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Kurzfassung

Hintergrund: Glioblastoma multiforme (GBM) ist die aggressivste Form der Hirn-
tumoren, gekennzeichnet durch schnelles Wachstum und Infiltration in umliegendes
Hirngewebe. Eine präzise Segmentierung von GBM, insbesondere der pathologischen
Kontrastmittelaufladung und des nekrotischen Kerns, ist entscheidend für die chirurgische
Planung und Behandlung. Manuelle Segmentierung ist zeitaufwändig und unterliegt hoher
Interrater-Variabilität, dies erfordert automatisierte Ansätze.
Ziel: Diese Arbeit optimiert wichtige Parameter in der Deep-Learning-Segmentierung
von Glioblastomen. Der Fokus liegt auf Batch-Größe, Datenaugmentierung und der
Anzahl der Trainingsfälle sowie der Abstimmung des fokalen Gewichtsfaktors in der
kombinierten Verlustfunktion. Ziel ist es, die Genauigkeit der Segmentierung klinisch
relevanter Tumorregionen zu verbessern.
Methoden: 3D U-Net-Modelle wurden mit dem BraTS Challenge-Datensatz trainiert,
der multimodale MRT-Scans (T1 post-Kontrast, FLAIR, T2) enthält, die von einem
Neuroradiologen überarbeitet wurden, um Interrater-Variabilität zu eliminieren. Die
Modelle wurden an 108 Patienten des Universitätsklinikums Salzburg getestet, um Gene-
ralisierungsfähigkeit und Leistung zu bewerten. Die Genauigkeit wurde mit Intersection-
over-Union (IoU) und einem benutzerdefinierten gewichteten Dice-Score gemessen, wobei
der Fokus auf den Dice-Koeffizienten der Kontrastmittelaufladung und des nekrotischen
Kerns lag. Vier Fallgruppen (80, 160, 240, 314 Fälle) wurden untersucht, um den Einfluss
der Fallzahl auf die Leistung zu analysieren.
Ergebnisse: Modelle mit Batch-Größe 4 gehörten konsistent zu den besten, 80% davon
unter den Top 10. Größere Batch-Größen führten zu besserer Generalisierung und Sta-
bilität bei steigender Fallzahl. Augmentierungen führten in der Regel zu schlechteren
Ergebnissen, außer beim besten Modell, das mit einem 1:1-Verhältnis von Augmentie-
rungen zu Originalen, Fallgruppe 314 und einer Batch-Größe von 1 trainiert wurde und
außergewöhnlich gut abschnitt.
Fazit: Augmentierungen mit einem 1:3-Verhältnis schnitten schlecht ab, besonders, wenn
drei Varianten eines Originals in einer Batch von 4 waren, was zu Overfitting führte.
Ein Mangel an Diversität innerhalb der Batches verursachte Overfitting, während eine
Strategie, die verschiedene Augmentierungen mischte, besser generalisierte. Modelle der
Fallgruppe 314 erzielten die besten Ergebnisse, was die Bedeutung größerer Datenmengen
für eine verbesserte Leistung zeigt.
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Abstract

Background: Glioblastoma multiforme (GBM) is the most aggressive form of brain
cancer, characterized by rapid growth and infiltration into surrounding brain tissue.
Precise segmentation of GBM, particularly the contrast-enhancing region and necrotic
(non-contrast-enhaning) core, is critical for surgical planning and treatment. Manual
segmentation methods are time-consuming and subject to high interrater variability,
necessitating automated approaches for greater consistency.
Objective: This thesis aims to optimize key parameters in deep learning-based seg-
mentation of glioblastomas, focusing on the impact of Batch size, data augmentation
strategies, and the number of training cases on model performance, along with tuning
the Focal Weight Factor in the Combined Loss Function. The goal is to improve the
accuracy of segmenting clinically relevant tumor regions.
Methods: In this study, 3D U-Net models were trained using the BraTS Challenge
dataset, which includes multimodal MRI scans (T1 post-contrast, FLAIR, and T2)
with expert-labeled segmentations reviewed by a neuroradiologist to eliminate interrater
variability. The models were evaluated on 108 unseen clinical cases from patients at the
University Hospital Salzburg to assess their generalization capability and performance.
Segmentation accuracy was measured using Intersection over Union (IoU) and a Custom
Weighted Dice Score, focusing on Dice coefficients for the contrast-enhancing and non-
contrast-enhancing tumor. Four Case Groups (80, 160, 240, and 314) were used to
examine the effect of Case Group size on performance.
Results: Models trained with Batch size of four consistently ranked among the top per-
formers, with 80% making it into the top 10, suggesting that larger Batch sizes contribute
to better generalization and stability as number of training cases increase. However,
augmentations generally resulted in worse performance, except for one outlier—the best
performing model—trained with a 1:1 ratio of augmentations to originals, Case Group
314, and a Batch size of one, which performed exceptionally well.
Conclusion: Augmentations with a ratio of 1:3 performed poorly, particularly when
three variants of one original were included in a Batch size of four, leading to overfitting.
This suggests a lack of diversity within the batches caused the model to overfit, whereas
a strategy mixing different augmentations within each batch led to better generalization.
Case Group 314 models performed best, highlighting the importance of more training
data for improved performance.
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CHAPTER 1
Introduction

1.1 Motivation and Problem Definition

Glioblastoma multiforme (GBM) is the most frequent and most lethal tumor of the
central nervous system. It is characterized by its aggressive growth, including rapid
proliferation and extensive infiltration into surrounding brain tissue, which complicates
treatment [DLCG16]. Even with modern treatments, including surgery, radiotherapy,
and chemotherapy, the prognosis remains poor [BV09]. The median survival for patients
undergoing optimal treatment, including maximal resection and adjuvant chemoradio-
therapy, is around 14 months [BV09, DLCG16].

Accurate segmentation of glioblastoma, especially the contrast-enhancing regions and
necrotic (non-contrast-enhancing) core, is crucial for surgical planning. These regions
represent the primary targets for resection because they contain the most aggressive
tumor cells [FTPM20]. Incomplete removal of these regions significantly increases the
risk of tumor recurrence, especially at the resection margins, due to GBM’s infiltrative
nature [CIF+23]. Precise delineation is essential to reduce recurrence risks and improve
patient outcomes [FTPM20].

Manual segmentation of glioblastoma in Magnetic Resonance Imaging (MRI) scans is
time-consuming and depends heavily on the expertise of neuroradiologists. Interrater
variability, a well-known issue, leads to inconsistencies in tumor volume assessments
[CMB+22]. This variability stems from the subjective nature of manual delineation,
particularly in difficult cases where tumor boundaries are unclear, impacting both clinical
decisions and treatment outcomes [WRP20]. Manual segmentation is especially error-
prone if tumor margins are difficult to define or infiltrate surrounding tissue. The
challenge of distinguishing tumor tissue from surrounding edema further complicates
achieving accurate and consistent segmentation [VMV+18].
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1. Introduction

Automated segmentation with advanced machine learning techniques has proven effective
in reducing the variability of manual methods, offering more consistent and reliable
results [LQX+24]. This approach enhances the accuracy of organ and tumor segmentation
compared to manual methods and helps reduce discrepancies in treatment planning,
which can impact therapies like radiation treatment [LQX+24].

In recent years, deep learning has emerged as a powerful tool for automating medical im-
age analysis, particularly for segmentation tasks [LJZZ23]. Convolutional neural networks
(CNNs), especially U-Net architectures [HJHK19], have demonstrated superior perfor-
mance in biomedical image segmentation tasks, enabling accurate delineation of complex
anatomical structures. For GBM, deep learning models hold the potential to standardize
the segmentation process, reduce interrater variability, and provide fast, reproducible
results [CAMS+23]. These methods are especially effective in capturing critical tumor sub-
regions, such as contrast-enhancing and necrotic (non-contrast-enhancing) areas, which
are essential for surgical resection and radiation therapy planning [HJHK19, LQX+24].

The heterogeneity of GBMs poses significant challenges for automated segmentation.
Each tumor subregion, including contrast-enhancing areas, the necrotic (non-contrast-
enhancing) core, and surrounding edema (as shown in Figure 2.1), has distinct radiological
and morphological features that complicate the process [FLG+24]. While contrast-
enhancing regions are usually clear in MRI scans, the necrotic (non-contrast-enhancing)
core lacks contrast, making it harder to differentiate [WC18]. Additionally, edema
often has diffuse, poorly defined borders that overlap with healthy brain tissue, further
complicating segmentation [FLG+24].

Since the tumor volume is significantly smaller compared to healthy tissue, this leads to
class imbalance, causing models to often favor the majority class. As a result, smaller
but clinically relevant tumor areas may be segmented suboptimally [WC18]. To address
this issue, advanced loss functions such as the Focal Dice Loss have been developed
[WC18]. These integrate class weights to prioritize accurate segmentation of smaller,
critical regions such as the necrotic (non-contrast-enhancing) core and contrast-enhancing
areas [YSSR22]. This method reduces bias toward the majority class and enhances
segmentation accuracy for minority classes [YSSR22].

Optimizing deep learning models for medical image segmentation involves fine-tuning key
hyperparameters, including Batch size, data augmentation strategies, and the loss function
[MD22]. Batch size is especially important for model convergence and segmentation
accuracy, with smaller sizes often preferred in imbalanced datasets as they introduce
gradient noise, preventing the model from getting trapped in local minima and improving
generalization [MD22]. Well-tuned data augmentation strategies are also crucial for
enhancing model robustness, allowing better generalization to new, unseen data, and
helping to prevent overfitting, particularly when training on small datasets [OdANC23].

Data augmentation is vital for improving the generalizability of deep learning models,
especially when training data is limited. Transformations like rotation, flipping and scaling
artificially increase the size and diversity of the dataset, helping to reduce overfitting

2
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[YXZ+22]. This allows the model to learn more robust features and perform better on
unseen data [SK19]. In medical imaging, where large datasets are often hard to obtain,
data augmentation has proven effective in enhancing model performance by introducing
variations that improve generalization [SK19, YXZ+22].

1.2 Aim of the Work
The main goal of this work is to create an automated multisequence volumetric segmen-
tation pipeline for glioblastoma, using deep learning to optimize performance through
parameter tuning. The focus is on understanding how modifiable parameters—such as
Batch size, data augmentation, and the number of training cases—impact the accuracy
and efficiency of segmentation. Additionally, the work examines optimizing the Focal
Weight Factor within the Combined Loss Function. Through hyperparameter tuning,
the optimal Focal Weight Factor is determined to achieve the best segmentation perfor-
mance. This is assessed using evaluation metrics such as Intersection over Union (IoU)
and Dice Score shown in Section 4.1. The ultimate aim is to improve segmentation ac-
curacy, especially in the challenging peritumoral regions, by maximizing these key metrics.

Main Research Question:
How do different parameters impact the performance of glioblastoma segmentation using
deep learning, as measured by Intersection over Union (IoU) and Dice Score? Additionally,
how does optimizing the Focal Weight Factor in the Combined Loss Function affect
segmentation accuracy? This research focuses on how modifiable parameters—Batch size,
data augmentation, the number of training cases, and the Focal Weight Factor—affect
segmentation performance, particularly in clinically relevant tumor subregions.

Sub-Questions:

Q1. How does the choice of Batch size affect the training time and segmentation accuracy,
as measured by the IoU and Dice Score?

Q2. Effect of augmentations:

a. What is the impact of augmentation on segmentation performance?
b. How does the number of augmentation cases affect the outcome?
c. What is the effect of the ratio of augmentation cases to original training cases

on the segmentation results?
d. How do different augmentation strategies (e.g., using variants of a single original

case within a batch vs. employing random variants) influence segmentation
performance?

3
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Q3. Effect of the number of training cases:

a. How does segmentation performance (IoU and Dice Score) change with an
increasing number of training cases?

b. What is the effect of the number of training cases and augmentations on
training time, especially in relation to Batch size?

Q4. How does tuning the Focal Weight Factor (within the range of 0.0 to 5.0, in 0.1
increments) affect metrics like the IoU and Dice Score?

Q5. Is it possible to detect signs of overfitting during the training process? What
indicators suggest model saturation, and how can these be addressed?

1.3 Methodological Approach
The methodological approach of this work involves developing and evaluating a deep
learning-based segmentation pipeline for glioblastoma, using three MRI sequences: T1-
weighted post-contrast, FLAIR, and T2. These sequences were chosen for their ability
to capture different aspects of glioblastoma tissue, essential for accurately segmenting
the contrast-enhancing tumor, necrotic (non-contrast-enhancing) core, and surrounding
edema. The pipeline is illustrated in Figure 1.1.

The model is trained using the RSNA-ASNR-MICCAI Brain Tumor Segmentation
Challenge (BraTS) dataset [BGM+23], detailed in Section 5.1. This dataset includes
multimodal MRI scans of glioblastoma patients with expert-labeled ground truth seg-
mentations, enabling robust training with diverse data. Specifically, the BraTS dataset
contains T1-weighted post-contrast, FLAIR, and T2 sequences, all critical for compre-
hensive tumor segmentation.

For evaluation, a separate set of 108 patients with newly diagnosed glioblastoma, treated at
the University Hospital Salzburg between February 2009 and August 2022, is used. These
patients met the inclusion criteria outlined in Section 5.1. This unseen dataset allows
the model to be tested on real clinical data, providing insights into its generalizability
beyond the training dataset.

Segmentation is performed using a 3D U-Net architecture [RFB15], which is particularly
effective for capturing spatial information in volumetric images. Ground truth segmenta-
tions from an experienced neuroradiologist serve as the benchmark for evaluating model
performance. The main metrics for assessing segmentation accuracy are the Intersection
over Union (IoU) and a custom-developed Dice Score. This Dice Score is calculated
using weighted Dice coefficients for the three tumor classes: non-contrast-enhancing,
contrast-enhancing, and edema described in Section 4.1.6. Weighted coefficients reflect
the varying clinical importance of each subregion, as outlined by Taha and Hanbury
[TH15], who reviewed metrics for 3D medical image segmentation.
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The strength of this approach lies in the weighted Dice Score, which focuses on clinically
relevant tumor subregions, particularly those critical for surgical intervention. By assign-
ing higher weights to the contrast-enhancing tumor, necrotic (non-contrast-enhancing)
core, and edema in descending order, the model prioritizes accuracy in areas that di-
rectly affect treatment decisions. This ensures that segmentation emphasizes regions
critical for improving surgical outcomes, such as contrast-enhancing tumor margins, while
accounting for other subregions like necrosis and edema. Furthermore, the automated
segmentation pipeline significantly reduces interrater variability, a common issue in
manual segmentation. This consistency leads to more reliable treatment planning and
predictions of outcomes. Final results are rigorously compared with expert-labeled ground
truth segmentations, reviewed by an experienced neuroradiologist, ensuring the model’s
clinical relevance and robustness.

1.4 Requirements
This thesis outlines several key requirements for developing and evaluating a successful
deep learning-based segmentation model for glioblastoma:

High-quality MRI data: The research relies on multimodal MRI data, specifically
T1-weighted post-contrast, FLAIR, and T2 sequences, to fully capture the characteristics
of glioblastoma.

Segmentation Accuracy: The model’s accuracy is assessed using metrics like Inter-
section over Union (IoU) and a customized Dice Score, focusing on the main tumor
classes (contrast-enhancing, necrotic (non-contrast-enhancing), and edema). Weighted
Dice coefficients reflect the clinical importance of each tumor class.

Computational Resources: Given the large dataset and the complexity of the 3D
U-Net architecture, high-performance computational resources are essential. A multi-
GPU setup or cloud-based resources, as discussed in Section 6.10, are recommended to
efficiently manage the training process and prevent computational bottlenecks.

Reproducibility: Ensuring consistency in results requires reproducibility across experi-
ments. This is achieved by using a fixed random seed for data shuffling and augmentation,
allowing the exact reproduction of training conditions in different runs.

Parameter Optimization: Hyperparameter tuning—such as adjusting Batch size,
augmentation ratios, and the Focal Weight Factor—is essential for improving segmentation
performance, particularly in clinically important tumor subregions. This optimization is
crucial for ensuring that the model generalizes well to new data and avoids overfitting.

1.5 Contribution
In existing studies on reproducibility, such as those by Leventi-Peetz et al. [LPO22] and
Chen et al. [CWS+22], the reproducibility of deep learning models is often achieved
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1.5. Contribution

by setting random seeds for weight initialization and data shuffling. These approaches
primarily focus on minimizing random factors within the training pipeline by system-
atically standardizing environmental conditions and hardware configurations. Chen et
al. [CWS+22], in particular, employ a systematic approach in which random software
operations are managed through a record-and-replay system, while hardware-related
non-determinisms are controlled. However, these methods are often either complex or
challenging to integrate into existing systems.
The approach chosen in this study goes beyond these methods by not only setting seeds
for consistent weight initialization and shuffling, but also managing the exact sequence in
which training cases are processed across multiple runs. This is achieved through the use
of a pre-defined seed list that enables the exact reproduction of the training case order.
By ensuring that the model encounters the same training data in the same order, this
approach provides finer control over learning steps. This precise management surpasses
the methods commonly used in prior studies, significantly contributing to the reduction
of variations and non-determinisms during training.
In existing literature, approaches to hyperparameter optimization are often focused
on broad, generalizable methods across machine learning tasks. For example, Yang
and Shami [YS20] discuss techniques such as grid search, random search, and Bayesian
optimization for hyperparameter tuning. These methods are designed to explore a wide
parameter space efficiently, providing high-level optimization for various machine learning
models. However, they do not explore domain-specific configurations in depth, such as
those required for complex medical image segmentation tasks. In contrast, the approach
taken in this work emphasizes a more targeted, granular optimization of parameters.
Specifically, by systematically tuning the Focal Weight Factor in small increments, this
study achieves a level of control and sensitivity necessary for accurate segmentation
of glioblastoma tumor regions—a critical area where general hyperparameter tuning
methods may fall short.
Similarly, Wistuba et al. [WRP19] explore neural architecture search (NAS) using
reinforcement learning and evolutionary algorithms, which are primarily intended for
finding optimal architectures through structural experimentation. These methods address
architecture-level adjustments and rely on broad parameter search strategies, without
focusing on incremental dataset expansion or specific medical imaging configurations.
The approach used in this study applies an incremental expansion strategy, where training
datasets are gradually expanded from smaller to larger subsets (e.g., from 80 to 314
cases). This structured expansion allows for refined control of both model complexity
and dataset size, optimizing performance progressively across stages rather than relying
on general architecture search methods.
Another notable difference lies in reproducibility practices. While Yang and Shami [YS20]
and Wistuba et al. [WRP19] emphasize reproducibility through deterministic processes,
they do not address the exact loading order of training cases or augmentations across
iterations. In contrast, this work achieves reproducibility not only by setting random
seeds but also by preserving the precise sequence of training cases and augmentations.
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This consistency ensures that the model encounters data in the same order across runs,
enhancing reproducibility and minimizing variability—a critical factor in medical deep
learning where reliable and replicable results are essential.

1.6 Structure of the Work
The diploma thesis is organized into eight chapters, as outlined in the following:

Chapter 1 Introduction outlines the motivation, problem definition, objectives of the
thesis, and provides an overview of the methodology and key requirements.

Chapter 2 Clinical Background gives an overview of glioblastoma multiforme, focusing
on its invasive nature and the imaging methods used for diagnosis and treatment planning.

Chapter 3 Tumor Segmentation on Medical Images describes how convolutional
neural networks (CNNs), particularly U-Net, are applied for tumor segmentation. Relevant
studies and methods are also discussed.

Chapter 4 Evaluation Metrics and Loss Functions explains the performance
metrics such as Intersection over Union (IoU), Dice Score, and Hausdorff Distance, along
with the Loss functions used during training.

Chapter 5 Methodology presents the design and training of the 3D U-Net model,
covering the data sources, preprocessing steps, augmentation strategies, and the training
process, including the development of the Custom Weighted Dice Score.

Chapter 6 Implementation details the preprocessing steps for training and evaluation
datasets and the methods used to assess model performance on unseen data. Techniques
such as Contrast Limited Adaptive Histogram Equalization (CLAHE) and data cropping
are detailed.

Chapter 7 Results examines the segmentation performance of different models using
metrics such as IoU, Dice Score, and Custom Weighted Dice Score. Additionally, it
evaluates the models’ generalization on the unseen dataset and highlights the top-
performing results.

Chapter 8 Discussion, Outlook and Conclusion provides a summary of the findings,
addresses the study’s limitations, and gives recommendations for future work.
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CHAPTER 2
Clinical Background

2.1 Glioblastoma Multiforme

Glioblastoma multiforme (GBM) is classified as a grade IV astrocytoma according to the
World Health Organization (WHO) and is the most aggressive and malignant form of
brain cancer. GBM has an incidence rate of approximately 3 per 100,000 adults annually
[LPW+21]. This tumor entity is the most common and aggressive form of brain cancer
in adults and presents significant clinical challenges due to its highly invasive nature
and poor prognosis [MOK+21, OCW+21]. Originating from the white matter of the
brain, GBMs diffusely infiltrate surrounding healthy brain tissue, rendering complete
surgical removal of all tumor cells virtually impossible [DPSS19]. This infiltration not
only disrupts normal brain function but also accelerates the decline in key neurological
functions such as motor skills, speech, vision, and cognitive abilities [Org24].

Additionally, GBMs are notorious for rapid growth and resistance to standard therapies,
including chemotherapy and radiotherapy. Microscopic tumor cells, which often remain
undetected in imaging, increase the risk of recurrence following surgery. These deeply
embedded cell nests further complicate treatment and contribute to the high recurrence
rate even after maximal resection [SPPDSBO22].

2.2 Medical Imaging Methods

Several medical imaging techniques are used to diagnose and monitor glioblastoma. Each
provides unique insights into the tumor’s characteristics and growth patterns. These
imaging modalities include:
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2.2.1 Computed Tomography (CT)
Cranial Computed Tomography (cCT) is frequently used in emergency settings for the
initial detection of a brain tumor and to quickly assess the presence of a mass effect. On
CT images, GBMs can appear as irregular, hyperdense (in case of acute hemorrhage),
or hypodense (reflecting necrosis or cystic components) areas [RT12], which fits the
appearance shown in the CT scan in Figure 2.1, A. Often with surrounding edema,
that appears hypodense in peritumoral regions. However, cCT lacks the specificity to
differentiate glioblastoma from other types of brain tumors or non-tumor lesions based
on imaging characteristics alone. Therefore, Magnetic Resonance Imaging (MRI) is the
gold standard for the diagnosis and evaluation of glioblastoma due to its superior soft
tissue contrast [Dhe14].

2.2.2 Magnetic Resonance Imaging (MRI)
Glioblastoma multiforme usually shows a typical garland-shaped marginal enhancement
in the T1-weighted post-contrast sequence (Figure 2.1, C), with the surrounding edema
spreading finger-like over a large area, which is best visualized in the FLAIR sequence
(Figure 2.1, B). The contrast-enhancement alone does not provide information about the
malignancy of the tumor itself, e.g., astrocytomas WHO III occasionally do not show a
contrast-enhancement but are highly malignant [GKD+11].

Figure 2.1: A: cCT showing tumor mass left frontal, B: Fluid Attenuated Inversion
Recovery (FLAIR) magnetic resonance imaging (MRI) suppressing fluid signals to high-
light edema and gliotic changes, C: Post-contrast T1-weighted sequence demonstrating
a garland-shaped, contrast-enhancing lesion parasagittal left frontal, D: FET PET-CT
with average SUV 1.88 in tumor mass (histologically confirmed glioblastoma multiforme,
IDH-wildtype).

2.2.3 Diffusion-Weighted MRI
Magnetic Resonance Imaging (MRI), particularly when employing Diffusion Tensor
Imaging (DTI) [BML94], is a sophisticated neuroimaging technique that provides detailed
insights into the brain’s microstructural environment at a molecular level. DTI provides
a unique ability to map the diffusion of water molecules within brain tissue, which
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2.2. Medical Imaging Methods

reveals critical information about the brain’s microarchitecture. This methodology allows
for the visualization of neuronal fiber tracts, offering a detailed representation of the
directional pathways and connectivity within the brain’s white matter [EOPB+22]. DTI
is instrumental in understanding and diagnosing a range of neurological conditions, as
it provides an unparalleled view of the intricate network of neural pathways and their
integrity or disruption in various disease states.

Diffusion Tensor Imaging (DTI) is a potent MRI modality capable of delineating neuronal
structural abnormalities that result in loss of function and are undetectable through
conventional MRI sequences [MBC+08]. In the context of glioblastoma, where edematous
alterations can obscure critical details, DTI provides a significant advantage. It achieves
this by mapping the diffusion patterns of water molecules in brain tissue, which are
altered in the presence of disrupted neural architecture [SMAS13]. Direction-dependent
diffusion can be well described with three-dimensional ellipsoids by introducing a tensor
into the Stejskal and Tanner equation [ST65].

S = S0e−bĝT Dĝ (2.1)

Where S is the signal intensity measured after the application of the diffusion gradient,
and S0 is the baseline signal intensity without any diffusion gradient. The parameter b
represents the b-value, which quantifies the strength, duration, and temporal spacing
of the diffusion gradients in MRI. In modern MRI scanners, b-values typically range
from 0 to 3000 sec/mm2 [BDEY01], with values around 1000 sec/mm2 being common for
diffusion-weighted imaging [KM04], and higher values, up to 1500 to 2000 sec/mm2, used
for specific clinical applications like stroke imaging to enhance contrast between normal
and ischemic tissues [KM04, MBC+08]. The vector ĝ denotes the direction of the applied
diffusion gradient, while D is the diffusion tensor, a 3x3 matrix that characterizes the
diffusion properties, specifically the rate and direction of water diffusion in the tissue
[MBC+08]. The term ĝT Dĝ represents the projection of the diffusion tensor along the
direction of the gradient vector ĝ [SMAS13].

The formula that characterizes the b-value is given by:

b = γ2G2δ2
(︃

Δ − δ

3

)︃
(2.2)

Where γ is the gyromagnetic ratio, a constant specific to the nucleus being imaged, G
represents the amplitude of the diffusion gradient, which controls the strength of diffusion
weighting, δ refers to the duration of the applied gradient pulses, and Δ is the time
between the onset of the two diffusion gradients. These variables together influence the
degree of diffusion weighting and thus the sensitivity of the MRI scan to water molecule
movement within the tissue [MBC+08].

Fractional anisotropy FA is a measure of the tensor and can be calculated using its
eigenvectors [BP96]:
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FA = 1√
2

√︄
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ1 − λ3)2

λ2
1 + λ2

2 + λ2
3

(2.3)

Here λ1, λ2, and λ3 are the eigenvalues of the diffusion tensor D and represent the
magnitude of diffusion along the principal axes of the tensor [MBC+08]. The tensor is
defined as:

D =

�d11 d12 d13
d21 d22 d23
d31 d32 d33


 (2.4)

By following the primary diffusion direction, typically the eigenvector corresponding to
λ1, the structure of white matter pathways can be traced [MBC+08]. This method maps
and visualizes the connectivity between different brain regions and can reveal changes in
neural integrity, which may remain hidden in conventional imaging, especially in cases of
glioblastomas [EOPB+22].

2.2.4 Dynamic Susceptibility Contrast (DSC) Perfusion MRI
Dynamic Susceptibility Contrast DSC Perfusion MRI refers to a magnetic resonance
imaging technique used to evaluate blood flow through tissues and organs [BRK+90].
This method involves the rapid injection of a contrast agent, usually gadolinium-based,
into a vein. As the contrast agent passes through the brain (or another organ being
imaged), it causes a temporary decrease (susceptibility effect) in the signal intensity on
T2*-weighted Perfusion MRI images. By measuring these changes in signal intensity
over time, it is possible to generate various parameters related to blood flow, such
as cerebral blood volume (CBV), cerebral blood flow (CBF), and mean transit time
(MTT) [JLOC14, SOM+20]. DSC Perfusion MRI is particularly useful for brain tumors
because it can differentiate between tumor types based on their blood flow, blood
volume, and leakage characteristics [TMC+11]. For instance, higher-grade tumors such
as glioblastomas typically show increased perfusion and relative cerebral blood volume
(rCBV) compared to lower-grade tumors, due to their higher vascularity and angiogenic
activity [SOM+20]. This information can aid in determining tumor grade, assessing
tumor aggressiveness, and distinguishing between tumor recurrence and treatment-related
changes such as radiation necrosis [WRM+14]. The radiation-induced necrosis tends to
result in reduced blood flow [WRM+14].

2.2.5 Dynamic Contrast Enhanced (DCE) Perfusion MRI
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a technique
that involves the injection of a contrast agent to enhance the visualization of tissues
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and blood vessels in Perfusion MRI scans [LWS+84]. Glioblastomas are known for
their aggressive and highly vascular nature. They often exhibit areas of high perfusion
and vascular permeability because of the presence of abnormal and leaky blood vessels,
a phenomenon known as neoangiogenesis [FHP+21]. The parameter Ktrans measures
the transfer constant of the contrast agent from blood plasma into the extravascular
extracellular space (EES). Contrast agent accumulates within the tissue extracellular
space at a rate determined by perfusion, capillary permeability, and surface area [Tof97].
It is a reflection of both blood flow and the permeability of the tissue to the contrast
agent. This parameter can be particularly useful in differentiating between glioblastomas
and other types of tumors due to the unique vascular characteristics of glioblastomas
[CB13]. Ktrans values in glioblastomas tend to be higher compared to other tumors and
normal brain tissue, reflecting these tumors’ higher blood flow and vascular permeability
[FHP+21].

2.2.6 Positron Emission Tomography (PET)
PET-CT, which stands for Positron Emission Tomography combined with Computed
Tomography, is an advanced imaging technique that provides both functional and anatom-
ical information. In the context of glioblastoma diagnosis, PET-CT can play a significant
role by offering insights into the metabolic activity of the brain tissues, alongside detailed
structural images. An increased metabolism is reflected in a higher uptake of certain
radiotracers. Therefore, high-grade tumors like glioblastomas typically exhibit higher
uptake levels compared to lower-grade gliomas, this has been observed specifically with
18F-FDG [AWS+16, SDW+19].

18F-Fluoroethyltyrosine (FET) is a radiolabeled amino acid, which is specifically used as
a tracer in PET imaging for brain tumors originating from glial cells. It is taken up by
active tumor cells due to their increased amino acid transport, making it a valuable tool
for assessing the metabolic activity of brain tumors. FET has several advantages over
the more traditional FDG (Fluorodeoxyglucose), especially in the brain, where FDG’s
effectiveness is limited by the high background glucose metabolism of normal brain tissue
[HNP+13]. As shown in Figure 2.1, D, FET PET-CT provides better contrast between
tumor and normal brain tissue, improving the ability to delineate tumor boundaries,
assess tumor grade, and monitor treatment response or disease progression [HNP+13].

Despite its diagnostic advantages, PET-CT also presents several significant drawbacks,
particularly related to the exposure to ionizing radiation from both the CT scan and
the radioactive tracers used in PET imaging. This is especially concerning for patients
requiring multiple scans over time for treatment monitoring, as cumulative radiation
exposure can heighten the risk of radiation-induced damage or secondary malignancies
[MKF+20]. Additionally, logistical challenges arise due to the production of radiotracers
like 18F-Fluoroethyltyrosine (FET), which have a relatively short half-life (approximately
110 minutes [WLSC22]), requiring them to be produced in specialized facilities close to
the imaging site. This not only limits the availability of PET imaging but also increases
the complexity and cost of the procedure [TRX23, BGPB14].
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2.2.7 Magnetic Resonance Spectroscopy
Magnetic Resonance Spectroscopy (MRS) is a non-invasive diagnostic tool that supple-
ments traditional MRI by providing biochemical information about tissues. It measures
the concentration of specific molecules, offering insights into the metabolic changes
in brain tumors, including glioblastoma. For glioblastoma diagnosis, MRS can help
by identifying unique metabolic patterns, such as elevated choline, reduced N-acetyl
aspartate (NAA) (as shown in Figure 2.2), and the presence of lactate and lipids, which
are indicative of high tumor cellularity, proliferation, and necrosis [WKSM21, PKF+11].
These metabolic signatures aid in distinguishing glioblastoma from other types of brain
lesions, thereby enhancing diagnostic accuracy and treatment planning. Furthermore,
the ratios of the metabolites mentioned, especially choline/NAA and choline/creatine,
can be used to differentiate between low and high-grade astrocytomas [PKF+11].

The presence of a 2-Hydroxyglutarate (2-HG) peak at 2.25 ppm provides evidence of
the presence of an IDH mutation [CGD+12]. According to the currently valid WHO
classification from 2021, the presence of 2-HG is not compatible with glioblastoma
multiforme, as this designation is reserved exclusively for the wildtype [LPW+21].

2.3 Histopathological Diagnosis (Biopsy & Resection)
The histopathological diagnosis, which is made by biopsy and resection, is considered the
gold standard for the diagnosis of glioblastoma, as it reveals the characteristic pathological
features of this aggressive brain tumor with unparalleled accuracy [LPW+21]. With
this method, the tumor tissue can be examined directly under the microscope, allowing
pathologists to observe the specific cellular abnormalities and mitotic activity that
characterize glioblastoma. This level of detailed examination is critical for a definitive
diagnosis, distinguishing glioblastoma from other types of brain tumors and guiding
the selection of the most appropriate therapeutic strategies. Histopathological analysis
not only provides insights into the tumor’s grade and aggressiveness but also identifies
molecular markers that can influence treatment decisions, such as O6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation status and isocitrate dehydrogenase
(IDH) mutations, which have been linked to response to certain chemotherapies and
targeted therapies [MVL+14].Therefore, the accuracy and depth of information provided
by histopathological diagnosis are essential for optimizing patient outcomes through
tailored therapy plans [LPW+21].
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Figure 2.2: Multi-voxel spectroscopy showing an increased choline (Cho) peak, a signifi-
cantly reduced creatine (Cr) peak, and a nearly non-existent N-acetyl aspartate (NAA)
peak. Additionally, a distinct M-shaped lactate peak at 1.3 ppm is present, although it
was not labeled, and there is no evidence of a lipid peak (same patient as in Figure 2.1).
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CHAPTER 3
Tumor Segmentation on Medical

Images

In tumor segmentation, a critical aspect of medical image processing, various machine
learning, and deep learning approaches are employed to automatically identify and
delineate tumors in imaging techniques such as MRI, CT, or PET. Below are some of
the most common approaches.

3.1 Convolutional Neural Networks (CNNs)
CNNs are a class of deep learning models that are particularly well-suited for image
recognition and image processing [KSH17]. In tumor segmentation, they are used to
automatically extract features from images and learn to distinguish tumor tissue from
healthy tissue.

3.2 U-Net
U-Net, a special architecture of a Convolutional Neural Network (CNN), was first
introduced by Ronneberger et al. [RFB15], for image segmentation tasks. Its distinctive U-
shaped structure, as shown in Figure 3.1, allows the combination of contextual information
across different scales. The network uses a contracting path to capture context and a
symmetric expanding path for precise localization [RFB15]. U-Net is designed to work
efficiently with limited images, performing segmentation through convolutional operations,
downsampling with pooling, and upsampling. This architecture allows U-Net to learn
from small training datasets with extensive data augmentation, particularly elastic
deformations, making it highly effective for biomedical image segmentation [CAL+16].
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U-Net’s design is highly effective for segmenting tumors like glioblastomas, which often
have blurry edges and heterogeneous regions [DYL+17]. Its precise ability to distinguish
between tumor and non-tumor tissue is crucial for the complex task of glioblastoma
segmentation [DYL+17]. Typically, glioblastomas are imaged using MRI with sequences
such as T1, T1 post-contrast, T2, and FLAIR, and U-Net’s versatility allows for the
processing of these multisequence inputs [MJB+15, DYL+17]. This flexibility makes
U-Net well-suited for recognizing glioblastoma subtypes and different growth patterns,
making it a valuable tool for complex medical imaging analysis [DYL+17].

3.2.1 U-Net Fundamentals
The U-Net architecture is shown in Figure 3.1, which details its contracting and expan-
sive paths and demonstrates how each part contributes to the network’s functionality.
Understanding these components helps clarify how U-Net achieves accurate segmentation
in biomedical images.

Contracting Path
The contracting path follows the standard convolutional network architecture. It involves
repeated applications of convolutional layers (with ReLU activation) followed by max-
pooling for downsampling, capturing high-level features and contextual information from
the input image.

• Convolutional Layers (Conv 3x3, ReLU): Each blue arrow in the diagram
represents a convolution operation with 3x3 filters followed by a ReLU activation.
The numbers indicate the dimensions of the feature maps at each stage.

• Max Pooling Layers (Max Pool 2x2): The red arrows represent 2x2 max-
pooling operations, which down-sample the feature maps, reducing their spatial
dimensions while increasing the depth.

Bottleneck
At the U-Net’s base, two convolutional layers with a high number of feature channels
capture the most abstract features from the input image.

Expansive Path
The expansive path involves upsampling operations to increase the resolution of the
output. Each upsampling step is followed by a convolutional layer that reduces the
number of feature channels. Skip connections are also used to concatenate feature maps
from the contracting path, allowing for precise localization.

• Up-Convolutional Layers (Up-Conv 2x2): The green arrows indicate up-
convolution or transposed convolution operations, which up-sample the feature
maps, increasing their spatial dimensions.
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• Concatenation (Copy and Crop): The grey arrows show where feature maps
from the contracting path are concatenated with the up-sampled feature maps,
allowing the network to combine low-level and high-level features.

• Convolutional Layers (Conv 1x1): The final layer in the expansive path uses a
1x1 convolution to map the feature vector to the desired number of classes (e.g., 2
for binary segmentation).

Output Segmentation Map
The output is a segmentation map of dimensions 388 x 388, representing the predicted
segmentation of the input image [RFB15].

Figure 3.1: U-Net Architecture for Biomedical Image Segmentation This figure illustrates
the U-Net architecture designed for biomedical image segmentation, highlighting its
distinctive U-shaped structure that enables both precise localization and contextual
understanding. The architecture consists of a contracting path (left side) and an expansive
path (right side), with a vertical red line and labels added to enhance the visual separation
and identification of these paths. Adapted from: [RFB15].
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3.2.2 Key Components and Principles
Non-Linear Activation Functions

According to Goodfellow et al. [GBC16], non-linear activation functions are essential in
neural networks as they introduce the non-linearity needed to capture complex relation-
ships within data. Among these, the Rectified Linear Unit (ReLU) is particularly favored
and is defined as:

f(x) = max(0, x) (3.1)

Where f(x) is the output function, returning zero for any negative input x and retaining
positive values as they are. ReLU offers distinct advantages over hyperbolic tangent
and logistic sigmoid functions, particularly for medical image segmentation. Its non-
saturating, linear structure helps avoid the vanishing gradient problem, which allows
deeper networks to learn more effectively [NPN+21]. By setting negative values to zero,
ReLU promotes sparsity in the network, reducing computational demands and enhancing
efficiency [NPN+21]. This sparse activation also improves feature focus, helping to
emphasize relevant structures in medical slice images and thereby contributing to more
accurate segmentation outcomes [VCS24].

Convolutional Layers

Convolutional layers form the core of the U-Net architecture. They apply convolution
operations to the input, followed by an activation function (typically ReLU), to extract
features such as edges, textures, and patterns from the input image.

In the U-Net diagram in Figure 3.1, which is adapted from Ronneberger et al. [RFB15],
each blue arrow represents a convolution operation. For example, the initial input image
tile (572 x 572) undergoes multiple convolutions, reducing its dimensions while increasing
the number of feature channels (e.g., from 1 to 64). This process continues as the image
is downsampled in the contracting path. A convolution is defined as:

(f ∗ g)(t) =
∞∑︂

a=−∞
f(a)g(t − a) (3.2)

Where f(a) represents the input image data, where a refers to the position of a specific
pixel in the image. The filter or kernel applied during the convolution is denoted by
g(t−a). This filter g is shifted across the image, with t representing the position where the
filter is currently centered. At each position t, the filter is applied to a local neighborhood
of pixels in the input image. The summation runs over all possible values of a, which
represent the pixel positions within this local neighborhood [DV16].

Overall, this convolution describes the process in which the filter g "slides" over the input
image f , and at each position t, it calculates a weighted sum of the neighboring pixel
values. This operation, described by Ian Goodfellow et al. [GBC16] in "Deep Learning",
forms the core of convolutional neural networks (CNNs), which are widely used in
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image processing. As explained by Goodfellow, convolution allows for the extraction of
important features such as edges and patterns by applying small kernels across an image
in this systematic manner.

Pooling Layers

Max-pooling layers are used in the contracting path to down-sample the feature maps as
described by Ian Goodfellow et al. [GBC16]. This reduces their spatial dimensions while
increasing the depth, helping to capture contextual information.

In Figure 3.1, red arrows indicate max-pooling operations. For example, after the initial
convolutions, the feature map (568 x 568) undergoes max-pooling to reduce its size to
284 x 284, while increasing the depth to 128 channels. This process helps to retain the
essential features while discarding irrelevant details.

For a max-pooling layer with a 2x2 filter:

yi,j = max(x2i,2j , x2i,2j+1, x2i+1,2j , x2i+1,2j+1) (3.3)

This formula describes the max-pooling operation, where a 2x2 region of the input feature
map, starting at position (2i, 2j), is reduced to a single value. The function selects the max-
imum value from the four elements in the 2x2 window: x2i,2j , x2i,2j+1, x2i+1,2j , x2i+1,2j+1.
The output value yi,j is the maximum of these four values, effectively downsampling the
input while preserving the most prominent feature in each 2x2 region [DV16].

Max-pooling reduces the spatial dimensions of the input by a factor of 2 along both axes,
decreasing computational load and introducing translation invariance. This invariance
arises because the precise location of features within each 2x2 window becomes less
significant [SMB10].

Up-sampling Layers

Up-sampling layers in the expansive path increase the resolution of the feature maps,
a crucial step for pixel-wise classification in segmentation tasks. These operations are
essential for restoring the spatial dimensions of the feature maps while retaining the
learned representations.

In Figure 3.1, green arrows represent up-sampling operations. For instance, after reaching
the bottleneck, the feature map (32 x 32) is up-sampled to higher resolutions, ultimately
reaching 388 x 388 in the final layer. This up-sampling is accomplished through operations
like transposed convolutions, which allow for precise reconstruction of spatial details.

For an up-convolution (transposed convolution):

yi,j =
∑︂
k,l

xi+k,j+lwk,l (3.4)
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Where yi,j represents the output value at position (i, j), xi+k,j+l denotes the input values
within the receptive field centered at this position, and wk,l corresponds to the weights of
the filter at position (k, l). The expression ∑︁

k,l signifies a summation over all positions
within the filter dimensions [DV16].

Skip Connections

Skip connections link corresponding layers of the contracting and expansive paths,
enabling the network to use fine-grained features from earlier layers, which aids in precise
localization [RFB15]. These connections play a critical role in mitigating the loss of
spatial information during down-sampling operations in the contracting path, as they
reintroduce high-resolution features into the expansive path.

The grey arrows in Figure 3.1 represent these skip connections. For example, the feature
map from the contracting path (284 x 284) is concatenated with the up-sampled feature
map of the same resolution in the expansive path. This preserves high-resolution features,
improving segmentation accuracy.

Loss Function

Commonly used loss functions for medical segmentation tasks are detailed in Section 4.2.

3.3 3D U-Net
The 3D U-Net is an advanced extension of the original U-Net architecture, developed to
process 3D volumetric data, making it highly suitable for medical imaging tasks such as
MRI and CT scan analysis. Unlike the original U-Net, which operates with 2D convolu-
tions, the 3D U-Net utilizes 3D convolutions, allowing it to capture spatial relationships
across all three dimensions—depth, width, and height. This design is especially beneficial
in the medical field, where accurate segmentation of complex structures, such as brain
tumors like glioblastomas, is critical. By using 3D convolutions, the network captures
complex spatial features, resulting in improved segmentation accuracy over 2D models
[CAL+16].

In brain tumor segmentation, the 3D U-Net’s ability to process entire volumes ensures
that critical spatial information across slices is retained, making it particularly effective
for tasks like glioblastoma segmentation, where the tumor’s shape and boundaries are
complex and extend through multiple MRI slices. This volumetric processing improves the
network’s capability to handle intricate anatomical structures, delivering more accurate
results than traditional 2D U-Nets [CAL+16, ZZG22].

3.3.1 U-Net Model Development
Since its introduction in 2015 by Ronneberger et al. [RFB15], the U-Net architecture has
undergone significant evolution, with each successive model addressing specific challenges
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encountered in medical image segmentation. dResU-Net, first introduced by Raza et al.
[RIBM+23], represents an early advancement addressing the vanishing gradient problem.
By incorporating residual connections, this architecture enabled the development of
deeper and more efficient networks.

Later, Attention U-Net [GSD24] improved upon this by introducing attention mechanisms,
which enhanced the model’s ability to focus on the most relevant image features. nnU-Net
[IJK+21] further expanded the flexibility of the U-Net by automating the model’s config-
uration to adapt to different datasets, reducing the need for manual intervention. Most
recently, Swin UNETR [HNT+21] leveraged transformer-based architectures, capturing
long-range dependencies in medical images and delivering improved performance in highly
complex segmentation tasks.

3.3.2 State-of-the-Art Models

The development of advanced U-Net-based models has introduced various improvements
to address specific challenges in medical image segmentation. The dResU-Net, developed
by Raza et al. [RIBM+23], enhances the traditional U-Net by incorporating Residual
Blocks from ResNet [HZRS16], effectively addressing the vanishing gradient problem.
This adaptation allows for the training of deeper networks that can capture more intricate
features, which is particularly valuable for segmenting detailed or irregular structures
such as brain tumors by facilitating gradient propagation and improving convergence
during training.

Building on this, the Attention U-Net, introduced by Oktay et al. [OSF+18], integrates
attention mechanisms that enable the network to focus on relevant areas of the image,
filtering out less important regions. This is especially useful in medical imaging, where
small but critical structures, like tumors, may be surrounded by complex anatomy.
Attention gates enhance important features, leading to more precise segmentations,
particularly in challenging cases such as glioblastoma.

The nnU-Net, developed by Isensee et al. [IJK+21], introduced a fully self-adapting
framework, eliminating the need for manual adjustments. It automatically configures
preprocessing, architecture, and hyperparameters to fit the dataset at hand, adapting
to the specific nuances of each dataset. This flexibility allows nnU-Net to perform well
across diverse segmentation tasks, often surpassing more complex models.

Most recently, Swin UNETR, proposed by Hatamizadeh et al. [HNT+21], combines the
U-Net structure with Swin Transformer blocks, leveraging the transformer’s ability to
capture long-range dependencies within images. This makes Swin UNETR particularly
effective for segmenting large and detailed anatomical structures, providing a state-of-
the-art solution in complex medical imaging tasks.
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3.4 Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs) were first introduced by Ian Goodfellow and
his colleagues in 2014 [GPAM+14], they brought a new approach to machine learning,
particularly for generating synthetic data. The key innovation of GANs lies in their
architecture, which includes two neural networks: the Generator (G) and the Discriminator
(D). These networks are trained together through adversarial learning, where they compete
to improve their performance. While U-Net and its variants focus on segmentation, GANs
provide a complementary approach, especially for generating synthetic data and improving
training through augmentation [FADK+18].

The Generator’s goal is to create data that closely resembles real data by taking random
noise or a latent vector as input and producing synthetic samples. Meanwhile, the
Discriminator’s task is to differentiate between real data from the training set and the
synthetic data created by the Generator. It receives a sample and outputs a probability
indicating whether the sample is real or generated [FT18]. The training process of
GANs can be described as a minimax game, where the Generator tries to maximize the
Discriminator’s error rate, and the Discriminator aims to minimize its classification error
[FT18].

This adversarial process can be formalized using the following objective functions:

For the Discriminator:

LD = −Ex∼pdata [log D(x)] − Ez∼pz [log(1 − D(G(z)))] (3.5)

For the Generator:

LG = −Ez∼pz [log D(G(z))] (3.6)

In these equations, LD and LG represent the loss functions for the Discriminator and
Generator, respectively. The term pdata denotes the distribution of the real data, while
pz represents the distribution of the noise input fed into the Generator. For the Discrimi-
nator’s loss LD, Ex∼pdata [log D(x)] calculates the expected log probability of correctly
identifying real data samples, and Ez∼pz [log(1 − D(G(z)))] represents the expected log
probability of correctly identifying generated samples as fake. For the Generator’s loss
LG, Ez∼pz [log D(G(z))] is the expected log probability that the Discriminator mistakenly
identifies the generated samples as real, which the Generator tries to maximize to improve
its output quality [FT18].

GANs have been widely applied across many fields, especially for generating realistic
data. In medical imaging, they are particularly useful for augmenting training datasets,
improving image resolution, and performing style transfer. These features help tackle
challenges like data scarcity and variability in medical datasets [MMAC23, MGM+24].
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Application of GANs in Brain Tumor Segmentation

In the BraTS 2023 Challenge [BBF+23], Ferreira et al. [FSL+24] used a GAN with a
Swin UNETR (Swin Transformer U-Net) architecture [HNT+21] as the Generator and a
Convolutional Neural Network (CNN) as the Discriminator to generate synthetic brain
tumor data for augmenting the training dataset.

The Generator used the Swin UNETR framework [HNT+21], which incorporates Swin
Transformer blocks to capture long-range dependencies in the input data. This architec-
ture was selected for its efficiency in handling high-resolution images. The Generator
received input patches of size 96×96×96, with four input channels and one output channel,
and a feature size set to 48. These parameter values were part of the approach to balance
computational efficiency and detailed spatial representation but were not discussed in
depth regarding specific design choices by Ferreira et al. [FSL+24].

The Discriminator was a CNN with additional layers to enhance its ability to differentiate
between real and synthetic data. It included an extra 3D convolutional layer at the end,
configured with a stride of 1 and a kernel size of 3, without spectral normalization. A
sigmoid activation function was applied before the output to produce a probability score
indicating whether the input data was real. According to Ferreira et al. [FSL+24], this
configuration aimed to improve the Discriminator’s effectiveness but was not further
elaborated on in terms of the specific parameter values chosen.

Following the methodology of Ferreira et al. [FSL+24], the training of the GAN was
conducted in two distinct stages to optimize both the realism of the synthetic tumors
and the surrounding brain tissue. In the initial phase, the GAN underwent 200,000
training iterations, with the adversarial loss weight (λ1) set to 1 and the mean absolute
error (MAE) loss weight (λ2) set to 5. These specific values were chosen to prioritize
the generation of realistic tumor structures during this phase, balancing the adversarial
and MAE losses to enhance the distinctiveness of tumor regions while maintaining
computational stability.

In the subsequent refinement phase, the training process shifted to improve the visual
quality of the surrounding tissue, ensuring a cohesive appearance between tumors and
adjacent brain structures. To achieve this, the weight of the MAE loss was gradually
increased, while the adversarial loss weight was proportionally reduced. This adjustment
allowed the model to focus more on refining the non-tumor regions, creating a more
seamless integration of synthetic tumors within realistic brain tissue. Through this two-
stage approach, as outlined by Ferreira et al. [FSL+24], the GAN achieved high-quality,
realistic synthetic images, effectively enhancing the dataset for training purposes.

The input data for the Generator, following the approach by Ferreira et al. [FSL+24],
was preprocessed by carefully cropping around the tumor region, normalizing voxel
values, and introducing Gaussian noise to simulate realistic variations. This preprocessing
approach was designed to focus the Generator’s learning on the tumor and its immediate
surroundings, ensuring that the generated samples retained essential anatomical and
pathological features seen in real brain tumors. The cropping around the tumor area
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allowed the model to concentrate computational resources on relevant structures, while
normalization standardized voxel intensity values, making it easier for the model to learn
consistent patterns. Adding Gaussian noise introduced variability in the data, which
simulated natural variations in tumor appearance, thereby enhancing the robustness and
generalizability of the synthetic samples. This preprocessing was crucial to ensure that
the generated data closely mimicked real brain tumors in both structure and texture.

The use of GANs), especially with advanced architectures like Swin UNETR [HNT+21],
has proven highly effective in medical imaging tasks, such as brain tumor segmentation.
GANs generate synthetic medical images that closely replicate real MRI data, offering
a solution to the problem of limited data, which is common in medical imaging. This
synthetic data can improve the segmentation quality of machine learning models by
providing diverse training examples, thereby enhancing model robustness and accuracy
[AAHK24].

3.5 Transfer Learning & Fine-Tuning
Transfer Learning, as defined in A Comprehensive Survey on Transfer Learning by
Zhuang et al. [ZQD+20], "aims at improving the performance of target learners on
target domains by transferring the knowledge contained in different but related source
domains". It has become a key method in medical imaging to enhance model performance,
especially in scenarios with limited annotated data [YBL+24, ASM+21, TWZ+22]. It
allows models to leverage knowledge from pre-trained networks on extensive datasets,
retaining generalizable features that are useful for new tasks with smaller, specialized
datasets [YBL+24, ASM+21]. This approach can significantly reduce training time and
improve model convergence, as shown by its successful application in various medical
imaging tasks, where large, labeled datasets are often scarce [YBL+24]. Fine-tuning
these pre-trained models provides a performance boost by adapting to task-specific
features, enhancing the accuracy and efficiency of segmentation and classification in
medical contexts [ASM+21, TWZ+22].

While Transfer Learning offers potential advantages, it is important to acknowledge specific
drawbacks as well. A model trained without Transfer Learning offers methodological
advantages by allowing precise control over parameterization and architecture. This
is particularly important if specific adaptations are required to optimize the model for
glioblastoma segmentation tasks [RZKB19]. A model trained directly on the target data
can be finely tuned, providing more valid insights into the performance and robustness of
various hyperparameters [RZKB19, KEB+21]. Additionally, the quality and specificity
of data used for pre-training in Transfer Learning may differ significantly from MRI
data specific to glioblastomas. Pre-trained models are often based on general imaging
datasets or other medical modalities and may not capture the intricate details found in
glioblastoma-specific imaging sequences, such as T1- or T2-weighted MRI, which can
impair transferability and accuracy in segmenting these complex structures [RZKB19,
KEB+21].
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3.6 Radiomic Feature Extraction
The main distinction between 3D U-Net and radiomic feature extraction lies in their
focus. While 3D U-Net models are designed for segmenting medical images, radiomic
analysis provides valuable insights into tumor characteristics—such as intensity, shape,
and texture—which can be used to predict clinical outcomes like survival [SKA+20,
HHAH+23]. Precise segmentation of tumors can thus provide the basis for further analysis,
including radiomics [KPG+24]. Several studies have demonstrated the effectiveness of
radiomic features in predicting survival in GBM patients [SKA+20, HHAH+23, KPG+24].

Overview of Radiomic Feature Extraction

Chaddad et al. [CDT16] used texture features from multi-contrast MRI, including T1-
weighted post-contrast and FLAIR images, to predict survival times. Their study found
that features like Energy, Correlation, and Variance from contrast-enhanced regions were
significant survival predictors.

Baid et al. [BRT+20] combined intensity, volume, shape, and texture features from
FLAIR and T1ce MRI data. They used a stationary wavelet transform to capture
directional information, which improved overall survival (OS) prediction. Their approach
achieved strong results in the BraTS 2018 challenge.

Suter et al. [SKA+20] identified robust radiomic features from pre-operative MRI to
classify survival in GBM patients. They performed over 16 million perturbation tests
to simulate multi-center data variability, emphasizing the importance of robust feature
selection when applying models across different datasets.

Kaur et al. [KRA23] improved survival predictions in GBM patients using machine
learning models built on radiomic features from segmented MRI scans, focusing on
texture, shape, and intensity features.

Key differences between radiomic feature extraction and 3D U-Net segmen-
tation

Radiomic feature extraction focuses on deriving features for prediction models, whereas
the 3D U-Net is an end-to-end deep learning model specifically designed for segmenting
medical images [ZGJ23]. Radiomic approaches often require manual or semi-automated
segmentation to define regions of interest (ROIs) from which features are extracted. This
step can introduce variability and potential biases, depending on the accuracy of the
initial segmentation [WZZ+24]. The primary purpose of radiomic feature extraction is
to predict clinical outcomes, such as survival, treatment response, and recurrence. In
contrast, the 3D U-Net is designed to provide precise and automated segmentation, which
can be used as input for further analysis or treatment planning [WZZ+24, ZGJ23].

An alternative approach to segmentation within the context of radiomics

The software Brain Tumor Image Analysis (BraTumIA) is based on machine learning
techniques and specifically developed for the automatic segmentation of glioblastomas
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[OKA+19, MKL+16]. BraTumIA utilizes a combination of classical image processing
algorithms and predefined radiomic features that are manually selected and crafted
based on prior knowledge of tumor characteristics in MRI images [IOK+16, PBP+14].
These features include specific metrics such as intensity distributions, texture patterns,
and shape descriptors that are chosen to represent the different tumor compartments
accurately [KKR+18, PHM+16]. Once these features are defined, BraTumIA applies
machine learning algorithms to analyze these engineered features across the tumor regions
and classify different tissue types (e.g., necrotic (non-contrast-enhancing) tissue, edema,
and contrast-enhancing tumor) [DMFAMJRV19, PHM+16]. This method contrasts
with the 3D U-Net approach, where the model learns relevant features directly from
ground truth annotations during training, without requiring predefined feature selection
[IOK+16, MKL+16]. In BraTumIA, however, the reliance on predefined features offers
the advantage of interpretability and control, as each feature’s contribution to the
segmentation can be assessed, which can be valuable in clinical contexts focused on
radiomic analysis [OKA+19, PBP+14].
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CHAPTER 4
Evaluation Metrics and Loss

Functions

4.1 Evaluation Metrics

A comprehensive assessment of medical image segmentation models requires multiple
metrics to cover all aspects of performance. Each metric provides a unique perspective
on segmentation accuracy and reliability. Using metrics such as the Dice Similarity
Coefficient (DSC) [Sø48] and Intersection over Union (IoU) [Jac01] offers a detailed view
of model performance. DSC measures the general agreement of segmentation volumes,
while IoU provides insight into the overlap relative to the union of predicted and ground
truth segments. Cross entropy and accuracy are essential for understanding probability
distributions and overall classification performance. Although the 95% Hausdorff Distance
(HD95) [VNL20] is not used in this work, it is mentioned for completeness, as it is
commonly used to assess boundary accuracy in segmentation tasks. In summary, the
combination of different metrics provides a comprehensive evaluation of segmentation
models, ensuring both overall agreement and detailed accuracy are considered.

4.1.1 Overlap Metrics

Overlap-based metrics focus on the degree to which the predicted and ground truth
segmentations overlap [MSRK22]. These metrics are widely used in segmentation tasks
as they provide a clear measure of similarity between two segmentations, with the Dice
Similarity Coefficient (DSC) [Sø48] and Intersection over Union (IoU) [Jac01] being
among the most commonly applied.
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Dice Similarity Coefficient

The Dice Similarity Coefficient (DSC) [Sø48], also known as the Dice coefficient, is
a statistical measure of similarity between two datasets. In tumor segmentation, it
evaluates the overlap between two segmentation results. Commonly used in medical
image processing, the Dice coefficient assesses the accuracy of segmentation models by
comparing automatically generated results with manually created segmentations, which
are considered the ground truth [Sø48].

The Dice coefficient is calculated as follows:

DSC = 2 × |X ∩ Y |
|X| + |Y | (4.1)

2 × X YX ∩ Y

X Y+

This relationship is visually represented in the accompanying illustration, where X is the
set of pixels or voxels belonging to the first segmentation (for example, the prediction
of a segmentation model), and Y is the set of pixels or voxels belonging to the second
segmentation (for example, the ground truth). |X ∩ Y | is the number of pixels or voxels
that match in both segmentations, while |X| and |Y | are the counts of pixels or voxels in
the respective segmentations.

The Dice coefficient ranges from 0 to 1, with 1 representing a perfect match between
two segmentations and 0 indicating no overlap. A higher Dice coefficient reflects greater
segmentation accuracy, meaning the model’s output closely aligns with the ground truth.
This metric is particularly useful for evaluating segmentation models as it balances both
sensitivity and specificity, offering a comprehensive measure of accuracy [MRV03].

Intersection over Union (IoU)

The Intersection over Union (IoU) [Jac01], also called the Jaccard Index or Jaccard
similarity coefficient, is a key metric for image segmentation tasks. It measures the
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overlap between the predicted segmentation and the ground truth, defined as the ratio of
the intersection of the predicted and actual segmentation masks to their union.

IoU is defined as:

IoU = |X ∩ Y |
|X ∪ Y | (4.2)

X YX ∩ Y

X YX ∪ Y

This relationship is visually represented in the accompanying illustration, where X is
the predicted segmentation, Y is the ground truth segmentation, |X ∩ Y | is the area of
overlap between the two segmentations, and |X ∪ Y | is the total area covered by both
the prediction and the ground truth.

IoU Scores range from 0 to 1, with 1 indicating perfect alignment between predicted
segmentation and ground truth, and 0 indicating no overlap.

This metric is widely used in medical imaging segmentation tasks due to its clear and
interpretable results. It provides a direct measure of segmentation accuracy by penalizing
both false positives (FP)—where the model predicts a tumor that doesn’t exist—and
false negatives (FN)—where the model misses parts of the tumor. This makes IoU a
robust choice for evaluating models where precise anatomical delineation is crucial, such
as in tumor segmentation and organ boundary detection [MSRK22].

One key advantage of IoU is its ability to reduce both over-segmentation and under-
segmentation, offering a more stringent evaluation compared to metrics like the Dice
Similarity Coefficient (DSC). This is particularly valuable when assessing smaller tumor
regions where precision is critical, as false positives or negatives can have significant
clinical consequences [MSRK22].

Since IoU penalizes incorrect predictions more heavily, it is especially useful for fine-tuning
model performance in challenging tumor regions. For example, if a model overestimates
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the size of edema or misses parts of the necrotic (non-contrast-enhancing) core, IoU
provides a more accurate measure of error than metrics like DSC, which may be more
tolerant in cases of class imbalance [MSRK22].

By using IoU alongside other metrics like the Dice Similarity Coefficient, researchers and
clinicians can achieve a more comprehensive evaluation of the model’s performance. This
combination ensures accurate and reliable predictions across various types of medical
images and conditions [HJHK19].

Combined Dice-IoU Metric

In this work, Dice and IoU are combined to better address the small and heterogeneous
tumor regions. While Dice offers a balanced perspective, IoU is particularly useful
for identifying cases where false positives heavily affect segmentation. The model’s
performance will be evaluated by using both metrics.

4.1.2 Boundary Metrics
Boundary accuracy is critical, especially if precise delineation of tumor margins is required
for treatment planning.

Hausdorff Distance

The Hausdorff Distance is a boundary-based metric that measures the greatest distance
between predicted and ground truth segmentations. It is especially useful for assessing
boundary accuracy, where small errors can have significant clinical consequences [HKR93].
The formula is defined as:

HD(X, Y ) = max
{︄

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
}︄

(4.3)

Where d(x, y) is the Euclidean distance between points x and y in the predicted and
ground truth segmentations. The infimum (inf) refers to the greatest lower bound of
a set. In this context, for each point x ∈ X, it represents the smallest distance to any
point y ∈ Y , providing the minimum distance from that point x to the other set. The
supremum (sup), or least upper bound, takes the largest of these minimal distances,
effectively selecting the worst-case scenario.

This metric is sensitive to outliers and evaluates extreme cases where the model might
misinterpret tumor boundaries. In practical terms, the minimum distance from each
point in the first segmentation (e.g., the algorithm’s output) to any point in the second
segmentation (the ground truth) is calculated. Then, the same calculation is performed
in reverse, measuring the minimum distance from each point in the ground truth to the
automated segmentation. The Hausdorff Distance is the maximum of these minimum
distances, capturing the greatest possible discrepancy between the two segmentations
[HKR93].
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A low Hausdorff Distance indicates that the two segmentations are highly similar, not
only in shape and volume but also in the precise location of their boundaries. In contrast,
a high Hausdorff Distance suggests significant discrepancies, highlighting areas where the
algorithm may have failed to accurately capture the tumor boundary [KS20].

Due to its sensitivity to maximum error, the Hausdorff Distance is often used alongside
other metrics, such as the Dice Similarity Coefficient, to provide a more comprehensive
evaluation of segmentation quality. It offers insights into spatial accuracy that other
metrics may overlook [MSRK22].

95% Hausdorff Distance (HD95)

The 95% Hausdorff Distance (95th percentile of the Hausdorff Distance) is an important
metric in evaluating segmentation models, especially in medical imaging [ATH+21]. While
the Hausdorff Distance measures how close two subsets of a metric space are, HD95
represents the maximum distance between two sets after excluding the most extreme
5% of values. This makes HD95 a more robust metric, less sensitive to outliers than the
standard Hausdorff Distance [CRF23].
The HD95 is defined as:

HD95(X, Y ) = max
{︃

quantile95 min
y∈Y

d(x, y), quantile95 min
x∈X

d(y, x)
}︃

(4.4)

Where X and Y are the sets of points in the predicted segmentation and ground truth
images, respectively. d(x, y) is the Euclidean distance between a point x ∈ X and a point
y ∈ Y . The term quantile95 refers to the 95th percentile of the minimum distances, which
is used to reduce the influence of outliers. By focusing on the 95th percentile, this measure
captures the boundary mismatch between the predicted and actual segmentations without
being overly affected by extreme deviations.

Medical datasets often include noise and outliers, which can skew evaluations when using
the standard Hausdorff Distance. HD95 strikes a balance by penalizing boundary errors
while ignoring extreme outliers that may not be clinically relevant. This helps capture
the worst-case error while remaining robust to outliers. Its robustness makes HD95 ideal
for evaluating segmentation models in detecting anatomical structures, where accurate
and reliable boundary delineation is crucial, such as in tumor and organ segmentation
[PCP+22b].

4.1.3 Probability Metrics
Cross Entropy

Cross entropy is a widely used loss function in deep learning, especially for classification
and segmentation tasks in medical imaging. It measures the difference between two
probability distributions: the true distribution of the labels and the predicted distribution
[RZA22]. The cross entropy loss is defined as:
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LCE = −
∑︂

i

Yi log(pi) (4.5)

Where Yi represents the true label (ground truth) for pixel i, and pi represents the
predicted probability for pixel i belonging to the target class. In the context of medical
image segmentation, cross entropy is used to evaluate how well the predicted segmentation
probabilities match the ground truth labels.

Cross entropy is effective in handling multi-class problems and is often used due to its
simplicity and efficiency. It helps in training models to output probabilities that are as
close as possible to the true distribution, thus improving the accuracy of segmentation.
However, it may not always handle class imbalances well, which is common in medical
imaging where the regions of interest (e.g., tumors) are often much smaller than the
background [WC18].

Binary Cross-Entropy

The Binary Cross-Entropy (or Log Loss) is a loss function commonly used in binary
classification tasks, where the goal is to classify inputs into one of two classes, such as
distinguishing between tumor and non-tumor tissue. The function measures how well the
predicted probabilities for each class match the actual labels.

The binary cross-entropy loss function is expressed as:

H(p, q) = −(y log(p) + (1 − y) log(1 − p)) (4.6)

Where y represents the true label (0 or 1), and p represents the predicted probability for
the positive class. Thus, binary cross-entropy is not applied here due to the multi-class
nature of the problem, where a more fitting alternative, such as categorical cross-entropy,
should be used.

4.1.4 Pixel Metrics

Accuracy

Accuracy is a straightforward metric used to evaluate the performance of segmentation
models. It measures the proportion of correctly classified pixels over the total number of
pixels. Mathematically, it is the ratio of correctly predicted pixels to the total number of
pixels. In the context of image segmentation, accuracy can be misleading if the dataset
is imbalanced [WWZ20, TH15]. For instance, in medical images where the background
vastly outnumbers the region of interest, a model that predicts mostly background can
achieve high accuracy despite poor performance in identifying the actual region of interest
[MSRK22].
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Sensitivity (True Positive Rate)

Sensitivity, or the True Positive Rate (TPR), measures the proportion of actual positives
that are correctly identified by the model. In medical imaging, this is crucial as it reflects
the model’s ability to detect diseased or abnormal regions, such as tumors [TH15].

The formula for Sensitivity is:

Sensitivity = TP

TP + FN
(4.7)

Where TP (True Positives) are the correctly predicted positive instances, and FN (False
Negatives) are the positive instances that the model failed to predict. A high sensitivity
means the model is good at identifying positive cases (e.g., detecting tumors), which is
essential in healthcare to minimize missed diagnoses [Yer47].

Specificity (True Negative Rate)

Specificity, or the True Negative Rate (TNR), measures the proportion of actual negatives
that are correctly identified. It is equally important to ensure that healthy regions or
normal anatomy are not misclassified as abnormal [TH15].

The formula for Specificity is:

Specificity = TN

TN + FP
(4.8)

Where TN (True Negatives) are the correctly predicted negative instances, and FP
(False Positives) are the negative instances that were incorrectly predicted as positive.
Specificity is crucial in medical imaging, especially in cases where false positives might
lead to unnecessary further testing or treatments [Yer47].

4.1.5 Generalized Dice Score
The Generalized Dice Score (GDS) is an extension of the Dice Similarity Coefficient (DSC)
[Sø48], designed to handle multi-class segmentation tasks by incorporating class-specific
weights [SLV+17]. This score is particularly useful in medical image segmentation, where
imbalanced class distributions are common [SLV+17]. By weighting each class according
to its relevance or occurrence in the dataset, the GDS can provide a more balanced
evaluation of segmentation performance across all classes [SLV+17].

The Generalized Dice Score is defined as:

GDS = 2 ∑︁C
c=1 wc · |Xc ∩ Yc|∑︁C

c=1 wc · (|Xc| + |Yc|)
(4.9)

In this formula, C represents the total number of classes, and Xc and Yc are the sets of
pixels for each class c in the predicted segmentation and the ground truth segmentation,
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respectively. The term |Xc ∩ Yc| indicates the overlapping pixels between the predicted
and ground truth segmentations for a given class c, while |Xc| and |Yc| denote the total
number of pixels for class c in the prediction and ground truth, respectively. The weight
wc is assigned to each class c and is often calculated as the inverse of the class frequency,
giving more significance to underrepresented classes. This weighting approach enables
the GDS to provide a balanced evaluation across all classes, which is especially useful in
imbalanced datasets commonly found in medical image segmentation.

The weighting factor wc allows the GDS to balance contributions from each class,
particularly in datasets where some classes are underrepresented [SLV+17]. This makes
the GDS a robust choice for evaluating segmentation performance across diverse and
imbalanced classes, such as those often found in medical imaging applications.

4.1.6 Custom Weighted Dice Score
The Custom Weighted Dice Score is a tailored version of the Dice Similarity Coefficient
(DSC), designed to emphasize the most clinically significant regions in glioma segmenta-
tion, namely the contrast-enhancing tumor, necrotic (non-contrast-enhancing) core, and
surrounding edema. Although inspired by the Generalized Dice Score (GDS) [SLV+17],
which also uses weighted contributions for different classes, the Custom Weighted Dice
Score differs in key ways to serve specific clinical priorities.

Unlike the GDS, which typically derives class weights based on class frequency (giving
less frequent classes more weight), the Custom Weighted Dice Score assigns weights
w1, w2, and w3 based on the clinical importance of each tumor region rather than its
prevalence. The formula for this score is:

Custom Dice Score = w1 × Dicecontrast-enhancing + w2 × Dicenecrotic + w3 × Diceedema
(4.10)

Where w1, w2, and w3 are weights summing to 1, ensuring a balanced contribution of
each clinically relevant region. Here, Dicecontrast-enhancing, Dicenecrotic, Diceedema represent
the Dice scores for each tumor class.

This approach allows the model to prioritize tumor regions with the greatest impact on
treatment planning and prognosis, enhancing its clinical applicability. However, unlike
the GDS, which provides a more standardized weighting by class frequency, the Custom
Weighted Dice Score introduces subjectivity into weight selection, which may lead to
inconsistencies across studies or clinical applications. Furthermore, by heavily weighting
certain regions, it risks reducing accuracy in lower-weighted areas, potentially overlooking
comprehensive information necessary for treatment. This highlights the importance of
carefully balancing weights to ensure that the metric remains clinically relevant without
sacrificing a holistic view of tumor segmentation.
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4.1.7 Metric Comparison
In conclusion, the use of multiple evaluation metrics provides a comprehensive assessment
of glioblastoma segmentation models. The Dice Similarity Coefficient (DSC) is advanta-
geous for its ability to measure general overlap, making it effective for evaluating the
overall segmentation volume [MSRK22]. However, it can be less sensitive to boundary
details. Intersection over Union (IoU) offers a similar advantage with the added benefit
of penalizing discrepancies in the overlap more harshly, but it also shares the sensitivity
issues of DSC [BEB+19].

The Cross-Entropy loss is particularly useful for its probabilistic interpretation, as it
measures the difference between predicted and true probability distributions, helping to
fine-tune model predictions during training. However, it does not fully capture the spatial
accuracy of segmentations, as it focuses primarily on pixel-level classification [Jad20].
Accuracy, while straightforward and easy to interpret, often fails to provide meaningful
insights in the context of imbalanced datasets. This is because it may overemphasize the
correct classification of dominant classes, such as the background in medical images, at
the expense of smaller, critical regions like tumor compartments [Jad20].

The greatest advantage of the 95% Hausdorff Distance (HD95) lies in its sensitivity to
significant boundary deviations, making it particularly effective for identifying large errors
at segmentation edges [CRF23, KS20]. This focus on extreme discrepancies is valuable
in applications where minimizing critical errors is essential, such as multimodal medical
image registration or surgical planning. However, HD95’s sensitivity to isolated large
deviations can also be a disadvantage. Such deviations, often caused by noise or artifacts,
may disproportionately impact the metric, leading to an overemphasis on localized errors
and providing a less representative view of overall segmentation accuracy [KS20].

By leveraging these metrics together, a comprehensive evaluation can be achieved that
accounts for both volume overlap and boundary precision, ensuring robust glioblastoma
segmentation models suitable for clinical applications. This multi-metric approach is
particularly important for capturing the complex and heterogeneous characteristics
of glioblastomas, ultimately enhancing diagnostic accuracy and improving treatment
planning [RB24].

4.2 Loss Functions
The use of Combined Loss Functions, such as Dice Loss paired with cross entropy loss,
has proven to be highly effective in medical image segmentation, particularly for complex
tasks like glioblastoma segmentation, where challenges such as class imbalance and precise
boundary delineation are critical [RKF+22, YSSR22]. By combining complementary
loss functions, such as Dice and Focal Loss (as defined in Section 4.2.2), it is possible
to address multiple challenges simultaneously, including accurate segmentation and the
management of class imbalance inherent in medical imaging datasets [WC18, LGG+20].
This approach leverages the strengths of different loss functions, such as Dice Loss’s
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ability to measure overlap and Focal Loss’s capability to address class imbalance, thereby
enhancing the model’s overall performance [YSSR22, LGG+20].

In glioblastoma segmentation, several Combined Loss Functions have been widely adopted.
A common combination is Dice Loss paired with Cross-Entropy Loss, which balances global
segmentation accuracy with pixel-wise prediction reliability [RKF+22, YSSR22]. Tversky
Loss is particularly effective for fine-tuning sensitivity and precision in underrepresented
tumor regions, and its potential combination with Cross-Entropy Loss could provide
additional flexibility in balancing accuracy and robustness [YSSR22]. Another approach
involves combining Dice Loss with boundary-aware losses, such as Hausdorff Distance Loss,
to enhance accuracy along tumor margins, a critical requirement for clinical applications
[RKF+22, YSSR22].

Among these combinations, the integration of Dice Loss and Focal Loss offers distinct
advantages. Dice Loss ensures high overlap between predicted and actual segmenta-
tions, making it ideal for capturing larger tumor regions, while Focal Loss complements
this by addressing class imbalances and focusing on smaller, harder-to-segment areas
[YSSR22, LGG+20]. Together, these functions enable precise segmentation of clinically
important regions, such as the contrast-enhancing tumor, while maintaining robust overall
performance. This combination is particularly well-suited for glioblastoma segmenta-
tion, where accurate delineation of tumor regions is crucial for diagnosis and treatment
[RKF+22, YSSR22, LGG+20].

4.2.1 Dice Loss
Dice Loss focuses on maximizing the overlap between predicted and true segmentation
masks and is particularly effective in addressing significant class imbalance, such as
when the tumor region occupies a much smaller volume than the background [ZLLW21].
It is directly derived from the Dice Similarity Coefficient (DSC) and is defined as
Dice Loss = 1 − DSC. By minimizing the Dice Loss, the network aims to maximize the
overlap between predicted and ground truth segmentations.

The Dice Loss formula is:

Dice Loss(y, p̂) = 1 − 2 × |y ∩ p̂| + ϵ

|y| + |p̂| + ϵ
(4.11)

Here y represents the set of true segments, also known as the ground truth segmentation.
It refers to the actual segmentation mask of the tumor in the imaging data. p̂ represents
the set of predicted segments. It refers to the segmentation mask predicted by the model.
y ∩ p̂ denotes the intersection between the true and predicted segments, representing
the common area between the ground truth and predicted segmentations. |y| represents
the number of voxels in the true segmentation. |p̂| represents the number of voxels in
the predicted segmentation. ϵ is a small constant value added to avoid division by zero,
typically set to a very small number like 10−6 [RKF+22, WC18, YSSR22].
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In summary, Dice Loss evaluates the degree of overlap between predicted and ground
truth segmentations. A higher overlap results in a smaller Dice Loss, reflecting improved
segmentation performance [ZLLW21].

The notation y and p̂ in the Dice Loss formula refer specifically to the ground truth
labels and predicted values, respectively. This differs from the general notation X and Y
used in Equation 4.1, which represents a more abstract view of two sets being compared.
Despite this difference in notation, the underlying calculation for Dice Loss and the Dice
Similarity Coefficient remains identical.

4.2.2 Focal Dice Loss
The standard Focal Loss was introduced to tackle the class imbalance problem commonly
found in tasks like dense object detection and medical image segmentation [NPSA21].
This loss function is particularly useful for datasets where the background class is
overrepresented, and a small number of positive or minority examples (e.g., tumors in
medical images) require accurate detection [LGG+20].

The formula for the standard Focal Loss is:

FLstandard(pt) = −(1 − pt)γ log(pt) (4.12)

Where pt represents the model’s predicted probability for the true class. If the true label
is 1, pt is the probability assigned to that class; otherwise, it is the probability assigned
to the negative class. γ is the focusing parameter. A higher γ value reduces the relative
loss for well-classified examples, focusing the model more on misclassified or difficult
examples [LGG+20].

In this form, Focal Loss modulates the standard cross-entropy loss by the factor (1 − pt)γ .
This factor scales the contribution of each example to the loss based on how easy it is to
classify. For easy examples (i.e., those with high pt), this factor approaches zero, thus
reducing their influence on the model’s training. Conversely, for hard examples (i.e.,
those with low pt), the factor is close to one, allowing these examples to contribute more
to the loss. This mechanism makes Focal Loss especially effective in scenarios with high
class imbalance, as it reduces the overwhelming influence of well-classified background
examples, enabling the model to focus on learning from harder, often underrepresented
instances [ZLLW21, Jad20, LGG+20].

Focal Loss with Class Weights
In medical image segmentation, particularly for brain tumor segmentation, certain regions
of interest (e.g., contrast-enhancing tumor, necrotic (non-contrast-enhancing) core, edema)
are much smaller compared to the background, leading to extreme class imbalance. To
address this, an extension of the Focal Loss incorporates class weights into the formula,
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giving more importance to these smaller, clinically relevant regions. This weighted version
of Focal Loss is beneficial as it allows the model to learn the nuances of smaller classes
without being overshadowed by the background [WC18, YSSR22].

The modified Focal Loss with class weights can be expressed as:

FLweighted(pt) = −αt(1 − pt)γ log(pt) (4.13)

Where αt is a class-specific weight that adjusts the importance of each class. In brain
tumor segmentation, for instance, higher weights might be assigned to the contrast-
enhancing tumor, necrotic (non-contrast-enhancing) core, and edema classes to ensure
they contribute more significantly to the loss calculation [LGG+20]. The focusing
parameter γ continues to control the contribution of hard examples, as in the standard
Focal Loss.

By introducing αt, the Focal Loss becomes more versatile for imbalanced medical datasets.
This customization allows the model to prioritize clinically critical but underrepresented
regions, like small tumor parts, by increasing their impact on the total loss. Consequently,
the model’s sensitivity to these regions improves, reducing bias towards larger, less signifi-
cant areas such as the background. This weighted approach thus mitigates the imbalance
issue more effectively than the standard Focal Loss, promoting better segmentation
performance on small but essential tumor structures [LGG+20, YSSR22, WC18].

Focal Loss with Class Weights for Multi-Class Segmentation
The weighted Focal Loss, originally designed for binary classification, has been adapted
for multi-class segmentation tasks where each pixel can belong to one of several classes.
In the context of the BraTS Challenge, there are four classes: background, necrotic
(non-contrast-enhancing) core, edema, and contrast-enhancing tumor. The loss function
calculates the error across all classes for each sample, then averages it over the dataset
to provide a balanced learning signal across different structures [ZLLW21].

The formula for the multi-class Focal Loss with class weights is:

FLmulti-class = − 1
N

N∑︂
i=1

4∑︂
c=1

αc ytrue,i,c (1 − pi,c)γ log(pi,c) (4.14)

Where N represents the number of samples (or pixels, in image segmentation), and
the summation over c (from 1 to 4) accounts for the four classes in a multi-class seg-
mentation setting: background, necrotic (non-contrast-enhancing) core, edema, and
contrast-enhancing tumor. The term αc denotes a class-specific weight, allowing the
loss function to assign a different importance to each class, which is especially useful in
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cases where certain classes, like necrotic core or edema, have fewer pixels compared to
the background. The binary indicator ytrue,i,c is set to 1 if class c is the correct class
for sample i, otherwise it is 0. The predicted probability for class c for sample i is
represented by pi,c, which is raised to the power of (1 − pi,c)γ , where γ is the focusing
parameter that reduces the impact of well-classified examples, thus concentrating more
on difficult-to-classify cases [ZLLW21].

This extended Focal Loss formula with class weights directly addresses the challenge of
class imbalance in multi-class segmentation by integrating both class-specific importance
and a mechanism to focus on harder-to-classify examples, ensuring a more nuanced
learning process across diverse tumor regions [YSSR22, ZLLW21].

4.2.3 Combined Loss
The Combined Loss Function integrates both Dice Loss and Focal Loss to ensure that the
model performs well on both class-imbalanced data and tumor segmentation accuracy.

The combined loss formula is:

Combined Loss = Dice Loss + β × Focal Loss (4.15)

Where β is a Focal Weight Factor, a weighting parameter that controls the balance
between Dice Loss and Focal Loss. This parameter is tuned to optimize the model’s
performance across different tumor regions.

The focusing parameter γ, introduced by Lin et al. [LGG+20] in Focal Loss for Dense
Object Detection in 2017, is used within the Focal Loss to reduce the impact of easily
classified examples and emphasize harder cases. Typically, γ is set between 1 and 3.
Values in this range have proven effective for addressing class imbalance by reducing the
influence of easily classified examples and emphasizing harder cases. A value of 1 adds
moderate weighting to difficult examples without compromising model stability, while 2
is often seen as optimal, striking a good balance between reducing focus on easy examples
and prioritizing challenging ones. Higher values, like 3, further enhance the focus on
difficult cases, which can be beneficial in highly imbalanced datasets, although very high
values risk model instability by overly weighting a small set of challenging samples.

The combined use of Dice Loss and Focal Loss provides several advantages. Dice Loss
encourages the model to maximize the overlap between predictions and ground truth,
which is crucial for achieving high segmentation accuracy [YSSR22, SLV+17]. Focal
Loss complements this by helping the model concentrate on difficult-to-segment areas,
effectively addressing class imbalance by assigning higher importance to challenging
examples [Jad20, WC18]. Additionally, incorporating class weights into the Focal Loss
further enhances class balance; by assigning specific weights to each tumor class, the
model can place greater emphasis on underrepresented or clinically significant regions,
such as the contrast-enhancing tumor [WC18, ZLLW21].
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In additive manufacturing (AM), a process where three-dimensional objects are built
layer by layer, a Combined Loss Function using Dice Loss and Focal Loss has been
applied to improve segmentation by addressing class imbalances and refining boundary
detection of complex structures, such as melt pools in laser-powder bed fusion [SKS+21].

These method can be effectively adapted to medical image segmentation, including
glioblastoma, where irregular contrast-enhancing tumor regions are often difficult to
differentiate from solid and cystic non-contrast-enhancing regions. By applying this
combined loss approach, segmentation accuracy, particularly in the delineation of these
clinically significant subregions, can be enhanced.

This is illustrated in Figure 4.1, adapted from Schmid et al. [SKS+21], which highlights
the challenges of segmenting complex structures. The figure demonstrates how the
Combined Loss Function improves boundary detection, making it particularly useful for
segmenting small, irregular regions that demand precise delineation.
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CHAPTER 5
Methodology

5.1 Patient Selection
Training Dataset
The training and validation datasets used in this study were derived from two primary
sources, both provided by the same organization as part of their RSNA-ASNR-MICCAI
Brain Tumor Segmentation Challenge (BraTS) [BGM+23].

The first dataset contains 369 glioma cases with histologically confirmed diagnoses,
including both low-grade (LGG) and high-grade gliomas (HGG). From this dataset, 293
HGG cases were selected, as this is the target tumor type chosen for segmentation (Source
1). The second dataset consists of 125 cases for which no ground truth segmentation or
histological diagnosis was available (Source 2). To expand the training pool, the thesis
author as an experienced neuroradiologist evaluated these cases based on morphological
criteria indicative of high-grade gliomas (HGG), aligning with the diagnostic emphasis on
integrating morphological and molecular features outlined in the WHO Classification of
Tumors of the Central Nervous System (CNS) by Louis et al. [LPW+21] in 2021. During
this process, 25 cases were excluded due to morphological characteristics inconsistent
with HGG, ensuring that only cases with a high likelihood of being HGG were included
in the training dataset.

The selection of HGG cases across both datasets was motivated by their morphological
and histopathological similarity to the evaluation dataset, which exclusively contains
glioblastomas (GBM, WHO Grade IV). Glioblastomas and HGG share key features
such as diffuse infiltration, high mitotic activity, and extensive vascular proliferation
[WKTLRR22]. Including LGG cases, which lack these critical characteristics, in the
training process would likely impair the segmentation performance of the 3D U-Net.
Rebsamen et al. [RKR+19] demonstrated that stratifying training data by tumor grade
improves segmentation performance, particularly for HGG, by reducing heterogeneity
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within training data. They emphasize that glioblastomas (WHO Grade IV) exhibit
distinct imaging features, such as necrosis, peritumoral edema, and contrast enhancement,
which are not observed in LGG. Stratified training allows models to focus on consistent
tumor phenotypes, optimizing segmentation accuracy for high-grade tumors.

After combining both datasets, a total of 393 cases are available for training. As described
in Section 5.2.2, ground truth segmentations are created or revised for all selected cases
to ensure consistent and accurate training data.

Cross-Validation Split
To evaluate the model during training, the 393 cases in the training dataset were split into
80% training and 20% validation subsets. This approach aligns with practices commonly
adopted in the BraTS challenges, where standardized cross-validation strategies are
employed to optimize model performance and ensure robust internal validation while
maintaining a sufficient amount of data for training [FSL+24, ZKMUB21]. For example,
the BraTS 2021 challenge emphasized that such methodologies are critical for the
development of accurate segmentation models, enabling thorough performance evaluation
on independent subsets [ZKMUB21, ZKBMU22].

Zeineldin et al. [ZKBMU22] further highlight that cross-validation and similar techniques
have become integral to glioblastoma segmentation within the BraTS framework. These
methods facilitate iterative parameter tuning and reliable performance assessments,
thereby ensuring model generalizability to unseen data—a requirement essential for clinical
applicability and broader validation of segmentation algorithms [FSL+24, ZKBMU22].

Case Group Formation and Dataset Splitting

To further analyze the effect of different Case Group sizes on model performance, four
distinct Case Groups were created. These Case Groups were designed to maintain the
proportional source distribution between Source 1 and Source 2 across both training and
validation subsets. The cases from Source 1 and Source 2 were randomly assigned to
the training and validation subsets, ensuring proportional representation but without
preserving the original order:

• Cases group 80 (80 training plus 20 validation cases)

• Cases group 160 (160 training plus 40 validation cases)

• Cases group 240 (240 training plus 60 validation cases)

• Cases group 314 (314 training plus 79 validation cases)

Both the training and validation Case Groups build incrementally on the smaller ones.
For example, Case Group 160 includes Case Group 80, and Case Group 240 includes
Case Group 160. The largest group, Case Group 314, contains all available cases. The
source ratio (293 cases from Source 1 and 100 cases from Source 2) was consistently
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preserved across both training and validation sets. The models were trained using the
training cases exclusively, while the validation cases were used to monitor and evaluate
the training process.

Evaluation Dataset (External Unseen Data)
The evaluation dataset consists of 108 patients, retrospectively selected, who were treated
for newly diagnosed glioblastoma (GBM) at the University Hospital Salzburg between
February 2009 and August 2022. These patients were not involved in the training process
and serve as completely unseen data, providing a basis for the external evaluation of the
model’s performance.

The Inclusion Criteria for this dataset are as follows:

• Adult patients (aged 18 years or older).

• Newly diagnosed GBM with treatment initiated at the University Hospital Salzburg.

• Preoperative MRI scans are available for segmentation, with imaging performed
prior to any treatment (surgical, radiological, or chemotherapy).

• Histopathological grading is based on the latest World Health Organization (WHO)
classification available at the time of diagnosis [LPW+21].

• No study-specific MRI protocols, surgical procedures, or treatments were performed.
All imaging and treatment protocols followed standard clinical practice.

• Clinical data were extracted from electronic medical records, and all patients or
their legal guardians provided consent for imaging and treatment as part of their
clinical care.

This evaluation dataset is used to assess the generalizability and robustness of the trained
model on real-world, unseen data after the training phase has been completed. The
external evaluation helps determine the clinical applicability of the segmentation model.

5.2 Imaging Data Source
Training Dataset (BraTS Dataset)
The BraTS dataset [BGM+23] used for training the segmentation model includes multi-
modal MRI scans from patients with gliomas. These scans include the following sequences:
native T1, post-contrast T1-weighted, T2-weighted, and FLAIR. The data were acquired
using different clinical protocols on MRI scanners from 19 different institutions, ensuring
a diverse dataset that reflects a wide range of clinical settings. The dataset is provided
in NIfTI format [CAB+04], allowing for easy integration into segmentation algorithms.
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The acquisition of these scans was performed in different orientations, with the axial plane
being the most commonly used. However, some sequences, particularly those acquired
in the coronal plane, exhibit thicker slices and, as a result, lower resolution in the axial
direction. Additionally, there is variation in the native T1-weighted sequences, which
include both Fast Field Echo (FFE) and Turbo Spin Echo (TSE) acquisitions. The TSE
sequences were used more frequently in older scans, suggesting that the data span is
approximately two decades.

Due to the inconsistency in the acquisition protocols of the native T1 sequences and the
differing image impressions caused by the use of both Fast Field Echo (FFE) and Turbo
Spin Echo (TSE), the decision was made to exclude the native T1 sequence from the
training process. This exclusion not only ensures consistency in the data but also reduces
the overall dataset size by approximately one-quarter, making the training process more
efficient.

Evaluation Dataset
The evaluation dataset consists of 108 patients treated at the University Hospital Salzburg
between February 2009 and August 2022. The MR imaging for these patients was acquired
either in-house or from external sources. A total of 83 cases were performed using in-house
protocols, 4 cases were performed externally, and 21 cases had external imaging, which
was subsequently complemented by additional in-house sequences.

For in-house MR imaging, a 3T MRI machine (Achieva dStream, Philips Medical Sys-
tems, Best, Netherlands) with a 32-channel head coil was used. The following imaging
parameters were applied:

• T2-weighted imaging (TSE): Axial orientation with 28 slices, echo time (TE)
of 80 ms, repetition time (TR) of 3000 ms, field of view (FOV) of 560 mm × 560
mm, voxel size of 0.65 × 1.13 mm, with a slice thickness of 4 mm and a gap of 5
mm between slices.

• FLAIR imaging (TSE): Axial orientation with 28 slices, echo time (TE) of 125
ms, repetition time (TR) of 10000 ms, inversion time (TI) of 2800 ms, field of view
(FOV) of 560 mm × 560 mm, voxel size of 0.65 × 1.13 mm, with a slice thickness
of 4 mm and a gap of 5 mm between slices.

• T1-weighted imaging (FFE): Sagittal alignment, echo time (TE) of 4.04 ms,
repetition time (TR) of 8.66 ms, field of view (FOV) of 320 mm × 320 mm, voxel
size of 1 × 1 × 1 mm, performed before and after the administration of gadolinium,
following the acquisition of T2 and FLAIR sequences.

For patients with external imaging, variability in the imaging protocols was present.
External MRI examinations were performed outside the neuroradiology department,
prior to admission to the neurosurgery department of the Christian Doppler Clinic.
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Consequently, the protocols used in these external scans varied in terms of parameters
such as Gradient Echo (FFE) vs. Turbo Spin Echo (TSE) sequences and spatial orientation
(sagittal, coronal, and axial planes).

Specifically, for the T2-weighted sequences, eight cases were acquired in coronal orientation
and one case in sagittal orientation, while the remaining cases were acquired in axial
orientation. For the FLAIR sequences, eight cases were also acquired in coronal orientation
and one case in sagittal orientation, with the remaining cases being acquired in axial
orientation.

This variability in the external scans posed a challenge for standardizing the evaluation
dataset. However, the inclusion of complementary in-house imaging for 21 cases ensured
that essential sequences were available for evaluation in most cases.

5.2.1 Tumor Annotation
Gliomas can be substructured according to their appearance. Menze et al. [MJB+15]
defined four types of intra-tumoral structures, namely “edema,” “non-enhancing (solid)
core,” “necrotic (or fluid-filled) core,” and “contrast-enhancing core”. Strictly speaking,
the term "intra-tumoral" does not pathognomonically apply to the edema, as it is not
part of the tumor itself, but is caused by it. Nevertheless, the segmentation of the edema
is of great relevance subsequently. The mentioned anatomical substructure can essentially
be found in any glioblastoma, which leads to deriving an annotation protocol from this
fact.

Menzel et al. [MJB+15], for example, outline their process in five sequential steps, which
should be completed in the following order:

1. The “edema” was segmented primarily from T2-weighted images. FLAIR was used
to cross-check the extension of the edema and discriminate against ventricles and
other fluid-filled structures. The initial “edema” segmentation in T2 and FLAIR
contained the core structures that were then relabeled in subsequent steps, as shown
in Figure 5.1 (A).

2. As an aid to the segmentation of the other three tumor substructures, the so-called
gross tumor core—including both enhancing and non-enhancing structures—was
first segmented by evaluating hyperintensities in T1 post-contrast (for high-grade
cases) together with the inhomogeneous component of the hyperintense lesion
visible in T1 and the hypointense regions visible in T1, shown in Figure 5.1 (B).

3. The “contrast-enhancing core” of the tumor was subsequently segmented by thresh-
olding T1 post-contrast intensities within the resulting gross tumor core, including
the Gadolinium enhancing tumor rim and excluding the necrotic center and vessels.
The appropriate intensity threshold was determined visually on a case-by-case basis,
as shown in Figure 5.1 (C).
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4. The “necrotic (or fluid-filled) core” was defined as the tortuous, low-intensity
necrotic structures within the enhancing rim visible in T1 post-contrast. The same
label was also used for the very rare instances of hemorrhages in the BraTS data,
as shown in Figure 5.1 (C).

5. Finally, the “non-enhancing (solid) core” structures were defined as the remaining
part of the gross tumor core, i.e., after subtraction of the “contrast-enhancing core”
and the “necrotic (or fluid-filled) core” structures, as shown in Figure 5.1 (D).

With regard to the approach described by Menze et al. [MJB+15], it is important to
emphasize that experienced neuroradiologists may not necessarily require native T2-
weighted and T1-weighted sequences for the sub-segmentation of glioblastoma. The edema
can be accurately identified using the FLAIR sequence alone, while the contrast-enhancing
regions of the tumor are best visualized using the post-contrast T1-weighted sequence.
These two sequences provide the essential information needed for segmentation without
relying on native T2- or T1-weighted images. If the tumor has non-contrast-enhancing
margins, the information about its margins is obtained from the FLAIR sequence. Since
the patient population consists primarily of newly diagnosed, non-previously operated
glioblastoma patients (as described in Section 5.1), it is possible to deviate from the
procedure described above.

Müller et al. [MKE+24] emphasize that the most important differential diagnosis of
glioblastoma (GBM) is cerebral metastasis, as both entities can mimic each other on
anatomical imaging due to similar or overlapping features. In their comparison of multiple
imaging characteristics, they identified that glioblastomas and brain metastases may
present similar imaging patterns on T2/FLAIR sequences, complicating differentiation.

Buchner et al. [BPE+23] conducted a detailed evaluation of MRI sequences to optimize
automated segmentation for brain metastases. They concluded that the T1 post-contrast
sequence alone was sufficient for segmenting brain metastases, achieving a median Dice
similarity coefficient (DSC) of 0.96. For edema segmentation, however, the combined
use of T1 post-contrast and FLAIR sequences was critical, with the best-performing
models achieving a median DSC of 0.93. Their study highlights that optimizing MRI
protocols by excluding unnecessary sequences can streamline clinical workflows and
enhance segmentation accuracy for neural network-based target delineation.

These findings, derived from independent studies, suggest that it is not always necessary
to include all four conventional MRI sequences for tumor segmentation. Instead, sequence
selection should be guided by the specific clinical or research objectives, as demonstrated
in the segmentation of brain metastases.

5.2.2 Ground Truth Segmentation
Glioblastoma segmentation was performed using the 3D Slicer version 5.6.2 [FBKC+12],
an open-source platform widely used for medical image segmentation. This software
enables comprehensive segmentation, visualization, and analysis of medical images. In
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this study, we focused on segmenting glioblastomas into three specific classes:
non-contrast-enhancing tumor (Class 1), edema (Class 2), and contrast-enhancing tumor
(Class 3).

Image Registration and Preprocessing

The process begins with the registration of the various imaging sequences, specifically
FLAIR and FFE T1-weighted post-contrast (T1ce) images, using the General Registration
(BRAINS) module within 3D Slicer. The T1ce sequence, being the highest-resolution
sequence, serves as the reference onto which the other sequences are registered. This step
ensures that all images are aligned accurately, facilitating precise segmentation, especially
considering the differing resolutions of the FLAIR and FFE T1-weighted post-contrast
images. Following the registration, the sequences were normalized to standardize the
intensity values, which significantly eased the semi-automatic segmentation using the
"Grow from Seeds" and "Sphere Brush" tools.

Segmentation Process

The "Grow from Seeds" algorithm in 3D Slicer’s Segment Editor module [PLF19] utilizes
a region-growing technique for semi-automatic segmentation of structures within medical
images. This method involves placing seed points inside and outside the target region;
the algorithm then iteratively expands these seeds based on image intensity and spatial
information until the regions converge, effectively delineating the structure’s boundaries.
Such region-growing techniques are widely used in medical image segmentation due to
their simplicity and effectiveness in capturing complex anatomical structures [POC14].

The "Sphere Brush" tool in 3D Slicer’s Segment Editor module [PLF19] is designed to
facilitate precise manual segmentation by allowing users to paint spherical regions directly
onto medical images. This tool is particularly effective if combined with the "Editable
Intensity Range" setting, which restricts modifications to voxels within a specified intensity
range. This combination is especially useful for delineating contrast-enhancing tumor
regions that exhibit distinct intensity differences from surrounding tissues. By setting
appropriate intensity thresholds, users can accurately target and segment these regions,
enhancing the precision of the segmentation process.

Classification

• Class 1 (non-contrast-enhancing tumor) and Class 3 (contrast-enhancing
tumor): These classes are primarily identified using the FFE T1ce sequence. The
distinct contrast differences between these regions and the surrounding parenchyma
allow for reliable differentiation between contrast-enhancing and non-contrast-
enhancing tumor regions.
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• Class 2 (edema): Edema is predominantly segmented using the FLAIR sequence.
This modality is particularly effective in highlighting hyperintense areas associated
with tumor-related edema, providing clear boundaries for segmentation.

• Class 0 (no tumor): This class comprises all voxels that do not belong to Classes
1, 2, or 3. These represent regions free of any tumor-associated signal abnormalities,
encompassing normal brain parenchyma and other non-pathological areas.

Manual Adjustment and Validation

To ensure consistent segmentation quality, the initial segmentations were iteratively
reviewed and refined. This process involved the neuroradiologist repeatedly revisiting and
adjusting the segmentation boundaries to enhance accuracy and achieve finer delineation.
The improvement in segmentation precision through repetition and practice is well-
supported by the findings of Liu et al. [LQX+24], who emphasize that iterative interaction
between human expertise and segmentation tools is essential for achieving high-quality
results in medical image analysis. The entire adjustment and validation process was
time-intensive, ranging from 30 to 60 minutes per case, depending on the complexity
of the tumor structures and the clarity of the imaging data. This iterative refinement
process, supported by the neuroradiologist’s growing familiarity with the dataset and
segmentation nuances, aligns with the best practices highlighted in the systematic review.
Once the segmentation was performed according to the defined classes, the final result
was obtained, as demonstrated in Figure 5.2.

Revision of expert segmentation

To ensure consistency across the dataset and optimize the quality of segmentations for
downstream analysis, the expert-provided segmentations were systematically reviewed and
refined. This process was essential to mitigate interrater variability, ensuring that all cases
in the training, cross-validation, and evaluation datasets were segmented by a single expert.
As highlighted by Conze et al. [CAMS+23], manual segmentation by multiple raters often
introduces variability due to differences in individual expertise and interpretation, which
can adversely affect the consistency of the dataset and the performance of downstream
models. It is important to emphasize that the revisions did not aim to critique the
work of the experts, whose segmentations provided a robust foundation for the analysis.
Instead, the revisions served to further standardize the dataset and ensure alignment with
the specific requirements of the study. The refinement process also enabled a sharper
focus on achieving precise sub-segmentation of the contrast-enhancing tumor regions,
which are critical for clinical decision-making and model evaluation. The effort required
for this process was significant, with each case requiring an average of 15 to 25 minutes
for review and refinement, depending on the complexity of the tumor structure and the
quality of the initial segmentation. Given the dataset of 293 cases, this resulted in a
total estimated time investment of approximately 100 hours. Figure 5.3 illustrates two
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examples from the training dataset, comparing the initial expert segmentation with the
refined segmentation.

Statistics
For the analysis of all data, SPSS version 29.0.2.0 [Cor24] was used. Measurement
data with normal distribution and uniform variance are expressed as mean ± standard
deviation, while non-normally distributed data are stated as median and interquartile
range (IQR). Comparisons of patient age in the different datasets were performed using
the Mann-Whitney U test [MW47]. Additionally, Matplotlib [Mat24], a comprehensive
library for creating static, animated, and interactive visualizations in Python [VR09], was
employed exclusively for the graphical representation of numerical data through static
charts and graphs.

5.3 Data Preprocessing
The preprocessing pipeline ensures consistency and comparability between the evaluation
and training datasets, aligning them to a standardized format suitable for machine
learning applications. Unlike the training dataset, which is already provided in the
BraTS-compatible format, the evaluation dataset requires additional preprocessing steps
to achieve compatibility. Therefore, the BrainLes Preprocessing Package of the BraTS
Toolkit [KBW+20] is used. This Toolkit is specifically designed to facilitate this process,
ensuring that the evaluation dataset adheres to the same standards as the training data.
Once the evaluation dataset has been processed to match the BraTS standards, additional
preprocessing steps are applied to both datasets. The complete preprocessing pipeline
for the evaluation dataset is visualized in Figure 1.1, outlining all steps required.

Preprocessing for the Evaluation Dataset
For the evaluation dataset, the following preprocessing steps are applied to transform
the data into a BraTS-compatible format:

• DICOM to NIfTI Conversion: All MR images are converted from DICOM
format to NIfTI format (Neuroimaging Informatics Technology Initiative), which is
the standard format used in the BraTS dataset.

• Co-Registration: Co-registration ensures that all imaging modalities of a patient
(native T1, post-contrast T1-weighted, T2-weighted, and FLAIR) are aligned within
the same spatial coordinates. This alignment ensures that anatomical structures
appear in the same location across all modalities, which is essential for accurate
segmentation in machine learning models.

• Normalization: This process adjusts the intensity values of MRI images across all
modalities to a common scale. By reducing variability between patients and imaging
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Figure 5.2: The underlying image sequence is the FFE T1ce sequence, displaying the
segmentation of three glioblastoma classes: non-contrast-enhancing tumor (Class 1, green),
edema (Class 2, yellow) and contrast-enhancing tumor (Class 3, brown). The segmentation
of the edema was based on the FLAIR sequence, facilitated by the hyperintense difference
in intensity between the tumor edema and the surrounding parenchyma. The upper-right
image shows a 3D visualization of the glioblastoma, illustrating the spatial arrangement
of the tumor components.
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Figure 5.3: Comparison of Expert and Revised Segmentations. Two examples from the
training dataset are displayed, with the first example in the upper row and the second in
the lower row. On the left of each triplet is the T1 post-contrast sequence (T1ce), in the
center is the ground truth segmentation provided by the expert panel, and on the right
is the revised segmentation generated by our method. The segmentation highlights the
non-contrast-enhancing tumor (green), tumor edema (yellow), and contrast-enhancing
tumor (brown). The expert segmentation appears coarser, while the revised segmentation
demonstrates a finer delineation.
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sessions, normalization ensures more consistent image analysis and segmentation
results, regardless of differences in scanner settings or patient positioning. A
percentile normalizer is used to adjust the intensity values of the scans, reducing
the impact of outliers and standardizing the intensity distribution.

• Skull-Stripping: Skull-stripping removes non-brain structures, particularly the
skull, from the images. This step ensures that machine learning algorithms focus
exclusively on the brain and tumor regions, without interference from surrounding
structures. The High-Definition Brain Extraction Tool (HD-BET) [ISP+19], a deep
learning-based tool, is used to automate this process, ensuring precise and efficient
skull removal.

• Conversion into SRI-24 Space: The SRI-24 space [RZSP10] is a standardized
brain reference space based on a set of 24 normal brain scans developed by the
Stanford Research Institute (SRI). Converting the MRI data to this standardized
space ensures consistency across patients and imaging protocols, which is crucial
for comparability in machine learning applications. NiftyReg [ORS+01] is used for
registration and alignment to the SRI-24 anatomical atlas, ensuring the data is in
the expected format for BraTS challenge algorithms.

Common Preprocessing Steps for Both Datasets
After the initial preprocessing of the evaluation dataset to ensure consistency with
the BraTS dataset, the following additional steps are applied to both the evaluation
and training datasets. While these steps are briefly introduced here for the sake of
completeness, their implementation is described in greater detail in the implementation
Sections 6.3 and 6.4.

• Contrast Limited Adaptive Histogram Equalization (CLAHE): CLAHE
[Zui94] is applied to enhance the contrast of the MRI images, making it easier for
the segmentation algorithms to distinguish between different brain structures. This
contrast adjustment is crucial for improving the visibility of tumor boundaries.

• Cropping: The images are cropped to reduce their dimensions by removing areas
outside the brain, such as the skull and surrounding tissues. Cropping reduces the
size of the dataset, improving computational efficiency during training by focusing
only on the relevant anatomical structures.

Data Augmentation (Training Dataset Only)
Data augmentation is applied exclusively to the training dataset to artificially increase
the number of training samples and improve model generalization. Specifically, only
rotations and flips are used as augmentation techniques, which are explained in detail in
the following Section 5.4. No augmentations are applied to the evaluation dataset, as
it is strictly reserved for testing the model after training. The implementation details
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of the augmentation strategy, including how and in which scenarios augmentations are
applied, are discussed comprehensively in the implementation Section 6.5. To ensure
reproducibility and significantly reduce training time, the augmentations are pre-generated
and stored as NumPy arrays, so they do not need to be generated repeatedly during
runtime.

Efficient Data Storage as NumPy Arrays
After applying the preprocessing steps, the training, validation, and augmentation datasets
are stored as NumPy arrays. This approach ensures faster data loading during training
and validation, which improves computational efficiency. By storing the augmentations
as NumPy arrays, reproducibility is also guaranteed, as the augmentations do not need
to be regenerated at runtime.

5.4 Data Augmentation
Geometric transformations are an essential aspect of data augmentation in medical image
analysis, as they help simulate variability in datasets without altering the anatomical
integrity of the structures. As highlighted by Paschali et al. [PSR+19] and Goceri [Cos23],
transformations such as rotations, translations, and scalings are crucial for increasing
dataset diversity and improving the robustness of models against variations in image
orientation and positioning.

The selection of augmentation techniques was guided by the need to preserve the clinical
relevance of the images. Methods such as color adjustments, intensity transformations,
or noise injection were intentionally excluded. These techniques, though commonly
applied in data augmentation, risk introducing artifacts or distortions that could degrade
model performance. Kumar et al. [KBMB24] emphasize that while non-geometric
augmentations such as color space manipulation and noise injection can improve model
robustness, they may also introduce noise or distortions, potentially leading to degraded
performance in specific contexts. Similarly, Nanni et al. [NPBL22] highlight the necessity
of carefully choosing augmentation techniques to avoid generating samples that do not
align with the original data distribution.

Extensive preprocessing was conducted to optimize image quality and enhance detail and
clarity. To preserve the diagnostic integrity of the medical images, noise and photometric
alterations were avoided, as these could counteract these improvements and compromise
image reliability. Instead, augmentation focused exclusively on geometric transformations,
such as rotations and flips, to balance dataset enhancement with the preservation of
image clarity.

5.4.1 Rotations and Flips
To introduce variability while preserving anatomical integrity, rotations and flips were
employed as geometric transformations. Rotations were applied by randomly rotating
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each image within a range of ±10◦ along the x, y, and z axes. This approach, commonly
used to introduce subtle variations while maintaining anatomical fidelity, has been
demonstrated in studies by Goceri [Goc23] and Paschali et al. [PSR+19]. The restricted
range ensured that critical brain structures remained visible, avoiding the exclusion of
important diagnostic information. Limiting the rotation angle was necessary because,
in the final step of preprocessing, the surrounding regions of the brain in the images
were cropped to reduce the data size, as detailed in Section 6.4. Consequently, larger
rotation angles, such as the fixed rotations of 90° and 270° employed by Nanni et al.
[NPBL22], could result in anatomical details being rotated out of the image, compromising
the integrity of the data. By restricting the angle to ±10◦, sufficient variability was
introduced while ensuring that essential anatomical content remained within the field of
view, enhancing model robustness without risking the loss of critical information.

Flips were applied by randomly mirroring the images along the x, y, or z axes. This
straightforward yet effective transformation increased the dataset size by introducing
positional variance without altering the anatomical structures or associated labels. By
consistently applying these transformations across all modalities—including FLAIR,
T1ce, T2, and segmentation images—the augmentation process ensured uniformity and
maintained the diagnostic relevance of the dataset.

5.4.2 Optimal Augmentation Ratio
The determination of the optimal ratio between original and augmented data is crucial
for maximizing the performance of deep learning models in medical image segmentation
tasks, such as Glioblastoma segmentation. Literature suggests that the appropriate mix of
original and augmented data can significantly impact model accuracy and generalization
capabilities.

The determination of the optimal ratio between original and augmented data is a critical
factor in maximizing the performance of deep learning models in medical image segmen-
tation tasks. Abdalla et al. [AMS23] demonstrate that the balance between original
and augmented data directly impacts model accuracy, with improperly balanced ratios
leading to either underfitting or overfitting, thereby reducing generalization capabilities.
Similarly, Pattilachan et al. [PDK+22] emphasize that while augmentation enhances
dataset diversity, an excessive reliance on augmented data may distort the representation
of the original dataset, highlighting the need for a carefully calibrated ratio. The litera-
ture suggests that this ratio must be optimized based on the specific dataset and task
requirements, as an imbalance could compromise the clinical relevance and robustness of
the trained model [Cos23].

Studies, such as the comprehensive survey by Mumuni et al. [MM22], have shown
that training with a higher proportion of augmented images generally yields better
results compared to training with a smaller proportion of augmented images. This survey
explored various augmentation ratios for medical imaging tasks and highlighted that using
three times as many augmented images as original images led to higher accuracy compared
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to using twice as many or an equal number of original and augmented images. These
findings underscore the importance of carefully optimizing the ratio between original
and augmented data, especially if dealing with small datasets, which are common in
medical image segmentation tasks. The survey’s conclusions emphasize that an increased
quantity of augmented data, when appropriately balanced, can significantly improve
model performance and generalization capabilities.

Based on the survey by Mumuni et al. [MM22], a recommended starting point for training
is a 1:3 ratio, with augmented images outnumbering original images by three to one.
This baseline can be fine-tuned to account for the specific characteristics of the dataset.
Ratios beyond 1:3, such as 1:4 or 1:5, were not tested in this study due to concerns
about potential overfitting to augmented data, which could reduce the model’s ability
to generalize effectively to unseen cases. Previous research emphasizes that excessive
augmentation may introduce augmentation-specific features or Out-of-Distribution (OOD)
data, thereby degrading model performance and limiting generalization [PS20, ZYQ+23].
Consequently, an over-reliance on augmented data might cause the model to focus on
features derived from augmentation techniques rather than the inherent characteristics
of the original data. Comparing performance across other ratios, such as 1:1 and 1:2,
provides a balanced exploration of augmentation effects, helping to identify the optimal
mix for Glioblastoma segmentation while maintaining robust model performance.

5.5 Model Architecture
The model architecture is based on the 3D U-Net, an extension of the U-Net tailored for
volumetric data processing. This architecture was chosen for its ability to capture spatial
relationships across all axes (x, y, z) in medical imaging data, making it particularly
effective for MRI-based segmentation tasks [HHY+19]. The 3D U-Net is designed to
segment glioblastomas by processing multisequence inputs, such as T1ce, T2, and FLAIR.

The core structure consists of a contracting path and an expanding path connected
by skip connections. The following modifications were made to adapt the architecture
for glioblastoma segmentation. Dropout rates were progressively increased in deeper
layers to mitigate overfitting, allowing the model to generalize better to unseen data.
Additionally, the number of filters was expanded in these layers to enable the network
to capture more complex and abstract features, essential for identifying intricate tumor
structures. Furthermore, a Combined Loss Function was employed, integrating Dice Loss
and Focal Loss, to optimize both overlap accuracy and the model’s ability to handle
class imbalances effectively. Details regarding these specific adjustments are discussed in
Section 6.7.

5.5.1 Input & Output
The input to the 3D U-Net consists of a three-channel volumetric image composed of
the post-contrast T1-weighted, T2-weighted, and FLAIR sequences. Each input volume

60



5.5. Model Architecture

is preprocessed, including skull-stripping, normalization, and alignment to the SRI-24
space [RZSP10], as described in Section 5.3 and Section 6.1.

The output is a segmentation mask with the same spatial dimensions as the input volume.
The mask provides voxel-wise predictions for four classes: background (Class 0, no tumor),
non-contrast-enhancing tumor (Class 1), edema (Class 2), and contrast-enhancing tumor
(Class 3). Each voxel is assigned to one of these classes based on the model’s predictions,
ensuring a comprehensive delineation of both tumor regions and non-tumor areas.

5.5.2 Loss Function & Optimization
The Combined Loss Function integrates both Dice Loss and Focal Loss to ensure the model
performs well on class-imbalanced data while achieving accurate tumor segmentation.

Dice Loss: Derived from the Dice Similarity Coefficient (DSC), the Dice Loss ensures
that the overlap between the predicted and true tumor regions is maximized. The
Dice Loss is weighted according to the class distribution to prioritize the accurate
segmentation of smaller tumor regions. The class weights are calculated based on the
ground truth segmentations in the training dataset, ensuring that each class (necrotic
(non-contrast-enhancing) core, edema, contrast-enhancing tumor, and background) is
properly balanced.

Focal Loss: The Focal Loss helps the model focus on hard-to-classify voxels by applying
a modulating factor to down-weight easy examples. The class distribution from the
training dataset is used to calculate the alpha values in the Focal Loss function, which
helps address the imbalance between different tumor classes.

The class weights used in the Focal Loss function are derived from the ground truth
segmentation of the training dataset, which is discussed in detail in Section 5.2.2. They
ensure that the model pays more attention to smaller and more clinically relevant classes,
such as the necrotic (non-contrast-enhancing) core and contrast-enhancing tumor, which
are critical for accurate segmentation of glioblastomas.

Combined Loss: This loss function is the sum of the Dice Loss and the Focal Loss,
weighted by a Focal Weight Factor. This factor is tuned using Keras [Cho15] Tuner
to find the optimal balance between the two loss components during training. The
theoretical foundations and rationale for using this particular loss function in the project
are described in Section 4.2.3.

Optimizer: The model is trained using the Adam optimizer with an initial learn-
ing rate of 0.001. The learning rate is dynamically adjusted during training using a
ReduceLROnPlateau callback to prevent overfitting and ensure smooth convergence.

5.5.3 Hyperparameter Tuning
To optimize the Focal Weight Factor, Keras [Cho15] Tuner is used to explore a range of
values between 0.0 and 5.0, with a step size of 0.1. The optimal Focal Weight Factor is
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determined based on the validation Dice Score, and the results of the tuning process are
discussed in Chapter 7. The MyHyperModel class is used to systematically test different
values and fine-tune the model’s performance to find the optimal balance between the
two losses, allowing the model to better handle challenging cases and smaller tumor
regions while maintaining overall segmentation accuracy.

5.5.4 Optimization & Reproducibility
To ensure both reproducibility and flexibility in the loading order of training cases, a
seed list with 100 entries is employed to control the random generator for shuffling the
dataset. For each Focal Weight Factor, the training process begins with the first entry in
the seed list, ensuring a consistent, deterministic order. The random generator’s behavior
is standardized across NumPy [HMvdW+20], TensorFlow [Dev16], and Python’s random
module using an initial seed, which is set to 7070 for all random operations to ensure that
the training process is reproducible. This guarantees comparable results across different
configurations while allowing controlled randomness.

During training, early stopping and model checkpoint callbacks are applied to manage
the process efficiently. The random seed is reset for each Focal Weight Factor, ensuring
consistent behavior even with the inclusion of data augmentation and shuffling.

Additionally, Mixed Precision Training with the mixed float16 policy is utilized to
optimize performance and reduce memory consumption. This approach leverages 16-bit
floating-point precision on supported hardware, enabling faster computations on GPUs
with Tensor Cores [Ten24], significantly improving training speed without sacrificing
accuracy—an essential advantage if working with large 3D medical datasets.

5.5.5 Training Process
The model is trained with up to 393 cases in 4 different Case Groups, with an 80/20
split for training and validation. The Batch size for each epoch is set to 1, 2, or 4, with
pre-loaded augmentations either used or skipped, depending on the scenario. Training
continues up to 100 epochs for each Focal Weight Factor, with early stopping based on
validation Loss. The best model, as determined by the validation IoU Score, is saved for
evaluation on the unseen evaluation dataset.

The training process of the 3D U-Net model involves a combination of data generators,
Batch size variations, and advanced techniques like early stopping, and dynamic learning
rate adjustments to optimize the model’s performance and ensure reproducibility.

Data Generators

The training and validation data generators handle data loading in real time, while
augmentations are pre-generated and applied during the loading process. Depending
on the scenario, different ratios of original to augmented cases are used, where the first
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number represents the count of original cases and the second number indicates the count
of augmentations:

The explored ratios include 2:1, 1:1, 1:2, and 1:3, as these are found to impact the model’s
generalization capabilities and are further discussed in Chapter 7.

Both generators are implemented with a seed management system to shuffle the data
in a reproducible manner, ensuring consistent results across experiments with different
configurations of the Focal Weight Factor (explained in Section 6.8).

Batch Sizes

Different Batch sizes are employed throughout the experiments, depending on the scenario:
Batch sizes 1, 2, and 4 are used to explore the impact of varying Batch sizes on model
performance, training time, and memory usage. These Batch sizes are chosen to achieve
a balance between training efficiency and model generalization, with results depending
on the experimental design and research questions.

Early Stopping and Model Checkpoints

To prevent overfitting, early stopping is applied using a validation loss-based approach,
where training halts if no improvement is observed over a specified number of epochs.
In this case, training is stopped after three consecutive epochs without validation loss
improvement. The best model, identified by the highest validation IoU Score, is restored
for further use.

Additionally, model checkpoints are saved at the end of each epoch. The best-performing
checkpoint, determined by the lowest validation loss or highest validation IoU Score, is
retained for evaluation. This approach aligns with practices discussed in Wang et al.
[WHSX23], where early stopping and checkpoint selection based on validation loss are
highlighted as effective methods to improve generalization while minimizing overfitting.

Dynamic Learning Rate Adjustment

The ReduceLROnPlateau callback dynamically adjusts the learning rate during training.
If the validation Loss stagnates for two consecutive epochs, the learning rate is reduced
by a factor of 0.2, with a minimum limit of 0.0001. This mechanism ensures a more
stable and efficient convergence, as highlighted in Al-Kababji et al. [AKBD22], where
the ReduceLROnPlateau scheduler demonstrated faster convergence compared to other
methods, achieving competitive results with fewer epochs and better model generalization.

Reproducibility through Seed Management

The entire training process is designed to be fully reproducible. A seed list containing
100 predefined values is used to shuffle the training data in a deterministic manner. The
initial seed is set to 7070, ensuring consistency across all random operations. The seed

63



5. Methodology

is reset at the start of each experiment to maintain consistent data sequences across
different runs.

Model Output and Evaluation Metrics

The model is evaluated using internal validation metrics, with the validation IoU Score
serving as the primary criterion for model selection. Additionally, metrics such as the Dice
coefficient of the necrotic (non-contrast-enhancing) core, edema, and contrast-enhancing
tumor are computed to provide a detailed breakdown of the model’s performance across
different tumor subregions.

The model undergoes internal validation during the training phase, where its performance
is monitored on a separate validation dataset to ensure generalization and prevent
overfitting. This process optimizes hyperparameters, such as the Focal Weight Factor,
and utilizes techniques like early stopping to refine the model. After training is completed,
the model is tested on the unseen evaluation dataset, which comprises 108 cases (as
described in Section 5.2). This final evaluation assesses the model’s generalization
capabilities on entirely new and therefore unseen data, providing a robust measure of its
performance beyond the training and validation datasets.

5.6 Custom Weighted Dice Score for Evaluation
From Human to Predicted Dice Coefficient Weights: Methodology and Justi-
fication

This section outlines the methodology used to calculate and justify the weights applied to
Dice coefficients for the individual tumor classes in the evaluation of segmentation models.
By systematically optimizing these weights, the Custom Weighted Dice Score ensures
that model evaluation aligns with both statistical performance and clinical relevance. The
following subsections explain the step-by-step process, from statistical metric calculation
to the selection and justification of the final Dice coefficient weights.

Calculation of Statistical Metrics
The process began with calculating statistical metrics for various segmentation mod-
els, grouped by parameters such as augmentation strategy, Case Group size, Batch
size, model version, and Focal Weight Factor. Median values and interquartile ranges
(IQR) were computed for the Intersection over Union (IoU) and Dice coefficients of the
contrast-enhancing tumor, necrotic (non-contrast-enhancing) core, and edema regions (in
descending order of clinical importance). Notably, the Dice coefficient for the background
class (no tumor) was not calculated, as it does not provide meaningful insights into
the segmentation of tumor regions. These metrics served as robust indicators of model
performance across different parameter settings, ensuring reliable comparisons between
configurations.
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Grid Search for Optimal Weights of Dice Coefficients
A grid search was performed to determine the optimal weights for the Dice coefficients
corresponding to the three glioblastoma subregions: contrast-enhancing tumor, necrotic
(non-contrast-enhancing) core, and edema. The weights for each region were systematically
varied within the range [0,1] in increments of 0.05.

The problem of finding all possible combinations of weights for the three tumor regions
(contrast-enhancing tumor w1, necrotic (non-contrast-enhancing) core w2, edema w3),
where each weight is within the rage of [0,1], their sum equals 1, and the increments for
weights are 0.005, can be modeled using the stars and bars theorem from combinatorics
[Sta11]:

Total Combinations for (w1, w2, w3) =
(︄

n + k − 1
k − 1

)︄
(5.1)

Here, n represents the number of discrete steps for the total sum (n = 21, as the total
sum of 1.00 is divided into increments of 0.05) and k is the number of weights (tumor
regions, k = 3).

(︄
21 + 3 − 1

3 − 1

)︄
=

(︄
23
2

)︄
= 23 · 22

2 = 231

Thus, there are 231 possible combinations of weights before applying additional constraints.
This calculation includes all combinations of weights that could theoretically sum to 1
using the given range and step size. However, after filtering out invalid combinations
where the weights do not sum exactly to 1, 194 valid combinations remained for further
testing. This systematic exploration of possible weight distributions helps identify, in the
next step, the weight combination that maximizes model performance while addressing
clinical priorities.

Selection of the Best Dice Coefficient Weights
For each valid weight combination, the top three models with the highest median IoU
Scores were selected. A composite score was calculated by combining the Dice coefficients
for the contrast-enhancing tumor, necrotic (non-contrast-enhancing) core, and edema
regions, weighted according to each tested parameter combination. The optimal Dice
coefficient weight configuration was defined as the one that maximized this composite
score. This step ensured that the final configuration balanced clinical importance and
statistical performance. As discussed in Section 4.1.6, the Custom Weighted Dice Score
is employed to evaluate model performance by applying different weights to the tumor
subregions, reflecting their clinical importance. The optimal Dice coefficient combination,
determined through the grid search process described above, was compared to the class
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distribution weights in the ground truth segmentation, as described in Section 5.2.2. This
comparison was conducted to select a weight configuration that most closely aligned with
the actual class distributions while maintaining robust performance.

Justification for the Final Dice Coefficient Weights
The final Dice coefficient weights—0.45 for the contrast-enhancing tumor, 0.15 for the
non-contrast-enhancing tumor, and 0.05 for the edema—were selected to balance clinical
relevance and statistical performance. The contrast-enhancing tumor, critical for assessing
tumor progression and treatment response, was assigned the highest weight due to its
clinical significance. The non-contrast-enhancing tumor, while important, has a secondary
role compared to the contrast-enhancing tumor, justifying a moderate weight. The edema,
with the least immediate clinical impact, received the lowest weight.

From a performance perspective, the grid search across 194 valid combinations identified
this configuration as optimal, achieving a 93.75% match (30 out of 32 configurations)
with the ground truth tumor class distribution. This ensures that the model emphasizes
the clinically most significant tumor classes while maintaining adequate accuracy for the
non-contrast-enhancing tumor and edema, providing a balanced solution aligned with
both clinical and statistical priorities.
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CHAPTER 6
Implementation

6.1 Pipeline Overview
The glioblastoma segmentation pipeline follows a structured and modular approach,
beginning with comprehensive data preprocessing, followed by data augmentation, and
concluding with training and testing a deep learning model on multimodal MRI data.
The pipeline operates across different environments, ensuring both privacy and efficiency
in handling sensitive medical imaging data. The pipeline is illustrated in Figure 1.1.

For the evaluation dataset, the first step of the pipeline is required, which involves the
application of the BrainLes pre-processing package [KBW+20]. However, this step is
not necessary for the training/validation dataset, as it is already provided in a format
compatible with BraTS. In the pipeline diagram (Figure 1.1), this distinction applies only
to the initial step; All subsequent steps, including CLAHE and cropping, are identical
for all datasets. The specific preprocessing steps required to achieve BraTS compatibility
are detailed in Section 6.2.

1. Data Preprocessing:

• Training/Validation Dataset: The training and validation datasets are
sourced from the BraTS Challenge and are already preprocessed to a standard
comparable to BrainLes [KBW+20] output. Thus, no further preprocessing
steps like skull-stripping or registration are necessary for these datasets.

• Unseen Evaluation Dataset: The unseen evaluation dataset is processed
using the BrainLes Preprocessing Package [KBW+20]. This includes co-
registration, skull-stripping, normalization, and conversion to SRI-24 space
[RZSP10]. These preprocessing steps align the different imaging modalities
(T1, T1 post-contrast, T2, FLAIR), remove irrelevant structures such as the
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skull, and standardize intensity values across patients and scans. Preprocessing
is conducted locally for privacy reasons, with only skull-removed and non-
identifiable data further processed in the cloud.

• Normalization and NaN Removal: Before applying CLAHE [Zui94], all
datasets (training, validation, and evaluation) are normalized to the [0, 1]
range. As part of this process, any NaN values present in the sequences are
converted to zeroes. This ensures consistency in intensity values and prepares
the data for contrast enhancement.

• CLAHE (Contrast Limited Adaptive Histogram Equalization): CLAHE
is applied to all datasets, including the training, validation, and evaluation
datasets. This step enhances the contrast of the MRI images, improving the
visibility of tumor boundaries. CLAHE is applied to each 2D slice of the 3D
image volumes, with voxel intensities normalized to the [0, 1] range. Optimal
parameters for CLAHE, such as Clip Limit and Tile Grid Size, are selected to
balance contrast enhancement and image quality preservation.

• Cropping: After CLAHE, the MRI images are cropped to remove irrelevant
areas outside the brain. This reduces the overall dataset size and optimizes
computational efficiency, focusing on the brain and tumor regions.

2. Data Augmentation:

Augmentations are applied to the preprocessed and cropped training data
to increase the dataset size and improve model generalization. These
augmentations include transformations such as rotations and flips. To
ensure reproducibility and minimize runtime overhead, the augmented
images are pre-generated and stored as NumPy arrays.

3. Storage of Processed Data:

Before the 3D U-Net is trained, both the training/validation datasets
and the augmentations are saved as NumPy arrays. This improves
the efficiency of data loading during the training process and ensures
consistency across experiments.

4. Model Training:

A 3D U-Net architecture, implemented using Python [VR09] with Ten-
sorFlow [Dev16] and Keras [Cho15], is trained on the preprocessed,
augmented, and stored MRI data. The model uses ground truth seg-
mentations provided by a trained neuroradiologist, and class imbalances
are addressed using a combination of Dice Loss and Focal Loss. Hyper-
parameter tuning is conducted to optimize the focal weight, and mixed
precision training is used to improve computational efficiency.
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5. Model Testing:

After training, the model is evaluated using key metrics: Intersection
over Union (IoU), Dice coefficients for the three segmentation classes
(necrotic/non-contrast-enhancing tumor, edema, contrast-enhancing tu-
mor), accuracy, and the Custom Weighted Dice Score. These metrics
provide a comprehensive evaluation of the model’s performance in seg-
menting the tumor regions.

6. Experimental Testing Environment:

The pipeline is executed in a hybrid environment. Preprocessing steps
using the BrainLes Preprocessing Package [KBW+20] are performed
locally to maintain data privacy. Only skull-removed, non-identifiable
MRI data are uploaded to Google Colab [Col23], where the model is
trained and tested using an NVIDIA A100 GPU. This setup ensures
compliance with data protection regulations while providing the necessary
computational resources for the deep learning tasks.

6.2 Evaluation-Dataset Preprocessing
The preparation of medical image data for the evaluation dataset follows the preprocessing
protocol of the BraTS datasets, with the objective of ensuring an optimal transfer of the
image characteristics learned from the training to the evaluation dataset in the context
of machine learning. This ensures that the evaluation dataset is processed in a manner
consistent with the training data, facilitating a fair comparison between training and
evaluation results.

Initially, the DICOM data is converted into the NIfTI format (Neuroimaging Informatics
Technology Initiative). Following this, crucial preprocessing steps are applied, including co-
registration, skull-stripping, normalization, and conversion to the SRI-24 space [RZSP10].
These steps are essential for maintaining data consistency and enhancing the accuracy of
the segmentation model.

• Co-registration: All imaging modalities of a patient (e.g., T1, T1 post-contrast,
T2, FLAIR) are co-registered to ensure that they are aligned within the same
spatial coordinates. This alignment ensures that anatomical structures appear in
the same location across all modalities, which is essential for accurate segmentation.

• Normalization: Intensity normalization is applied to adjust the intensity values
across all modalities to a common scale. This reduces variability between patients
and across imaging sessions caused by differences in scanner settings or patient
positioning. Standardizing intensity values enhances the segmentation model’s
ability to consistently analyze brain tissues and improves the accuracy of the
segmentation results.
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• Skull-stripping: Skull-stripping removes non-brain structures, particularly the
skull, from the MRI images. This is an important step to ensure that the segmen-
tation algorithm focuses exclusively on brain tissues and tumor regions, without
interference from surrounding structures.

• Conversion into SRI-24 space: The MRI images are converted into the SRI-24
space [RZSP10], a standardized anatomical template based on 24 normal brain scans
developed by the Stanford Research Institute (SRI). This space provides a reference
framework that facilitates spatial normalization of brain images, aligning different
datasets to a common coordinate system. By using the SRI-24 space, variations
introduced by differences in scanners, imaging protocols, or patient anatomy are
minimized, ensuring comparability of segmentation results across datasets. This
consistency is especially important for reproducibility in multi-center studies and
the evaluation of segmentation algorithms in challenges like BraTS.

These preprocessing steps ensure that the evaluation dataset is aligned, normalized, and
homogenized in terms of intensity, enabling more consistent analysis across the entire
dataset. The BrainLes preprocessing package from the BraTS Toolkit [KBW+20] is used
to perform these tasks, offering the advantage of automatically converting the image data
into the SRI-24 space [RZSP10], which is expected by the BraTS challenge algorithms.

To achieve this, the following preprocessing steps are performed:

• Registration and correction are performed using NiftyReg [ORS+01], a software
package that aligns the scans with a reference anatomical atlas (SRI-24) using rigid
and non-rigid transformations.

• Normalization is done using a percentile normalizer, adjusting the intensity values
of MRI scans based on percentile thresholds to reduce the impact of outliers and
ensure the dataset is on a consistent scale.

• Skull-stripping is automated using the High-definition Brain Extraction Tool
(HD-BET) [ISP+19], a deep learning-based tool designed specifically for removing
non-brain tissues from MRI images, streamlining the skull-stripping process.

Although the BrainLes Preprocessing Package [KBW+20] performs foundational steps
such as intensity standardization and alignment, additional refinements are necessary
to ensure optimal data consistency and reliability for segmentation. These refinements
include further normalization and handling of NaN values, which prepare the datasets
for downstream processing and enhance their compatibility with subsequent steps like
CLAHE.

Normalization and NaN Removal

Before further processing, including the application of CLAHE, all datasets (training,
validation, and evaluation) are normalized to the range [0, 1]. This normalization step
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is crucial to ensure that the intensity values of the MRI images are consistent across
different modalities and patient datasets. Intensity normalization is a widely established
preprocessing step in medical image analysis, particularly for segmentation tasks involving
MRI images. Since MRI image intensities are not inherently tissue-specific, they vary
significantly between scanners, protocols, and even scans of the same patient. Normalizing
the intensity range facilitates consistency across datasets and reduces scanner-induced
intensity variability, thus improving model robustness and segmentation performance
[PNA18].

To ensure data consistency, any NaN values that may appear during preprocessing
are converted to zeros. Although a detailed review of the literature did not explicitly
identify the NaN issue encountered in this study, related works provide a plausible
explanation for its occurrence. For instance, interpolation and resampling during the
co-registration of multimodal MRI datasets can introduce artifacts, particularly at the
boundaries of imaging regions, due to phenomena such as the Gibbs effect. These
artifacts may result in voxel intensities becoming inconsistent or undefined in specific
areas [PCCDM21, MCV+97].

To mitigate this issue, converting NaN values to zeros was incorporated as a preprocessing
step. This approach ensures dataset integrity and prevents unpredictable behavior during
the training process. Unresolved NaN values can propagate errors that affect gradient
computations, leading to unstable model convergence. By replacing NaN values with
zeros, the risk of unstable gradients is reduced, facilitating a more stable training process
and ensuring that each voxel consistently contributes to model learning [PNA18].

Normalization is essential not only for preparing the data for downstream tasks, but also
plays a significant role in improving the stability and performance of the segmentation
model. By standardizing the intensity ranges, the model can better differentiate between
different brain structures and tumor regions, minimizing the impact of scanner variability
or image noise [Jan15, PNA18]. Furthermore, intensity normalization allows the model
to generalize more effectively across datasets from different sources. Studies have shown
that intensity normalization enhances segmentation performance by reducing variability
in intensity distributions, which can otherwise hinder segmentation accuracy [Jan15].
Once the data is normalized and NaN-free, it is ready for the next step in the pipeline.

6.3 CLAHE (Contrast Limited Adaptive Histogram
Equalization)

(CLAHE) represents a significant advancement in the field of image processing, addressing
limitations found in traditional histogram equalization methods. The algorithm was
refined and popularized by Karel Zuiderveld [Zui94], who detailed it in "Graphics Gems
IV". However, the foundational concepts of adaptive histogram equalization were explored
earlier by researchers such as Pizer et al. [PAA+87].
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Initially, CLAHE [Zui94] was developed and used for medical imaging purposes. It played
a decisive role in enhancing the visibility of anatomical structures in CT scans and MRI
images. This improved visualization aids in the more accurate diagnosis and analysis
of medical professionals [YMI+24]. The method’s ability to enhance local contrast
while maintaining the overall image quality makes it particularly suitable for medical
applications where detail and clarity are paramount. The method works by dividing the
image into small tiles, applying histogram equalization to each tile, and then combining
the tiles using bilinear interpolation to remove artificial boundaries.

The implemented algorithm operates by generating multiple histograms for different
sections of an image and using these histograms to redistribute the brightness values.
Two primary parameters must be set for CLAHE: Clip-Limit (CL) and Tile Grid Size or
Block size (BS).

Parameters for CLAHE

The Clip Limit (CL) defines the maximum threshold for contrast adjustments, preventing
excessive enhancement that could amplify noise. Higher clip limit values increase contrast,
with typical values ranging from 2.0 to 4.0. The Tile Grid Size or Block Size (BS) specifies
how the image is divided into smaller regions for localized contrast adjustment. Each tile
undergoes individual enhancement, with typical sizes set to (8, 8) or (16, 16). Together,
these parameters ensure effective contrast optimization while preserving image quality.

Determining Optimal Parameters

To determine the optimal parameters for CLAHE, various combinations of the clip limit
and tile grid size can be tested and evaluated visually and statistically. By evaluating the
histograms and images generated with various parameter combinations, the parameters
that yield a more uniform and consistent voxel intensity distribution can be identified.
For example, with clipLimits = [2.0, 3.0, 4.0] and tileGridSizes = [(8, 8), (16, 16)], six
different combinations result.

Programmatic Implementation

The function apply_clahe_3D applies CLAHE to each 2D slice of a 3D image, scaling
voxel intensities before and after processing to ensure that they remain within the range
[0, 1]. After applying CLAHE, the data are rescaled to this range and converted to
float32, making the normalized data ready for further processing in TensorFlow [Dev16].

However, the provided function does not fully take advantage of the 3D structure of
the data, which a true 3D CLAHE implementation would do. True 3D CLAHE could
provide more consistent and uniform contrast enhancement across the entire volume
by considering the spatial context in all three dimensions, which was first described by
Amorim et al. [AFdMSP18].

Despite the promising approach of 3D CLAHE, the decision was made to use 2D CLAHE
instead. This decision is driven by the need for a more manageable and computationally
efficient solution. The 2D CLAHE provides a good balance between enhancing image
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contrast and maintaining a practical level of complexity and resource usage. Additionally,
the implementation of 3D CLAHE introduced stability issues, making it difficult to
achieve consistent results. Therefore, 2D CLAHE was chosen as the more suitable option
for the current implementation.

Optimal Parameter Selection Based on Histogram Metrics
To select the optimal parameter combination based on histogram metrics, various charac-
teristics of the histogram are analyzed. The three primary metrics considered are entropy,
kurtosis, and skewness. Each of these measures provides distinct insights into the nature
of voxel intensity distributions and their impact on image quality and interpretability.

Entropy serves as a measure of the complexity of the histogram, reflecting the degree
of unpredictability or randomness in voxel intensities [NWS14]. A higher entropy value
signifies a more uniform distribution of intensities, indicating better contrast distribution
across the intensity range. This is particularly useful in medical imaging, where a higher
entropy can enhance the visibility of subtle differences between tissue types. In practical
applications, maximizing entropy has been shown to enhance image details and improve
diagnostic precision.

Kurtosis quantifies the peakedness or flatness of the histogram relative to a normal
distribution [HSF24]. In medical imaging, a flatter distribution is desirable as it promotes
a more even spread of voxel intensities, reducing the likelihood of over-saturation or
underexposure in specific intensity ranges. This balance ensures that subtle anatomical
details are preserved, enhancing the diagnostic utility of the images. A lower kurtosis
value indicates a flatter distribution, where voxel intensities are more evenly spread across
the range, reducing the occurrence of overly bright or dark regions. This contributes to a
more natural and realistic appearance of the image, improving its interpretability. In
the context of medical imaging, controlling kurtosis helps to avoid over-saturation or
underexposure of specific intensity ranges, thereby preserving the visual quality of the
image.

Skewness measures the asymmetry of the histogram, reflecting how voxel intensities
are distributed around the mean [VARS24]. A skewness value close to zero indicates
a balanced distribution, while positive or negative skewness suggests a bias towards
higher or lower intensity values, respectively. In medical imaging, a skewness value near
zero ensures a balanced intensity distribution, maintaining an equilibrium between light
and dark regions in the image. This balance is essential for accurate interpretation and
analysis, as it avoids dominance of certain intensity ranges.

To combine these three metrics into a single quantitative measure, a score is calculated
that aims to maximize entropy while simultaneously minimizing kurtosis and the absolute
value of skewness. The score is defined as follows:

Score = Entropy − Kurtosis − |Skewness| (6.1)

This formula reflects a logical approach to optimizing image quality. By maximizing
entropy, the goal is to achieve a diverse range of voxel intensities, ensuring that subtle
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features are not lost. Simultaneously, reducing kurtosis prevents intensity values from
clustering too tightly, and minimizing the absolute value of skewness ensures a balanced
intensity distribution. The combination of these three objectives promotes an optimal
balance between contrast, brightness, and symmetry in the resulting images.

The rationale behind this formulation lies in the physical significance of each metric in
image processing [HSF24]. Entropy is widely recognized as a measure of information
content, and its maximization aligns with the goal of preserving as much detail as possible.
Kurtosis and skewness, on the other hand, control the shape and symmetry of the intensity
distribution. By minimizing kurtosis, the aim is to distribute voxel intensities more evenly,
while the minimization of skewness ensures that no specific intensity range dominates
the image. The combined effect of these adjustments results in images that are visually
balanced, have enhanced contrast, and preserve crucial anatomical details.

To identify the optimal parameter combination, the score is calculated for each of the
six parameter configurations. The combination yielding the highest score is selected
as the optimal choice. This approach ensures that the selected parameters produce an
image with the most favorable balance of contrast, brightness, and symmetry, as shown
in Figure 6.1.

Figure 6.1: Comparison of FLAIR MRI images before (left) and after (right) applying
Contrast Limited Adaptive Histogram Equalization (CLAHE). The CLAHE-enhanced
image shows significantly improved local contrast, enhancing the visibility of the tumor
and surrounding structures. The histogram transformation of the FLAIR sequence is
illustrated in the plots of Figure 6.2.

The stripes observed in the right histogram in Figure 6.2 after the CLAHE transformation
occur due to the local contrast enhancement applied to each tile. CLAHE divides the
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Figure 6.2: Histograms of voxel intensity before (left) and after (right) CLAHE transfor-
mation for the FLAIR sequence in Figure 6.1. The CLAHE-enhanced histogram shows
improved contrast distribution, with reduced entropy and skewness, indicating better
equalization and visibility of image details.

image into smaller regions (tiles), applies histogram equalization to each, and then
combines them. This process can introduce slight discontinuities at the borders of
the tiles, resulting in a striped appearance in the histogram. These stripes reflect the
boundaries between tiles with varying contrast levels, as each tile is adjusted independently
before being merged back into the overall image. However, these discontinuities usually do
not affect the overall quality and utility of the image for diagnostic purposes. If necessary,
additional post-processing steps could be applied to smooth out these transitions and
minimize the visual impact of the stripes.

The study by Yoshimi et al. [YMI+24] demonstrates that preprocessing with CLAHE
significantly enhances the performance of deep learning models for segmenting MRI
images. Specifically, the application of CLAHE resulted in higher values for metrics
such as the Dice similarity coefficient, sensitivity, and positive predictive value when
compared to models trained on non-preprocessed images. This improvement underlines
the effectiveness of CLAHE in dealing with low contrast images and varying brightness
levels, which are common in medical imaging. The results suggest that CLAHE is a
robust preprocessing method to boost the performance of deep learning models in medical
image analysis.

Alternatives to the CLAHE Method

While CLAHE is a widely used approach for local contrast enhancement, other image
processing techniques, such as the Wavelet Transform, have been considered in the
field. However, the Wavelet Transform exhibits several limitations in this context, as
it does not directly enhance contrast. Instead, it performs a multi-scale decomposition
of the image into frequency components, separating low-frequency (coarse) structures
from high-frequency (fine-detail) information [HMAZ23]. This decomposition allows for
operations like noise suppression and feature extraction, which are valuable in certain
image processing tasks but not directly applicable for localized contrast enhancement
[VKG+22, HMAZ23].

75



6. Implementation

The indirect influence of the Wavelet Transform on contrast is achieved through the
manipulation of high-frequency components, often enhancing edges or emphasizing fine
details [Pyk17]. However, this process does not involve a direct adjustment of voxel
intensity distributions, which is essential for localized contrast enhancement. Unlike
methods that directly redistribute intensity values within image regions, the Wavelet
Transform focuses on frequency-based separation, making it better suited for noise
reduction and feature analysis [HMAZ23, VKG+22].

Given the objective of this work — to achieve local contrast enhancement rather than
frequency decomposition or noise suppression — the Wavelet Transform was not a suitable
option. Its reliance on frequency-based operations does not meet the requirement of
dynamically adjusting voxel intensities in small image regions. Consequently, the CLAHE
method was selected as it is specifically designed to achieve this localized enhancement,
ensuring better visibility of subtle image details [GBGC18].

6.4 Data Cropping & Resource Utilization
After skull-stripping, a significant portion of the images, particularly in areas near the
vertex (high frontal) and the nose (ventro-frontal), consists of non-informative data. This
is especially evident after removing the skull, leaving large empty regions in the images.
These black regions, visible in the images, result from the removal of the skull and soft
tissue using the BrainLes Preprocessing Framework, as shown in Figure 6.3. By focusing
on these non-informative regions and reducing the overall data size through cropping,
we can significantly improve resource utilization. This optimization not only decreases
memory usage but also enhances processing speeds, reduces storage requirements, and
streamlines data handling and analysis.

The BrainLes Preprocessing Package [KBW+20] used earlier in the pipeline outputs
images with a resolution of 240x240x155, equating to 8,928,000 voxels per image. By
applying cropping techniques, we reduce the dimensions to 128x160x128, resulting in only
2,621,440 voxels. This adjustment leads to a 70% reduction in data size, a significant
improvement that directly impacts computational efficiency, as illustrated in Figure 6.3.

The specific cropping dimensions were carefully selected to retain the most relevant
brain structures while eliminating non-informative regions. In this process, some parts
of the brain surface, particularly in the bifrontal region, lose a few voxels due to the
tightly selected cropping window. Despite this minimal loss, the method preserves the
anatomically relevant structures, ensuring the accuracy of downstream analyses while
significantly improving computational efficiency. The images were cropped from slice
55 to slice 183 along the frontal (coronal) axis, from slice 47 to slice 207 along the
sagittal axis, and from slice 10 to slice 138 along the cranio-caudal axis. This asymmetric
cropping reduces the data size while preserving crucial anatomical features, ensuring that
no important information is lost.
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Figure 6.3: FLAIR MRI sequence before (left) and after (right) applying cropping. The
initial resolution is 240x240x155 voxels, reduced to 128x160x128 voxels after cropping,
significantly decreasing data size and improving computational efficiency.

Asymmetric Volume Alignment

The asymmetric alignment of the preprocessed volume is due to the need to avoid cutting
off the nose during image acquisition. After the skull is removed from the image, the
resulting empty space can be cropped out to focus on the brain. Since the human head
is typically longer than it is wide, the cropping dimensions of 128x160x128 are chosen to
reflect this natural asymmetry. Although this approach may result in the loss of some
peripheral information, the trade-off is deemed reasonable given the substantial reduction
in data size and the increased computational efficiency.

Dimensional Requirements for Deep Learning Models

Another critical factor to consider when cropping images for deep learning models, such
as the 3D U-Net architecture, is that the image dimensions should be powers of two.
This is essential because, in the contraction path of U-Net, the image resolution is halved
at each downsampling layer. Consequently, the image dimensions must be divisible by
two to allow smooth downsampling. The specific dimensions chosen—128 (which can
be expressed as 7 x 27, allowing for 7 layers) and 160 (which can be expressed as 5 x
25, allowing for 5 layers)—reflect the depth to which the network can operate efficiently.
The higher the factor of two, the deeper the network can become, enabling more layers
without requiring complex architectural adjustments.

The reduction in data size has a direct impact on the utilization of computing resources.
By minimizing the amount of data processed in each training iteration, memory usage is
reduced, which lowers the risk of memory overflow during training. Smaller data sizes
also accelerate processing times, improving overall computational efficiency. Storage
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requirements are also minimized, which is a critical factor when managing large medical
imaging datasets. Additionally, the reduced data size facilitates faster data transmission
and analysis, enabling quicker results and more efficient project execution.

6.5 Augmentation Implementation

Geometric transformations, such as rotations and flips, are applied to expand the dataset,
introducing variability that enhances the model’s generalization capabilities. These
transformations are particularly effective for medical image segmentation, as they simulate
plausible variations while preserving anatomical structures.

Using the skimage.transform package, each FLAIR, T1ce, T2 image, and the corre-
sponding segmentation masks can be rotated randomly between -10° and 10° along the x,
y, or z axis. The rotation angle (between -10° and 10°) and axis (x, y, or z) are selected
at random to introduce variability while preserving anatomical structures. Segmentation
masks are rotated using order 0 interpolation to maintain the integrity of labeled regions.
Additionally, these images and segmentation masks are flipped along a randomly chosen
axis (x, y, or z) using numpy.flip. This simple yet effective augmentation technique
duplicates the dataset, effectively increasing its size.

The function augment_data randomly selects one of three augmentation operations
—rotation only, flip only, or a combination of both—and applies it to the FLAIR, T1ce,
T2 images, and the segmentation masks. In the first scenario, the images are rotated by
a random angle between -10° and 10° along a randomly selected axis (x, y, or z). In the
second option, the images are flipped along a randomly chosen axis (x, y, or z). Finally,
the third option combines both transformations, where a random rotation is followed by
a random flip. This random selection strategy guarantees an equal probability for each
augmentation type, achieving balanced dataset enhancement and preventing overfitting
to specific transformations.

Figure 6.4 illustrates the application of these augmentation techniques. The first row
displays the original images with the corresponding segmentation mask, the subsequent
rows display augmented versions of the original images. The second row demonstrates
flipping along the x-axis. The third row shows an example of rotation by -4.02 degrees
along the z-axis combined with flipping along the y-axis, where the effect of rotation
is visible in the altered position of the green area (non-contrast-enhancing tumor). In
the fourth row, a flip along the z-axis is applied, combined with a rotation of 3.28
degrees along the y-axis, resulting in notable changes in the segmentation mask. These
augmentations enhance the dataset’s variability while preserving essential anatomical
structures, thereby improving the robustness and generalizability of the deep-learning
model.
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Figure 6.4: Example of Original and Augmented MRI Images with Corresponding
Segmentations. The first row displays the original images, with columns from left to
right showing FLAIR, T1ce, T2, and the segmentation, which includes non-contrast-
enhancing tumor (green), tumor edema (yellow), and contrast-enhancing tumor (brown).
Subsequent rows present augmented images with flipping, rotation, or a combination of
both, enhancing dataset variability while preserving anatomical structures.
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6.6 Optimized Data Storage & Sequence Selection
To further optimize data loading and reduce latency, three of the four imaging se-
quences—T2, FLAIR, and T1ce—are stacked into a single NumPy array. This approach
minimizes the time required to load the data into memory during training and ensures
that the images are readily available for processing. The native T1 sequence is omitted
from the stack because it does not provide significant additional information beyond
what is already captured by the other sequences. Menze et al. [MJB+15] and Bakas et al.
[BRJ+19] explicitly emphasize that the primary focus for segmentation models lies on
T1ce, T2, and FLAIR, as they provide the most relevant information for delineating tumor
subregions. The native T1, in contrast, does not reveal additional features for identifying
non-contrast-enhancing tumor, contrast-enhancing tumor, or peritumoral edema, as these
structures are better visualized with the existing sequences. This redundancy supports the
decision to exclude the native T1 sequence, as its contribution to segmentation accuracy
is marginal. By excluding redundant data, the preprocessing pipeline is streamlined
without compromising the quality or completeness of the diagnostic information.

An additional reason for excluding the native T1 sequence is its inconsistency in appearing
as either a Turbo Spin Echo (TSE) or Fast Field Echo (FFE) sequence, which can introduce
variability into the dataset. This inconsistency could potentially affect the model’s ability
to converge during training, as the network may struggle to generalize across differing
sequence types. As noted in Section 5.2, this variability in the native T1 sequence can
lead to unwanted impacts on the convergence of the network, making it less reliable for
the task at hand. Similar issues have been observed in multi-center MRI datasets, where
variations in acquisition protocols, such as pulse sequences and scanner parameters, cause
significant changes in image contrast. This variability hinders the generalization ability
of convolutional neural networks, as they tend to overfit to specific contrast distributions
from the training data [JHG+19]. Therefore, its exclusion is justified to maintain the
overall consistency and robustness of the training data.

6.7 3D U-Net Design
This implementation of the 3D U-Net for glioblastoma segmentation combines key
principles of the U-Net architecture with tailored modifications for handling volumetric
MRI data. The model utilizes increased filter depths, dropout regularization, and
skip connections to preserve critical spatial information, making it highly effective for
segmenting complex tumor structures in 3D.

Contracting Path (Encoder)
The contracting path is designed to capture the context of the input MRI scans by
progressively downsampling the input images while increasing the depth of the feature
maps. Key characteristics of this implementation are:

80



6.7. 3D U-Net Design

• Convolutional Layers: At each stage, two 3D convolutional layers are applied
with ReLU activations, followed by a dropout layer to prevent overfitting. The
filters at each layer follow an increasing pattern (16, 32, 64, 128, and 256), allowing
the network to progressively capture more complex and abstract features.

• Dropout: Dropout layers are employed after each convolutional block, with
dropout rates increasing from 0.1 to 0.3 as the depth of the network increases.
This strategy helps reduce overfitting by randomly dropping units during training
[SHK+14].

• Max Pooling: The spatial dimensions of the input image are reduced using 3D
max pooling with a pool size of (2, 2, 2). This reduces computational complexity
while retaining essential spatial information.

Expanding Path (Decoder)
The expanding path reconstructs the high-resolution segmentation map by progressively
upsampling the feature maps. Key characteristics include:

• Transposed Convolutions: Conv3DTranspose layers are used to upsample the
feature maps, doubling the spatial resolution at each step. This is essential for
reconstructing the segmentation map.

• Skip Connections: Skip connections between corresponding layers in the con-
tracting and expanding paths are critical for preserving high-resolution information.
These connections ensure that fine-grained spatial details are preserved, even after
the aggressive downsampling in the encoder.

Skip Connections
Skip connections are a hallmark of the U-Net architecture and are employed between
layers of corresponding spatial dimensions in the encoder and decoder. These connections
are crucial for combining the abstracted high-level features from the contracting path
with the fine-grained spatial information from earlier layers. By concatenating feature
maps from the encoder with those in the decoder, the model retains detailed spatial
information critical for accurate tumor segmentation [SZL+24, TB24].

Output Layer
The final layer of the network is a Conv3D layer with a kernel size of (1, 1, 1) and a
softmax activation. This outputs voxel-wise class probabilities across the four defined
segmentation classes: non-contrast-enhancing tumor, contrast-enhancing tumor, edema,
and background.
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Model Input and Output

• Input Shape: The input to the network consists of 3D volumes with a shape of
(128, 160, 128), representing the downsampled MRI images. The input includes
three MRI modalities (T1ce, FLAIR, and T2), providing the necessary information
for the segmentation task.

• Number of Classes: The model outputs probabilities for four classes, including
non-contrast-enhancing tumor, contrast-enhancing tumor, edema, and background.

Optimization for Efficient Training

• Dropout Regularization: Dropout layers are strategically placed in both the
contracting and expanding paths to reduce overfitting. As the network becomes
deeper, the dropout rates increase to introduce more regularization.

• Batch Normalization: While not included in this specific implementation, Batch
Normalization could be introduced between convolutional layers to normalize the
activations and potentially speed up training convergence.

Batch Normalization was deliberately not included in this 3D U-Net implementation
due to its limited effectiveness in 3D convolutional networks, particularly if small Batch
sizes are used. As highlighted by Kolarik et al. [KBR20], Batch Normalization requires
sufficiently large Batch sizes to compute reliable statistics for mean and variance. If the
Batch size is reduced to 1, the computed variance becomes zero, leading to numerical
instability and unreliable parameter updates. This issue is particularly relevant for 3D
segmentation networks, where the larger memory demands of 3D images often necessitate
smaller Batch sizes [KBR20]. Consequently, using Batch Normalization in this setting can
degrade the convergence behavior and hinder the stability of the optimization process.

Furthermore, Batch Normalization introduces additional memory overhead, which is par-
ticularly costly in 3D networks due to their high-dimensional input. Qin et al. [QGT+19]
note that smaller Batch sizes increase the overhead for computing global statistics across
batches, resulting in longer training times and increased memory consumption. Given the
memory-intensive nature of 3D image segmentation, avoiding Batch Normalization helped
to maintain efficient GPU usage. Additionally, the benefits of Batch Normalization, such
as smoothing the optimization landscape, can be achieved through alternative approaches
such as data augmentation and dropout, both of which are less dependent on Batch
size [STIM19]. These alternative strategies were used to stabilize the training without
introducing the computational overhead associated with Batch Normalization.
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6.8 Reproducibility via Seed Management
The initial seed is set to 7070 and is consistently applied using TensorFlow’s [Dev16]
random seed mechanism to ensure reproducibility in operations such as weight initializa-
tion and data shuffling. Additionally, a Seed List with 100 predefined values is used to
control randomization during each epoch, ensuring that the order in which training and
validation cases are loaded remains consistent across experiments.

At the beginning of each epoch, a new seed is selected from the Seed List, which determines
the specific order in which the original, validation, and optionally augmented data are
loaded. Each seed ensures a consistent and reproducible sequence of data loading for
that particular seed. For example, Seed 860 results in a different data order than Seed
5390, but for any given seed, the same order is always used. This mechanism guarantees
that the data is shuffled in a specific and repeatable way for each seed, making the
training process reproducible across experiments. Since augmentations are pre-generated
and stored separately, seed management only affects the order of data loading, not the
generation of augmentations.

Limitations of Deterministic Data Shuffling and Justification

One potential limitation of using a deterministic shuffling approach through predefined
seeds is the risk of overfitting to specific data patterns that occur early in the training
sequence. Since the training and validation data are always presented in the same order,
the model might learn to rely on these early patterns, which can negatively impact
generalization performance. Such effects are observed in deep reinforcement learning
(DRL), where overfitting occurs "robustly", even in the presence of added stochasticity
[ZVMB18]. Moreover, the fixed sequence of data presentation reduces the exposure to
random variability, which can further hinder generalization to unseen data [ZVMB18].

Despite these potential drawbacks, the decision to use deterministic shuffling was made
to ensure reproducibility and fair model comparison. In deep learning research, repro-
ducibility is a critical factor, especially if training models with stochastic processes.
Deterministic implementations help eliminate the variance caused by nondeterminism,
which is a known issue in DRL [NWS18]. By fixing the order of data presentation, it
becomes possible to consistently compare the performance of models with different hyper-
parameters under identical conditions [NWS18]. This consistency is crucial if evaluating
multiple models (e.g., variations in Batch size, augmentation strategies, or Focal Weight
Factors) to ensure that observed differences in performance are solely attributable to
model configurations and not to random fluctuations in data presentation [NWS18].

The use of deterministic shuffling does not necessarily limit generalization. The variability
of the training data is still ensured through data augmentations, which generate unique
transformations for each epoch. This is supported by findings on data augmentation,
where random transformations (e.g., rotation, flipping, and intensity shifts) introduce
diversity into the training data, thereby mitigating the risk of overfitting [SK19]. In this
context, the fixed shuffling order does not reduce variability, as the image content changes
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with each epoch due to augmentations, even if the image indices remain constant [SK19].

To address the potential risk of overfitting to specific patterns, the training set was
designed to be diverse and representative of the underlying data distribution. Additionally,
augmentations such as rotation, flips, and intensity shifts were applied to increase
variability during training [SK19]. This approach ensures that the model does not rely on
static patterns in the data order but instead learns from a wide range of transformations
[SK19].

In summary, while deterministic shuffling has potential limitations regarding general-
ization, its use is justified by the need for reproducibility and fair model comparison.
Deterministic implementations play a crucial role in achieving reproducibility, as they
eliminate nuisance noise and ensure consistent experimental conditions, which is par-
ticularly relevant in fields like deep reinforcement learning [NWS18]. The presence of
data augmentations further mitigates the risk of overfitting to a fixed data order, as the
model is exposed to variable image transformations across epochs [SK19]. This balance
between reproducibility and generalization aligns with best practices for deep learning
experimentation, especially if evaluating numerous model configurations.

DataGenerator: Seed Management for Reproducible Data Shuffling

The DataGenerator is essential for loading both original and pre-generated augmented
data during training. To ensure reproducibility, the Seed List is passed to the DataGen-
erator, which controls the shuffling of data at the start of each epoch by selecting a seed.
This guarantees consistent data ordering (including training, validation, and augmented
images) across different runs of the experiment.

Since augmentations are pre-generated, seed management strictly governs the data
shuffling, ensuring deterministic loading sequences while allowing variability in the order
across epochs, and maintaining reproducibility throughout the process.

Callback Management for Seed Control

In addition to the DataGenerator, callbacks like ModelCheckpoint and EarlyStopping are
employed to manage checkpoints and optimize training while ensuring that the random
seeds are reset correctly at each epoch. The CustomSeedCallback ensures that the seed
is reset at the beginning of each epoch, maintaining consistency in the shuffling of the
training and validation data, and keeping the overall process deterministic.

The callback is triggered at the beginning of each epoch, ensuring that the training
data—including both the original and pre-generated augmented images—are reshuffled
based on the selected seed. This consistency ensures that every experiment remains fully
reproducible while still introducing some variability by changing the order in which the
data is presented across epochs.

Pre-Generated Augmentations for Reproducibility

As explained in Section 5.4, augmentations are created with random rotations and flips
to increase variability in the training process and stored as NumPy arrays. These pre-
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generated augmentations, along with the training and validation datasets, are loaded
using the seed management system. This ensures that the data is consistently shuffled
and loaded in the same deterministic order across training epochs, allowing for precise
comparisons between different training runs. By controlling the random seed, the
augmented data is shuffled and loaded in the same reproducible (deterministic) order as
the training and validation data for each experiment.

Impact on Model Training

By carefully managing seed values and utilizing pre-generated augmentations, the model
training process is made fully reproducible. This ensures that each experiment can
be replicated under identical conditions, allowing for consistent comparisons across
different Focal Weight Factor configurations. Seed management controls data shuffling
and augmentation, ensuring that randomness remains controlled, leading to reliable and
comparable results across experiments. This reproducibility is crucial for validating the
model’s performance in scientific research.

6.9 Model Training & Validation
Data Loading and Augmentation Customized data generators manage the loading
and augmentation of large 3D medical images. The DataGenerator class handles
loading original and augmented data from predefined directories. The dimensions of the
images are set to 128x160x128 (depth, width, height) with three channels representing
T1ce, FLAIR, and T2 MRI sequences. Augmentations, including rotations and flips,
are pre-generated to reduce computational load during training, and seed management
ensures consistent shuffling.

Key aspects:

• Batch Size Flexibility: Depending on the experiment, Batch sizes of 1, 2, or
4 are employed to explore their impact on segmentation accuracy and training
efficiency. The data generator dynamically adapts to these variations.

• Shuffling and Seed Management: A seed list with 100 predefined values ensures
consistent shuffling of training and validation data across experiments, using a
seed value (e.g., 7070) applied through TensorFlow’s [Dev16] seed management
functions. At the start of each epoch, the seed is reset to maintain consistency.

Performance Optimization Techniques To prevent overfitting and improve model
performance, several optimization techniques are employed throughout the training
process:

• Early Stopping: Early stopping is applied when validation Loss shows no improve-
ment after three consecutive epochs, preventing overfitting and saving computational
resources.
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• Dynamic Learning Rate Adjustment: The learning rate starts at 0.001 and
is dynamically adjusted using a ReduceLROnPlateau callback. If validation Loss
stagnates for two epochs, the learning rate is reduced by a factor of 0.2, with a
minimum learning rate of 0.0001, allowing the model to fine-tune weights more
effectively.

• Multi-GPU Support: TensorFlow’s [Dev16] MirroredStrategy is used to dis-
tribute the workload across multiple GPUs, if multi-GPU support is unavailable,
the model defaults to single-GPU or CPU training.

Monitoring and Saving the Best Model
During training, performance metrics such as the Dice coefficient and Intersection over
Union (IoU) are logged after each epoch. These metrics guide model adjustments and
help in selecting the best-performing model for evaluation on unseen data.

Key aspects:

• Model Checkpoints: At the end of each epoch, the model is saved based on
its validation IoU Score, ensuring that the best configuration is retained for later
evaluation.

• Performance Logging: A CSV logger tracks key metrics, including train-
ing/validation Loss and Dice Scores, to provide a detailed analysis of model
performance across multiple runs.

Reproducibility
Reproducibility is ensured through consistent seed management. A seed list with 100
predefined values guarantees that data shuffling and augmentation are applied in a
consistent, reproducible manner, even across different experiments and variations in the
Focal Weight Factor.

Representative Slices and Visualizations
For each test scenario, a selection of representative slices from the FLAIR, T1ce, and T2
modalities is visualized, focusing on key tumor regions. These slices were chosen based
on the presence of distinct tumor features, such as contrast enhancement, non-contrast
enhancing core, or peritumoral edema. The visualizations include both the predicted
and ground truth segmentation masks, providing qualitative insights into the model’s
segmentation accuracy. Particularly, overlaying the predicted masks onto T2 images, as
shown in Figure 7.22, allows for a clearer assessment of segmentation performance.

Saving and Comparison of Results
Performance metrics, including the Custom Weighted Dice Score, are saved in a CSV file,
enabling comparison and further evaluation s disscussed in Chapter 7. This allows for a
comprehensive analysis of the model’s performance across the entire validation dataset
and supports the selection of the best-performing models based on the saved metrics.
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6.10 Testing Environment
Efficient model training for deep learning-based glioblastoma segmentation requires a
computational environment that balances high-performance hardware, scalability, and
compliance with data privacy regulations. This section outlines the hardware setup,
development tools, and cloud-based infrastructure used in this study.

Hardware Specifications

The experiments were conducted using the NVIDIA A100 GPU, which features 6912
CUDA cores and 40 GB of high-bandwidth memory (HBM2). This GPU is optimized
for high-performance computing and large-scale AI workloads, making it ideal for the
computationally intensive task of training 3D U-Net models for glioblastoma segmentation
[NVI21]. Its advanced architecture provides substantial computational power, enabling
faster model convergence and efficient experimentation.

Cloud-Based Environment

To leverage high-performance hardware without the constraints of local resources, all
experiments were carried out within the Google Colab environment [Col23], a cloud-based
Jupyter notebook platform that provides access to various GPUs, including the NVIDIA
A100. Google Colab [Col23] offers seamless integration with Google Drive, which was
essential for handling the large datasets used in this project. Additionally, the platform
comes pre-installed with machine learning libraries, simplifying setup and reducing the
overhead associated with configuring a local environment. Although lower-cost GPUs
such as the L4 and T4 were available, the A100 was selected for its superior performance
in computationally intensive tasks.

Development Tools

The implementation was carried out in Python 3.11 [VR09], using TensorFlow [Dev16]
version 2.15.0 and Keras [Cho15] version 3.3.3 as the primary deep learning frameworks.
TensorFlow was chosen over alternatives like PyTorch [PGM+19] and MONAI [Con20]
due to specific compatibility and performance considerations in this project. These tools
provided a robust and stable platform for developing, training, and evaluating 3D U-Net
models tailored for medical image segmentation.

Motivation for Cloud Usage

A key motivation for selecting Google Colab [Col23] was the need for computational
flexibility due to software incompatibilities on local hardware. The A100’s advanced
architecture significantly accelerated deep learning tasks, reducing training times that
might otherwise take over 24 hours on a standard GPU such as the NVIDIA RTX 4070
mobile to approximately 6–8 hours per model. This fourfold reduction in training time
enabled more extensive experimentation within the project’s timeframe. Additionally,
Google Colab’s pricing model, which charges approximately €1.2 per hour for the
A100 GPU, made it a cost-effective choice, despite total costs exceeding €1500 due
to the extensive experimental runs conducted during the project. The pre-configured
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environment further streamlined the workflow, enabling rapid experimentation without
the need for additional setup.

Data Privacy and Security

To comply with data privacy regulations, preprocessing steps such as skull-stripping were
performed locally using an NVIDIA RTX 4070 mobile GPU (4608 graphics cores, 8 GB
GDDR6X memory), an AMD Ryzen 9 7940HS CPU (8 cores/16 threads, clock speed:
4.00–5.20 GHz), and 64 GB of DDR5-4800 RAM. This ensured that patient faces could
not be reconstructed from the anonymized image data. Only NIfTI files, stripped of
header information traceable to patient identities, were uploaded to the cloud. Patient
names were replaced with anonymized identifiers, ensuring no personally identifiable
information was stored on Google servers.

In summary, the experimental testing environment was meticulously designed to balance
computational demands with privacy and cost-efficiency. The NVIDIA A100 GPU,
integrated within the Google Colab [Col23] platform, provided robust performance for
deep learning tasks, while TensorFlow [Dev16] and Keras [Cho15] ensured a reliable
framework for model development. This setup enabled efficient and secure experimenta-
tion, facilitating the successful implementation of gliobastoma segmentation using 3D
U-Net models.
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CHAPTER 7
Results

Introduction to Chapter 7
This chapter systematically evaluates the segmentation results obtained from the trained
deep learning models. The objective is to analyze the impact of different hyperparameters
and dataset characteristics on model performance and to address the research questions
formulated in Section 1.2. The chapter is structured in a logical sequence that first
establishes the dataset properties, then examines segmentation performance across
various conditions, and finally explores model optimization strategies and computational
efficiency. Each section contributes to answering specific research questions regarding
dataset influence, augmentation strategies, hyperparameter tuning, and computational
constraints.
Section 7.1 provides an overview of the training and evaluation datasets, ensuring trans-
parency regarding their composition. This is essential for assessing the generalizability of
the models and evaluating whether differences between datasets may have influenced the
results. Since dataset composition directly affects model learning, Section 7.2 further
investigates the distribution of ground truth segmentation classes, which is relevant
for understanding potential class imbalances and their impact on performance. These
sections contribute to the broader research question concerning the representativeness of
the dataset and its implications for training deep learning models.
Building on this foundation, Section 7.3 presents the segmentation results for the best-
performing model in each of the four Case Groups during training and validation.
Understanding how dataset size and augmentation strategies influence segmentation
accuracy is a key aspect of this analysis. However, this does not yet include perfor-
mance evaluation on the unseen evaluation dataset, which is addressed in Section 7.9.
Section 7.4 then systematically examines the effect of the number of training cases on
evaluation metrics, addressing the research question of how dataset size influences model
generalization during training.
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Section 7.5 and Section 7.6 provide a more detailed analysis of hyperparameter tuning
and computational considerations. Section 7.5 focuses on the optimization of the Focal
Weight Factor, a key component in the Combined Loss Function, and its influence on
segmentation accuracy. This section directly addresses the research question regarding
the impact of Focal Loss adjustments on model performance. Section 7.6 evaluates
the role of the Batch size in training efficiency and model performance, including the
inflection point where computational demand shifts from linear to accelerated growth.
This analysis is particularly relevant for optimizing resource allocation and model training
strategies.

The next sections provide further insights into augmentation strategies and overfitting
detection. Section 7.7 investigates the effect of data augmentation on model performance,
addressing the research question of how different augmentation strategies influence
segmentation quality. Section 7.8 then examines the detection of overfitting, particularly
in relation to Batch size and augmentation ratio, shedding light on the risk of performance
degradation when excessive augmentations are used.

Sections 7.9 to 7.11 focus on model evaluation and comparative analyses. Section 7.9
provides a comparative assessment of models trained with different augmentation strate-
gies, while Section 7.10 compares the performance of models trained with varying Batch
sizes. These sections contribute to a deeper understanding of how the Batch size and
augmentation interact in model training. Section 7.11 explores the impact of the Custom
Weighted Dice Score, ensuring that the selected weighting scheme aligns with tumor class
distributions and clinical relevance.

The final Sections 7.12 to 7.14 summarize key findings and provide broader insights.
Section 7.12 presents a comparison of segmentation accuracy across different parameter
configurations, offering a comprehensive overview of the best-performing setups. Sec-
tion 7.13 discusses the clinical implications of the findings, linking the segmentation
performance to potential real-world applications. Finally, Section 7.14 offers a critical
reflection on the limitations of the study and identifies potential directions for future
research.

By following this structured approach, Chapter 7 systematically addresses the key
research questions outlined in Section 1.2. It provides a clear connection between dataset
characteristics, hyperparameter choices, computational constraints, and segmentation
performance, ultimately guiding the interpretation of results and their implications for
deep learning-based glioblastoma segmentation.

7.1 Dataset Demographics
The age of patients was provided for the training datasets from the RSNA-ASNR-MICCAI
as part of the Brain Tumor Segmentation Challenge BraTS [BGM+23], with a median of
61 years, IQR 53 – 69, compared to the evaluation dataset with a median of 64 years, IQR
54 – 72. There is no significant difference in age between the two datasets according to the
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Mann-Whitney U test, with a p-value of 0.069. Gender distribution is only available for
the evaluation dataset, with 67 males out of a total of 108 patients. The age distribution,
with a predominance of male patients, is consistent with findings in the literature, which
report that glioblastomas are more common in males, with the average age at diagnosis
typically ranging between 55 and 65 years [OCW+21]. A comparison of the two datasets
can be seen in Figure 7.1.

Figure 7.1: Boxplots showing the age distribution of patients. The left boxplot represents
the training dataset (provided by BraTS as described in detail in Section 5.1), while the
right boxplot represents the evaluation dataset.

Training Dataset
The training dataset included up to 393 cases, divided into the 80% training and 20%
validation subsets, with four distinct Case Groups created to ensure a proportional
representation of Source 1 and Source 2, as described in detail in Section 5.1.

• Cases group 80 (80 training plus 20 validation cases)

• Cases group 160 (160 training plus 40 validation cases)

• Cases group 240 (240 training plus 60 validation cases)

• Cases group 314 (314 training plus 79 validation cases)

Each Case Group builds upon the previous one: Case Group 160 includes the initial
Case Group 80, Case Group 240 includes Case Group 160, and the final Case Group
314 contains all available cases. This incremental expansion ensures that the larger
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groups are made up of the smaller subsets. The models were trained exclusively on the
80/160/240/314 training cases, while the validation cases were used solely to guide the
optimization process and monitor model performance.

Evaluation dataset
We retrospectively identified 108 Caucasian patients (67 men, median age 64 years, IQR
54–72) with preoperative imaging. All patients underwent neurosurgical treatment for a
histopathologically confirmed de novo GBM, classified according to the WHO guidelines
valid at the time of diagnosis. According to the current classification, these 108 patients
would have been diagnosed with glioblastoma WHO grade 4, IDH-wildtype [LPW+21].

7.2 Ground Truth Segmentation Distribution

The frequencies of the tumor segmentation classes in the training and evaluation datasets
are illustrated in the diagrams in Figure 7.2. The top diagram represents the training
dataset, while the bottom diagram shows the evaluation dataset. Each class is represented
by a different color: green for non-contrast-enhancing tumor (Class 1), yellow for edema
(Class 2), and brown for contrast-enhancing tumor (Class 3).

The horizontal axis of the diagrams in Figure 7.2 corresponds to the cranio-caudal
direction (z-axis) of the MRI images, ranging from slice 0 to 127. The vertical axis
indicates the frequency of the respective voxels for each class. In the diagrams, the
lowest peak represents the contrast-enhancing tumor (Class 3), the next higher peak
corresponds to the non-contrast-enhancing tumor (Class 1), and the largest peak is
associated with the edema (Class 2). The background (Class 0) was not included in the
analysis, as it not only represents tumor-free brain tissue but also the regions outside the
brain. These external regions can vary significantly depending on the size and shape of
the patient’s head, introducing potential confounders and inaccuracies into the analysis.
Therefore, excluding the background ensures a more robust and meaningful comparison
of the tumor-related classes.

From these diagrams, we can observe that the overall distribution pattern of the segmen-
tation classes along the the cranio-caudal axis of the MRI images is consistent between the
training and evaluation datasets. However, there are differences in the exact frequencies
of the voxels for each class in the respective slices. These differences might impact the
performance of the 3D U-Net model, as variations in voxel frequencies between the
training and evaluation dataset can affect the model’s ability to accurately generalize
and segment the tumor regions.

The cumulative percentage distribution of all segmentation classes, including the back-
ground (Class 0), is shown in Figure 7.3. The diagrams illustrate that the background
class dominates the overall distribution, as indicated by the significantly higher percentage
of the blue bars. To ensure the smaller proportions of tumor-related classes are visible, a
secondary vertical axis is used for Classes 1–3. This highlights the pronounced imbalance
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between the background and the tumor-related classes, which is addressed during training
by applying class weights.

The anatomical locations of the segmented regions, if viewed as cumulative frequencies
along the the cranio-caudal axis, are depicted in Figure 7.2 and appear relatively consistent
between the two datasets. This does not imply that tumors are always located in the
exact same position but rather that their distribution along the cranio-caudal axis is
similar across both datasets. This observation aligns with findings that glioblastomas
predominantly occur in the cerebral hemispheres, as 62% of gliomas are located in the
supratentorial compartment, including the frontal, temporal, parietal, and occipital lobes
[PCP+22a]. The majority of the tumors are observed in slices 50–80, which correspond
to the coverage of these four lobes. This consistency in the spatial distribution of
tumors across both cohorts is essential for the model’s ability to generalize effectively
and accurately capture the spatial characteristics of the tumors.

From the relative frequencies of the classes, the class weights can be calculated. The
principle behind calculating class weights is to adjust for class imbalance by assigning a
higher weight to less frequent classes and a lower weight to more frequent classes. This
ensures that the model does not become biased towards the more common classes.

For training a 3D-UNet model, it is advisable to calculate the class weights based solely
on the training dataset, as the validation data should be used separately for model
validation. Consequently, 314 out of the 393 cases are used for training. This approach
ensures that the validation data do not influence the training process in any way.

The resulting class weights for the training dataset (314 cases) and the evaluation
dataset (108 cases) are presented in Table 7.1. These weights address class imbalances by
assigning higher importance to less frequent classes, such as the contrast-enhancing tumor,
ensuring the model does not become biased toward more common classes. They are
integral to the Combined Loss Function (Section 4.2.3) and the Custom Weighted Dice
Score (Section 4.1.6 and Section 5.6), balancing the loss during training and improving
segmentation performance.

The tumor characteristics represented by these weights show only minor differences
between the training and evaluation datasets, with variations of approximately 5%, 10%,
and 11% for the three tumor classes. This consistency indicates that glioblastomas in
both datasets are relatively comparable in their characteristics.
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(a) Frequency distribution of tumor segmentation classes in the training dataset.

(b) Frequency distribution of tumor segmentation classes in the evaluation dataset.

Figure 7.2: The diagrams illustrate the frequency distribution of the tumor segmentation
classes, with the training dataset shown in (a) and the evaluation dataset in (b). The
colors represent the classes as follows: non-contrast-enhancing tumor (green), edema
(yellow), and contrast-enhancing tumor (brown). The horizontal axis represents the
cranio-caudal direction of the MRI images, ranging from slice 0 to 127, and the vertical
axis represents the frequency of the corresponding voxels for each tumor class.
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(a) Percentage distribution of the four classes in the training dataset.

(b) Percentage distribution of the four classes in the evaluation dataset.

Figure 7.3: The diagrams illustrate the percentage distribution of the four classes in
the training (a) and evaluation (b) datasets: no tumor (blue), non-contrast-enhancing
tumor (green), edema (yellow), and contrast-enhancing tumor (brown). To account for
the significantly higher percentage of the no tumor class, a breakline is introduced in the
blue bars, indicating that the actual bar height exceeds the displayed scale compared to
the tumor classes. The tumor classes are represented on a secondary vertical axis (right)
for enhanced visibility of their smaller proportions. 95
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Class Class Description
Training Evaluation Percentage Absolute
Dataset Dataset Weight Difference Difference
Weight (in % points)

0 no tumor 0.0033 0.0029 -12.12% 0.0004

1 non-contrast- 0.3610 0.3214 -10.97% 0.0396enhancing tumor
2 edema 0.1464 0.1390 -5.05% 0.0074

3 contrast- 0.4894 0.5367 +9.68% 0.0473enhancing tumor

Table 7.1: Comparison of class weights in the training cases (314 cases) and evaluation
(108 cases) datasets. Absolute differences and percentage differences highlight variations
in class weights between the datasets. Note that Class 0 (background) includes not only
tumor-free brain tissue but also regions outside the brain, which can vary significantly
between cases.

7.3 Model Overview
To investigate the effect of various parameters on segmentation performance, a total
of 1632 models were computed. The models were generated based on the following
combinations:

• Case Groups: Four Case Groups were used: 80, 160, 240, and 314.

• Batch sizes and augmentation variations:

– For each Batch size (1, 2, and 4), models were calculated with and without
augmentations.

– Batch size 1:
∗ Version 1: With a 1:1 ratio of original to augmented cases.
∗ Version 2: With a 2:1 ratio of original to augmented cases.

– Batch size 2: With a 1:1 ratio, consisting of one original case and one
augmentation of a random case.

– Batch size 4:
∗ Version 1: With a 1:3 ratio, consisting of one original case and three

augmentations of the same case.
∗ Version 2: With a 1:3 ratio, consisting of one original case and three

augmentations of random cases.

• Focal Weight Factor: For each of the 32 combinations (8 variations across 3
Batch sizes and 4 Case Groups), the Focal Weight Factor was varied from 0.0 to
5.0 in increments of 0.1, leading to 51 models per combination.

• Epochs: Each model was trained for 3 to 100 epochs, with an average of 30 epochs.
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This resulted in a total of 1632 models, calculated as 32 combinations multiplied by 51
models per combination. To reduce this number, a selection process was implemented.
For each of the 32 combinations, the models with the top 10 Focal Weight Factors that
yielded the highest validation IoU Score during training were selected, resulting in a total
of 320 models.

These 320 models were then applied to the unseen 108 evaluation cases to calculate
metrics such as the IoU score, the Dice coefficient for the three tumor classes (non-
contrast-enhancing tumor, edema, and contrast-enhancing tumor), accuracy, and, based
on these, the Custom Weighted Dice Score (as described in Section 4.1.6).

7.4 Focal Weight Factor Tuning
The Focal Weight Factor was hyperparameterized to optimize the Combined Loss Function
and improve segmentation performance. The models were trained with Focal Weight
Factors ranging from 0.0 to 5.0 in increments of 0.1, and the validation IoU Score was
measured for each setting across the four Case Groups: 80, 160, 240, and 314 training
cases. This analysis was performed for Batch size 4 without augmentations to isolate the
effect of the Focal Weight Factor on model performance.

Comparison of validation IoU Score for different Case Groups
In Figure 7.4, the highest IoU Scores achieved on the validation cases for each Focal
Weight Factor are plotted for the four Case Groups. There is a significant difference
between the lower Case Groups (80 and 160) and the higher Case Groups (240 and 314),
with the Case Group 314 consistently achieving the best performance. The colors in the
plot transition from low saturation (80) to high saturation (314), visually encoding the
increase in training data. The gap in IoU Score performance is most pronounced between
the smallest Case Group (80) and the largest Case Group (314). This demonstrates the
clear advantage of increasing the number of training cases for optimizing model accuracy,
particularly when fine-tuning the Focal Weight Factor.

Heatmap Visualization
The heatmap in Figure 7.4b provides an alternative visualization of the data presented
in Figure 7.4. It illustrates how the validation IoU Score varies as a function of the Focal
Weight Factor across all Case Groups. The darker red regions encode higher IoU Scores,
independent of the specific Case Group, and highlight the range of Focal Weight Factors
(approximately 0.5 to 3.5) where the highest IoU Scores are achieved, particularly for
the larger Case Groups. Unlike the line plot, this visualization does not differentiate
between the individual Case Groups but instead focuses on overall performance trends.
The Colorbar on the right represents the density of IoU Scores, with a maximum value
of 0.61 observed in this highlighted range, indicating the best segmentation performance
during validation.

However, it is important to note that the density shown in the Colorbar is dimensionless
and represents the distribution of the IoU Scores. This allows for a relative comparison
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of regions with higher and lower IoU Scores, it does not provide an absolute measure
of performance. Additionally, the heatmap emphasizes the IoU intensity distribution
rather than absolute performance metrics per Case Group. This limitation means that
the Colorbar serves primarily as a visual aid to identify trends and patterns, rather
than a precise quantitative metric. Despite this, the heatmap complements the line
plot in Figure 7.4 by offering a more intuitive understanding of the data trends and the
effectiveness of different Focal Weight Factors.

Statistical Analysis
To assess the statistical significance of these differences, a series of tests were performed:

• Shapiro-Wilk Normality Test: Indicated that none of the Case Groups followed
a normal distribution (all p-values < 0.05).

• Levene’s Test: Suggested no significant differences in variance between the Case
groups (p-value = 0.1223).

• ANOVA Test: Demonstrated a significant effect of the size of the Case Group on
the highest validation IoU Scores observed during training (p-value < 0.001).

• Tukey HSD Post-Hoc Test: Confirmed significant differences between most
Case Groups, with the largest difference between 80 and 314.

• Boxplot Comparison of results for the maximum IoU Scores.

Finally, Figure 7.5 shows boxplots comparing the maximum IoU Scores achieved across
the four Case Groups. The distribution of IoU Scores highlights the clear advantage of
larger Case Groups, with 240 and 314 outperforming smaller groups (80 and 160) in
terms of maximum IoU Score. This underlines the benefit of increasing the number of
training cases to improve segmentation performance.

7.5 Training Process
The training process for the 3D U-Net model was monitored using several key metrics,
including Loss, accuracy, IoU (Intersection over Union), and the Dice coefficients for
the three tumor classes (non-contrast-enhancing tumor, edema, and contrast-enhancing
tumor). The training process was governed by the training and validation IoU Score, to
select the models that demonstrated the best validation performance.

Loss function and Accuracy development

As shown in Figure 7.6, the top left plot depicts the progression of the Combined Loss
Function for both the training and validation datasets. The training Loss (blue line)
steadily decreases throughout the epochs, while the validation Loss (red line) reaches a
plateau after approximately 30 epochs. This indicates that while the model continues
to improve on the training data, the validation performance stabilizes, suggesting that
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(a) Highest Validation IoU Scores for different Focal Weight Factors.

(b) Heatmap representation of the IoU Scores shown in (a).

Figure 7.4: (a) Highest validation IoU Scores for different Focal Weight Factors across
the four Case Groups (80, 160, 240, and 314) with Batch Size 4 and no augmentations.
The results show a clear advantage of increasing the number of training cases, with Case
Group 314 consistently achieving the highest scores. (b) Heatmap representation of the
same data, highlighting the range of Focal Weight Factors (0.5 to 3.5) where the highest
IoU Scores are observed.
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Figure 7.5: Boxplot comparing the maximum IoU Scores for the four Case Groups,
showing that the larger groups (240 and 314) consistently outperformed the smaller
groups in terms of maximum IoU Score.

further training beyond this point does not yield significant improvement in generalization.
The accuracy of the model, presented in the top middle plot, mirrors this trend. After a
sharp initial increase in both training and validation accuracy, the validation accuracy
also plateaus after about 30 epochs, reflecting the stabilization of model performance.
Interestingly, the validation accuracy outperforms the training accuracy at this stage.
This phenomenon can be attributed to regularization techniques such as dropout and early
stopping, which introduce stochasticity into the training process by randomly deactivating
neurons or connections [WZZ+13, LWL+21]. These methods prevent overfitting by
penalizing the co-adaptation of neurons, enabling better generalization. As a result, the
model achieves higher validation accuracy compared to the training accuracy, despite the
induced randomness slightly lowering the training performance [WZZ+13, LWL+21].

IoU Score and Dice coefficients

The Intersection over Union (IoU), shown in Figure 7.6 (top right plot), is a critical
metric for evaluating the overlap between the predicted and ground truth tumor regions.
Similar to the accuracy, the validation IoU Score plateaus around 30 epochs, confirming
the model’s generalization performance on the validation data. In the bottom row, the
Dice coefficients for the three tumor classes (non-contrast-enhancing tumor, edema, and
contrast-enhancing tumor) are illustrated. These coefficients show the overlap between
the predicted segmentations and the ground truth for each tumor class. While the
training Dice coefficients improve continuously, the validation Dice coefficients show a
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similar plateau effect after 30 epochs, particularly for the non-contrast-enhancing and
contrast-enhancing tumor classes.

• The Dice coefficient for the non-contrast-enhancing tumor, as shown in Fig-
ure 7.6 (bottom left), shows steady improvement in both training and validation,
with the validation coefficient reaching a plateau.

• The edema Dice coefficient, depicted in Figure 7.6 (bottom middle), follows a similar
pattern but shows slightly more variation, suggesting that edema segmentation
might be more challenging for the model.

• The contrast-enhancing tumor, illustrated in Figure 7.6 (bottom right), shows
the best performance among the three classes, with the validation Dice coefficient
reaching a high value and stabilizing after 30 epochs.

Model Selection Based on Validation IoU Score

These trends, including the plateau in validation IoU Score and Dice coefficients after
approximately 30 epochs, provide important insights into the model’s performance. The
stabilization of these metrics on the validation data suggests that further training beyond
this point does not significantly improve the model’s generalization ability. Based on these
observations, models with the highest validation IoU Score during the training process
were selected for further evaluation. The IoU Score serves as the primary criterion for
identifying the best-performing models, which were then applied to the unseen evaluation
dataset for final testing.

7.6 Model Application to Unseen Data
After selecting the top 10 Focal Weight Factors based on the highest validation IoU Score
for each of the 32 parameter combinations (Batch size, augmentation, and Case Group),
these 320 models were applied to the 108 unseen evaluation cases. For this analysis, we
focus on the scenario of Batch size 4 without augmentations in the Case Group 314.
Figure 7.7 shows the results of applying the selected models to the unseen data. The IoU
Score, Dice coefficients for the three tumor classes non-contrast-enhancing tumor, edema,
and contrast-enhancing tumor, and overall Accuracy are plotted against the Focal Weight
Factor. Each boxplot represents the distribution of scores across the unseen evaluation
dataset for different Focal Weight Factors.

It is important to note that the Focal Weight Factors on the horizontal axis correspond
to those that yielded the highest validation IoU Scores during training. Consequently, the
specific Focal Weight Factors displayed in each diagram may differ across experiments.
For instance, in Figure 7.16, which depicts a different model configuration, the Focal
Weight Factors shown on the horizontal axis are not necessarily the same as those in
Figure 7.7.
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7. Results

The model with the best overall performance, as determined by the Custom Weighted
Dice Score (described in Section 4.1.6), is marked in red in each plot shown in Figure 7.7.
This model achieved the highest balance between IoU Score and Dice coefficients across
all tumor classes, making it the optimal model for this specific scenario.

7.7 Training Time Analysis
The computational training time for the 3D U-Net was systematically analyzed across
different Case Groups and models with Batch sizes of 1, 2, and 4, both with and without
data augmentation. For each scenario, 51 different Focal Weight Factors were tested,
leading to a total of 32 model configurations derived from the 8 combinations of Batch sizes,
augmentation strategy, and augmentation version, applied to 4 Case Groups. Figure 7.8
presents the cumulative training time across these variations, highlighting a significant
increase for models with Batch size 1 combined with augmentations, particularly at
higher Case Group sizes. This increase was further investigated to identify its underlying
causes.

To maintain a structured notation, the figure legend follows a consistent format: ’B1,
No Aug’ represents Batch size 1 without augmentation, while ’B1, Aug (1:1)’ and ’B1,
Aug (2:1)’ indicate Batch size 1 with augmentation at a 1:1 or 2:1 ratio, respectively.
Similarly, ’B4, Aug (1:3), V1’ and ’B4, Aug (1:3), V2’ correspond to Batch size 4 with an
augmentation ratio of 1:3, where V1 and V2 denote different augmentation strategies.
The results illustrate the computational impact of Batch size and augmentation on
training duration.

For improved visual clarity, colors were consistently assigned across all figures following
the same legend structure: red for Batch Size 1 (B1), blue for Batch Size 2 (B2), and
green for Batch Size 4 (B4). Models without augmentation are represented by fully
saturated colors, whereas models with augmentation appear in lighter shades of the
corresponding Batch size color. This differentiation allows for a clear distinction between
augmentation strategies while maintaining Batch size consistency across visualizations.

7.7.1 Impact of Augmentations on Training Time
For Batch size 1, the addition of augmentations significantly increased the computation
time, resulting in a rapid increase in training duration as the number of cases grew.
While the observed trend suggests a more-than-linear growth, the limited number of data
points does not allow for a definitive determination of an exponential relationship. In
contrast, for Batch sizes 2 and 4, the growth in computation time remained linear, even
when augmentations were applied, as shown in Figure 7.8.

7.7.2 Transition to Rapid Growth ("Elbow Point")
To explore the transition from linear to more rapid growth in computation time, we
analyze the critical points where the rate of increase in training time becomes significantly
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7.7. Training Time Analysis

Figure 7.8: Bar plot illustrating the cumulative training time across different Batch sizes
and augmentation strategies. Each model was trained with 51 different Focal Weight
Factors per scenario, leading to a total of 32 model configurations across the four Case
Groups.

higher. While the term "inflection point" in mathematics refers to a point where the
second derivative changes sign, our focus lies on identifying the "elbow point", where
the slope of the computation time curve increases sharply. This transition is observed
exclusively for models with Batch size 1 and data augmentation. In contrast, for Batch
sizes 2 and 4, computation time grows linearly, even when augmentations are applied, as
illustrated in Figure 7.11.

Analyzed Configurations Two key configurations were examined: Version 1, which
used a Batch size of 1 with a 1:1 ratio of original to augmented data, and Version 2,
which used a Batch size of 1 with a 2:1 ratio of original to augmented data.

Quadratic Fit and Derivatives To model the observed computation time growth,
quadratic equations were fitted to the data. Here, x represents the number of cases,
while y denotes the corresponding computation time in minutes. Figure 7.10 shows the
progression of the training time with quadratic fits. The dashed lines represent the fitted
quadratic functions for Batch size 1 with augmentation strategies (Version 1 and 2).
The corresponding equations are:

For Version 1: y = 0.000015x2 − 0.004897x + 6.244658 (7.1)

For Version 2: y = 0.000006x2 + 0.004926x + 5.241635 (7.2)
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Although a quadratic model was applied, the small values of the coefficient of x2 (denoted
as a) suggest that computation time initially increases in an almost linear fashion. Given
that only four Case Groups were tested, the robustness of this fit is limited, and additional
data points would be needed to confirm a truly quadratic trend.

Defining the Transition Point To quantify the transition to accelerated growth, we
analyze the derivative of the quadratic equation:

d

dx
(ax2 + bx + c) = 2ax + b (7.3)

This derivative represents the rate of change in computation time at any given number
of cases x. Instead of using an arbitrary threshold, the transition point is defined as the
first Case Group where the rate of change exceeds a data-driven threshold, set to 50% of
the maximum observed rate of change. Based on this criterion, the transition to rapid
growth occurs at Case Group 314 for both augmentation strategies, as seen in Figure 7.9.
The threshold values for the transition point are approximately 0.007 for Version 1 and
0.006 for Version 2, which closely align with observed trends.

The mathematically computed transition points, determined by setting the first derivative
equal to the computed threshold, suggest a transition at approximately:

For Version 1: x = 484.18 (7.4)

For Version 2: x = 456.57 (7.5)

To enhance the visualization of the transition from linear to accelerated growth, a logarith-
mic scale was applied to the vertical axis in Figure 7.10, in contrast to Figure 7.9, which
uses a linear scale. The transition points, where computation time starts increasing more
rapidly, are marked with black dots. While these computed values indicate a theoretical
threshold for rapid growth, empirical evidence suggests that practical computational
constraints already become significant at Case Group 314. This discrepancy may be due
to the limited number of data points in the quadratic fit and the influence of augmentation
on memory consumption.

When examining the growth of computation times for models with Batch sizes 2 and
4, as shown in Figure 7.11, a clear linear growth pattern is evident. Notably, models
with a Batch size of 4 processed a substantially higher number of cases, reaching up to
1256 cases when considering the augmentation ratio of 1:3. However, it is important
to note that Figure 7.11 displays only the number of original cases on the horizontal
axis, meaning that the augmented cases are not explicitly visualized. For comparison,
the model with a Batch size of 1 and an augmentation ratio of 1:1 processed a total of
628 cases (comprised of 314 original and 314 augmented cases), but these values are not
represented in Figure 7.11.

To avoid confusion, it is important to note that the total number of processed cases for
Batch size 4 is derived from the multiplication of the Batch size by the number of original
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Figure 7.9: Computation time for Batch size 1 with and without augmentation. The plot
highlights the rapid increase in training time if augmentations are applied, particularly
at higher Case Group sizes. Each Case Group contains only four data points, reflecting
the limited number of tested models per configuration.

Figure 7.10: Training time differences with quadratic fits on a logarithmic scale. This
figure presents the same data as Figure 7.9 but with a logarithmic vertical axis to
highlight the quadratic fit. Dashed lines represent the fitted quadratic functions, while
black markers indicate the transition points where computation time increases more
rapidly.
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Figure 7.11: This plot illustrates the linear growth in training time for Batch sizes 2 and
4 with augmentations. To improve readability, the rapidly growing computation time for
Batch size 1 with augmentations is not shown in this figure. Note: Case Group 314 with
Batch size 1 (both Version 1 and Version 2) is excluded.

cases. For the largest Case Group, which consists of 314 original cases and follows an
augmentation ratio of 1:3, this results in a total of 1256 processed cases. Since Batch sizes
2 and 4 exhibit linear time growth, the number of processed cases does not negatively
impact training duration, as long as Batch size is adjusted accordingly.

7.8 Augmentation Impact on Performance
To evaluate the effect of different augmentation strategies on model performance, two
approaches were tested using Batch Size 4. In the first strategy (Version 1), each batch
consisted of one original case combined with three augmentations derived from the same
original case. In contrast, the second strategy (Version 2) introduced greater variability
by including one original case along with three augmentations sourced from different
original cases within the batch.

Version 1: Augmentations of the Same Case

In Version 1, illustrated in Figure 7.12a, it is evident that the choice of Focal Weight
Factor has little impact on the performance. Across all Case Groups (80, 160, 240, and
314), the models achieve a consistently low IoU Score, with minimal variation between
different Focal Weight Factors. This suggests that using multiple augmentations of the
same original case within a batch does not introduce sufficient diversity, leading to limited
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generalization. The heatmap in Figure 7.12b reinforces this observation, showing that
the IoU Scores are concentrated at the lower range, regardless of the Focal Weight Factor
or the Case Group.

Version 2: Random Augmentations from Different Cases
In contrast, Figure 7.13a illustrates Version 2, which exhibits a different pattern. While
the average IoU Score remains relatively low, there are instances where models achieve
significantly higher IoU Scores. This suggests that incorporating augmentations from
different original cases introduces beneficial variability, which helps the model gener-
alize better and occasionally leads to higher segmentation accuracy. The heatmap in
Figure 7.13b further illustrates this increased variability. Unlike Version 1, where per-
formance remains consistently low, Version 2 shows a wider distribution of IoU Scores,
with several peaks—especially in the larger Case Groups (240 and 314). This indicates
that a greater number of training cases, in combination with diverse augmentations, can
enhance model robustness.

Reproducibility of Random Augmentations
While the selection of augmentations from different cases in Version 2 follows a ran-
domized approach, it is fully reproducible using the predefined seed list, as described
in Section 6.8. This ensures that the same training pipeline can be re-executed with
identical augmentation distributions, enabling consistent comparisons between different
models and training setups.

These findings highlight the importance of selecting an appropriate augmentation strategy.
Augmenting the same case (Version 1) does not provide meaningful improvements, whereas
introducing variability through augmentations from different original cases (Version 2)
leads to better generalization. This effect becomes more pronounced as the number of
training cases increases.

7.8.1 Generalization of Augmentation Strategy Version 1
The 10 best models, trained on Case Group 314 using Batch size 4 with augmentation
(Version 1), were applied to the evaluation dataset of 108 unseen cases. The results,
illustrated in Figure 7.12, show a clear reduction in generalization performance compared
to models trained without augmentations, as seen in Figures 7.4.

As expected, models trained using this augmentation strategy performed significantly
worse if applied to unseen data. The IoU Scores, Dice coefficients for the tumor classes non-
contrast-enhancing tumor, edema, and contrast-enhancing tumor, and overall accuracy
are notably lower than those of models trained without augmentations. This suggests
that augmenting the same case within the batch, as in Version 1, does not provide the
necessary diversity for the model to generalize well to new, unseen cases.

This comparison highlights the limitations of augmentation strategy Version 1 in terms
of generalization. The lack of variability between the augmented cases within the batch
results in overfitting to the training data and poor performance on the evaluation dataset.
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(a) Highest Validation IoU Scores for different Focal Weight Factors.

(b) Heatmap representation of the IoU Scores shown in (a).

Figure 7.12: (a) Highest validation IoU Scores for different Focal Weight Factors for
Batch Size 4 with augmentation (Version 1), separated by Case Groups (80, 160, 240,
and 314). The augmentation strategy generates three variations of the same case within
a batch. (b) Heatmap visualization of the same data, showing the concentration of IoU
Scores at a lower range, confirming that the Focal Weight Factor has little impact on
performance.
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(a) Highest Validation IoU Scores for different Focal Weight Factors.

(b) Heatmap representation of the IoU Scores shown in (a).

Figure 7.13: (a) Highest validation IoU Scores for different Focal Weight Factors for
Batch Size 4 with augmentation (Version 2), separated by Case Groups (80, 160, 240,
and 314). The augmentation strategy combines an original case with three random
augmentations from other original cases. (b) Heatmap visualization of the same data,
highlighting a broader distribution of IoU Scores and several peaks, particularly in larger
Case Groups, indicating that random augmentations introduce beneficial variability into
the training process. 111
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Detection of Overfitting in the Training Process

The poor generalization of augmentation strategy Version 1 suggests that the models fail
to learn robust features and instead memorize the training data. To further investigate
this issue, the training dynamics were analyzed to determine whether overfitting played
a role in the observed performance drop.

One of the primary goals was to develop a method for detecting overfitting during the
training process. This phenomenon can be observed in models trained with augmentation
strategy Version 1 on the Case Group 160, using Batch size 4. Figure 7.14 illustrates the
training process, showing that the Dice coefficients for the non-contrast-enhancing and
contrast-enhancing tumor exhibit a sigmoidal jump, reaching values above 0.8 within a
few epochs, typically around 4 epochs. After this sudden increase, the curves saturate,
indicating that the model has overfitted to the training data.

A key observation is that the training and validation Dice coefficients for Version 1
behave similarly, following the same trend closely, which reinforces the overfitting effect.
In contrast, Figure 7.15 shows the training process for Version 2, where the training
and validation Dice coefficients diverge. This reduction in overlap between training
and validation performance indicates that Version 2 introduces more variability, which
could potentially help the model generalize better to unseen data. However, it does not
necessarily guarantee improved generalization, as the validation Dice coefficients may
still reflect suboptimal recognition of validation data.

To systematically detect overfitting, a method was developed using a grid search to
identify optimal thresholds that can distinguish models trained with augmentation
strategy Version 1 from all other models (including Version 2). The following parameters
were used for the thresholding algorithm:

• Minimum validation threshold: The lowest validation Dice coefficient score
detected before the sigmoidal jump is 0.242. This indicates the baseline performance
before the model begins to improve significantly.

• Maximum validation threshold: The highest validation Dice coefficient score
after the sigmoidal jump is 0.66. This value represents the model’s upper limit in
terms of generalization performance for the non-contrast-enhancing and contrast-
enhancing tumor.

• Jump threshold: The difference between the minimum and maximum validation
Dice coefficients during the jump is 0.55. This threshold marks the size of the
performance improvement during the sigmoidal transition.

• Epoch difference threshold: The number of epochs over which the sigmoidal
jump occurs is set at 4 epochs. This threshold ensures that rapid changes in Dice
coefficients, indicating overfitting, can be detected.
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• Steepness threshold: The transition from low to high Dice coefficients during
the sigmoidal jump is characterized by a steep increase, measured both in terms of
slope (0.8) and duration (4 epochs). These parameters help differentiate between
models with a sudden performance surge, indicative of overfitting, and those with
a more gradual learning curve.

A detection algorithm was developed based on sigmoidal curve fitting and predefined
thresholds (validation threshold, slope, jump size, and duration), enabling the identi-
fication of overfitting models. Using this approach, 31 out of 40 models trained with
augmentation strategy Version 1 and Batch size 4 were correctly classified as overfitting.
Importantly, there were no false positives. The remaining 9 models were trained for
4 epochs or fewer. Since both the epoch difference threshold and steepness duration
threshold were set at 4, models with such a short training duration could not be detected
by the algorithm.

Performance Evaluation of Models Trained with Augmentation Strategy
Version 1 Figure 7.16 presents the evaluation results of the 10 best models trained
with Batch size 4 and augmentation Version 1 on Case Group 314. The boxplots
show key metrics, including the IoU Score, Dice coefficients for non-contrast-enhancing
tumor, edema, and contrast-enhancing tumor, as well as accuracy. These results indicate
significantly poorer generalization compared to models trained without augmentations,
which performed better in Figure 7.7.

Sigmoidal Curve Fitting for Overfitting Detection To improve the detection of
overfitting, a sigmoidal curve was fitted to the Dice coefficient score during training, as
illustrated in Figure 7.17. The dashed red lines represent the fitted sigmoidal curves, while
the green vertical lines indicate the turning points, determined at Epoch 9 for the non-
contrast-enhancing tumor and Epoch 7 for the contrast-enhancing tumor. This sigmoidal
fitting process was applied to the model from Figure 7.14 (Batch size 4, augmentation
strategy Version 1, Case Group 160) and was used to calculate the threshold values for
the overfitting detection algorithm.

7.9 Best Models (IoU Score & Custom Weighted Dice
Score)

In line with the research questions, one of the primary goals was to identify the best-
performing models based on the IoU metric as applied to the evaluation dataset of 108
unseen cases. Initially, models were selected purely based on their IoU Scores, which
directly measure the overlap between predicted and ground truth segmentations of tumor
classes. This selection process led to the results shown in Figure 7.18, where the top 10
models with the highest IoU Scores are displayed. However, further analysis revealed
that relying solely on the IoU Score does not fully capture the clinical relevance of
tumor segmentation, particularly in distinguishing critical tumor regions such as the non-
contrast-enhancing and the contrast-enhancing tumor. The variation in the Interquartile
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Figure 7.17: Sigmoidal curve fitting for the Dice coefficients of non-contrast-enhancing
and contrast-enhancing tumor. The green vertical lines mark the turning points (Epoch
9 and Epoch 7), helping to define threshold values for the overfitting detection algorithm.
This example is based on the model from Figure 7.14 (Batch size 4, augmentation strategy
Version 1, Case Group 160).

Range (IQR) observed in Figure 7.18 indicates that models achieving high IoU Scores can
still exhibit significant performance inconsistencies. This suggests that a more refined
metric is needed to ensure robust segmentation of clinically relevant tumor classes. To
address these limitations, the Custom Weighted Dice Score was introduced (Section 4.1.6),
allowing for a more nuanced evaluation that prioritizes segmentation accuracy in the
most clinically significant tumor regions. This metric was subsequently applied to the
top-performing models ranked by IoU, with the aim of selecting models that achieve a
more balanced segmentation quality across all tumor subregions.

Figures 7.19 and 7.20 demonstrate the impact of this refined evaluation strategy. Fig-
ure 7.19 presents the results after applying the Custom Weighted Dice Score to the top
20 models based on the IoU Score, while Figure 7.20 extends this analysis to the top 30
models. The key observations from these results are:

1. Top-performing models: Across both analyzed sets (top 20 and top 30), the
best-performing model consistently includes Batch Size 1, augmentation ratio of
1:1, and Case Group 314. This model consistently outperforms others based on
both IoU Score and the Custom Weighted Dice Score.

2. Case Group dominance: Models trained with Case Group 314 constitute the
majority (90%) of the top-ranked models. Among these, models trained with

117



7. Results

Figure 7.18: Boxplots of the 10 models with the highest IoU Scores, evaluated on the 108
unseen cases. While these models achieve high IoU Scores, the IQR variations indicate
inconsistent segmentation quality across different cases, emphasizing the need for a more
refined evaluation metric.

Batch Size 4 account for 80% of the highest-ranked models, further reinforcing the
advantage of larger training datasets.

3. Minimal augmentation: Although models with augmentations appear in the top
ranks, they only represent 10–20% of the best-performing models. This suggests
that, while augmentation can be beneficial, its impact is less pronounced when
applied to the largest Case Groups.

4. Robustness of the score: The Custom Weighted Dice Score results in a more
stable and clinically meaningful ranking of models, as evidenced by the reduced
IQR variations in Figures 7.19 and 7.20. This underscores the score’s ability to
reduce inconsistencies observed when models were ranked solely based on their IoU
Scores.

It is important to note that the horizontal axis in Figures 7.18, 7.19, and 7.20 represents
different Focal Weight Factors corresponding to the best-performing models evaluated on
unseen data. The presence of multiple models with similar IoU Scores but different Focal
Weight Factors suggests that no single Focal Weight Factor consistently outperforms
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Figure 7.19: Boxplots of the best models from the top 20 IoU Scores, after applying the
Custom Weighted Dice Score. The best-performing model is characterized by Batch Size
1, augmentation ratio of 1:1, and Case Group 314. The Custom Weighted Dice Score
stabilizes model ranking by reducing performance variability, as reflected in the reduced
IQR variations.

others. Instead, multiple Focal Weight Factor values lead to comparable segmentation
results, indicating that the model is not highly sensitive to a specific Focal Weight Factor
setting. This observation highlights that while Focal Weight Factor tuning influences
segmentation performance, its effect remains within a certain range without exhibiting a
clear, consistent trend.

7.10 Training Case Group Size & Performance
A key aspect of evaluating the glioblastoma segmentation models was examining how
the number of training cases affected model performance. This investigation focused
on understanding how increasing the amount of data impacted segmentation accuracy,
particularly in the clinically relevant tumor classes: non-contrast-enhancing tumor, edema,
and contrast-enhancing tumor.

The comparison was made across the four Case Groups: 80, 160, 240, and 314. These
Case Groups were carefully designed to maintain proportional class distributions across
both the training and validation datasets, as discussed in Section 5.1. The aim was to
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7. Results

Figure 7.20: Boxplots of the best models from the top 30 IoU Scores, after applying the
Custom Weighted Dice Score. The observed trends remain consistent, with Batch Size 4
and Case Group 314 dominating the top ranks. Models without augmentation generally
outperform those with augmentations, except for the top model. The Custom Weighted
Dice Score further validates these observations by providing a more consistent ranking.

assess how the models’ performance improves with more training data and whether larger
datasets provide significant benefits in segmenting these critical tumor classes.

The evaluation of model performance was based on several key metrics: the IoU Score,
Dice coefficients for the three tumor classes non-contrast-enhancing tumor, edema, and
contrast-enhancing tumor, and the overall accuracy. For each Case Group, the best-
performing model was selected, and its results were compared across these metrics.

As shown in Figure 7.21, the comparison between the different Case Groups reveals
several trends regarding the impact of increasing training data. The analysis below
highlights how each metric behaved as the number of cases increased:

IoU Score:
The IoU Score generally improves as the number of cases increases, with the model
trained on Case Group 314 achieving the highest median IoU (0.652). However, the
model trained on Case Group 240 exhibits a slight dip in performance with a lower
IoU (0.601), indicating a non-linear trend where larger training sets mostly improve
generalization and segmentation accuracy, but with an unexpected drop at Case Group
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7. Results

240.

Dice Coefficient – non-contrast-enhancing tumor:
The necrotic tumor Dice coefficient exhibits the most substantial improvement, particu-
larly between Case Group 80 (0.349) and Case Group 314 (0.572). The differences here
are statistically significant (p < 0.001), indicating that more cases provide the model
with a better representation of this critical tumor class.

Dice Coefficient – edema:
While the Dice coefficient for edema also improves with increasing case numbers, the
improvement is more gradual, rising from 0.596 with Case Group 80 to 0.615 with Case
Group 314. The variation across models is less pronounced, but the trend still favors
larger datasets.

Dice Coefficient – contrast-enhancing tumor:
The contrast-enhancing tumor Dice coefficient shows a steady improvement as well, from
0.533 with Case Group 80 to 0.587 with Case Group 314. This is particularly important
given the clinical significance of accurately segmenting the contrast-enhancing tumor
region.

Accuracy:
The accuracy metric also increases as more cases are used, with a modest improvement
from 0.976 (Case Group 80) to 0.980 (Case Group 314). Although the differences in
accuracy are relatively small, the statistical tests reveal significant differences between
the Case Groups, particularly between 80 and 314 (p < 0.001).

The analysis reveals that increasing the number of training cases generally improves
performance, particularly in the segmentation of the three tumor classes. Significant
differences are especially notable in the non-contrast-enhancing tumor Dice coefficient
and accuracy between smaller and larger Case Groups, indicating the importance of a
larger dataset for accurate segmentation.

7.11 Segmentation Evaluation: Best Models per Case
Group

To assess the impact of different dataset sizes on segmentation performance, the best-
performing models from each Case Group (80, 160, 240, and 314) were applied to
the same unseen test case. The selected models achieved the highest IoU Score and
Dice coefficients for the three tumor classes: non-contrast-enhancing tumor, edema, and
contrast-enhancing tumor. The corresponding numerical values can be found in Table 7.2.

The segmentation results are visualized in Figure 7.22, which provides a structured
comparison of the segmentation performance of the four different Case Groups. The first
row displays the input MRI sequences, including FLAIR, T1ce, and T2, along with the
ground truth segmentation. The second row presents the predicted segmentations for
the same patient using the best models from each Case Group. The third row overlays
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7.11. Segmentation Evaluation: Best Models per Case Group

these segmentations onto the corresponding T2-weighted image for anatomical reference,
highlighting how well each model aligns with the actual tumor anatomy. The predicted
segmentations use a consistent color scheme, where the non-contrast-enhancing tumor
is represented in green, tumor edema in yellow, and the contrast-enhancing tumor in
brown.

7.11.1 Performance Across Case Groups
Each model exhibited different segmentation accuracies, primarily influenced by the
number of training cases and the presence of augmentations. The model from Case
Group 80 (Batch Size 1, augmentation ratio of 1:1, Version 1) achieved the highest
IoU Score (0.8151) among all Case Groups. The Dice coefficients were 0.7178 for the
non-contrast-enhancing tumor, 0.8442 for edema, and 0.6685 for the contrast-enhancing
tumor. Despite the high overall performance, the model showed slightly lower accuracy
in segmenting the non-contrast-enhancing tumor, potentially indicating challenges in
accurately delineating smaller non-enhancing regions when trained on a limited dataset.

The model from Case Group 160 (Batch Size 4, no augmentation) showed a slight decrease
in IoU Score (0.7606). However, the Dice coefficients remained stable, with 0.7182 for
the non-contrast-enhancing tumor, 0.7945 for edema, and 0.7069 for contrast-enhancing
tumor. The model maintained a high accuracy (0.9737), suggesting that training with a
larger dataset without augmentation still leads to robust segmentation performance.

For Case Group 240 (Batch Size 2, augmentation ratio of 1:1, Version 1), a further decline
in performance was observed, with an IoU Score of 0.6901. The Dice coefficients were
0.4870 for non-contrast-enhancing tumor, 0.7528 for edema, and 0.5813 for contrast-
enhancing tumor. The drop in non-contrast-enhancing and contrast-enhancing tumor
segmentation performance suggests that augmentation introduced additional variability,
which may have negatively impacted the model’s ability to generalize effectively to unseen
data.

In contrast, the model from Case Group 314 (Batch Size 1, augmentation ratio of 1:1,
Version 1) demonstrated strong overall performance, with an IoU Score of 0.7966 and high
Dice coefficients for non-contrast-enhancing tumor (0.7478), edema (0.8255), and contrast-
enhancing tumor (0.6653). The model’s accuracy (0.9773) remained consistently high,
reinforcing the observation that larger training datasets, combined with augmentations,
enhance model generalization across all tumor subregions.

7.11.2 Key Observations and Interpretation
Figure 7.22 illustrates the impact of Case Group size on segmentation quality. Interestingly,
the best segmentation performance, based on visual inspection, is achieved by the models
from Case Group 80 and Case Group 314, despite the considerable difference in the
number of training cases. Both of these models were trained with Batch Size 1, which
suggests that this configuration may contribute to improved segmentation accuracy. The
strong performance of Case Group 80 further indicates that a smaller dataset does not
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7. Results

Figure 7.22: Visualization of predicted glioblastoma segmentation across the four Case
Groups. The first row shows the input MRI sequences, including FLAIR, T1ce, T2, and
the ground truth segmentation mask. The second row presents the predicted segmentation
results from the four best-performing models for each Case Group (80, 160, 240, and
314). The third row displays the predicted segmentations overlaid on the corresponding
T2-weighted image for anatomical reference. The segmentations highlight the non-
contrast-enhancing tumor (green), tumor edema (yellow), and contrast-enhancing tumor
(brown), illustrating the influence of Case Group size on segmentation performance.
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7.12. Comparison with State-of-the-Art Segmentation Benchmarks

Dice Coefficients
Case Batch Aug. IoU non-contrast edema contrast Accu.Group Size Score enhanc. enhanc.

80 1 Aug (V1) 0.8151 0.7178 0.8442 0.6685 0.9789
160 4 no Aug 0.7606 0.7182 0.7945 0.7069 0.9737
240 2 Aug (V1) 0.6901 0.4870 0.7528 0.5813 0.9602
314 1 Aug (V1) 0.7966 0.7478 0.8255 0.6653 0.9773

Table 7.2: Segmentation performance of best models per Case Group. This table compares
the IoU Score, Dice coefficients of the three tumor classes, and accuracy across the best-
performing Case Groups 80, 160, 240, and 314. augmentation strategies (with and
without, including Version) and Batch size are included to show their impact on model
performance.

necessarily lead to inferior segmentation quality. Despite its limited number of training
cases, this model performs on par with Case Group 314, highlighting the importance of
model optimization over absolute dataset size.

While augmentation plays a role in improving segmentation, its impact is not uniform
across all Case Groups. In Case Group 314, augmentation appears to enhance gener-
alization, whereas in Case Group 240, it introduces greater variability in segmentation
performance, particularly in certain tumor casses. This suggests that augmentation can
be beneficial, but its effectiveness depends on other factors such as Batch size and dataset
composition.

The anatomical overlays in Figure 7.22 provide further insight into how well each model’s
predictions align with the actual tumor structures. The comparison across Case Groups
highlights that both larger training datasets and well-optimized smaller datasets can
yield robust segmentation results. These findings emphasize that fine-tuned model
configurations, particularly Batch size selection, may be just as crucial as dataset size in
achieving optimal segmentation performance.

7.12 Comparison with State-of-the-Art Segmentation
Benchmarks

The performance of the best-performing model in this study (Case Group 314, Batch Size
1, with an augmentation ratio of 1:1) was compared to state-of-the-art results reported in
challenges such as BraTS 2018. According to Braid et al. [BTR+20], Dice coefficients for
glioblastoma segmentation typically range from 0.75 to 0.93 for edema, 0.77 to 0.91 for
the non-contrast-enhancing tumor, and 0.67 to 0.83 for the contrast-enhancing tumor.
The Dice coefficients achieved by the best model in this study were 0.825 for edema,
0.748 for the non-contrast-enhancing tumor, and 0.665 for the contrast-enhancing tumor.

These results indicate that the model performs competitively with state-of-the-art meth-
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ods, particularly for edema segmentation, where the Dice coefficient of 0.825 lies within the
upper range of reported values. The performance for the non-contrast-enhancing tumor
is slightly below the benchmark range, while the contrast-enhancing tumor segmentation
approaches the lower bound of state-of-the-art results.

The slight discrepancies in performance can be attributed to the simplified 3D U-
Net architecture employed in this study, which was intentionally chosen to balance
computational efficiency and model interpretability (Section 6.7). Additionally, differences
in preprocessing strategies, augmentation techniques, and the specific composition of the
training dataset likely influenced the observed outcomes.

7.13 Data Augmentation Impact on Evaluation
The comparison is made between models trained on augmented data with fewer original
cases (shown in lighter shades on the left) and models trained on non-augmented data
with a larger number of original cases (shown in darker shades on the right). The models
represent the best 10 ones based on the highest IoU Scores from the training process and
are applied to unseen data for evaluation. The numbers used for further interpretation
can be found in Table 7.3.
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7.13. Data Augmentation Impact on Evaluation

Figure 7.23: Comparison of Batch size 1: Case Group 80 with augmentation vs. Case
Group 160 without augmentation. The augmented models perform better in IoU Score,
edema segmentation, as well as in accuracy, while the non-augmented models perform
better in non-contrast-enhancing and contrast-enhancing tumor segmentation.

Batch size 1: Case Group 80 with augmentation vs. Case Group 160 without
augmentation (Figure 7.23)

• IoU Score: Interestingly, Case Group 80 with 80 additional augmented cases
performs better with a higher median IoU Score (0.445) than the non-augmented
Case Group 160 (0.373). This result is counterintuitive, as one might expect more
original cases to lead to better performance. However, the diversity introduced by
data augmentation may have led to improved generalization in the Case Group 80
models.

• Dice coefficients of non-contrast-enhancing tumor, edema and contrast-
enhancing tumor: The augmented Case Group 80 models outperform the non-
augmented Case Group 160 models in segmenting non-contrast-enhancing tumor and
edema, while the non-augmented models perform better for the contrast-enhancing
tumor.

• Accuracy: The augmented models also achieve higher accuracy (0.959 vs. 0.940),
further supporting the idea that augmentation enhances generalization if the number
of original cases is limited.

127



7. Results

Figure 7.24: Comparison of Batch size 1: Case Group 160 with augmentation vs. Case
Group 314 without augmentation. The non-augmented models outperform the augmented
models across all metrics, showing that augmentation is less beneficial if the number of
original cases is larger.

Batch size 1: Case Group 160 with augmentation vs. Case Group 314 without
augmentation (Figure 7.24)

• IoU Score: The non-augmented Case Group 314 models outperform the augmented
Case Group 160 models, achieving a significantly higher IoU Score (0.505 vs. 0.317).
This suggests that with a sufficient number of original cases, augmentation becomes
less necessary and may even reduce performance.

• Dice coefficients: Segmentation of non-contrast-enhancing and contrast-enhancing
tumor are significantly better in the non-augmented Case Group 314 models. The
larger number of original cases provides more robust training for the model.

• Accuracy: The non-augmented Case Group 314 models also achieve higher accu-
racy (0.960 vs. 0.922), indicating better generalization.
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7.13. Data Augmentation Impact on Evaluation

Figure 7.25: Comparison of Batch size 2: Case Group 80 with augmentation vs. Case
Group 160 without augmentation. The non-augmented models perform better across
IoU Score, non-contrast-enhancing and contrast-enhancing tumor segmentation, as well
as accuracy, suggesting that Batch size 2 benefits more from a larger number of original
cases than from augmentation.

Batch size 2: Case Group 80 with augmentation vs. Case Group 160 without
augmentation (Figure 7.25)

• IoU Score: With Batch size 2, the non-augmented Case Group 160 models
outperform the augmented Case Group 80 models (0.439 vs. 0.329). This suggests
that the benefits of augmentation diminish as Batch size increases, making original
data more beneficial.

• Dice coefficients: The non-contrast-enhancing tumor Dice coefficient is signif-
icantly higher for the non-augmented Case Group 160, further supporting the
advantage of using more original data in this scenario.

• Accuracy: Accuracy also follows this trend, with the non-augmented models
achieving higher accuracy (0.952 vs. 0.923).
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Figure 7.26: Comparison of Batch size 2: Case Group 160 with augmentation vs. Case
Group 314 without augmentation. The non-augmented Case Group 314 consistently
outperform the augmented Case Group 160 across all metrics, emphasizing the diminishing
returns of augmentation with increasing original case numbers.

Batch size 2: Case Group 160 with augmented cases vs. Case Group 314
without augmented cases (Figure 7.26)

• IoU Score: The non-augmented models trained on Case Group 314 show a
substantial improvement in IoU Score (0.484 vs. 0.347 for Case Group 160 with aug-
mented cases). This supports the notion that larger datasets without augmentation
outperform smaller augmented datasets if Batch size 2 is used.

• Dice coefficients: Segmentation of non-contrast-enhancing and contrast-enhancing
tumor is more accurate in the non-augmented models, reflecting the importance of
original data if available in higher volumes.

• Accuracy: As expected, accuracy is higher for the non-augmented Case Group
314 models (0.958 vs. 0.936).
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Figure 7.27: Comparison of Batch size 4: Case Group 80 with augmentation vs. Case
Group 314 without augmentation. The 314 non-augmented models perform better
in all metrics, particularly for non-contrast-enhancing and contrast-enhancing tumor
segmentation, and accuracy.

Batch size 4: Case Group 80 with augmentation vs. Case Group 314 without
augmentation (Figure 7.27)

• IoU Score: The non-augmented Case Group 314 models consistently outperform
their augmented counterparts, achieving a significantly higher IoU Score (0.610
vs. 0.469 for the 80 augmented cases). This suggests that augmentation is less
beneficial if a large Batch size is used, as the model can leverage the high volume
of original cases for better generalization.

• Dice coefficients: The non-augmented models show superior performance in
segmenting non-contrast-enhancing tumor, contrast-enhancing tumor, and edema.

• Accuracy: The non-augmented Case Group 314 models also achieve the highest
accuracy (0.974 vs. 0.953).
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General Insights

These findings suggest that data augmentation can significantly improve model perfor-
mance if the number of original cases is limited, as observed in the Case Group 80 vs.
160 comparison with Batch size 1. However, as the number of original cases increases
(e.g., to 160 or 314), augmentation becomes less beneficial, and non-augmented models
tend to outperform the augmented ones, especially if lager Batch sizes are used. This
supports the idea that augmentation serves as a substitute for limited data but loses its
advantage as more original cases become available.

7.14 Case Number Impact on Metrics by Augmentation
The central research question here is: Does an increase in the number of cases result in
improved model performance? Intuitively, one would hypothesize that training on more
cases should enhance the model’s ability to generalize. However, this hypothesis needs
to be tested separately for augmented and non-augmented models, as the effect of case
number may vary depending on whether augmentation is applied. The numbers used for
further interpretation can be found in Table 7.4.

132
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7. Results

Figure 7.28: Comparison of Batch size 1 without augmentation for Case Group (160 vs.
314). The boxplots compare the performance metrics of models trained with Case Group
160 and 314 without augmentation. Adding more cases significantly improves all metrics,
with the most notable increase in IoU Score, Dice coefficient for non-contrast-enhancing
and contrast-enhancing tumor, as well as overall accuracy (***p < 0.001).

Batch size 1, without augmentation, Case Group 160 vs. 314 (Figure 7.28)

• The IoU Score increases from 0.373 for Case Group 160 to 0.505 for Case Group 314.
This significant improvement (p < 0.001) suggests that adding more cases without
augmentation contributes positively to the overall segmentation performance.

• Dice coefficient – non-contrast-enhancing tumor similarly shows a marked
improvement, from 0.286 to 0.391 (p < 0.001). This is critical as the non-contrast-
enhancing tumor is a challenging class to segment, and increasing the number of
cases appears to improve the model’s ability to learn its features.

• Dice coefficient – edema shows improvement from 0.387 to 0.456, and Dice
coefficient – contrast-enhancing tumor improves from 0.348 to 0.456 (both
with p < 0.001), further solidifying that higher case numbers provide better results
across all tumor classes.

• Accuracy improves from 0.940 to 0.960 (p < 0.001), showing a trend of increased
reliability with more data.
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7.14. Case Number Impact on Metrics by Augmentation

Figure 7.29: Comparison of Batch Size 2 without augmentation Case Group (160 vs. 314).
This figure compares models trained with Case Group 160 and 314 without augmentation,
holding Batch size 2 constant. All metrics show improvements with more cases, confirming
the advantage of more training data in non-augmented datasets.

Batch size 2, without augmentation, Case Group 160 vs. 314 (Figure 7.29)

• The IoU Score shows a similar upward trend, from 0.439 to 0.484, reinforcing the
positive impact of adding more cases.

• Dice coefficients also show improvements across the board. non-contrast-
enhancing tumor improves from 0.335 to 0.439 (p < 0.001), edema from 0.424
to 0.458, and contrast-enhancing tumor from 0.344 to 0.423 (p < 0.001). These
trends are consistent with Batch size 1 results.

• Accuracy increases from 0.952 to 0.958 (p < 0.001), again validating that higher
case numbers lead to more accurate models, even without augmentation.
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Figure 7.30: Comparison of Batch size 1 with augmentation Case Group (80 vs. 160).
Augmented models trained on Case Group 80 outperformed those trained on Case Group
160, counterintuitively. The IoU Score and Dice coefficients for all tumor classes dropped
with Case Group 160, with the exception of edema. This suggests that the applied
augmentation strategy may not generalize well as the Case Group size increases.

Batch size 1, with augmentation, Case Group 80 vs. 160 (Figure 7.30)

• Surprisingly, the IoU Score drops from 0.445 for Case Group 80 to 0.317 for Case
Group 160 (p < 0.001), which is counterintuitive. Typically, one would expect the
IoU Score to improve with more cases, but this drop suggests that adding more
augmented cases may introduce noise or redundant information.

• Similarly, Dice coefficients for non-contrast-enhancing tumor increase from
0.181 to 0.223, and edema from 0.474 to 0.388. These drops, despite increasing
case numbers, could indicate that the augmentation strategy used here might not
be as beneficial when applied to larger datasets.

• Contrast-enhancing tumor also drops from 0.256 to 0.167, reflecting poorer
performance.

• Accuracy follows the same trend, dropping from 0.959 to 0.922 (p < 0.001),
suggesting that this augmentation strategy may not generalize well if applied to
more cases.
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7.14. Case Number Impact on Metrics by Augmentation

Figure 7.31: Comparison of Batch size 2 with augmentation Case Group (80 vs. 160). If
a Batch size 2 is used, the IoU Score and Dice coefficients for most tumor classes show
improvements with increasing Case Group size. Unlike Batch size 1, this augmentation
strategy seems to perform better with a larger Case Group size.

Batch size 2, with augmentation, Case Group 80 vs. 160 (Figure 7.31)

• The IoU Score shows a similar behavior as the other comparisons, increasing
slightly from 0.329 to 0.347.

• Dice coefficient for the non-contrast-enhancing tumor increases from 0.062
to 0.219, indicating a measurable but still insufficient improvement. Despite this
increase, segmentation performance for this tumor class remains low and far from
clinically useful. edema decreases from 0.476 to 0.354 (p < 0.001), highlighting a
notable decline in segmentation accuracy.

• Contrast-enhancing tumor shows a better improvement from 0.285 to 0.368,
giving a less volatile behavior compared to Batch size 1.

• Accuracy shows a slight increase from 0.923 to 0.936 (p < 0.001), again emphasizing
that Batch size 2 shows better stability.
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General Insights

Effect of augmentation: Interestingly, if augmentation is used, particularly with
Batch size 1, models trained with fewer cases (80 cases) outperform models trained
with more cases (160 cases). This trend is most clearly observed in the IoU Score
and Dice coefficients for the non-contrast-enhancing and edema class. The
augmentation strategy appears to be more effective with fewer original cases, leading to
better generalization. However, as the number of cases increases, the performance begins
to degrade, likely due to the introduction of redundant or noisy information during the
augmentation process. This suggests that the chosen augmentation strategy may not
scale well if applied to larger datasets.

Batch size consideration: For Batch size 1, the effect of augmentation on fewer
cases is unexpectedly positive, but performance diminishes if the case number increases.
In contrast, Batch size 2 demonstrates more stability, with the models benefiting from
both augmentation and an increased number of cases. This implies that Batch size plays
a crucial role in the interaction between augmentation and dataset size. Smaller Batch
sizes seem more sensitive to augmentation, and careful tuning may be needed to avoid
overfitting or poor generalization.

Non-contrast-enhancing and contrast-enhancing tumor: In augmented models
with Batch size 1, the non-contrast enhancing and contrast-enhancing tumor
classes are particularly sensitive to the number of cases. If fewer cases (80) are augmented,
the model captures these challenging tumor classes more effectively compared to using
160 cases, where performance drops significantly. This finding highlights the potential of
augmentation to artificially enhance limited datasets, but it also underscores the risk of
diminishing returns as more data is introduced.
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7.14. Case Number Impact on Metrics by Augmentation
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CHAPTER 8
Discussion, Outlook & Conclusion

8.1 Discussion
The results showed that models trained with a Batch size of 4 consistently ranked among
the top-performing models, with 80% of these models ranking among the top 10 performers.
This indicates that larger Batch sizes contribute to better generalization and stability,
particularly as the number of training cases increases. Augmentations generally performed
worse, except the best model, which used a 1:1 ratio of augmentations to originals and
a Batch size of 1. This setup proved to be an outlier, performing exceptionally well
compared to other models.
A deeper investigation into the augmentation strategies revealed that performance
degradation occurred even at relatively low augmentation ratios, such as 1:3 (original:
augmentation). This contrasts with findings in other studies, which suggest that excessive
augmentation (typically with ratios higher than 1:3) confuses the model. In our case,
the performance issues emerged earlier, indicating a sensitivity to augmentation in this
specific setup. One notable problem was observed with the augmentation strategy that
placed one original and three augmentations of that same original into a Batch of size 4.
This configuration resulted in clear overfitting, likely due to the lack of variability between
the augmentations and the original data. It became evident that batch diversity was
critical, as a second strategy, which shuffled different augmentations within each batch,
generalized better. Although both strategies used the same number of augmentations,
the distribution within the batches had a significant impact on model performance.
Interestingly, the Case Group 80 with a 1:1 ratio of augmentations to originals, trained
with Batch size 1, performed unexpectedly well in several metrics. Although Batch size
1 typically results in longer training times and poorer generalization, this particular
setup produced results that deviated from the expected trends. This suggests that Batch
size and augmentation strategies may interact in complex ways that warrant further
investigation.
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Despite considerable efforts to minimize the influence of randomness in the training
process through seed management, it cannot be entirely eliminated. Notable fluctuations
in model performance were observed across different Focal Weight Factors, with no
clear trend towards a specific optimal value. This variability is likely attributable
to the heterogeneity of the MRI sequences used in the different Case Groups. The
recommendations derived from these findings are discussed in Section 8.4.

8.2 Limitations
Despite the success in achieving high-performing models with certain configurations,
this study encountered several limitations that should be addressed in future work.
One significant limitation was the long runtime of the training process, even on high-
performance hardware such as the Nvidia A100. Although efforts were made to reduce
data processing times—such as cropping, excluding one sequence (T1 native), shifting
the normalization process outside of the data generator, and saving data as NumPy
arrays to accelerate loading—the training times remained considerable. This issue was
particularly pronounced when using Batch size 1, where the computational time grew
drastically with an increasing number of cases, especially beyond 480 cases.

Another limitation relates to the performance of the augmentation strategies. While
geometric transformations were chosen for their simplicity and safety (to avoid altering
anatomical context), the overall performance of augmented models was suboptimal
compared to models trained without augmentations. Interestingly, the degradation in
performance occurred even at relatively low original-to-augmentation ratios, such as 1:3,
which contrasts with previous findings that suggest performance degradation typically
occurs at higher ratios. This highlights the sensitivity of the chosen model to even
moderate levels of augmentation.

A technical limitation was encountered with memory overflow on smaller GPUs, such as
the Nvidia 3070 Mobile, which has 8 GB of VRAM. This limitation made it impossible
to run Batch sizes higher than 1 on this hardware. Consequently, the project had to
be run on cloud-based services like Colab, which significantly increased costs, exceeding
€1500. The cost factor is a critical consideration for future projects and should be taken
into account during planning.

8.3 Lessons Learned
Several key lessons emerged throughout this project, offering valuable insights for future
work in glioblastoma segmentation using deep learning techniques. These insights span
three main areas: the impact of augmentation strategies, the role of data preprocessing,
and the limitations imposed by hardware constraints.

First, the sensitivity of augmentation strategies was more pronounced than anticipated.
Although the use of augmentations is a common technique to improve model generalization,
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this study found that even relatively modest augmentation ratios (e.g., 1:3) led to
performance degradation. This emphasizes the importance of carefully balancing the
ratio of augmentations to originals and selecting augmentation strategies that maintain
sufficient variability within batches. The finding that overfitting occurred if a batch
contained multiple augmentations of the same original case highlights the need for greater
diversity in the augmentation process.
Second, the handling of data preprocessing had a significant impact on both model
performance and computational efficiency. Early issues, such as the presence of NaN
values in the data, underscored the importance of thorough data cleaning before model
training. Converting NaN values to zeros, along with other preprocessing steps like
skull removal and normalization, were crucial in avoiding complications during training.
Additionally, tight cropping of the images, while necessary to manage large data volumes,
led to a limitation of the rotation applied during augmentations to +/- 10 degrees.
Although other studies have used rotations of up to 20 degrees, larger rotations were
avoided to prevent parts of the brain surface from being rotated out of the field of view,
which could result in data loss. It is also assumed that smaller rotations may have been
too similar to the original images, potentially negatively affecting the training process.
Third, another significant challenge encountered was related to hardware limitations,
particularly with the NVIDIA RTX 4070 Laptop GPU, which, despite its computational
power, could not be fully utilized for deep learning tasks. The laptop featured an
AMD Ryzen 9 7940HS CPU with 64GB of DDR5 RAM, providing ample resources for
preprocessing tasks. However, due to the inability to disable the onboard graphics card
under Linux, direct access to the NVIDIA GPU via CUDA was not possible. Attempts
to utilize the GPU through WSL2 (Windows Subsystem for Linux) on Windows 11 also
proved unstable, leading to frequent issues during model training. While the CPU was
sufficient for preprocessing tasks using tools like the BrainLes Preprocessing Package
[KBW+20], it was inadequate for the computational demands of model training.
These limitations became a major bottleneck, forcing the project to rely on cloud-based
solutions. This experience highlighted the importance of factoring in both hardware
constraints and potential costs when planning large-scale deep-learning projects. Efficient
memory management became particularly important when using Batch size 1, which
led to a steep increase in runtime as the number of cases grew. The inability to fully
utilize the high-performance GPU, combined with the memory limitations of the laptop,
demonstrated that gaming laptops running Windows 11 might not be well suited for
deep learning projects that require stable and intensive GPU usage.
Finally, the overall structure and execution of the training pipeline highlighted the
importance of ensuring a reproducible order in which cases are loaded during training.
This was achieved by using a seed list with 100 predefined entries, ensuring a fixed
loading order for up to 100 training epochs. This control mechanism guaranteed that if
a new training run was restarted from Epoch 0—after, for instance, an initial run had
been interrupted at Epoch 30—the case-loading sequence for the first 30 epochs would
remain identical to the previous run. More specifically, if training was resumed from
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Epoch 15, the order of cases for these first 15 epochs would be exactly the same as in
the prior execution. Maintaining this level of consistency was crucial for reproducibility,
particularly in deep learning experiments where even small variations in data loading
could lead to significant differences in model performance. Ensuring such reproducibility
is especially critical in medical applications, where reliable and consistent results are
essential.

8.4 Recommendations
Based on the findings of this study, several key recommendations can be made for future
work in glioblastoma segmentation using deep learning. To ensure clarity and structure,
these recommendations follow the chronological workflow used in the project. Each
recommendation consists of two elements: first, a brief rationale explaining its necessity
based on the challenges and findings of this study, and second, an actionable guideline
derived from this rationale to improve future implementations. This structured approach
ensures that each recommendation is well-founded while providing clear, practical guidance
for future applications.

1. Dataset Similarity:

• Differences in population demographics, such as age and gender distribution,
can introduce biases in model performance. To minimize such effects, the
training and evaluation datasets should be as demographically similar as
possible.

• Heterogeneous pathologies within the dataset can introduce noise and mislead
the segmentation model. To minimize misclassification, patients with addi-
tional tumor entities, such as meningiomas, should be excluded, as these could
be mistaken for glioblastomas. Likewise, patients with severe vascular leukoen-
cephalopathy should be removed, as the associated white matter changes may
be erroneously interpreted as tumor edema.

2. Ground Truth Segmentation:

• Interrater variability can introduce inconsistencies that negatively impact
model training. To ensure consistency, a single experienced neuroradiologist
should perform the annotations rather than multiple raters.

• The segmentation process is subject to a learning curve, meaning that initial
segmentations may be less refined. To address this, an iterative approach
should be used, allowing early segmentations to be reviewed and refined as
expertise increases.

• Standardized annotation protocols have been shown to reduce variability
in segmentation quality, as demonstrated in later iterations of the BraTS
Challenge [CdVSG+24]. To maintain consistency, adherence to a clinically
approved annotation protocol is essential.
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3. Data Acquisition:

• Variations in slice thickness and orientation can lead to inconsistencies in
model training. To prevent this, uniform slice thickness and orientation should
be ensured in sequences like T2 and FLAIR (e.g., 4 mm axial).

• T1 contrast-enhanced imaging using Fast Field Echo (FFE) provides more
consistent contrast than Turbo Spin Echo (TSE). For this reason, FFE should
be used instead of TSE, and isotropic voxels with a 1 mm edge length should
be preferred.

• Thick-slice T2/FLAIR sequences are often used in clinical practice to reduce
scan time, despite the advantages of isotropic voxels. If isotropic voxels
cannot be used, dataset consistency should be ensured through standardized
acquisition settings.

• Variability in T1 imaging protocols can introduce inconsistencies in contrast-
enhanced versus native sequences. If native T1 is used, it should match the
parameters of T1ce.

• Heterogeneous datasets with varying acquisition parameters may negatively
impact model convergence. To ensure optimal performance, datasets that
deviate from standardized acquisition parameters should be excluded, even if
this reduces the number of cases.

4. Data Preprocessing:

• Inconsistent preprocessing can introduce systematic errors in model training.
To avoid this, a standardized framework like the BrainLes Preprocessing
Package [KBW+20] should be used, including steps like skull removal, atlas
mapping (e.g., SRI-24 space [RZSP10]), and normalization.

• The presence of NaN values in the dataset can cause issues in later processing
steps. To prevent this, all NaN values should be converted to zeroes.

• Unnecessary regions in MRI scans, such as the skull and soft tissues (e.g.,
nasal structures), do not contribute to tumor segmentation and may introduce
noise; their removal creates empty spaces in the scan, which should then be
eliminated through cropping to ensure that the model focuses only on the
regions of interest. This also reduces the data size by removing areas without
relevant information, leading to more efficient processing.

• Cropping can limit augmentation flexibility, as tight cropping reduces the
available rotation range. Due to this limitation, augmentation rotations were
restricted to ±10 degrees, whereas literature suggests that 20 degrees may be
optimal.

• Contrast enhancement techniques, such as Contrast Limited Adaptive His-
togram Equalization (CLAHE), can improve image quality and segmentation
performance. To enhance contrast, CLAHE should be applied, followed by
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renormalization to the range of 0 to 1. While this study used a 2D imple-
mentation of CLAHE, an extension to the third dimension, as in True 3D
CLAHE [AFdMSP18], could further improve contrast uniformity across slices
and enhance segmentation consistency.

• Advanced denoising techniques, such as the Boosted Anisotropic Diffusion
Filter (BADF), have been shown to improve image quality in other medical
imaging applications [NMS23]. Future work should explore the combination
of CLAHE and BADF to further enhance segmentation accuracy.

• Repeated normalization steps during training can increase computational
overhead. To optimize efficiency, 3D image data should be stored as pre-
normalized NumPy arrays for faster loading in Python [VR09].

5. Data Augmentation:

• Geometric transformations such as rotation and flipping are widely used for
data augmentation, as they preserve anatomical context. To maintain struc-
tural integrity, these transformations should be prioritized, while the effects of
different augmentation-to-original ratios should be further investigated.

• Generative adversarial networks (GANs) have been proposed as a method
to create more complex and realistic augmentations [FSL+24]. Unlike tra-
ditional augmentations, GAN-generated samples could introduce synthetic
but anatomically plausible variations, potentially improving model robustness.
Future research should consider GAN-based augmentations to enhance data
variability.

6. 3D U-Net Parameters:

• The risk of overfitting increases when training progresses beyond the optimal
number of epochs. To prevent overfitting, callbacks such as Early Stopping
and Reduce Learning Rate on Plateau should be used.

• Batch size influences both training stability and memory requirements. Batch
sizes should be adjusted based on the available hardware, with larger Batch
sizes generally providing better performance.

• Variability in case loading order can affect model training. To ensure repro-
ducibility, the data generator should be modified to maintain a fixed random
order for case loading throughout the training process.

7. Loss Function:

• Medical tumor segmentation tasks are often affected by class imbalance,
requiring specialized loss functions. A Combined Loss Function, such as the
one used in this project (Dice Loss and Focal Loss), should be applied, with
class weights adjusted accordingly.
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• Class imbalance can disproportionately affect segmentation performance across
different tumor classes. To address this, class weights should be systematically
optimized, ensuring that non-contrast-enhancing tumor, contrast-enhancing
tumor, and edema are appropriately balanced in the loss function to prevent
under-segmentation of less prevalent regions.

8. Computational Considerations:

• Limited memory capacity can lead to training instability or necessitate the
use of cloud-based services, increasing project costs. To avoid unexpected
expenses, memory capacity should be considered when selecting hardware,
and cloud service costs should be factored into the budget.

• Mixed precision training can reduce memory usage and speed up computations
without significant loss of model accuracy. To improve efficiency, mixed
precision training should be implemented, particularly for large-scale models,
as it allows for reduced memory consumption while maintaining numerical
stability.

8.5 Future Work
This study has highlighted several areas where future research could build upon the
findings and address the limitations encountered during the project. The following
suggestions outline potential directions for further exploration:

1. Exploration of Advanced Augmentation Techniques:

Future research could explore the use of more sophisticated augmentation
techniques, such as GAN-based augmentations, which have the potential
to generate more realistic and diverse synthetic data. This could help
overcome the limitations observed with geometric transformations, which
performed poorly in this study.

2. Further Investigation of Augmentation Ratios:

Given the unexpected performance degradation at relatively low augmentation-
to-original ratios (e.g., 1:3), future work should focus on systematically
evaluating the effects of different augmentation ratios. This would help
clarify whether the results observed in this project are specific to the
dataset or if they represent a broader issue in medical image segmentation.

3. Optimization of CLAHE for 3D Images:

Although 2D CLAHE improved image quality in this project, the use of
True 3D CLAHE could be explored in future work [AFdMSP18]. This
would likely provide better contrast enhancement for volumetric data,
potentially improving segmentation accuracy in 3D U-Net models.
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4. Evaluation of larger Batch sizes:

While Batch sizes of 4 performed well in this study, future research
could investigate the impact of even larger Batch sizes, provided that
the hardware allows for it. This could lead to further improvements in
model stability and generalization, especially as datasets grow in size.

5. Investigation of More Complex Model Architectures:

This project focused on a standard 3D U-Net architecture. Future
studies could explore more complex architectures, such as attention-based
models or hybrid models combining 3D U-Net with other approaches
like transformers. These advanced architectures could further improve
segmentation accuracy, particularly in more challenging tumor classes.

6. Refinement of Preprocessing Techniques:

Additional preprocessing techniques, such as more advanced denoising
methods or adaptive cropping strategies, could be explored. The goal
would be to further reduce noise in the data without sacrificing important
anatomical information, particularly in patients with unusual anatomical
features.

7. Handling of Diverse Pathologies in Datasets:

Future work should also focus on refining the inclusion and exclusion
criteria for datasets. This project identified the need to exclude patients
with pronounced neurodegenerative changes (e.g., Fazekas scale grade
III [FCA+87] vascular leukoencephalopathy) or other tumor types (e.g.,
meningiomas) to avoid confusion in the segmentation process. A more
rigorous approach to dataset curation could lead to more homogeneous
data and better model performance.

8. Cost-Effective Computational Solutions:

The high costs associated with cloud-based training environments in
this project highlight the need for more cost-effective computational
solutions. Future work could explore alternative hardware configurations
or optimized cloud usage strategies to reduce costs without compromising
performance.

8.6 Conclusion
This thesis focused on the optimization of parameter tuning for the deep learning-based
segmentation of glioblastoma multiforme (GBM). By analyzing key parameters such as
Batch size, data augmentation strategies, the effect of Case Group size, and the Focal
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Weight Factor in the Combined Loss Function, several important findings emerged from
the conducted experiments.

First, models trained with a Batch size of 4, particularly those without augmentations,
generally performed better. This trend highlights the stability and generalization benefits
of larger Batch sizes. The exception to this trend was the best-performing model, which
utilized a Batch size of 1 and a 1:1 ratio of original to augmented images, showing that
there are circumstances where smaller Batch sizes combined with specific augmentation
strategies can outperform other models.

Second, the augmentation strategy played a crucial role in model performance, particularly
with Batch size 4, where an augmentation ratio of 1:3 (original to augmented images) led
to overfitting, especially when three variants of one original were included in a batch.
This emphasizes the importance of carefully balanced augmentation strategies to prevent
overfitting, particularly with larger Batch sizes.

Third, the number of training cases had a clear impact on segmentation accuracy. Models
trained with the full set of cases (Case Group 314) outperformed those with fewer cases,
highlighting the importance of larger datasets in improving model generalization and
accuracy.

While the tuning of the Focal Weight Factor was explored, its influence on segmentation
performance was relatively minor compared to other parameters. Although it contributed
to managing class imbalance, it was less impactful than Batch size, Case Group size, or
the use of augmentations.

Additionally, the computation time for models trained with a Batch size of 1 displayed a
linear growth up to a certain number of training cases. However, as the number of cases
increased, there was a clear transition to drastically growth in training time. This elbow
point, marked by a sharp increase in the slope of the computation time curve, became
evident when augmentations were used, with up to 628 cases included for Batch size
1. The transition was observed at approximately 480 cases. This highlights the need
for optimized resource management when working with small Batch sizes on hardware
with limited memory. Less powerful GPUs can lead to memory overflow, making costly
cloud-based solutions necessary.

The best-performing model in this study (Case Group 314, Batch Size 1, augmentation
ratio 1:1) was compared to state-of-the-art results from segmentation challenges such
as BraTS 2018. The achieved Dice coefficient for edema segmentation (0.825) was
within the upper range of reported values, whereas the performance for the non-contrast-
enhancing tumor (0.748) and the contrast-enhancing tumor (0.665) approached the lower
bound of state-of-the-art results. These deviations can likely be attributed to the use
of a simplified 3D U-Net architecture, which was selected to balance computational
efficiency and interpretability. Additionally, differences in preprocessing techniques,
augmentation strategies, and dataset composition may have contributed to the observed
variations. Nonetheless, these findings demonstrate that with careful parameter tuning,
even relatively simple model architectures can achieve competitive results.
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In conclusion, this work demonstrated that optimizing modifiable parameters significantly
improves the accuracy and robustness of deep learning models for GBM segmentation.
These results provide useful guidelines for developing models that can be applied more
effectively in clinical settings. Future work could focus on refining augmentation strate-
gies and exploring the broader applicability of these findings to other medical image
segmentation tasks.
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Overview of Generative AI Tools
Used

In this thesis, I have utilized generative AI tools as supplementary aids during the
writing, revision, and structuring process. The overall intellectual and creative contribu-
tion remains predominantly my own, with all AI-suggested outputs critically reviewed
and revised by myself to ensure accuracy, coherence, and alignment with the research
objectives.

AI assistance was specifically employed in areas such as refining text, improving clarity,
restructuring content, and enhancing the scientific writing style. The generative AI tools
used are as follows:

• Tool: ChatGPT (OpenAI)

– Version: GPT-4 (September 2024)
– Usage: ChatGPT served as a dialog-based assistant to iteratively refine and

revise various sections of the thesis. Through continuous exchanges, I clarified
ideas, reorganized content, and ensured consistency in tone and style. Specific
contributions include:

∗ Restructuring complex sections for improved logical flow.
∗ Simplifying overly complex sentences while maintaining scientific precision.
∗ Suggesting concise and descriptive chapter headings.
∗ Refining explanations of methods, results, and visualizations.
∗ Providing alternative phrasing for repetitive or unclear passages.

– Critical Review: All AI-generated suggestions were carefully reviewed and
edited to preserve the scientific accuracy, integrity, and originality of the thesis.

• Tool: Grammarly (Grammarly, Inc.)

– Usage: Grammarly was used for grammar and style checks to ensure clarity,
coherence, and consistency. It helped identify minor errors in spelling, punc-
tuation, and word choice, enabling adherence to academic writing standards.
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The collaboration with AI tools, particularly ChatGPT, was dialog-based and iterative,
enabling me to improve the overall quality of my thesis while ensuring that the final work
reflects my own critical thinking and research efforts.
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Übersicht verwendeter Hilfsmittel

In dieser Diplomarbeit kamen generative KI-Tools als ergänzende Hilfsmittel im Schreib-,
Überarbeitungs- und Strukturierungsprozess zum Einsatz. Der intellektuelle und kreative
Beitrag bleibt dabei überwiegend mein eigener. Alle von der KI vorgeschlagenen Inhalte
wurden kritisch geprüft und angepasst, um wissenschaftliche Genauigkeit, Kohärenz und
die Übereinstimmung mit den Forschungszielen sicherzustellen.

Die KI-Unterstützung wurde gezielt in Bereichen wie Textoptimierung, der Verbesserung
der Verständlichkeit, inhaltlicher Umstrukturierung und Verbesserung des wissenschaftli-
chen Schreibstils eingesetzt. Die verwendeten generativen KI-Tools sind wie folgt:

• Tool: ChatGPT (OpenAI)

– Version: GPT-4 (Stand: September 2024)
– Verwendung: ChatGPT diente als dialogbasierter Assistent, um verschiedene

Abschnitte der Arbeit schrittweise zu überarbeiten und zu verfeinern. Im kon-
tinuierlichen Austausch konnte ich Ideen klären, Inhalte neu strukturieren und
eine konsistente Ausdrucksweise sicherstellen. Konkrete Beiträge beinhalten:

∗ Umstrukturierung komplexer Abschnitte zur Verbesserung des logischen
Flusses.

∗ Vereinfachung komplizierter Sätze unter Beibehaltung wissenschaftlicher
Präzision.

∗ Vorschläge für prägnante und beschreibende Kapitelüberschriften.
∗ Verfeinerung von Erklärungen zu Methoden, Ergebnissen und Visualisie-

rungen.
∗ Alternativformulierungen für redundante oder unklare Textpassagen.

– Kritische Prüfung: Alle KI-generierten Vorschläge wurden sorgfältig über-
prüft und angepasst, um die wissenschaftliche Integrität und Originalität der
Arbeit zu gewährleisten.

• Tool: Grammarly (Grammarly, Inc.)

– Verwendung: Grammarly wurde für die Prüfung von Grammatik, Recht-
schreibung und Stil eingesetzt. Es half dabei, kleinere Fehler zu identifizieren
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und die Klarheit sowie Kohärenz des Textes zu verbessern, um den Anforde-
rungen des akademischen Schreibens zu entsprechen.

Die Zusammenarbeit mit KI-Tools, insbesondere ChatGPT, erfolgte dialogbasiert und
iterativ. Dieser Ansatz ermöglichte es mir, die Qualität der Diplomarbeit zu steigern, wäh-
rend die endgültige Arbeit meinen eigenen kritischen Denkprozess und Forschungsbeitrag
widerspiegelt.
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List of Figures

1.1 This diagram illustrates the glioblastoma segmentation pipeline. Raw Mag-
netic Resonance Imaging (MRI) sequences (Fluid Attenuated Inversion Re-
covery (FLAIR), T1 post-contrast (T1ce), and T2) are preprocessed using the
BrainLes Preprocessing Package [KBW+20], including co-registration, skull
stripping, normalization, and conversion to the Stanford Research Institute
(SRI)-24 [RZSP10] space. Next, Not a Number (NaN) values are removed,
and Contrast-Limited Adaptive Histogram Equalization (CLAHE) [Zui94]
(Contrast Limited Adaptive Histogram Equalization) is applied to enhance
contrast. The images are then cropped to exclude non-relevant areas, focusing
on the brain and tumor tissue. The trained 3D U-Net is applied to the unseen
evaluation dataset, resulting in tumor segmentation, which is exemplarily
overlaid on the T2 sequence. Segmentation labels showing necrotic/cystic
(non-contrast-enhancing) core (green), edema (yellow) and contrast-enhancing
tumor (brown). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 A: Cranial Computed Tomography (cCT) showing tumor mass left frontal, B:
Fluid Attenuated Inversion Recovery (FLAIR) magnetic resonance imaging
(MRI) suppressing fluid signals to highlight edema and gliotic changes, C:
Post-contrast T1-weighted sequence demonstrating a garland-shaped, contrast-
enhancing lesion parasagittal left frontal, D: 18F-Fluoroethyltyrosine (FET)
Positron Emission Tomography-Computed Tomography (PET-CT) with av-
erage Standardized uptake value (SUV) 1.88 in tumor mass (histologically
confirmed glioblastoma multiforme, Isocitrate Dehydrogenase (IDH)-wildtype). 10

2.2 Multi-voxel spectroscopy showing an increased choline (Cholin (Cho)) peak, a
significantly reduced creatine (Creatin (Cr)) peak, and a nearly non-existent
N-acetyl aspartate (N-Acetyl Aspartate (NAA)) peak. Additionally, a distinct
M-shaped lactate peak at 1.3 parts per million (ppm) is present, although it
was not labeled, and there is no evidence of a lipid peak (same patient as in
Figure 2.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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3.1 U-Net Architecture for Biomedical Image Segmentation This figure illustrates
the U-Net architecture designed for biomedical image segmentation, highlight-
ing its distinctive U-shaped structure that enables both precise localization
and contextual understanding. The architecture consists of a contracting path
(left side) and an expansive path (right side), with a vertical red line and
labels added to enhance the visual separation and identification of these paths.
Adapted from: [RFB15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 Adapted from Schmid et al. [SKS+21], the left panel shows a micro-section of
a laser-powder bed fusion specimen with visible melt pools. The middle panel
represents the ground truth segmentation (red boundaries), and the right
panel shows the prediction from the model using a Combined Loss Function
(Dice Loss and Focal Loss), highlighting improved boundary detection. . . 43

5.1 Manual annotations by expert raters, adapted from Menze et al. [MJB+15].
Left: Tumor components in different modalities—(A) whole tumor in FLAIR,
(B) tumor core in T2, and (C) contrast-enhancing tumor (blue) and necrotic
core (green) in T1ce. Right: Final segmentation labels showing edema (yellow),
non-enhancing solid core (red), necrotic/cystic core (green), and contrast-
enhancing tumor (blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 The underlying image sequence is the Fast Field Echo (FFE) T1ce sequence,
displaying the segmentation of three glioblastoma classes: non-contrast-
enhancing tumor (Class 1, green), edema (Class 2, yellow) and contrast-
enhancing tumor (Class 3, brown). The segmentation of the edema was based
on the FLAIR sequence, facilitated by the hyperintense difference in intensity
between the tumor edema and the surrounding parenchyma. The upper-right
image shows a 3D visualization of the glioblastoma, illustrating the spatial
arrangement of the tumor components. . . . . . . . . . . . . . . . . . . . . 55

5.3 Comparison of Expert and Revised Segmentations. Two examples from the
training dataset are displayed, with the first example in the upper row and
the second in the lower row. On the left of each triplet is the T1 post-contrast
sequence (T1ce), in the center is the ground truth segmentation provided
by the expert panel, and on the right is the revised segmentation generated
by our method. The segmentation highlights the non-contrast-enhancing
tumor (green), tumor edema (yellow), and contrast-enhancing tumor (brown).
The expert segmentation appears coarser, while the revised segmentation
demonstrates a finer delineation. . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Comparison of FLAIR MRI images before (left) and after (right) applying
Contrast Limited Adaptive Histogram Equalization (CLAHE). The CLAHE-
enhanced image shows significantly improved local contrast, enhancing the
visibility of the tumor and surrounding structures. The histogram transfor-
mation of the FLAIR sequence is illustrated in the plots of Figure 6.2. . . 74
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6.2 Histograms of voxel intensity before (left) and after (right) CLAHE trans-
formation for the FLAIR sequence in Figure 6.1. The CLAHE-enhanced
histogram shows improved contrast distribution, with reduced entropy and
skewness, indicating better equalization and visibility of image details. . . 75

6.3 FLAIR MRI sequence before (left) and after (right) applying cropping. The
initial resolution is 240x240x155 voxels, reduced to 128x160x128 voxels after
cropping, significantly decreasing data size and improving computational
efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Example of Original and Augmented MRI Images with Corresponding Seg-
mentations. The first row displays the original images, with columns from
left to right showing FLAIR, T1ce, T2, and the segmentation, which includes
non-contrast-enhancing tumor (green), tumor edema (yellow), and contrast-
enhancing tumor (brown). Subsequent rows present augmented images with
flipping, rotation, or a combination of both, enhancing dataset variability
while preserving anatomical structures. . . . . . . . . . . . . . . . . . . . . 79

7.1 Boxplots showing the age distribution of patients. The left boxplot represents
the training dataset (provided by Brain Tumor Segmentation (BraTS) as
described in detail in Section 5.1), while the right boxplot represents the
evaluation dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 The diagrams illustrate the frequency distribution of the tumor segmentation
classes, with the training dataset shown in (a) and the evaluation dataset
in (b). The colors represent the classes as follows: non-contrast-enhancing
tumor (green), edema (yellow), and contrast-enhancing tumor (brown). The
horizontal axis represents the cranio-caudal direction of the MRI images,
ranging from slice 0 to 127, and the vertical axis represents the frequency of
the corresponding voxels for each tumor class. . . . . . . . . . . . . . . . . 94

7.3 The diagrams illustrate the percentage distribution of the four classes in
the training (a) and evaluation (b) datasets: no tumor (blue), non-contrast-
enhancing tumor (green), edema (yellow), and contrast-enhancing tumor
(brown). To account for the significantly higher percentage of the no tumor
class, a breakline is introduced in the blue bars, indicating that the actual
bar height exceeds the displayed scale compared to the tumor classes. The
tumor classes are represented on a secondary vertical axis (right) for enhanced
visibility of their smaller proportions. . . . . . . . . . . . . . . . . . . . . . 95

7.4 (a) Highest validation IoU Scores for different Focal Weight Factors across
the four Case Groups (80, 160, 240, and 314) with Batch Size 4 and no
augmentations. The results show a clear advantage of increasing the number
of training cases, with Case Group 314 consistently achieving the highest
scores. (b) Heatmap representation of the same data, highlighting the range of
Focal Weight Factors (0.5 to 3.5) where the highest IoU Scores are observed. 99
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7.5 Boxplot comparing the maximum Intersection over Union (IoU) Scores for the
four Case Groups, showing that the larger groups (240 and 314) consistently
outperformed the smaller groups in terms of maximum IoU Score. . . . . 100

7.6 The top left plot shows the Combined Loss Function for training and validation.
The top middle plot depicts accuracy, and the top right plot illustrates the
IoU (Intersection over Union) Score for training and validation. The bottom
row presents the Dice coefficients for the three tumor segmentation classes:
non-contrast-enhancing tumor, edema, and contrast-enhancing tumor. In all
plots, the blue lines represent the training dataset, and the red lines represent
the validation dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.7 Metrics for different Focal Weight Factors in the Case Group 314 with Batch
size 4 and no augmentations. Boxplots represent the distribution of IoU Score,
Dice coefficients for non-contrast-enhancing tumor, edema, and contrast-
enhancing tumor, and accuracy across 108 unseen evaluation cases. Only the
10 models with the highest IoU Score (out of all Focal Weight Factors tested)
are shown on the horizontal axis. The model with the best performance, based
on the Custom Weighted Dice Score, is highlighted in red. . . . . . . . . . 103

7.8 Bar plot illustrating the cumulative training time across different Batch sizes
and augmentation strategies. Each model was trained with 51 different Focal
Weight Factors per scenario, leading to a total of 32 model configurations
across the four Case Groups. . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.9 Computation time for Batch size 1 with and without augmentation. The plot
highlights the rapid increase in training time if augmentations are applied,
particularly at higher Case Group sizes. Each Case Group contains only four
data points, reflecting the limited number of tested models per configuration. 107

7.10 Training time differences with quadratic fits on a logarithmic scale. This figure
presents the same data as Figure 7.9 but with a logarithmic vertical axis to
highlight the quadratic fit. Dashed lines represent the fitted quadratic func-
tions, while black markers indicate the transition points where computation
time increases more rapidly. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.11 This plot illustrates the linear growth in training time for Batch sizes 2 and 4
with augmentations. To improve readability, the rapidly growing computation
time for Batch size 1 with augmentations is not shown in this figure. Note:
Case Group 314 with Batch size 1 (both Version 1 and Version 2) is excluded. 108

7.12 (a) Highest validation IoU Scores for different Focal Weight Factors for Batch
Size 4 with augmentation (Version 1), separated by Case Groups (80, 160, 240,
and 314). The augmentation strategy generates three variations of the same
case within a batch. (b) Heatmap visualization of the same data, showing
the concentration of IoU Scores at a lower range, confirming that the Focal
Weight Factor has little impact on performance. . . . . . . . . . . . . . . 110
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7.13 (a) Highest validation IoU Scores for different Focal Weight Factors for Batch
Size 4 with augmentation (Version 2), separated by Case Groups (80, 160, 240,
and 314). The augmentation strategy combines an original case with three
random augmentations from other original cases. (b) Heatmap visualization
of the same data, highlighting a broader distribution of IoU Scores and
several peaks, particularly in larger Case Groups, indicating that random
augmentations introduce beneficial variability into the training process. . 111

7.14 Training process for a model with Batch size 4, augmentation strategy Version
1, and Case Group 160. The Dice coefficients for the non-contrast-enhancing
tumor and contrast-enhancing tumor show a sigmoidal jump to values above
0.8 within a few epochs, after which the curves saturate, indicating overfitting. 114

7.15 Training process for a model with Batch size 4, augmentation strategy Version
2, and Case Group 314. In contrast to Version 1, the training and validation
Dice coefficients diverge, reducing overfitting and improving generalization. 115

7.16 Boxplots showing key evaluation metrics for the 10 best models trained with
Batch size 4 and augmentation Version 1 for Case Group 314, applied to the
108 unseen evaluation cases. The results demonstrate significantly poorer
generalization compared to models trained without augmentations (as seen in
Figure 7.7). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.17 Sigmoidal curve fitting for the Dice coefficients of non-contrast-enhancing and
contrast-enhancing tumor. The green vertical lines mark the turning points
(Epoch 9 and Epoch 7), helping to define threshold values for the overfitting
detection algorithm. This example is based on the model from Figure 7.14
(Batch size 4, augmentation strategy Version 1, Case Group 160). . . . . . 117

7.18 Boxplots of the 10 models with the highest IoU Scores, evaluated on the 108
unseen cases. While these models achieve high IoU Scores, the Interquartile
Range (IQR) variations indicate inconsistent segmentation quality across
different cases, emphasizing the need for a more refined evaluation metric. 118

7.19 Boxplots of the best models from the top 20 IoU Scores, after applying the
Custom Weighted Dice Score. The best-performing model is characterized
by Batch Size 1, augmentation ratio of 1:1, and Case Group 314. The
Custom Weighted Dice Score stabilizes model ranking by reducing performance
variability, as reflected in the reduced IQR variations. . . . . . . . . . . . 119

7.20 Boxplots of the best models from the top 30 IoU Scores, after applying the
Custom Weighted Dice Score. The observed trends remain consistent, with
Batch Size 4 and Case Group 314 dominating the top ranks. Models without
augmentation generally outperform those with augmentations, except for
the top model. The Custom Weighted Dice Score further validates these
observations by providing a more consistent ranking. . . . . . . . . . . . . 120
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7.21 Comparison of best models per Case Group with statistical significance. The
figure presents the best models for each Case Group (80, 160, 240, 314)
based on their IoU Scores and Dice coefficients for the three tumor classes.
Significant differences between Case Groups are indicated by p-values (*p <
0.05, **p < 0.01, **p < 0.001), particularly in the non-contrast-enhancing
tumor class, where increasing the number of cases led to notable improvements
in performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.22 Visualization of predicted glioblastoma segmentation across the four Case
Groups. The first row shows the input MRI sequences, including FLAIR,
T1ce, T2, and the ground truth segmentation mask. The second row presents
the predicted segmentation results from the four best-performing models
for each Case Group (80, 160, 240, and 314). The third row displays the
predicted segmentations overlaid on the corresponding T2-weighted image for
anatomical reference. The segmentations highlight the non-contrast-enhancing
tumor (green), tumor edema (yellow), and contrast-enhancing tumor (brown),
illustrating the influence of Case Group size on segmentation performance. 124

7.23 Comparison of Batch size 1: Case Group 80 with augmentation vs. Case Group
160 without augmentation. The augmented models perform better in IoU
Score, edema segmentation, as well as in accuracy, while the non-augmented
models perform better in non-contrast-enhancing and contrast-enhancing
tumor segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.24 Comparison of Batch size 1: Case Group 160 with augmentation vs. Case
Group 314 without augmentation. The non-augmented models outperform
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beneficial if the number of original cases is larger. . . . . . . . . . . . . . . 128

7.25 Comparison of Batch size 2: Case Group 80 with augmentation vs. Case
Group 160 without augmentation. The non-augmented models perform
better across IoU Score, non-contrast-enhancing and contrast-enhancing tumor
segmentation, as well as accuracy, suggesting that Batch size 2 benefits more
from a larger number of original cases than from augmentation. . . . . . . 129

7.26 Comparison of Batch size 2: Case Group 160 with augmentation vs. Case
Group 314 without augmentation. The non-augmented Case Group 314
consistently outperform the augmented Case Group 160 across all metrics,
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7.28 Comparison of Batch size 1 without augmentation for Case Group (160 vs.
314). The boxplots compare the performance metrics of models trained
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significantly improves all metrics, with the most notable increase in IoU Score,
Dice coefficient for non-contrast-enhancing and contrast-enhancing tumor, as
well as overall accuracy (***p < 0.001). . . . . . . . . . . . . . . . . . . . 134

7.29 Comparison of Batch Size 2 without augmentation Case Group (160 vs. 314).
This figure compares models trained with Case Group 160 and 314 without
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with more cases, confirming the advantage of more training data in non-
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7.30 Comparison of Batch size 1 with augmentation Case Group (80 vs. 160).
Augmented models trained on Case Group 80 outperformed those trained on
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