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A B S T R A C T

For including piecewise linear (PWL) functions in MILP problems, the logarithmic convex combination (Log)
formulation has been shown to yield very fast solving times. However, identifying approximations that can be
used with Log is a big challenge since the approximation has to be compatible with a J1 triangulation. In this
article, an algorithm is proposed that identifies approximations using J1 compatible triangulations. It seeks to
satisfy the specified error tolerance with the minimum number of linear pieces, so that the MILP formulation
is small. To evaluate the performance of the J1 approach it is applied to two sets of benchmark functions from
literature and results are compared to state-of-the-art approaches.

Overall the J1 approach is shown to efficiently approximate functions in up to 3 dimensions. Especially
for tight error tolerances, these J1 approximations require fewer auxiliary variables in MILP compared to
alternative approaches.
1. Introduction

Despite the tremendous progress in the area of mixed integer non-
linear programming solvers, mixed-integer linear programming (MILP)
in combination with linearization of non-linear terms is still the method
of choice for many applications. Since fast and reliable MILP solvers
are readily available, this shifts much of the complexity from solving
the optimization problem to finding viable piece-wise linear (PWL)
approximations of the non-linear terms. The challenge is to find approx-
imations that meet a specified error tolerance without compromising
MILP solving times.

In recent years, interest in PWL approximation algorithms specifi-
cally for applications in MILP has risen. For one-dimensional functions,
algorithms exist that are proven to identify minimum-breakpoint ap-
proximations (Rebennack and Krasko, 2020; Kong and Maravelias,
2020; Rebennack and Kallrath, 2015b). For two and higher dimensional
functions no such algorithm exists, to the best of our knowledge.
Though, algorithms have been developed to find efficient piecewise-
linear approximations of higher dimensional functions. Toriello and
Vielma (2012) proposed an algorithm that starts with a triangulation
on an axis-parallel grid to approximate the non-linear function. They
observed that the approximation error depends on the orientation of the
simplices in each segment of the grid and proposed a MILP approach
to select the optimal orientation. Rebennack and Kallrath (2015a)
developed an algorithm to approximate a two-dimensional function by
triangulating its domain. Kazda and Li (2021) introduced the ‘‘differ-
ence of convex’’ (DC) approach to find approximations of 𝑛-dimensional
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functions with polytopes instead of simplices. Since polytopes have
more degrees of freedom than simplices, these approximations gener-
ally require considerably fewer linear segments than approximations
that are based on triangulations. Ruela et al. (2024) used a J1 trian-
gulation on an axis-parallel grid for the approximation and proposed a
heuristic for optimizing the break points of the grid. They found that,
while this approach works well for crude error tolerances, it requires a
very large number of linear pieces to meet tight error tolerances.

An interesting research direction is the application of machine
learning approaches for PWL approximation, specifically the use of
networks with rectifier linear units (ReLU) (Grimstad and Andersson,
2019). Somewhat disconnected from the main body of literature are
the approaches proposed by Obermeier et al. (2021) and Kämper
et al. (2021). While the former uses Delaunay triangulations, the latter
revolves around hinging-hyperplane-trees.

The impact of PWL approximations on MILP solving time is largely
determined by the number of auxiliary variables that are required to
implement the PWL function into the MILP problem. To yield fast MILP
solving times, PWL approximations should introduce as few auxiliary
variables as possible. In general, the number of auxiliary variables is
proportional to the number of linear pieces. Consequently the goal of
PWL approximation algorithms is to meet the error tolerance with the
smallest possible number of linear pieces. The other major factor that
affects MILP solving times is the MILP formulation used for integrating
the PWL function into the MILP problem.
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Nomenclature

Acronyms

DC Difference of convex (method)
Log Logarithmic binary branching (formula-

tion)
MC Multiple choice (formulation)
MILP Mixed integer linear programming
PWL Piece-wise linear
RK Rebennack and Kalrath (method)
Roman symbols
𝐷 Domain of function
𝜕 𝐷 Boundary of the domain
𝑓 Piecewise linear function
𝑓 Function to be approximated
𝑓D,𝑑 Function value of data point 𝑑
𝑓𝑣 Value of function at vertex 𝑣
 Grid
𝜕 Boundary of the grid
𝐽 𝛼
1 J1 triangulation with scheme 𝛼

𝑛 Number of dimensions
𝑁dat a Number of data points
𝒙 Vector of coordinates
𝑠 Simplex
𝑠𝑖 Number of segments in dimension 𝑖
𝑆( ) Simplices of triangulation 
 Triangulation
𝑣 Vertex
vol𝑑 𝑑-dimensional volume
𝑉 ( ) Vertices of triangulation 
𝒙D,𝑑 Coordinate of data point 𝑑
𝒙𝑣 Coordinate of vertex 𝑣

Greek symbols
𝛼 , 𝛽 J1 scheme
𝜆 Weight factor
Subscripts

𝑖 Dimension index
𝑑 Data point index

A PWL function in one dimension is a linear spline, which can
be translated to MILP with a SOS2 formulation. For two and higher
dimensional functions, the formulations presented by Vielma et al.
(2010) can be used. For the present study, three of these formulations
are relevant: Multiple Choice (MC), disaggregated convex combination
with logarithmic coding (DLog) and the logarithmic branching convex
combination (Log). While the number of auxiliary binary variables
rows proportional to the number of linear pieces for MC, it only grows

proportional to the base-2 logarithm of the number of linear pieces
for Log and DLog. For the DLog method, this advantage is offset by
 comparably large number of continuous variables. Recently, other

logarithmic branching schemes (binary and general integer zig-zag)
have been proposed that put less strict requirements on the structure
of the PWL function (Huchette and Vielma, 2019, 2023). However,
finding these special branching schemes is difficult in itself and they
may require slightly more auxiliary binary variables than the Log
formulation.

Just by considering the number of auxiliary variables, the Log
ormulation can be expected to yield the best MILP performance.
 a

2 
This has also been confirmed with computational experiments, which
howed that the Log method resulted in between 3 and 4 times shorter
olving times compared to the DLog method in a multi-commodity
ransportation problem; Log also outperformed MC (the fastest non-
ogarithmic formulation) by a factor of 2 (32 linear segments) and even
00 (128 linear segments) (Vielma et al., 2010). The performance of

different MILP formulations has also been investigated in oil production
optimization (Silva and Camponogara, 2014) and in unit commitment
of hydropower units (Brito et al., 2020). Also in these studies, the Log
formulation outperformed all other formulations by a large margin (the
ig-zag formulations would probably also have performed well, but
hey were not yet available).

Despite these impressive results, the Log formulation is not routinely
used to implement PWL functions in MILP problems. One can only
speculate about the reason for this, but probably a reason are the fairly
strict requirements that the Log formulation puts on the structure of
the PWL function. Specifically that the triangulation of the function
domain must be compatible with the J1 triangulation (Vielma and
Nemhauser, 2011), which is a big challenge for PWL approximation
nd the lack of readily available tools may deter practitioners (Huchette

and Vielma, 2023). Of the PWL approximation approaches in literature,
only the approach by Ruela et al. (2024) produces J1 compatible
pproximations (Vielma et al., 2010; Silva and Camponogara, 2014)

and Brito et al. (2020) used equally spaced grids without optimization).
owever, this approach is limited in that it is restricted to an axis-

parallel grid, which results in a disproportionate number of linear
pieces to meet tight error tolerances.

The obvious solution is to relax the restriction to an axis parallel
rid. This, however, makes it very challenging to maintain compatibil-
ty with the J1 triangulation throughout the approximation process. In
his paper, an algorithm to compute PWL approximation with deformed
i.e. non axis parallel) J1 triangulations is proposed. It is capable of sat-
sfying tight error tolerances with a small number of linear pieces while
everaging the superior MILP performance of the Log formulation.

The remainder of the paper is organized as follows: In the next
section, some background on J1 triangulations and MILP formulations
for PWL functions is reviewed. Then, the approximation algorithm is
introduced. In the Evaluation section, the algorithm is applied to two
sets of benchmark functions and the results are compared to results
reported in literature. The proposed algorithm is shown to be capable
of finding efficient approximations of a wide range of functions. Results
also show, that by leveraging the Log formulation these approximations
introduce considerably fewer auxiliary variables to MILP problems than
other approaches from literature in some cases.

2. Background

In their seminal papers (Vielma et al., 2010; Vielma and Nemhauser,
2011) Vielma et al. introduced the independent logarithmic branching
scheme for the convex combination method (the Log formulation).
They showed that this formulation is both small (the number of aux-
iliary binary variable increases logarithmically with the number of
linear pieces) and ideal (the LP relaxation is tight) (Vielma, 2015).

onsequently it generally yields very fast solving times, especially for
PWL functions with many linear pieces. This has been confirmed in
independent studies (Silva and Camponogara, 2014; Brito et al., 2020;
Birkelbach et al., 2023).

The Log formulation requires the PWL function to be defined on a
ighly structured gridded triangulation. Specifically, the triangulation
as to be compatible with the J1 triangulation (Todd, 1977), which

is also referred to as the ‘‘union jack’’ triangulation, because of the
similarity with the British flag in two dimensions.

The triangulation of the [0, 1]𝑛 hypercube in 𝑛 dimension is given
by the simplices that can be constructed by going from the (0,… , 0)
orner to the (1,… , 1) corner of the hypercube along its edges. There
re exactly 𝑛! direct paths. Each path visits 𝑛 + 1 corners, thus giving
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Fig. 1. Permutations of the J1 triangulation (J1 schemes) in two and three dimensions.
The dots mark the center nodes, where all simplices of the adjacent grid segments meet.

the vertices of a simplex. The J1 triangulation of a grid is constructed
by triangulating the first cell of the grid and then mirroring it over
and over in each dimension (see Fig. 1 2D-A and 3D-A). This gives
the characteristic point-wise symmetry with respect to each vertex of
the grid and it makes the triangulation repeat periodically every two
segments.

Alternatively, any other pair of vertices on opposite corners can be
chosen to construct a J1 triangulation. Thus, there are 2𝑛−1 possible
orientations of the triangulation of the unit cube, each inducing a J1
triangulation of a grid. These permutations will be referred to as J1
schemes and they will play a key role in the approximation algorithm.
For the two and tree dimensional case, the permutations are illustrated
in Fig. 1, where the central nodes are marked with a dot to help discern
the J1 schemes.

On coarse grids, the choice of the J1 scheme may have an impact
on the accuracy of the approximation (Toriello and Vielma, 2012;
Kazda and Li, 2023). Though, on fine grained grids, the approximation
algorithm should be able to offset the effect of a sub-optimal choice of
the J1 scheme by choosing the vertex positions accordingly.

For the Log formulation, the J1 triangulation does not necessarily
have to be on an axis-parallel grid. The grid may be deformed, as long
as the ordering of the simplices stays the same. Leveraging this flexibil-
ity is one of the key innovations of the algorithm that will be introduced
in the next section. However, this also makes maintaining a valid J1
triangulation throughout the approximation process a challenge.

For the PWL function to be uniquely defined on the whole domain
of the function that is to be approximated, the J1 triangulation has to
cover the whole domain and simplices must not overlap. This constrains
the deformation of the grid. A specific challenge arises, when grid
segments are added or removed, because it ‘‘flips’’ the triangulations of
all grid cells on one side of the added/removed segment. Consider the
illustration in Fig. 2. On the top, the initial state of the grid where the
triangulation is valid is shown. Splitting the segment on the left (while
maintaining the J1 structure) causes the triangulation to the right to
flip. While this is not an issue for the cell in the middle, it makes the
triangulation of the cell on the right invalid. Since manipulating the
grid is an essential part of the approximation algorithm, situations like
this need to be avoided. When the grid is deformed, it needs to be kept
in a healthy state, where the triangulation is valid for each orientation
of the J1 triangulation (i.e. for each J1 scheme) at all times.

3. The approximation algorithm

Finding a PWL approximation of a multi-variate function is a com-
plex mixed-integer non-linear problem, for which direct solution ap-
proaches are currently intractable. For this reason, the problem is
3 
Fig. 2. Illustration of how adding a grid segment may result in an invalid triangulation
if the grid is not in a healthy state.

divided into a series of sub-problems: fitting, refinement and sampling.
These sub-problems need to fulfill specific requirements to ensure that
the J1 structure is maintained throughout the approximation process.

In the following subsection the notation used in the remainder of
the paper is introduced. Then the problem formulation and the division
into the sub-problems are presented. The requirements on the sub-
problems are discussed and the solution approach for each sub-problem
is outlined.

3.1. Notation and preliminaries

The objective is to approximate the continuous function 𝑓 (𝒙) ∶ 𝐷 →

R, 𝒙 ∈ 𝐷 ⊂ R𝑛 with a continuous PWL function 𝑓 (𝒙) ∶ 𝐷 → R. For a
PWL function on a triangulation  , each simplex 𝑠 ∈ 𝑆( ) is associated
with a linear function 𝑓𝑠. Using an indicator function 1𝑠(𝒙), which is 1
if 𝒙 ∈ 𝑠 and 0 otherwise, the PWL function can be written as

𝑓 (𝒙) =
∑

𝑠∈𝑆( )
𝑓𝑠(𝒙)1𝑠(𝒙) (1a)

where

𝑓𝑠(𝒙) = 𝒇𝖳
𝑠𝑀

−1
𝑠

[

𝒙
1

]

(1b)

𝒇 𝑠 = [𝑓𝑣1 ,… , 𝑓𝑣𝑛+1 ]𝖳 (1c)

𝑀𝑠 =
[

𝒙𝑣1 ⋯ 𝒙𝑣𝑛+1
1 ⋯ 1

]

(1d)

{𝑣1,… , 𝑣𝑛+1} = 𝑉 (𝑠). (1e)

𝑓𝑣 ∈ R ∶ 𝑣 ∈ 𝑉 ( ) are the function values at the vertices, 𝒙𝑣 ∈
R𝑛 are the vertex coordinates and 𝑉 (⋅) gives the vertices of a sim-
plex/triangulation/grid.

For the piecewise linear function to be uniquely defined on the
domain 𝐷, the triangulation  has to cover the domain and simplices
𝑆( ) must not overlap:
⋃

𝑠∈𝑆( )
𝑠 ⊇ 𝐷 (2)

vol𝑑 (𝑠 ∩ 𝑠′) = 0 ∀𝑠, 𝑠′ ∈ 𝑆( ), 𝑠 ≠ 𝑠′. (3)

vol𝑑 is the 𝑑-dimensional volume of the intersection of two simplices.
I.e. in three dimensions simplices may share a face, an edge or a vertex
but no volume; in two dimensions they may share an edge or a vertex
but no area. If these conditions are met, the triangulation is referred to
as valid.

Since this paper focuses on J1 compatible triangulations, triangu-
lations on a grid (𝑠1 × ⋯ × 𝑠𝑛) with 𝑠𝑖 segments in each dimension
are considered. Such a grid has a total of ∏

(𝑠 + 1) vertices, whose
𝑖 𝑖
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coordinates are denoted 𝒙𝑣 ∈ R𝑛, 𝑣 ∈ 𝑉 () and the corresponding
function values 𝑓𝑣 ∈ R. A J1 triangulation of vertices on a grid is

ritten as  = 𝐽 𝛼
1 () where 𝛼 ∈ {1,… , 2𝑛−1} specifies the J1 scheme,

.e. the orientation of the triangulation. Finally, the number of linear
ieces is | | = 𝑛!

∏

𝑖 𝑠𝑖.
A data set of sample points and the corresponding function values

is denoted {𝐱D,𝑑 , 𝑓D,𝑑} with 𝑑 ∈ {1,… , 𝑁D}.

3.2. Problem formulation

The full approximation problem can be stated as: Find the PWL
pproximation with the fewest number of linear pieces that meets the
rror tolerance; the triangulation must be a valid J1 triangulation. I.e.

min | | = 𝑛!
𝑛
∏

𝑖=1
𝑠𝑖 (4a)

s.t. ‖𝑓 (𝒙) − 𝑓 (𝒙)‖ ≤ t ol (4b)

 = 𝐽 𝛼
1 (),  = (𝑠1 ×⋯ × 𝑠𝑛) (4c)

⋃

𝑠∈𝑆( )
𝑠 ⊇ 𝐷 (4d)

vol𝑑 (𝑠 ∩ 𝑠′) = 0 ∀𝑠, 𝑠′ ∈ 𝑆( ), 𝑠 ≠ 𝑠′ (4e)

𝑓𝑣 ∈ R,𝒙𝑣 ∈ R𝑛 ∀𝑣 ∈ 𝑉 () (4f)

𝛼 ∈ {1,… , 2𝑛−1}, 𝑠1,… , 𝑠𝑛 ∈ N (4g)

The constraint Eq. (4b) specifies the error tolerance. Typically, the
error is defined as the maximum absolute point-wise deviation. Eq. (4c)
pecifies that the triangulation must be a J1 triangulation and the

following two constraints are the requirements that the PWL function
is uniquely defined on 𝐷.

To find the optimal PWL approximation of the function, the algo-
rithm has to determine

1. the number of grid segments in each dimension 𝑠1,… , 𝑠𝑛,
2. the J1 scheme 𝛼,
3. the position of the vertices 𝒙𝑣 and
4. the function values at the vertices 𝑓𝑣.

Solving this problem directly is currently intractable, so it is divided
nto three sub-problems (fitting, refinement and sampling), which are

solved iteratively.
For the fitting sub-problem, the grid (𝑠1 ×⋯ × 𝑠𝑛) is fixed. Conse-

quently, the number of linear pieces is fixed and the objective of the
fitting problem becomes to minimize the error of the approximation:

min ‖𝑓 (𝒙) − 𝑓 (𝒙)‖ (5a)

s.t.  = 𝐽 𝛼
1 () (5b)

⋃

𝑠∈𝑆( )
𝑠 ⊇ 𝐷 (5c)

vol𝑑 (𝑠 ∩ 𝑠′) = 0 ∀𝑠, 𝑠′ ∈ 𝑆( ), 𝑠 ≠ 𝑠′ (5d)

vol𝑑 (𝑠 ∩ 𝑠′) = 0 ∀𝑠, 𝑠′ ∈ 𝑆(𝐽 𝛽
1 ()), 𝑠 ≠ 𝑠′,∀𝛽 ∈ {1,… , 2𝑛−1} ⧵ 𝛼 (5e)

𝑓𝑣 ∈ R,𝒙𝑣 ∈ R𝑛 ∀𝑣 ∈ 𝑉 () (5f)

𝛼 ∈ {1,… , 2𝑛−1} (5g)

The new constraint in Eq. (5e) is required to ensure that the J1
structure of the triangulation is maintained in the refinement sub-
problem. It prevents situations like the one illustrated in Fig. 2, where
he triangulation could become invalid when adding a grid segment.
he constraint specifies that the grid must not only be valid for the
1 scheme of the approximation 𝛼, but also for all other possible
1 schemes 𝛽. Thus, regardless of how the grid is modified in the
efinement sub-problem, the result is a valid J1 triangulation.

The grid needs to be refined, if the solution of the fitting sub-
problem does not satisfy the error tolerance, i.e. if it is not possible to
meet the error tolerance with the given grid . In general, additional
4 
Fig. 3. Flow chart of the piecewise linear approximation algorithm.

segments will be added to the grid so that the function can be approxi-
mated more accurately. The decision of how and where to add the new
segments is referred to as the refinement sub-problem.

The final issue that needs to be addressed is that computing the
rror measure, the maximum absolute point-wise deviation between the
unction and its approximation, is a challenging optimization problem

in itself (Kazda and Li, 2021). To arrive at a tractable problem, the
error measure ‖𝑓 (𝒙) − 𝑓 (𝒙)‖ for continuous 𝒙 ∈ 𝐷 is replaced by the
rror on a set of sample points ‖𝑓 (𝒙D,𝑑 ) −𝑓D,𝑑‖, where 𝒙D,𝑑 ∈ 𝐷 , 𝑓D,𝑑 =
𝑓 (𝒙D,𝑑 ), 𝑑 ∈ {1,… , 𝑁Dat a}. This allows to compute the error efficiently,
but it requires a sampling algorithm that selects the points in the data
set in a way that the specified error tolerance is satisfied on the whole
domain 𝐷. This is referred to as the sampling sub-problem.

The algorithm that is proposed to solve the full problem in Eq. (4) is
illustrated as a flow chart in Fig. 3. The starting point for the algorithm
is an initial grid (usually one with only one single segment) and an
initial data set containing some samples (e.g. at the position of the
ertices of the initial grid). Then the sub-problems are solved iteratively
ntil the specified error tolerance is satisfied. The additional constraints
n the fitting subproblem ensure that the J1 structure is maintained
hroughout the approximation process.

For the fitting sub-problem, a solution approach with a gradient-
ased optimization is introduced in Section 3.3. For the refinement

sub-problem, a heuristic is proposed in Section 3.4. For the sampling
sub-problem, the adversarial sub-sampling algorithm by Kazda and Li
(2021) is used.

3.3. Fitting sub-problem

The main factor that makes the fitting sub-problem in Eq. (5) chal-
enging is that the number of variables (vertex positions and function

values at the vertices) increases steeply with the grid size. Though, be-
sides the J1 scheme 𝛼, all variables are continuous. Consequently, for a
given J1 scheme 𝛼 (which will be assumed in the remainder of this sec-
tion), the fitting sub-problem is a continuous non-linear optimization
problem, which lends itself to gradient-based optimization.

A challenge with gradient based optimization is that by itself it is a
local optimization method. As a consequence, the burden of converging
towards a globally optimal solution of the full problem is put on the
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grid refinement algorithm. This will be addressed in Section 3.4. The
ain advantage of gradient-base optimization (and the reason, why it
as chosen) is that it is very efficient in terms of solving time even

or large problems. This addresses the challenge with the potentially
arge number of variables, but it requires the problem in Eq. (5) to be

adapted. Specifically
1. the objective function needs to be modified to be differentiable,

2. the constraints in Eqs. (5c)–(5e) need to be reformulated and
3. the problem needs to be regularized.

The adapted fitting problem is shown in Eq. (8). In the remainder of
his section, the adaptations are discussed in detail.

For gradient based optimization to be effective, the objective func-
ion needs to be differentiable. The norm in the objective function

in Eq. (5) typically is the max-norm (the maximum absolute error),
which is not differentiable. Thus, an approximation, the smooth-max
is proposed: The 𝑝-norm ‖ ⋅‖𝑞𝑝 approaches the max-norm as 𝑝 → inf and
𝑞 = 1. However, at the same time, the objective function also becomes
less smooth, increasing the risk that the algorithm gets stuck in a local
minimum. Initial testing showed, that 𝑝 = 10 provides a good trade-off
between a sufficiently smooth objective and effectively minimizing the
maximum absolute error. 𝑞 is a power exponent, which was included
for generality. (For 𝑝 = 𝑞 = 2 Eq. (8) would be a least squares problem.)

To ensure that the J1 triangulation 𝐽 𝛼
1 () is a valid for the domain

, the problem needs to be constrained so that the triangulation always
overs the domain (Eq. (5c)) and that no two simplices overlap (5d).

The first set of constraints is realized by fixing the boundary vertices
f the grid 𝑉 (𝜕) on the boundary of the domain 𝜕 𝐷. The second set of
onstraints is realized by requiring the signed volume of each simplex to
e positive (assuming that the volume of simplices on an equally spaced
rid is positive by convention). These constraints effectively require

𝐽 𝛼
1 () to be a tiling of 𝐷.

To account for Eq. (5e), also the simplex volumes of the comple-
mentary J1 triangulations are required to be positive. The constraints
on the simplex volumes can be written as one set of constraints. Thus,
the constraints Eqs. (5c)–(5e) are replaced by Eqs. (8c) and (8d).

The simplex volumes also offer a convenient way to regularize the
roblem to improve the solution quality. Initial testing revealed that the

algorithm tends to get stuck in local minima, if it is allowed to make
implices arbitrarily small. To alleviate this issue, a regularization term
s introduced, which penalizes simplices with small volume:

V = 1
| |

∑

𝑠𝛼

(

𝑉
vol𝑑 (𝑠𝛼)

)2
+

𝜆𝛽
| |(2𝑛−1 − 1)

∑

𝑠𝛽

(

𝑉
vol𝑑 (𝑠𝛽 )

)2
(6a)

where

 = 𝐽 𝛼
1 (), 𝑠𝛼 ∈ 𝑆( ) (6b)

𝛽 ∈ 𝑆(𝐽 𝛽
1 ()),∀𝛽 ∈ {1,… , 2𝑛−1} ⧵ 𝛼 (6c)

̄ = 1
| |

∑

𝑠∈𝑆( )
vol𝑑 (𝑠) (6d)

The first term penalizes small simplices in the triangulation used for
he approximation. The second term does the same for the simplices of
ll complementary triangulations. Even though, the complementary tri-

angulations do not affect the error of the approximation, it is essential
to incorporate them, because they determine if the fitting sub-problem
can be solved effectively after the next iteration of the refinement
sub-problem.

Both terms are normalized with the average simplex volume 𝑉 ,
which is the same regardless of the J1 scheme, and the number of
simplices. With this normalization both terms are equal to 1 on an
equally spaced grid, where all simplices have equal size. The more
distorted the grid is, the larger these terms become. If any simplex
was approaching zero volume, the regularization term would tend to
infinity.

The parameter 𝜆𝛽 controls the trade-off between the J1 scheme of
the current triangulation 𝛼 and the complementary ones 𝛽. Preliminary
 t

5 
testing showed that the specific value of 𝜆𝛽 has only a small impact
on the solution. Intuitively, the complementary triangulations should
have a smaller importance than the current one, so 𝜆𝛽 is set to 1

4 , which
works well.

The second proposed regularization term is a penalty on the gradi-
ent of each of the linear pieces:

∇ =
∑

𝑠∈𝑆( )

𝑛
∑

𝑗=1

(𝛥𝑥𝑗
𝛥𝑓

𝜕 𝑓𝑠
𝜕 𝑥𝑗

)2

. (7)

The elements of the gradient are normalized with 𝛥𝑓 and 𝛥𝑥𝑗 , which
are the typical scales of the function value and each of the coordinates
respectively. This regularization term can be used to address the vanish-
ing gradient problem, which can occur on small or unevenly distributed
data sets.

The regularization terms are weighted with the factors 𝜆V and 𝜆∇
espectively. To make weighting the regularization terms against the
rror term more consistent, the error term is normalized with 𝜆E, which

is set to the reciprocal value of the error term during the initialization
of the fitting sub-problem.

This leads to the final formulation of the fitting sub-problem
adapted for gradient based algorithms.

min 𝜆𝐸‖𝑓 (𝒙D,𝑑 ) − 𝑓D,𝑑‖
𝑞
𝑝 + 𝜆𝑉 V + 𝜆∇∇ (8a)

s.t.  = 𝐽 𝛼
1 () (8b)

𝒙𝑣′ ∈ 𝜕 𝐷 ∀𝑣′ ∈ 𝑉 (𝜕) (8c)

vol𝑑 (𝑠) ≥ 0 ∀𝑠 ∈ 𝑆(𝐽 𝛽
1 (𝒙𝑣)),∀𝛽 ∈ {1,… , 2𝑛−1} (8d)

𝑓𝑣 ∈ R,𝒙𝑣 ∈ R𝑛 ∀𝑣 ∈ 𝑉 () (8e)

The inputs are a data set of sample points {𝒙D,𝑑 , 𝑓D,𝑑}, a grid (𝑠1,… , 𝑠𝑛)
and a J1 scheme for the approximation 𝛼. The outputs of the fitting sub-
problem are the vertex coordinates 𝒙𝑣 and the corresponding function
values 𝑓𝑣 that define the PWL approximation.

To solve the fitting sub-problem efficiently, the gradients of the
objective function need to be computed analytically. For the sake of
compactness, these formulae have been moved to the appendix.

Provided that the algorithm converges, the error of solution is the
mallest error that can be achieved with the given grid.

3.4. Refinement sub-problem

If the error tolerance cannot be satisfied with a given grid, more
linear pieces have to be added to the approximation. Since the J1
structure needs to be maintained, it is not possible to add a single
additional piece. Rather, the smallest unit of change is one additional
grid segment in one of the dimensions. Depending on the number of
segments in the other dimensions, this adds a number of linear pieces.
For fine grids, this number can be quite large. Consequently, choosing
he right dimension to add a new segment is critical. Further, the
osition, where the new segment is added is also critical, since the
roposed algorithm for the fitting sub-problem only performs local
earch. If the position of the new segment is far off the optimal position,
he fitting sub-problem may not converge to the optimal solution.

The challenge is to add a grid segment at the position and in the
imension, which will ultimately result in the approximation with the
ewest possible linear pieces. In lieu of a clear strategy for achieving
his, a greedy heuristic is proposed:

1. Identify the grid cell that contains the point with the maximum
absolute error.

2. Split that cell in half, by adding a segment in the dimension that
yields the largest reduction in error.

This heuristic adds new linear pieces where they lead to the largest
decrease in error, thus, putting the focus on meeting the specified error
tolerance in the fewest possible number of iterations.

The major downside of this heuristic in terms of performance is
hat, to take a decision, it needs to solve the fitting sub-problem once
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for each dimension to determine the reduction of the error. Estimating
he error reduction, without solving the fitting problem, is unreliable
ince splitting one segment in half not only affects the approximation
n that segment, but also in all segments to one side due to change of
he orientation of the triangulation (see Fig. 2). However, splitting will

never result in an invalid triangulation, since this is accounted for in the
fitting sub-problem. While solving the fitting problem repeatedly is not
an issue for approximating functions with few independent variables,
t may become limiting for higher dimensional approximation tasks.

3.5. Further insights and limitations

For the proposed solution approach to the fitting sub-problem, the
1 scheme 𝛼 is predefined. Though, for approximations with only
 few segments per dimension, it may be worth to also consider 𝛼
s optimization variable. This could be done in the refinement sub-
roblem in the second step by considering each possible J1 scheme in
ddition to the dimensions for the split.

The constraints on the complementary triangulations and the cor-
responding regularization term are required for the algorithm to work.
However, they may also increase the approximation error. In practice,
once the algorithm has terminated, one could run the fitting sub-
roblem once more without the constraint Eq. (5e) and 𝜆𝛽 = 0 to reduce
he approximation error further.

Initial testing showed, that the refinement heuristic may make sub-
optimal decisions on very sparse data sets. In itself this may not be
a big issue but, since only local optimization is done in the fitting
ub-problem, the algorithm may converge to a local minimum and not

recover from that. To avoid this, the algorithm should be initialized
with a sufficiently large number of sample points distributed over the
domain of the target function.

An interesting option for getting better results in the refinement sub-
problem is to add two new segments at a time instead of just one. Since
a property of the J1 triangulation is that it repeats periodically every
two segments, adding two segments does not affect the orientation of
the triangulation of the other parts of the grid. This may make the con-
vergence of the full problem more stable, but it will generally not result
in the approximation with the smallest possible number of simplices.
Though, this may not be a big issue: Huchette and Vielma (2023) noted
that the efficiency of the logarithmic branching formulation suffers,
when the number of segments in each dimension is not a power of two.
This suggests, that instead of adding a segment at each refinement step,
the number of segments should actually be doubled. If the grid has at
least two segments, doubling the number of segments requires adding
a multiple of two.

Even though optimizing the vertex coordinates allows the grid to
dapt to the underlying function quite well, it is still confined to this

basic grid structure in the direction of each axis. This poses a challenge
when approximating functions, whose main features are not aligned
with any of the main axis. A solution could be to rotate the main axes
so that they are aligned either as a pre-processing step or as a part of
the approximation procedure.

The fitting sub-problem can be generalized to other triangulations
esides J1, where the structure of the triangulation needs to be main-
ained while optimizing the vertices. For example, the algorithm could
e adapted to find approximations of a specific structure for use with
 zig-zag formulation (Huchette and Vielma, 2023). This would also

allow to relax the constraints on the complementary triangulation and
hus could lead to approximations with fewer linear pieces.

4. Evaluation

To evaluate the performance of the proposed algorithm, it is applied
to the same two sets of benchmark functions that Kazda and Li (2021)
sed to evaluate their Difference of Convex (DC) approach. The first set

are the nine functions that were proposed by Rebennack and Kallrath
6 
Table 1
2D Benchmark functions by Rebennack and Kallrath (2015a) and the regularization
coefficients used for the J1 approach.

# Function Domain 𝜆𝑉 𝜆∇
1 𝑦 = 𝑥21 − 𝑥22 [0.5, 7.5] × [0.5, 3.5] 10−2 0
2 𝑦 = 𝑥21 + 𝑥22 [0.5, 7.5] × [0.5, 3.5] 10−3 0
3 𝑦 = 𝑥1 ⋅ 𝑥2 [2, 8] × [2, 4] 10−1 0
4 𝑦 = 𝑥1 ⋅ exp(−𝑥21 − 𝑥22) [0.5, 2] × [0.5, 2] 10−2 0
5 𝑦 = 𝑥1 ⋅ sin(𝑥2) [1, 4] × [0.05, 3.1] 10−1 0
6 𝑦 = 𝑥22 ⋅ sin(𝑥1)∕𝑥1 [1, 3] × [1, 2] 10−1 0
7 𝑦 = 𝑥1 ⋅ sin(𝑥1) ⋅ sin(𝑥2) [0.05, 3.1] × [0.05, 3.1] 10−2 0
8 𝑦 = (𝑥21 − 𝑥22)

2 [1, 2] × [1, 2] 10−2 0
9 𝑦 = exp(−10(𝑥21 − 𝑥22)

2) [1, 2] × [1, 2] 10−3 0

(2015a) in their paper on their bi-variate approximation method (which
will be referred to as RK). The second set is the product of 3, 4 and 5
variables. While the first set of benchmark functions serves to evaluate
he ability of the approximation methods to approximate a wide range
f different topologies, the second set serves to assess the ability to
pproximate higher dimensional functions.

The computations were performed using Matlab R2023b on a 128-
ore system (AMD EPYC 7702P) with 256 GB RAM. For each approx-

imation the maximum absolute error 𝛿, the number of grid segments
in each dimension, the number of linear pieces 𝑛S and the total time
𝑡 are reported. To put these results into context, the number of linear
pieces and computation times of the other approximation methods are
reproduced: RK and DC for the first set of benchmark functions and
only DC for the second set (since the RK approach is limited to bivariate
functions). Note that the reported times for each approach have been
realized on different computer systems and consequently the absolute
values are not directly comparable. Finally, to gauge the performance
that can be expected when including each of the approximations in
a MILP problem, we report the number of binary (Z2 = {0, 1}) and
continuous (R) auxiliary variables that are introduced by the J1 and the
DC approximation. For the J1 approximations we assume that the log-
arithmic branching convex combination (Log) formulation (Vielma and
Nemhauser, 2011) is used. For the DC approximation we assume that
the Multiple Choice (MC) formulation is used, which has been shown
to yield the best performance for this approximation type (Birkelbach
et al., 2024).

The first set of benchmark functions are the nine functions proposed
y Rebennack and Kallrath (2015a). Information on the functions is

listed in Table 1. The last two columns give the value of the regulariza-
tion coefficients that were used with the J1 approximation algorithm.
The algorithm was initialized with a 1 × 1 grid and a data set of 50 × 50
sample points on an equally spaced grid.

Each of the nine functions is approximated with five error tolerances
maximum absolute pointwise deviation). Fig. 4 shows the approxima-
ions with the J1 approach for the tightest error tolerance for each
enchmark function. It illustrates how the J1 triangulation is deformed
o fit the topology of the benchmark functions. Additionally, a 3D
endering of these results is provided in the appendix. The quantitative
esults are reported in Table 2.

Both the J1 and the RK approach use triangles as the basic geometric
shape. The results show that on the tightest error tolerance the J1 ap-
proach outperforms the RK approach on all benchmark functions except
for #8. This function has strong curvature on two opposite corners of
the domain, which seems to be an obstacle for approximation on a grid,
even if it is not axis parallel. Also at looser error tolerances, the J1
pproach mostly finds approximations with fewer linear segments than
he RK approach. Where the RK approach finds approximations with

fewer segments, the difference is quite small (except for function #8).
The DC approach consistently produced approximations with fewer

inear pieces than both the RK and the J1 approach. This is not surpris-
ing, considering that it uses polygons (polytopes) instead of triangles
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Fig. 4. Approximations of the benchmark functions at the lowest error tolerance with the J1 approach. The color shows the function value: lowest (dark) to highest (light).
(simplices) as the basic geometric shape. However, the J1 approach
found an approximation for function #2 at a maximum error of 0.1,
where the DC approach could not find any solution in the specified time
limit (3600 s). For this function, the RK approach found a solution, but
it requires 351 linear pieces compared to 154 with the J1 approach.

Predicting the MILP performance that can be expected with a given
approximation is difficult as it depends on a variety of factors. A good
indication is the number of auxiliary variables that are introduced
in the MILP problem (Vielma et al., 2010; Kazda and Li, 2021). The
7 
smaller the formulation, the better the MILP performance. The values
in last four columns in Table 2 show the number of binary (Z2 = {0, 1})
and continuous (R) auxiliary variables for the J1 and the DC approach.
For loose error tolerances, J1 and DC introduce a similar number of
auxiliary variables. With tighter error tolerances, J1 approximations
introduce considerably fewer auxiliary variables even if the number of
linear pieces is higher. Even for function #8, where J1 required con-
siderably more linear pieces, the MILP formulation is smaller for tight
error tolerances. These results indicate that J1 approximations will
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Table 2
Results on the first set of benchmark functions. Maximum absolute error 𝛿, grid size, number of simplices 𝑛S and time 𝑡. Values from reference
publications RK (Rebennack and Kallrath, 2015a) and DC (Kazda and Li, 2023). Number of auxiliary variables in MILP problem.

# 𝛿max J1 approximation RK DC MILP J1 MILP DC

𝛿 Grid 𝑛S 𝑡 𝑛S 𝑡 𝑛S 𝑡 Z2 R Z2 R

1.500 1.070 3 × 2 12 1.1 16 30.8 6 0.3 4 12 6 12
1.000 0.998 3 × 2 12 7.0 20 84.4 8 0.8 4 12 8 16

1 0.500 0.498 5 × 3 30 6.2 48 150.4 16 3.0 6 24 16 32
0.250 0.246 7 × 4 56 17.2 80 272.6 32 23.0 6 40 32 64
0.100 0.100 10 × 6 120 80.2 224 380.6 83 156.0 8 77 83 166

1.500 1.258 3 × 2 12 1.3 24 26.8 6 30.0 4 12 6 12
1.000 0.960 4 × 2 16 2.3 28 7.4 7 1.7 4 15 7 14

2 0.500 0.497 5 × 3 30 8.1 84 38.0 14 45.0 6 24 14 28
0.250 0.248 7 × 4 56 20.6 121 35.8 25 361.0 6 40 25 50
0.100 0.099 11 × 7 154 107.7 351 171.7 – – 8 96 – –

1.000 0.523 2 × 2 8 0.7 4 0.8 4 0.1 3 9 4 8
0.500 0.358 2 × 3 12 1.7 12 72.4 10 1.6 4 12 10 20

3 0.250 0.216 3 × 3 18 3.1 20 4.7 14 6.0 5 16 14 28
0.100 0.100 4 × 5 40 12.4 59 59.3 30 46.0 6 30 30 60
0.050 0.050 7 × 6 84 28.4 94 45.3 57 88.0 7 56 57 114

0.100 0.066 1 × 1 2 0.4 2 0.3 1 0.0 1 4 1 2
0.050 0.046 2 × 1 4 0.3 6 18.7 4 0.1 2 6 4 8

4 0.030 0.020 2 × 2 8 0.6 10 12.7 4 0.4 3 9 4 8
0.010 0.007 4 × 3 24 3.8 31 54.6 18 6.2 5 20 18 36
0.001 0.001 10 × 9 180 75.2 350 652.6 181 8418.0 9 110 181 362

1.000 0.410 1 × 2 4 0.2 5 1.0 3 0.1 2 6 3 6
0.500 0.410 1 × 2 4 0.3 8 13.1 3 0.1 2 6 3 6

5 0.250 0.232 2 × 3 12 1.1 16 30.0 8 0.3 4 12 8 16
0.100 0.099 2 × 5 20 3.9 44 74.6 19 8.0 5 18 19 38
0.050 0.050 3 × 7 42 11.3 85 141.9 27 37.0 6 32 27 54

0.500 0.312 1 × 1 2 0.1 2 1.8 2 0.0 1 4 2 4
0.250 0.207 1 × 2 4 0.3 4 1.0 4 0.1 2 6 4 8

6 0.100 0.071 3 × 2 12 1.4 9 25.8 6 0.7 4 12 6 12
0.050 0.037 4 × 3 24 3.6 23 14.4 14 3.4 5 20 14 28
0.030 0.029 5 × 3 30 5.6 40 161.4 26 12.0 6 24 26 52

1.000 0.908 1 × 1 2 0.2 6 7.7 1 0.0 1 4 1 2
0.500 0.256 2 × 2 8 0.7 6 1.3 4 0.5 3 9 4 8

7 0.250 0.250 2 × 2 8 0.9 21 30.8 6 1.1 3 9 6 12
0.100 0.100 4 × 4 32 11.8 96 73.0 21 44.0 5 25 21 42
0.050 0.049 7 × 5 70 17.0 274 305.5 44 130.0 7 48 44 88

1.000 0.984 2 × 2 8 0.7 6 22.8 3 0.3 3 9 3 6
0.500 0.492 2 × 3 12 2.0 9 15.6 4 0.4 4 12 4 8

8 0.250 0.247 4 × 3 24 3.7 12 22.9 10 11.0 5 20 10 20
0.100 0.093 8 × 6 96 27.2 40 202.8 16 17.0 7 63 16 32
0.050 0.049 11 × 7 154 72.7 87 174.1 38 80.0 8 96 38 76

1.000 0.620 1 × 1 2 0.1 2 0.8 1 0.0 1 4 1 2
0.500 0.410 1 × 1 2 0.2 4 66.6 2 0.1 1 4 2 4

9 0.250 0.080 3 × 3 18 2.2 6 4.4 12 2.9 5 16 12 24
0.100 0.080 3 × 3 18 2.3 84 231.5 8 1.8 5 16 8 16
0.050 0.046 5 × 6 60 22.4 86 57.8 14 8.0 7 42 14 28
f

c

likely yield faster MILP solving times than DC for tight error tolerances.
or crude error tolerances, DC will likely yield better performance.

The second set of benchmark functions are the products of 𝑛 = 3,
4 and 5 variables on the domain [0, 1]𝑛. The J1 algorithm, was again
initialized with a grid with one segment in each dimension and a set
of sample points from an equally spaced grid with 5 points in each
dimension. The regularization parameters were set to 𝜆V = 10−2 and
𝜆∇ = 0.

The results are reported in Table 3 and an illustration of the results
in 3 dimensions is shown in Fig. 5. The number of linear pieces that
re required with the J1 approach increases steeply with the number of
imensions. The reason is that the J1 approach uses a grid to partition

the domain into cells, which in turn are partitioned into simplices.
Given an equal number of segments in each dimension, the number of
cells grows exponentially with the number of dimensions 𝑛. In addition,
the number of simplices in each hypercube grows as 𝑛!. I.e. partitioning
a 3D cell requires 6 simplices, while partitioning a 5D cell requires
120. Due to this steep increase, which also affects the number of
optimization variables, no solution was found within the time limit of
10 000 s for the tighter error tolerances in 4 and 5 dimensions. Even
8 
for the approximations that did satisfy the error tolerance, the number
of linear pieces with the J1 approach was much larger than with the
DC approach.

This curse of dimensionality, however, is less pronounced for the
number of auxiliary variables in MILP since the J1 structure allows
for a very efficient encoding of the simplices. In 3D, the number of
auxiliary variables with the J1 approximations is about the same as
for DC. At the tightest error tolerance the number of binary variables
is even considerably lower. In 4D and 5D, J1 requires about the same
number of binary variables, but it requires more continuous variables.

Unfortunately, the inherent scaling of triangulations limits the use-
ulness of the J1 approach for higher dimensional problems. Though,

for 3 dimensional problems and tight error tolerances it still results in
omparatively small MILP formulations.

5. Conclusion

In this paper, an algorithm to compute a piecewise-linear approx-
imation of multi-variate functions for MILP was introduced. It uses
a J1 triangulation on a deformed grid for the approximation. The
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Fig. 5. Approximations of the product of three variables at three error levels.
Table 3
Results on the second set of benchmark functions. Maximum absolute error 𝛿, grid size, number of simplices 𝑛 and time 𝑡. Values from the
reference publication DC (Kazda and Li, 2023). Number of auxiliary variables in MILP problem.

𝛿max J1 approximation DC MILP J1 MILP DC

𝛿 Grid 𝑛S 𝑡 𝑛S 𝑡 Z2 R Z2 R

0.100 0.100 2 × 2 × 1 24 0.7 6 0.5 5 18 6 18
3D 0.050 0.049 2 × 2 × 3 72 7.8 11 6.2 7 36 11 33

0.025 0.025 3 × 4 × 3 216 48.2 32 48.0 9 80 32 96

0.100 0.097 2 × 2 × 1 × 2 192 518.0 8 2.2 9 54 8 32
4D 0.050 0.050 2 × 2 × 3 × 3 864 730.5 20 50.0 12 144 20 80

0.025 – – – – 60 1891.0 – – 60 240

0.100 0.099 2 × 2 × 2 × 2 × 1 1920 404.2 14 523.0 14 162 14 70
5D 0.050 – – – – 26 526.0 – – 26 130

0.025 – – – – 101 34 073.0 – – 101 505
approximation task is formulated as an optimization problem, which
is divided into three sub-problems to make it tractable: fitting, refining
and sampling. The requirements on these sub-problems to maintain the
J1 structure of the triangulation were discussed and a solution method
for each sub-problem was proposed.

When approximating non-linear functions for MILP, the goal is to
find approximations, which meet the error tolerance without compro-
mising MILP solving times. Generally this requires finding approxi-
mations with only a few linear pieces and which introduce only a
few auxiliary variables into the MILP problem. The main advantage
of the J1 approach, compared to other piecewise-linear approximation
methods from literature, is that the resulting piecewise-linear function
is compatible with the logarithmic branching convex combination (Log)
formulation, for which the number of auxiliary binary variables grows
logarithmically with the number of linear pieces instead of linearly.
This formulation has been shown to yield very fast MILP solving times,
especially compared to non-logarithmic formulations. For this reason,
the J1 approach is likely to yield fast MILP solving times.

The main alternative to the J1 approach is the Difference of Convex
(DC) approach, which uses polytopes for the approximation (instead
of a highly structured J1 triangulation). For this reason, DC generally
produces piecewise linear functions with fewer linear pieces than the
J1 approach. However, this does not necessarily result in smaller MILP
formulations, since DC is confined to MILP formulations where the
number of auxiliary variables grows linearly with the number of linear
pieces (as opposed to logarithmically with the J1 approach).

To evaluate the performance of the proposed J1 approach, it was
applied to a set of nine bi-variate benchmark functions. The results
show that the J1 approach could approximate all functions at the
required error tolerances with a reasonable number of linear pieces.
Even though the number of linear pieces was generally larger than with
the DC approach, the resulting MILP formulations still required about
the same or, in many cases, considerably fewer auxiliary variables. This
9 
can be seen as an indicator for faster MILP solving times, particularly
for approximations with tight error tolerances. However, computational
studies to verify this are still required.

The J1 approach has also been tested on functions with up to 5
variables. Due to the inherent scaling of the J1 triangulation with the
number of dimensions, these approximations become very large. In 4
and 5 dimensions, the algorithm was not able to find approximations
that meet the tightest error tolerances. For 3D however it found approx-
imations with smaller MILP formulations than the DC approach. These
results suggest that the J1 approach is well suited for approximations in
up to 3 dimensions. Even though it can technically approximate higher
dimensional functions, the inherent scaling limits its usefulness.

Promising directions for future research include improving the al-
gorithms performance for approximations in 4 and more dimensions
as well as including the J1 scheme as an optimization variable. Fur-
ther, the strict requirements on the triangulation could be relaxed by
using a zig-zag instead of the Log formulation. This could allow to
relax the constraints on the complementary triangulation in the fitting
sub-problem and thus lead to approximations with fewer linear pieces.

Overall, the J1 approach was shown to be capable of approximating
a wide range of bi-variate functions efficiently and also on 3 dimen-
sional problems it produces good results. The resulting piecewise-linear
function can be effectively translated to MILP using the logarithmic
branching convex combination scheme, requiring fewer auxiliary vari-
ables than alternative approaches especially for tight error tolerances.
Whether this results in significantly faster MILP solving times is yet to
be verified and subject of ongoing research.
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Appendix A. 3D illustration of results

Figure Fig. A.6 shows the same results as Figure Fig. 4 but from an
isometric perspective.

Appendix B. Gradients for the fitting sub-problem

To solve the fitting-sub-problem efficiently with gradient based
algorithms, the gradient of the objective function in Eq. (8) with respect
10 
to the variables 𝒙𝑣 and 𝑓𝑣 has to be provided. For the sake of brevity,
only the terms specific to the proposed algorithm are discussed here.
Lengthy applications of the chain rule for well known functions such
as the norm, reciprocals, etc. . . are omitted.

The following notation is used throughout this section: 𝑆( ,𝒙) is the
simplex (i.e. the linear piece) that contains the point 𝒙. The vertices
of a simplex are 𝑉 (𝑠) = {𝑣1,… , 𝑣𝑛+1}, 𝒇 𝑠 = [𝑓𝑣1 ,… , 𝑓𝑣𝑛+1 ]𝖳 is the
vector of function values at the vertices and 𝑀𝑠 = [�̃�𝑣1 ,… , �̃�𝑣𝑛+1 ] is
the characteristic matrix. A tilde denotes the augmented coordinate
Fig. A.6. Approximations of the benchmark functions at the lowest error tolerance with the J1 approach. [3D version].
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̃ = [𝒙𝖳, 1]𝖳, 𝑥𝑣,𝑖 is the coordinate in dimension 𝑖. 𝒆𝑖 ∈ R𝑛+1 is the
unit vector in dimension 𝑖 and 𝒆𝑣,𝑠 ∈ R𝑛+1 is a vector, with 1 at the
osition that corresponds to the vertex 𝑣 in 𝑉 (𝑠). If 𝑣 is not a vertex of

the simplex 𝑠, 𝒆𝑣,𝑠 is all zeros. Consequently, many of the derivatives
will be zero.

The value of the piecewise linear function and its derivatives are
iven by

𝑓 (𝒙) = 𝒇𝖳
𝑠𝑀

−1
𝑠 �̃� 𝑠 = 𝑆( ,𝒙) (B.1a)

𝜕
𝜕 𝑓𝑣

𝑓 (𝒙) = 𝒆𝖳𝑣,𝑠𝑀
−1
𝑠 �̃� 𝑠 = 𝑆( ,𝒙) (B.1b)

𝜕
𝜕 𝑥𝑣,𝑖

𝑓 (𝒙) = −𝒇𝖳
𝑠𝑀

−1
𝑠 (𝒆𝑖𝒆𝖳𝑣,𝑠)𝑀

−1
𝑠 �̃� 𝑠 = 𝑆( ,𝒙) (B.1c)

Note that the function value estimate 𝑓 (𝒙) is linear in the function
values at the vertices 𝑓𝑣. Thus, determining the optimal function values
at the vertices for fixed vertex coordinates is a linear problem. This can
be leveraged to compute good starting values for the gradient descent
algorithm.

The signed volume of a simplex 𝑠 is given by

vol𝑑 (𝑠) = 1
𝑛!

det𝑀𝑠 (B.2a)
𝜕
𝜕 𝑓𝑣

vol𝑑 (𝑠) = 0 (B.2b)

𝜕
𝜕 𝑥𝑣,𝑖

vol𝑑 (𝑠) = 𝒆𝖳𝑣,𝑠𝑀
−1
𝑠 𝒆𝑖 vol(𝑠) (B.2c)

The sign of det𝑀𝑠 depends on the order of the vertices 𝑉 (𝑠). The
onvention is that the order is such, that the determinant is positive
or a simplex on an axis-parallel J1 grid.

The slope of the function on a simplex is given by
𝜕𝑓𝑠
𝜕 𝑥𝑗

= 𝒇𝖳
𝑠𝑀

−1
𝑠 𝒆𝑗 (B.3a)

𝜕
𝜕 𝑓𝑣

𝜕𝑓𝑠
𝜕 𝑥𝑗

= 𝒆𝖳𝑣,𝑠𝑀
−1
𝑠 𝒆𝑗 (B.3b)

𝜕
𝜕 𝑥𝑣,𝑖

𝜕𝑓𝑠
𝜕 𝑥𝑗

= −𝒇𝖳
𝑠𝑀

−1
𝑠 (𝒆𝑖𝒆𝖳𝑣,𝑠)𝑀

−1
𝑠 𝒆𝑗 (B.3c)

Data availability

A Matlab implementation is available at https://doi.org/10.5281/
enodo.14669069.
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