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Kurzfassung

In unserer modernen Gesellschaft sind Aufzüge aus größeren Gebäuden nicht mehr
wegzudenken. Aufzugsgruppensteuerungssysteme sind Mehrfachaufzugsysteme, die den
Personentransport in einem Gebäude optimieren und die Beförderungskapazität erhöhen.
Während herkömmliche Aufzugssysteme einen einzelnen Knopf auf jeder Etage haben, um
einen Aufzug zu rufen, verfügen modernere Systeme über ein Zielregistrierungssystem, bei
dem die Fahrgäste vor dem Betreten des Aufzugs ihr gewünschtes Zielstockwerk auswählen
können und dann einem Aufzug zugewiesen werden. Die Zuweisung von Fahrgästen zu
Aufzügen kann als Optimierungsproblem betrachtet werden, bei dem das Ziel darin
besteht, die durchschnittliche Wartezeit der Fahrgäste zu minimieren.

In dieser Arbeit werden wir drei verschiedene Ansätze zur Lösung des Aufzugszuweisungs-
problems für Aufzugssysteme mit einem Zielregistrierungssystem entwickeln. Der erste
Ansatz ist ein gemischt-ganzzahliges lineares Programm (engl. mixed integer linear pro-
gram, MILP), das das Problem zunächst als statisches Optimierungsproblem behandelt,
bei dem alle Informationen über zukünftige Fahrgastankünfte im Voraus bekannt sind.
Dieses MILP wird dann erweitert um es im dynamischen Optimierungsproblem, bei dem
das System Entscheidungen nur auf der Grundlage der aktuellen Informationen über die
Fahrgäste und Aufzüge treffen muss, auch einsetzen zu können. Gemischt-ganzzahlige
lineare Programme sind exakte Methoden und können optimale Lösungen liefern, aber sie
sind rechenintensiv und skalieren nicht gut mit der Größe des Systems. Für das statische
Problem können wir ein gegebenes Szenario optimal lösen, während wir für das dynami-
sche Problem einzelne Entscheidungspunkte optimal lösen können, aber die Gesamtlösung
ist nicht garantiert optimal. Um die Bewegungen eines Aufzugs im Laufe der Zeit zu
modellieren, verwendet das MILP einen Netzwerkflussgraphen und Miller-Tucker-Zemlin
(MTZ) Ungleichungen um gültige Lösungen zu garantieren. Der zweite Ansatz, der sich
auf das dynamische Problem konzentriert, ist eine greedy (gierige) Heuristik, um die
Fahrgäste den Aufzügen nach einer gierigen Strategie zuzuweisen, wobei versucht wird, so
viele Fahrgäste so schnell wie möglich abzuholen. Der Greedy-Algorithmus ist einfach und
kann schnell Lösungen für das Problem finden, für komplexere Szenarien sinkt aber im
Allgemeinen die Qualität der Lösung. Der dritte Ansatz ist ein Reinforcement Learning
(RL) Ansatz, der einen Proximal Policy Optimization (PPO) Algorithmus verwendet
und ebenfalls nur für die Lösung des dynamischen Problems entwickelt wurde. Um die
Komplexität zu verringern, verwendet das Modell nicht die gesamte Zustandsinformation,
sondern wertet Teilinformationen für jede gültige Aktion einzeln aus und wählt damit die
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beste Aktion für jeden Aufzug aus. Das Modell wird für bestimmte Szenarien trainiert,
die reale Verkehrsmuster simulieren.

Wir bewerten und vergleichen die drei Ansätze für verschiedene Szenarien, unterschiedliche
Aufzugssystemgrößen und unterschiedliche Verkehrsmuster. Die Experimente zeigen, dass
der dynamische MILP Ansatz für kleine Instanzen im Allgemeinen die besten Lösungen
findet, aber rechenintensiv ist und bei größeren Instanzen nur schwer gültige Lösungen
findet. Der greedy Ansatz ist in Bezug auf die Rechenzeit am effizientesten und liefert
für die meisten der getesteten Instanzen sinnvolle Lösungen. Der Reinforcement Learning
Ansatz reagiert empfindlich auf die Hyperparameter, welche für jedes System abgestimmt
werden müssen, um gute Lösungen zu liefern. Die Leistung des RL Ansatzes übertrifft den
Greedy-Ansatz für kleinere Systeme und Szenarien, in denen viele Fahrgäste gleichzeitig
warten, verschlechtert sich jedoch mit zunehmender Systemgröße, insbesondere wenn die
Anzahl der Aufzüge steigt.



Abstract

Modern society relies on elevators for vertical transportation in high-rise buildings.
Elevator Group Control Systems (EGCSs) are multi-elevator systems designed to optimize
passenger transportation within a building, increasing efficiency and capacity. While
traditional EGCSs have a single button on each floor to call an elevator, more advanced
systems have a destination registration system, where passengers can select their desired
destination floor before entering the elevator and are then assigned to an elevator. The
assignment of passengers to elevators can be seen as an optimization problem, where the
goal is to minimize the average waiting time of passengers.

In this work, we will develop three different approaches to solve the elevator assignment
problem for EGCSs with a destination registration system. The first approach is a mixed
integer linear program (MILP) that tackles the problem first as a static optimization
problem, where all the information about future passenger arrivals is known in advance,
and then as a dynamic optimization problem, where the system has to make decisions
only based on the current information about the passengers and elevators and the problem
is re-solved when new requests become available. Mixed integer linear programs are exact
methods and can provide optimal solutions, but they are computationally expensive
and do not scale well with the size of the system. For the static problem, we can
solve a given scenario optimally, while for the dynamic problem we can solve single
decision points optimally, but the overall solution is not guaranteed to be optimal. To
model the movement of an elevator over time, the MILP uses a network flow graph
and Miller-Tucker-Zemlin (MTZ) constraints for ensuring feasible solutions. The second
approach, focusing on the dynamic problem, is a greedy algorithm, which employs a
heuristic to assign passengers to elevators based on a greedy strategy, trying to load
as many passengers as fast as possible. The greedy algorithm is simple and generates
solutions relatively quickly, but often struggles with finding good solutions for complex
scenarios. The third approach is a reinforcement learning (RL) approach, which uses a
Proximal Policy Optimization (PPO) algorithm and also only aims to solve the dynamic
problem. To reduce complexity, rather than using the whole information of the state, the
model evaluates only partial information for each valid action individually and picks the
best action for each elevator. The model is trained for specific scenarios which simulate
real-world traffic patterns.

We evaluate and compare the three approaches on different scenarios, different elevator
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system sizes and different traffic patterns. The experiments show that the dynamic MILP
approach generally performs the best for rather small instances in terms of solution quality,
but is computationally expensive and struggles to find valid solutions for larger instances.
The greedy approach is the most efficient in terms of computation time and provides
good solutions for most of the tested instances. The reinforcement learning approach is
sensitive to hyperparameters and needs to be fine-tuned for each system individually to
provide good solutions. The RL approach outperforms the greedy approach for smaller
systems and scenarios where many passengers are waiting at the same time, but gets
worse with increasing system size, especially when the number of elevators increases.
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CHAPTER 1
Introduction

Elevators are a common means of transportation in high-rise buildings or even smaller
buildings with only few floors. The capability of vertical transport is crucial in modern
society, as the construction of larger and larger buildings is pursued and travelling with
elevators is often not a convenience but a necessity. Many people rely on elevators on a
daily basis, especially elderly people and people with disabilities, who may not be able
to use stairs at all. While transporting people to different floors is the most common
use of elevators, they are also used in various other applications such as transporting
goods in warehouses or factories. This makes elevator systems an important part of many
people’s lives, and thus they need to be efficient, reliable and accessible. While single
elevator systems are common in smaller buildings, larger buildings often use multiple
elevators to transport people to different floors. These systems are called Elevator Group
Control Systems (EGCSs) and aim to greatly improve the efficiency of elevator systems
by implementing dispatching algorithms that optimize the movement of elevators in
the building. While there are different measurements of efficiency in EGCSs, the most
common one is the minimization of the average waiting time (AWT) of passengers.
This aims to provide a better user experience and to reduce the time passengers spend
waiting for an elevator, while other measurements such as the minimization of the
energy consumption of the elevators are also important especially in the context of
sustainability and environmental concerns. When talking about elevator systems, one
needs to distinguish between how much information the system has about the passengers.
In the most basic and widely used form, each floor has a single button to indicate that a
passenger needs a ride to a different floor and inside the elevator are multiple buttons, one
for each floor, to indicate the desired destination floor. A more advanced form of EGCS
has not just a single button on each floor, but rather two buttons, up and down, to signal
the direction the passenger wants to travel. This provides more information to the system,
which can then group passengers with the same direction of travel together in the same
elevator. Taking it a step further, we can use an EGCS with a destination registration
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1. Introduction

system, where no buttons are inside the elevator, but rather a panel outside on each floor,
so that a passenger can select their desired destination floor before entering the elevator,
providing even more information to the system, and allowing for more efficient grouping of
passengers. The assignment of waiting passengers to elevators can then be handled with
a ticket system, where each passenger will be notified if the elevator is ready to take them
to their desired floor. While the destination registration system can be more efficient
than the basic system, it is also more complex and requires more advanced algorithms to
find a sensible assignment of passengers to elevators. The problem of assigning passengers
can be seen from two different perspectives, the offline (or static) perspective, where the
information about the passengers (arrival and destination floors as well as arrival time)
is known in advance and the system can plan the assignment of passengers to elevators
in advance, and the online (or dynamic) perspective, where the information about the
passengers is not known in advance and the system has to make decisions based on the
current information iteratively over time. While the online perspective is more realistic
and challenging, the offline perspective can be used as a benchmark to compare the
performance of different approaches. Although there exists some literature on the topic
of elevator group control systems with a destination registration system [2, 31, 34, 35, 27],
the problem is still not extensively researched and there is still room for improvement
in the field, especially with the rise of machine learning and reinforcement learning
techniques, which have shown to be able to solve complex problems in various fields.

1.1 Aim of the Work
The aim of the work is as follows:

• Formalize the elevator control process with destination registration systems as a
well-defined static and dynamic optimization problem.

• Design a mixed integer linear programming (MILP) model to solve the static
optimization problem, as well as the dynamic optimization problem by iteratively
solving the static problem with new information as new passengers arrive.

• Develop a greedy approach for the dynamic problem, where elevators are controlled
by a heuristic that aims to load as many passengers as fast as possible.

• Design and implement a reinforcement learning approach that learns a policy based
on the current state of the system and can assign actions to elevators.

• Experimentally evaluate and compare all developed approaches on different scenar-
ios, different elevator system sizes and different traffic patterns.

1.2 Methodology
The methodology for this work is as follows:
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1.3. Key Results

1. Literature Review. In order to understand, improve and extend the already
existing approaches for EGCSs with and without destination registration systems,
an extensive literature research is done.

2. Systematic Definition. In order to formulate the problem in a well-defined,
intuitive and practical manner, different, already existing, formulations are analyzed,
unified and extended.

3. Design of New Approaches. The primary objective of this thesis is to introduce
our own approaches for addressing these challenges by utilizing state-of-the-art
methods. Specifically, we will model the problem as a mixed integer linear program
and apply reinforcement learning techniques to tackle the problem. The former
is an exact method and can provide optimal solutions, but requires more time as
the instance size increases. The latter does not guarantee an optimal solution but
can provide good solutions for large instances in reasonable time. Additionally, a
greedy heuristic approach is designed to have a comparison to a naive approach,
which is expected to be fast but to perform worse than the reinforcement learning
approach.

4. Implementation of Different Algorithms. In order to apply and evaluate
the designed approaches, all three methods are implemented to solve the defined
problem.

5. Data Generation. To compare the different approaches in a scientific and
objective way, data will be artificially generated, which will encompass a wide range
of realistic scenarios, traffic patterns, and peak loads, enabling us to assess the
performance of the algorithms under different conditions.

6. Evaluation and Comparison. The evaluation and comparison will concentrate
on all implemented approaches. We will assess their effectiveness by utilizing metrics
such as the average waiting time and examine the efficiency of each approach by
considering factors such as runtime, which is especially interesting when thinking
about real-world usage.

1.3 Key Results
Our main results of this work show that the static MILP approach is able to provide
optimal solutions for tiny instances and, expectedly, outperforms the dynamic approaches.
However, when increasing the size of the elevator systems and the length of the scenarios,
the computational complexity of the static problem becomes too high to be practical.
Solutions for large instances, if any are found by the MILP in reasonable time, are far
from optimal. Comparing the dynamic approaches, the dynamic MILP approach is
able to provide the best solutions for most of the tested instances, but also struggles
occasionally to find valid solutions for large instances within the given time limit. The
reinforcement learning approach shows strength in scenarios, where many orders arrive
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1. Introduction

within a short time, but also struggles as the elevator system size increases. The greedy
approach is the most time efficient and provides good solutions for most of the tested
instances, in some cases even outperforming all other approaches. In real-world scenarios
the dynamic MILP approach would not be practical, as the computational complexity
is too high to be able to solve the problem in real-time. The reinforcement learning
approach and the greedy approach both show potential to be used in real-world scenarios,
but the reinforcement learning approach needs to be fine-tuned for each specific elevator
system and traffic pattern to be able to provide good solutions.

1.4 Structure of the Work
The remainder of this thesis is structured as follows: Chapter 2 provides an overview of the
related work in the field of elevator group control systems with and without destination
registration systems and focuses on the different approaches that have been used to
solve the problem. Next, in Chapter 3, we describe the fundamentals of mixed integer
linear programs and reinforcement learning. Chapter 4 provides a formal definition of
the problem of controlling elevators in an EGCS with a destination registration system,
as well as assumptions we made to be able to handle the complexity of the system. In
Chapter 5, we present our mixed integer linear program approach for both the offline and
online variant. The heuristic approach with a greedy strategy is introduced in Chapter 6.
The last approach, using reinforcement learning, is presented and discussed in Chapter 7,
where we define the Markov Decision Process and the architecture of the underlying
neural network, with the observation and action space of the model. Chapter 8 presents
the experiments and results of the different approaches. Finally, Chapter 9 concludes the
work and provides an outlook on future work.
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CHAPTER 2
Related Work

There are multiple variants of Elevator Group Control Systems (EGCSs) that have been
proposed and tackled. The most prominent and most researched one is the single-car
elevator system, where each elevator shaft has only one elevator car. While there exist
systems with only one shaft and elevator car, having multiple elevator shafts is more
common in large buildings, like hospitals or office buildings, where the number of floors
is high and the number of passengers is large. These are also more interesting in terms of
research, as the complexity of the system increases drastically with the number of elevator
shafts. While the goal of an EGCS is to optimize the performance of the elevator system
by seeing the problem as online (or dynamic) problem, where we adjust by re-optimizing
the current assignments each time new information of arriving passengers is gathered,
this problem can also be seen as an offline (or static) problem where all the information
about the passengers, i.e. the arrival times, arrival floors and destination floors, is known
in advance and the goal is to find an optimal assignment and scheduling of the elevators
to minimize the performance metric. This is a more theoretical approach and can be
used to compare the performance of different algorithms. This is most interesting when
using exact methods, so we know the theoretical best performance of the system. In
this chapter we will give an overview of the different types of elevator systems, a brief
overview of offline approaches and the different online approaches to solve the problem
of efficiently transporting passengers between floors.

2.1 Elevator Group Control Systems
Ever since the Otis Elevator Company developed the first elevator controller based on
electronic microprocessors in 1979 [8], the research on classical Elevator Group Control
Systems has been ongoing and many different algorithms and approaches have been
developed. The EGCS is traditionally defined as a system that controls multiple elevator
cars in a building, with each car having its own shaft. There exist hall buttons on each
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floor, one for each direction, and car buttons inside the elevator car, which are used
to select the desired floor of the passenger. The goal is to meet all the demands of
the passengers and transport them between floors in an efficient way, which is done by
dispatching elevators to pick up certain passengers, hence it is also called the elevator
dispatching problem. The dispatching process needs to optimize some performance metric,
with the most common one being the average waiting time (AWT) of passengers, which
is the average time a passenger has to wait from the moment they request an elevator
until they enter it. Another similar and common metric is the average travel time (ATT),
which is the average time a passenger spends in the elevator from the moment they enter
it until they leave it. The ATT is mostly used in combination with the AWT to calculate
the passengers’ average journey time (AJT), which is the sum of the AWT and the ATT.
The problem of dispatching elevators in a building is in general NP-complete [14], and
in real-world applications, this problem needs to be solved in real-time, which makes it
even more challenging and required innovative solutions, especially as there are changing
patterns of traffic like up-peak, where most passengers arrive at the ground floor and
want to go up, or down-peak, where most passengers arrive at any non-ground floor and
want to go down to the ground floor.

2.1.1 Offline Approaches

As already mentioned, the offline approach is to find an optimal (w.r.t. optimization
criterions) assignment and scheduling of elevators, given all the information about the
passengers in advance. As this is not applicable in real-world scenarios, this approach has
not been researched as much as online approaches, however, it is still interesting as it can
give a lower bound on the performance of the system. Sun et al. [32] proposed a two-level
heuristic approach to solve the offline problem with full information about the passengers,
where the first level is to assign the passengers to the elevator cars and the second level
is to schedule the elevator cars with the assigned passengers to minimize the average
waiting time. Exact approaches to find the optimal solution are by Shen et al. [30], where
they used a branch-and-bound algorithm to find the optimal solution of different traffic
patterns, and Xu et al. [42], who used a mixed integer programming approach to solve
the problem for single elevator systems.

2.1.2 Exact Online Methods

In contrast to offline approaches, exact online methods tackle the online variant of the
elevator dispatching problem by reoptimizing the current assignment of the elevators
each time new information of arriving passengers is gathered. Exact methods from
Pepyne et al. [25] and Levy et al. [22] solve each snapshot of the problem optimally,
which is often computationally expensive and thus not suitable for large scale problems.
Additionally, the optimal solution is only optimal for the current snapshot and does not
take into account future snapshots, which can lead to suboptimal solutions in the long
run.
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2.1. Elevator Group Control Systems

2.1.3 Expert Systems

One of the first approaches to tackle the dynamic online problem were expert systems,
which used a set of predefined rules, so called “expert rules”. These rules can be based
on the experience of engineers in the field of vertical transportation and are used for
dispatching the elevators. Another approach to derive expert rules is to gather information
by finding good solutions (w.r.t. the average waiting time) of different generated traffic
instances of a building, e.g. using simulated annealing, and then comparing the good
solution to solutions of conventional methods. Then crucial aspects and strategies can be
extracted and formed as rules, which are then used to guide the elevator dispatching and
improve the performance [36]. While expert systems brought significant advancements in
the early days of elevator control, they have some limitations. The main limitation is
the reliance on the predefined rules and knowledge of the system structure, which, when
confronted with the dynamic and complex environment of a building, can not always
adapt to the changing conditions [45].

2.1.4 Other Heuristic Approaches

Different approaches based on heuristics have been proposed to solve the elevator dis-
patching problem. These approaches are based on a set of rules that are used to guide the
elevator system and make decisions. These can be based on multiobjective formulations
with different criteria, like the waiting time, cabin-load factor, preferential zones and stop
calls [21], or a combination of decision rules and a cost function that is used to calculate
how good the set of suggested rules are [37]. An additional heuristic approach is to obtain
solutions by using a tree search. The algorithm is searching a tree of possible actions
and their outcomes, with heuristic estimations of the cost of each action to limit the
search space. Child nodes of all nodes are possible actions from the node’s state, which
represent the assignment of not assigned hall calls to an elevator and also an idle action.
To further limit the search space they only considered one elevator at each level of the
search. After each node on the current level is assigned with the heuristic value, the best
action (w.r.t. the heuristic value) is chosen and the next level of the tree is searched, this
is done until all hall calls are assigned. One problem with such an approach is the time
used to search the tree, which needs to be long enough to get a good approximation of
the optimal solution, but also short enough to be able to make decisions in reasonable
amount of time. The computational complexity increases with the number of waiting
passengers on different floors, which makes this approach less suitable for large buildings
with many floors and passengers [14].

2.1.5 Fuzzy Control

Fuzzy Control is another approach to solve the elevator dispatching problem, which is
based on Fuzzy logic. Fuzzy logic is a multi-valued mathematical logic that aims to solve
problems with the introduction of vagueness in reasoning. Rather than the usual binary
(true or false) decision making of classical (Boolean) logic, Fuzzy logic uses degrees of
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truth, which are represented by a value between zero and one. Thus making this approach
suitable for complex systems which include uncertainty and imprecision [24].

A fuzzy controller for an EGCS consists of four main components: the fuzzification
interface, the knowledge base, the inference engine and the defuzzification module. An
important first step is to determine crucial state information, like the elevator position,
passenger counts, wait times and target requests. The fuzzification interface then converts
the crisp input values, i.e. information of the elevator systems state, into fuzzy values and
uses the knowledge base to generate a degree of membership for each value. The inference
engine then uses these membership values to determine which rules of the knowledge base
are activated and generates a result for each value. These results are then combined in
the defuzzification module to convert back into crisp outputs and actual control actions.
The knowledge base, similar to the expert rules, is a set of predefined rules, based on
expert knowledge, that are used to guide the elevator system [18].

A main advantage of Fuzzy Control is the ability to handle vague concepts but also the
fast response time, which is crucial for real-time applications. However, the performance
is dependent on the quality of the knowledge base and the membership functions, which
often need to be tuned based on the specific scenario [45].

Basic Fuzzy Control systems are also often limited by being unable to reschedule the
elevators until they completed the chosen action, making them less flexible and thus not
as suitable for dynamic environments, where a crucial part is to adjust to new information.
Fernández et al. [9] improved the Fuzzy Control approach by using a closed loop system,
which reappraises the parameter inputs for the fuzzy inference in every iteration and
thus allows new information to be incorporated into the decision making process and
allows past assignments to be reevaluated and changed.

2.1.6 Genetic Algorithms
Another widely used approach to improve the performance of an EGCS is the use of
Genetic Algorithms (GA). Genetic Algorithms are a type of evolutionary algorithm that
are used to find good solutions to problems by using principles of natural selection and
genetics, where a population of solutions is evolved over generations to find the best
solution. Early approaches used GAs as a tuning tool to find the best control parameters
for some heuristic based elevator dispatching algorithm with dozens of parameters, based
on the state of the system [11]. Another strategy is to use the GA directly by encoding
the decisions of each elevator as chromosomes of twice the number of floors, where each
half represents the up calls and down calls respectively. The fitness is calculated based
on an estimation of the time it takes for the elevator to complete all current calls [5].

2.1.7 Neural Networks
A logical next step to improve the performance of an EGCS is to use Neural Networks
(NNs) for either directly controlling the elevators or to improve already existing approaches.
Early approaches by Whitehall et al. [40] describe a general method of prediction. It
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estimates the remaining response time for an elevator car to reach a hall call and chooses
the elevator to assign accordingly. This system is able to train the neural network
while the elevator system is in operation, which allows the system to adapt to changing
conditions of traffic. While the adaptability of the system is a great advantage, it is limited
to long term changes, rather than being able to do drastic changes in real-time. A system
that uses NNs as improvement for an existing system was proposed by Naoki et al. [17]
by combining a neural network with fuzzy logic to a fuzzy neural network, where the
NN predicts the specific traffic patterns of arriving passengers and thus changes control
parameters for the fuzzy logic. This approach is able to handle sudden changes in the
environment with the fuzzy reasoning while still being able to adapt to long term changes
with the neural network. Another approach uses the output of the neural network directly
as input for a fuzzy logic system. This is done by transforming the output signal via an
activation function to values between zero and one, which then represents the degree of
membership for the fuzzy logic and thus control the actions of the elevator system. While
this approach can be very flexible, it also is limited by the quality of the membership
functions and the chosen fuzzy rules, which can drastically affect the performance of the
system [45].

2.1.8 Reinforcement Learning
A more recent approach to solve the elevator dispatching problem in an efficient manner
is to use Reinforcement Learning (RL). Reinforcement Learning is method of machine
learning where an agent learns to make decisions by interacting with an environment
and receiving rewards or penalties for its actions. The agent learns to maximize the
cumulative rewards over time by learning a policy, which is a mapping from a state
to an action. A more detailed explanation of Reinforcement Learning will be given in
Chapter 3.2, as it is a crucial part of this thesis. The first to tackle the ECGS problem
with Reinforcement Learning were Crites et al. [6]. They created the state space by
including information about the pressed buttons, hall call buttons on each floor and car
buttons in each elevator car, the approximated position of the elevator and the direction
of the cars. The action space was defined by either “move up” or “move down” if the
elevator has stopped at a floor, or “stop at next floor” or “continue past next floor” if
the elevator is moving.

Zhou et al. [46] used a method called Genetic Network Programming (GNP), an evolu-
tionary computation method based on Genetic Algorithms and Genetic Programming
which uses a direct graph structure as genes, and combined it with reinforcement to
combine the advantages of both methods.

With the evolution of RL algorithms, Deep Neural Networks are merged with RL to
create Deep Reinforcement Learning, which has been shown to outperform traditional
RL algorithms in many tasks. Wei et al. [39] use a Deep Reinforcement Learning method
called asynchronous advantage actor–critic (A3C) to solve the elevator dispatching
problem, which uses a deep convolutional and recurrent neural network to learn the
optimal dispatching of elevators. They used the same state construction as Crites et al. [6],
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while using a simpler action space, which only includes the action to stop at the next
floor or continue past it for each elevator. The reward function was defined as the average
squared waiting time of all passengers which are currently waiting for an elevator. The
results showed an increase in performance compared to traditional algorithms.

2.2 Elevator Group Control System Variants
While the traditional EGCS is the most common and most researched system, there
exist other variants of elevator systems that have been proposed and tackled. With the
increasing demand of more efficient elevators, new systems have been developed to meet
the requirements of modern buildings. In this section we will describe some of the most
common variants of elevator systems, which contain more information about the system
or even have a different building structure than the traditional EGCS.

2.2.1 Destination Registration Systems
One major drawback of the traditional EGCS is the inefficiency when it comes to handling
multiple passengers waiting on the same floor but having different destination floors.
This is due to the fact that the elevator system does not know the destination of the
passengers when they arrive at the elevator hall but only when all passengers have
entered the elevator car and pressed their respective floor button. This can lead to
inefficiencies like having passengers with the same destination floor in different elevator
cars, resulting in unnecessary stops which could have been avoided by grouping the
passengers together. By adding a destination terminal at each floor, passengers can enter
their desired destination floor before entering the elevator car, which allows the elevator
system to make its decision more informed and efficient. This system is called Elevator
Group Control System with a Destination Registration System (EGCS-DRS) and will be
thoroughly explained in Chapter 4.

Early works on this variant of the EGCS done by Beielstein et al. [2] already made use of
neural networks in combination with evolution strategies to judge the performance of the
elevator system. The neural network was used to predict the best parameter configuration
for the evolution strategy. Sorsa and Siikonen [31] had a different approach, where they
mainly focused on the up-peak scenario. They calculated the maximum handling capacity
of an elevator group and tried to balance (and thus raise) the handling capacity of all
elevators by dividing all destination floors between the elevator cars, such that only
one car stops at each floor to deliver passengers. Additionally they showed that when
overlapping of the served floors is allowed, i.e., multiple cars can deliver passengers to the
same floor, the handling capacity is more even across elevators but also smaller. Different
approaches were proposed by Tanaka et al. [34, 35], where they used a branch-and-bound
algorithm to find good elevator assignments, and by Ruokokoski et al. [27], where they
formulated the problem as a mixed integer linear program. These are different to the
previous approaches, as they are both exact approaches to find the optimal solution for
snapshots of the system, so when the algorithm terminates, the solution for the current
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state is guaranteed to be the best possible, but in the long run might be suboptimal
as it does not have full information about the future. This comes with the drawback
of being computationally expensive, especially for large buildings with many floors and
passengers. To simplify the problem they only considered a single elevator shaft with a
single elevator car, which reduces the complexity because there is no need to coordinate
multiple elevator cars. Although we focus only on multi elevator systems, this approach
is still interesting as it shows the potential and limitations of exact methods in elevators
systems. These limitations make it unsuitable for use in a real-time scenario, as we will
discuss in Chapter 5 about our mixed integer linear programming approach.

2.2.2 Double-Deck Elevators
A variant of the traditional EGCS which not only has more information about the system
and the passengers but also a different building structure is the double-deck elevator
system. In contrast to the single-deck, double-deck elevators are two elevator cars stacked
on top of each other in the same shaft, allowing more passengers to be transported in one
trip, while also allowing to serve two adjacent floors at the same time. This introduces
a new challenge at the ground floor, where passengers can choose to go to the upper
or lower car, which can lead to inefficiencies and unnecessary stops if not supervised
by the system, thus making it almost necessary to use destination registration systems
(or sometimes called Destination Floor Guidance System (DFGS)) to gather information
about the passengers’ destinations, so the system can make informed decisions and guide
the passengers to the correct elevator car. Both Zhou et al. [47] and Yu et al. [43] used
GNP to tackle the double-deck elevator system with a destination registration system,
where they combined GNP with Reinforcement Learning and Ant Colony Optimization
(ACO), respectively. GNP is good at a more broad global search, but struggles with
converging to good solutions, thus using it in combination with RL or ACO to intensify
the local search leads to better results.

2.2.3 Multi-Car Elevators
Another variant which has been proposed is the multi-car elevator system, where multiple
elevator cars are in the same shaft. This system is, again, more complex than the
traditional EGCS, as the elevator cars not only need to be coordinated across shafts but
also especially within the shaft. Transporting passengers between floors is not as straight
forward as the cars can block or delay each other. As for the other variants, the multi-car
elevator system has been tackled with different approaches, like a heuristic approach by
Valdivielso et al. [38] who mainly divided the floors into zones to be serviced by specific
elevators, or using a genetic algorithm [15] to tackle the elevator assignment. Further
research has been done by using GNP [44] or reinforcement learning to select from a set
of predefined strategies [16].
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CHAPTER 3
Methodology

This chapter will present and explain the methodology used in our approaches to solve
the elevator dispatching problem for EGCS. We will first describe the basics of mixed
integer linear programming (MILP), followed by discussing Reinforcement Learning (RL)
and the applied Proximal Policy Optimization (PPO) policy gradient method.

3.1 Mixed Integer Linear Programming
In this section we introduce the basics of Mixed Integer Linear Programming (MILP)
based on Chapter 1 and 10 of the work of Bertsimas and Tsitsiklis [3] and Chapter 1 of
the book by Wolsey [41].

A mixed integer linear program is used to mathematically model optimization problems
and is a variant of a linear program (LP), with the aim to minimize or maximize a linear
objective function subject to linear equality and inequality constraints. A general LP
contains of a set of decision variables x = (x1, . . . , xn), a cost vector c = (c1, . . . , cn) and
a linear cost function c′x = ∑︁n

i=1 cixi and linear equality and linear inequality constraints.
The general form of an LP for a minimization problem is given by:

minimize c′x (3.1)
subject to Ax ≥ b (3.2)

x ≥ 0 (3.3)

where formulation 3.1 is the objective function to be minimized, combining the decision
variable and the cost vector. Formulation 3.2 is the set of linear inequality constraints,
where A is a m × n matrix, with m being the number of constraints and n the number
of decision variables, and b is a m × 1 vector. Formulation 3.3 sets the domain of the
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decision variables. Note that it is generally possible to convert a maximization problem
into a minimization problem by multiplying the cost vector with −1, and vice versa. It
is also possible to convert an equality constraint a′

ix = bi into inequality constraints by
splitting them into two inequality constraints a′

ix ≤ bi and a′
ix ≥ bi to get the previously

defined general form of an LP.

The goal of an LP is to find the values of the decision variables that minimize the
objective function while satisfying the (in-)equality constraints. If we can find values
that satisfy all constraints, we say that the LP is feasible, and if we can find values that
satisfy all constraints and minimize the objective function, we say that the solution is an
optimal feasible solution. It is however possible that the LP is either infeasible, meaning
that no values of the decision variables can satisfy all constraints, or unbounded, which
means that the objective function can be made arbitrarily small (or large), so the optimal
cost is said to be −∞ (or ∞).

One of the main advantages of LPs is, that they can be solved efficiently, even for large
instances, in polynomial time. There are different algorithms used for the solving process,
with the most common being the simplex algorithm and the interior-point method. While
the simplex is the most widely used algorithm, it has a worst-case exponential time
complexity, but in practice it is very efficient. The interior-point method is generally
slower than the simplex algorithm, but has a polynomial time complexity, which makes
it better suited for worst-case scenarios.

A mixed integer linear program is an extension of a linear program, where some (but not
all) of the decision variables are restricted to be integer values. We can formulate the
general form of a MILP as follows:

minimize c′x + d′y (3.4)
subject to Ax + By ≥ b (3.5)

x ≥ 0 (3.6)
y ≥ 0 and integer (3.7)

where x, c′, A and b are the same as in an LP, y = (y1, . . . , yp) is another set of decision
variables, d = (d1, . . . , dp) is another cost vector and B is a m × p matrix with p being
the number of integer decision variables.

While LPs can be solved efficiently, MILPs are generally harder to solve and are in
general NP-complete. The main reason for this is that the integer constraints make the
feasible region of the problem non-convex and restricting the solution space to discrete
points, making it harder to find an optimal solution.
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3.2 Reinforcement Learning
This section will introduce the basics of Reinforcement Learning (RL) based on Chapter
1, 3 and 13 of the work of Sutton and Barto [33], which is also great source for a more
detailed and in depth explanation of RL.

Reinforcement Learning is one of the three main machine learning paradigms, next to
supervised and unsupervised learning, which mainly differ in the way they learn from
data:

• Supervised leaning is learning from a labeled dataset, which is given to the model
to learn from. This dataset contains input-output pairs, where the input is the
data and the output is the desired prediction. The goal of the model is to learn
from the dataset to make accurate predictions on new, unseen data.

• Unsupervised learning takes unlabeled data as input, with a common goal of finding
hidden patterns in the data. For example, clustering techniques fall into this
category, where the goal is to group similar data points together.

• Reinforcement learning algorithms learn by interacting with an environment, where
the agent learns to take actions to maximize a reward signal. The processes of the
environment are not known to the agent, so it must learn them by trial and error.

While reinforcement learning may seem similar to unsupervised learning, because it
also learns data without a clear correct answer, the main difference is that uncovering
hidden patterns in the environment itself does not solve the problem of maximizing the
reward signal, but it still may be helpful. The agent must be able to learn from its
own experience interacting with the environment. Another important difference between
RL and the other two paradigms is that reinforcement learning has to deal with the
trade-off between exploration and exploitation. Exploration is the process of trying out
new actions to learn more about the environment and thus may find new, favorable
actions, while exploitation is the process of favoring actions that have already been shown
to yield high rewards. The agent has to find the right balance between exploration and
exploitation to find good solutions and to not get stuck in suboptimal solutions.

Reinforcement learning normally consists of different elements:

• The environment, which is the world the agent interacts with. The environment is
defined by a set of states, actions, and rewards, and the agent interacts with the
environment by taking actions and receiving rewards. The environment changes its
state based on the actions the agent takes.

• A state, which is a representation of the environment at a certain time.
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• An observation, which is a representation of a state that the agent can observe. The
observation can be the same as the state, but it can also be a partial representation
of the state, where some information is hidden from the agent.

• An agent, which learns about the environment by interacting with it. The agent
takes actions in the environment and receives rewards based on these actions. The
agent’s decisions can either be based on a value function, which estimates the
value of an action (for a specific state), or a policy, which selects actions without
estimating the value of the action by learning the parameters of the policy.

• An action, which is a decision the agent makes to interact with the environment.
The action can be discrete, meaning that the agent can choose from a finite set of
actions, or continuous, meaning that the agent can choose from a continuous set of
actions.

• A reward signal, which is a value the agent receives from the environment after
taking an action. The reward signal defines good and bad actions and is used to
guide the agent to take actions that maximize the reward signal.

Figure 3.1: The agent-environment in a Markov decision process. The agent interacts
with the environment by taking actions and receiving rewards. The environment then
changes its state and the agent receives a new state and reward [33].

A reinforcement learning problem is generally formulated as a Markov Decision Process
(MDP), which can be formally defined as follows:

Definition 1 A Markov decision process is a four-tuple ⟨S, A, P, R⟩, where S is the set of
states, A is a function that maps states to actions, P is the transition probability function
P : S × S × A → [0, 1], which gives the probability P (s′ | s, a) of transitioning from state
s to state s′ given action a, and R is the reward function given by R : S × S × A → R,
which gives the reward R(s, s′, a) of taking action a in state s resulting in state s′ as
scalar value.

Figure 3.1 shows the interaction between the agent and the environment in a MDP.
The agent receives at each timestep t the current state St and the reward Rt from the
environment, and then selects an action At based on the agent’s policy. The environment
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then changes its state to St+1 based on the chosen action and the agent receives the new
state and reward.

A policy for RL algorithms is formally defined as a mapping from states to probabilities
of selecting each possible action. We say that if an agent follows a policy π at time t, the
probability of taking action a in state s is given by π(a | s). A value function vπ(s) is
then the expected return the agent receives when starting in state s and following policy
π. Formally we define vπ(s) for MDPs as:

vπ(s) = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1 | St = s

]︄
, ∀s ∈ S, (3.8)

where γ is the discount factor, which is a value between 0 and 1 that determines the
importance of future rewards compared to immediate rewards, and Eπ is the expected
value of a random variable when the agent follows policy π. To define a value to a specific
action a which is taken in a state s following policy π, we define the action-value function
qπ(s, a) as:

qπ(s, a) = Eπ

[︄ ∞∑︂
k=0

γkRt+k+1 | St = s, At = a

]︄
. (3.9)

The goal of the reinforcement learning agent is to find the optimal policy π∗, which
maximizes the expected return. The optimal value function vπ∗(s) is then defined as

vπ∗(s) = max
π

vπ(s), ∀s ∈ S, (3.10)

and similarly the optimal action-value function qπ∗(s, a) is defined as

qπ∗(s, a) = max
π

qπ(s, a), ∀s ∈ S and a ∈ A. (3.11)

3.3 Proximal Policy Optimization
While there are many different reinforcement learning algorithms, in this thesis we will
focus on the Proximal Policy Optimization (PPO) algorithm [29], which is an actor-critic
method. Actor-critic methods combine both principles of value-based methods and
policy-based methods. Value-based methods focus on estimating an optimal action-value
function qπ∗(s, a), while policy-based methods focus on finding the optimal policy π∗

directly. For policy-based methods a policy’s parameter vector θ is introduced, which is
used to define π(a | s, θ) = Pr{At = a | St = s, θt = θ} as the probability that the agent
takes action a in state s with the policy parameters θ. The policy parameters can then
be improved by using gradient ascent

θt+1 = θt + α∇J(θ), (3.12)

where the parameter vector is updated in the direction of the gradient by the approxima-
tion of some objective function ∇J(θ).
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The actor in the actor-critic method is the policy, which is used to select the appropriate
actions given a state, which is updated by using the policy gradient method but instead
of a proportional update of the policy parameters, the critic is used to evaluate the new
policy and adjust the policy gradient. In PPO the idea is to prevent the policy from
changing too much at once. Policy-based methods change the parameter vector θ, but
the change is not proportional to the change of the policy πθ itself, this can lead to large
fluctuation in the policy and thus to bad performance. PPO uses a method called trust
region policy optimization (TRPO) [28], where the similarity of both policies is measured
with the Killback-Leibler divergence. The PPO algorithm uses a clipped version of the
TRPO, where the objective function is modified to prevent the policy from changing too
much at once.

Apart from the good performance of PPO, it is known in general to be relatively easy to
tune, as there are only a few parameters that need to be adjusted, and the sensitivity of
these parameters is low compared to other algorithms. This makes PPO a good choice
for many reinforcement learning problems, which is why it is currently a state-of-the-art
algorithm in RL and is used in this thesis to solve the elevator dispatching problem for
EGCS-DRS.
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CHAPTER 4
Problem Description

Elevator Group Control Systems with a destination registration system extend the
traditional EGCS by allowing passengers to select their destination floors before entering
the elevator. While the idea of such systems was first proposed in the 1960s, the technology
to implement it was not ready until the 1990s, when Schindler Elevator first introduced
a commercial system with a destination registration system. This was done by a central
control panel (10-button keyboard) in the elevator hall of each floor. With this new
feature, the elevator system gains more information about the passengers and can make
more informed decisions about which elevator to assign to which passenger. Not only
can passengers be assigned and grouped more efficiently on each floor, but also other
information can be derived, like the number of passengers waiting at each floor and the
number of passengers in each elevator, assuming that passengers behave as expected
and do not miss entering the elevator. For six car elevator systems, the theoretical
handling capacity can be increased by 50% when using a destination registration system
compared to traditional systems. This can lead to a reduction in the number of elevators
needed, especially in high rise buildings, or generally to a reduction in the waiting time
for passengers when using the same number of elevators under high traffic conditions [13].

In this chapter, we will introduce the specifications and assumptions related to the elevator
system that will be referenced in the following chapters and used for our simulations
and experiments. This clarification is crucial due to the wide variety of elevator systems
documented in the literature, each with its own set of specifications and assumptions.
Additionally, there is currently no general standard for Elevator Group Control Systems,
particularly for those utilizing a destination registration system. Section 4.1 will provide a
detailed description of the problem we are trying to optimize, while Section 4.2 will list all
assumptions we make about the elevator system and the passengers. These assumptions
are necessary to simplify the problem and make it more manageable.
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4.1 Problem Specification
The problem we are trying to solve is to optimize the assignment of passengers to elevators
in an EGCS-DRS and to control the movement of the elevators accordingly. An elevator
system consists of k identical elevator cars, each in its own shaft, and m floors. Each
floor has an elevator hall from which all elevators are accessible, i.e., each elevator can
stop at every floor and (un)load passengers. The elevator cars have a given capacity C,
which limits the number of passengers that can be transported at once. Each passenger
p arrives at an elevator hall on some specific (arrival) floor ap at some time cp, registers
their desired destination floor bp on the control panel and is assigned a ride ID. This ride
ID is used to inform the passenger when the elevator arrives with which they are supposed
to travel, which is in contrast to other definitions in the literature ([13, 20]), where the
passengers are immediately assigned to an elevator number, when they register their
destination floor, and should enter the elevator with this number as soon as it arrives and
opens its doors. This, however, is a restriction for the system as the elevator assignment
is fixed and cannot be changed in the future, even if a more efficient assignment would be
possible. With our definition we remain flexible until the elevator arrives and thus use the
latest information to make the best decision, even though this might be less convenient
for the passengers. Each elevator has (potentially multiple) trips, which are defined as
travels in one direction, i.e., a trip is either an upward, when the starting floor is lower
than the ending floor, or downward travel, if the ending floor is lower than the starting
floor. Each trip can have multiple stops on floors between the starting and ending floor,
where passengers can enter or leave the elevator, but on each trip, all passengers in the
elevator have to have the same travel direction. Additionally, passengers can also arrive
in passenger groups for a joint ride (to the same destination), by specifying their group
size at the control panel, a group must travel in the same elevator at the same time. This
can also be used when transporting bulky things, to reserve enough space. We call such
an entity an order, which can be a single passenger, a group of passengers or an item
to be transported. The goal is to minimize the total time it takes for all passengers to
board the elevator which is equivalent to minimizing average waiting time. With the
group size incorporated, the AWT is then defined as follows:

AWT =
∑︁

p∈P (up − cp) · dp∑︁
p∈P dp

, (4.1)

where P is the set of all orders, up is the time the passengers of order p enter the elevator,
cp is the time the order p arrives at the elevator hall and dp is the group size of order p.
In our model all events that occur, like the arrival of orders, orders entering the elevator
or the stop of an elevator, can occur at any moment. For practical purposes, the times of
occurrence of these events are rounded to the nearest second. This approach maintains a
realistic representation of the system’s dynamics while making it more manageable.

Tackling this problem for both the offline and online case we need to define some instance-
dependent constants to represent information from the state of the system. As both
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cases are similar but have some differences, we will first briefly define common constants,
which both problem variants need, and in Subsection 4.1.1 and Subsection 4.1.2 we will
define case specific constants for the offline and online case respectively. The following
constants are used in both cases:

• k ∈ N: the number of elevator cars in the system;

• E = {1, . . . , k}: the set of all elevator cars;

• m ∈ N: the number of floors in the building;

• F = {1, . . . , m}: the set of all floors;

• C ∈ N: the capacity of each elevator;

• T (j, j′) : F × F → R+: the time each elevator needs to move from floor j to floor
j′ without a stop inbetween;

• TL ∈ N: the average duration for one passenger to board or exit an elevator.

These constants describe only the basic information about the elevator system, whereas
additional information about the orders and elevators will be defined separately as
required in the following subsections for the offline and online case. To solve these
problems we also need to define the structure of a solution. A solution is represented as
a sequence of system-actions, where each system-action is a list of elevator-actions, one
for each elevator. An elevator-action is the information about the next move an elevator
makes. Each elevator-action act is structured two-fold:

• The target floor acttarget ∈ F the elevator is supposed to make its next stop;

• the orders actload to load into the elevator from the floor the elevator makes its
current stop.

These elevator-actions cover all possible actions an elevator can make, as they can either
move to a different floor or stay at the current floor, and they can interact with the orders
at the current floor by loading them into the elevator. Combining these actions for all
elevators in the system gives us a system-action. Note that each elevator-action must be
feasible and abide by the rules of the elevator system defined above and the assumptions
we make about the system in Chapter 4.2. The disembarkation of passengers is not
explicitly modeled in the system-actions, as it is assumed that all passengers leave the
elevator at their destination floor.
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4.1.1 Offline Problem
As already briefly mentioned in Chapter 2, this problem can be seen either as an offline
problem or as online problem. In the offline case, we have a static problem where we
know all the information about the system and the orders (including their arrival times
and destination floors) in advance and can make informed decisions and plan the whole
trip of each order perfectly without any uncertainty about the future. A major advantage
of the offline case is that we can utilize the information about future orders to decrease
the downtime of the elevators, for example, sending idle elevators to arrival floors before
orders actually arrive and enter their destination floor into the control panel could remove
the waiting time for the order which otherwise would have to wait for the elevator to
react to the new information. Another possibility, exclusive to the offline case, is that
waiting for multiple orders to arrive is feasible, as we know when they will arrive and
where they want to go, so if multiple orders show up in close temporal proximity, it may
be beneficial to not immediately load the first order into the elevator, but wait for the
other orders to arrive and only load the optimal combination of orders into the elevator.
This way, we utilize the capacity of the elevator efficiently and it further allows us to
group orders with identical destinations together, which can also decrease the number of
stops the elevators have to make. Because we cannot (generally) predict when people
will arrive and where they want to go, we use this case only as a theoretical case, but it
provides a valid lower bound for solutions for the online case.

In general, we will tackle this problem by solving a scenario, a specific time window
where different numbers of orders arrive at different times. To work with the offline case,
we need to define the initial state of the system by extending the definitions from the
previous section:

• n ∈ N: the number of orders arriving in this scenario;

• P = {1, . . . , n}: the set of all orders (i.e., passenger groups) in this scenario;

• ap, bp ∈ F , ∀p ∈ P, ap ̸= bp: the arrival and destination floors of order p, respec-
tively;

• cp ≥ 0, ∀p ∈ P : the arrival time of order p;

• dp ∈ {1, . . . , C}, ∀p ∈ P : the group size of order p;

• fi ∈ F , ∀i ∈ E: the starting floor of elevator i.

Here we added some crucial information about the orders for the offline case. As we have
full knowledge of the scenario, we know exactly the arrival floor and time, the desired
destination floor and the group size of each order considered in this scenario. Another
important aspect is the starting floor, each scenario starts with some initial position of
each elevator, which in most cases would be the ground floor, but can be any floor of the
system. A solution to a scenario is then defined as a sequence of system-actions.
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4.1.2 Online Problem
The online case is more realistic, as it tries to mimic a real-world scenario where we get
information about the orders only when they arrive at the elevator hall. We need to make
decisions based on the information we have at the time, which can lead to suboptimal
results, even if the decision would be optimal for the current state. For a clearer view on
the difference, consider the following, simple example: We have an elevator system with
only one elevator with a capacity of five and two orders. The first order has the group
size of 1, arrives at floor 1 at time 1 and wants to go to floor 4. The second order has the
group size of 5, arrives at floor 3 at time 5 and wants to go to floor 1. For simplicity, we
say it takes five seconds to go from one floor to an adjacent floor and (un)loading orders
takes one second per passenger of the order. In the online case, we would start at time
1 and need to make our first decision, which would be to load the first order at floor 1
into the elevator, as we cannot know that the next order will arrive at floor 3. We would
deliver the first order at floor 4 at time 18 (one second to load the order, then go from
floor 1 to 4 in 15 seconds and unload for one second) and then go to floor 3 to pick up
the second order at time 23 and deliver it to floor 1. We can calculate the AWT for this
scenario by using Equation 4.1, where we get (1−1)·1+(23−5)·5

1+5 = 15. For the offline case
we would know all the arrival times beforehand and could see that it would be better to
first go to floor 3 and pick up the second order at time 11 and then go to floor 1, deliver
the second order and pick up the first order at time 31. This would lead to an AWT of
(11−5)·5+(31−1)·1

5+1 = 10. This example shows that the online case can lead to suboptimal
results, even if the decision would be optimal for the current state. This is the challenge
we face when trying to optimize the elevator system in an online setting.

When considering the online problem for the EGCS-DRS, we basically work with a
scenario similiar to the offline problem, but rather than dealing with all the information
at once, we take system-action only at specific points in time. These decision points are
defined to be at the following events:

• when a new order arrives; and

• when an elevator reaches stops at a floor and passengers have (possibly) been
dropped off.

While one could argue that the information about the system does only change when new
orders arrive and not when an elevator stops at a floor, thus needing the decision points
only to be at new arrivals, some approaches prefer to plan only to the next stop and
then choose the next system-action at the next decision point. For us this is important
as system-actions only include the immediate next stop for each elevator and not the
whole trip to all waiting orders.

We also need to clearly extend the initial state definition with all the information about
the elevator system and orders known at the current time (and decision point). This is
defined as follows:
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• t ∈ N: the current time;

• f last
i ∈ F , ∀i ∈ E: the last floor elevator i has stopped;

• tlast
i ≥ 0, ∀i ∈ E: the time elevator i has stopped at f last

i and unloaded all affected
orders;

• fnext
i ∈ F , ∀i ∈ E: the floor elevator i is planning to stop next, which is equal to

f last
i if the elevator is currently not moving;

• nelev: the number of current orders in elevators;

• nwait: the number of current orders waiting for an elevator;

• P known = {1, . . . , nelev + nwait}: the set of all orders either waiting or loaded in an
elevator;

• P elev ⊆ P known, |P elev| = nelev: the set of all orders currently in an elevator;

• P wait ⊆ P known, |P wait| = nwait: the set of all orders currently waiting for an
elevator;

• ap, bp ∈ F , ∀p ∈ P known, ap ̸= bp: the arrival and destination floors of order p,
respectively;

• cp ≥ 0,∀p ∈ P known: the arrival time of order p;

• dp ∈ {1, . . . , C}, ∀p ∈ P known: the group size of order p;

• ep ∈ E, ∀p ∈ P elev: the elevator the order p is currently in.

Here we introduce specific information for decision points needed to solve the dynamic
problem. We introduce additional information about each elevator to correctly represent
the state of the system. We need the last stopped floor and last stop time, as well as the
next planned stop, to be able to calculate the time of the next stop of the elevator, if it
is currently in motion. Additionally we need the specific information about currently
waiting and currently loaded orders, to correctly calculate the load of each elevator and
know which floors the elevators need to stop at.

4.2 Assumptions
As we can never fully capture the complexity of a real-world elevator system, we need to
make assumptions about the inner workings of the systems to simplify the problem and
make it manageable for our approaches. This section will list all assumptions we make
about the system and the passengers.

A main factor in the complexity of the problem is the allowed behavior of the elevators
when serving passengers. In real-world systems, elevators have different restrictions and
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rules they need to follow and not all systems behave the same, thus making it necessary
for us to define the behavior of the elevators.

1. Each elevator car has an initial floor at which it starts.

2. If there are no known orders to be served, the car stays at the last floor it stopped.

3. The car does not stop at a floor without loading or unloading any passengers there.

4. The passengers of an order enter an elevator car, if the elevator car stops at the
passengers’ current floor and the order is called with its ride ID. The passengers
always enter the elevator they are assigned to take.

5. If the car stops at a floor, all (and only) passengers whose destination floor is this
floor get off the elevator car.

6. People only use a single elevator to reach their destination floor.

7. Once an elevator stops at a floor, the selection of passengers who should enter this
elevator at this floor cannot change.

8. The elevator car is not allowed to pass a floor without stopping in which an on-board
passenger wants to get off.

9. The elevator car cannot change the direction before all the calls in the current
movement direction have been completed.

10. A moving elevator can only stop at its originally scheduled target floor or be
rescheduled to a different target floor that is at least two floors away from the
current position in the current movement direction; i.e., an elevator cannot stop
always immediately but needs to decelerate.

11. It takes a constant time TL per passenger for each order to get on or off a car; no
additional time is counted in for the arrival of passengers as well as time it would
take to open and close the doors.

12. The travel time of an elevator to move from floor a to a different floor b follows a
function T (Δ) of both floor numbers given, with Δ = |a − b|.

Assumptions 1–3 are made to specify the behavior of the elevators. While Assumption 1
is a general assumption about the starting position of the elevator at the begin of a
scenario, Assumption 2 specifies the behavior of the elevator when there are no passengers
to be served. While one could argue that in specific scenarios it might be better to
move the elevator to a different floor (e.g. the ground floor), this assumption is the most
general and allows for the most flexibility in the system. Assumption 3 further restricts
unnecessary stops of the elevator, which could be confusing for the passengers and are
not necessary.
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Assumptions 4 and 5 basically restrict the behavior of the passengers to make no mistakes
by pressing wrong buttons or changing their mind. This helps to make the problem more
manageable, so we always know that the information about the passengers is correct and
our information about the system, e.g., the number of passengers in each elevator, is
always up to date and accurate. Assumption 6 further restricts passengers so that they
cannot make a detour by first traveling to a different (non destination) floor and then to
their destination floor.

Assumptions 7–9 aim to prohibit elevator operations which are psychologically undesirable
for passengers. Once an elevator stops and opens its doors, passengers should know if
they should enter the elevator or not, even if new information arises after the elevator has
stopped (Assumption 7). Assumption 8 and Assumption 9 both ensure that once an order
has entered the elevator, the elevator will only move towards their destination floor and
not away from it, which otherwise could be confusing for the passengers. Furthermore,
they also state that all passengers loaded into the same elevator car for the same trip
must have the same desired direction of travel.

Assumption 10 is made to ensure that the elevator system behaves more realistically, as
in real-world scenarios the elevator needs to decelerate before stopping at a floor and,
especially if there are passengers inside the elevator, it is not possible to stop immediately.

Because we work with a simulated elevator system, we also need to specify some time
constraints for certain processes of the elevators. Assumption 11 specifies that the
(un)loading of orders takes constant time for each passenger of this order, i.e., larger
orders need longer to (un)load, and that we further ignore the time for opening and
closing doors, which is again a simplification of the real world. The travel time of an
elevator between two floors is given by Assumption 12, which we define as a function of
the distance between the two floors.
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CHAPTER 5
MILP Formulations

In this chapter, we present and discuss our approach to solving the elevator assignment
problem for EGCS-DRS with mixed integer linear programming formulations. Firstly
we introduce some basic definitions used for both offline and online problems. Then we
present the MILP formulation for the offline problem. Lastly we extend and adapt it to
the online problem.

5.1 General Definitions
One of the main challenges in the formulation of the MILP model is that we need to
model the entire route of each elevator so that we can calculate an optimal assignment. A
route of an elevator is the sequence of all its trips from the start to the end of a scenario,
so basically all the stops it needs to make to deliver all its orders. When tackling the
offline and online problem, we, in general, need multiple trips for each elevator to serve
all orders, and because we need some kind of ordering for the trips, we will enumerate
them, starting at trip one, and define odd trips to always go upward, i.e., j < j′ holds for
starting floor j and destination floor j′, and even trips always go downward, i.e., j > j′

holds for starting floor j and destination floor j′, so each trip only ends when the elevator
changes direction. As both offline and online problems use the same structure, we will
use the same definitions for both problems but in the remainder of this thesis, we will,
depending on whether we have an offline or online problem, substitute P ′ with the set of
all orders P or with the set of currently known orders P known respectively:

• P 1 = {p ∈ P ′ | ap < bp} and P 0 = {p ∈ P ′ | ap > bp}: the sets of orders going
upward and downward, respectively;

• smax = 2 · |P ′|: a maximum number of trips of each elevator;

• S = {1, . . . , smax}: the set of all possible trips of each elevator;
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Figure 5.1: Directed graph G without the artificial destination node with m floors and
smax trips, when smax is even.

• S1 = {s ∈ S | s mod 2 = 1} and S0 = {s ∈ S | s mod 2 = 0}: the sets of upward
and downward trips, respectively.

An important aspect of the MILP of both the offline and online problem is that we do
not know in advance how many trips each elevator will need to serve all orders. This
poses a challenge as we need to model the entire route of each elevator and thus need an
upper bound for the maximum number of trips smax. We define smax as 2 · |P ′|, which is
derived from the fact that in the worst case we only have a single elevator and each order
needs to be transported separately, so the elevator needs a trip to pick up the order and
a trip to deliver the order (in a different direction).

Keeping track of an elevator’s movement in the system is an additional challenge, where
we use a network flow approach to model it. To do this, we need to define a directed
graph G = (V, A), where V = V ′ ∪ {⊤}, V ′ = {(s, j) | s ∈ S, j ∈ F} is the set of all trip
and floor combinations and ⊤ is the artificial destination node for all flows. The set of
arcs A = A1 ∪ A2 ∪ A3 ∪ A4 consists of four subsets:

• A1 = {((s, j), (s, j′)) | s ∈ S1, (s, j) ∈ V ′, j′ ∈ F, j < j′};

• A2 = {((s, j), (s, j′)) | s ∈ S0, (s, j) ∈ V ′, j′ ∈ F, j > j′};

• A3 = {((s, j), (s + 1, j)) | (s, j) ∈ V ′, s < smax};
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• A4 = {(v, ⊤) | v ∈ V ′}.

Nodes in this graph represent stops of an elevator at a specific floor at a specific trip. The
arcs represent the possible movements of the elevator between stops, which are limited by
the direction of the trip, upward trips have only arcs to a higher floor (A1) and downward
trips have only arcs to a lower floor (A2). To connect consecutive trips, we need to add
arcs between the last stop of a trip and the first stop of the next trip (A3). Each node
has also an arc to an artificial destination node (A4), which is used to model the flow of
the elevator and marks the end of the elevator’s last trip of a scenario. An example of
such a directed graph for an even number of smax (without the artificial destination node
for better visual representation) is shown in Figure 5.1. We can see that the graph has a
grid like structure where each column represents a trip and each row represents a floor.
The solid arcs represent the possible movements of the elevator within a trip, and the
dashed arcs represent the connections between the trips.

5.2 Offline Problem
As stated in Section 4.1, the offline problem of assigning elevators is to determine an
optimal assignment of elevators to orders with full knowledge of the future. Based on the
general definitions above, we can now formulate the MILP model for the offline problem.
Firstly, we describe the decision variables as follows:

• xivv′ ∈ {0, 1}, ∀i ∈ E, ∀(v, v′) ∈ A: 1 iff elevator i moves from node v to node v′;

• zpis ∈ {0, 1}, ∀p ∈ P s mod 2, ∀i ∈ E, ∀s ∈ S: 1 if order p travels in the s-th trip of
elevator i, otherwise 0;

• tiv ≥ 0, ∀i ∈ E, ∀v ∈ V ′: the time elevator i arrives at node v if visited and after
unloading all affected orders;

• up ≥ 0, ∀p ∈ P : the boarding time of order p.

These decision variables are used to generate the solution of the MILP model. We need
to know the movement of the elevator between the floors (xivv′), the time the elevator
arrives at each floor (tiv), the boarding time of each passenger (up) and the assignment
of each order to a trip of an elevator (zpis).

Secondly, the MILP model is defined as follows:

min
∑︂
p∈P

dp · (up − cp) (5.1)

s.t.
∑︂

p∈P 1

ap≤j<bp

dpzpis ≤ C ∀i ∈ E, ∀j ∈ F, ∀s ∈ S1 (5.2)
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∑︂
p∈P 0

bp<j≤ap

dpzpis ≤ C ∀i ∈ E, ∀j ∈ F, ∀s ∈ S0 (5.3)

bp∑︂
j=ap+1

xi(s,ap)(s,j) ≥ zpis ∀p ∈ P 1, ∀i ∈ E, ∀s ∈ S1 (5.4)

bp−1∑︂
j=ap

xi(s,j)(s,bp) ≥ zpis ∀p ∈ P 1, ∀i ∈ E, ∀s ∈ S1 (5.5)

ap−1∑︂
j=bp

xi(s,ap)(s,j) ≥ zpis ∀p ∈ P 0, ∀i ∈ E, ∀s ∈ S0 (5.6)

ap∑︂
j=bp+1

xi(s,j)(s,bp) ≥ zpis ∀p ∈ P 0, ∀i ∈ E, ∀s ∈ S0 (5.7)

∑︂
s∈Sr

∑︂
i∈E

zpis = 1 ∀r ∈ {0, 1}, ∀p ∈ P r (5.8)

ti(s,j) + T (j, j′) · xi(s,j)(s,j′)+
TL ·

∑︂
p∈P s mod 2

j=ap∨j′=bp

zpisdp ≤

ti(s,j′) + (M + TL2C) · (1 − xi(s,j)(s,j′)) ∀i ∈ E, ∀s ∈ S, ∀((s, j), (s, j′)) ∈ A

(5.9)
ti(s,j) + T (j, j′) · xi(s,j)(s,j′)+

TL ·
∑︂

p∈P s mod 2

j=ap∨j′=bp

zpisdp ≥

ti(s,j′) − (M + TL2C) · (1 − xi(s,j)(s,j′)) ∀i ∈ E, ∀s ∈ S, ∀((s, j), (s, j′)) ∈ A

(5.10)
ti(s,j) ≤ ti(s+1,j) + (1 − xi(s,j)(s+1,j)) · 2M ∀i ∈ E, ∀((s, j), (s + 1, j)) ∈ A (5.11)
ti(s,j) ≥ ti(s+1,j) − (1 − xi(s,j)(s+1,j)) · 2M ∀i ∈ E, ∀((s, j), (s + 1, j)) ∈ A (5.12)
up ≥ ti(s,ap) − (s · M) · (1 − zpis) ∀s ∈ S, ∀p ∈ P s mod 2, ∀i ∈ E (5.13)
ti(s,ap) ≥ up − (smax · M) · (1 − zpis) ∀s ∈ S, ∀p ∈ P s mod 2, ∀i ∈ E (5.14)∑︂
((1,fi),v′)∈A

xi(1,fi)v′ = 1 ∀i ∈ E (5.15)

∑︂
(v′,v)∈A

xiv′v −
∑︂

(v,v′)∈A

xivv′ = 0 ∀i ∈ E, ∀v ∈ V ′ \ {(1, fi)} (5.16)

∑︂
(v,⊤)∈A

xiv⊤ = 1 ∀i ∈ E (5.17)
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∑︂
((s,j′),(s,j))∈A

xi(s,j′)(s,j)+

∑︂
((s,j),(s,j′))∈A

xi(s,j)(s,j′) − 1 ≤
∑︂
p∈P

j∈{ap,bp}

zpis ∀i ∈ E, (s, j) ∈ V ′ (5.18)

xi(s,j)((s+1),j) ≤∑︂
p∈P s mod 2

j=bp

zpis +
∑︂

p∈P (s+1) mod 2

j=ap

zpis ∀i ∈ E, (s, j) ∈ V ′ \ {(1, fi)}, s < smax

(5.19)
xivv′ ∈ {0, 1} ∀i ∈ E, ∀(v, v′) ∈ A (5.20)
zpis ∈ {0, 1} ∀s ∈ S, ∀p ∈ P s mod 2, i ∈ E (5.21)
tiv ≥ 0 ∀i ∈ E, ∀v ∈ V ′ (5.22)
up ≥ cp ∀p ∈ P (5.23)

The objective function 5.1 minimizes the sum of all waiting times for all orders, weighted
by their group size, which is equivalent to minimizing the AWT. The capacity of each
elevator is enforced by (5.2) and (5.3), no elevator can carry more than C passengers
when travelling from one floor to another. We introduce (5.4) – (5.7), for linking the
elevator and the trips the passengers take, each order travelling upwards (downwards)
needs to be picked up and travel to a floor higher (lower) than the arrival floor, and
each order needs to arrive at the destination floor from a floor lower (higher) than the
destination floor.

As specified in Assumptions 5 and 6 about the system and the orders travelling, we need
to limit a person to only take one trip of one specific elevator, this is done in (5.8).

Important for solving the MILP is also tracking the time the elevators need to travel
between floors, here we use a Miller-Tucker-Zemlin (MTZ) [23] formulation for Con-
straints 5.9 and 5.10 to ensure that the time between the stopping on a floor j and the
arrival on the next floor j′ is exactly the travel time T (j, j′) of the elevator plus the
time TL it takes to load the passengers at the departure floor and unload them at the
destination floor. Note that stopping time of an elevator is always before loading new
orders in and after unloading the orders at the destination floor. The main goal of a
MTZ formulation is that these inequalities hold even when xi(s,j)(s,j′) = 0, i.e., when this
path in the graph is not taken by the elevator. This requires a large (“Big-M”) constant
M = (m − 1) · (T (1, 2) + TL2C), to inactivate the constraints when we do not need them.
For Constraints 5.9 and 5.10 we also need to add a constant value of TL2C to M for a
valid MTZ formulation, because in case of xi(s,j)(s,j′) = 0 we cannot set the loading time
on the left side of the inequality to zero without losing linearity, thus we need to account
for this on the right side. The value of M is derived from the maximum possible span
two time points can have in the same trip, which is the time from the first (or last) floor
to the last (or first) floor assuming that the elevator is always full and stops at each floor
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where it fully unloads and again loads to maximum capacity.

Similarly we need to ensure that we link the time across consecutive trips, which is done
in (5.11) and (5.12), where we use the same “big-M” to inactivate the constraints when
we do not need them, this time multiplying M with two, because the span between these
two points in time can be the maximum time it takes the elevator to travel from the first
floor to the last floor and back.

To get the boarding time of the passengers we need (5.13) and (5.14), where we, again,
need a “big-M” constraint but need to increase it by multiplying it with s, the trip
number, in (5.13) because the largest value ti(s,ap) can have is the time it would take an
elevator i to stop at every floor and (un)load the maximum amount of passengers for
every trip and floor before (s, ap), which results in s · M . For the Inequality (5.14) we
need to multiply M with smax, as up can be at most the time it would take an elevator
to make all trips with maximum stops and loading time.

To make use of the previously defined directed graph G we need to ensure that the flow of
the elevator is correct. We first define the origin of the flow in (5.15), where the elevator
starts at the initial starting floor, and the target of the flow in (5.17), where the elevator
ends at the artificial destination node. The flow conservation is defined in (5.16), where
the flow of the elevator is conserved at each floor, i.e., the flow into a floor (of a specific
trip) is equal to the flow out of the floor. This controls the movement in a way that the
elevator has to leave each floor it visits until it reaches the final destination of its route.

We also introduce symmetry breaking constraints where we ensure that the elevator does
not take any stops without (un)loading passengers (5.18) and that the elevator makes no
unnecessary trips (5.19). Lastly we have the domain constraints for the decision variables
in (5.20) – (5.23), where xivv′ and zpis are binary, tiv is non-negative and up is at least
the arrival time of the order.

5.3 Online Problem
In contrast to the offline problem, the MILP model for the online problem does not
have full knowledge of the future but also needs to consider the current state of the
system. While in the offline problem we dealt with a whole scenario where we have all
the information and the system is in an initial state, for the online problem we need a
dynamic approach. We will still use scenarios for evaluation, but the model itself only
can handle the current state and finds an optimal solution with the given information.
Because elevators might be currently in motion in the given state we want to solve, we
need to introduce some additional definitions based on the definitions stated above and
the definitions of the online problem in Section 4.1.2:

• Eup = {i | i ∈ E, f last
i < fnext

i }: the set of all elevators which currently travel
upwards;
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• Edown = {i | i ∈ E, f last
i > fnext

i }: the set of all elevators which currently travel
downward;

• F up
i = {a ∈ F | tlast

i + TL · ∑︁
p∈P load

i
dp + T (f last

i , a) ≤ t, f last
i < a}: the set of all

floors which have been passed by elevator i on the current trip;

• F down
i = {a ∈ F | tlast

i + TL · ∑︁
p∈P load

i
dp + T (f last

i , a) ≤ t, a < f last
i }: the set of all

floors which have been passed by elevator i on the current trip;

• P load
i = {p ∈ P elev | ep = i ∧ ap = f last

i }: the set of all orders in elevator i which
embarked at the last stop.

Here we extended the defined sets and parameters by Eup and Edown to track the direction
of currently moving elevators and F up

i and F down
i to track the floors which have been

passed by the elevator on the current trip. This is needed as we do not have accurate
information about the current location of the elevators, but we can infer the direction
and approximate location based on the last (and next) stop of the elevator, the time
since the last stop and the loaded orders.

Furthermore we, again, introduce the decision variables for the MILP model, which are
very similar to the offline problem, but use only the currently known orders:

• xivv′ ∈ {0, 1}, ∀i ∈ E, ∀(v, v′) ∈ A: 1 iff elevator i moves from node v to node v′;

• zpis ∈ {0, 1}, ∀p ∈ P s mod 2, ∀i ∈ E, ∀s ∈ S: 1 iff order p travels in the s-th trip of
elevator i, otherwise 0;

• tiv ≥ 0, ∀i ∈ E, ∀v ∈ V ′: the time elevator i arrives at node v if visited and after
unloading all affected orders;

• up ≥ 0, ∀p ∈ P known: the boarding time of order p.

Another important step for correctly representing the current state of the system in the
MILP model is to set some decision variables defined above, so that the model basically
looks at a static state. Because our directed graph G contains arcs which may not be
valid for the current state, we need to fix some movement of the elevator between the
floors via the xivv′ variables. We also need to state currently loaded orders via the zpis

variables, and the time the elevator arrives at each floor via the tiv variables. Formally
this is done by the following constraints:

• zpeps = 1, ∀s ∈ {1, 2}, ∀p ∈ P s mod 2 ∩ P elev: setting orders currently in an elevator;

• xi(1,f last
i )(2,f last

i ) = 1, ∀i ∈ Edown: setting the elevator to move down;

• ti(1,f last
i ) is equal to t if the elevator i is currently not moving, i.e., f last

i = fnext
i ,

otherwise tlast
i , ∀i ∈ E: setting the time of the last stop of the elevator, if currently

not moving use the current time,
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• xi(1,f last
i )(1,a) = 0, ∀i ∈ Eup, ∀a ∈ F up

i ∪ {max(F up
i ) + 1, max(F up

i ) + 2}, f last
i < a <

fnext
i : prohibiting stops which the elevator already passed by or cannot stop in

time in an upward trip, only stops between the last stop and the next planned stop
are considered;

• xi(2,f last
i )(2,a) = 0, ∀i ∈ Edown, ∀a ∈ F down

i ∪ {min(F down
i ) − 1, min(F down

i ) − 2},
fnext

i < a < f last
i : prohibiting stops which the elevator already passed by or cannot

stop in time in a downward trip, only stops between the last stop and the next
planned stop are considered;

• xi(1,f last
i )(1,fnext

i ) = 1, ∀i ∈ Eup, max(F up
i ) + 2 > fnext

i : fixing stops if the elevator is
not more than two floors away from the next planned stop and going up;

• xi(2,f last
i )(2,fnext

i ) = 1, ∀i ∈ Edown, min(F down
i )−2 < fnext

i : fixing stops if the elevator
is not more than two floors away from the next planned stop and going down.

With some decision variables fixed we can now formulate the MILP model for the online
problem. The objective function and the constraints are very similar to the offline
problem, but we need to adapt them to the current state of the system:

min
∑︂

p∈P known

dp · (up − cp) (5.24)

s.t.
∑︂

p∈P 1

ap≤j<bp

dpzpis ≤ C ∀i ∈ E, ∀j ∈ F, ∀s ∈ S1 (5.25)

∑︂
p∈P 0

bp<j≤ap

dpzpis ≤ C ∀i ∈ E, ∀j ∈ F, ∀s ∈ S0 (5.26)

bp∑︂
j=ap+1

xi(s,ap)(s,j) ≥ zpis ∀p ∈ P 1 \ P elev, ∀i ∈ E, ∀s ∈ S1

(5.27)
bp−1∑︂
j=ap

xi(s,j)(s,bp) ≥ zpis ∀p ∈ P 1, ∀i ∈ E, ∀s ∈ S1 (5.28)

ap−1∑︂
j=bp

xi(s,ap)(s,j) ≥ zpis ∀p ∈ P 0 \ P elev, ∀i ∈ E, ∀s ∈ S0

(5.29)
ap∑︂

j=bp+1
xi(s,j)(s,bp) ≥ zpis ∀p ∈ P 0, ∀i ∈ E, ∀s ∈ S0 (5.30)

∑︂
s∈Sr

∑︂
i∈E

zpis = 1 ∀r ∈ {0, 1}, ∀p ∈ P r (5.31)
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5.3. Online Problem

ti(s,j) + T (j, j′) · xi(s,j)(s,j′)+
TL ·

∑︂
p∈P s mod 2

j=ap∨j′=bp

zpisdp ≤

ti(s,j′) + (M + TL2C) · (1 − xi(s,j)(s,j′)) ∀i ∈ E, ∀s ∈ S, ∀((s, j), (s, j′)) ∈ A

(5.32)
ti(s,j) + T (j, j′) · xi(s,j)(s,j′)+

TL ·
∑︂

p∈P s mod 2

j=ap∨j′=bp

zpisdp ≥

ti(s,j′) − (M + TL2C) · (1 − xi(s,j)(s,j′)) ∀i ∈ E, ∀s ∈ S, ∀((s, j), (s, j′)) ∈ A

(5.33)
ti(s,j) ≤ ti(s+1,j) + (1 − xi(s,j)(s+1,j)) · 2M ∀i ∈ E, ∀((s, j), (s + 1, j)) ∈ A (5.34)
ti(s,j) ≥ ti(s+1,j) − (1 − xi(s,j)(s+1,j)) · 2M ∀i ∈ E, ∀((s, j), (s + 1, j)) ∈ A (5.35)
up ≥ ti(s,ap) − (s · M) · (1 − zpis) ∀s ∈ S, ∀p ∈ P s mod 2, ∀i ∈ E (5.36)
ti(s,ap) ≥ up − (smax · M) · (1 − zpis) ∀s ∈ S, ∀p ∈ P s mod 2, ∀i ∈ E (5.37)∑︂
((1,f last

i ),v′)∈A

xi(1,f last
i )v′ = 1 ∀i ∈ E (5.38)

∑︂
(v′,v)∈A

xiv′v −
∑︂

(v,v′)∈A

xivv′ = 0 ∀i ∈ E, ∀v ∈ V ′ \ {(1, f last
i )} (5.39)

∑︂
(v,⊤)∈A

xiv⊤ = 1 ∀i ∈ E (5.40)

∑︂
((s,j′),(s,j))∈A

xi(s,j′)(s,j)+

∑︂
((s,j),(s,j′))∈A

xi(s,j)(s,j′) − 1 ≤
∑︂

p∈P known

j∈{ap,bp}

zpis ∀i ∈ E, (s, j) ∈ V ′ (5.41)

xi(s,j)((s+1),j) ≤∑︂
p∈P s mod 2

j=bp

zpis +
∑︂

p∈P (s+1) mod 2

j=ap

zpis ∀i ∈ E, (s, j) ∈ V ′ \ {(1, f last
i )}, s < smax

(5.42)
xivv′ ∈ {0, 1} ∀i ∈ E, ∀(v, v′) ∈ A (5.43)
zpis ∈ {0, 1} ∀s ∈ S, ∀p ∈ P s mod 2, i ∈ E (5.44)
tiv ≥ 0 ∀i ∈ E, ∀v ∈ V ′ (5.45)
up ≥ cp ∀p ∈ P known (5.46)

Looking at the MILP for the online problem, it is very similar to the offline problem, but
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it is adjusted to the dynamic nature of the problem. The constraints are mostly the same
and the overall idea of the model is identical, but here we use only the currently known
orders for the inequalities. One important difference is that we need to exclude orders,
which are already on an elevator, from some constraints like (5.27) and (5.29), because
they do not need to be picked up anymore, but it is important that we still consider them
in Constraints 5.28 and 5.30, because they still need to be delivered. We also essentially
replace the starting floor used in the offline problem with the f last

i variable, which is the
last stop of the elevator, where we can start our flow of the elevator.

With the formulation of the MILP we can now solve a scenario of the online problem
by iteratively solving the MILP for each time a new order arrives. Because the MILP
model always calculates the current best route for each elevator until all known orders
are delivered, we can use this information at decision points where an elevator makes a
stop but no new order arrives. On new order arrivals we solve the MILP for the current
state and use the new solution for making decisions, overwriting solutions from previous
time points if necessary, as we have now more information about the system and can
make better decisions. This way we can solve the online problem with the MILP model
and always have the best possible solution for the current state of the system.
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CHAPTER 6
Greedy Algorithm

In this chapter, we present our second approach, a greedy algorithm, for tackling the
online elevator assignment problem for EGCS-DRS. In contrast to the MIP approach,
the greedy algorithm is a heuristic method that does not guarantee an optimal solution.
However, it is computationally substantially less expensive, especially for larger scenarios,
thus making it more suitable for online applications.
We approach this with an elevator centric perspective, where we try to find fast pickups
for each elevator considering the positions of the waiting orders and the elevator, as
well as the current choices from other elevators. The algorithm is based on the idea
that picking up orders is the most important action an elevator can take, as the average
waiting time of orders only counts time until the pickup, so we want to pick them up
as fast as possible, disregarding the group size and distance to the destination floors
of the orders. We consider here, again, only a snapshot of the state at the designated
decision points and try to find a good solution for it. This is done for each decision point
of the scenario and in the end the solution for the whole scenario can be constructed by
concatenating the solutions of the individual decision points.
The base structure is shown in Algorithm 6.1, which is called to return the greedily best
found system-action, which contains elevator-actions for all elevators. In contrast to
the online MILP, where we calculated the whole route for the current state, we only
find the next best action for each elevator and do not plan every stop and pickup in
advance, reducing computational complexity as well as logical complexity for designing
the algorithm. We first mark all waiting orders P wait from state s as unconsidered and
create a system-action, initialized with empty actions for each elevator. In Lines 7-10 we
loop until we have chosen an elevator-action for each elevator. For each elevator without
already fixed action, we find the currently best elevator-action with getBestEvAction,
which returns the elevator-action act, the orders o it considers picking up, and the value
of act, which is used to prioritize the elevator-actions. The orders o represent orders
which cannot currently be picked up by the elevator in this elevator-action, (e.g., when
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6. Greedy Algorithm

the elevator is currently moving or has no orders waiting on its current floor) but rather
are considered to be picked up in the future by this elevator. Line 11 returns the elevator
from the heap with the lowest value elevator-action, which is our highest priority, as it
represents the time the next pickup is planned for this elevator. We remove the elevator
from the list of remaining elevators in Line 13 and mark all orders which are either
picked up by the elevator-action (actload) or considered to be picked up in the future
by this elevator as considered in Lines 14 and 15. As we cannot load orders which are
on a different floor than the elevator currently is, we need to mark them as considered,
otherwise other elevators could also try to target this order for pickup, which might
lead to multiple elevators travelling to the same floor for (possibly) only a single order,
resulting in unnecessary travel for some elevators and (possibly) increased waiting times
for other orders. We then repeat the process until all elevators have an elevator-action
assigned.

Algorithm 6.1: Base Greedy Algorithm
Input : State s
Output : System-action A

1 Function runGreedyAlgorithm():
2 Unconsidered ← s.P wait ;
3 A ← array of size s.k;
4 Elev ← s.E ;
5 while Elev is not empty do
6 H ← empty Min-heap;
7 for each e in Elev do
8 act, o, value ← getBestEvAction(s, e, Unconsidered);
9 H.add(value, act, o, e);

10 end
// Get elevator-action with highest priority, i.e.,

lowest value
11 value, act, o, e ← H.pop();
12 A[e] ← act;
13 Elev.remove(e);

// Mark picked up orders and targeted orders as
considered

14 Unconsidered.remove(actload);
15 Unconsidered.remove(o);
16 end
17 Return A;

A crucial part of the algorithm is the function getBestEvAction, which is shown in
Algorithm 6.2. Here we decide based on the current state s, the elevator e and the
unconsidered orders u, what the best elevator-action is, i.e., which orders we plan to load
or which order we consider for pickup and at what time we load the next order. For
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Algorithm 6.2: Elevator-Action Selection
Input : State s, Elevator e, Unconsidered orders u
Output : Elevator-Action act, Considered orders c, Value v

1 Function getBestEvAction():
2 if e is currently not moving then
3 if u is empty and e has no orders loaded then
4 act ← (s.f last

e , []) ;
5 c ← [];
6 v ← ∞;
7 else if u is empty and e has orders loaded then
8 f ← getNearestDropoff(s, e);
9 act ← (f, []);

10 c ← [];
11 v ← ∞;
12 else if u is not empty and orders are waiting on the current floor of e

then
13 pickup ← getBestPickup(s, e, u);
14 f, toConsider ← getBestOrderStop(s, e, u, pickup);
15 act ← (f, pickup);
16 c ← toConsider ;
17 v ← s.t;
18 else
19 f, nextPickUpTime, orders ← getNextOrderPickup(s, e, u);
20 act ← (f, []);
21 c ← orders;
22 v ← nextPickUpTime;
23 end
24 else
25 if u is empty then
26 act ← (s.fnext

e , []) ;
27 c ← [];
28 v ← ∞;
29 else
30 f, nextPickUpTime, orders ← getNextOrderPickup(s, e, u);
31 act ← (f, []);
32 c ← orders;
33 v ← nextPickUpTime;
34 end
35 end
36 Return (act, c, v);
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6. Greedy Algorithm

different states of the system and elevators we need to decide for different elevator-actions.
We consider the following cases:

1. If e is currently not moving, i.e., f last
e is equal to the current time t of s (lines 2–24):

a) If there are no unconsidered orders (i.e. u is empty) and e has no orders
loaded, we choose the next elevator-action for e to be staying at the current
floor (lines 3–6).

b) Else if there are no unconsidered orders and e has orders loaded, the elevator-
action for e is to go to the nearest destination floor of the currently loaded
orders in e, which is found by getNearestDropoff (lines 7–11).

c) Else if there are unconsidered orders on the same floor as the current stop of
e, pick up as many orders as possible. The function getBestPickup returns a
greedy choice of pickup orders, considering capacity and traveling direction
and prioritizing them in non-increasing number of passengers and breaking
ties by choosing nearer destination floors. Additionally, set the next planned
stop of e by finding the nearest floor where either a currently loaded order of
e wants to go or an unconsidered waiting order wants to be picked up. This is
done by the function getBestOrderStop, which considers that a waiting order
must travel in the same direction as the (possibly) currently boarded orders
and must not exceed the capacity to be able to be picked up. If we travel to a
stop to pick up waiting orders also return the orders to consider (lines 12–17).

d) Else we call the function getNextOrderPickup to find the order, which we can
pick up in the nearest future. The function returns the next floor the elevator
should stop, which is either a destination floor of a loaded order or, if an order
can be picked up before we deliver the next order, the floor of the next pickup
(lines 18–23).

2. Else (e is currently moving) (lines 24–35):

a) If there are no unconsidered orders, set the next elevator-action of e to stop
at the currently next planned stop of e (lines 25–28).

b) Otherwise, call the function getNextOrderPickup and find the nearest floor
and order(s) to pick up (lines 29–34).

Importantly we need to comply with all our assumption stated in Section 4.2 and thus we
need to correctly handle the different cases of the elevator state, especially Assumption 9
which states that we cannot load orders which travel in a different direction than the
currently loaded orders. Looking at the cases above where u is not empty, meaning we
have unconsidered orders we can pickup, and no orders are on the current floor of the
elevator, we cannot just (always) rush to the nearest order and pick them up but rather
may need to deliver orders first. The function getNextOrderPickup considers all these
constraints where we may currently have loaded orders in the elevator e which are not
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yet delivered. If all waiting orders have a different travel direction than the loaded orders
or are not between the current floor f of e and the next destination floor f ′ of an order
loaded in e, then we need to first unload orders at f ′ and again search for orders we
could pick up. This may repeat until all loaded orders are unloaded, and we can pick
up any waiting order or until we can pick an order midway which travels in the same
direction. For calculating the planned arrival time at the next pickup floor, we need
to consider all intermediate stops we may have to make to deliver the currently loaded
orders, including the time it takes the load and unload orders and the time it takes to
travel between floors.

As we want to prioritize elevators which can immediately pick up orders on their current
floor over elevators which need to travel to pick up orders, we set the values of these
elevators to the time of the current state, which is the minimum value we will have. For
planned pickups on other floors we will need to calculate the planned arrival time, thus
prioritizing elevators which need to travel less to pick up orders. As we may end up
with all the waiting orders considered, some elevators might not have any elevator-action
assigned yet and thus will not plan to pick up any order. But as picking up orders is
the only action elevators can do to interact with the environment with a direct impact
on the other elevators, we can ignore the prioritization of the elevators in such a case
and set the value to ∞ for these elevators. This will result in the elevator-actions of the
remaining elevators, which are finishing their current plan of delivering orders or waiting
on a floor, being chosen in order of their ID.

Let us consider the example shown in Table 6.1 where we have three orders and three
elevators, the time of the current state is 8 and for simplicity we set the capacity of the
elevators to be one. We define the loading time TL = 1 and the travel time T (1) = 6 and
T (k) = T (1) + k for k > 1. Two orders, 2 and 3, are currently waiting on floor 1 and 4
respectively, while order 1 is currently loaded in elevator 1, which is on its way to floor 3
and started its trip on floor 1 at time 0. The elevators 2 and 3 are both currently on
floor 1 and are ready to pick up orders. In Table 6.2a we see that orders 2 and 3 are both
unconsidered before the first iteration of the loop starting in Line 5 of Algorithm 6.1. In
the first iteration, we start with elevator 1 and call function getBestEvAction where we go
to line 29 in Algorithm 6.2 because the elevator is currently moving and the unconsidered
orders u is not empty, as it still contains all the waiting orders, namely 2 and 3. Now
getNextOrderPickup is called, which finds the nearest next pickup, but as the elevator is
currently fully loaded it cannot pick up any other orders, thus is required to first unload
order 1 and then find the nearest order to pickup. As elevator 1 delivers order 1 at floor
3, the nearest order to pick up is order 3 on floor 4. From the information given in state s
we can calculate when order 1 should be disembarked, which is the time the elevator left
floor 1, which is 0, plus the loading time TL · d1 = 1 plus the travel time T (|b1 − a1|) = 8
plus the unloading time TL · d1 = 1, which sums up to 10. We then can calculate the
arrival time at floor 4, which is the time it left floor 3 plus the travel time to floor 4,
so 10 + T (|4 − 3|) = 16, this is now the nextPickUpTime we return, together with the
target floor for the elevator-action, which is still floor 3 because we need to deliver order
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6. Greedy Algorithm

Table 6.1: Example of the state at a decision point.
(a) Order data

p ap bp dp ep

1 1 3 1 1
2 1 5 1 -
3 4 1 1 -

(b) Elevator data

e f last
e tlast

e fnext
e

1 1 0 3
2 1 8 1
3 1 8 1

Table 6.2: Content of the Unconsidered array before each iteration and the content of
the min-heap H and system-action A after each iteration of the while loop.

(a) Before first iteration

Unconsidered [2, 3]

(b) Before second iteration

Unconsidered [3]

(c) Before third iteration

Unconsidered []

(d) H after first iteration

e value a o
1 16 (3, []) [3]
2 8 (5, [2]) []
3 8 (5, [2]) []

(e) H after second iteration

e value a o
1 16 (3, []) [3]
3 17 (4, []) [3]

(f) H after third iteration

e value a o
3 ∞ (1, []) []

(g) A after first iteration

e A[e]
1 -
2 (5, [2])
3 -

(h) A after second iteration

e A[e]
1 (3, [])
2 (5, [2])
3 -

(i) A after third iteration

e A[e]
1 (3, [])
2 (5, [2])
3 (1, [])

1 first, and the considered orders, being only order 3. For elevators 2 and 3 we call
getBestEvAction and go to line 12 of Algorithm 6.2, because there are unconsidered orders
left and some orders are waiting on the same floor as the elevator. Function getBestPickup
just returns order 2 because there are no other orders, and getBestOrderStop returns
floor 5 because the elevator only needs to deliver order 2. The greedily best action is
then for both elevators to pickup order 2 and go to floor 5, the value is 8, the time of the
current state. The result of the first iteration is then the min-heap shown in Table 6.2d,
where the elevator-actions for elevator 2 and 3 are both the lowest value, so we break
the tie by choosing the lowest index, thus we choose elevator 2 and the system-action A
contains now this elevator-action, shown in Table 6.2g. We remove elevator 2 from the
list of remaining elevators and mark order 2 as considered.
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The second iteration has now only order 3 not considered (Table 6.2b), and for elevator 1
the next best elevator-action has not changed, but for elevator 3 we now have to find
another order, as order 2 is already considered, and we end up in line 18 in Algorithm 6.2.
The next best elevator-action for elevator 3 is to go to floor 4 because order 3 is waiting
there, we calculate the arrival time which is just the current time 8 plus the travel time
T (|4 − 1|) = 9, resulting in a planned arrival time of 17. The min-heap after the second
iteration is now shown in Table 6.2e, where we choose elevator 1 as the next best action,
as it would pick up order 3 sooner than elevator 3. We update the elevator-action list in
Table 6.2h, remove elevator 1 from the list of remaining elevators and mark order 3 as
considered.

The third iteration has now no orders unconsidered (Table 6.2c), but we still need to
choose an elevator-action for elevator 3. We go to line 3 in Algorithm 6.2 because u is
empty and we have no orders loaded, thus we return the elevator-action to stay at the
current floor with the value set to ∞ as shown in Table 6.2f, as we have no orders to
pick up. The final elevator-action list is then shown in Table 6.2i, which is the result of
the greedy algorithm for this example state.
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CHAPTER 7
Reinforcement Learning

This chapter will introduce our third and final approach to solving the elevator dispatching
problem for EGCS-DRS, namely reinforcement learning. We will focus, as in the previous
greedy approach, only on the online variant of the problem, where we do not have access
to future information and make decisions based on the current state of the system.

Section 7.1 will first introduce the concept of reinforcement learning and describe the
Markov Decision Process, after which we will describe the architecture of our reinforcement
learning model in Section 7.2.

7.1 Markov Decision Process
The Markov Decision Process is a central concept in reinforcement learning, as already
touched on in Chapter 3.2. In this section, we will define and describe the MDP for the
elevator dispatching problem, specifically we need to define the state and observation,
the action space and the reward function.

The state of the MDP is the current state (at the time of decision-making) of the system,
with all information about orders and elevators, and is as defined and described in
Section 4.1.2. When using reinforcement learning, the state of the system is all the
information we know, but the agent might not have access to all of it or might not be
able to use all of it. Thus, we need to define the observation of the system, which is a
representation of the state that the agent can make use of, which, in our case, is only
partial information about the state and furthermore is processed and simplified such that
the agent and the underlying machine learning model can work with it (more easily). For
the elevator dispatching problem in EGCS-DRS we have actions for the whole system and
not just for one single elevator, thus our action and observation space is not specific for
each elevator but rather for all of them together. Our goal was to make the observation
as compact as possible, avoiding large multidimensional arrays which would be needed
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if we wanted to exactly model each waiting order and their desired target floor, and to
include only the most relevant information for the agent to make decisions. We define
the observation as the concatenation of sub-observations for each elevator e, where the
sub-observation for e is as follows:

• The next planned stop of e one-hot encoded;

• The direction of e one-hot encoded with three values: up, down, and idle;

• The sum of the sizes of orders in e, normalized by the maximum capacity of the
elevator;

• The target floors of the orders in e binary encoded;

• The time to reach each floor from the current position of e, normalized with the
travel time from the ground floor to the top floor;

• For each floor the sum of the sizes of orders which can be picked up by e and travel
upwards, normalized by the maximum capacity of the elevator;

• For each floor the sum of the sizes of orders which can be picked up by e and travel
downwards, normalized by the maximum capacity of the elevator;

• For each floor f the sum of the sizes of orders which can be picked up by e on the
current floor and have f as destination floor, normalized by the maximum capacity
of the elevator and capped at 1.

Using one-hot encoding, binary encoding and normalization is an important step in the
preprocessing of the observation, as it represents the information in a way that is easier
to work with instead of using raw values like floor numbers or number of orders.

The action space of the MDP is the set of all possible actions that the agent can take
in a given state. In the elevator dispatching problem, the action space is a subset of all
possible and valid system-actions, as defined in Section 4. When choosing actions we
need to be careful, as a system-action might be invalid, even if all the elevator-actions
are valid in isolation. For example, consider the following example for two elevators e1
and e2: If e1 and e2 both are waiting on the same floor f and there is only one order
on some other floor f ′, a valid elevator-action for e1 would be to go to f ′ and pick up
the order. The same elevator-action would also be valid for e2, as the goal is to pick
up the order and without information of the other elevator we do not break any rules
or assumptions, but in context of the whole system-action we know that both elevators
would reach the order at the same time and only one of them can pick it up, thus making
the system-action invalid (w.r.t. Assumption 3). Another improvement we made to the
action space is to not allow all elevators to wait at the same time while there are orders
waiting to be picked up. This is especially important as we consider each decision point
in isolation and do not have any memory of previous decisions and previous states. Thus,
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if we allow elevators always to wait, they might learn that waiting for more orders to
arrive is beneficial in some cases and then not pick up the orders that are already waiting,
which, on the one hand, would be a psychological factor for the orders, as they would
arrive at an elevator hall and see that the elevators are not moving, maybe thinking that
the system is not working correctly. On the other hand, it would also be a bad decision
for the system, as decision points are only on elevator stops and order arrivals, thus if all
elevators are waiting and a new order arrives, and the system decides for all elevators to
wait, the order would be waiting for the next decision point, which could be a long time.
Even if we have decision points in a short time span, the system still does not know that
the state has not changed in the meantime and would make the same decision, to wait,
again.

Another important part of the MDP is the reward function, which is a function that
assigns a scalar value to each state-action pair, representing the immediate reward the
agent receives when taking an action in a given state. The reward function is crucial
in reinforcement learning, as it guides the agent to learn a policy that maximizes the
expected cumulative reward. Rewards are given at each decision point (immediate
rewards) and at the end of an episode (terminal reward). An episode is the whole
simulation of a scenario, starting from the initial state and then delivering orders until
there are no more orders arriving. In the elevator dispatching problem, a first thought
might be that the reward function is straight forward, as we could just use the negative
AWT of the whole episode as the terminal reward and let all immediate rewards be
zero. But this would not be an effective approach, as the agent would not be able to
learn from the immediate actions and only will get feedback on how well it performed
at the end of each episode. Thus, we need to incorporate immediate rewards with the
goal of having the cumulative reward (the sum of all rewards in an episode) be in line
with our objective function, the AWT, but as RL aims for the agent to learn a policy
that maximizes the reward we would need to adjust the reward function to cumulate
to the negative AWT. Although this approach may seem reasonable and similar reward
functions seem to work for similar approaches in the literature [39], we found that it did
not perform at all for our problem. The main reason for this is the learning of the model,
as the agent needs to learn the policy from scratch and in a way that it can generalize it
to unseen states we need a lot of different states and actions to be tried. We will describe
the training process in more detail in Section 8.3, but we generally use many different
scenarios to train the model and in general these scenarios have different characteristics,
like different number of orders arriving and the time span in which they arrive, thus the
AWT of a scenario is not a good measure of how well the agent performed, as it is highly
dependent on the scenario. We need to give the reward expressiveness to guide the agent
in the right direction but also need to incorporate the AWT in some way, thus we use
a reward function which cumulates to the negative AWT of the episode divided by the
greedily best found AWT of the scenario. Formally, the reward function R(s, s′, a) with
the current state s, the state of the next decision point s′ and action a, is defined as

47



7. Reinforcement Learning

follows:

R(s, s′, a) =

����
− −δ+·W +ε

Ggreedy
awt ·N+ε

if the episode has not ended yet;

(1 + W
N )2 · −Cerr if the episode ended with some orders not delivered;

0 otherwise;
(7.1)

where δ+ is the time difference between s′ and s, W = ∑︁
p∈P wait dp is the sum of sizes

of orders waiting in s′, Ggreedy
awt is the AWT solution of our greedy approach (Section 6)

of the scenario and N = ∑︁
p∈P dp is the sum of the size of all orders in the scenario.

To avoid division by zero (if Ggreedy
awt = 0) we add ε = 1e−10 to both numerator and

denominator of the fraction. We also, sometimes, need to prematurely end an episode, if
the episode takes too long to finish, in this case we end the episode and use the second
reward, where Cerr is some constant value, which in our case can just be 1 as we do not
need to penalize the agent more, because if we end prematurely the reward is (generally)
already a large negative value. We say an episode ends prematurely if the episode takes
longer than n · 2M , with M = (m − 1) · (T (1, 2) + TL2C), which is the worst case time
it would take to deliver all orders separately. For a whole scenario (which did not end
prematurely) the cumulative reward of all immediate rewards is then approximately
(because of ε) Gawt

Ggreedy
awt

, where Gawt is the AWT of the RL solution for this scenario. With
this reward function we can guide our agent with the help of our greedy approach, as we
have a baseline of how good it performs in relation to the greedy solution. While one
could argue that the agent could learn the greedy solution and then just follow it, the
agent is also incentivized to improve the greedy solutions, as better solutions will lead
to rewards closer to 0, and because we only use negative rewards, the optimal solution
would be to have a reward of 0 at each decision point. An additional improvement of the
reward function would be not to use the greedy solution but rather the MILP approach,
which could be either used in the offline or the online variant, with the offline variant
being more desirable as it gives us a lower bound. We found that the MILP approach is
computationally too expensive (for either variant as we will find out in Section 8.4), thus
not suitable for training the model as training would take too long.

7.2 Architecture
While the Markov Decision Process defines the environment and the agent, we need
a model to learn the policy of the agent. In this section, we will describe the general
architecture used for the reinforcement learning approach.

Tackling the elevator dispatching problem with reinforcement learning is a challenging
task, as the state space is complex and defining an observation suitable for a neural
network that would exactly capture all aspects of a state would be huge. The action
space is not as vast but still complex, as we need to consider invalid system-actions
especially when multiple elevators are involved. We use the Proximal Policy Optimization
(PPO) algorithm, which is a policy gradient method, as it is well suited for discrete action
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Figure 7.1: Neural Network Model for the Reinforcement Learning Approach with k
elevators. Different arrow colors are only for better visualization.

spaces and has been shown to work well in practice [29]. The neural network model of
the agent is a major component of PPO and is responsible for learning the policy and
in our approach it is used to find the acttarget of the next elevator-action act we apply.
Our approach for the neural network is different to classical RL approaches as we do not
use the whole observation as input but rather use sub-observations for each elevator and
valid target floor combination and then decide on the best acttarget by choosing the floor
with the highest value. The neural network model is shown in Figure 7.1 and works as
follows:

At each decision point of a scenario, the observation is the input, which is then split into
sub-observations for each elevator. This sub-observation is then split again and extended
to create an elevator-action target observation which has an elevator feature part, where
the information about the elevator e is encoded:

• The next planned stop of e one-hot encoded;

• The direction of e one-hot encoded with three values: up, down, and idle;

• The sum of the sizes of orders in e, normalized by the maximum capacity of the
elevator;

• The target floors of the orders in e binary encoded;
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and an action target part, where the information about the target floor f of the elevator-
action is encoded:

• A one-hot encoded vector of the target floor f ;

• The time to reach floor f from the current position of e, normalized with the travel
time from the ground floor to the top floor;

• The sum of the sizes of orders on floor f which can be picked up by e and travel
upwards, normalized by the maximum capacity of the elevator;

• The sum of the sizes of orders on floor f which can be picked up by e and travel
downwards, normalized by the maximum capacity of the elevator;

• The sum of the sizes of orders which can be picked up by e on the current floor and
have f as destination floor, normalized by the maximum capacity of the elevator
and capped at 1.

Each elevator-action target observation is then passed through the first phase of the
network, the multilayer perceptron (MLP) MLP1. The input size of MLP1 is dependent
on the number of floors in the building (O(m)), as we use one-hot encoding for the
sub-observations. The output of MLP1 is a single value, which is grouped by the elevators
and aggregated to generate compressed information of all valid target floors of an elevator.
Each output of MLP1 is then combined with the aggregated value of the same elevator
and passed through the second phase of the network, the multilayer perceptron MLP2, so
each target floor can use the information of other possible target floors for this elevator.
We may lose some information by the aggregation, but we can keep the input size of MLP2
constant (O(1)) and independent of the number of valid floors. The output of MLP2
is, again, only a single value, which is again grouped by the elevators and aggregated,
but this time the aggregation is used as information for other elevators. The input
of the next phase, another multilayer perceptron MLP3, is then the output of MLP2
and the aggregated information of all other elevators, which is again a constant (O(1))
input size. The output of MLP3 for each elevator-action combination is then passed
through a softmax function, which then gives us a probability distribution over all valid
elevator-action targets. When using the model for predictions, the best elevator-action is
chosen by the highest probability, but when training the RL model we do not always
choose the best elevator-action, but rather sample from the probability distribution, as
this is a key part of the PPO algorithm to explore the action space and not get stuck in
local optima. Additionally, PPO uses a value net to estimate the value of a state, which
calculates the advantage of an action, then updates the policy based on the advantage.
The input of the value net are the logits from the output of MLP3 before the softmax is
applied. The value net is not shown in Figure 7.1, as it is not part of the decision-making
process, but rather used for training the model.

After deciding on the best elevator-action we only have a single elevator-action rather
than a full system-action, but as briefly touched on before, finding valid system-actions
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is not straightforward in the RL context, thus we find the full system-action by using
an autoregressive solution construction. We decide on an elevator-action, then update
the observation based on the chosen elevator-action and repeat the process with the new
observation until we have a full system-action. In each iteration we use the same neural
network model structure but ignore the information of the elevator we already decided
on. This increases the computational complexity of the model, as we need to run the
neural network multiple times for each decision point, but it is necessary to find valid
system-actions, as complex invalidation rules are hard to model in the reinforcement
learning model. The increased computational effort is reduced as we do not consider
invalid elevator-actions (e.g. floors where no (un)loading happens), thus saving a large
amount of computational resources for each iteration, as in practice (depending on the
load of the system) only a fraction of available floors are also valid elevator-action targets.
The exact structure of the MLPs, the value net, and the aggregation function are not fixed
and can be adjusted, which we will further explore in Chapter 8, where we will discuss
the number of layers and the number of neurons in each layer as well as the activation
function used for the MLPs, and further compare different aggregation functions used
for the aggregation of the output of the MLPs. Note that while the Figure 7.1 shows
different nodes for MLP1 (also MLP2 and MLP3), the weights of these subnetworks are
shared across all nodes (for MLPs with the same name) and are updated only after an
episode has ended.

After finding the best floor for each elevator we need the second part of the elevator-action
act, the orders to load on the current floor actload. While this could also be done by
an additional MLP, we decided to use a greedy function to not further increase the
complexity of the system. This is done in a similar way as in the greedy approach, but
we need to consider that we are given a floor and have to find the best orders to load in
the elevator. For this approach we only need to look at a certain state of the system,
namely where the elevator is currently waiting at a floor f with waiting orders, and for
the target floor f ′ holds f ̸= f ′, i.e., the elevator is not waiting. For all other states
we cannot pick up any orders in this elevator-action, thus always return an empty list.
To decide on the orders we first discard any order p on the current floor that has their
destination floor bp in the opposite direction of the target floor, i.e., if f < f ′ then bp < f
or if f > f ′ then bp > f , or have a destination floor that is between the current floor and
the target floor, i.e., f < bp < f ′, as the elevator will drive past floor bp without stopping,
thus making the elevator-action invalid. After filtering the invalid orders we sort the
remaining orders by their group size in non-increasing order and then by distance to their
destination floor in non-decreasing order. The group size is (greedily) more important as
larger groups have a bigger impact on the AWT, making it more desirable to load them
earlier. We then iterate through the sorted orders and pick them up if the elevator has
enough capacity left, this is done for every elevator, resulting in a full system-action for
the current decision point.
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CHAPTER 8
Experiments

In this chapter, we evaluate the performance of the proposed solving approaches for the
elevator dispatching problem for EGCS-DRS. First, we specify the technical setup of the
experiments. Then, we describe the different traffic patterns in elevator systems which
we consider for the evaluation, and the training process of the reinforcement learning
agent. Finally, we present the results of the experiments and discuss the findings.

8.1 Experimental Setup
This computational study is conducted on the computational cluster provided by the
Algorithms and Complexity Group of TU Wien. We performed all experiments on a
single core of an Intel Xeon E5-2640 v4. All solving approaches are implemented in Julia1

1.11.3 [4], while the reinforcement learning agent is realized by using the Python library
Stable Baselines3 (SB3) (version 2.3.2) [26] from Julia via the PyCall library (version
1.96.4) [19] with Python2 3.12.7 [10]. The MILP approach was implemented with the
JuMP package (version 1.24.0) [7] with Gurobi3 10.0.3 [12] as underlying solver.

8.2 Instance Generation
For testing our solving approaches, we consider three different types of traffic patterns
inspired from real world use cases. Traffic patterns specify the structure of elevator
traffic, i.e., the arriving floor and destination floor of orders. These three are the most
prominent in the literature [8, 39, 32], thus are the most interesting to consider, although
there exist different additional patterns. The three patterns are as follows:

1https://www.julialang.org
2https://www.python.org
3https://www.gurobi.com
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• Up Peak: In this scenario, the majority of the orders arrive at the ground floor
and want to travel to higher floors. The system is under high load, and we must
choose wisely which orders to assign and load in which elevator. This scenario
represents, for example, a morning rush hour in an office building. The ground
floor is the bottleneck floor, where the orders are concentrated.

• Down Peak: In this scenario, the majority of the orders arrive at (different)
non-ground floors and want to travel to the ground floor. Here the difficulty lies in
the fact that the orders are distributed over different floors and the elevators may
need to pick up orders on different floors in the same trip. This scenario represents,
for example, the end of a work day in an office building, where the employees want
to leave the building.

• Inter-floor: This scenario is less specific than the other two, here orders arrive at
different floors and want to travel to different floors. This is the most general case
and has no clear bottleneck floor, in contrast to the other two scenarios, where the
ground floor either has the most orders arriving or the most orders leaving. This
scenario represents, for example, an office building during working time, where
employees move between different floors for meetings or lunch.

Table 8.1: Expected traffic load for traffic patterns.

Ground-to-Upper Upper-to-Ground Random
Up peak 90% 10% 0%

Down Peak 10% 90% 0%
Inter-floor 0% 0% 100%

Each traffic pattern has defined rates of the travel directions of all arriving orders, these
are defined in Table 8.1. In our experiments the up peak scenario has 90% of the orders
arriving at the ground floor traveling up and 10% of the orders arriving at other floors
traveling to the ground floor. The down peak scenario is defined to have 90% of the
orders arriving at non-ground floors traveling to the ground floor and 10% of the orders
arriving at the ground floor traveling up. For the inter-floor scenarios, we define that
100% of the orders are random, i.e., there is no specific distribution of orders, they arrive
at random floors and travel to random floors.

Another important aspect is the temporal distribution of the arrival of the orders. In
our experiments, we consider all arrivals of a given scenario to follow an inhomogeneous
Poisson distribution, which describes the distribution of the orders in a given interval
and defines the probability of a certain number of events occurring in a fixed interval of
time. The inhomogeneous Poisson distribution is defined by a rate function λ(t), which
specifies the rate of arrivals at time t. The rate function for our generated scenarios with
the total number of orders n and the maximum arrival time T of any order for a scenario
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at time t is defined as follows:

λ(t) =

����
n·0.1
T ·0.2 if t ≤ T · 0.2;
n·0.8
T ·0.7 if T · 0.2 < t ≤ T · 0.7;
n·0.1
T ·0.1 if T · 0.7 < t.

(8.1)

The rate function is designed to model the arrival in a way that the majority of the
orders, namely 80% of n, are expected to arrive in the middle of the time interval, while
in the first 20%, as well as in the last 10% of the time interval, only 10% of the orders are
expected to arrive in each case. This models the fact that in real-world scenarios, some
orders may arrive earlier or later than others, which can effect the performance as the
elevator system has different states when the majority of orders arrive, because elevators
may have already delivered some orders to different floors and are now waiting there.

For the main experiments, we consider two different elevator systems, the first system is
a small building with two elevators and ten floors, the second system is a larger building
with four elevators and 30 floors. For each system, we generate scenarios for two main
cases: one where a large number of orders arrive within a short period of time and
another where orders are more temporally distributed. The first case consists of 60 orders
arriving within ten minutes, while the second case consists of 120 orders arriving within
one hour. For each case, we consider the three traffic patterns described above. We
further set the capacity of the elevators to five, and we define the loading time TL = 1.
The travel time is defined as T (1) = 6 and T (k) = T (1) + k for k > 1, which accounts for
the elevator’s acceleration dynamics, and necessitates a longer travel time for a single
floor compared to moving across multiple floors and is loosely based on the values given
by Tanaka et al. [34].

8.3 Hyperparameter Tuning and Training of the
Reinforcement Learning Agent

This section will discuss the hyperparameter optimization and the training of the rein-
forcement learning agent for the elevator dispatching problem. The general training for
the RL is done by the Proximal Policy Optimization Implementation from the Stable
Baselines3 framework, but we need to provide the training data, which are scenarios the
agent has to navigate through and learn from. An important part of learning is that we
need to make sure that the agent is able to learn from many different scenarios and has
seen enough different states of the system, so it can generalize well to new scenarios. To
be able to do this, we need to generate a large number of scenarios with specific traffic
patterns and different arrival rates. Each episode of the training consists of a different
scenario with a traffic pattern depending on the model. We (almost) always train a
model for a specific traffic pattern, so each episode in the learning process has the same
pattern. The scenarios are generated by randomly picking a number of orders between
10 and 20 and a random maximum arrival time between 10 and 200, then the instance
is generated as described in the previous section. Training with these smaller scenarios
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showed to work for all models except for the model training on the large system and the
up peak pattern, which exhibited difficulties in the learning process. Thus we used, for
this model only, scenarios of 60 orders and maximum arrival times between 600 and 1200
for the training, which increased the performance of this model but also required slightly
more time to train.

There exist different hyperparameters for the RL agent, which need to be optimized to
be able to learn effectively from different scenarios. For hyperparameter optimization,
different frameworks already exist, we chose Optuna [1] which uses state-of-the-art
algorithms for sampling hyperparameter values and also implements efficient pruning of
unpromising trials. We optimize the following hyperparameters with the given ranges,
where the ranges are chosen based on the default values of the PPO implementation
in Stable Baselines3 and some preliminary experiments we did before the optimization
process:

• Learning Rate: The learning rate of the agent, which specifies how much the
agent should change its policy based on the reward. The learning rate is optimized
in the range of [0.00001, 0.5] but sampled log-uniformly, i.e., smaller values are
preferred over larger values.

• Learning Rate Schedule: The learning rate schedule of the agent, which specifies
how the learning rate should change over time. The learning rate schedule is
sampled from {constant, linear , quarter}, where constant means the learning rate
is constant over time, linear means the learning rate decreases linearly over time
to zero, and quarter means the learning rate decreases linearly to a quarter of the
initial learning rate over time.

• Gamma: The discount factor of the agent, which specifies how much the agent
should value future rewards. The discount factor is sampled from
{0.9, 0.95, 0.99, 0.995, 0.999, 1}.

• Batch Size: The batch size of the agent, which specifies how many samples the
agent should use for one update of the policy. The batch size is sampled from
{32, 64, 128, 256, 512}.

• N Epochs: The number of times each batch of collected data is used for an update.
The number of epochs is sampled from {5, 10, 15, 20}.

• N Steps: The number of different scenarios the agent observes before updating
the policy. The number of steps is sampled from {1024, 2048, 4096}.

• Ent Coef : The entropy coefficient of the agent, which specifies how much the
agent should explore. The entropy coefficient is optimized in the range of [0, 0.1]
but sampled log-uniformly.
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• Vf Coef : The value function coefficient of the agent, which specifies how much the
agent should value the value function. The value function coefficient is optimized
in the range of [0, 1].

• Clip Range: The clip range of the agent, which specifies how much the policy
should be clipped to keep the changes of the policy small. The clip range is sampled
from {0.1, 0.2, 0.3}.

• Target KL: The target Killback-Leibler divergence (KL) of the agent, which
specifies how much the policy should change. If the change of the policy is larger
than the target KL, the current update is stopped. The target KL is sampled from
{0.005, 0.01, 0.02, 0.05, 0.1, 0.3, 0.5, 1, 3}.

• MLP Size: The size of the MLP1 and the value net of the agent. The size of both
MLPs is sampled from {small, medium1 , medium2 , large}, where small means the
MLP has 1 hidden layer with 64 neurons, medium1 means the MLP has 2 hidden
layers with 128 neurons, medium2 means the MLP has 3 hidden layers with 64
neurons, and large means the MLP has 3 hidden layers with 256 neurons.

• Activation Function: The activation function of the MLPs of the agent. The
activation function is sampled from {tanh, relu}.

• Aggregation Function: The aggregation function used for aggregating MLP1
and MLP2. The aggregation function is sampled from {mean, max , sum}.

• Learn Steps: The number of steps the agent should learn from. The number of
learn steps is sampled from {100000, 200000, 300000, 400000, 500000, 600000, 700000}.

Note that there exist other hyperparameters for the PPO implementation in Stable
Baselines3, but we found that these hyperparameters have the most impact on the
performance of the agent. All other hyperparameters not listed here are kept at the
default values. Furthermore, we limit the number of different hyperparameter trials of
the optimization to 100 to save computational resources as the optimization showed to
be computationally expensive, especially for the larger system, thus not every possible
combination of hyperparameters is tested, but rather a subset of them. We took the results
from the optimization and further did some manual tuning to refine the hyperparameters,
especially the learn step parameter was not optimized with Optuna, but rather decided
by some preliminary experiments done with the other hyperparameters fixed. Besides,
we decided that when optimizing the MLP size we only optimize for MLP1 and the value
net as the input of MLP2 and MLP3 is relative small in comparison, thus requires fewer
neurons. We fix the number of hidden layers to one and the number of neurons for each
layer to 64 for MLP2 and MLP3.

Important to note is that the (input) size of the neural network of the RL is dependent
on the number of elevators and the number of floors of the elevator system, resulting in
varying performance on different systems. Thus, we cannot expect to find general good
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hyperparameters for the agent, but need to optimize them for each system individually
as larger systems generally need longer to learn and thus may require adjustments, e.g.
increasing the learning rate. We also discovered that when training on larger systems
there is no single set of hyperparameters which works best for all traffic patterns, but
rather we need to find the hyperparameters for each traffic pattern individually, as the
agent needs to learn different strategies for different traffic patterns, even if the system is
the same.
For our experiments, we trained RL models on each combination of an elevator system
with either one of the three specific traffic patterns described in the previous section
or with all three combined (referred to as the “All Peak Pattern”). In the latter case,
a random traffic pattern is selected for each episode. For the small system, a single
set of hyperparameters is chosen because the configuration performed well across the
different patterns, while for the large system, each pattern-specific model has different
hyperparameters, which are shown in Table 8.2.

Table 8.2: Hyperparameters for the RL agent for different elevator system sizes and
traffic patterns.

Hyperparameter Small Large (Up) Large (Down) Large (Inter) Large (All)
Learning Rate 1.586 · 10−4 2.2121 · 10−4 3 · 10−4 3 · 10−4 3.1213 · 10−4

Learning Rate Schedule constant quarter quarter quarter quarter
Gamma 1 1 1 1 1
Batch Size 256 64 64 256 64
N Epochs 15 10 10 10 10
N Steps 4096 4096 4096 4096 4096
Ent Coef 7.59 · 10−7 1.5427 · 10−8 0 9.54 · 10−7 9.54 · 10−7

Vf Coef 0.20237 0.48234 0.5 0.28654 0.48234
Clip Range 0.1 0.1 0.1 0.1 0.1
Target KL 0.02 0.5 0.3 0.1 0.5
MLP Size medium2 medium2 large large medium2
Activation Function tanh tanh tanh tanh tanh
Aggregation Function mean mean mean mean mean
Learn Steps 300000 400000 400000 400000 500000

Looking at the optimized hyperparameter values we see that, while some of them are very
similar across system-pattern combinations, there are also interesting differences, e.g.,
the learning rate, which is lower for the smaller system but stays constant for the whole
training duration, while for the larger systems it starts with a higher rate, but it decreases
over the learning duration, resulting in larger policy changes in the beginning but more
fine-grained changes in the later stages of the learning process. Another important
difference is the size of the MLPs, where for the smaller system, the up peak large system
and the all peak large system medium2 is selected, which has 3 hidden layers with 64
neurons, while for the other large systems large is chosen, which has 3 hidden layers with
256 neurons. This is interesting as it seems that down and inter peak may require more
complex neural networks to learn. Generally one would expect that with increasing size
of the system the size of NNs should also be more complex, but when increasing the
size of MLPs also the learning gets more complex which may reduce the effectiveness in
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some cases. Further we see that the smaller elevator system also requires more epochs,
which increases the learning process, as more updates on the policy are done. Another
significant difference is the target KL, which is higher for the larger system, allowing
for more drastic changes in the policy compared to the smaller system where only small
changes are allowed. The batch size is also different across some systems, which is
interesting when also looking at the target KL, as the change of the policy is limited by
the target KL, so if the change is too large the batch size may not be fully utilized, but
if the change is small enough we intensify the learning with a larger batch size. Another
important detail is the number of learn steps, which states how many steps the agent
should learn from. We found that the all peak pattern needs some additional learn steps
as the range of different scenarios is larger than for the other patterns. Generally the
number of learn steps should increase with the size of the system, as more information
needs to be processed.

Important to note is that some values seem to be generally important, like the gamma
value set to one, which means that the agent values rewards which are received later in
the episode as much as rewards received earlier in the episode. This seems reasonable
as the goal of our rewards is to sum up to the average waiting time of all passengers
(normalized with the greedy solution) and if we would value later rewards less, we may
not be able to learn effectively as we skew this cumulative reward. Another important
similarity is the number of steps, which is set for all systems to 4096, this is due to
the fact that it is important to sample enough different scenarios before updating the
policy as we deal with vastly different scenarios each episode and need to gather enough
information about the current policy and how it performs on different scenarios before
updating it. The clip range is also important as it restricts the policy changes (together
with the target KL) to keep the policy changes stable, as our agent can be very sensitive
in later stages of the learning process, and the policy can diverge drastically if not limited.
The optimization process also showed that activation function and aggregation function
have a single best value for all systems, namely tanh and mean, respectively.

The training graphs of the RL agents for the small elevator system is shown in Figure 8.1,
where we see the average reward of an episode during the learning process. We see that
the agent learns effectively and the reward increases over time. The inter-floor pattern
shown in Figure 8.1c has a much steeper learning curve, as rewards at the beginning
of the training are much lower than rewards for up peak and down peak (Figure 8.1a
and Figure 8.1b). In Figure 8.1d we can see that using all three patterns for training
results in a learning curve which is in between the learning curves of the individual
patterns, starting not as low as inter-floor but also not as high as up/down peak. While
it seems that for some agents the rewards have not plateaued yet, experiments showed
that increasing the amount of learning steps results most of the time in a decrease of
performance, as it seems to overfit to the training data.

The loss of the RL agents for the small system during training is shown in Figure 8.2,
where we see that the loss decreases over time for all different agents, which is expected
as the agent learns to predict the policy better. We see, similar to the average reward, in
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Figure 8.2c that learning from inter-floor patterns starts with a higher loss than learning
from up and down peak patterns (Figure 8.2a and Figure 8.2b) and stagnates around the
same value as the other patterns but reaches it later in the learning process. The loss
for the all peak pattern (Figure 8.2d) is again a middle ground between the individual
patterns, starting higher than up and down peak but lower than inter-floor, and reaching
lower values earlier than the inter-floor but later than up and down peak pattern.

Looking at the training graphs for the large elevator system in Figure 8.3 we can see for
each model that the curve is similar to the small system and the agent learns effectively,
as the reward increases over time. We, again, have the up and down peak patterns
(Figure 8.3a and Figure 8.3b) with a higher initial reward than the inter-floor pattern
(Figure 8.3c), and the all peak pattern has an initial reward in between. The loss graphs
of the large system in Figure 8.4 show a difference to the small system loss graphs, as here
the up peak pattern (Figure 8.4a) increases the loss in the beginning and then roughly
stays the same with high variance. Note that for the up peak training we used larger
scenarios which may lead to the more erratic loss graph, but the average reward over
time is stable. The down peak pattern (Figure 8.4b) only decreases slightly over time,
while the inter-floor pattern (Figure 8.4c) has the most stable loss, which starts with
increased loss but decreases over time, and the all peak pattern (Figure 8.4d) is also
stable until training step 450000 where sudden large spikes in the loss occur, which may
indicate that the agent overfits to the training data.

8.4 Results
In this section, we present the experimental results. We begin by comparing the per-
formance of different solving approaches across the different scenarios described in
Section 8.2 and further discuss the limitations encountered for some approaches during
the experiments.

The main part of the experiments focuses on the small and large elevator systems, for
which we test the short and long instances with each traffic pattern. For each of these
cases we present solutions with the offline MILP approach, the online MILP approach,
the RL approach trained on the specific traffic pattern and the RL approach trained on
all patterns. The results of the greedy approach are mostly used as a baseline to compare
the other approaches to. One problem that arises is that the MILP approach, in either
offline or online variant, may not solve the instances optimally within a reasonable time
frame as we deal with a huge search space as the graph for the network flow formulation
grows with the number of orders and the number of floors. To mitigate this issue, we
limit the time for the offline MILP to three hours for each instance and for the online
MILP we cannot limit the time for the whole instance, but we can limit the time for
the computation at each decision point, which is set to ten minutes. The results of the
greedy approach for the small elevator system are presented in Table 8.3. In this table,
the AWT for the different scenario configurations and for each instance is displayed. We
further compare the performance of other approaches against the greedy method, as
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(a) Up Peak (b) Down Peak

(c) Inter-floor (d) All Peak

Figure 8.1: Average reward of the RL agent during training for the small elevator system.

shown in Table 8.4, which illustrates the ratio of the AWT of these approaches to that of
the greedy approach. Bold values in the table mark the best result across the different
approaches. Each result is gathered from a single run of the instance, as the results from
all different approaches are generally deterministic. We additionally provide the mean
and standard deviation (SD) of the greedy normalized results across all five instances, as
well as the relative gap of primal and dual bound for the MILP approaches, which for
the online variant is the mean of the relative gaps of all decision points. The relative gap
is calculated as |zP −zD|

|zP | , where zP is the primal bound and zD represents the dual bound.
We can see that the offline MILP approach always performs much worse than the other
approaches because it always reaches the time limit without finding an optimal solution,
which is also shown in the relative gap being always 1.0 thus indicating that the solutions
of the bounds are not close at all. The results of the online MILP show that the relative
gap is (almost) zero for the long scenarios, i.e., for every decision point the optimal
solution was (almost) always found. In contrast, the relative gap for short scenarios is
large, but the MILP still finds good solutions. This could be due to the fact that in
the beginning of the scenario the number of orders waiting is not as high as later in the
scenario, thus the network flow graph is smaller and easier to solve. Early solutions may
be (almost) optimal, while later solutions may have a higher gap, but the impact on the
overall AWT is not as large as of the early decisions. The strength of the RL approach is
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(a) Up Peak (b) Down Peak

(c) Inter-floor (d) All Peak

Figure 8.2: Loss of the RL agent during training for the small elevator system.

mostly shown in the short scenarios, where it can learn to navigate the system effectively.
There, it outperforms the greedy approach in most cases, especially in the down peak,
but is still worse than the online MILP approach. Interestingly the all peak RL approach
sometimes outperforms the model trained only on the specific patterns, especially in
down peak scenarios, which could indicate that learning states of the other patterns can
positively impact the learning process. We can also see in Figure 8.5 that the online
MILP approach (almost) always performs best, as it often can find a good solution for
most decision points, and we generally see that the specific RL approach performs only
a bit better than the all peak RL approach. The boxplots also show that the greedy
approach is, in most cases, a good performing algorithm across the different scenarios
in comparison to the other approaches. Here we excluded the offline MILP approach
as the AWT is too large to be displayed in the plot, without making the other results
unreadable. The online MILP still occasionally runs into timeouts and generally takes
much longer to solve the scenario than the greedy and RL approaches. Table 8.5 shows
the mean solving time for all five scenarios and the maximum time for a single decision
point. This confirms that the MILP approach is generally not suitable for real-world
applications. The online approach for short instances has a longer runtime than the RL
or greedy approach for solving the scenario as it runs into timeouts for most decision
points. This is due to the fact that in the short instance the orders are more clustered,
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(a) Up Peak (b) Down Peak

(c) Inter-floor (d) All Peak

Figure 8.3: Average reward of the RL agent during training for the large elevator system.

so each decision point has to handle many orders. As a result, the network flow graph
is larger and more computationally expensive to solve. In contrast, long instances have
more spread-out orders, so fewer must be handled at each decision point. The greedy
approach yields solutions almost instantly, while the reinforcement learning approach
takes a bit longer but can still manage scenarios within a reasonable timeframe.

Table 8.3: Average waiting time of the greedy approach across configurations for the
small elevator system in seconds.

Size Patt. Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5 Mean SD

Short
Up 73.88 83.65 41.42 30.77 48.87 55.72 22.27
Down 51.18 66.82 83.33 120.22 71.75 78.66 25.98
Inter 38.75 38.24 48.90 41.26 72.76 47.98 14.49

Long
Up 11.31 11.14 10.98 11.22 11.19 11.17 0.12
Down 13.54 12.91 13.92 13.42 13.59 13.48 0.37
Inter 9.75 10.72 10.27 9.93 10.33 10.20 0.37

The results for the greedy approach for the large elevator system are shown in Table 8.6,
and again we also compare it to the other approaches, displayed in Table 8.7. Our findings
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Table 8.4: Greedy normalized AWT comparison of different approaches across configura-
tions for the small elevator system.

Size Patt. Approach Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5 Mean SD rel. Gap

Short

Up

MILP Off. 2.03 1.47 4.71 13.52 3.68 5.08 5.04 1.00
MILP On. 0.92 0.98 0.92 0.85 0.78 0.89 0.07 0.41
RL Up 0.94 1.04 0.94 1.09 0.87 0.98 0.08 -
RL All 1.01 1.00 1.10 1.25 0.87 1.04 0.14 -

Down

MILP Off. 4.97 1.57 1.55 2.61 2.64 2.67 1.33 1.00
MILP On. 0.46 0.61 0.54 0.62 0.47 0.54 0.07 0.29
RL Down 0.68 0.74 0.59 0.68 0.54 0.65 0.08 -
RL All 0.58 0.78 0.58 0.66 0.52 0.62 0.10 -

Inter

MILP Off. 3.13 2.49 2.31 2.95 2.36 2.65 0.37 1.00
MILP On. 0.74 0.70 0.77 0.84 0.55 0.72 0.10 0.34
RL Inter 0.97 1.08 0.84 0.91 0.77 0.91 0.12 -
RL All 1.43 1.11 1.01 1.56 1.07 1.32 0.24 -

Long

Up

MILP Off. 169.74 - 101.73 117.64 99.30 122.60 32.91 1.00
MILP On. 0.99 1.00 1.00 1.00 0.95 0.99 0.02 5.40 · 10−4

RL Up 1.10 1.12 1.11 1.14 0.98 1.09 0.06 -
RL All 1.12 1.10 1.14 1.15 1.04 1.11 0.04 -

Down

MILP Off. - - - 99.37 - 99.37 0.00 1.00
MILP On. 0.89 0.89 0.92 0.88 0.94 0.90 0.02 0.00
RL Down 0.97 1.02 1.02 1.02 0.93 0.99 0.04 -
RL All 0.96 0.99 1.01 1.02 0.92 0.98 0.04 -

Inter

MILP Off. - - - - - - - -
MILP On. 0.88 0.93 0.93 0.94 0.99 0.93 0.04 1.60 · 10−3

RL Inter 1.11 1.13 1.09 1.08 1.14 1.11 0.02 -
RL All 1.17 1.20 1.14 1.08 1.14 1.15 0.05 -

Table 8.5: Average solving time for the whole scenario and the longest decision point for
different approaches for the small elevator system in seconds.

Size Approach Up Down Inter
Scenario Point Scenario Point Scenario Point

Short

MILP Off. 10800.00 - 10800.00 - 10800.00 -
MILP On. 16524.68 600.00 14796.62 600.00 16164.65 600.00
Greedy 0.01 0.00 0.01 0.00 0.01 0.00
RL 0.92 0.17 0.69 0.15 0.63 0.15
RL All 0.95 0.19 0.71 0.13 0.59 0.14

Long

MILP Off. 10800.00 - 10800.00 - 10800.00 -
MILP On. 1659.27 600.00 1683.04 577.14 1510.15 600.00
Greedy 0.01 0.00 0.01 0.00 0.01 0.00
RL 0.97 0.02 1.34 0.03 1.30 0.02
RL All 0.94 0.02 1.35 0.03 1.36 0.03
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(a) Up Peak (b) Down Peak

(c) Inter-floor (d) All Peak

Figure 8.4: Loss of the RL agent during training for the large elevator system.

for the large systems show a similar picture to the findings of the small system. The
greedy approach seems to perform generally better on larger systems, especially for the
short up peak scenarios, where it is better than the online MILP on every instance. This
is likely because, in the larger system, the computational complexity increases, making it
harder for the MILP to find an optimal solution within the given time. The large relative
gap in the short scenarios further supports this. Interestingly, for the long scenarios
the online MILP either did not find a valid solution in time for a decision point or if
a solution was found, the relative gap of the solutions was always very small. The RL
approach still performs better than the greedy approach in (most) short down peak and
inter-floor scenarios but is worse in the other scenarios, indicating that the model may
not scale well with the size of the system, as the state space grows with the number of
elevators and floors, making it harder for the RL to learn effectively, and maybe also
indicating that the flow of information between the elevators may not be as effective in
larger systems. In the long up peak scenario the RL approach performed the worst out
of all experiments, which was also due to the fact that the learning proved to be difficult
and we needed to adjust the training data to longer scenarios in order to get more stable
learning curves. When looking at the boxplots in Figure 8.6 we see a greater variance in
the performance of the different approaches, but still the specific RL approach is mostly
better than the all peak RL approach. For the longer scenarios, the greedy approach
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Figure 8.5: Boxplots of AWTs of different approaches for the small elevator system.

outperforms the RL approaches clearly, but it seems that the online MILP approach
is still the best performing approach for these scenarios, if it finds a solution in time,
although we only have one result, so it is hard to make a general statement. The offline
MILP can only solve one out of the 30 instances and does not find any valid solution for
the others in three hours time, and even the online MILP approach often does not find
a solution for a decision point, as especially in the longer scenarios the network graph
grows too large to handle in the given time. In Table 8.8 we can also see that the average
solving time for an instance increased for the RL approach, while the greedy approach
still performs very efficiently, but the maximal time for solving a decision point is still
very fast and shows that the RL approach could be used in real-world applications.

Table 8.6: Average waiting time of the greedy approach across configurations for the
large elevator system in seconds.

Size Patt. Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5 Mean SD

Short
Up 37.47 34.38 34.63 33.78 52.63 38.58 7.98
Down 34.99 48.12 53.47 42.31 71.97 50.17 13.99
Inter 22.66 23.85 27.79 22.70 28.20 25.04 2.75

Long
Up 16.66 19.52 17.48 17.36 18.24 17.85 1.09
Down 18.29 15.73 20.44 18.19 18.68 18.27 1.68
Inter 11.28 11.78 11.34 12.98 10.16 11.51 1.02

Because the examples of the two scenarios both did not show the real lower bound the
offline MILP can achieve, we decided to generate a very small down peak example with
only six orders within one minute on the small elevator system. The results, presented in
Table 8.9, show that the offline MILP, when not cut off by the time limit and the relative
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Table 8.7: Greedy normalized AWT comparison of different approaches across configura-
tions for the large elevator system.

Size Patt. Approach Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5 Mean SD rel. Gap

Short

Up

MILP Off. - - - - - - - -
MILP On. 1.09 1.27 1.25 1.05 - 1.16 0.10 0.47
RL Up 1.07 1.04 1.03 1.14 1.11 1.08 0.04 -
RL All 1.06 1.25 0.94 1.15 1.13 1.10 0.11 -

Down

MILP Off. - - - - - - - -
MILP On. 0.61 0.91 0.74 0.75 - 0.75 0.12 0.28
RL Down 0.89 1.06 0.95 0.86 0.92 0.94 0.07 -
RL All 0.95 1.01 0.79 0.98 0.90 0.92 0.09 -

Inter

MILP Off. - 15.54 - - - 15.54 0.00 1.00
MILP On. 0.92 - - 0.98 0.93 0.94 0.03 0.27
RL Inter 0.93 0.91 0.85 1.04 1.02 0.95 0.08 -
RL All 1.10 0.94 1.01 0.96 1.11 1.02 0.08 -

Long

Up

MILP Off. - - - - - - - -
MILP On. - - - - - - - -
RL Up 1.20 1.02 1.10 1.11 1.04 1.09 0.07 -
RL All 1.15 1.06 1.16 1.14 1.06 1.12 0.05 -

Down

MILP Off. - - - - - - - -
MILP On. 0.91 - - - - 0.91 0.00 0.02
RL Down 1.07 1.11 1.08 1.05 1.06 1.07 0.02 -
RL All 1.08 1.12 1.13 1.08 1.09 1.10 0.02 -

Inter

MILP Off. - - - - - - - -
MILP On. - - - - - - - -
RL Inter 1.51 1.37 1.63 1.39 1.56 1.49 0.10 -
RL All 1.37 1.36 1.59 1.37 1.67 1.47 0.15 -

Figure 8.6: Boxplots of AWTs of different approaches for the large elevator system.

67



8. Experiments

Table 8.8: Average solving time for the whole scenario and the longest decision point for
different approaches for the large elevator system in seconds.

Size Approach Up Down Inter
Scenario Point Scenario Point Scenario Point

Short

MILP Off. 10800.00 - 10800.00 - 10800.00 -
MILP On. 22050.87 600.00 12572.71 600.00 14461.85 600.00
Greedy 0.06 0.04 0.01 0.00 0.01 0.00
RL 2.25 0.17 2.28 0.15 2.0 0.12
RL All 3.32 0.57 3.05 0.49 2.86 0.67

Long

MILP Off. 10800.00 - 10800.00 - 10800.00 -
MILP On. - - 11938.46 600.00 - -
Greedy 0.01 0.00 0.01 0.00 0.01 0.00
RL 7.10 0.33 6.66 0.21 6.90 0.21
RL All 8.02 0.42 6.92 0.22 6.73 0.20

gap being zero, can achieve a much lower AWT than the other approaches. While this
is only possible because the offline MILP knows all information in advance, it is still
interesting to see how large the gap between the online approaches and the theoretical
lower bound can be, for some instances it reduces the AWT by around 70% compared to
the online approaches. Note that here the greedy approach sometimes performs better
than the online MILP approach, which shows that even if we make suboptimal decisions
at a decision point it may lead to better results for the whole scenario.

Table 8.9: Greedy normalized AWT comparison of different approaches on a very small
down peak example to show the lower bound with the offline MILP.

Approach Inst. 1 Inst. 2 Inst. 3 Inst. 4 Inst. 5 Mean SD rel. Gap
MILP Off. 0.42 0.45 0.42 0.54 0.32 0.43 0.07 0.00
MILP On. 1.16 0.95 0.86 0.95 0.79 0.94 0.14 0.00
RL Down 1.16 0.97 0.84 0.96 0.93 1.01 0.21 -
RL All 1.36 1.23 0.87 0.95 0.93 1.07 0.22 -

Table 8.10: Results of the RL all peak approach compared to the greedy approach for two
very large elevator systems with 50 and 100 floors and six and four elevators, respectively.

System Size Pattern Mean ratio SDk m

4 100
Up 1.05 0.09
Down 0.92 0.07
Inter 1.38 0.19

6 50
Up 1.43 0.23
Down 1.31 0.22
Inter 1.42 0.23
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To also show some results for even larger systems we use an elevator system with six
elevators and 50 floors and an elevator system with four elevators and 100 floors, where
we only compare the RL all peak approach with the greedy approach, because the
MILP approaches take too long to find any feasible solution, as we have seen in previous
examples. We used the same hyperparameters as for the large elevator system and trained
for 700000 steps because we need more time to learn as our observation space increases
and scenarios vary more. We generate 50 up peak, down peak and inter-floor scenarios
with 60 orders with the latest arrival time being 600, and again show the mean ratio of
the RL approach to the greedy approach as well as the standard deviation. The results
are shown in Table 8.10, where we can see that the RL approach performs generally worse
than for smaller systems. For the four elevator and 100 floor system the RL approach
is a bit worse than the greedy compared to the smaller systems, but still manages to
outperform the greedy in the down peak scenarios. For the six elevator and 50 floor
system the RL approach is worse in every scenario, which shows that the RL approach
does not scale as well with the size of the system, especially when the number of elevators
increases, indicating that the information flow across the elevators may not be as effective
and too compressed for the RL to learn effectively.
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CHAPTER 9
Conclusion and Future Work

In this thesis, we have presented a comprehensive overview of the elevator assignment
and control problem for elevator group control systems with a destination registration
system and three different approaches tackling it, with the goal of minimizing the average
waiting time of passengers. We looked at different traffic patterns, i.e., up peak, down
peak and inter-floor, which define the distribution of arrival floors and destination floors
of a given instance, to simulate different real-world scenarios. We looked at the problem
from an offline perspective, where all the information about a scenario and the arriving
passengers is known in advance, as well as an online perspective, where the information
about the passengers is not known in advance and a real-life scenario can be simulated
as decisions have to be made only on current information about the system. We used the
online perspective as the main focus of this thesis, as it is more realistic and challenging,
while the offline perspective was used for comparison to show the lower bound on objective
values of the problem and what can be achieved with optimal solutions.
The first approach was a mixed integer linear Program, which was the only approach
applied to both perspectives. Both variants used MTZ formulations and a network
flow approach to model the movement of the elevator cars across time. The offline
version of the MILP can optimally solve the problem and generate a complete elevator
schedule, determining which orders to pick up and which floors to travel to – providing
sufficient time is given. The online version deals with the dynamic nature of the problem
by re-solving the MILP every time a new passenger arrives or an elevator reaches its
destination, which is generally less computationally expensive than the offline version,
but still does not scale well with the number of elevators and passengers.
The second approach was a greedy algorithm, which is a simple and fast heuristic that
assigns passengers to elevators based on a greedy strategy. The main goal of the greedy
approach is to assign elevators to pick up the nearest orders first and also try to deliver
orders which have nearer destination floors first. The algorithm also needs to handle the
coordination of the elevators in a way that they do not pick up the same orders, which
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was achieved iteratively by finding, for each elevator, the order it can pick up in the
nearest future, and the elevator with the earliest pick up time is then assigned to the
order. The process is repeated until all elevators have been assigned an order or no more
orders are available.

The third and last approach to solve the elevator assignment problem was a reinforcement
learning approach, which uses a PPO algorithm to learn a policy that assigns actions to
elevators for each decision point. The observation and the neural network model were
designed to be able to handle the generally large state space of the problem by dividing
the state information into parts containing only information for a specific action, which
was then used to predict the value of the action. To be able to handle coordination
between the elevators and their actions, aggregation of the action values was used to
ensure that we do not predict the value in isolation but rather in the context of the other
elevators. The training of the model was either done specifically for a given traffic pattern
or with a general model that was trained on all traffic patterns. The reward of an episode
summed up to be the negative of the average waiting time of all passengers normalized by
the solution of the greedy approach to give the model a baseline to distinguish between
good and bad partial solutions.

The experiments showed that the offline MILP approach was only able to generate
optimal solutions for small instances. For larger instances, the computational complexity
was too high to be practical and the solutions after three hours of computation were
far from optimal and even worse than solutions from the online approaches. The online
MILP approach on the other hand provided for most of the tested instances the best
solutions, but the computational complexity was still too high to be practical for real-time
applications. On some instances, the online MILP approach also ran into the given
time limit of ten minutes per decision point and thus could not find valid solutions
for the scenario, further showing that the MILP does not scale well with increasing
size of the system. The greedy approach showed to be the most efficient approach
in terms of computation time and was able to provide good solutions for most of the
tested instances and even outperformed the online MILP approach in some cases. The
reinforcement learning approach was not easy to tune, as it showed to be quite sensitive
to the hyperparameters, and needed fine-tuning for each traffic pattern and elevator
system to be able to provide good and competitive solutions. For most models, we found
suitable settings that were able to generate reasonable solutions, especially for smaller
elevator systems and for scenarios where many passengers arrive in a short time, as
well as scenarios with down peak traffic. The RL approach generally produced better
solutions when the model was trained on a specific traffic scenario rather than on all
traffic patterns combined. Increasing the size of the system, especially the number of
elevators, showed that the performance of the RL model, in comparison to the greedy
approach, decreased, indicating that the RL approach is not able to scale as well as the
greedy approach, w.r.t. the solution quality and computation time.

Future work may focus on improving the MILP by finding a different approach to model
the problem or improving our approach, where a focus point could be the network flow

72



graph as the maximum number of trips is often the bottleneck of the computation time
and finding tighter bounds could increase the efficiency.

Another interesting approach would be to add a neural network for the pickup decision
to the RL approach, as in our approach this was done by a greedy strategy. This could
improve the overall performance as the pickup process can be crucial for the whole
process, especially in scenarios where many orders arrive within a short time on the
same floor, i.e., in up peak traffic scenarios. New approaches could also focus on the
communication between the elevators, as this was a crucial part of the problem and the
performance of the RL approach decreased with increasing number of elevators for most
scenarios, indicating that improvements can be made in this area.

The recognition of the traffic pattern is another crucial part, which was not touched on in
this work, but could improve performance in real-world scenarios. A new approach could
focus on recognizing the traffic pattern and adjusting the model to the specific pattern.
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Overview of Generative AI Tools
Used

No generative AI tools were used while working on this thesis.
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