplexen
OP-Umfeld, um die Benchmark-Ergebnisse in Mehrpersonen-Szenarien zu validieren,
aber auch um die Grenzen unseres Ansatzes aufzuzeigen. Gleichzeitig evaluieren wir die
Verbesserungen im Personentracking durch das "ID-Swap-Erkennungsmodul". In Szenen
mit gelegentlichen Überlappungen erzielt unser Framework ähnlich gute Ergebnisse wie in
beiden Benchmarks. Bei Videos mit längeren oder permanenten Personenüberlappungen
- wie etwa bei der Zusammenarbeit zweier Personen oder bei Arbeiten an einem dicht
befüllten OP-Tisch - ist unser Framework jedoch nicht in der Lage, die Aktionsgrenzen
aufgrund dieser Überlappungen zuverlässig zu erkennen. Trotz dieser Einschränkungen
ist das "ID-Swap Detection Module" in der Lage, ca. 50% der falschen ID-Swaps des
State-of-the-Art "Person Tracker" zu korrigieren und damit die Genauigkeit in diesem
anspruchsvollen Umfeld deutlich zu verbessern.
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1 Introduction
In an effort to develop an intelligent operating room (OR), it is essential to obtain a full
understanding of the actions that occur within it. Current state-of-the-art action detection
algorithms address this challenge by attempting to localize and classify all actions within a
video. These algorithms can serve as the foundation for an intra-operative decision-support
system, that could assist the surgeon by identifying surgical actions, recognize deviations
from the standard procedure, suggest future steps, and produce concise summaries for
documentation purposes. However, the primary issue such algorithms face is the accurate
temporal localization of actions, especially in complex and crowded environments. To
address this, in this thesis we will introduce an unsupervised action boundary localization
algorithm capable of handling the complexities found in an OR environment.

1.1 Challenge
The OR presents a complex environment with numerous individuals dressed in similar
attire, performing concurrent activities, and experiencing frequent occlusions and overlaps,
as shown in Figure 1.1. In addition to that, surgical data is highly sensitive, limiting the
availability of publicly accessible datasets that contain videos of surgical procedures.

Figure 1.1: OR Environment: Illustration of the complexity within a OR, featuring
multiple persons dressed in a similar attire and engaged in various actions.

Current state-of-the-art temporal action localization frameworks are all fully supervised,
making them unsuitable for environments without labeled datasets. Although recently,
researchers have started to develop unsupervised methods for action boundary detection
and summary generation, most of these approaches rely on globally assessing frame
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1 Introduction 1.2 Contribution 2

similarity to detect action changes. However, this method proves to be very ineffective in
multi-human environments due to the high amount of concurrent actions occurring within
a single frame. As a result, a significant gap remains in unsupervised action boundary
detection, particularly in complex multi-person scenes.

1.2 Contribution
In this thesis, we will introduce the Unsupervised Spatio-Temporal Action Boundary
Localization (UnSTABL) framework, which identifies person-specific action boundaries
in an unsupervised manner, making it adaptable to various environments. The framework
extracts action information of each individual separately, successfully dealing with multi-
person environments, and groups these person-specific feature vectors by similarity to
determine significant action changes. These timestamps of key-action transitions can be
used to produce concise video summaries, as shown in Figure 1.2, or to provide temporal
action proposal segments for a subsequent action recognition stage.

Figure 1.2: Video Summary Generation in OR: By identifying person-specific action
boundaries, the UnSTABL framework is able to summarize 50 seconds of
video content with three key images that capture: (1) patient preparation, (2)
retrieving new utensils from the workstation, and (3) walk back to patient.

In a second step, we will introduce the "collision-robust" UnSTABL framework to
address the complexities found in an OR. This extension aims to mitigate the problem
of incorrectly detected collision-induced boundaries. Additionally, by leveraging action
information, the framework is able to improve the performance of the state-of-the-art
person tracker, successfully minimizing ID swaps in this challenging environment.

1.3 Thesis outline
Chapter 2 provides the necessary background for this thesis, introducing the underlying
concepts of person tracking, action recognition, and action localization tasks.

In Chapter 3, we provide a thorough overview of the current research in action recog-
nition, temporal action detection, and video summary generation while identifying gaps
and limitations.
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Chapter 4 introduces the UnSTABL framework, providing a detailed overview of the
methodologies and key components for a person-specific unsupervised action boundary
detection.

Chapter 5 presents further concepts, introducing the "collision-robust" UnSTABL
framework, designed to better handle person overlaps and incorrect tracking ID switches
in the complex OR setting.

In Chapter 6 we evaluate the framework on a series of datasets, first to establish a
performance baseline and then to validate these results in the real-world OR environment,
demonstrating promising results and limitations.

The final Chapter 7 completes the thesis with a summary of the evaluation results and
two propositions for future research.



2 Background
Understanding and interpreting video data is a crucial task in Computer Vision. To
better grasp the challenges and principles underlying action boundary detection and video
summary generation, this chapter provides a comprehensive overview of the fundamental
concepts and methodologies relevant to person detection and tracking, action recognition,
and action localization tasks.

2.1 Person Detection
Person detection, or more generally, object detection, is a fundamental task in computer
vision and image processing. Unlike image classification, which assigns a single label to
an entire image, object detection involves two steps:

• Object Localization: This step involves determining the exact location of each
object within an image, typically represented by bounding boxes (visible in Fig.2.1).

• Object Classification: Once the objects are localized, each detected object is
classified into one of the predefined categories - in this case, the class "Person".

Figure 2.1: Person Detection and Tracking: The detection algorithm identifies and
locates all persons in each video-frame (red bounding boxes), while the tracking
algorithm assigns a unique ID to each person throughout the video sequence.

Historically, object detection relied on matching handcrafted features like SIFT [1] and
HOG [2] to reference models. However, with recent advancements in deep learning, these
methods have largely become obsolete. Deep learning has introduced two main approaches:

• Two-Stage Approach: Models such as R-CNN [3], Fast R-CNN [4], and Faster
R-CNN [5] first generate region proposals and then classify them. Although accurate,
this method can be computationally intensive.

4
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• One-Stage Approach: YOLO (You Only Look Once) [6] simplifies the process by
predicting the objects location and class in a single step, making it faster and more
suitable for real-time applications.

As a result, deep learning has become the leading approach in object detection, surpassing
traditional methods in both performance and efficiency.

2.2 Person Tracking
Following the outputs generated by the Person Detector, the task of the Person Tracker
is to identify and track individuals across a series of video frames, even in the presence
of occlusions and complex (non-linear) motions. Multi-Object Tracking (MOT) extends
this concept by simultaneously tracking multiple individuals and objects within the same
scene, as illustrated in Fig.2.1. Object tracking employs two fundamental concepts:

• Appearance-Based Tracking: Appearance-based tracking relies on extracting
and utilizing visual features from video frames to identify and track individuals.
These features might include handcrafted features like color histograms, textures,
key points, or deep features extracted using Convolutional Neural Networks (CNNs).

– Advantages: The visual cues enable the tracking of objects or persons in
crowded scenes with similar motion patterns and allow re-identification (Re-ID)
across different camera perspectives or after periods of disappearance.

– Limitations: Appearance-based methods are sensitive to occlusions and
objects with similar appearance, as the visual features become less reliable and
can be computationally demanding.

• Motion-Based Tracking: Motion-based tracking primarily predicts an object’s
position based on its previous movements. This is typically achieved through the
utilization of a recursive algorithm, such as the Kalman Filter, to estimate the
person’s states in an optimal manner. The Kalman Filter operates in a two-step
process: First, it predicts the current state based on its previous states. Then, it
updates the predicted state with the current observations.

– Advantages: By predicting future positions, motion-based tracking can main-
tain a track even when the object is temporarily occluded.

– Limitations: If the motion model is inaccurate or for complex, erratic motions,
the tracker may drift, leading to incorrect predictions. Additionally, it will
struggle to distinguish between multiple objects with similar motion patterns.

Modern MOT systems combine appearance-based and motion-based techniques to achieve
robust and accurate tracking, even in challenging scenarios. These techniques are integrated
through an optimization algorithm like the Hungarian Algorithm to find the optimal
assignment of detected objects to existing tracks.

2.3 Action Recognition
Action recognition is the task of automatically identifying and classifying human actions
within a video sequence. In specific contexts, such as the 2017 ActivityNet Challenge [7],
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the task is defined as the classification of short, trimmed videos containing only one single
action class (e.g., walking, jumping). In order to provide a better understanding of the
topic, we will discuss the concepts, network models, and architectures currently employed
in state-of-the-art action recognition systems.

Spatiotemporal Features

In the context of action recognition, as well as motion detection and video analysis,
networks or algorithms typically process spatiotemporal features in order to capture both
spatial and temporal information within data. As the name says, they are a combination
of two components:

• Spatial Features: Spatial features capture the appearance information (e.g. edges,
textures, colors, or shapes) within individual frames. They are typically extracted
using 2D CNNs.

• Temporal Features: Temporal features capture the changes or dynamics over time
between successive frames in a video. They are essential for understanding motion
and tracking objects. One example of a temporal feature is the optical flow, which
measures the motion (direction and magnitude) between two consecutive frames.

Neural Network Models

In recent years, with the significant advancements in deep learning, the focus has shifted
towards learning features directly from raw video data rather than manually crafting them
from video frames. Currently, three main types of neural network-based models are in use:

• CNN based models: Convolutional Neural Networks (CNN) [8] are primarily
used in image processing due to their strong ability to capture spatial patterns while
being computationally very efficient. A considerable number of pre-trained CNN
models are available, which can be fine-tuned for action recognition tasks. However,
they cannot capture temporal dynamics across frames, which is crucial for action
recognition.

• RNN based models: Recurrent Neural Networks (RNNs) are designed to process
sequential data. They are frequently paired with CNNs to create so-called hybrid
models that are able to capture temporal dependencies between spatial features
extracted from consecutive frames. LSTMs [9], a special version of RNNs, excel
at retaining important information over long sequences; however, both demand
significant memory and computational resources.

• Transformer based models: Transformer models, originally developed for natural
language processing, have frequently been adapted for action recognition. Their
self-attention mechanism enables them to capture long-range dependencies and
complex relationships within video data. In contrast to RNNs, which process data
sequentially, Transformers simultaneously attend to all frames, which provides a
global understanding of the action. However, they also come with challenges like
computational complexity and high data requirements.



2 Background 2.3 Action Recognition 7

Action Recognition Architectures

To process both spatial and temporal information, different network architectures have
been developed to optimize the extraction and integration of spatiotemporal features.
Each of these architectures offers unique advantages for human action recognition:

• Two-Stream Networks are designed with two separate, parallel streams: a spatial
stream to process appearance-based features and a temporal stream that captures
motion dynamics across frames (visible in Fig.2.2a). However, to capture this
motion information, the temporal stream relies on optical flow images, which are
computationally expensive to calculate. Furthermore, while the separation allows
for the independent design and optimization of each stream, the late fusion can limit
the ability to fully exploit the interaction between spatial and temporal features.

• 3D-CNN (C3D) Networks extend traditional 2D convolutions by adding a tem-
poral dimension, allowing them to process spatiotemporal data like frame sequences
directly. While they offer a much simpler pipeline than Two-Stream and SlowFast,
they may struggle with longer video sequences, as convolutional neural networks
are limited in their ability to capture long-term dependencies. Furthermore, 3D
convolutions are computationally expensive.

• Slow-Fast Networks process video data at two different frame rates: a "slow"
pathway for capturing spatial semantics and a "fast" pathway for capturing motion
at high temporal resolution (visible in Fig.2.2b). Lateral connections between the
two pathways allow the network to learn the interaction of spatial and temporal
information, boosting its accuracy even further. Additionally, compared to the Two-
Stream Network, it is able to capture motion information without the computation
of optical flow images. However, due to their complexity, they typically require large
amounts of data to train effectively and avoid overfitting.
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Figure 2.2: Network Architectures: (a) The Two-Stream Network, which processes
spatial and temporal information through two separate streams [10], and (b)
The SlowFast Network, featuring a slow and a fast pathway, fused at specific
stages in the network [11].
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2.4 Temporal Action Detection
Understanding human actions in long, untrimmed videos is a complex task that requires
precise localization and classification of multiple, potentially overlapping actions with
varying lengths while also dealing with background noise.

Figure 2.3: Temporal Action Detection: (a) Action Recognition deals with classifying
trimmed videos while (b) Temporal Action Detection aims to localize action
instances in time and classifying them. [12]

Unlike Action Recognition, which focuses on classifying a single action within pre-
segmented video clips (Fig.2.3a), Temporal Action Detection (TAD) involves identifying
the start and end times of all action instances within the video and then classifying them
(Fig.2.3b), similar to the difference between Image Classification and Object Detection.
Most of the current TAD algorithms can be split into four general frameworks, as can be
seen in Fig. 2.4. In this thesis, we will only focus on the second framework that consists

Figure 2.4: Frameworks for Temporal Action Detection: (a) classification then
post-processing, (b) proposal then classification, (c) single stream, and (d)
temporal up-sampling. [13]

of two stages: (1) A temporal action proposal stage, which produces a set of temporal
segments that most likely contain a single action instance (which we will implement), and
(2) an action classification stage, which determines the specific category of all proposed
temporal segments.

2.4.1 Action Boundary Detection
Action Boundary Detection describes the task of identifying the start and end points of
all actions within an untrimmed video. These candidate action boundaries can be used
as temporal action proposals in a "proposal-then-classification" framework for Temporal
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Action Detection (Fig.2.4b). Additionally, these boundaries enable the segmentation of
videos into trimmed sequences, which can be used for tasks such as action recognition
and video summary generation.

Unsupervised Action Boundary Detection

In unsupervised learning, the model has no prior knowledge of the underlying data, as it
was not provided during the training process. In the context of action boundary detection,
the model must autonomously discover patterns in video data that correspond to action
boundaries without relying on labeled training data. These methods are essential in
real-world scenarios where labeled data is limited, such as in operating rooms. Commonly
used techniques in unsupervised learning include:

• Clustering: Clustering techniques, such as K-Means and Hierarchical Clustering,
group data points into clusters based on their similarity. Temporal boundaries can
then be identified at timestamps where the cluster changes, indicating a transition
between actions.

• Dimensionality Reduction: Dimensionality reduction methods like Principal
Component Analysis (PCA) [14] and t-SNE reduce the number of features in a
dataset while retaining the essential information.

• Feature Extraction: Feature extraction involves transforming raw data into
feature vectors that can be more easily analyzed. These features can either be
handcrafted or extracted using a pre-trained Network by stripping the last classifi-
cation layer. Networks identify high-level features that are not easily observable by
manual methods. By combining feature extraction with a dimensionality reduction
algorithm, it is possible to eliminate irrelevant or redundant features. This reduces
the computational complexity while increasing the information value.

• Gaussian Mixture Models: Gaussian Mixture Models (GMMs) are probabilistic
models that assume the data is generated from a mixture of Gaussian distributions.
They are commonly used for clustering, density estimation, and modeling complex
data distributions where simple clustering techniques may not be sufficient.

There are numerous other techniques and models, such as Autoencoders and Generative
Adversarial Networks (GANs) [15], that can be utilized for unsupervised learning. However,
this thesis will focus primarily on the techniques mentioned above.

2.4.2 Temporal Action Localization
As defined in the 2017 ActivityNet Challenge [7], temporal action localization methods
are designed to identify specific action instances within untrimmed videos by achieving
two key objectives:

1. When does the action occur (i.e., identifying the start and end times of the action).

2. What action class does each proposal belong to (e.g. Walking, Jumping).
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Essentially, Temporal Action Localization (TAL) covers the same tasks as Temporal Action
Detection. However, much of the current research has shifted its focus toward the temporal
action proposal generation part since action classification is typically well-addressed in
fully supervised settings. The challenge of the proposal generation is to accurately identify
the exact start and end points of each action within the video, and to distinguish true
actions from background content where no relevant activity is present, as shown in Figure
2.5. Additionally, some researchers are pursuing weakly supervised or even unsupervised

Figure 2.5: Temporal Action Localization localizes and classifies actions while filtering
out background content with no relevant action. [16]

approaches to Temporal Action Localization, aiming to reduce the need for extensive
labeled data.

2.4.3 Spatio-temporal Action Detection
In addition to localizing the start and end points of all actions inside a video and classifying
them, Spatio-temporal Action Detection algorithms additionally determine where the
action occurs in each frame, usually represented by a bounding box, visible in Figure
2.6. This is particularly useful when numerous actions occur simultaneously in one video
frame.

Drive 2-point shot Interfere shot

Figure 2.6: Spatio-temporal Action Detection classifies and localizes actions in space
(bounding boxes) and time. [17]

2.5 Video Summary Generation
Video summarization algorithms aim to produce a concise representation of a video by
selecting its most informative parts. What constitutes the "most informative parts" is
often subjective, but it typically involves detecting and representing key action instances
within the video. Summaries can be video-based, creating a shortened clip, or image-based,
using key-frame extraction to create a timeline of images as shown in Figure 2.7. In each
detected key-action segment, key-frames are either selected at specific points (such as the
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beginning, middle, and end) or identified through frame comparison to determine the most
distinct or representative images of the segment’s content. Automatic summary generation

Figure 2.7: Video Summary Generation approaches: (a) Key frame extraction
creates summaries by displaying selected key frames, while (b) Video skimming
creates a compressed video with key shots from the most informative parts of
the original content. [18]

techniques range from supervised methods, that learn from numerous human-generated
summaries, to unsupervised methods, that use clustering or GANs [15] to identify and
select the most representative segments of the video.



3 Related Work
As the quantity of online video data has grown significantly, the need for automatic video
understanding has driven rapid advancements in the field. This chapter critically examines
prior research in action recognition, temporal action detection, and video summary
generation while identifying gaps and limitations in more specialized areas such as person
tracking, surgical phase recognition, and action boundary detection.

3.1 Person Detection and Tracking
Many approaches have been developed for person detection and tracking, each offering
trade-offs between real-time performance and accuracy. In complex, crowded environments
like the operation room, reliable person detection and tracking, even under frequent
occlusions and complex movements, is crucial. Consequently, developers opted for a
modular design, enabling the independent optimization of the detector and tracker.

3.1.1 YOLO series
As a one-stage approach, the YOLO (You Only Look Once) framework [6] has stood out
for its remarkable balance of speed and accuracy, making it a popular choice for real-time
object detection tasks. Unlike multi-stage methods discussed in Section 2.1 YOLO divides

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 3.1: YOLO Model: YOLO divides the image into a S × S grid, with each cell
predicting object locations and classes in one step. [6]

the input image into a grid of S × S cells. Each cell is responsible for predicting a fixed
number of bounding boxes B, along with a confidence score and class probabilities for C
possible classes. This approach allows YOLO to simultaneously predict both the location
and the class of objects in a single step, as illustrated in Figure 3.1.

12
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Since its introduction in 2016, various versions of YOLO have been developed to address
the challenges of detecting objects in diverse and complex environments. YOLOv3 [19]
marked an important milestone, incorporating multi-scale detection, which significantly
improved the prediction of smaller objects. It remains one of the most widely used
detectors in the industry due to its robustness and reliability.

Building on the foundation of YOLOv3, YOLOX [20] introduced significant enhance-
ments, including an anchor-free detection and a decoupled head design, contributing to
superior detection precision and computational efficiency. Consequently, YOLOX has
become a preferred backbone in many state-of-the-art tracking algorithms, offering a
refined balance between high accuracy and real-time performance. Additionally, newer
versions like YOLOv7 [21] and YOLOv8 [22] have further enhanced the framework, making
them strong contenders in the field of real-time object detection.

To effectively implement this one-stage approach, large annotated datasets like Common
Objects in Context (COCO) [23] are necessary to train the models for accurate object
detection across diverse real-world scenarios.

3.1.2 Deep OC-SORT
Deep OC-SORT [24] and ByteTrack [25] are the leading state-of-the-art object trackers,
each offering specific advantages for different scenarios. ByteTrack is mainly used for
robust real-time tracking. At the same time, Deep OC-SORT is highly effective in
handling occlusions and maintaining identity through complex interactions, but at a higher
computational cost. Consequently, in the context of the complex surgical environment,
this thesis will focus on Deep OC-SORT due to its robustness in challenging conditions,
however, at the cost of real-time performance.

The Kalman Filter-based tracking algorithm OC-SORT [26] forms the foundation of
the DeepOC-SORT framework. OC-SORT improves SORT’s [27] tracking robustness in
non-linear motion scenarios and mitigates the impact of object occlusion or disappearances.
Building on this framework, DeepOC-SORT integrates appearance-based multi-object

Figure 3.2: Deep-OC-SORT Model: Deep-OC-SORT integrates motion-based tracking
(OC-SORT’s Kalman Filter) with appearance information (Dynamic Appear-
ance Module) and combines them using Adaptive Weighting (AW) for improved
Multi-Object Tracking. [24]

tracking (MOT) into the motion-based approach of OC-SORT, similar to how DeepSORT
[28] enhances the original SORT algorithm with appearance features. The dynamic
appearance (DA) module of Deep-OC-SORT extracts and weights appearance features
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based on the object detectors’ confidence. The adaptive weighting (AW) module ensures
that only high-quality information is incorporated into the tracking predictions by adjusting
its weights according to the discriminative power of the features. An overview of the
model is given in Figure 3.3.

However, despite these advancements, occlusion handling remains one of the most critical
challenges in MOT, as it is a primary cause of ID switches and trajectory fragmentation.

Datasets for Person Tracking

MOT17 [29] and MOT20 [30] are among the most widely used datasets for multi-object
tracking. MOT17 focuses on moderately crowded scenes in diverse environments, while
MOT20 presents more challenging scenarios with extremely dense crowds, testing algo-
rithms’ ability to handle high occlusion rates.

The DanceTrack [31] dataset is a large-scale multi-human tracking dataset, primarily
consisting of group dancing videos that feature scenarios with individuals who have similar
appearances, complex motion patterns, and significant occlusions. These characteristics

1 3 4 5 6 3 42 5 912 87 2 9487 513 9487 53 12

Figure 3.3: DanceTrack Dataset: The multi-human tracking dataset consists primarily
of group dancing videos, featuring individuals with: (1) uniform appearance
and (2) diverse motion, including position switches and occlusions. [31]

make it particularly relevant for surgical environments. Similarly to the dance videos,
the OR contains individuals dressed in similar attire, engaged in complex movements,
and experiencing occlusions. Notably, DeepOC-SORT outperforms all state-of-the-art
algorithms on the DanceTrack dataset, demonstrating its effectiveness in handling such
challenging conditions.

3.2 Action Recognition
In 2016, Feichtenhofer et al. made a significant contribution to the field of video action
recognition with the introduction of the Convolutional Two-Stream Network Fusion [32],
which builds upon the Two-Stream ConvNets framework [33] introduced in 2014. This
method remains a leading 2D CNN-based approach for action recognition. It employs a
two-stream CNN architecture, as explained in Section 2.3 - one stream captures spatial
information from RGB frames, while the other captures temporal dynamics via optical
flow images (illustrated in Figure 2.2a). By combining these streams, the model effectively
captures both appearance and motion cues, resulting in robust action recognition.

Following advancements in 3D CNNs, such as the C3D [34] and I3D networks [35], as
and the introduction of 3D ResNet architectures [36], Feichtenhofer et al. introduced the
SlowFast Network [11] in 2019. In this work, he addressed the limitations of optical flow



3 Related Work 3.2 Action Recognition 15

images used in his previous works, namely their high computational costs and lack of
end-to-end processing. The SlowFast Network employs two temporally strided 3D ResNet
streams—one operating at a slow frame rate to capture detailed spatial information and
the other at a fast frame rate to capture rapid temporal dynamics. The information from
the two pathways is repeatedly fused by lateral connections, enabling the network to learn
the interactions between slow and fast features. An overview of the model is provided
in Figure 2.2b. This slow-fast approach excels at processing both quick actions, such as
gestures or sudden movements, and slower, more deliberate actions, such as walking or
stretching. Consequently, it is currently one of the best non-transformer-based action
recognition models, as demonstrated on the Kinetics-400 benchmark dataset [37].

3.2.1 SlowFast Action Detection with the AVA Dataset
In addition to SlowFast’s strengths in action recognition, Feichtenhofer highlights that
the network can also be used as a Spatio-Temporal Action Detection algorithm, achieving
state-of-the-art results. The model first uses a person detector to identify and generate

Figure 3.4: SlowFast Spatio-Temporal Action Detection: Utilizing a Person Detector
and the AVA Dataset, the Slowfast Network is able to determine the spatio-
temporal actions of each person in the video. [11]

region-of-interest (RoI) proposals for each person detected in the video frames. These 2D
RoI proposals are then extended to 3D RoI’s across the temporal axis and fed into the
modified SlowFast network for multi-label action prediction. This allows the network to
accurately detect and classify actions within the identified spatio-temporal video regions
as shown in Figure 3.4. This approach positions the SlowFast network as an ideal feature
extractor for our unsupervised spatio-temporal action boundary detection algorithm.

The SlowFast backbone is initially pre-trained on the Kinetics-400 dataset [38] and
then fine-tuned on the AVA dataset [39], which provides spatio-temporal annotations of
human actions in video segments.
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3.3 Temporal Action Detection
Over the recent years, significant progress has been made in various categories of temporal
action detection; in the following subsections, we provide a brief overview of state-of-the-art
techniques across different areas.

3.3.1 Operating Room Activity Recognition
The objective of Operation Room (OR) Activity Recognition is to identify and classify
activities within the surgical environment to improve workflow efficiency and documenta-
tion. In recent years, the majority of approaches have been developed for robot-assisted
surgeries and invasive OR videos (Fig.3.5a). At the same time, only a limited number of
methods have been applied to surveillance-like OR videos that capture the full workflow
and interactions occurring throughout the entire room (Fig.3.5b).

OR Sterile Preparation

Phase 1 Phase 2

Patient Roll In

Figure 3.5: Surgical Activity Recognition Datasets: (a) The invasive Cholec80
dataset [40] and (b) the surveillance-like OR-AR dataset [41]

In 2017, Twinanda proposed two vision-based approaches for surgical activity recognition
[42] utilizing (1) laparoscopic (invasive) and (2) RGBD (surveillance-like) videos from
the m2cai16-workflow dataset. He demonstrated state-of-the-art results by evaluating
the laparoscopic approach on the Cholec80 dataset, which features 80 invasive videos of
cholecystectomy surgeries.

In 2020, Sharghi et al. introduced a method for automatic recognition of surgical activity
in robot-assisted surgery [41], employing an inflated 3D ConvNet combined with temporal
Gaussian mixture layers and a long short-term memory (LSTM) unit. The model was
trained on a large-scale dataset of 400 annotated OR videos, achieving state-of-the-art
results. However, this OR-AR dataset is not publicly available.

The lack of publicly available datasets featuring surveillance-like OR videos remains a
significant challenge, limiting the development of fully supervised action detection models
that can effectively capture the complexity of the entire surgical environment.

3.3.2 Unsupervised Action Boundary Detection
Over recent years, new unsupervised algorithms for action boundary detection (ABD)
have emerged, driven by the need to analyze high amounts of untrimmed video data
without relying on labor-intensive annotations.

In 2022, Du et al. proposed a novel unsupervised ABD method [43] that detects
boundaries by analyzing frame-to-frame similarities, visible in Figure 3.6a. They identify
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precise boundary points by applying non-maximum suppression to the similarity curve.
. By refining these points through a clustering process, they achieve good results on
datasets like Breakfast [44] without the need of training.

Two years later, Li et al. introduced the unsupervised, Object-centric Temporal Action
Segmentation (OTAS) framework [45], which enhances boundary detection by integrating
global and local features. OTAS consists of a global perception and object attention
module that learns global visual features, local interaction features, and object relational
features in a self-supervised manner, as illustrated in Figure 3.6b. The boundary selection
module fuses these features to detect action boundaries. OTAS offers a more refined and
context-aware approach to boundary detection, delivering state-of-the-art results on the
Breakfast dataset [44].

Global Perception Object Attention

Take Bowl Pour Cereals Pour Milk Stir Cereals

Video 𝑿

Temporal Differences of
Global Visual Features

Temporal Differences of
Local Interacting Features

Boundary Selection

Temporal Differences of
Object Relational Features

Figure 3.6: The (a) Unsupervised Action Boundary Detection algorithm proposed
by Du et al. [43] leverages frame-to-frame similarities, while the (b) OTAS
framework [45] combines global visual-, local interaction-, and object relational
features for action boundary detection.

Despite these advances, the focus has primarily been on single-person environments
such as in Breakfast [44], which do not fully capture the complexity found in real-world
settings. Therefore, addressing challenges such as high levels of occlusion and interactions
among multiple individuals with similar appearances will require further research.

Breakfast

As previously mentioned, the Breakfast dataset [44] is one of the most widely used
benchmark datasets for action boundary detection and action segmentation. It features
videos of breakfast preparation tasks captured in various kitchen environments and recorded
from multiple camera viewpoints. The videos consist of sequential, non-overlapping actions
with varying durations, such as preparing coffee, frying eggs, and pouring juice, performed
by one person at a time. The structured and ordered nature of activities makes the dataset
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particularly useful for evaluating systems that focus on detecting changes between distinct
actions (e.g. for action boundary detection). However, it lacks the complexities found in
more natural, multi-person environments, where frequent occlusions and overlaps pose
greater challenges.

3.3.3 Temporal Action Proposal Generation
In her 2017 work, Lin identified the quality of action proposals as the primary bottleneck in
temporal action localization. To address this issue, she proposed the Temporal Convolution
Based Action Proposal network [46]. Building on this work, she introduced the Boundary
Sensitive Network (BSN) [47] in 2018, establishing the foundation for future Temporal
Action Proposal Generation algorithms.

BSN uses a two-stream network as its backbone for feature extraction, leveraging spatial
and temporal information to learn the start, end, and actionness probabilities of video
snippets, as illustrated in Figure 3.7. Subsequently, a three-step process is applied in
a local-to-global fashion: first, the Temporal Evaluation Module functions as an action
boundary detection algorithm, identifying potential action boundaries. These boundaries
are subsequently refined and combined in the Proposal Generation Module using the
actionness score to create temporal action proposals. Finally, the Proposal Evaluation
Module globally assesses the confidence that each proposal contains an action. This
approach significantly advanced the state of the art by improving the precision and recall
of action proposals.

Figure 3.7: Boundary Sensitive Network BSN leverages a two-stream network for
feature extraction, followed by a three-step process: (1) detecting action
boundaries through the probability sequence, (2) refining and combining the
boundaries into proposals, and (3) globally assessing the confidence of each
proposal. [47]

The Boundary-Matching Network (BMN) [48], introduced in 2019, builds upon BSN
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builds upon BSN while refining the proposal generation process. Through a Boundary-
Matching mechanism that evaluates pairs of temporal boundaries more effectively, leading
to higher-quality proposals with improved recall and precision. In 2021, BSN++ [49]
further advanced these foundations by introducing a complementary boundary regressor,
which enhances boundary precision through a U-shaped architecture and bi-directional
boundary matching mechanism, and a proposal relation block that better models relation-
ships between proposals.

Nevertheless, despite their success in delivering precise temporal action proposals and
boundaries, all these approaches are fully supervised. This makes them unsuitable for
environments like the operating room, where annotated data is limited to non-existent.

3.3.4 Toyota Smarthome Untrimmed Dataset
Current state-of-the-art datasets often fail to capture the complexity and spontaneous
behaviours required to develope robust action detection systems in real-world scenarios.
The Toyota Smarthome Untrimmed (TSU) dataset [50] addresses these shortcomings by
providing long and untrimmed "surveillance-like" videos that capture unscripted daily
activities within a smart home environment. Since the TSU dataset was developed for
temporal action detection, it includes annotations for the temporal locations and classes
of each action while also distinguishing between background and foreground activities.

Figure 3.8: Toyota Smarthome Dataset: An example of the actions and annotations
in the TSU dataset. [50]

The dataset contains 536 videos recorded from different rooms, including the kitchen
and living room, using multiple different camera angles. It includes a a total of 51 different
actions, ranging from coarse, composite actions such as "Cooking" to fine-grained actions
such as "Drinking from a cup" or "Use Drawer". Figure 3.8 provides an illustrative example.
The actions vary significantly in duration, from just a few seconds to several minutes,
providing an ideal test for the temporal flexibility of our algorithm. The activities are
entirely unscripted, with subjects often behaving unexpectedly, which, along with the
challenges of high temporal variance, concurrent activities, and complex composite actions,
makes the TSU dataset a challenging benchmark for testing action detection algorithms
in real-world scenarios.

3.4 Video Summary Generation
Unsupervised video summarization techniques represent a powerful means of automatically
generating concise video summaries without the need for labeled data. These methods
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typically utilize some form of similarity measure to detect regions of interest where
significant (scene) changes occur. By selecting keyframes from these regions, they create
concise summaries that capture the key content of the video.

The GVSUM approach [51], proposed by Basavarajaiah in 2020, implements this
process. It extracts deep visual features using a pre-trained Convolutional Neural Network
(CNN) from video frames and groups them based on similarity using k-means clustering.
Keyframes are selected whenever there is a change in cluster labels, capturing significant
scene changes and efficiently summarizing videos with minimal computational cost.

In their study on multiview video summarization, Parihar et al. [52] leverage frame
similarity across multiple videos captured from individual cameras. This method involves
an early redundancy elimination using the BIRCH clustering algorithm, followed by shot
boundary detection through similarity measures like Jaccard and Dice. After partitioning
the video based on these boundaries, a multi-level K-means clustering algorithm is applied
to identify the most representative frames across different camera angles, which are then
merged to form the final summary.

However, both methods primarily rely on frame similarity without explicitly considering
human actions within the scenes. In contrast, our approach goes a step further by detecting
action changes at the individual level, allowing for more precise summaries, particularly
in videos featuring multiple people.



4 UnSTABL
Action detection algorithms are able to provide a detailed analysis of longer, untrimmed
videos by accurately localizing and classifying all action instances within it. However, the
bottleneck of these algorithms is the accurate temporal localization of actions, leading
to a significant research focus on identifying action boundaries and generating temporal
action proposals. Most existing temporal action proposal generation algorithms rely on
fully supervised learning methods, making them unsuitable for environments like the OR,
where annotated datasets are sparse to nonexistent. Although recently, Li et al. [45]
introduced a self-supervised method for action boundary detection by leveraging local
and global features, this approach has been designed for simpler environments containing
only one single individual. Consequently, a significant gap remains in effectively localizing
actions in complex, real-world settings like the OR, which feature multiple individuals
and concurrent actions, especially when annotated datasets are unavailable.

To address these challenges, we propose the Unsupervised Spatio-Temporal Action
Boundary Localization (UnSTABL) algorithm. This chapter provides a detailed overview
of our proposed UnSTABL framework, while the next chapter presents further concepts
to adapt the base module for more complex and crowded environments.

4.1 Model overview
Our UnSTABL framework employs a person-based methodology for action boundary
detection, which we will show not only delivers state-of-the-art results but is also capable of
accurately detecting individual action boundaries in multi-person, real-world environments.

The underlying concept of this approach is built upon the complexity of crowded scenes,
where understanding the entire image at once becomes infeasible due to the high amount
of concurrent activities. Similar to R-CNN [3] in object detection, our method focuses
on specific Regions of Interest (RoI) rather than attempting to interpret the entire scene
at once. By treating each individual person as a RoI, the framework is able to detect
and pinpoint where and when person-specific actions change over time. This spatio-
temporal approach provides a robust solution for complex multi-person environments by
independently detecting each person’s action boundaries. Furthermore, its unsupervised
nature makes it fast and easy to implement, eliminating the need for extensive training
and ensuring high adaptability to various environments. The UnSTABL framework can
be split into three different stages as illustrated in Figure 4.1:

• Person Detection and Tracking Stage: This Stage is employed to identify the
Regions of Interest (RoIs), represented by bounding boxes. The Person Detector
locates individuals within each video frame. At the same time, the Person Tracker
assigns consistent IDs to the same person across different frames, linking these RoIs
over time.
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• Feature Extraction Stage: This stage utilizes the bounding boxes and video-
frames to extract spatio-temporal feature vectors of each Region of Interest. These
feature vectors are collected throughout the entire video duration and serve as the
input for the subsequent stage, where they will be further processed for boundary
detection.

• Boundary Detection Stage: In this final stage, the previously collected person-
specific feature vectors are analyzed and grouped based on their similarity. The
model can then accurately detect person-specific action boundaries by identifying
transitions in these action groups over time.

Figure 4.1: UnSTABL Model: The framework consists of 3 stages: (1) a Person Detector
and Tracker to localize all individuals throughout the video, (2) a Feature
Extractor to extract spatio-temporal action information; and (3) a Boundary
Detection Module that utilizes this information to identify action boundaries.

This framework enables a precise detection of each person’s action boundaries in space
and time, while also identifying when individuals enter or leave the video. The above
mentioned stages will be discussed in greater detail in the following subsections.

4.2 Person Detector and Tracker Module
To ensure a fast and easy implementation, we utilize a pre-built and pre-trained network
for person detection and tracking. As discussed in Section 3.1.2, even though ByteTrack
offers real-time performance, Deep OC-SORT excels at tracking individuals in challenging
conditions. As shown in Figure 4.2, Deep OC-SORT is able to maintain the identity
even through complex interactions and occlusions. When paired with YOLOX as the
backbone person detector, which offers an ideal balance between high accuracy and
real-time performance, Deep OC-SORT delivers state-of-the-art results, making them the
optimal choice for our Person Detector and Tracker Module.

For our specific use case, which involves processing static, "surveillance-like" videos,
we can disable the Camera-Motion-Correction (CMC) Module from the original Deep
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Figure 4.2: Deep OC-SORT Occlusion Handling: The tracker is able to detect persons
trough heavy occlusions (Image 3) and maintain the same ID’s despite complex
interactions and overlapping individuals.

OC-SORT tracker [24]. This modification helps to save computation time, as Deep
OC-SORT is already computationally intensive.

Maintaining a consistent person ID throughout the entire video is crucial for our person-
based action boundary detection approach. To enhance the tracker’s accuracy in our
complex environment, we utilize a network model pre-trained on the DanceTrack dataset.
While the MOT17 and MOT20 datasets are designed for tracking pedestrians in crowded
scenes, the DanceTrack dataset presents an even more challenging scenario. It primarily
features dancers dressed in very similar attire (Fig.2.1), with complex movement patterns,
heavy occlusions, and frequent crossovers. This dataset helps us to push the detection
and tracking even further, since individuals in the operating room (OR) are also dressed
similarly and encounter similar challenges of occlusion and crossover, as demonstrated
in Figure 4.2. By leveraging this dataset for our tracker model, we can more effectively
match feature vectors and action boundaries to the correct person throughout the entire
video. Despite all these measures and improvements, the tracker still introduces occasional
ID swaps after person overlaps, which we will examine in more detail in the next chapter.

4.3 SlowFast Feature Extractor
Similar to the Boundary Sensitive Network (BSN) [47], we employ a modified Action
Recognition Network to extract spatio-temporal information, so-called feature vectors,
from video data. However, whereas BSN employs a subsequent network to predict action
scores, along with action start and end probabilities in a fully supervised manner, we will
implement an unsupervised Boundary Detection Module in the following section.

BSN employs a Two-Stream Network for feature extraction; however, we argue that
the SlowFast Network is the superior choice. As previously outlined in Sections 2.3 and
3.2, the SlowFast Network offers several advantages. First, it eliminates the need for
computationally expensive optical flow images required by the Two-Stream Network to
capture temporal dependencies, decreasing the computation time by almost half. Secondly,
the SlowFast Network excels at capturing both fast and slow movements by processing
the video at two different frame rates. This allows the feature vectors to capture a
wider range of temporal dynamics, which is particularly beneficial in an unsupervised
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setting, where clustering similar actions of varying durations and temporal characteristics
is essential. Thirdly, through lateral connections between the two pathways, the network
learns relations between spatial and temporal information, further enhancing its accuracy.

We utilize a modified version of Feichtenhofer’s SlowFast Network [11] for Feature
Extraction. As discussed in Section 3.2.1, when paired with a Person Detector, the model
can be used as a Spatio-Temporal Action Detection algorithm. Inspired by Faster R-CNN
[5], the model processes temporally concatenated Regions of Interest, in our case, the
detected and tracked persons over time, and determines the spatio-temporal actions of
each person over time. By slightly modifying the provided SlowFast Network [53] and
omitting the last classification layer, we are able to retrieve a feature vector of size 2304
for each Region of Interest containing action-specific information.

α

τ
τ
α

Figure 4.3: SlowFast Feature Extraction: The Fast Pathway (blue) processes αT
frames at a smaller temporal stride to capture fast movements, while the Slow
pathway (violet) processes only T frames at a larger temporal stride to capture
slower actions. α denotes the frame rate ratio between both pathways. The
feature vector (red) contains information from T × τ video frames.

The Slow pathway in the SlowFast network is a temporally strided 3D ResNet, processing
frames at a large temporal stride, meaning it analyzes only one out of every τ frames
(Fig.4.3 violet pathway). The Fast pathway, on the other hand, works with a smaller
temporal stride of τ

α (Fig.4.3 blue pathway), where α represents the frame rate ratio
between the Fast and Slow pathways. Both pathways operate on the same raw video clip
of lenght T × τ , with the Slow pathway sampling T frames, while the Fast pathway is α
times denser, processing αT frames.

Following Feichtenhofer’s paper, we must choose a specific sampling rate (T × τ) for our
Slow pathway, while balancing accuracy and computational cost. Doubling the number
of frames in the Slow pathway (increasing T or decreasing τ) increases the performance
at double the computational cost. As shown in the paper [11], the 8 × 8 model offers an
optimal tradeoff, providing nearly the same accuracy as the best model (16 × 8) at half
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the cost. With a maximum frame length of 32 in the Fast pathway, we chose α to be
4, ensuring that αT = 32. This configuration means that each feature vector contains
information from roughly 2 seconds of video content (T × τ = 64 frames at 30 fps),
therefore is able to capture both faster and slower movements.

Again, we utilize a pre-trained model for a faster and easier implementation. The
SlowFast model, with our chosen parameters τ , T , and α, is initially pre-trained on the
Kinetics600 dataset and then fine-tuned on the AVA action detection dataset, ensuring
robust feature extraction tailored for unsupervised action localization tasks.

4.4 Boundary Detection Module
The Boundary Detection module is the core component of our UnSTABL framework, and
it is responsible for identifying person-specific action boundaries based on the information
provided by the previous modules. Lin et al. trained a Temporal Evaluation Module in
their Boundary Sensitive Network [47] to determine the starting, ending, and actionness
probabilities from the feature vectors in a fully supervised setting. However, due to the

Figure 4.4: Boundary Detection Module: Action boundaries of the selected person are
identified through four steps: (1) Dimensionality Reduction and (2) Clustering
of all extracted person-specific feature vectors; and (3) Temporal Smoothing
and (4) Boundary Detection of the chronologically ordered cluster labels.

lack of labeled training data, we developed an unsupervised approach for action boundary
detection. Inspired by recent unsupervised learning techniques, our approach is divided
into four stages, as illustrated in Figure 4.4:

• Dimensionality Reduction Stage: We start by applying Principal Compo-
nent Analysis (PCA) to reduce the dimensionality of all feature vectors associated
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with the selected person. By removing redundant information, PCA enhances the
informational value of the feature vectors.

• Clustering Stage: Secondly, the reduced feature vectors of each person are grouped
based on similarity using Gaussian Mixture Models (GMMs).

• Temporal Smoothing Stage: The previously determined cluster labels are ar-
ranged in chronological order, and a sliding window majority filtering approach is
applied to remove outliers and noisy cluster assignments.

• Boundary Detection Stage: In the final stage, action boundaries are identified
at timestamps where transitions in the chronologically ordered cluster labels occur.

The following subsections will provide a more detailed explanation of these stages and
how they relate to each other.

4.4.1 Dimensionality Reduction and Clustering
The curse of dimensionality is a common problem when working with high-dimensional
data, particularly in machine learning and clustering. In high-dimensional spaces, data
points become sparse, meaning that they are spread far apart, and the relative distances
between all points tend to converge and become similar. This phenomenon is called
distance concentration [54]. As a result, it becomes challenging for clustering algorithms to
distinguish between different clusters based on distances or densities alone. Furthermore,
the higher the dimensionality of the data, the greater the computational resources required
to form clusters and find optimal parameters and solutions.

Principle Component Analysis (PCA)

To address the curse of dimensionality, we employ Principal Component Analysis (PCA)
[14] to reduce the number of dimensions in the data. PCA identifies the eigenvectors
of the covariance matrix, called principal components, along which the variance in the
data is maximized, as illustrated in Figure 4.5. The original data is then transformed
by projecting it onto the top n components with the largest eigenvalues, which capture
the most variance in the data, reducing the dimension of each data point to n. In the
following Experiments, we will set n = 500, as this has been shown to deliver optimal
results. Additionally, it is important to normalize all feature vectors before employing
PCA. This ensures that each feature vector contributes equally to the analysis, preventing
features with larger scales from dominating the results.

PCA improves the results of clustering algorithms like GMM by reducing the dimension of
all data points while maximizing the data variance and transforming them into uncorrelated
components. GMM assumes that features are uncorrelated, consequently high correlations
can distort the shape of the Gaussian components, leading to slower convergence and less
accurate clustering. By projecting the data onto the orthogonal principal components,
PCA retains the most important patterns (uncorrelated features with maximized variance),
which allows GMM to identify clusters more effectively and accurately.
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Figure 4.5: Example of PCA: The original data points are projected onto the principal
component (green) that retains the most variance in the data, reducing the
dimensionality from two to one.

Gaussian Mixture Models (GMM)

Many state-of-the-art unsupervised summary generation approaches, such as GVSUM
[51], use K-Means clustering to group images or feature vectors based on similarity. We
argue however, that when dealing with more complex data, such as feature vectors of
human actions in videos, K-Means assumption of spherical clusters becomes limiting.
Actions often exhibit complex dynamics and may not be well-separated in feature space.
In contrast to K-Means, Gaussian Mixture Models (GMM) assume that data is generated
from a mixture of Gaussian distributions, allowing them to capture clusters of varying
shapes, sizes, and orientations, as illustrated in Figure 4.6.

Figure 4.6: GMM vs K-Means Clustering: On complex, non spherical data distri-
butions, the K-Means algorithm fails to cluster the data correctly, while the
GMM effectively models the covariance structure of the data. [55]

The GMM uses the Expectation-Maximization (EM) algorithm to iteratively estimate
the parameters (means, variances, and mixing coefficients) of these distributions, assigning
data points to clusters based on their likelihood of belonging to each Gaussian. Two
criteria can be applied to determine the optimal number of Gaussian distributions (clusters)
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automatically, balancing model fit and complexity. The Akaike Information Criterion
(AIC) focuses on minimizing information loss, thereby favoring more complex models,
while the Bayesian Information Criterion (BIC) penalizes complex models more heavily. By
choosing the AIC criteria, the framework is able to detect finer-grained action transitions,
as it allows more complex models that can better capture subtle variations in the data.
On the other hand, for coarser summaries, where the focus is on identifying broad, distinct
actions, the BIC criteria would likely be a better fit. To determine the optimal number of
clusters, multiple models with varying numbers of Gaussian distributions are tested, and
the one with the lowest score is selected.

Additionally, GMM clustering can converge to sub-optimal solutions due to its sensitivity
to the initial parameters, which can result in poor cluster assignments. To address this,
we run the algorithm multiple times with different initializations and select the model
with the highest log-likelihood value as the final clustering solution.

4.4.2 Temporal Smoothing and Boundary Detection
Temporal smoothing is a crucial step in reducing noise and abrupt label changes. Fluctua-
tions in raw cluster-label sequences can result from minor variations or inconsistencies
in the data, even when the underlying pattern remains stable. By employing smoothing
techniques such as majority filtering, we can more accurately identify significant patterns,
leading to a more precise detection of action boundaries.

Majority filtering operates by using a fixed-size window that slides over the temporal
label sequence, selecting the most frequent value within each window as the representative
label for the central position, as illustrated in Figure 4.4. Majority filtering is particularly
effective in tasks such as denoising and smoothing labels in sequence labeling applications.
In our Experiments, this window has a size of 25, corresponding to nearly 2 seconds
of video content (25 × sampling rate), effectively removing noise and insignificant small
actions while still capturing fine-grained action transitions.

Following the temporal smoothing stage, the boundaries detection stage identifies bound-
aries whenever the label in the temporal sequence of smoothed cluster labels changes.
Such a label change indicates a transition between two different actions, as illustrated
in Figure 4.4. In addition to label-based action boundary detection, the framework uses
tracker information to identify the disappearance and reappearance of certain individuals
in the video sequence. If the absence of a specific ID exceeds a predefined threshold,
Enter and Leave Boundaries are established. This threshold is large enough to ensure
that temporary occlusions do not result in false boundaries.

During our experiments in Section 6, we will compare three different approaches to
automatically determine the optimal number of GMM clusters. This comparison aims to
identify the best method for detecting all significant action transitions while minimizing
the over-detection of small-grained action transitions.

• The AIC Approach uses the AIC score to determine the optimal number of
GMM clusters, favoring more complex models. While this leads to a finer action
granularity, it may also result in an over-detection of minor action transitions.

• The Reduced Feature Approach sub-samples each fourth (α) feature vector
from the SlowFast Network. Reducing the number of feature vectors helps the
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AIC-based clustering to generalize better, avoiding over-detections of minor action
changes.

• The BIC Approach utilizes the BIC score to find the optimal number of GMM
clusters, favoring simpler, more generalized models. While this simplification reduces
the risk of over-detection, it may result in missing crucial, finer action transitions.

4.5 Summary Generation
Automatic video summary generation approaches can either be image or video-based,
both aiming to produce a concise summary of the video by selecting its most informal
parts. In this work, we opted for an image-based timeline approach, selecting one or
three keyframes for each detected action instance within the video and placing them on a
timeline that marks the detected action boundaries. The single keyframe method selects
a frame positioned at the midpoint between two detected action boundaries, providing
a simple visual representation of the action. In contrast, the three keyframe method
captures additional context by selecting images at each action boundary, as well as one in
the middle. While this method enhances the clarity of action context and transitions, it
also doubles the number of frames in the summary.

We argue that by first detecting person-specific action boundaries, our approach ensures
a comprehensive and high-quality summary. Unlike other unsupervised approaches that
analyze the entire scene at once, thereby capturing irrelevant background information
involving other individuals or objects, our method focuses specifically on a targeted
individual. This results in a more focused and informative summary that clearly reflects
the course of action of the selected individual, as shown in Figure 6.15.

In this chapter we presented the Unsupervised Spatio-Temporal Action Boundary
Localization (UnSTABL) framework. In contrast to other state-of-the-art approaches, our
method focuses on regions of interest, specifically the individuals detected by the person
tracking module, rather than processing the entire scene at once. By analyzing person-
specific action boundaries, UnSTABL significantly enhances the accuracy in crowded,
real-world environments with multiple concurrent actions.

Given the limited availability of annotated data, we opted for an unsupervised approach.
We utilized the SlowFast Action Detection Network for feature extraction, capturing
detailed, person-specific action information across the entire video. These feature vectors
were optimized through Principal Component Analysis (PCA) to reduce dimensionality
and increase their information value. They were clustered using Gaussian Mixture Models
(GMMs) to group similar action segments together. The resulting cluster labels were then
temporally smoothed to eliminate smaller inconsistencies and actions. As a last step,
action boundaries were identified at timestamps where changes occurred in the smoothed
label sequence, marking transitions between distinct actions. We proposed three distinct
boundary detection models, which will be thoroughly evaluated during our experiments.

The detected action boundaries serve two key purposes: generating concise video
summaries and providing temporal action proposals for tasks such as temporal action
localization and action segmentation. The UnSTABL framework demonstrates how
unsupervised methods can effectively handle complex real-world scenarios, producing
robust and accurate action boundaries without the need for extensive labeled data.



5 Collision Robust UnSTABL
Crowded environments pose significant challenges for person tracking and action detection
algorithms. The main issue in such environments arises from person occlusions and
crossovers, leading to wrong detected action boundaries and ID swaps. This challenge
is particularly prominent in operating rooms (ORs), where medical staff wear identical
clothing, making visual features unreliable for maintaining consistent identities.

During overlaps, the system can only detect the action of the person in the foreground
and mistakenly assigns this action to both individuals. For example, in the second
image of Figure 5.1, both individuals’ actions are labeled as "walking". Consequently,
the framework identifies an action change, assigning an incorrect action boundary to the
person. Additionally, when people cross paths, the tracking system often loses track of
the person in the background (Fig.5.1c). Current state-of-the-art trackers rely on visual
features to reassign the correct IDs after such collisions. However, in our OR setting,
where individuals have highly similar appearances, the tracker struggles to distinguish
between them, often resulting in ID swaps or the assignment of new IDs, as shown in
Figure 5.1d.

Figure 5.1: Collision Problem: In the first image, the action detection algorithm
correctly identifies the individual actions "sitting" and "walking", while in
the second image both individuals are mistakenly assigned the same action
"walking" due to the overlap. In the last two images, the tracker loses track of
the background person and assigns her a new ID after the crossover.

To tackle these challenges in our OR setting, we propose the collision-robust UnSTABL
framework. Building upon the base framework from the previous chapter, we are able to
improve the action boundary detection, as well as the tracker performance in crowded
and complex multi-person environments.

5.1 Model overview
The Collision-Robust UnSTABL framework, built upon the base module, is specifically
designed to handle collisions more effectively in the complex OR environment. It incor-
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porates all three stages from the previous chapter (Fig.4.1) while introducing two major
extensions, as illustrated in Figure 5.2. These extensions address specific challenges in
crowded environments, each serving a distinct purpose:

• Collision Avoidance Module: The Collision Avoidance Module detects collisions
and overlaps between individuals and excludes the feature vectors associated with
these overlap sequences. By removing these features, the module prevents the
incorrect assignment of foreground action information to overlapped individuals,
ensuring a collision-robust action boundary detection.

• ID Correction Module: The ID Correction Module is designed to improve the
Re-Identification (ReID) of individuals after strong overlaps, particularly in cases
where visual features alone are insufficient. The module can detect and correct
potential ID swaps or incorrect new ID assignments by comparing action information
before and after the overlap. As a result, the module improves tracking accuracy in
challenging conditions like the OR.

Figure 5.2: Collision Robust UnSTABL Model Overview: The framework employs
all three stages of the base model: The (1) Person Detector and Tracker Stage,
the (2) SlowFast Feature Extraction Stage, and the (3) Boundary Detection
Stage. Additionally, it introduces two new modules: A (4) Collision Avoidance
Module, which ensures a collision robust boundary detection and a (5) ID
Correction Module to improve the tracker’s Re-Identification after overlaps.

Both of the above modules enhance the spatio-temporal action boundary detection in
complex and crowded environments and will be discussed in greater detail in the following
subsections.

5.2 Collision Avoidance Module
The Collision Avoidance Module prevents incorrect action boundary detection resulting
from overlapping individuals. In these cases, the bounding primarily captures the person



5 Collision Robust UnSTABL 5.2 Collision Avoidance Module 32

in the foreground (Fig.5.1b), causing the Feature Extractor to retrieve inaccurate action
information. When the two individuals perform different actions, the framework detects
an action change for the person in the background, resulting in an incorrect boundary
detection during the overlap sequence.

To address this problem, the module operates in two phases: (1) collision detection,
which identifies when and where individuals overlap, and (2) collision avoidance, which
prevents the system from using incorrect action information during overlaps, ensuring a
collision robust action boundary detection.

5.2.1 Collision Detection
The first step towards collision-robust action boundary detection is accurately and reliably
identifying collision intervals. This is accomplished by computing the Intersection over
Union (IoU) of all persons bounding boxes within each video frame. The IoU is defined as:

IoU = Area of Overlap
Area of Union = |A ∩ B|

|A ∪ B| (5.1)

where A and B represent the bounding boxes of two individuals, A ∩ B denotes the area of
overlap, and A ∪ B represents the total area covered by both bounding boxes. If the IoU
exceeds a certain threshold, a potential collision is identified. During overlaps, the Person

Figure 5.3: Collision Detection: A potential collision (yellow) is detected when the
Intersection over Union (IoU) between two or more bounding boxes exceeds
a predefined threshold. Through a two-step process (green), adjacent IoU
collision that are part of the same overlap sequence are accurately merged.

Tracker sometimes loses track of the person in the background, causing their bounding
box to disappear, which prevents the detection of an IoU overlap, as illustrated in Figure
5.3. As a result, the complete overlap sequence would be split into multiple parts that
fail to capture the entire collision. To address this, we propose a two-step approach that
identifies and merges adjacent IoU collisions involving the same individuals, correctly
grouping them into a continuous overlap sequence:

• Step 1: During overlaps, the tracker can slightly shift the bounding box when a
person is not fully visible, causing the IoU to drop below the overlap threshold. By
merging consecutive IoU overlaps with the same IDs and a temporal gap smaller
than a predefined threshold, we can compensate for these shifts.
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• Step 2: In the second step, even longer overlap sequences are merged, provided
that at least one of the involved IDs disappears for the entire duration between the
sequences. This absence indicates that one individual was fully occluded by another,
causing the Person Detector to lose track of them, splitting the overlap sequence in
two.

This Collision Detection algorithm efficiently detects and combines overlap sequences,
ensuring that fragmented IoU collisions are accurately merged. It forms the basis for the
Collision Avoidance and the ID Correction modules.

5.2.2 Collision Avoidance
To effectively filter out collisions that could lead to incorrect action boundaries, we classify
collisions into two types: strong and weak. This way, we can ensure that only feature
vectors containing misinterpreted action information are removed while preserving those
that could contain relevant action changes.

Strong collisions are characterized by a high IoU overlap or the disappearance of one
ID, indicating a significant degree of occlusion. During such overlaps, the framework
likely extracts incorrect action information. Weak overlaps, which have a lower IoU, are
subdivided into weak short and weak long overlaps. Weak, long overlaps typically suggest
individuals work or stand side by side with no significant person overlap. Consequently,
the framework is still able to extract the correct action information, making the feature
vectors relevant for boundary detection and are therefore retained. On the other hand,
strong and weak short overlaps often occur when individuals briefly pass or overlap each
other and are thus filtered out to avoid incorrect boundary detection.

T ·τ
2

Figure 5.4: Collision Avoidance: Weak short and strong overlaps are combined and
all associated feature vectors are removed to prevent misinterpreted action
boundaries. Feature vectors in the range of 1

2(T ×τ) frames still contain residual
overlap information (black). Weak long overlaps are retained since they often
contain relevant action information (e.g. collaborations, interactions).

As illustrated in Figure 5.4, we group weak short and strong overlaps together and remove
all feature vectors associated with them to prevent the assignment of incorrect action
information. Additionally, as discussed in the Section 4.3, we also remove all feature
vectors within a range of 1

2(T × τ) = 32 frames around the overlap (indicated in black in
Fig.5.4), since these feature vectors still contain residual information from the overlap.

The Collision Avoidance Module ensures a collision-robust action boundary detection
by filtering out potentially misinterpreted action information retrieved during overlaps.
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Despite removing this information, the framework is still able to detect a single action
change during short collisions, as it identifies the new action cluster label after the overlap
with a minor temporal delay. However, during longer overlap sequences with multiple
action changes, the framework can no longer detect all these transitions. Since it removed
all associated feature vectors, it only notices that an action change occurred during the
overlap, but not the number of changes and their exact timing. Consequently, longer or
frequent overlaps pose a limitation to this approach.

5.3 ID Correction Module
The ID Correction Module is designed to improve the Re-Identification of individuals
after complete overlaps in complex surgical environments. The Person Tracker introduced
in Section 4.2 relies on FastReID [56] to reassign consistent IDs to individuals after
overlaps or disappearances. However, FastReID primarily relies on visual features, which
is insufficient in surgical environments where all individuals wear similar attire and face
masks. Due to the lack of distinctive visual features, the tracker frequently confuses
individuals’ IDs or assigns them new IDs after strong overlaps.

To overcome these limitations, we propose a ID Correction Module that leverages
action information extracted from the SlowFast Feature Extractor to detect such ID
Swaps. By reassigning different IDs to the same person, this module enhances the Trackers
performance in challenging conditions.

T ·τ
2

Figure 5.5: ID Correction Module: In the ID Correction process, strong overlaps
of the target ID are identified. After each collision, the module checks for
new IDs appearing at the same location. It then selects collision-free feature
vectors before and after the overlap of all involved and new IDs. The ID Swap
Detection module then determines whether an ID swap occurred, potentially
merging different IDs to the same individual.
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The ID Correction Module has two primary stages: (1) collision detection and feature
selection and (2) ID Swap Detection. For collision detection, we employ the method
outlined in Section 5.2.1. The process begins by selecting a target ID for which the ID
correction will be performed, as shown in Figure 5.5 with ID 1. Each strong overlap
with the target ID, or its permanent disappearance, is considered a potential cause for
an ID swap. After such an overlap or disappearance, the algorithm assesses whether a
potential new ID appears that (a) overlaps with the target ID’s bounding box by exceeding
a predefined IoU threshold and (b) emerges within a maximum number of frames after
the overlap ends. As a next step, collision-free features are extracted 1

2(T × τ) = 32
frames before and after each overlap for all involved IDs, including any newly detected IDs.
These feature vectors are then evaluated in the ID Swap Detection Stage to determine
whether an ID swap or new ID assignment occurred during the overlap, potentially linking
different IDs to the same Person. However, if the overlap is too long, the actions of the
involved individuals most likely changed during the overlap duration. Consequently, to
prevent incorrect ID assignments, the ID Swap Detection module only checks short, strong
overlaps for potential ID Swaps.

5.3.1 ID Swap Detection
The ID Swap Detection module is responsible for identifying whether an ID swap of our
target ID has occurred during a strong overlap. This process is inspired by traditional
Re-Identification (ReID) methods, but instead of relying on visual features, it utilizes
collision-free action features extracted from the SlowFast network.

Figure 5.6 provides an overview of the ID Swap Detection process. All possible
permutations of the previously selected feature vectors before and after collision are
compared to find the most likely match. The likelihood Decision Step ensures that only
very likely ID Swaps are selected, effectively minimizing incorrect ID assignments. The
following subsections will briefly explain all components of the ID swap detection module.

Figure 5.6: ID Swap Detection: All possible permutations of the feature vectors before
and after the collision are compared using cosine similarity and a weighted
average to determine the best permutation. The Likelihood Decision Stage
then selects the best most likely match for the target ID (blue), ensuring
accurate ID reassignments while minimizing errors.



5 Collision Robust UnSTABL 5.3 ID Correction Module 36

Cosine Similarity

Each feature vector pair of a possible permutation is compared using cosine similar-
ity, which evaluates the angular distance between the vectors to assess their similarity.
Cosine similarity is particularly effective for high-dimensional feature vectors since it
assesses whether two vectors are pointing in roughly the same direction, indicating similar
information content while ignoring scale differences. The cosine similarity is defined as:

Cosine Similarity = A · B

∥A∥∥B∥
where A and B represent the feature vectors, and the result ranges from -1 (completely
dissimilar) to 1 (identical).

Weighted Average

After computing the cosine similarity for each feature vector pair, a weighted average
similarity score is calculated for each group of permutations. The weighted approach
places a higher importance on the target ID by doubling the weight for feature pairs
starting with this ID, as we are primarily interested in its state after the collision. All
other feature pairs just provide supplementary information to enhance the overall accuracy
of the ID swap detection and are therefore weighted lower.

Likelihood Decision

As a last step, we propose a likelihood Decision Stage to select the most likely permutation
while minimizing incorrect ID assignments. We consider only permutations with an
average similarity score above a certain threshold, set at 0.6. This ensures that ID swaps
are only detected when the action of the target ID remains consistent throughout the
overlap. If no permutation meets this threshold, indicating a likely action change, the
system can no longer identify ID swaps based on action information alone, therefore it
relies on the trackers Re-Identification. However, if multiple permutations have a similar
likelihood scores (within ±0.05 of each other), indicating similar actions across multiple
individuals, a three-step process is employed to determine the optimal match for the target
ID:

1. Majority Check: First, we check if the majority of the best-scoring permutations
recommend the same new ID for the target ID. If a majority is found, we select that
ID as the most likely match.

2. Similarity to Tracker: If a majority consensus is not reached, we prioritize the
permutations that align most closely with the original tracker’s ID prediction. This
way, we integrate the tracker’s visual information into our action-based decision-
making process to find the optimal ID match.

3. Highest Permutation Score: If multiple permutations still show equal similarity
to the tracker’s detection, we select the permutation with the highest overall similarity
score from those tied options.
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This multi-step process ensures that only the most likely match for the target ID is
selected, enhancing the accuracy of the trackers ID reassignment while minimizing errors.

In this chapter, we introduced a collision robust extension to our UnSTABL framework
to improve unsupervised action boundary detection in crowded, real-world environments.
By introducing the ID Correction Module, we significantly improved the performance of
the person tracker in challenging conditions. It links different IDs and their associated
action boundaries to the same person by analyzing and comparing action data before and
after significant overlaps.

Furthermore, the integration of the Collision Avoidance Module allowed us to minimize
incorrectly detected action boundaries caused by overlapping individuals, thereby enhanc-
ing the accuracy of action boundary detection in complex and crowded environments,
such as the operating room.



6 Experiments and Results
This chapter provides a detailed overview of the experiments conducted to evaluate the
performance of the proposed UnSTABL framework. The experiments are split into two
parts: In the first part, we compare our action boundary detection approach against
state-of-the-art methods to establish a performance baseline. In the second part, we
evaluate the framework in real-world OR environments, introducing challenges like frequent
collisions, overlaps, and occlusions. Additionally, we determine how well our collision-
robust UnSTABL framework improves person tracking in this challenging environment.

6.1 Setup
This section presents the datasets and evaluation metrics used in our experiments. The
datasets have been selected to cover a range of conditions, from controlled single-person
environments to real-world complexity, while the evaluation metrics provide a thorough
assessment of the system’s performance in action boundary detection.

6.1.1 Datasets
To conduct a comprehensive evaluation of the proposed action boundary detection frame-
work, we utilize three distinct datasets. The first two are used to establish a performance
baseline in single-person environments. Due to the absence of labeled datasets capturing
complex, multi-person environments such as operating rooms, we opted for these simpler,
controlled settings to enable direct comparison with state-of-the-art approaches. The
third dataset then introduces the complexities of real-world OR scenarios to provide
a qualitative performance analysis in multi-person environments where challenges such
as occlusion, overlaps, and collisions are prevalent. Additionally, a fourth test video is
included to demonstrate the framework’s adaptability to various real-world environments
beyond the OR.

Breakfast Dataset

Unlike more complex scenarios, such as those found in operating rooms, the Breakfast
dataset features only a single person performing semi-scripted tasks for short durations,
as highlighted in Section 3.3.2. However, as we will later demonstrate, our frameworks
person-based approach, which focuses on detecting the actions of individual subjects while
disregarding background information, allows it to maintain similar performance in more
complex and crowded settings. This makes the Breakfast dataset a valuable benchmark for
assessing the accuracy and quality of detected action boundaries, comparing our framework
with other state-of-the-art approaches. For our evaluation, we utilized a selected subset of
the Breakfast dataset. Since our algorithm relies on accurate person detection to identify
action boundaries, we excluded videos where humans were only partially visible (e.g.,

38
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Figure 6.1: Example Breakfast Dataset: Examples of selected and excluded videos
from the Breakfast dataset: (a) The first image shows videos used in our
evaluation, where the entire person is visible, while (b) the second image shows
excluded videos, where only partial visibility made person detection unreliable.

only hands or parts of the body) as illustrated in Figure 6.1, since the Person Detector
struggled to identify individuals in these Videos. The specific list of videos used is detailed
in the Appendix A.

Toyota Smarthome Untrimmed (TSU) Dataset

We selected the Toyota Smarthome Untrimmed (TSU) dataset as a second benchmark
dataset due to its ability to simulate real-world challenges, as described in Section 3.3.4.
Unlike the Breakfast dataset, the TSU dataset captures unscripted daily activities with a
high degree of complexity. These long, untrimmed videos are recorded in various domestic
environments, such as kitchens and living rooms, and include temporally overlapping and
concurrent activities of different lengths.

These challenges reflect the real-world operating room environment, where spontaneous
behaviors and overlapping actions sequences are common, making the TSU dataset
comparable to the conditions in the OR. Additionally, the videos’ long and untrimmed
"surveillance-like" structure, similar to those in the OR, allows us to evaluate how the
framework handles action boundary detection in these extended video sequences.

For our evaluation, we slightly modified the ground truth labels by merging "Enter"
and "Leave" events into a single boundary (midpoint of start and end) to align the
labels with our detection approach. It is important to highlight that the dataset was
originally designed for temporal action localization, which distinguishes between foreground
and background actions. Background actions are sequences where no significant labled
action occurs (e.g. person standing in the room). However, since our unsupervised
action localization approach merges consecutive boundaries into action segments without
identifying background activities, we expect sub-optimal performance regarding the action-
based results.

OR Dataset

To qualitatively evaluate the performance of our action boundary detection framework in
complex operating room environments, similar to [57] and [58], we also created a small
custom dataset consisting of 10 untrimmed videos, as no publicly available datasets exist
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for our specific scenario. Each video, ranging from 5 to 10 minutes, captures different
OR-related activities in a challenging multi-human environment, featuring various camera
viewpoints, operating room layouts, and light conditions. These videos include multiple
individuals, frequent overlaps and collisions, as well as occasional interactions between
participants, all dressed in very similar attire.

Figure 6.2: The OR Dataset video classes: (1) The first class features a single Person
(right) performing tasks in a multi-human environment, (2) the second class
showcases two-person collaborations (on the monitor), and (3) the third class
involves a single person (ID 3, center) working in a densely crowded multi-
human setting.

In a second step, we divided the OR dataset into three video classes of increasing
complexity, as shown in Figure 6.2, to thoroughly evaluate the robustness and limitations
of our "collision-robust" UnSTABL framework:

• Single-Person in Multi-Human Environment: This class includes action
sequences performed by a single individual within a multi-human environment. The
videos are kept relatively simple, with persons performing individual tasks and only
occasional interactions or crossovers.

• Two-Person Collaboration: This class includes scenarios where two individuals
work side by side, often collaborating on tasks. It evaluates the framework’s ability to
accurately detect boundaries in cooperative settings with constant partial occlusions.

• Crowded Operating Table Setting: The most complex class involves a person
working in a highly crowded environment, such as an operating table, with frequent
occlusions and crossovers. This setting presents significant challenges due to the
high density of people and overlapping actions, pushing the limits of our framework.

Although we perform only qualitative evaluation due to the lack of ground truth labels,
this dataset allows us to validate the benchmark results from the previous datasets in
this challenging environment and to identify the limits of our action boundary detection
approach. Additionally, we are able to assess the improvements of our collision-robust
framework and how well it enhances boundary detection and tracker performance in
demanding OR environments.

Industrial Dataset

As an additional evaluation, we include a video from an industrial human-robot collabora-
tion scenario. This allows us to demonstrate the adaptability of our UnSTABL framework
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to different environments, thanks to its unsupervised nature. The video features a clearly
structured sequence of actions and introduces challenges such as the presence of multiple
humans, along with minor overlaps and collisions, as illustrated in Figure 6.3.

Figure 6.3: The Industrial Video showcases a human-robot collaboration scenario with
a clearly structured course of action and the presence of multiple individuals.

6.1.2 Evaluation Metrics
To objectively assess the performance of our action boundary detection framework on
the proposed benchmark datasets, it is necessary to have appropriate evaluation metrics
that quantify how effectively the framework detects actions. We categorize these metrics
into two groups: (1) boundary-level metrics, which evaluate the accuracy of the
detected boundaries between actions, and (2) action-level metrics, which assess how
well the detected boundaries capture entire actions, ensuring a thorough evaluation of
both boundary precision and action representation quality.

Boundary Level Metrics

Detected action boundaries should meet two key criteria: they must capture all the
ground-truth boundaries to ensure high recall, and they should not exceed the number of
actual boundaries to maintain high precision. These two metrics help evaluate how well
the framework balances detecting all action transitions while avoiding false positives.

Precision is defined as the ratio of correctly detected boundaries (TP) to the total
number of detected boundaries (TP + FP), evaluating the framework’s ability to avoid
false positives by ensuring that the detected boundaries correspond to real ground-truth
transitions:

Precision = True Positives
True Positives + False Positives (6.1)

Recall on the other hand is the ratio of correctly detected boundaries (TP) to the total
number of actual ground-truth boundaries (TP + FN), measuring the framework’s ability
to detect all ground-truth boundaries, ensuring that no true transitions are missed:

Recall = True Positives
True Positives + False Negatives (6.2)
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To offer a balanced assessment of the framework’s performance, the F1-Score combines
precision and recall into a single metric, measuring the framework’s ability to accurately
detect true action boundaries while minimizing false detections:

F1-Score = 2 · Precision · Recall
Precision + Recall (6.3)

In the context of action boundary detection:

• True Positives (TP) refer to detected boundaries that correctly correspond to
actual ground truth boundaries.

• False Positives (FP) are detected boundaries that do not correspond to any
ground-truth boundary, representing over-detections.

• False Negatives (FN) occur when a ground-truth boundary is missed by the
detector, indicating a failure to detect a true action transition.

What remains to determine is the threshold used to decide whether a predicted boundary
is considered a true positive. The standard approach is to use 5% of the video duration as
an acceptable margin for error. However, similar to the argument made by Li in her OTAS
paper [45], we find this threshold too coarse, particularly for longer, untrimmed videos
such as those in the TSU dataset. Instead, we opted for Li’s proposed smaller threshold
of 2 seconds (±1 second to the ground-truth boundary) for a more precise evaluation.

Action Level Metrics

Action-level metrics evaluate how well the detected action boundaries capture entire
ground-truth actions. As highlighted in previous work such as BSN [47], action proposals
should be retrieved with a high recall and a strong temporal overlap, typically measured
using the temporal Intersection over Union.

In unsupervised settings, the algorithm typically produces unlabeled action segments,
in our case represented by two consecutive action boundaries. To align these segments
with ground-truth annotations, we use the Hungarian algorithm to establish a one-to-one
correspondence, as demonstrated in previous works [43], [45]. The Hungarian algorithm
performs optimal matching by associating each ground-truth action with the most likely
detected action segment, based on maximizing the IoU.

The Intersection over Union (IoU) is a key metric for measuring the temporal
overlap between a predicted action segment and its corresponding ground-truth action.
Similar to the 2D IoU used to measure the bounding box overlaps (Eq.5.1), the temporal
IoU calculates the ratio of the predicted and ground-truth time intervals to their union in
one dimension.

Similar to boundary-level metrics, we evaluate the Precision and Recall of the detected
action segments. The Equations 6.1 and 6.2 remain unchanged, but the context differs
slightly:

• True Positives (TP) refer to detected action segments with an IoU greater than a
predefined threshold when matched to a ground-truth action.

• False Positives (FP) detected action segments that either do not correspond to
any ground-truth action or have an IoU below the threshold.
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• False Negatives (FN) occur when a ground-truth action has no corresponding
detected action segment.

As with boundary detection, it is necessary to define an acceptable true positive IoU
threshold. Temporal action localization algorithms are typically evaluated using the
average precision and recall across a range of IoU thresholds, starting at 0.5 and increasing
to 0.95. For our evaluation, we argue that reliable temporal action proposals should achieve
at least a 0.5 IoU overlap. Therefore, we report precision and recall at the 0.5 threshold
(Precision@0.5 and Recall@0.5) as a key metric in our action-level evaluation.

6.2 Action Boundary Detection
In this section, we will evaluate our detected boundaries quantitatively and qualitatively
across four datasets of increasing complexity. The quantitative analysis is carried out on
the first two Datasets, Breakfast, and TSU, using boundary-level and action-level metrics.
The remaining two datasets are used for qualitative validation of these results in more
complex, real-world scenarios, such as operating rooms and industrial environments, which
feature multiple individuals and concurrent actions.

Boundary-level metrics assess how well our framework detects action transitions, while
action-level metrics evaluate the accuracy of boundaries capturing entire actions. By using
two subsequent boundaries as a single action proposal, we assess whether the framework
correctly identifies actions or tends to over-detect them, splitting ground-truth actions
into multiple sub-actions. To address this, as explained in Section 4.4, we compare three
Boundary Detection models (AIC, Red. Features, and BIC) to determine which model
best captures fine-grained transitions without excessive over-detection.

For our experiments, we used two detector models suited to the datasets characteristics.
In the Breakfast and Smarthome datasets, individuals were tracked using the DeepOCSort
network pre-trained on MOT17. For the OR dataset, we employed a model pre-trained
on DanceTrack, which is optimized for environments where individuals wear similar attire
but would result in numerous misdetections in more controlled environments.

6.2.1 Breakfast Dataset
We begin the quantitative evaluation of our boundary detection framework with the
benchmark dataset Breakfast, highlighting the most significant results. The dataset
features sequentially annotated breakfast preparation tasks characterized by relatively
simple and coarsely defined actions. A comprehensive list of all results, along with details
of the tested videos, can be found in Appendix A.

In terms of overall performance, all three models demonstrate a similar average boundary-
level F1-score across all tested videos in the Breakfast dataset, as shown in Table 6.1.
However, the average Precision and Recall differs notably across all models, indicating a
different performance regarding the accuracy and reliability of the boundary detection.
The AIC score favours more complex GMM models, resulting in the detection of more fine-
grained action transitions as expected. It achieves the highest average recall, indicating
the highest detection rate of ground-truth boundaries. However, this comes at the cost
of a slight over-detection of boundaries, as reflected by the lower average precision score.
The Reduced Feature vector approach helps the AIC model to generalize better, slightly
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Table 6.1: Boundary Level Results: Average Precision, Recall and F1-Score over all
tested videos of the Breakfast Dataset.

AIC AIC (Red. Features) BIC
Precision 0.356 0.37 0.446

Recall 0.658 0.606 0.512
F1-Score 0.438 0.444 0.456

enhancing average precision, though at the cost of reduced recall. Given the coarser
annotations of the dataset, the BIC score on the other hand provides the best overall
performance by recommending simpler GMM clusters. This suggests that BIC’s proposed
boundaries closely match the ground-truth without excessive over-detection; however, it
misses more ground-truth boundaries compared to the AIC approaches, indicated by the
low recall.

We argue however, achieving a higher recall is more important for creating unsupervised
video summaries, as it reduces the likelihood of missing important action transitions.
While the lower precision may result in additional boundaries and extra frames in the
summary, this is an acceptable trade-off to ensure comprehensive action coverage.

Table 6.2: Comparison to SOTA: Our UnSTABL framework delivers state-of-the-art
results in terms of F1-Score for unsupervised Action Boundary Detection.

F1-Score
ABD [43] 0.279
OTAS [45] 0.445

UnSTABL (ours) 0.456

A comparison of the UnSTABL framework with other unsupervised Action Boundary
Detection methods, such as OTAS [45] and ABD [43], demonstrates state-of-the-art
performance in terms of F1-score across all three models, as shown in Table 6.2. However,
it is important to note that this comparison was conducted on a selected subset of the
Breakfast dataset comprising 198 videos, as detailed in Section 6.1.1.

Boundary Results on different video classes

As the second step of our evaluation, we examined the boundary-level performance across
different video classes within the Breakfast dataset, which include a diverse set of activities
such as (1) tea, (6) sandwich, (7) scrambled egg, (9) salad, and (10) pancake. The results
varied significantly between classes, especially in terms of boundary-level precision.
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Figure 6.4: Comparison of boundary-level Precision and Recall over the Break-
fast Video classes: The video classes (1) tea, (6) sandwich, (7) scrambled
egg, (9) salad, and (10) pancake are ordered based on average video length.
The precision decreases significantly with increasing video length, while the
recall remains almost stable across all video classes.

When the video classes are ordered by average video length, a significant decline in
precision is observed as the video length increases, as shown in Figure 6.4. However,
this decline is not inherently caused by the longer duration of the videos, as will be
further discussed in the next section. The primary issue lies in the coarse annotations
of the dataset, particularly in longer videos like (10) pancake. These videos mainly
feature lengthy ground-truth actions, such as "fry pancake," with an average duration
of 2803 frames (approximately 2 minutes and 20 seconds). Our framework tends not
to detect these as single actions but rather splits them into smaller, more fine-grained
actions, as shown in Figure 6.5, while still detecting the broader boundaries defined in the
ground-truth labels. This statement is supported by the relatively stable and high recall
across all video classes, independent of the video length, especially for the AIC-based
models (AIC and Reduced Features), as seen in Figure 6.4.

This suggests that while our framework consistently captures the main action boundaries
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Figure 6.5: Precision Problem of coarsely annotated actions: The UnSTABL
framework identifies more fine-grained action transitions, such as (1) working
with a spatula, (2) placing the spatula aside, and (3) flipping the pancake, while
still capturing the broader ground-truth boundaries of the "frying pancake"
action.

across all classes and lengths, it additionally tends to identify more detailed, fine-grained
action transitions, lowering the precision score in such coarsely labeled datasets. The full
results for each video class are provided in the Appendix A in the Tables A.3 and A.4.

Action Level Results

As the third step of our evaluation, we analyzed the action-level metrics. A comparison of
the action-level Precision@0.5 reveals significant differences among the three models, with
the BIC-based model achieving by far the best result. This indicates that the boundaries
proposed by the BIC model best capture entire ground-truth actions without excessive
over-detection.

Table 6.3: Action Level Results: Average action-based Precision@0.5 and Recall@0.5
over all tested videos of the Breakfast Dataset.

AIC AIC (Red. Features) BIC
Precision@0.5 0.282 0.299 0.433

Recall@0.5 0.497 0.486 0.466

These findings further support our observation that the AIC based methods struggle
with the coarsely annotated dataset Breakfast, as they tent to detect more fine-grained
action transitions. Consequently, larger ground-truth actions are frequently split into
sub-actions, leading to an increase in false positives and a subsequent drop in precision.
In contrast, the action-level recall remains nearly constant across all models, suggesting a
comparable detection rate of ground-truth actions among the three approaches.
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We illustrated the relationship between the average IoU and the ground-truth action
length for all three models in Figure 6.6, highlighting their ability to detect shorter as
well as longer ground-truth action intervals.
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Figure 6.6: Average IoU per Action length: Both AIC based methods detect more
fine-grained action transitions, enabling a more accurate detection of shorter
ground-truth actions up to 30 seconds, while the BIC approach provides a
better detection of longer action segments.

Ideally, we would observe a constant IoU across all ground-truth action lengths, indicat-
ing that our framework accurately detects action segments regardless of their duration.
As expected however, this is challenging in an unsupervised setting, where there is no
underlying information about the granularity of the ground-truth actions.

The AIC-based models deliver much better results than the BIC approach for shorter
actions lasting up to approximately 30 seconds. This aligns with our previous observations
that the AIC-based models tend to detect finer-grained action transitions, allowing for
better detection of smaller and shorter actions while splitting longer actions into multiple
sub-actions. Consequently, the BIC approach provides better accuracy for longer and
more coarsely annotated actions.

Comparing the two AIC-based methods, the Reduced Feature approach enables the
UnSTABL framwork to generalize more effectively, maintaining a high accuracy across a
broader range of action lengths. Figure 6.6 illustrates this with an average IoU above 0.5
for actions ranging from around 2 seconds to nearly 50 seconds. This results in highly
accurate detection of both short and moderately long actions, making it well-suited for
our unsupervised summary generation approach.

6.2.2 Toyota Smarthome Dataset
The second part of our quantitative evaluation is conducted on the TSU dataset. As
detailed in Section 6.1.1, the TSU dataset includes surveillance-like, untrimmed videos



6 Experiments and Results 6.2 Action Boundary Detection 48

that resemble those obtained in an operating room environment. It includes sequences
with background actions (where no action occurs) and frequently overlapping foreground
actions of varying durations, making it more challenging compared to the sequentially
structured Breakfast dataset. This makes it an ideal benchmark for assessing whether
the previously observed results can be replicated in longer untrimmed videos with more
complexly annotated actions.

Comparing the overall boundary-level performance in Table 6.4, we observe clear
differences between the three models. The AIC-based approach performs by far the best,
achieving similar results to those on the Breakfast dataset, with even higher precision in
detecting boundaries within these more complex settings. This increase in precision is

Table 6.4: Boundary Level Results: Average Precision, Recall and F1-Score over all
tested videos of the TSU Dataset.

AIC AIC (Red. Features) BIC
Precision 0.417 0.426 0.392

Recall 0.652 0.42 0.274
F1-Score 0.487 0.402 0.298

expected, as the TSU dataset is more densely annotated with shorter, more fine-grained
actions where the AIC approach excels. In contrast, the other two approaches show
a noticeable drop in performance. While the Reduced Feature approach maintains a
high precision and reasonable recall, the BIC model recommends overly simplistic GMM
clusters that are insufficient for accurate and robust boundary detection in the densely
annotated setting. This performance supports our earlier claim that our framework,
particularly the AIC-based approach, can effectively handle longer, untrimmed videos,
achieving state-of-the-art results comparable to those on the Breakfast dataset.

Table 6.5: Boundary Level Results over Video-classes: Average Precision, Recall,
and F1-Score for each video class in the TSU Dataset using the AIC-based
Boundary Detection approach.

AIC
class avg. length Precision Recall F1-Score

Dining Room 23777 0.270 0.596 0.347
Kitchen 15191 0.499 0.708 0.569

Living Room 24319 0.406 0.621 0.472

By analyzing the boundary-level results per video class, as shown in Table 6.5, we
again observe significant differences among them. Similar to the observations made on the
Breakfast dataset, video classes with longer average lengths, such as those in the Dining
and Living Room, experience a notable drop in precision. As before, these videos primarily
contain longer action segments such as "watch TV, read, write, and use telephone/laptop"
with average durations ranging from 30 seconds to several minutes.

In many of these videos, the person remains relatively stationary, for example, by sitting
on the couch while shifting from reading to watching TV. The clustering algorithm tends
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to slightly over-detect action changes, identifying non-labeled sub-actions like "grabbing
the remote control" or "adjusting glasses" due to the overall low action content. An
example of this over-detection during "watch TV" is shown in Figure 6.9.

These additional detections result in numerous false positives, reducing the overall
precision score. However, as presented in the Tables B.4 and B.5 in Appendix B and
reflected by the high recall score, our framework is still able to successfully detect most start
and end boundaries of these longer action segments. This demonstrates our framework’s
ability to capture the significant action changes (with high recall) while occasionally
identifying additional unlabeled and fine-grained transitions in low-action scenarios.

When comparing the average IoU per action length for all three models, as illustrated in
Figure 6.7, we observe a similar pattern to that observed during our Breakfast evaluation.
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Figure 6.7: Average IoU per Action length: Both AIC based model provide good
results on the TSU dataset. The standart AIC model excels at detecting shorter
actions up to 10 seconds, while the Reduced Feature approach generalizes
better, improving the average IoU for longer action up to a minute in duration.
The BIC approach does not perform well, showing reasonable results only for
very long actions (>1500 frames).

The AIC-based approach identifies fine-grained action transitions, achieving high de-
tection accuracy for shorter actions ranging from one second to almost 40 seconds. The
reduced feature vector approach helps the GMM generalize better, enabling the capture
of broader action segments from several seconds up to nearly a minute. In contrast,
the BIC approach recommends simple Gaussian clusters, primarily detecting very coarse
boundaries of actions longer than 40 seconds. These observations explain the significantly
lower recall scores of the Reduced Feature and BIC approaches, as over 50% of the
dataset’s ground-truth actions fall within the 0 to 2-second range (0-50 frames), where
only the AIC model can effectively identify action transitions.
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Action Level Results

The overall action-level results, presented in Table 6.6, are significantly worse across
all three models compared to the Breakfast dataset. This indicates that, although the
framework detects action transitions with high accuracy, capturing entire actions using
two consecutive boundaries proves to be highly inaccurate in this challenging dataset.

Table 6.6: Action Level Results: Average action-based Precision@0.5 and Recall@0.5
over all tested videos of the TSU Dataset.

AIC AIC (Red. Features) BIC
Precision@0.5 0.158 0.207 0.218

Recall@0.5 0.301 0.240 0.166

As previously noted, the dataset contains many very short action sequences, with over
50% of actions being under 50 frames in length. As shown in Figure 6.7, the average
IoU for these small actions falls well below the true positive detection threshold of 0.5,
explaining the low action-based precision and recall scores. The strict nature of the IoU
metric poses a particular challenge for these smaller actions; for instance, in actions like
"Put something on the table" with an average length of 20 frames, missing the boundaries
by just 10 frames (equals to one-third of a second) results in an IoU below 0.5. This leads
to the action being classified as undetected, even though the boundaries are correctly
identified. The Tables B.4 and B.5 in Appendix B highlight this issue, showing that even
though IoU-based action metrics are low, the AIC-based approach is still able to detect at
least one or even both boundaries of most smaller actions.

Figure 6.8: Boundary Detection on TSU Dataset: Comparison of ground-truth
action intervals (red) with the retrieved action boundaries by the AIC-based
UnSTABL framework (blue). Our framework only detects distinct action
changes and, therefore, identifies consecutive identical action segments as one
(actions 1 and 13). Additionally, it occasionally misses a start or end transition
between fore- and background action (actions 9 and 12)..
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Another contributing factor to the poor action-based recall performance is illustrated in
Figure 6.8. Longer action sequences in the TSU dataset are often divided into individual,
consecutive action intervals (e.g., ground-truth actions 13 and 1 in Figure 6.8). Our
algorithm, however, primarily detects distinct action changes, identifying only the outer
boundaries and merging these subsequent, identical action segments into a single continuous
interval. As a result, the IoU for these smaller ground-truth action segments frequently
falls below 0.5, leading to numerous false negatives and thereby reducing the action-level
recall, while still detecting the outer, most important action boundaries.

A further issue arises from the overlapping and non-sequential action structure of the
TSU dataset. As illustrated in Figure 6.9, the UnSTABL framework is still able to detect
overlapping action boundaries if the action change is sufficiently large. However, these
overlapping action boundaries cause our proposed action intervals to split, yielding an IoU
below 0.5 for the longer ground-truth segments and contributing further to false negatives.
Furthermore, the dataset contains many segments without annotated actions, known as
background action segments. The transition between foreground and background actions
is sometimes not clear enough, causing the algorithm to occasionally miss a start or end
boundary (e.g. actions 9 and 12 in Fig.6.8). As a result, the framework merges background
and foreground actions, leading to a misidentification of the ground-truth action.

Figure 6.9: Boundary Detection on TSU Dataset: Comparison of ground-truth
action intervals (red) with the retrieved action boundaries by the AIC-based
UnSTABL framework (blue). Our framework splits longer, ground-truth action
segments (action 26) into multiple, smaller action intervals by detecting over-
lapping ground-truth actions (action 13) or non-labeled actions or movements.

Regarding the poor performance of the action-based precision, we encounter challenges
similar to those observed in the Breakfast dataset. In addition to the over-detection
of longer actions (e.g. action 26 in Fig.6.9), there is also the issue of over-detecting
background action segments, as shown in Figure 6.8. During these longer foreground or
background action segments, the framework can detect minor, unintended movements,
such as arm or hand motions, as action boundaries. This leads to a high number of false
positives, significantly lowering the boundary-level and action-level precision scores.
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To conclude the quantitative evaluation of both datasets, we highlight the strengths
and limitations of the UnSTABL framework in boundary detection and action proposal
generation. The high boundary-level recall across both datasets demonstrates the ef-
fectiveness of our models in detecting ground-truth action transitions. While all three
approaches deliver state-of-the-art results in terms of F1-Score, they differ significantly in
the granularity of the detected boundaries. By incorporating boundary-level precision and
action-based metrics into our evaluation, we observe that both AIC-based methods excel
at detecting fine-grained action transitions, whereas the BIC model focuses primarily on
broader transitions. Both AIC-based models serve a distinct purpose:

• The AIC Approach detects very fine-grained action transitions, ensuring that
fewer labeled ground-truth transitions are missed. It effectively detects actions
ranging from one to 20 seconds. However, the higher recall comes at the cost of
introducing additional, unnecessary boundaries, which lower the overall precision.

• The AIC Reduced-Feature Approach generalizes better, improving the boundary-
level precision by reducing the over-detection of subtle, non-labeled action changes.
By focusing on the most critical transitions, this approach is particularly proficient
at detecting short and moderately long actions, ranging from several seconds up to
50 seconds.

However, the action-based precision and IoU metrics reveal limitations when generating
temporal action proposals from two consecutive boundaries, especially on non-sequential
datasets like TSU. Our framework struggles to handle overlapping and background
actions, making it challenging to form accurate action proposals directly from the detected
boundaries. These limitations suggest the need for an additional refinement stage to
transform boundary detections into coherent action proposals, especially for non-sequential
datasets.

Despite these limitations in temporal action proposal generation, our framework performs
exceptionally well for unsupervised summary generation, effectively detecting key action
transitions even under complex conditions. We argue that the Reduced Feature approach
delivers the best result, providing an optimal trade-off between detecting most of the
significant action changes while minimizing excessive over-detections.

6.2.3 OR Dataset
The third part of our evaluation is conducted on our custom OR dataset. As explained
in Section 6.1.1, this experiment is performed on ten videos divided into three classes,
each representing progressively higher levels of difficulty and crowdedness. By manually
assessing the accuracy of the produced summaries, we aim to qualitatively validate
whether the results previously observed in single-person environments remain similar in
more complex multi-person surgical settings. Based on the previous results, we employ the
Reduced Feature approach for boundary detection to achieve precise boundary detection
with fewer over-detections, which is essential for creating concise and accurate summaries.

The boundary results, shown in Table 6.7, support our claim that the UnSTABL
framework, through person-specific feature extraction and boundary detection, can produce
strong results even in challenging multi-person environments. The performance and
accuracy were consistent across all three video classes, further validating its robustness in
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Table 6.7: Boundary Performance on our OR Dataset: Counts and percentages
of correctly detected boundaries, incorrectly detected boundaries (split into
redundant/wrong and person-collision-induced) and missed boundaries relative
to the correctly detected ones.

Total det. correct det. incorrect det. incorrect det. Boundaries missed
Boundaries Boundaries Boundaries (due to Collision) Boundaries

695 446 - 64.2% 149 - 21.4% 100 - 14.4% 15 - 3.7%

crowded scenes. The framework demonstrated high precision in detecting relevant and
important action transitions, with nearly 65% of the detected boundaries considered useful
in the summary. More importantly, our framework missed only 15 crucial transitions
out of 446 correctly detected boundaries. These results are directly comparable to those
achieved in both benchmark tests, where both AIC-based methods achieve a very high
boundary-level recall, missing only a few significant action transitions. A full breakdown
of these results can be found in Appendix C.

An example for such a good summary is given in Figure 6.10. In this instance,
our UnSTABL framework successfully detects six distinct action intervals, efficiently
summarizing 30 seconds of video without missing any important steps.

Figure 6.10: OR Video Summary: Our UnSTABL framework successfully detects six
action segments performed by the individual: (1) placing the forceps, (2)
walking to the patient and grabbing a surgical drape, (3) placing the drape
on the patient’s wound, (4) grabbing a new drape set, (5) unpacking it, and
(6) discarding the packing paper in the garbage can.
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Although the framework demonstrates high recall in detecting key action transitions, its
unsupervised nature leads to around 35% of additional, incorrect detected boundaries. Of
those, about 15% are caused by person collisions, as shown in Figure 6.11. When a second
individual enters the bounding box of the selected person, whether in the foreground or
background, the feature vector changes during the time of the collision. This happens
because the SlowFast Network extracts action information from both individuals within the
bounding box. Consequently, the Boundary Detection module interprets these changes as
action transitions, identifying boundaries at the start and end of the collision. Furthermore,
any additional action changes performed by the second individual during the collision are
also most likely detected and mistakenly assigned to the selected person. To address these
incorrect boundary detections, we introduced the collision-robust UnSTABL framework,
whose effectiveness will be evaluated in the following section.

Figure 6.11: Person Collisions: A bounding box collision with another individual
(whether in the foreground or background) leads to incorrect detection of
action boundaries. In this example, the extended "working at the PC" action
sequence is split by incorrectly detected boundaries caused by people walking
past and overlapping with our subject (Images 1, 3, and 5).

The remaining 20% of incorrectly detected boundaries are typically caused by unex-
pected hand or body movements from the selected individual. For instance, in Figure 6.12,
the person suddenly turns their body to look at something in the background, which our
algorithm mistakenly identifies as an action transition. A similar issue arises occasionally
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with abrupt hand movements. The unsupervised nature of our framework causes this
behavior, as it can only detect significant action changes without any contextual under-
standing of the actions being performed or which transitions are relevant to the observer.
However, since this happens only about 20% of the time, these incorrect detections are
negligible in the produced summary.

Figure 6.12: OR Video Summary: Our framework successfully detects five correct
action transitions: (1) walking to the working table, (2) opening the drawer
and taking out a syringe, (3) grabbing a needle from the shelf, (4) attaching
the needle to the syringe, and (5) placing the syringe down and grabbing a
new one. Additionally, one incorrect action segment was detected due to (6)
body movement and rotation.

Additionally, we observed a similar issue as during our benchmark tests. Long repetitive
action sequences are sometimes divided into sub-actions, as shown in Figure 6.13. As each
sub-action is performed repeatedly, they generate numerous feature vectors. These vectors
are then grouped into separate clusters due to their large volume, causing the action
detection module to identify a transition each time a sub-action changes. In the provided
example, our framework splits the long "scanning" sequence into multiple shorter action
sequences of "scanning" and "confirming it on the PC", resulting in redundant images and
boundaries in the produced summary. However, these sub-action boundaries could still be
relevant for other use cases, such as temporal action proposal generation.
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Figure 6.13: Extended Repetitive Action Sequences: Long sequences involving
repetitive actions are often over-detected. In this example our framework
detects each individual action step (1) scanning and (2) confirming it on the
PC, splitting the longer "scanning" action sequence into multiple parts.

To briefly summarize, our UnSTABL framework successfully generates high-quality
summaries in challenging multi-person environments without missing too many crucial
action transitions. Approximately 65% of the detected boundaries were deemed valuable,
while 20% included redundant or misinterpreted transitions, mainly due to over-detection
of long repetitive action sequences or erratic body and hand movements. To address the
remaining 15% of incorrect, collision-induced boundaries, we will evaluate the Collision
Avoidance module in the next section.

Collision Avoidance

The Collision Avoidance module identifies strong person collisions and removes feature
vectors containing action information of the overlaps. As shown in Table 6.8, this reduces
the percentage of incorrectly detected collision induced boundaries from 14.4% to 2.3%,
significantly improving the precision of the detected action transitions.

However, these improvements come at a cost. Previously detected action transitions
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Table 6.8: Collision Avoidance Results on our OR Dataset: Percentages of collision-
induced boundaries that remain incorrectly detected using the "collision-robust"
UnSTABL framework, along with missed boundaries due to the collision avoid-
ance relative to previously correctly detected ones.

Standart Collision Robust
video avg. strong incorr. Boundaries incorr. Boundaries missed Boundaries
class collisions (due to Collision) (due to Collision) (due to Coll. Avoid.)

1 15 16.2% 2.4% 8.4%
2 77 7.8% 1.8% 40.3%
3 120 16.0% 5.4% 26.8%

tot. 80 14.4% 2.3% 28.3%

that occur during overlaps are now more likely to be missed, as the framework eliminates
all action information during collisions. As discussed in Section 5.2.2, the framework is
capable of detecting action changes immediately after an overlap if the action changes
only once. However, in cases of longer overlaps, all boundaries of action sequences that
begin and end within the overlap are missed by our collision-robust framework.

Figure 6.14: Long Collisions: During long collision sequences with individuals in the
foreground or background (red), the Collison-Robust framework misses nu-
merous action boundaries, such as "put on coat", "walking", etc., of the
selected individual (green) due to removing the associated feature vectors.

As highlighted in Table 6.8, this issue is particularly evident in the more crowded
scenarios of the video classes (2) "Two-Person Collaboration" and (3) "Crowded Operating
Table Setting". In these videos, the individuals exhibit occasionally constant, strong
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overlaps, either caused by the collaborating person or by people working in the background,
as shown in Figure 6.14. These long overlaps result the loss of numerous action boundaries,
with up to 40% missed in the collaboration videos.

In summary, our Collision Robust Boundary Detection approach performs well in
scenarios with short, quick overlaps, such as in video class (1) "Single-Person in Multi-
Human Environment," where people briefly pass by the selected person. In these cases,
the produced summaries show significant improvements, effectively avoiding nearly all
collision-induced boundaries while still capturing most of the significant action transitions.
However, in scenarios involving frequent or prolonged overlaps, as seen in video classes (2)
"Two-Person Collaboration" and (3) "Crowded Operating Table Setting," the advantages
of the Collision Robust approach are diminished. The extended overlaps cause too many
crucial action transitions to be missed, revealing the limitations of our proposed framework
in such demanding environments.

6.2.4 Industrial Dataset
The Industrial video constitutes the fourth and final part of our action boundary detection
evaluation. It highlights the adaptability of our UnSTABL framework to entirely different

Figure 6.15: Industrial Video Summary: Our UnSTABL framework successfully pro-
duces a concise summary of almost one minute of video content: The person
(1) enters with a sink; (2) places the sink; (3) walks to the middle; (4) raises
its hand (activation signal); (5) walks to second sink; (6) draws pattern on
sink; (7) walks to the middle; (8) waits in the middle; (9) leaves the room.
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environments, made possible by its unsupervised design, as shown in Figure 6.15. The
framework only requires surveillance-like videos of individuals to detect action boundaries
accurately. It produces similar results across all four datasets without needing to re-train
the network. This adaptability over different environments is particularly beneficial in
dynamic OR settings, where the room layout can vary significantly from surgery to surgery.
Additionally, it enables a broader usage beyond the OR, as shown in this example.

6.3 ID Swap Detection
The final part of the evaluation is again performed on the OR dataset to determine
the accuracy of the ID Correction module. At each strong collision or permanent ID
disappearance, the module compares the action information of all involved or newly
emerged IDs and identifies the most likely permutation. This module aims to improve the
tracking performance of the Deep-OC-Sort algorithm in the challenging OR environment.

As a first part, we evaluated the overall performance of our ID Correction module
by calculating the percentage of the correctly proposed ID permutations of our selected
individual across all checked collisions and ID disappearances. As shown in Table 6.9, in
90% of the cases, the module made the correct decision to either trust the Deep-OC-Sort
tracker or propose an ID Swap, demonstrating the high accuracy of our action-based ID
swap detection approach.

Table 6.9: ID Swap Detection Results on OR Dataset: The tabel provides the
percentage of correctly detected, not detected and wrong detected ID Swaps,
showing the improvements over the Deep-OC-Sort tracker (total ID Swaps).
Additionally it provides the number of checked potential ID Swaps and the
percentage of correct decisions, proposing the correct permutation.

ID Swap Detection Likelihood Decision
video total ID detected not detected wrong ID checked correct
class Swaps ID Swaps ID Swaps Swap det. collisions decision

1 15 53.3% 40.0% 6.7% 54 90.7%
2 5 40.0% 40.0% 20.0% 29 90.0%
3 15 46.7% 20.0% 33.3% 78 90.3%

total 35 48.6% 31.4% 20.0% 160 90.4%

As a second part, we directly demonstrate the improvements over the Deep-OC-Sort
tracker. As shown in Table 6.9, the Deep-OC-Sort tracker assigned a new ID to the
selected person 35 times across all videos, either due to losing track or making a wrong
re-identification after a strong overlap. By comparing the action information before and
after the overlap, the ID Correction module is able to correct nearly 50% of Deep-OC-Sorts
wrong ID assignments. This approach proves highly effective for short overlaps, where
the actions of the involved individuals are less likely to change, as shown in Figure 6.17.
The module identifies the permutation from ID 3 ("sitting") to ID 94 ("sitting") and ID 93
("walking") to ID 93 ("walking") as the most likely one, successfully detecting the ID swap.

However, as explained in Section 5.3, if the overlap is too long, the actions of the involved
individuals are likely to change during the overlap. Consequently, to avoid additional
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wrong ID assignments, we check only short, strong overlaps for potential ID swaps.

Figure 6.16: Detected ID Swap: The ID Swap Detection module is able to identify the
ID Swap from 3 to 94 since the action of both individuals remains the same
before and after the collision (ID 3,94 "sitting" and ID 93 "walking").

On the other hand, about 30% of the time, our framework is unable to detect the ID
Swap, therefore making the same incorrect ID assignments as the Deep-OC-Sort tracker.
This mainly occurs when both involved individuals perform the same or similar actions or
if they change their actions during the overlap, as illustrated in Figure 6.17. In such cases,
the result is either similar permutation scores (since all actions are similar) or scores that
are too low (since no actions are similar), making it impossible to identify an ID swap.
Under these circumstances, the module wrongfully trusts the original tracking data.

Figure 6.17: Not Detected ID Swap: In this case, the ID Swap Detection module is
unable to identify the ID swap, because the actions before the collision (ID
149 "standing, watching monitor" and ID 125 "sitting, watching monitor")
differ significantly from the action after the collision (ID 150 "walking"),
making both permutations unlikely.

The biggest problem are wrong detected ID swaps. About 20% of the time, the
ID Correction module suggests wrong ID swaps and mistakenly identifies two different
individuals as the same. As shown in Figure 6.18, similar to before, the selected person
must change their action during the overlap. However, if the action before the collision is
now similar to the second person’s action after the collision, this incorrect permutation
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becomes the most likely one. As visible in Table 3, this scenario occurs more frequently in
densely crowded and collaborative videos, where many individuals work in close proximity
and are performing similar actions (e.g., patient preparation), increasing the likelihood of
a wrong detected ID swap.

Figure 6.18: Wrong detected ID Swap: ID 1 sits before the collision and, when standing
up, reveals a new person with ID 6 (also "sitting") and initiates the collision.
Consequently, after the collision, the ID Swap Detection module identifies
the incorrect permutation of ID 1 to ID 6 as the most likely one, since ID 1
performs a different action "standing, watching monitor".

To briefly summarize this section, the ID Swap detection module significantly improves
the tracking performance of the Deep-OC-Sort tracker. Although it introduces a couple
of additional ID swaps in crowded settings, its ability to correct around 50% of the
incorrect ID assignments across all video classes and achieve a decision accuracy of 90%
demonstrates its effectiveness in this challenging OR environment.



7 Conclusion and Outlook
Over recent years, the demand for action detection software has grown significantly as
industries rely on automated tools to analyze high amounts of video data. In the OR,
for instance, detected action boundaries can be used to create concise summaries for
documentation purposes, which can help save time in post-operative reviews and support
training by highlighting critical steps. However, industrial and OR environments come
with increased complexity due to multiple individuals and numerous concurrent actions,
which most state-of-the-art action detection models can not to handle effectively.

To develop an action boundary detection algorithm adaptable to various real-world
and multi-person environments without needing extensive annotated datasets or intensive
training, we introduced the Unsupervised Spatio-Temporal Action Boundary Localization
(UnSTABL) algorithm. UnSTABL automatically identifies action boundaries for each
detected individual across spatial and temporal dimensions, enabling precise, person-
specific action detection without supervision. To achieve this, our pipeline consists of
three stages:

• Person Detector and Tracker: We use a pre-trained person detection and
tracking model, called Deep-OC-Sort, to identify and track individuals across frames,
enabling a person-specific action boundary analysis.

• Feature Extractor: Action-specific feature vectors are extracted from each indi-
vidual using a slightly modified and pre-trained SlowFast network to retrieve action
information for the boundary detection stage.

• Boundary Detector: We apply a GMM clustering algorithm to group similar
action features over time, allowing our framework to identify action changes without
supervision.

However, frequent person occlusions and crossovers introduce an additional challenge in
multi-person environments, often resulting in wrong-detected action boundaries and ID
swaps. To tackle this, we propose a "collision-robust" UnSTABL extension that introduces
two additional modules:

• Collision Avoidance: This module detects overlaps between individuals and
removes the associated feature vectors. This way, we are able to prevent miss-
assignments of action information, eliminating collision-induced boundaries.

• ID Correction: By comparing action information before and after overlaps, this
module is able to identify potential ID swaps, improving the performance of state-
of-the-art person trackers in challenging environments.

Extensive benchmark tests revealed that our UnSTABL framework achieves state-of-the-
art results in single-person environments. Our approach is able to detect action boundaries
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with a high recall, successfully capturing the majority of critical action transitions, which
is crucial for accurate summary generation.

In our tests, we evaluated three boundary detection models. The Reduced Feature
approach delivered the best performance, combining a high recall with an improved
precision over the AIC approach, significantly reducing over-detections. This method is
particularly effective at detecting short to moderately long actions, ranging from several
seconds to almost a minute. The BIC method on the other hand mainly detects broader
action transitions, making it too coarse for generating accurate summaries.

In moderately crowded, multi-person environments, the model delivers similar results to
the one observed during the benchmark tests, highlighting the ability of our person-based
approach to handle real-world complexities. The collision avoidance module effectively
suppresses collision-induced boundaries while still capturing the most critical action
transitions in these settings. Furthermore, the ID Correction module is able to identify
and correct almost 50% of the tracker’s incorrect ID assignments, significantly improving
the tracking performance in these challenging settings.

However, densely crowded scenes and collaborative tasks pose a limitation to our
approach. The high amount of person overlaps leads to numerous wrong collision-induced
boundaries, significantly reducing the quality of the produced summaries. While the
collision-robust framework is able to suppress most incorrect boundaries, the long and
repeated overlaps cause it to miss too many crucial action transitions.

Despite these limitations, our UnSTABL framework sets a new standard by making
unsupervised action boundary detection feasible in moderately crowded multi-person
environments without sacrificing accuracy. Additionally, we were able to show that its
unsupervised nature makes it adaptable to various real-world environments without any
additional effort.

To conclude this thesis, we propose two potential directions for future work. The
first proposal aims to improve the action boundary detection in crowded multi-human
environments. Similarly to the improvements of Mask R-CNN over Faster R-CNN, focusing
on masks instead of bounding boxes could be beneficial. This approach would allow the
SlowFast Network to extract action information specific to masked individuals rather than
capturing all actions within a bounding box.

The second proposal would be to develop a subsequent stage that combines the detected
action boundaries into temporal action proposals and integrates an action recognition
algorithm. This would transform the framework into a complete action detection pipeline,
capable of not only identifying boundaries but also recognizing specific action instances.
As a result, summary generation could be further optimized, allowing summaries to be
filtered by specific keywords or action classes to display only the most relevant frames
and boundaries.



A Results on the Breakfast Dataset
In this appendix we provide the full results of the evaluation on the Breakfast dataset.
The tested subset of the Breakfast dataset includes all videos from the specified directories
given in Table A.1, representing a wide range of different action classes and environments.

Table A.1: Subset of the Breakfast Dataset: The selected subset for the evaluation
consists of 198 videos found in the following Folders. Some videos where
however excluded from the Evaluation due to featuring multiple Persons.

Folder Excluded Videos
P03/cam01 -
P04/cam01 -
P07/stereo -
P08/cam01 -
P09/cam01 -
P10/cam01 -
P13/stereo -
P16/cam01 P16_friedegg_ch1
P16/stereo -
P17/stereo P17_pancake_ch1
P18/stereo -
P19/stereo -
P22/stereo -
P23/stereo -
P24/stereo -
P25/cam01 -
P26/cam01 -
P27/cam01 -
P28/cam01 -
P29/cam01 P29_salat
P30/stereo -
P32/cam01 P32_friedegg, P32_pancake, P32_scrambledegg
P33/stereo -
P36/stereo P36_pancake_ch1
P37/stereo P37_pancake_ch1
P38/stereo P38_scrambledegg_ch1
P39/stereo P39_pancake_ch1
P42/stereo P42_friedegg_ch1, P42_salat_ch1
P43/stereo P43_friedegg_ch1, P43_scrambledegg_ch1
P45/webcam01 P45_friedegg, P45_pancake, P45_salat, P45_scrambledegg
P47/webcam01 P47_friedegg, P47_pancake
P53/cam01 -
P54/cam01 -
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We selected only videos in which the person was fully visible, ensuring that the Person
Detector could accurately identify the individual across all frames, thus providing a
reliable evaluation. Videos with partially visible individuals were excluded because missed
detections would prevent our UnSTABL framework from accurately identifying action
boundaries. Additionally, we removed 20 videos containing multiple persons for most of
the duration, as this would result in numerous incorrect detected boundaries since these
actions are not labeled in the ground-truth data.

Overall Performance
We start by assessing the overall boundary- and action-level performance of all three
Boundary Detection models on the selected subset, given in Table A.2.

Table A.2: Average Results over all tested videos: This Table provides the average
boundary- and action-based results over all Breakfast videos.

Precision Recall F1 Mean IoU Prec@0.5 Recall@0.5
AIC 0.356 0.658 0.438 0.481 0.282 0.497

Red. Feat. 0.370 0.606 0.444 0.474 0.299 0.486
BIC 0.446 0.512 0.456 0.488 0.433 0.466

Boundary Based Results
As the second part of our evaluation, we calculated the average boundary-level metrics
(Precision, Recall, and F1-Score) across all videos within each video class. The results for
each Boundary Detection model are given in Table A.3.

Table A.3: Video-class based Boundary Results: This Table provides the average
boundary-level metrics per video class. The video classes are (1) tea, (2) coffee,
(3) cereals, (4) milk, (5) juice, (6) sandwich, (7) scrambledegg, (8) friedegg, (9)
salat, and (10) pancake.

AIC Reduced Features BIC
class avg.len Prec Rec F1 Prec Rec F1 Prec Rec F1

1 612 0.485 0.662 0.549 0.431 0.604 0.494 0.613 0.537 0.564
2 631 0.416 0.643 0.498 0.399 0.649 0.484 0.507 0.621 0.548
3 646 0.478 0.648 0.543 0.502 0.658 0.560 0.554 0.562 0.552
4 917 0.474 0.657 0.540 0.494 0.677 0.562 0.552 0.561 0.537
5 1552 0.314 0.566 0.396 0.321 0.487 0.380 0.379 0.456 0.397
6 1652 0.302 0.641 0.397 0.322 0.628 0.412 0.358 0.512 0.405
7 2757 0.277 0.707 0.385 0.359 0.643 0.449 0.434 0.614 0.477
8 3149 0.179 0.719 0.277 0.227 0.587 0.311 0.243 0.414 0.283
9 3718 0.223 0.694 0.324 0.268 0.527 0.341 0.364 0.377 0.335
10 6518 0.140 0.705 0.228 0.177 0.531 0.251 0.207 0.346 0.245
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Action Based Results
For the third part of our evaluation, we computed the average action-level metrics (mean
IoU, Precision@0.5, and Recall@0.5) across all video classes. The summarized results of
each Boundary Detection model are presented in Table A.4.

Table A.4: Video-class based Action Results: This Table provides the average action-
level metrics per video class. The video classes are (1) tea, (2) coffee, (3)
cereals, (4) milk, (5) juice, (6) sandwich, (7) scrambledegg, (8) friedegg, (9)
salat, and (10) pancake.

AIC Reduced Features BIC
cl. avg.l. IoU P@0.5 R@0.5 IoU P@0.5 R@0.5 IoU P@0.5 R@0.5
1 612 0.52 0.437 0.600 0.50 0.348 0.507 0.49 0.726 0.591
2 631 0.38 0.271 0.355 0.37 0.234 0.331 0.38 0.362 0.369
3 646 0.49 0.357 0.494 0.47 0.378 0.499 0.45 0.486 0.474
4 917 0.54 0.415 0.587 0.55 0.433 0.615 0.47 0.556 0.550
5 1552 0.46 0.270 0.509 0.41 0.289 0.446 0.41 0.403 0.448
6 1652 0.50 0.236 0.500 0.52 0.276 0.532 0.49 0.343 0.535
7 2757 0.48 0.202 0.471 0.52 0.331 0.567 0.51 0.418 0.551
8 3149 0.41 0.109 0.379 0.39 0.155 0.395 0.32 0.189 0.309
9 3718 0.51 0.162 0.527 0.46 0.233 0.482 0.32 0.373 0.372
10 6518 0.47 0.103 0.444 0.46 0.153 0.403 0.28 0.162 0.271

In the fourth part of our evaluation, ground-truth actions were categorized based on
their length. For each action length category, we then calculated the average Intersection
over Union (IoU) of our detected action proposals relative to the ground-truth actions.
This analysis highlights which action (based on their lengths) are best captured by each
Boundary Detection model. The results are given in Table A.5.

Table A.5: Average IoU per Action length: This Table provides the average Intersec-
tion over Union of detected action proposals to ground-truth actions.

AIC Red. Features BIC
Action length Action count Average IoU Average IoU Average IoU
0-25 120 0.086 0.070 0.051
25-50 123 0.370 0.317 0.225
50-100 184 0.593 0.527 0.401
101-300 504 0.632 0.599 0.517
301-500 161 0.534 0.572 0.520
501-1000 109 0.364 0.462 0.478
1001-1500 38 0.251 0.395 0.510
>1500 27 0.131 0.247 0.344

The final two tables A.6 and A.7 show which ground-truth actions are most and
least effectively detected across all tested videos. A ground-truth action is considered
successfully detected if it achieves an IoU of at least 0.5 with a detected action proposal.
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The ground-truth actions are ordered by average lenght to illustrate that shorter actions
tend to be detected more accurately than longer, more coarsely defined actions.

Table A.6: Action-class based Results Part 1: This Table provides the first part of
the percentages of successfully detected ground-truth actions (with an IoU
over 0.5).

class occur. avg.len AIC Det.[%] Red.F.Det.[%] BIC Det.[%]
walk_in 1 23 0.0 0.0 0.0
take_squeezer 3 65 0.0 66.7 33.3
SIL 396 68 40.9 38.6 30.1
put_bunTogether 12 72 58.3 66.7 33.3
walk_out 20 72 50.0 30.0 55.0
take_knife 8 75 50.0 12.5 37.5
take_butter 1 100 0.0 0.0 0.0
take_cup 22 104 72.7 63.6 68.2
take_bowl 14 105 78.6 50.0 28.6
put_fruit2bowl 51 109 70.6 49.0 21.6
take_glass 12 116 41.7 41.7 25.0
stir_coffee 3 138 66.7 100.0 100.0
stir_cereals 8 138 12.5 25.0 12.5
cut_orange 20 165 70.0 65.0 65.0
pour_juice 28 172 96.4 89.3 92.9
pour_sugar 1 195 0.0 0.0 0.0
add_teabag 27 198 66.7 59.3 74.1
take_plate 31 200 61.3 45.2 41.9
pour_oil 19 204 57.9 57.9 21.1
pour_milk 78 206 66.7 62.8 57.7
stir_milk 22 218 90.9 90.9 68.2
pour_water 27 219 63.0 55.6 81.5
put_egg2plate 29 226 58.6 72.4 62.1
take_topping 8 226 62.5 75.0 62.5
put_pancake2plate 10 227 50.0 60.0 50.0
spoon_sugar 3 241 66.7 100.0 33.3
pour_cereals 24 260 33.3 41.7 62.5
stir_fruit 3 270 100.0 66.7 100.0
add_saltnpepper 23 278 47.8 47.8 60.9
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Table A.7: Action-class based Results Part 2: This Table provides the second part
of the percentages of successfully detected ground-truth actions (with an IoU
over 0.5).

class occur. avg.len AIC Det.[%] Red.F.Det.[%] BIC Det.[%]
take_eggs 2 284 0.0 0.0 100.0
crack_egg 43 286 53.5 51.2 44.2
spoon_powder 25 295 56.0 52.0 60.0
pour_coffee 20 299 40.0 25.0 60.0
cut_bun 23 303 73.9 78.3 60.9
pour_egg2pan 6 307 50.0 83.3 33.3
spoon_flour 10 357 50.0 40.0 30.0
pour_flour 3 366 33.3 66.7 33.3
put_toppingOnTop 26 371 42.3 53.8 69.2
stir_egg 7 437 71.4 71.4 57.1
pour_dough2pan 11 497 45.5 54.5 18.2
cut_fruit 60 576 40.0 36.7 41.7
butter_pan 15 641 13.3 20.0 33.3
stirfry_egg 20 647 55.0 60.0 80.0
smear_butter 24 652 33.3 37.5 54.2
stir_dough 18 696 66.7 77.8 33.3
squeeze_orange 28 715 25.0 28.6 28.6
peel_fruit 20 752 30.0 80.0 55.0
fry_egg 22 1374 9.1 13.6 13.6
fry_pancake 12 2803 0.0 8.3 33.3

Parameters
This last section provides the parameter of the Person Tracker and the SlowFast Network
used during our Evaluation, as detailed in Table A.8.

Table A.8: Parameters Breakfast Dataset: This table provides the parameters used
during our evaluation.

Deep-OC-Sort training model mot17
det_threshold 0.3

SlowFast sample_rate 2
num_frames 32
alpha 4



B Results on the TSU Dataset
This second appendix provides the complete evaluation results for second benchmark,
conducted on the Toyota Smarthome Untrimmed Dataset. We selected 77 videos from
the TSU Dataset, representing an approximate 80/20 split. The videos feature all three
different environments, different camera angles and persons. A complete list of the selected
videos is given in Table B.1.

Table B.1: Subset of the TSU Dataset: The selected TSU subset features 77 videos,
31 of those in the kitchen, 31 in the living room, and 15 in the dining room.

Environment Videos
Kitchen P02T01C06, P02T01C07, P02T02C03, P02T02C06, P02T02C07

P02T03C03, P02T03C07, P02T10C06, P02T13C06, P02T14C03
P02T16C06
P03T15C03, P03T15C06, P03T15C07, P03T16C03, P03T16C07
P03T18C03, P03T18C07
P04T14C03, P04T14C06, P04T15C03, P04T15C06, P04T15C07
P04T16C03, P04T16C06, P04T16C07, P04T17C03, P04T17C06
P04T17C07, P04T18C03, P04T18C06

Living Room P02T04C05, P02T05C04, P02T06C05, P02T07C04, P02T07C05
P02T08C04, P02T08C05, P02T17C05, P02T18C05
P03T02C04, P03T02C05, P03T03C04, P03T03C05, P03T04C04
P03T04C05, P03T05C04, P03T06C04, P03T06C05, P03T07C04
P03T07C05, P03T08C04, P03T08C05, P03T19C05
P04T03C05, P04T04C04, P04T04C05, P04T05C04, P04T06C05
P04T07C05
P06T02C04, P06T02C05

Dining Room P02T11C01, P02T12C02
P03T10C01, P03T10C02, P03T12C02, P03T13C01, P03T13C02
P04T09C01, P04T09C02, P04T10C01, P04T10C02, P04T11C02
P04T12C01, P04T13C01, P04T13C02

Overall Performance
As a first part, the Table B.2 provides the overall boundary- and action-based performance
of all three Boundary Detection models on the previously defined TSU subset.
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Table B.2: Average Results over all selected TSU Videos: This Table provides the
average boundary- and action-based results over all TSU videos.

Precision Recall F1 Mean IoU Prec@0.5 Recall@0.5
AIC 0.417 0.652 0.487 0.347 0.158 0.301

Red. Feat. 0.426 0.420 0.402 0.300 0.207 0.240
BIC 0.392 0.274 0.298 0.300 0.218 0.166

Boundary Based Results
As second part of the TSU evaluation, we determined the average boundary-level metrics
(Precision, Recall, and F1-Score) per video class. The results of all three Boundary
Detection models are given in Table B.3.

Table B.3: Video-class based Boundary Results: This Table provides the average
boundary-level metrics per video class. The video classes are (1) Dining Room,
(2) Kitchen, and (3) Living Room.

AIC Reduced Features BIC
class avg.len Prec Rec F1 Prec Rec F1 Prec Rec F1

1 23777 0.27 0.596 0.347 0.312 0.397 0.317 0.286 0.172 0.178
2 15191 0.499 0.708 0.569 0.496 0.486 0.476 0.474 0.381 0.393
3 24319 0.406 0.621 0.472 0.409 0.363 0.367 0.359 0.215 0.259

In addition to the class based results, we determined also the percentage of detected
ground-truth boundaries for each action class. However, we only provide the results for
the AIC based approach, since it delivers by far the best result on the TSU dataset.
The Tables B.4 and B.5 provide the percentage of the AIC based UnSTABL framework
detecting both boundaries, only one boundary (start or end) or no boundary for each
action class.

Table B.4: AIC-based Boundary Detection of the Action classes on TSU Part
1: "Total Det." indicates the percentage of detecting both boundaries of the
ground-truth action, "One Det." shows the percentage where either the start
or end boundary is detected, and "No Det." represents the percentage where
no boundaries are detected.

Total One No
Action-class occ. avg.len Det.[%] Det.[%] Det.[%]
Take_something_off_table 871 16 69.1 11.9 18.9
Use_glasses 15 19 66.7 13.4 20.0
Put_something_on_table 862 20 59.6 19.1 21.3
Cook.Use_stove 19 26 47.4 31.6 21.1
Get_up 323 26 85.8 11.8 2.5
Sit_down 309 28 79.9 14.8 5.2
Eat_snack 51 34 64.7 25.5 9.8
Drink.From_glass 26 58 57.7 30.7 11.5
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Table B.5: AIC-based Boundary Detection of the Action classes on TSU 2

Total One No
Action-class occ. avg.len Det.[%] Det.[%] Det.[%]
Lay_down 34 60 29.4 44.2 26.5
Pour.From_can 4 74 100.0 0.0 0.0
Drink.From_cup 284 78 35.9 38.4 25.7
Drink.From_can 76 81 35.5 40.8 23.7
Clean_dishes.Put_smthing_in_sink 10 81 40.0 40.0 20.0
Dump_in_trash 22 82 68.2 27.3 4.5
Drink.From_bottle 95 93 29.5 35.8 34.7
Stir_coffee/tea 6 98 33.3 16.7 50.0
Pour.From_bottle 45 99 22.2 46.7 31.1
Walk 839 106 70.7 26.4 3.0
Pour.From_kettle 26 120 30.8 46.2 23.1
Get_water 4 122 50.0 50.0 0.0
Use_fridge 41 133 85.4 12.2 2.4
Take_pills 57 144 43.9 42.1 14.0
Breakfast.Cut_bread 11 150 72.7 18.2 9.1
Wipe_table 14 165 64.3 35.7 0.0
Use_cupboard 29 186 75.9 17.2 6.9
Cook.Use_oven 21 188 90.5 4.8 4.8
Make_coffee.Get_water 7 190 85.7 14.3 0.0
Make_coffee.Pour_water 17 192 35.3 23.5 41.2
Make_coffee.Pour_grains 9 216 22.2 55.5 22.2
Use_Drawer 144 217 59.7 24.3 16.0
Make_tea.Boil_water 12 254 91.7 8.3 0.0
Breakfast.Eat_at_table 41 255 39.0 29.3 31.7
Cook.Stir 48 285 64.6 22.9 12.5
Breakfast.Spread_jam_or_butter 6 297 83.3 0.0 16.7
Breakfast.Take_ham 1 313 100.0 0.0 0.0
Make_tea 11 362 63.6 36.4 0.0
Clean_dishes.Clean_with_water 11 363 72.7 27.3 0.0
Clean_dishes.Dry_up 51 518 80.4 19.6 0.0
Cook.Cut 22 586 45.5 36.4 18.2
Use_telephone 76 628 50.0 36.8 13.2
Use_laptop 69 751 39.1 34.8 26.1
Watch_TV 135 797 57.0 31.9 11.1
Clean_dishes 103 968 68.0 25.2 6.8
Make_coffee 17 1042 11.8 29.4 58.8
Use_tablet 56 1492 71.4 25.0 3.6
Write 76 1541 55.3 31.6 13.2
Read 260 1831 58.5 30.8 10.8
Cook 12 4847 75.0 16.6 8.3
Breakfast 4 6012 25.0 50.0 25.0
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Action Based Results
As a third part of our TSU evaluation, we provide the action-based metrics for each video
class. The results are given in Table B.6.

Table B.6: Video-class based Action Results: This Table provides the average action-
level metrics per video class. The video classes are (1) Dining Room, (2)
Kitchen, and (3) Living Room.

AIC Reduced Features BIC
cl. avg.l. IoU P@0.5 R@0.5 IoU P@0.5 R@0.5 IoU P@0.5 R@0.5
1 23777 0.30 0.080 0.258 0.27 0.109 0.209 0.24 0.145 0.123
2 15191 0.40 0.209 0.360 0.37 0.307 0.317 0.37 0.299 0.243
3 24319 0.31 0.143 0.262 0.25 0.153 0.174 0.26 0.171 0.108

Additionally, we also determined the average IoU per action lenght, measuring how well
our three Boundary Detection models capture shorter as well as longer action instances.
The results are provided in Table B.7.

Table B.7: Average IoU per Action length on TSU: This Table provides the average
Intersection over Union of detected action proposals to ground-truth actions.

AIC Red. Features BIC
Action length Action count Average IoU Average IoU Average IoU
0-25 1997 0.174 0.053 0.031
25-50 868 0.351 0.161 0.112
50-100 929 0.491 0.314 0.214
101-300 746 0.522 0.480 0.282
301-500 213 0.453 0.519 0.367
501-1000 221 0.461 0.534 0.462
1001-1500 112 0.399 0.494 0.452
>1500 206 0.252 0.320 0.443

As a last part of our evaluation, we provide show which ground-truth actions are most
and least effectively detected across all tested videos using the action-based metrics. A
ground-truth action is considered successfully detected if it achieves an IoU of at least 0.5
with a detected action proposal (two consecutive boundaries). The results are given in
Table B.8 and B.9.
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Table B.8: Action-class based Results on TSU Part 1: This Table provides the
percentages of successfully detected ground-truth actions (IoU over 0.5).

AIC Red.F BIC
Action-class occ. avg.len Det.[%] Det.[%] Det.[%]
Take_something_off_table 871 16 9.1 1.6 1.1
Use_glasses 15 19 6.7 6.7 0.0
Put_something_on_table 862 20 9.4 2.2 2.0
Get_up 323 26 18.0 5.6 0.3
Cook.Use_stove 19 26 15.8 0.0 0.0
Sit_down 309 28 29.1 6.1 2.3
Eat_snack 51 34 25.5 3.9 2.0
Drink.From_glass 26 58 50.0 7.7 7.7
Lay_down 34 60 8.8 8.8 2.9
Pour.From_can 4 74 100.0 50.0 75.0
Drink.From_cup 284 78 39.8 18.3 7.4
Drink.From_can 76 81 50.0 18.4 19.7
Clean_dishes.Put_somethg_in_sink 10 81 40.0 0.0 0.0
Dump_in_trash 22 82 59.1 27.3 18.2
Drink.From_bottle 95 93 34.7 25.3 13.7
Stir_coffee/tea 6 98 33.3 0.0 0.0
Pour.From_bottle 45 99 31.1 15.6 11.1
Walk 839 106 51.4 32.9 19.7
Pour.From_kettle 26 120 46.2 19.2 7.7
Get_water 4 122 75.0 50.0 25.0
Use_fridge 41 133 73.2 36.6 22.0
Take_pills 57 144 45.6 36.8 21.1
Breakfast.Cut_bread 11 150 81.8 54.5 36.4
Make_tea.Insert_tea_bag 11 161 63.6 45.5 0.0
Wipe_table 14 165 42.9 64.3 14.3
Use_cupboard 29 186 75.9 62.1 10.3
Cook.Use_oven 21 188 57.1 76.2 42.9
Make_coffee.Get_water 7 190 71.4 85.7 71.4
Make_coffee.Pour_water 17 192 58.8 47.1 41.2
Make_coffee.Pour_grains 9 216 55.6 33.3 33.3
Use_Drawer 144 217 52.1 45.8 24.3
Make_tea.Boil_water 12 254 41.7 41.7 16.7
Breakfast.Eat_at_table 41 255 26.8 19.5 4.9
Cook.Stir 48 285 43.8 39.6 39.6
Breakfast.Spread_jam_or_butter 6 297 50.0 100.0 16.7
Breakfast.Take_ham 1 313 0.0 100.0 0.0
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Table B.9: Action-class based Results on TSU Part 2

AIC Red.F BIC
Action-class occ. avg.len Det.[%] Det.[%] Det.[%]
Make_tea 11 362 18.2 45.5 18.2
Clean_dishes.Clean_with_water 11 363 18.2 63.6 36.4
Clean_dishes.Dry_up 51 518 47.1 41.2 31.4
Cook.Cut 22 586 45.5 31.8 27.3
Use_telephone 76 628 34.2 48.7 31.6
Use_laptop 69 751 68.1 76.8 53.6
Watch_TV 135 797 48.1 48.9 36.3
Clean_dishes 103 968 14.6 24.3 28.2
Make_coffee 17 1042 0.0 0.0 11.8
Use_tablet 56 1492 44.6 58.9 58.9
Write 76 1541 36.8 36.8 34.2
Read 260 1831 36.5 39.2 37.7
Cook 12 4847 0.0 8.3 16.7
Breakfast 4 6012 0.0 0.0 50.0

Parameters
In this last section we provide the parameters of the Person Tracker and the SlowFast
Network used during our Evaluation, as detailed in Table B.10.

Table B.10: Parameters TSU Dataset: This table provides the parameters used during
our evaluation.

Deep-OC-Sort training model mot17
det_threshold 0.5

SlowFast sample_rate 2
num_frames 32
alpha 4



C Results on the OR Dataset
This chapter provides a comprehensive overview of the qualitative analysis conducted on
our custom OR dataset. We assess the accuracy of detected boundaries by evaluating the
generated summaries to identify correct, incorrect, and missed boundaries. Additionally,
we analyze the impact of person collisions and the percentage of incorrectly detected
boundaries resulting from them.

In the second part, we perform a similar evaluation using the Collision Avoidance module
to determine the extent of improvement in boundary detection within these complex
environments. Lastly, we assess the performance of the ID Swap Detection module,
examining how much it improves the Deep-OC-Sort tracker in challenging conditions by
utilizing action information to identify the optimal ID permutations following collisions.

Boundary Detection
As a first part of our evaluation we provide the number and percentage of correctly and
incorrectly identified boundaries by manually assessing the produced summaries.

Table C.1: Full Boundary Results on OR Dataset: This table provides a qualitative
analysis of the number and percentage of correctly and incorrectly identified
boundaries. Incorrectly identified boundaries are categorized into two types:
(1) redundant or unnecessary boundaries, and (2) incorrect boundaries resulting
from collisions.

strong det. correct det. incorrect incorrect
video length coll. bounds bounds det. bounds bounds (coll.)

1 14500 21 46 29 63.04% 5 10.87% 12 26.09%
2 10918 17 63 41 65.08% 10 15.87% 12 19.05%
3 10440 8 52 37 71.15% 13 25.00% 2 3.85%

class 1 total 46 161 107 66.46% 28 17.39% 26 16.15%
7 17300 132 88 42 47.73% 37 42.05% 9 10.23%
8 11383 21 53 25 47.17% 26 49.06% 2 3.77%

class 2 total 153 141 67 47.52% 63 44.68% 11 7.80%
4 17536 280 69 43 62.32% 9 13.04% 17 24.64%
5 21078 57 121 88 72.73% 22 18.18% 11 9.09%
6 11200 154 58 53 91.38% 3 5.17% 2 3.45%
9 11200 23 49 39 79.59% 3 6.12% 7 14.29%
10 16200 89 96 49 51.04% 21 21.88% 26 27.08%

class 3 total 603 393 272 69.21% 58 14.76% 63 16.03%
TOTAL 802 695 446 64.17% 149 21.44% 100 14.39%

Incorrect boundaries are categorized into normal incorrect boundaries (redundant or
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wrong) and those caused by person collisions. The results are presented in Table C.2. We
also present the percentage of missed boundaries in our summaries relative to the number
of correctly identified boundaries in Table C.2. This analysis highlights the reliability of
our algorithm in detecting action transitions.

Table C.2: Full Boundary Results on OR Dataset: This table presents the number
and percentage of important boundaries missed by our framework compared
to those correctly detected.

strong correct det. missed
video length coll. bounds bounds

1 14500 21 29 2 6.90%
2 10918 17 41 1 2.44%
3 10440 8 37 3 8.11%

class 1 total 46 107 6 5.61%
7 17300 132 42 0 0.00%
8 11383 21 25 1 4.00%

class 2 total 153 67 1 1.49%
4 17536 280 43 0 0.00%
5 21078 57 88 2 2.27%
6 11200 154 53 0 0.00%
9 11200 23 39 3 7.69%
10 16200 89 49 3 6.12%

class 3 total 603 272 8 2.94%
TOTAL 802 402 15 3.73%
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Collision Robust Boundary Detection
As a second part of our evaluation we determine the boundary detection improvement using
our Collision Robust approach. Table C.3 presents the percentage of collision-induced
boundaries that remain incorrectly detected, offering a clear comparison to the standard
UnSTABL approach. In addition it also provides the percentage of previously correct
detected boundaries missed due to collision avoidance.

Table C.3: Full Collision Robust Boundary Results on OR Dataset: This table
shows the percentage of boundaries that remain incorrectly detected due to
collisions, even with Collision Robust Boundary Detection, and the percentage
of previously correctly detected boundaries missed due to collision avoidance.

Collision Robust
strong det. prev. corr. incorr. missed

video length coll. bounds det. bounds coll. bounds bounds
1 14500 21 43 29 2 4.65% 1 3.45%
2 10918 17 42 41 1 2.38% 4 9.76%
3 10440 8 42 37 0 0.00% 4 10.81%

class 1 total 46 127 107 3 2.36% 9 8.41%
7 17300 132 34 42 1 2.94% 17 40.48%
8 11383 21 23 25 0 0.00% 10 40.00%

class 2 total 199 57 67 1 1.75% 27 40.30%
4 17536 280 27 43 4 14.81% 15 34.88%
5 21078 57 96 88 1 1.04% 12 13.64%
6 11200 154 28 53 0 0.00% 21 39.62%
9 11200 23 35 39 1 2.86% 13 33.33%
10 16200 89 38 49 6 15.79% 12 24.49%

class 3 total 266 224 272 12 5.36% 73 26.84%
TOTAL 511 695 446 16 2.30% 126 28.3%
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ID Swap Detection
The ID Swap Detection module checks each shorter strong collision for potential ID swaps
and determines the most likely ID permutation following each collision. This section
presents the percentage of detected ID swaps, highlighting the improvements over the
Deep-OC-Sort Tracker. We also report the percentage of undetected action transitions,
making the same errors as Deep-OC-Sort, and the percentage of incorrectly introduced
ID swaps after collisions. These results are provided in Table C.4.

Additionally, Table C.5 provides the percentage of correct and incorrect ID swap decisions
for each evaluated collision, demonstrating the accuracy of our ID Swap Detection module
in correctly identifying ID permutations post-collision.

Table C.4: Full ID Swap Detection Results on OR Dataset: This table presents
the results of ID Swap Detection across all videos and video classes. It details
the percentages of correctly identified ID swaps, undetected ID swaps, and
incorrectly detected ID swaps (where the algorithm assigns an incorrect ID
after a collision).

ID Swap Detection
strong checked tot. ID detected not detected wrong ID

video length coll. coll. Swaps ID Swaps ID Swaps Swap det.
1 14500 21 23 4 2 50.0% 2 50.0% 0 0.0%
2 10918 25 11 5 2 40.0% 3 60.0% 0 0.0%
3 10440 21 20 6 4 66.7% 1 16.7% 1 16.7%

class 1 total 67 54 15 8 53.3% 6 40.0% 1 6.7%
7 17300 123 12 4 2 50.0% 2 50.0% 0 0.0%
8 11383 44 18 1 0 0.0% 0 0.0% 1 100.0%

class 2 total 167 30 5 2 40.0% 2 40.0% 1 20.0%
4 17536 280 24 4 2 50.0% 1 25.0% 1 25.0%
5 21078 57 6 3 2 66.7% 1 33.3% 0 0.0%
6 11200 154 12 3 1 33.3% 1 33.3% 1 33.3%
9 11200 23 8 4 1 25.0% 0 0.0% 3 75.0%
10 16200 89 33 1 1 100.0% 0 0.0% 0 0.0%

class 3 total 603 83 15 7 46.7% 3 20.0% 5 33.3%
TOTAL 837 167 35 17 48.6% 11 31.4% 7 20.0%
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Table C.5: Full ID Swap Likelihood Decision Results on OR Dataset: This table
presents the decision performance of our ID Swap Detection module, providing
the percentage of correct and incorrect decisions per checked collision. A wrong
decision is either to propose a wrong or to not detect an ID Swap.

Likelihood Decision
strong checked correct wrong

video length collisions collisions decision decision
1 14500 21 23 21 91.30% 2 8.70%
2 10918 25 11 10 90.91% 1 9.09%
3 10440 21 20 18 90.00% 2 10.00%

class 1 total 67 54 49 90.74% 5 9.26%
7 17300 123 12 10 83.33% 2 16.67%
8 11383 44 18 17 94.44% 1 5.56%

class 2 total 167 30 27 90.00% 3 10.00%
4 17536 280 24 22 91.67% 2 8.33%
5 21078 57 6 5 83.33% 1 16.67%
6 11200 154 12 10 83.33% 2 16.67%
9 11200 23 8 5 62.50% 3 37.50%
10 16200 89 33 33 100.00% 0 0.00%

class 3 total 603 83 75 90.36% 8 9.64%
TOTAL 837 167 151 90.42% 16 9.58%

Parameters
This last section, in Table C.6, we provide the parameter used during our Evaluation.

Table C.6: Parameters OR Dataset: This table provides the parameters used during
our evaluation.

Detector training model dance
det_threshold 0.7

SlowFast sample_rate 2
num_frames 32
alpha 4

ID Switch min_sim_threshold 0.6
min_sim_difference 0.05
weight_curr_id 0.2
weight_other_id 0.1
max_overlap_duration 400
weak_overlap_th 0.05
strong_overlap_th 0.11

Collision Avoidance weak_overlap_th 0.05
strong_overlap_th 0.35
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