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Kurzfassung

Aktuelle gesellschaftliche Herausforderungen wie der Klimawandel, die Verschmutzung
der Ökosysteme unseres Planeten und die Abhängigkeit von knappen Ressourcen in einer
politisch aufgeladenen Welt motivieren den Wandel hin zu einer Kreislaufwirtschaft,
wobei Recycling eine essentielle Komponente für den Übergang darstellt. Recycling von
organischen Feststoffabfällen wird durch die Verunreinigung mit schädlichen Materialen
erschwert, die oft dazu führen, dass die Abfälle verbrannt oder auf Deponien entsorgt
werden, wodurch die Treibhausgasemissionen steigen und wertvolle Ressourcen verloren
gehen. Bei der Abholung solcher Abfälle kann stark verunreinigter Müll von einer ein-
zigen Abholung eine ganze Müllwagen-Ladung kontaminieren. Gleichzeitig würde die
Entsendung mehrerer Müllwagen für eine bessere Trennung der Abfälle die Betriebskos-
ten und die durch den Transport verursachten Emissionen erhöhen. Daher stellen wir
uns die Frage, ob eine Vorsortierung der Abholungen auf der Grundlage historischer
Schadstoffmessungen den Gesamtaufwand verringern und die Recycling-Quote erhöhen
kann?

In dieser Arbeit präsentieren wir einen Lösungsvorschlag, der Prognosemodelle und
Tourenoptimierung in einem auf Knowledge Graphen basierenden Framework integriert.
Dafür definieren wir dieses Problem als Pre-Collection Sorting Problem und erstellen
eine problemspezifische Optimierungsontologie für die Abfallwirtschaft. Wir identifizieren
zwei Strategien für die Prognose des Kontaminationslevels zukünftiger Abholungen:
Klassifizierung von Haltestellen, und Modellierung von Abholungen derselben Haltestelle
als Stichproben eines stochastischen Prozesses, der anhand früherer Verschmutzungsdaten
parametrisiert wird. Für die Optimierung der Touren haben wir eine Greedy-Heuristik
und einen lokalen Suchalgorithmus entwickelt, die auf das Problem und beide Strategien
der Kontaminationsprognose zugeschnitten sind.

Die entwickelten Methoden werden in 11 Emissionsszenarien an einer Probleminstanz
aus Echtdaten, die über sechs Monate erhoben wurden, getestet. Wir evaluieren die
Einzelkomponenten separat und integriert als Gesamtlösung. Dabei bewerten wir die
Vorhersagegenauigkeit, die Routeneffizienz und resultierende Umweltauswirkungen. Im
Vergleich zur Ausgangslage der aus den Daten extrahierten Status-quo-Routen reduzieren
wir in allen Szenarien bis zu 2/3 der entsorgten Abfallmenge. Darüber hinaus beobachten
wir eine ähnliche Reduktion der Gesamtemissionen, was demonstriert, dass es sich um
eine praxisnahe Lösung für diese wichtige Herausforderung der Abfallentsorgung handelt.
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Abstract

Current societal challenges such as climate change, pollution of the planet’s ecosystems,
and the dependence on rare resources in a politically charged world motivate the change
towards a circular economy, with recycling being one of the essential components to a
successful transition. Organic solid waste recycling faces challenges due to contamination
from harmful materials, often resulting in waste being incinerated or sent to landfills,
which raises greenhouse gas emissions and wastes valuable resources. When collecting
such waste, a single severely contaminated collection stop can spoil an entire truckload.
Yet dispatching multiple trucks for separation increases operational costs and emissions
from transportation. This raises the question whether an initial sorting phase, which
involves sorting the stops according to pollution data, can reduce the total effort and
improve the recycling quota?

In this thesis, we address this question by proposing a solution that integrates predictive
modeling and tour optimization algorithms in a knowledge graph-based framework. For
this purpose, we formalize the problem at hand as a Pre-Collection Sorting Problem and
establish a problem-specific layered optimization ontology for the waste domain. We
identify two strategies for predicting contamination levels of future collection events:
Classification of tour stops, and modeling repeated visits to the same stop as samples
from a stochastic process parameterized by previous pollution records. For the tour
optimization task, we designed a greedy heuristic and a sophisticated local search
algorithm tailored to the problem and both contamination prediction strategies.

The proposed methods are tested on 11 emission scenarios in a challenging real-world
problem instance with waste collection data over six months. We evaluate the solution
components separately and end-to-end, measuring prediction accuracy, route efficiency,
and environmental impact. Compared to the baseline of status quo routes extracted
from the data we reduce up to two thirds of disposed waste volume in all scenarios.
Furthermore, we also observe a similar reduction of total greenhouse gas emissions,
demonstrating a practical and sustainable solution for this real-world waste management
challenge.
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CHAPTER 1
Introduction

Sustainability in our economy is essential for preserving the balance of our planet’s ecosys-
tems. Traditionally, economic processes follow a linear model, starting with resources and
ending in waste. This model has both ecological and economical sustainability challenges
and leads to ever-increasing environmental pollution. In 2022 alone 2.2 billion tons of
waste were generated in the European Union [Eurostat, 2022a], of which 30.2% were put
in landfills, 14.2% backfilled, 6.8% incinerated, and 8.4% disposed otherwise [Eurostat,
2022b].

Waste can be reduced through mindful resource use, cleaner and more efficient processes,
and establishing an economy based on more sustainable resources, e.g., by transitioning
from fossil fuels to renewable energies. However, these efforts still do not solve the
inherent issues of a linear economy, and merely lessen the size of the problem. Thus,
it is imperative that we also transition towards a circular economy, where products
that would be at the end of their lifespan are reused, repaired, or recycled rather than
discarded [Geissdoerfer et al., 2017].

Although limiting waste is at the core of a circular economy, it is unrealistic to eliminate
waste entirely. Many products cannot be reused directly but still contain valuable
resources that must be recovered. Consequently, recycling plays an important role
in this challenge by mitigating the environmental impact of waste and reducing the
dependence on finite resources, e.g., by replacing natural gas with biogas [Starr et al.,
2015]. Additionally, recycling helps lower greenhouse gas (GHG) emissions by decreasing
the energy needed for production processes and resource extraction.

Recycling should be considered in every phase of a product’s life cycle, from design to
disposal. In this thesis, we focus on the phases after the waste ends up in the trash
bin. Concretely, this starts when waste from various sources, including households and
commercial establishments, is collected. Then the waste is sorted, separating recyclable
materials from non-recyclables. Finally, the recyclables are processed, either being
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1. Introduction

transformed into raw materials for further manufacturing or, in some cases, directly into
products like compost, which can be reintroduced into the circular economy. A highly
important challenge in all phases of recycling is minimizing costs and increasing efficiency
to make recycling economically viable.

Organic solid waste (OSW) includes solid materials with organic components generated
in agricultural, industrial, and municipal settings [Guo et al., 2021]. For OSW recycling,
the cost is mostly driven by harmful materials mixed into the waste, which need to be
separated in a labor-intensive sorting phase before the organic materials can be composted
and reused. Even worse, if the cost of waste separation is too high or separation is
infeasible, the garbage is usually burned instead of recycled, increasing GHG emissions
and losing valuable resources. In the waste collection process, a single heavily polluted
stop can lead to the contamination of an entire truckload of recyclables. On the other
hand, using several trucks to gather the waste separately increases both carbon emissions
and costs. This illustrates the conflict between achieving effective pollution separation,
managing expenses, and reducing emissions.

1.1 Problem Statement
The foundation of this work is existing data from a previous project by Heinzl et al.
[2023] where mobile devices installed in OSW collection trucks captured images and
enriched them with metadata such as time and location. The images were then analyzed
with a neural network that identified harmful materials in the pictures with a confidence
score. The severity of different pollutants in the waste is also given in advance using a
scoring system. For instance, a piece of paper is assigned a low severity score, whereas
a glass bottle has a higher score. Intuitively, the severity score represents the expected
cost of removing the pollutant after collection. In the case of glass, it may break during
handling, significantly increasing the cost of separation, while paper typically only needs
to be removed when large quantities are found.

This raises the question of whether the efficiency and cost of OSW collection and sorting
can be improved by optimizing waste collection tours based on the given historical
pollution data, to separate clean and contaminated waste before it is mixed in the truck?
More generally, can an initial data-driven sorting phase at the start of the recycling
process reduce the total effort of sorting and collecting?

Two main benefits are expected from the aforementioned approach, which we refer to as
pre-collection sorting. First, waste collected in clean routes can be recycled directly or
with minimum labor, resulting in pure, uncontaminated compost. Second, post-collection
trash separation efforts can focus on a smaller amount of truly polluted waste. Moreover,
if the harmful materials are inseparable from the organic materials, a lesser amount of
waste has to be burned or sent to landfills.

The task at hand can be broken down into two challenging subproblems: (1) predicting
pollution of future organic waste collection stops. Based on the predictions, the second

2



1.2. Aim of the Thesis

subproblem can be addressed, which is (2) the optimization of OSW collection tours
to optimize pollution separation, GHG emissions, and operational costs. Figure 1.1
illustrates a possible route schedule for a given day, with color-coded pollution data.
Additionally, we aim to derive further insights from the data to guide future separation
and collection efforts.

Existing solutions for predicting and managing pollution in waste management often use
Internet Of Things (IoT) hardware to collect data directly in the bins [Toğaçar et al.,
2020, Bakhshi and Ahmed, 2018, Kang et al., 2020], or focus on related but distinct tasks
such as waste volume prediction [Kannangara et al., 2018, Rutqvist et al., 2019, Hannan
et al., 2012] or outcomes of waste processing, such as biogas production and compost
maturity [Wang et al., 2015, Xu et al., 2020]. While these approaches offer valuable
insights, they cannot be directly applied to the task of predicting pollution of future
collection events using only historical data.

Similarly, related works in vehicle routing problems (VRPs) and their variants [Caceres-
Cruz et al., 2014, Wu et al., 2020] can serve as inspiration for the sub-task of optimizing
waste collection tours, but require adaptations to fit the unique constraints of pollution
separation.

1.2 Aim of the Thesis
This thesis is part of the Vienna Science and Technology Fund (WWTF) transfer project
“Knowledge Graph-driven Tour Management for Sustainable Waste Processing” 1, which
aims to apply knowledge and methodologies developed in the WWTF-funded project
“Scalable Reasoning in Knowledge Graphs” 2 to optimize waste collection. As established
in Section 1.1, there are two subproblems in this endeavor: (1) predicting pollution of
future organic waste collection stops and (2) optimizing the tours to enhance pollution
separation and reduce GHG emissions. Both subproblems require suitable knowledge
representation. For that, we apply knowledge graphs, which are graph-based data models,
enriched with (ontological) reasoning methods. They provide efficient organization and
querying of the available data, with flexibility for further improvements.

An essential component in knowledge graph (KG) creation is the design of a suitable on-
tology, which serves as a structured representation of the domain. In this case, it provides
a conceptual framework for modeling OSW collection. By incorporating a structured
representation of knowledge specific to OSW, including the types and sources of waste
and historical pollution data, we expect to make more accurate predictions of pollution
levels. Moreover, the integration of this ontology with optimization algorithms allows for
the design of efficient waste collection tours that separate clean and contaminated waste
effectively and minimize GHG emissions. We express these aims in the following research
question, which we address with a layered ontology presented in Chapter 4.

1https://www.wwtf.at/funding/programmes/ei/NXT22-018/
2https://www.wwtf.at/funding/programmes/vrg/VRG18-013/
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1. Introduction

Figure 1.1: Illustration of an (anonymized) route superimposed on Vienna.

Research Question 1. What is a suitable ontology for the domain of organic
solid waste collection that supports pollution prediction and subsequent efficient tour
optimization?

With a well-designed ontology in place, the next challenge is to apply optimization
algorithms that use this structured knowledge as well as pollution predictions based
on the available collected data from past routes. The goal is to not only enhance
the separation of waste pollution in OSW collection tours but also to minimize their
operational costs and environmental impact. More precisely, we have concrete functional
and non-functional aims that the developed approach should satisfy:

1. The first objective is to maximize the amount of collected clean waste that is largely
free of harmful materials such as plastics or glass. This leads to less burned waste
and more usable compost. We want to accomplish this by assigning the waste
collection locations to clean and polluted routes, the former containing historically
more polluted locations. Multiple approaches for predicting pollution are explored,
including ones that target specific harmful materials.

4



1.3. Methodology

2. Secondly, optimizing only the amount of clean waste leads to longer routes, as clean
stops may be further apart. Longer routes increase GHG emissions, which goes
against economics and the greater goal of sustainability. In general, these objectives
are conflicting. Which objective is more important depends on the context and
should be tunable in a weighted objective function.

This leads to the following formulation of the second research question, which focuses
on the practical application of optimization algorithms to improve outcomes in waste
management.

Research Question 2. How can optimization algorithms be designed and applied to
waste collection tours to minimize operational costs and environmental impact while
ensuring efficient separation of clean and contaminated waste?

In Chapter 5 we propose various methods for predicting pollution, including statistical
measures, knowledge graph embedding models, and stochastic models to guide the
optimization process. Then, in Chapter 6 we present a local search algorithm based on
state of the art (SOTA) vehicle routing approaches, customized to the problem at hand.

The first two research questions naturally motivate the need to establish suitable metrics
to ensure that the applied knowledge graph methods are improving waste collection. This
requires determining how to measure the success of these applications effectively. This
research question is addressed by formalizing the problem in Chapter 3 and evaluating in
Chapter 7.

Research Question 3. How can the effectiveness and efficiency of sustainable
reasoning methodologies in waste collection optimization be evaluated, and what are
appropriate metrics in this evaluation framework?

Additionally, the analysis of data enabled by the KG representation can reveal further
insights, such as optimal depot placements or general suggestions for strategies for future
waste separation and collection efforts. These insights contribute to a more comprehensive
understanding of waste collection aspects, guiding further improvement of this waste
management system.

1.3 Methodology
This thesis follows a structured approach that can be categorized as design science
research. The methodology includes the following steps:

Literature Review A detailed review of existing research is done to identify SOTA
methods in knowledge graphs, predictive modeling, and vehicle routing optimization,
particularly in the waste collection domain. The review focused on understanding

5



1. Introduction

limitations in existing approaches, which inspire the design of the proposed solutions of
this thesis.

Problem Formalization and Ontology Design The concrete problem is formalized
to create a clear framework for analyzing and solving the challenge of waste sorting before
collection. A domain-specific ontology is designed to organize data for efficient reasoning
and abstraction in a KG.

Predictive Models and Tour Optimization Algorithms We developed predictive
models to forecast pollution levels at waste collection points using statistical techniques
and machine learning methods. These predictions serve as input for tour optimization
algorithms developed for the particular challenges and requirements of waste collection.

System Development We created a prototype system based on the proposed ontology,
predictive models, and optimization algorithms. This system demonstrates how the
presented solutions can be applied to real-world waste management and is used for the
evaluation.

Evaluation and Validation The proposed methods were evaluated using metrics for
prediction accuracy, route efficiency, and environmental impact. A real-world problem
instance is used to validate the effectiveness of the solutions, showing their practical
applicability.

1.4 Main Contributions
This thesis addresses an important challenge in waste collection and recycling by proposing
methods to schedule routes such that potential pollution is separated in advance, thereby
increasing the recycling rate and minimizing operational costs. A domain-specific ontology
has been created to organize data into layers, supporting efficient reasoning by providing
different degrees of abstraction. We research predictive models to improve pollution
forecasting and explore performant methods to heuristically optimize waste collection
routes. Metrics and methodologies are developed to evaluate and validate the proposed
solutions through a prototype, providing practical and sustainable strategies for real-world
waste management.

The main contributions of this thesis are:

• We introduce a formalization for the problem at hand, which we refer to as Pre-
Collection Sorting Problem (PCSP). We introduce this formalization to provide a
clear starting point for developing effective solutions and evaluation methods.

• We design a layered ontology for the waste collection and recycling domain, which
organizes data into stages, enabling structured reasoning and efficient data manage-

6



1.5. Limitations

ment. The ontology integrates data at different stages, including raw data, enriched
data, and finally routing results.

• We propose algorithms for optimizing the PCSP. This entails optimizing waste
collection tours, balancing objectives such as minimizing GHG emissions, operational
costs, and pollution separation efficiency, and predicting future pollution based on
historical data.

• We establish metrics and methodologies to assess the effectiveness of pollution
prediction and tour optimization strategies. The applicability of the proposed
algorithms is evaluated with a real-world problem instance.

• We integrate the developed models and ontologies in a prototype system, showcasing
the feasibility and impact of the proposed solutions on real-world waste management
challenges.

1.5 Limitations

Real-world problems typically come in a multitude of variants. For example, not every
waste collection vehicle has the same GHG emissions for the same route, and not every
meter of route length leads to the same increase in emissions. Accounting for all real-world
complexities would overwhelm any practical attempt to reason about such systems. This
is why reasonable assumptions and abstractions are essential, with this thesis being no
exception.

We assume homogeneous vehicles that emit pollution proportional to the distance traveled
and have a fixed waste capacity for a route. This abstracts away details such as changing
traffic, road conditions, or additional emissions when the truck is fuller and, therefore,
heavier. Each vehicle can only be assigned one route per day. Furthermore, we assume
that a pickup stop always provides the same amount of waste. GHG emissions attributed
to waste disposal are proportional to the volume of unrecycled waste and are independent
of other details such as pollution, waste composition, or disposal method. We also assume
that it is not possible to reschedule collection to a different day because clients are
typically informed in advance when waste is collected.

Finally, we assume that the number of reports is always much greater than the number of
pickup stops. And, we make the stronger assumption that this holds even if we only count
reports with a unique location. This is necessary to simplify the thesis by eliminating
edge cases of the problem that do not occur in practice.

Specifics on the assumed concrete values of constants in the prototype evaluation are
discussed in Section 7.4.1.

7



1. Introduction

1.6 Structure of the Work
The remaining thesis is structured as follows: Next, Chapter 2 gives an introduction to the
theoretical background, including important concepts such as KG and related techniques.
It provides a classification of VRP algorithms. After that, we provide a formalization
of the problem at hand in Chapter 3. There we also explain which preprocessing steps
are necessary to construct a defined problem instance for predicting pollution levels and
routing waste collection tours. In the following Chapter 4 we focus on Research Question 1
and present the ontology specifically developed for this waste collection domain, and
elaborate on the considerations for that particular design.

Research Question 2 is addressed in Chapters 5 and 6: The topic of Chapter 5 is pollution
prediction, outlining the methods used to anticipate pollution levels for the subsequent
waste collection routing. This leads directly to the already mentioned tour optimization,
which we discuss in Chapter 6. As in the previous chapter, we explain which techniques
are applied to the task and explain the thoughts behind our choices.

Then, in Chapter 7 the setup for the computational study part of this thesis is explained,
and results are reviewed based on their strengths and weaknesses, thereby answering
Research Question 3. Finally, we conclude in Chapter 8 with a summary of the findings
and contributions of the thesis and give a final reflection on this work.

1.7 Declaration of Collaboration
Parts of this work were conducted collaboratively in a working group with Jonathan Lex.
These include the design of the ontology (Chapter 4), the choice of statistical pollution
prediction methods (Section 5.1), the development of the greedy tour optimization
algorithm (Section 6.1) and the respective implementation in the prototype system.
Our contributions were balanced, with most of the work in the mentioned parts being
accomplished through co-working sessions.
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CHAPTER 2
Preliminaries

This chapter presents fundamental concepts and literature forming the foundation of
this thesis. We discuss clustering, ontologies, knowledge graphs, and associated methods
relevant to structured data representation and reasoning. Furthermore, we explore
solution approaches to the vehicle routing problem, including a section on local search,
and specialized ontologies for the VRP. We also introduce existing approaches aiming
to solve similar problems and their limitations concerning the problem at hand. In
particular, we review machine learning (ML) literature on applications in waste collection,
and present tour optimization literature. Throughout this thesis, we aim to complete
this high-level literature introduction with separate research about particular techniques
given in the corresponding sections.

2.1 Clustering Algorithms

Clustering is a well-known problem that is frequently used in ML, statistics and artificial
intelligence. It involves dividing a collection of objects such that items within a group are
more similar to one another, compared to items in different groups. In this context, these
groups are referred to as clusters. There are many algorithms for clustering problems,
including k-means [Ahmed et al., 2020], hierarchical clustering [Murtagh and Contreras,
2012] and DBSCAN [Schubert et al., 2017]. Also, KG techniques can be used to support
clustering algorithms, in particular KGEs, because embedding data in a lower-dimensional
vector space is a good basis for efficient clustering of complex data.

We evaluated several popular clustering algorithms and compared their strengths and
weaknesses, the result of which is shown in Table 2.1.

9



2. Preliminaries

Algorithm Process Advantages Disadvantages
k-Means Divides data into k

clusters by minimiz-
ing the sum of dis-
tances between data
points and their clus-
ter centers.

Simple, fast, and
efficient for large
datasets; suitable for
convex clusters.

Sensitive to initial
centroids and out-
liers. Struggles with
clusters of varying
sizes and shapes.

Hierarchical Builds a tree-like
structure of clusters
through an agglom-
erative (bottom-up)
or divisive (top-
down) approach.

Does not require a
predefined number
of clusters.

Computationally
intensive for large
datasets. Sensitive
to noise and outliers.

DBSCAN Density-based clus-
tering groups points
close to each other
and marks points in
low-density areas as
noise.

Can find arbitrarily
shaped clusters and
handle noise. Does
not require the num-
ber of clusters as in-
put.

Struggles with vary-
ing density clusters.
Sensitive to parame-
ter selection.

Table 2.1: Comparison of Different Clustering Algorithms

2.2 Ontologies
Ontology, as a rather abstract notion, has been defined in various ways over time, with
many similar interpretations [Guarino et al., 2009]. In this thesis, we use the definition
of Studer et al. [1998], in which they describe an ontology as a specification of a shared
conceptualization. In other words, an ontology is a collective understanding that allows
different systems and users to interpret data consistently. Every conceptualization must
have a certain scope or domain, which, in our case, belongs to the wider domains of waste
collection and vehicle routing. Ontologies can be represented in various ways, including
a whole hierarchy of specialized logics referred to as description logics [Baader et al.,
2008]. Other notable representations are the OWL (Web Ontology Language) [Antoniou
and Harmelen, 2009] and the graph-based RDF (Resource Description Framework) [Pan,
2009] that supports defining ontologies as graphs in text form via subject-predicate-object
triples.

In this thesis, we borrow OWL terminology: For that, we define classes, properties, and
individuals.

Definition 2.2.1 (Individual). An individual in OWL represents a specific object or
entity within the domain.

For example, there may be an individual pickup stop denoted as Pickup Stop #1.
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Definition 2.2.2 (Class). A class in OWL represents a set of individuals that share
specific attributes or characteristics within a defined domain.

A class is a unary relationship, e.g., the individual Pickup Stop #1 is in the class
isPickup. That statement can be expressed as isPickup(Pickup Stop #1).

Definition 2.2.3 (Property). A property in OWL describes a relationship between pairs
of individuals within a domain.

For an example, imagine the individual Pickup Stop #1 is close to Pickup Stop #2.
Then, there may be the property isClose(Pickup Stop #1, Pickup Stop #2).
Properties may have characteristics such as symmetry or transitivity. In the example,
isClose is symmetric, meaning isClose(Pickup Stop #2, Pickup Stop #1)
is latent knowledge, i.e., not explicitly stated, but inferrable.

Finally, we want to add attributes to properties. This is not directly supported in OWL.
One option is to express this by replacing an attributed property with two properties
and an additional class. For example, property(A, B) becomes property1(A, X)
and property2(X, B), such that the class X that represents the original property can
have its own properties. This replacement is called reification. However, to reduce visual
clutter, we use the OWL concept of annotations instead. While this has the drawback
that annotations are usually ignored in OWL reasoners, we found it better suited to our
reasoning techniques, as KGs typically support edge attributes.

Various tools exist for visualizing ontologies, with features designed for different use
cases [Dudáš et al., 2018]. In this thesis, WebVOWL 1.1.7 1 is employed because of
features such as color coding and an intuitive drag-and-drop GUI. One shortcoming of
WebVOWL is the lack of active development and resulting abundance of bugs, especially
when loading ontologies from files. Also, annotations are not yet supported and will be
addressed instead with remarks in the corresponding sections.

2.3 Knowledge Graphs
KGs are high-level, flexible tools from the research area of knowledge representation and
reasoning. They support organizing and utilizing complex semi-structured information.
As the name suggests, they are based on graphs, with nodes typically representing entities
that can be either real-world objects or abstract concepts, and edges, which describe
well-defined relations involving those entities [Ehrlinger and Wöß, 2016]. Typically,
relations and entities have types with a real or abstract meaning. Often used are property
graphs, where nodes and/or edges can have properties. Furthermore, KGs support
(ontological) reasoning techniques, including sophisticated query answering. Unlike
traditional databases, knowledge graphs provide reasoning for queries based on meaning
rather than exact matches. Users can search based on types, entities and relations,

1https://github.com/VisualDataWeb/WebVOWL
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allowing for more flexible retrieval of information. For a comprehensive introduction to
knowledge graphs, we refer the reader to Janev et al. [2020], Ji et al. [2021]. Knowledge
graphs are also frequently used where dynamic, ever-changing knowledge is modeled, and
the flexibility and extensibility of KGs are required. For a semantic, knowledge-curating
perspective on KGs see the work of Fensel et al. [2020].

In this thesis, we explore various KG reasoning methods, including logical knowledge
and knowledge graph embeddings (KGE) [Bordes et al., 2013]. KGs also support graph
neural networks (GNN) [Scarselli et al., 2008], which are special neural networks adapted
to process graph-structured data. Additionally, KG reasoning methods include temporal
knowledge graph embeddings (TKGE) [Leblay and Chekol, 2018], which are embedding
models especially well suited to reason with temporal data. Furthermore, KGs allow
for intuitive visualization of relationships and entities, which makes it easier for us to
explore the data, identify patterns, and find deeper insights that might not be obvious in
traditional data representation methods.

2.3.1 Logical Knowledge

Logical knowledge plays an important role in deriving insights from structured data in
knowledge graphs. Using relationships and constraints defined within the KG, logical
reasoning allows us to make latent information visible. For example, if a KG contains the
facts “There is a book in the trash” and “Books consist of paper”, it can logically conclude
that “There is paper in the trash” through transitive reasoning. This capability extends
beyond simple relationships to include more complex logical rules based on ontologies,
allowing the graph to validate data, check for inconsistencies, and enable complex queries.
Another important application of logical knowledge is KG completion, that is inferring
missing knowledge by applying logical rules to existing knowledge guided by the graph
structure. Reasoning based on logical knowledge transforms a KG from a static collection
of facts into a dynamic system that actively enriches data. Rule-based logical reasoning
is used repeatedly in the prototype, implemented through the repeated application of
Cypher 2 queries. The concept is exemplified by the Listing 2.1, where we perform the
above inference example. We make this knowledge explicit by first matching the given
scenario, and then constructing an edge from the Report node to the corresponding
PollutionType node representing paper.

1 MATCH (r:Report)-[t1:tag]->(b:PollutionType), (p:PollutionType)
2 WHERE b.label="book" and p.label="paper"
3 CREATE (r)-[t2:tag]->(p)
4 SET t2.probability = t1.probability

Listing 2.1: Example of a cypher query

2https://neo4j.com/docs/cypher-manual/current/introduction
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2.3.2 Knowledge Graph Embeddings
Knowledge graph embeddings, first introduced by Bordes et al. [2013], are a family of
ML models that learn vector representations of entities E and relations R of knowledge
graphs. By representing nodes and edges as low-dimensional vectors, embeddings try to
encode the semantic and relational information from the graph in a more computationally
manageable format. Then, based on these embeddings, KGEs use a scoring function
f : E × R × E ↦→ R to compute the likelihood of a given subject-predicate-object triple
(h, r, t) with respective embeddings (eh, er, et).

For training, a loss is computed using positive triples D+ of the knowledge graph, as
well as negative triples D−. These are usually generated under the local closed world
assumption, which assumes that any triple that is not explicitly present in the knowledge
graph is considered false. Importantly, this is limited to the context of the KG, i.e., to
the entities and relations occurring in the graph. Finally, the vector representations
are learned with the aim of maximizing the distance between the scores of positive and
negative triples. This idea is formalized in Equation (2.1). This approach opens up
new possibilities for tasks such as link prediction, where the embeddings can suggest
potential connections between entities based on learned patterns. KGEs are also often
used in clustering, recommendation, and similarity analysis, as embeddings can help
detect nuanced relationships that may not be visible in raw data.

e = arg max
e

∑︂
(h,r,t)∈D+

∑︂
(h′,r,t′)∈D−

f(e′
h, er, et′) − f(eh, er, et) (2.1)

In the following, we introduce three KGEs chosen to represent the hierarchy of expressivity
and complexity in such models, which are then assessed in the task of predicting pollution
levels in Chapters 5 and 7.

TransE Model

TransE [Bordes et al., 2013] is the foundational knowledge graph embedding model
and is designed to embed entities and relations in a continuous vector space. The core
principle of TransE is that relations between entities, i.e., edges in a KG, can be modeled
as translations in the embedding space. For any triple (h, r, t), standing for the head,
the relation, and the tail, TransE aims to embed them such that eh + er ≈ et. This
means the vector representing the relation r can be understood as a translation from
the head to the tail. Consequently, if we want to compute how likely an edge r′ from h′

to t′ is, we check how close eh′ + et′ approximates er′ , e.g., using Euclidean Distance.
A conceptual example of this can be seen in Figure 2.1. Due to its low dimensionality
and simplicity, TransE is computationally efficient and works well for KGs with simpler
relational patterns, such as one-to-one or many-to-one relations. However, there are
some types of relations that TransE cannot represent well, such as symmetric relations,
one-to-many and many-to-many relations. To give some intuition for the first case, a
vector representing r cannot satisfy eh + er ≈ et and et + er ≈ eh without losing the
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Figure 2.1: Illustrating the TransE embedding space in the plane.

distinction of h and t in embedding space. For the same reason, the same relation with the
same head cannot result in multiple distinct tails, which would be required in embedding
space for effective representation of one-to-many relations.

PairRE Model

PairRE [Chao et al., 2020] is a KGE model designed to address the limitations of earlier
approaches like TransE. In contrast to models that use a single embedding to represent
a relationship, PairRE computes two separate vectors for each relation: The first one
scales the head entity embedding and the second scales the tail entity embedding. Given
a triple (h, r, t), PairRE optimizes the embeddings such that eh ◦ er1 ≈ et ◦ er2 , where ◦
denotes element-wise multiplication, and er1 and er2 are the two relation-specific vectors.
In other words, each relation maps to the tuple (r1, r2) in embedding space. A simple
visual representation is shown in Figure 2.2. This dual-vector design enables PairRE
to model complex relational types, including many-to-many, by capturing asymmetric
and multiplicative interactions between entities. PairRE is still relatively efficient, even
though it is more computationally expensive than TransE, and improves the ability to
embed even more complex structures while maintaining scalability, making it a good
compromise for large and heterogeneous knowledge graphs.
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Figure 2.2: PairRE embedding space visualized in the plane.

TuckER Model

TuckER [Balažević et al., 2019] is a fully expressive KGE model, meaning it is able to
capture any ground truth over entities and relations. It is based on tensor decomposition,
specifically the three-mode Tucker decomposition [Tucker, 1966]. A knowledge graph is
represented as a three-dimensional tensor, that is decomposed into three matrices and
the core tensor. The entities and relations are embedded into the three matrices, which
are the entity embedding matrix E twice, for subjects and objects in relations, and the
relation embedding matrix W . Finally, the core tensor W captures interactions between
the matrices. The tensor representing the entire KG is then W ×1 E ×2 W ×3 E, where
×n stands for the tensor product along the n-th mode. Given a triplet (h, r, t) with
corresponding embedding vectors eh, wr, et, TuckER computes a score W ×1 eh×2wr ×3 et.
that combines the embeddings of the head entity h, the relation r, and the tail entity
t via the core tensor. This design enables TuckER to model complex and diverse
relational patterns, including asymmetry, hierarchy, and transitivity. Using the Tucker
decomposition, TuckER reduces the number of parameters compared to previous tensor
factorization approaches such as ComplEx [Trouillon et al., 2016], improving the efficiency
of such approaches consistently. However, while it is the most expressive KGE model
that we explore, it is also the most computationally demanding.
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2.4 Local Search
Local search algorithms modify an existing solution with different move operators aiming
at iterative improvements by exploring the search space in proximity to the current
solution. All solutions that can be derived from a solution S with a particular move
operator x are collectively referred to as neighborhood Nx(S). There exist various
strategies for choosing the next incumbent (solution), such as first-improvement, where the
first generated solution found that is better is immediately chosen, or, best-improvement,
where the whole neighborhood is generated and the best-found solution becomes the next
incumbent.

Some strategies accept a worse solution with some small probability in order to escape
local optima. One such method is simulated annealing [Kirkpatrick et al., 1983], which is
inspired by the annealing process in metallurgy, where materials are heated and then
slowly cooled to change their physical properties. This approach simulates the cooling
process to first explore a solution space and escape local optima and then perform
fine-grained optimization later in the process. This is done by accepting worse neighbors
with decreasing probability when the system cools. At a set temperature, the probability
of accepting a worse neighbor is proportional to the difference in objective. As shown
in Equation (2.2), the temperature T starts at the initial temperature T0 and decreases
with each iteration i up to the maximum iteration imax. The corresponding acceptance
probability Pa for the incumbent solution S and proposed solution S′ is stated in
Equation (2.3).

T = T0 ·
(︃

1 − i

imax

)︃
(2.2)

Pa = max(1, e
f(S)−f(S′)

T ) (2.3)

2.5 Vehicle Routing Problems
Vehicle routing problems (VRPs) represent a wide class of combinatorial optimization
problems, which are concerned with finding the most efficient routes for a vehicle fleet
to deliver goods or services to multiple locations while minimizing cost metrics like
distance traveled or fuel consumption under real-world constraints. The distinction
between delivery and collection lies solely in their meanings and does not influence
decision-making for our purposes. Many variants of VRPs exist, reflecting the complexity
of real-world vehicle routing. Similar to the setting in this thesis are the multi-depot
vehicle routing problem (MDVRP), which is a generalization of the VRP where multiple
depots are allowed, and the green vehicle routing problem (GVRP), which includes
environmental concerns such as GHG emissions in the optimization process [Caceres-Cruz
et al., 2014]. Depending on the variant, there may be maximum capacities assigned
to vehicles [Ralphs et al., 2003], with either a homogeneous or heterogeneous fleet.
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Furthermore, some variants generalize the problem by adding constraints such as time
windows for deliveries [Kolen et al., 1987] or shift times for drivers [Ren et al., 2010].

VRPs are both complex (NP-completeness proven by Lenstra and Kan [1981]) and
highly relevant for practical applications, especially in logistics and transportation. A
variety of solution approaches have been proposed, which can be categorized as exact
algorithms [Andelmin and Bartolini, 2017, Mingozzi et al., 2013], traditional domain-
specific heuristics [Clarke and Wright, 1964], meta-heuristics [Azi et al., 2014, Baker
and Ayechew, 2003, Bell and McMullen, 2004, Wu et al., 2020], and learning-based
optimization, as discussed by Caceres-Cruz et al. [2014]. In the following paragraphs, we
provide an introduction to each category.

Exact Algorithms. Exact algorithms like branch-and-bound and most integer pro-
gramming approaches explore the solution space, usually with plausibility constraints,
and can guarantee optimal solutions for small to moderately sized problems, but are
usually worst-case intractable.

Domain-specific Algorithms. Domain-specific techniques are developed to exploit
domain knowledge and include savings algorithms and insertion heuristics. They construct
routes based on guiding principles, usually without backtracking, i.e., reversing decisions,
do not guarantee optimality and tend to be more limited in their ability to explore the
search space.

Meta-heuristics. Meta-heuristics include advanced techniques such as large neigh-
borhood search [Azi et al., 2014], which iteratively destroys and repairs solutions to
explore diverse neighborhoods, genetic algorithms [Baker and Ayechew, 2003], which
evolve populations of solutions through selection, crossover, and mutation, and ant-colony
optimizations [Bell and McMullen, 2004], where artificial ants build solutions based on
pheromone trails that reflect the quality of paths in the explored routes. These methods
are successful, because of their ability to explore large solution spaces and compute
solutions within reasonable computation times.

An example of a meta-heuristic that offers SOTA performance for the VRP is the local
search algorithm by Arnold and Sörensen [2019]. They use three complementary moves
to explore a vast search space but also perform well-designed heuristic pruning of the
neighborhood structures to avoid excessive computation. Furthermore, when the local
search is stuck in a local optimum, they perform perturbation of the solution with
a technique called guided local search. In particular, they penalize specific solution
attributes based on observed characteristics of high-quality VRP solutions. They report
solutions within a 0.25% range on more complex SOTA approaches on a broad VRP
benchmark dataset, with equally short or even shorter running times.

Hybrid approaches. Another successful class of VRP algorithms are hybrid ap-
proaches, that combine two or more of the above techniques. An example of a hybrid
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local search algorithm was proposed by Wu et al. [2020] to optimize a waste collec-
tion variant of the VRP that considers waste filling levels and prioritized waste. Their
algorithm consists of an initial solution obtained from a particle swarm optimization,
further optimized with a simulated annealing local search. Particle swarm optimization
is a meta-heuristic, in which individual solutions, called particles, move through the
search space to find optimal solutions by following their own best-known position and
the best-known position of all solutions, i.e., the swarm.

Learning-based Optimization. A more recent development is the application of
learning-based optimization techniques, promising advantages especially when domain
knowledge is scarce or the problem is dynamic and complex. However, they often suffer
from drawbacks introduced by the learning-component, such as limited interpretability,
challenges when generalizing to unseen problem instances, and the additional demand
for data and computational resources during model training. Learning-based techniques
include enhancing meta-heuristics with machine learning or developing end-to-end learning
models. For an overview of learning-based optimization and insights regarding advantages
and disadvantages, we refer the reader to Li et al. [2022].

2.5.1 Vehicle routing ontologies
Some general optimization ontologies have been brought forward, for example, the well-
known General Optimization Ontology (GOO) by Miller et al. [2004]. Furthermore,
Agardi et al. [2022] proposed a general VRP ontology that can be adapted to concrete
vehicle routing problems. Their model includes classes for vehicles, products, periods,
values, and attributes, with subclasses for specific types of each. The model also includes
classes such as travel time, distance, and reliability to support VRP optimization.

2.6 Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is an optimization problem where a salesman must
visit a set of cities exactly once and return to the starting point while minimizing travel
distance. Unlike the VRP, which involves multiple vehicles and additional real-world
constraints, TSP considers only a single route.

A simple yet effective intra-route move is 2-opt, in which two edges in the route are
selected and removed, and the segments are reconnected with two new edges to restore a
valid route, as shown in Figure 2.3. This idea can be generalized to k-opt moves, where
k edges are removed from a route, which is then repaired accordingly.

One of the most successful approaches for the symmetric TSP is the LK (Lin-Kernighan
algorithm) [Lin and Kernighan, 1973], in particular the subsequent improvement by Hels-
gaun [2000]. The core idea is to explore k-opt moves for any k in a search tree that is
based on observations about alternating paths and how these relate to k-opt. Essentially,
the algorithm iteratively removes and reconnects up to k edges in a route to reduce the
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Figure 2.3: Example of a 2-opt move in an abstract route. The initial route is modified
by removing and subsequently introducing edges s.t. the result is a valid route again.

overall cost. Unlike fixed k-opt methods, Lin-Kernighan dynamically changes which parts
of the search tree are explored, enabling it to make deeper changes when necessary while
avoiding excessive computation.

2.7 Tour Optimization Beyond Routing Algorithms

Related tour optimization literature comes primarily from the already mentioned domain
of vehicle routing problems. However, additional insights outside the scope of VRP
optimization may exist in other literature, such as the recommender system of Li et al.
[2023], in which they apply a knowledge graph to cold-chain logistics. Their approach
dynamically constructs a KG based on the output of a data mining module, which is then
accessed by a recommendation module. They discuss the advantages of such a method
over simply applying VRP heuristics, which can be summarized as a broader impact on
the overall operation and a better adaptability to complex, uncertain problems.

2.8 Machine Learning in Waste Management

Literature exists for the related task of identifying pollution for waste classification before
collection, but usually requires sensory IoT hardware in each bin [Toğaçar et al., 2020,
Bakhshi and Ahmed, 2018, Kang et al., 2020]. Moreover, there are works focused on
predicting waste volume either by land area [Kannangara et al., 2018] or individual bin
[Rutqvist et al., 2019, Hannan et al., 2012]. These approaches cannot be directly applied
to the problem of this thesis since we rely solely on historical pollution data. Furthermore,
our focus is on predicting the purity of the waste instead of the volume. In this context,
pollution prediction can be addressed in various machine learning (ML) tasks, such as
binary classification (polluted, clean), regression, or stochastic modeling, to predict the
expected severity or probability of pollution at a scheduled stop. It can also be addressed
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as a link prediction problem in a knowledge graph: For example, if an edge e = (p, t) is
predicted, then at pickup p, we expect trash of the type t.

Other studies apply ML to predict the outcomes of processing particular waste, including
compost maturity [Xu et al., 2020], pollution evolution [Alavi et al., 2019], biogas
production [Wang et al., 2015], and dioxin emissions from incineration [Zhang et al.,
2022]. These studies provide deep insights into waste composition and show suitable
techniques for various predictions in that domain. However, they focus on different
aspects of waste and as such can only serve as inspiration for predicting pollution before
waste collection.
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CHAPTER 3
Pre-Collection Sorting Problem

In this chapter, we define the task of separating pollution in waste collection routes and
present a concrete mathematical formulation in Section 3.1. This serves to clarify any
uncertainties from the initial descriptions and builds a foundation for designing specific
solution methods.

Motivated by our aim for a direct, measurable impact, we aim to evaluate the results
end-to-end, as close to the actual data as possible. However, the data recording process is
limited and requires preprocessing for a meaningful evaluation, which will be elaborated
on in Section 3.2. Furthermore, as real-world problems are usually highly detailed and
complex, they benefit from abstraction and subsequent handling in several smaller tasks.

3.1 Formalization
In this section, the focus is on formalizing the main challenge of the thesis, that is, OSW
pollution prediction and waste collection vehicle routing. The notation introduced in
this section is used throughout the thesis. Supporting this, we provide a complete list of
symbols in the appendix to aid the reader.

3.1.1 Problem Instance Specification
We refer to the problem at hand as Pre-Collection Sorting Problem (PCSP). A PCSP-
instance includes a set of waste collection reports R, along with locations L and timestamps
τ . The locations are given as geographic coordinates, i.e., latitude and longitude pairs.
For any pair of locations, the distance function δ : L × L ↦→ R gives the travel distance
from one location to another. 1 Also given is a list of pollution types T , along with the
severity function σ : T ↦→ R that specifies how severe or detrimental the pollution is.

1Note that this is, in general, not symmetric, e.g., due to one-way roads.
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Each report r ∈ R has a location lr, a timestamp τr, and a set of tags Θr, which can also
be empty if no pollution was found or if the report is in the future. The set of all tags is
defined as Θ = ∪r∈RΘr. Furthermore, there are the functions γ : Θ ↦→ T returning the
pollution type for each tag, and π : Θ ↦→ [0, 1] which maps any tag to a real number in
the range [0, 1]. This value reflects how confident we are that the pollution was correctly
identified, with higher values meaning greater confidence, and corresponds to the output
of the neural network used for image recognition. Furthermore, we define the pollution
of a report β(r) in Definition 3.1.1.

Definition 3.1.1 (Pollution of a report). The pollution β(r) of a report r is defined as:

β(r) =
∑︂

t∈Θr

π(t) · σ(γ(t)) (3.1)

Intuitively, each waste collection report is a point in time in a tour where the mobile
device in the waste collection truck records an image. However, it is important that
reports are not confused with the actual waste collection stops in a tour. We refer to the
logical entity that represents one or multiple bins emptied in a tour stop at a household
or commercial building as pickup stop p. Since geo-coordinates across different days
vary even if they are collecting the same bin, we try to clearly distinguish between the
two notions. A pickup stop is, in general, scheduled repeatedly in various tours, but
at most once per day. The set of pickup stops is then denoted as P . There are two
special stops without reports, which are the base station b, where all routes start, and
the waste drop-off station e, where all routes end. As per our assumption discussed in
Section 1.5, the number of reports is much greater than the number of pickup stops
|R| ≫ |P |, even if we only count reports with a unique location |R′| ≫ |P |, where R′ ⊆ R,
s.t. ∀x, y ∈ R′ : x ̸= y =⇒ lx ̸= ly.

We expect a list of homogeneous vehicles V , each vehicle v ∈ V having the same capacity
C that is measured in the number of stops in a single tour that a vehicle can serve
at once, i.e., the maximum number of stops p ∈ P in a route minus two, because of b
and e. We assume that each vehicle is able to perform one tour in a day and therefore
assume |V | ≥ 2 to allow for waste separation. Also, we assume that all vehicles have
homogeneous travel distances given by the distance function δ.

Furthermore, there is a clustering function ρ : R ↦→ P that assigns each report to a
pickup stop. 2 The location lp of a pickup stop p is then simply the average over all
associated report locations.

To avoid overly complex notation, we denote the set of days as D, with every day being
the collection of reports that correspond to that day ∀d ∈ D : d = {r | τr is during day d}.
Moreover, relative to the time of decision making τ ′ we define the reports of the past as
RPAST = {r ∈ R | τr < τ ′}. Furthermore, we denote the past reports associated with a
given pickup stop p as RPAST

p :
2Notice that ρ is always surjective since every pickup stop has at least one report.
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Definition 3.1.2 (Past reports associated with a given report).

RPAST
p = {r ∈ RPAST | ρ(r) = p} (3.2)

Another useful definition is denoting the set of pickup stops, that are scheduled on day d
with Pd, formalized as:

Definition 3.1.3 (Pickup stops in a day).

Pd = {p ∈ P | ∃r ∈ d : ρ(r) = p} =
⋃︂
r∈d

ρ(r) (3.3)

3.1.2 PCSP Solution Specification
In order to specify a PCSP solution S, we first have to formally define a route. A route,
that is assigned to vehicle v on day d, is an ordered sequence Rd

v = {b, p0, p1, ..., pk, e},
with (pi)0≤i≤k ∈ {p ∈ P | ∃r ∈ d : ρ(r) = p} being pickup stops that have a report
scheduled on that day. A solution S is then given by a set of routes for each day
Sd = {Rd

v | v ∈ V }, S = (Sd)d∈D. S is feasible if for every day d ∈ D the following
properties are satisfied:

• Each pickup stop with a report scheduled in the day occurs in a route:

∀Sd ∈ S : ∪Rd
v∈Sd

Rd
v\{b, e} = {p ∈ P | ∃r ∈ d : ρ(r) = p} (3.4)

• Any route may not exceed the given vehicle capacity:

∀d ∈ D ∀v ∈ V : |Rd
v| − 2 < C (3.5)

• No pickup stop occurs in two routes at the same time:

∀d ∈ D ∀v1, v2 ∈ V : v1 ̸= v2 =⇒ Rd
v1 ∩ Rd

v2 = ∅ (3.6)

3.1.3 Objective Function
Before the objective function can be stated, a few intuitive notions have to be defined,
starting with route length.

Definition 3.1.4 (Route length). The route length λ(Rd
v) of route Rd

v = {b, p0, p1, . . . , e}
is the total distance traveled when visiting the location of the pickup stops in order:

λ(Rd
v) =

|Rd
v |−3∑︂

i=0
δ(lpi , lpi+1) (3.7)
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We previously defined the pollution of a report in Definition 3.1.1. Next, we extend
this concept to quantify the pollution of a waste collection event. Due to the data
collection method, multiple reports can be associated with the same pickup stop on a
given day. However, in reality, waste is collected at most once per day for a pickup stop.
Therefore, a waste collection event is uniquely identified by a pickup stop and a day. To
aggregate the pollution levels of individual reports within one such collection event, we
use the arithmetic mean, which is efficiently computable and guarantees that all reports
contribute equally.

Definition 3.1.5 (Pollution of a collection event). The pollution β(p, d) of a collection
event, identified by the pickup stop p and day d, is defined as the average of the pollution
of all reports for the pickup stop on the day d.

β(p, d) =
∑︁

x∈{r∈d | ρ(r)=p} β(x)
|{r ∈ d | ρ(r) = p}| (3.8)

We can subsequently aggregate pollution from the collection events and finally define
pollution in the context of routes. If the pollution of a route β(Rd

v) is less than the
threshold, i.e., β(Rd

v) ≤ βmax holds, then it is a clean route. Otherwise, the route is
polluted. We considered both maximum and mean pollution across collection events for
β(Rd

v), but determined that the latter provides a more realistic model of route pollution,
for the following reason: In the real world, pollution limits are typically specified relative
to the total amount, rather than an absolute threshold, e.g., the world health organization
recommends a limit of 10µg/l for lead in drinking water [WHO, 2022]. This also applies
to the context of OSW recycling, even in extreme cases. For example, a single hazardous
item, such as a car battery, can compromise an entire truckload. However, this does
not contradict the use of a relative pollution metric but instead motivates choosing a
sufficiently high severity score for such pollutants. Specifically, if a pollutant’s severity
exceeds βmax ∗ C, any route containing that item is classified as polluted. The result
of this choice is Definition 3.1.6. Following this definition of the route pollution, we
additionally expect an acceptance threshold βmax from the PCSP-instance, which is the
upper limit of the average pollution s.t. the route is classified as clean and can be
recycled.

Definition 3.1.6 (Pollution of a route). The pollution β(Rd
v) of a route Rd

v is defined as
the average of the pollution of all collection events in the route.

β(Rd
v) =

∑︁
p∈Rd

v\{b,e} β(p, d)
|Rd

v| − 2 (3.9)

The objective function encapsulates all relevant environmental costs, which are, in our
case, GHG emissions due to transportation, as well as the cost of unrecycled clean waste.
Transportation cost is modeled as total route length times a cost coefficient ϵcollect , which
can be interpreted as an approximation of the GHG emissions per distance driven by
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the waste collection vehicle. Consequently, we specify this constant in grams of CO2e
(CO2-equivalent) emissions per meter. Following, we anticipate that the main area of
improvement from this optimization is a reduction of emissions from recycling instead of
landfilling or burning OSW. For simplicity, we define a function ι that returns 0 on input
Rd

v if the route is clean, and otherwise 1. In this thesis, we assume that polluted routes
are not recycled at all. We reflect that assumption in the objective function and penalize
unrecycled waste, i.e., all pickup stops that are scheduled to be picked up in polluted
routes. Again, we multiply that number by a cost coefficient ϵdispose, interpretable as the
GHG emissions caused by not recycling but disposing of the waste from a pickup stop.
An alternative interpretation, if the waste is recycled after all, is that ϵdispose encodes
the additional post-collection separation effort needed to remove the pollutants from the
recyclables. Either way, in this thesis we measure this quantity in grams of CO2e per
unrecycled tour stop.

f(S) =
∑︂

Sd∈S

∑︂
Rd

v∈Sd

λ(Rd
v) · ϵcollect + ι(Rd

v) · |Rd
v| · ϵdispose (3.10)

Of course, since future pollution is unknown during the planning phase, ι(Rd
v) is also

unknown in advance, presenting a key challenge that we address in Chapter 5.

3.2 From Data to Instances
Preprocessing, particularly for machine learning or artificial intelligence methods, usually
consists of a few simple but important steps that prepare raw data for further analysis. In
general, preprocessing aims to improve model accuracy, reduce training times, and help
to prevent issues like overfitting. In this work, we checked for missing values, removed
irrelevant information such as image duplicates, and, most importantly, analyzed the
possibly faulty data to catch problems early on.

One notable finding occurred when initially plotting all reports on a map, as shown in
Figure 3.1. We found reports from a suspiciously long tour spread over multiple days.
Further analysis revealed a period where the truck was stationary and located at a truck
repair shop, which also marked the furthest point from the depot in that route. We
concluded that the truck had to go in for maintenance or repair work, and the mobile
device mistakenly continued to record images. Thus, the data believed to belong to the
tour, marked in blue, has been removed before further analysis.

3.2.1 Clustering Reports
In the context of this work preprocessing includes mapping reports to pickup stops, i.e.,
determining ρ : R ↦→ P .

This is a variant of the already mentioned problem called clustering, introduced in
Section 2.1. Any criteria can be used for clustering, but in the case of the data at hand,
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3. Pre-Collection Sorting Problem

Figure 3.1: Map with all (anonymized) report locations. Reports marked in blue are not
from a waste collection tour and are thus removed in preprocessing.

the most sensible choice is clustering by location only. This is because all other available
information, such as pollution or time of waste collection, can change over time even for
the same pickup stop.

Clustering by geo coordinates only is a rather low-dimensional variant of the clustering
problem. Furthermore, the number of clusters is already given in the problem instance
and corresponds to the size of the set of pickup stops |P |. This motivates applying
k-means, due to the simplicity and our prior knowledge of the number of pickup stops.
A potential disadvantage of this simple approach is that it has no knowledge on the
concrete environment of a location. For example, two locations that are close may still
be unlikely to come from the same stop, as they are separated by some obstacle such as
a river. Furthermore, distinct clusters may be closer together in urban environments,
compared to rural areas. Nevertheless, these are highly specific scenarios with a limited
impact on the overall clustering accuracy.

Following, we extend Section 2.1 to give the reader a more detailed understanding of
the chosen approach. The k-means algorithm groups a dataset into k groups or clusters,
thus the name. Starting off, it randomly selects k points as cluster centroids. Each data
point is then assigned to the cluster with the nearest centroid based on a chosen distance
metric, in our case, Euclidean distance. After all points are assigned, the centroids are
recalculated as the average of the points in each cluster. This process repeats until the
centroids stabilize or a maximum number of iterations is reached.
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3.2.2 Distances and Travel Times
The raw data does not contain distances, and travel times can only be partially observed
in past waste collection tours. This is not sufficient for the PCSP-instance, as we rely on
some measure of route length to plan new routes.

In order to enrich the data in that aspect, we set up a Open Source Routing Machine
(OSRM) 3 instance. OSRM is a powerful open-source routing engine that allows us to
query the distance and duration that occurs when traveling the shortest path for any
two locations reachable on public roads. We chose to use route distances instead of route
duration to measure the length of the route in the objective function, as the distance is
less affected by traffic and similar dynamic changes. Additionally, this aligns with how
emissions are typically specified, namely relative to the distance traveled rather than the
time spent driving.

OSRM only provides an approximation of routes. As of the latest available version
(5.24.0), it does not account for several real-world factors. First, OSRM does not support
trucks as vehicle type, consequently it cannot account for truck-specific road closures or
speed limits. Second, OSRM does not consider dynamic traffic conditions or construction
information. While these constraints make OSRM unsuitable for real-world truck route
planning, it is sufficient for the scope of this project, as it offers a solid foundation upon
which algorithms can be built and tested.

3https://project-osrm.org/
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CHAPTER 4
Ontology Design

In this chapter we design an ontology for the PCSP domain, that conceptualizes the
relevant objects and relations, with the intent of adding structure to the data to create
an easy-to-understand, efficient knowledge representation that enables efficient reasoning
including queries, KGEs and routing algorithms. Further demands on the ontology are a
good integration with machine learning models, and a high level of separation between
input and output to avoid conflicts between different approaches.

Concretely, a layered ontology is used to store data in different stages of the process.
More specifically, a layer each for raw and preprocessed data, and multiple layers
for algorithm-specific results. This architecture allows us to view data at different
granularities, providing a systematic abstraction for data interpretation and reasoning.
Another advantage of a layered architecture is the simplified definition of procedures for
the creation, update, and deletion of data because there are clear rules for references
between layers. Higher layers may depend on lower ones, but never the other way around.
That is, if some data changes on the lower layer, it is guaranteed that updates have to be
propagated solely to the relevant individuals, classes, and properties in the higher layers.

The remainder of this chapter discusses the developed ontology layer by layer in order
of increasing abstraction. That is also the order in which the data is processed and
enriched. In each section, the classes and properties occurring in the respective layer are
introduced. Inter-layer subject-predicate-object triples, i.e. relations between layers, are
discussed in the section about the layer containing the subject entity.
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4.1 Data Layer
The first layer, which we refer to as LAYER_1, contains the data cleaned as described in
Section 3.2. In order to structure the concepts within our ontology, we introduce classes
to group related entities and define their relationships. This should not be confused
with classes in software engineering, where classes are used as blueprints for the creation
of objects. We represent the contents of this layer using the superclass LAYER_1,
with all other classes in this layer defined as its subclasses. Many notions from the
PCSP-instance definition are present in the ontology for LAYER_1. Together, these
classes and relationships allow storing and tracking waste collection events and contextual
data, such as pollution. In the following, we present an overview of our model for this
layer. A visual representation of the ontology can be found in Figure 4.1.

• The LAYER_1 class serves as categorization identifier for the first layer, with all
other classes in this layer being subclasses thereof. In order to reduce visual clutter,
this subclass relation has been removed from the figure.

• The Report class is central to the ontology, representing a pollution collection event,
i.e., a report in the PCSP-instance. Each report can have zero or more associated
pollution tags annotated with a probability. Moreover, each report has exactly
one status property linking to static information about the event and exactly one
geographical location.

• The PollutionType class represents categories of pollutants and includes a severity
attribute to measure pollution impact.

• The Status class describes the state of a report and contains a timestamp indicating
when the report was recorded.

• The Location class provides geographical coordinates with attributes for latitude,
longitude, and altitude.

• The AbstractStop class acts as a superclass for stops in a waste collection tour that
are assigned exactly one location each.

• Subclasses of AbstractStop include PickUp, representing tour stops where waste
is collected, the waste drop-off stations class DropOff, and the Base class, which
expresses the starting points of waste collection tours, with the latter two containing
exactly one individual each in our instance.

4.2 General Abstraction Layer
The general abstraction layer LAYER_2, encoded by the class LAYER_2, models the
preprocessed data. This layer expands the ontology by introducing the concept of distance
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Figure 4.1: The Ontology for the data layer (LAYER_1).

between locations and improving how pickup stops are linked to their reports. It builds
on the foundation of the first layer, integrates with it, and provides the structure to track
and analyze spatial relationships.

For this, we perform clustering as described in Section 3.2 to group the LAYER_1
PickUp nodes, and form clusters representing real-world waste collection location, such
as households or industrial clients. The result is then expressed in LAYER_2 PickUp
nodes and the contains relation. We further enrich the distances between locations.

Classes, properties, and relations in this layer can be understood as abstraction or
enrichment of the first layer. Instead of repeating the properties, we focus on the changes
compared to LAYER_1. Furthermore, a visual representation of the ontology can be seen
in Figure 4.2.

• At the foundation, LAYER_2 is introduced as a categorization identifier for the
second layer, with all other classes on this layer being subclasses. Again, this is
omitted from the visualization.
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Figure 4.2: The Ontology for the general abstraction layer (LAYER_2).

• The AbstractStop class is used again on LAYER_2 as a superclass for different types
of tour stops, which include PickUp, Base, and DropOff. In contrast to LAYER_1,
these have only one property to signal which of their LAYER_1 counterparts they
represent.

• Each PickUp contains one or more LAYER_1 PickUps, while both Base and DropOff
each contain exactly one instance of their respective lower-layer classes. This
structure is chosen to allow for a higher degree of abstraction by grouping more
pickup stops together.

• The distance and travel time between locations are modeled in the additional
distance property of the Location class. They are annotated to the property in
meters and seconds, respectively.
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4.3. Routing Layers

4.3 Routing Layers
The routing layers are collectively denoted as LAYER_X and individually referred to
analogously by replacing the X in the name with the algorithm used to compute the
waste collection routes. The routing layers build on previous layers, expanding their
functionality to include route planning-related input and output. They extend the waste
collection ontology by introducing classes related to routes, vehicles, and solutions. A
visualization can be seen in Figure 4.3.

• As before, LAYER_X acts as a categorization class, with all other classes in this
layer being subclasses of it. We make use of the property annotation to express
that all properties, including nextStop, are in the corresponding routing layer as
well.

• The RouteInfo class is introduced to represent waste collection routes. It includes a
unique routeId and a routeType property to classify the routes as clean or polluted.

• A route is connected to a SolutionInfo entity that represents a PCSP-solution
together with the associated routes. It encapsulates context on how the solution
was derived, including the used metric for future pollution prediction, a threshold
for clean pickup stops, and the emission coefficients used when computing the
solution.

• Additionally, the ontology introduces the Vehicle class, which is linked to Solution-
Info. A solution can utilize two or more vehicles, each characterized by its capacity
and emissions.

• Finally, the AbstractStop class of LAYER_2 is further enriched with a nextStop
property, enabling the representation of sequential stops in a route. The route
to which the property belongs is annotated using an identifier from a RouteInfo
individual.

4.4 Construction from a PCSP-instance
In this section, we discuss how to convert a PCSP-instance to fit the ontology, for example
when constructing a KG.

For LAYER_1, the Report, Status, PollutionType, Location, Base and DropOff classes
can be taken directly from corresponding data in the problem instance. In LAYER_1,
a PickUp individual is created for each Report with a unique Location. If two or more
Reports share a Location, then they share the PickUp individual.

The LAYER_2 classes Base, DropOff, AbstractStop are straightforward to instantiate
given the respective classes in the first layer. As explained in Section 3.2, clustering of
the LAYER_1 PickUp individuals is done using a k-means algorithm and expressed in
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Figure 4.3: The Ontology for the routing layers (LAYER_X).

the problem instance as ρ function. Then, a total of |P | new PickUp individuals are
created, with contains properties according to ρ. The locations for the pickup stops are
determined by averaging the coordinates of the clustered reports’ locations. A drawback
of this method is that the locations are not exact matches, but approximations of the
real pickup stop locations, and are not necessarily positioned on the street network due
to the averaging. Distances are expressed by adding a distance property to each tuple of
Location individuals.

In LAYER_X, the Vehicle individuals, emission parameters, and pollution threshold are
given in the problem instance, as V and C, ϵcollect and ϵdispose, and βmax respectively.
Completing the layer requires a PCSP solution, determines the RouteInfo and SolutionInfo
individuals. Additionally, nextStop edges are created to represent the sequence of pickup
stops for each route.
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CHAPTER 5
Pollution Prediction

In order to optimize future routes and increase the recycling quota, we need to predict
which pickup stops are most likely to have pollutants and apply this insight to guide
separation efforts during routing. More formally, when observing the objective function
(Equation (3.10)) we find that the pollution status indicator function ι(Rd

v) is unknown
in advance. Consequently, we require a strategy that allows us to perform the tour
optimization regardless and indirectly optimize the objective. This is essential in solving
the PCSP, because the quality of the solution strongly depends on the ability to create
clean routes, and separate the polluted waste effectively.

This chapter explains two fundamentally different strategies to approximate ι(Rd
v). For

both strategies, we require some form of pollution prediction, and for that we apply
basic statistical measures, KGE models and probabilistic models. Approximations are
consistently denoted with a hat symbol (·̂) over the exact variable.

5.1 Statistical and Latent Knowledge-Based Classification
Our first approach consists of predicting future reports’ pollution using statistical measures
and latent knowledge, then classifying reports and thus pickup stops as clean or polluted
according to Definition 5.1.1. Finally, we apply this to approximate ι(Rd

v) by setting it
to 0 if and only if all pickup stops in Rd

v are classified as clean.

Definition 5.1.1 (Clean and polluted stops). All pickup stops on day d that have
pollution below that threshold are regarded as clean stops Cd.

Cd = {p ∈ Pd | β̂(p, d) ≤ βmax} ⊆ Pd (5.1)

The remaining stops are then referred to as polluted stops Dd.

Dd = Pd\Cd (5.2)
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5. Pollution Prediction

5.1.1 Basic Statistic Measures
The simplest category of approaches discussed in this chapter is basic statistical measures.
This group of statistics includes average, median, variance, and other point estimates, to
summarize data without complex training or modeling procedures.

An intuitive idea is to apply the average of the pollution over the past reports as an
approximation of future pollution.

β̂avg(p, d) =
∑︁

ri∈RPAST
p β(ri)

|RPAST
p | (5.3)

One could argue that the median is a more robust choice. However, the average is much
easier to compute than the median for large datasets. It requires only the sum of values
and their count, letting databases process each value sequentially without storing them.

The average over all past reports means all reports contribute equally. However, when
the reports are not distributed uniformly over the days, that metric results in a bias
towards days with more reports. This motivates us to consider another option, which
computes the average over the collection event pollution. If there is a constant number
of reports per pickup stop for any given day, both metrics are equal. For that, we first
need a definition of all days Dp that have at least one report associated with the pickup
stop p.

Dp = {d ∈ D | ∃r ∈ d : ρ(r) = p, d is before τr} (5.4)

This allows us to define the average collection event pollution, as explained previously.

β̂avgday(p, d) =
∑︁

di∈Dp
β(p, di)

|Dp| (5.5)

5.1.2 Knowledge Graph Embedding Models
Instead of approximating the collection event pollution β(p, d) or report pollution β(r),
both being abstractions over the pollution tags, we propose a more ontological approach.
Here, we predict the tags associated with the reports directly and then compute the
above pollution metrics based on these predicted tags as per the definition of β(r) and
subsequently β(p, d). There are two motivations for this approach. First, it plays to the
strengths of KGEs, which learn from patterns within graph-structured data. Second,
reducing pollution data to a single abstract value can obscure important patterns that
may exist within the tag data. By targeting the tags directly, more of the structure
remains and allows the model to identify patterns that may otherwise be missed.

Nevertheless, KGEs have limitations. For once, all relevant nodes must already be present
during training, because KGEs cannot handle unseen nodes. Applied to our context, we
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find that all future report nodes must be in the training data, meaning models require
retraining whenever more reports are added. Also, future nodes do not have pollution,
which could result in a bias in our model to associate reports further in the future with
less pollution.

Furthermore, most KGE models are designed to work with the structure of the graph only,
ignoring node and edge attributes, which may negatively impact prediction abilities if the
attributes are relevant. Adaptations aiming to include such attributes have been proposed
and applied with varying success: For node attributes, Kristiadi et al. [2019] propose
adding a learnable parameterized function before the scoring function that takes the
embedding along with the attributes of an entity and returns an adapted joint embedding
vector. Pai and Costabello [2021] tackle the problem of incorporating a single, numerical
edge attribute in the interval [0,1] for each edge by adding a so-called FocusE layer after
the scoring function, and before the adapted loss function. This layer has the purpose
of prioritizing triples with a higher edge attribute value. In contrast to the previous
approach, this only influences the training process. In this thesis, we aim to use typical
KGE models without such modifications but will encode some important information as
triples. For example, we introduce nodes to represent the date in the timestamp property
of the Status class, and add the corresponding relations. A disadvantage of this approach
is that the encoding is not lossless, and information about the order of dates is lost.

Despite its limitations, TransE remains a popular and widely used baseline KGE model
because it is simple and scales well, yet effectively captures basic relational structures.
For those reasons, we include TransE in the evaluation as the baseline KGE approach.
However, we want to predict the tag property, which is a many-to-many relation, and
expect TransE to suffer from the aforementioned limitations in that regard. Consequently,
we also apply the SOTA KGE models PairRE Chao et al. [2020] and TuckER Balažević
et al. [2019], which complete a representative selection of the KGE hierarchy in terms of
scalability and expressiveness.

5.2 Stochastic Modeling of Pollution
The second approach embraces the stochasticity of the problem and models pollution of
reports of the same pickup stop p as samples from a stochastic process. In this framework,
each pickup stop is treated as having its own, unique pollution distribution, independent
of others, to model the variability and randomness in pollution levels specific to that
location.

Then, in the tour optimization, we can compute the distribution of the route pollution
based on the sum of the random variables associated with the pickup stops scheduled on
that route, as stated in Definition 5.2.1. The summation of random variables corresponds
to the convolution (∗) of their probability density functions (PDFs), not to be confused
with multiplication. Convolutions of arbitrary distributions do not have an analytical
solution, with a few exceptions, notably including the Normal distribution. However,
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using Theorem 5.2.1, we can approximate convolutions of any distribution. Applying the
Fast Fourier transform has an asymptotic complexity of O(n log n).

Theorem 5.2.1 (Convolution Theorem). Let F denote the Fourier transform operator, ∗
the convolution operator and f(x), g(x) be two integrable functions. Then, multiplication
in the frequency domain equals convolution of the original functions [Horváth, 2012].

f(x) ∗ g(x) = F−1[F(f(x)) · F(g(x)] (5.6)

Definition 5.2.1 (Route Pollution Distribution). Given a route Rd
v = {b, p0, ..., pk, e}

with k pickup stops and corresponding independently distributed random variables
(Xpi)0≤i≤k encoding the pollution distribution, then the route pollution is described by
the following equation:

XRd
v

∼
∑︂

0≤i≤k

Xpi (5.7)

In other terms, let fpi(x) be the PDF of random variable Xpi . Then the function
describing the PDF of XRd

v
is fRd

v
(x) and is defined by the following equation:

fRd
v
(x) = fp0(x) ∗ fp1(x) ∗ · · · ∗ fpk

(x) (5.8)

Finally, the probability that the route pollution (Equation (3.1.6)) exceeds the threshold,
i.e., β(Rd

v) > βmax , corresponds to computing a definite integral over the PDF, i.e.,
evaluating the cumulative density function, see Equation (5.9).

ι̂stoch(Rd
v) = 1 − P (β(Rd

v) ≤ βmax) = 1 −
∫︂ βmax ·k

−∞
fRd

v
(x) dx (5.9)

In the objective function, we can replace ι(Rd
v) with this approximation, resolving the

problem by explicitly modeling future pollution as a stochastic process. In the following
sections, we explore four models for the pollution distribution of a pickup stop Xp.

5.2.1 Normal Distribution Model
An intuitive approach is to assume that pollution reports at a pickup stop follow a
Normal distribution. The parameters of this distribution are the mean µ and standard
deviation σ, which we estimate using the sample mean µ̂p and sample standard deviation
σ̂p. To express the pickup stop for which we model the distribution, we use the subscript
p. The formula for the sample mean is stated in Equation (5.10)), and for the standard
deviation estimate, the Bessel corrected sample standard deviation is applied as per
Equation (5.11).

µ̂p =
∑︁

r∈RPAST
p

β(r)
n

(5.10)
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σ̂p =
⌜⃓⃓⎷ 1

n − 1
∑︂

r∈RPAST
p

(β(r) − µ̂p)2 (5.11)

A Normal distribution model has a drawback for our purpose: If there is not much
pollution data for a pickup stop, then the results are overconfident because µ̂p, σ̂p are
treated as if they are the true parameters. Empirically, at least 30 samples are required
to get sensible estimates using the Normal distribution model, but for some pickup stops,
there are much fewer past data points.

5.2.2 Student’s t-Distribution Model
For small sample sizes, uncertainty is better captured by the Student’s t-distribution
rather than the Normal distribution. The t-distribution accounts for the degrees of
freedom in the sample. The t-distribution is broader than the Normal distribution for
small sample sizes, reflecting higher uncertainty in the estimate of the mean. As the
sample size n increases, the t-distribution approaches the Normal distribution. We reuse
the estimates µ̂p, σ̂p as defined for the Normal distribution model. Finally, the parameter
referred to as degrees of freedom is df = n − 1, where n = |RPAST

p |.

5.2.3 Bayesian Model
Bayesian models offer a structured way to perform statistical inference by combining prior
knowledge with observed data to determine the posterior distributions of parameters.
Using the Bayesian approach, we can explicitly include uncertainty in both µ̂ and σ̂.
Instead of treating them as fixed values, we assign prior distributions to these parameters
(Equations 5.12,5.13) and compute the posterior probability distributions, which are
finally sampled to derive parameters for the pollution distribution of the pickup stops’
future collection events.

µ̂ ∼ N (µ0, σ0) (5.12)

σ̂ ∼ HalfCauchy(s0) (5.13)

For the prior parameter distributions, we choose a broadly parameterized Normal dis-
tribution for µ̂p (Equation (5.12)), and for σ̂p, we assume a Half-Cauchy distribution
(Equation (5.13)), which is truncated at the center of the distribution. The effect of
the truncation is that it has zero probability mass for negative values. Half-Cauchy
was chosen over Half-Normal because it is less likely to over-constrain σ̂p, allowing the
data to dominate the posterior when strong evidence is available. In other words, the
Half-Cauchy distribution has more probability mass in the tail. For a visual comparison
of both distributions, see Figure 5.1.
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Figure 5.1: Comparison of Half-Normal and Half-Cauchy distribution

5.2.4 Bayesian Mixture Model
For our final model, we propose a Bayesian mixture of Normal distributions, motivated
by real-world data that is often best described as a combination of multiple distributions.
Concretely, we found that a weighted sum, i.e., a mixture, of three Normal distributions
is a good fit for the observed pollution levels. The prior distribution over a histogram of
actual pollution can be seen in Figure 5.2.

The Bayesian model consists of three Normal distributions, each with parameters µ, σ,
and additionally the three weights w1 +w2 +w3 = 1. In total, the posterior distribution of
nine parameters is learned from the data. This complexity comes with a similar drawback
as the simple Normal distribution, namely overfitting if there is not enough data. We
conclude that each model has distinct theoretical advantages, and neither is strictly
better in all scenarios. For empirical results in the context of this thesis see Section 7.6.2.
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Figure 5.2: Histogram of report pollution (blue) and prior distribution of mixture model.
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CHAPTER 6
Tour Optimization

Optimizing OSW collection routes under uncertain pollution levels is the key challenge
that we address in this chapter. The proposed solutions aim to reduce costs and
environmental impact, i.e., minimize the objective function outlined in Equation (3.10),
indirectly, because of the unknown future pollution. We already characterized the
routing subproblem as a vehicle routing problem. Depending on the strategy of pollution
prediction, it can be approached deterministically or stochastically. Regardless of the
strategy, we require a surrogate objective function f̂ ≈ f .

In the first variant, we assume that the pickup stops can be categorized as (1) clean and
(2) polluted, and then we schedule routes such that there are no polluted pickup stops
in the clean routes. The opposite, i.e., a clean stop in a polluted route, is allowed and
even preferred if it decreases the objective value overall. This is the case when the driven
distance is reduced to an extent that the emissions from non-recycling are canceled out.
Details on models for pollution classification can be found in Section 5.1.

The second variant deals with the stochastic nature differently by incorporating the
confidence that we have of the route being clean in the objective function, as outlined in
Section 5.2. For this strategy, any pickup stop can end up in any route as there are no
dedicated clean routes. Instead, we directly optimize the expected objective value with
no further constraints.

Due to the inherent complexity of VRPs, which are NP-complete even in their fully
deterministic variants [Lenstra and Kan, 1981], we propose heuristic approaches. In this
chapter, we design two PCSP tour optimization algorithms. First, we propose GREEDY,
a simple heuristic that is intended as a computationally efficient alternative and baseline
for a local search (LS) algorithm. For LS, we took inspiration from a SOTA approach
for VRPs proposed by Arnold and Sörensen [2019], and adapted it to suit the objectives
and constraints of the problem at hand.
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In this chapter we repeatedly use the sequence concatenation operator, which we denote
using the ⌒ symbol.

6.1 Greedy Optimization
GREEDY is an algorithm that always performs the locally optimal step, i.e., it can be
categorized as greedy algorithm, hence the name. This locally optimal step does not
necessarily lead to a globally optimal solution, and much more sophisticated heuristics
exist for VRPs. However, it offers two advantages: simplicity and computational efficiency.

Nearest Neighbor Routing. Our implementation is based on the nearest neighbor
heuristic. We initialize a route, by starting at the base, and at each step, add the next
pickup stop with the lowest distance to the previous stop. The concrete subroutine is
shown in Algorithm 6.1. It expects as input a set of pickup stops, applies the nearest
neighbor heuristic, and returns a valid set of routes serving the given stops. The validity
of a route refers to the criteria defined in Section 3.1.2.

Algorithm 6.1: Nearest-Neighbor-Routing
Input: A set of pickup stops P , the base station b, the waste drop-off station e,

the locations L = (lp)p∈P ∪{b,e}, the distance function δ, the vehicle
capacity C

Output: A valid set of routes containing all p ∈ P
1 t ← 0;
2 r ← ∅;
3 Q ← P ;
4 while Q ̸= ∅ do
5 r′ ← (b);
6 i ← b;
7 while |r′| − 1 < C and Q ̸= ∅ do
8 q ← argminq∈Q δ(i, q);
9 r′ ← r′ ⌒ (q);

10 Q ← Q\{q};
11 i ← q;
12 end
13 r′ ← r′ ⌒ (e);
14 r ← r ∪ {r′};
15 end
16 return r;

Greedy Relocation. This could already serve as a valid initial solution, but there is a
serious shortcoming that we want to address: It does not reflect the trade-off between
route duration and pollution separation at all. We aim to account for this consideration
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with a post-processing step shown in Algorithm 6.2. In it, each clean pickup stop is
evaluated, and the additional distance caused by the additional stop in the clean route
is compared to the distance of the optimal position in any of the polluted routes. If
the emissions from the extra driven distance outweigh the emissions of one less recycled
pickup stop, we move the stop to the polluted route.

Algorithm 6.2: Greedy-Relocation-Optimization
Input: A set of clean routes Rc, a set of polluted routes Rp, a set of clean pickup

stops Cd, the locations L = (lp)p∈P ∪{b,e}, the distance function δ,
collection cost coefficient ϵcollect , disposal cost coefficient ϵdispose, the
vehicle capacity C

Output: A set of clean routes R′
c, a set of polluted routes R′

p

1 for k ∈ Cd do
2 rc ← {i ∈ Rc | k ∈ i};
3 δc ← d(rc) − d(rc\{k});
4 g ← 0;
5 m ← null;
6 for rp ∈ Rp do
7 if |rp| < C then
8 i ← argmin1≤j<|rp|−1 δ(lrp,j−1 , lk) + δ(lk, lrp,j ) − δ(lrp,j−1 , lrp,j );
9 r′

p ← (r′
p,j)0≤j<i−1 ⌒ (k) ⌒ (r′

p,j)i≤j<|rp|;
10 δp ← d(r′

p) − d(rp);
11 if g > (δc + δp) ∗ ϵcollect + ϵdispose then
12 g ← (δc + δp) ∗ ϵcollect + ϵdispose;
13 m ← (rp, r′

p);
14 end
15 end
16 end
17 if m ̸= null then
18 rp, r′

p ← m;
19 Rc ← Rc\{rc};
20 Rc ← Rc ∪ ({rc}\{k});
21 Rp ← Rp\{rp};
22 Rp ← Rp ∪ {r′

p};
23 end
24 end
25 return Rc, Rp;

Finally, the complete GREEDY algorithm that integrates both solution components is
shown in Algorithm 6.3. It produces valid solutions and is computationally efficient, but
due to its simplicity, we anticipate far from optimal results. For instance, the Greedy-
Relocation-Optimization method only ever reschedules one pickup stop at a time, yet
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an improvement may only be obtained when relocating two or more consecutive pickup
stops, i.e., a sub-route, at once. Furthermore, the nearest neighbor heuristic is clearly
myopic because the impact on the rest of the route is not anticipated, and decisions are
not reverted in greedy algorithms. We aim to improve on these shortcomings significantly
with the LS heuristic.

Algorithm 6.3: GREEDY
Input: A set of clean pickup stops Cd, a set of clean pickup stops P, the base

station b, the locations L, the drop-off station e, the distance function δ,
collection cost coefficient ϵcollect , disposal cost coefficient ϵdispose, the
vehicle capacity C

Output: A set of clean routes R′
c, a set of polluted routes R′

p

1 Rc ← Nearest-Neighbor-Routing(Cd, b, e, L, δ, C);
2 Rp ← Nearest-Neighbor-Routing(P, b, e, L, δ, C);
3 R′

c, R′
p ←

Greedy-Relocation-Optimization(Rc, Rp, Cd, L, δ, ϵcollect , ϵdispose, C);
4 return R′

c, R′
p;

6.1.1 Complexity Analysis

Let n = |Cd| and m = |P|. The first subroutine has quadratic runtime, O(n2) and O(m2)
for the two calls respectively. That is because in each iteration of either of the while
loops one pickup stop is scheduled, and in each iteration we check which remaining pickup
stop is the closest, which runs in linear time because the check consists of linear constant
time lookups. The second subroutine iterates over each clean pickup stop, and checks
where among the O(n + m) stops scheduled in polluted routes the clean stop under
consideration fits optimally, thus has a total runtime of O(n2 + nm). Since constant
factors are redundant in asymptotic bounds, the runtime complexity of GREEDY is simply
O(n2 + m2 + n · m).

6.2 Local Search Optimization
Almost all high-quality VRP algorithm designs are based on or at least incorporate meta-
heuristics. They work based on the assumption that iteratively improving a solution leads
to an overall good solution. Of course, counterexamples can be constructed in theory,
but empirically local search techniques produce high-quality results at low computational
cost. That is especially useful for combinatorial optimization problems such as the VRP,
where exact algorithms are often computationally infeasible.

The LS algorithm used in this thesis is inspired by the local search method proposed
by Arnold and Sörensen [2019] that was introduced in Section 2.5. We take inspiration
from their choice of neighborhood structures, and adapt them to the problem at hand.
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6.2.1 Intra-Route Optimization
The pickup-stop-to-route assignment remains the same during intra-route optimization,
which means that only the distance penalty in the objective function is impacted. We are
also only dealing with a single route. Consequently, performing intra-route optimization
is essentially optimizing an Asymmetric Traveling Salesman Problem (ATSP).

Efficient ATSP Solvers. As discussed in Section 2.6, a highly effective approach to
the TSP is the Lin-Kernighan algorithm [Lin and Kernighan, 1973]. Since the TSP is
a heavily studied problem, there are already highly optimized implementations of LK.
We apply LKH 1, which implements the Lin-Kernighan-Helsgaun algorithm, itself an
improvement on LK, proposed by Helsgaun [2000]. This is one of the most successful
solvers for the TSP, and frequently solves nontrivial instances with tens of thousands
of cities to optimality. Furthermore, LKH supports ATSP by constructing a symmetric
TSP instance by introducing dummy nodes.

From PCSP to ATSP. Mapping the PCSP intra-route optimization to a TSP instance
is straightforward, except for one detail: Instead of a depot, where the tour starts and
ends, we have a defined start and end node, which represent the base and waste drop-off
location, respectively. This situation can be encoded by designating the base as depot
and setting the distance from the drop-off location to the base to 0 and the distances
from any other node to the base to ∞ (or sufficiently high value s.t. it is practically
infinity). Any resulting tour must have the waste drop-off station as the second-to-last
stop, which means we can just remove the very last return edge from the drop-off to the
base and thus derive a valid PCSP route. Following these considerations, we parsed the
problem to the TSPLIB format 2 expected by LKH.

6.2.2 Inter-Route Optimization
For inter-route optimization, we apply the CROSS-exchange (CE) operator [Badeau
et al., 1997], which selects two route segments in distinct routes and then exchanges
them. A simple example is shown in Figure 6.1.

In the context of the PCSP, CE requires additional checks to maintain the validity of
the two routes, which additionally prunes the search tree. Following the classification
strategy, pickup stops that are declared polluted cannot be moved to clean routes. This
constraint is neither necessary nor justified when applying the stochastic strategy.

Pruning the Search Tree. In order to reduce the runtime of CE even further, Arnold
and Sörensen [2019] prune the search tree, to focus on the segments that most likely
offer improvements. Instead of considering all possible sub-routes, they only consider
those that start with a cross, meaning that the sum of the distances to the first pickup

1http://webhotel4.ruc.dk/keld/research/LKH/
2http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/tsp95.pdf
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stop in each sequence must be shorter when swapped than in the initial routes. More
precisely, assuming routes Rd

1, Rd
2, and p1, p′

1 as the stops that the sub-routes start with.
Furthermore, let the initial edges be (p0, p1) and (p′

0, p′
1), then it is a cross, if and

only if the objective decreases with respect to the new edges (p0, p′
1), (p′

0, p1) and the
reassignment of the starting nodes.
Applying this to the classification strategy, there are two cases that we consider:

• ι̂(Rd
1) = ι̂(Rd

2):
Both routes are clean or polluted. Clearly, the recycled volume does not change.

• ι̂(Rd
1) ̸= ι̂(Rd

2):
W.l.o.g., let ι̂(Rd

1) = 0. Then, p1 is clean as it could not be in a clean route
otherwise. Likewise, p′

1 must be clean, otherwise we could not reschedule it to Rd
1.

Thus, the recycled volume does not change.

Therefore, following the classification strategy, it is enough to consider the distances
when searching for a cross. Formally, the above situation is a cross exactly if:

δ(lp0 , lp1) + δ(lp′
0
, lp′

1
) ≥ δ(lp0 , lp′

1
) + δ(lp′

0
, lp1)

In the stochastic strategy, we cannot make this simplification. We have to evaluate the
following inequality, which is essentially the objective function evaluated on the proposed
swap of p1 and p′

1 while ignoring the unchanged sub-routes.

δ(lp0 , lp1) + δ(lp′
0
, lp′

1
) · ϵcollect

+ (ι̂stoch(Rd
1) · |Rd

1| + ι̂stoch(Rd
2) · |Rd

2|) · ϵdispose

≥
δ(lp0 , lp′

1
) + δ(lp′

0
, lp1) · ϵcollect

+ (ι̂stoch(Rd
1\{p1} ∪ {p′

1}) · |Rd
1| + ι̂stoch(Rd

2\{p′
1} ∪ {p1}) · |Rd

2|) · ϵdispose

After finding a valid start to a CE move, the next step is evaluating which sub-route
lengths are optimal, and assess the total impact of the CE on the objective value. Since
the previous simplifications do not apply, all possible lengths up to the end of the routes
are assessed directly using the objective function. However, as this evaluation occurs
only when a cross is found, we expect its effect on runtime to be limited.

Relocation Chain. Additionally to CE, Arnold and Sörensen [2019] apply the
relocation chain operator for inter-route optimization because it affects more than two
routes, unlike CE, extending the combined neighborhood size considerably. However,
we observed that our data almost always contains only two routes because the capacity
of two vehicles is sufficient. In the case of only two routes, CE includes the complete
relocation chain neighborhood, and would therefore result in increased runtime with no
expected improvements.
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Figure 6.1: Example of a CROSS-exchange move. The route segments in red are swapped,
potentially improving the solution.

6.2.3 Escaping Local Optima
Even with diverse and large neighborhood structures, getting stuck at local optima is
generally not avoidable. There are different strategies for escaping local optima, including
tabu search, destroy & repair and (knowledge-) guided local search. The latter is used
by Arnold and Sörensen [2019], which we considered as well. However, knowledge guided
local search does require domain-specific knowledge. In particular, more research is needed
to determine if the characteristics of a good VRP route as observed by Arnold et al.
translate to PCSP routes. They furthermore state that they observed less improvement
from guided local search compared to the benefits of a more diverse set of neighborhood
structures. Therefore, we decided to apply the simpler simulated annealing [Kirkpatrick
et al., 1983] technique, because it is an established meta-approach for escaping local
optima, that can be expected to work for the PCSP.
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CHAPTER 7
Evaluation

In this chapter, we explain the evaluation procedure of the developed approaches, including
an introduction of the dataset and the hardware used, and explain our choices for various
coefficients and parameters. Following this, we present and analyze the results of the
computational study performed on the prototype.

7.1 OSW Collection Dataset
We assess a real-world OSW collection dataset that was first introduced in Section 1.1
and then cleaned and enriched in the preprocessing step detailed in Section 3.2.

After preprocessing the dataset contains a total of 54 795 reports with 27 758 unique
locations in both urban and rural areas over a period of five months, from January until
May 2023. That is 148 days, including weekends. During preprocessing, we clustered the
locations s.t. all reports were assigned to 2776 pickup stops, each with a unique location.
Additionally, there are the waste drop-off location and the base station, both being
located close to the center of all reports. As can be seen in Figure 7.1, the reports occur
mostly from Monday through Friday, but occasionally, data was recorded on Saturdays
and Sundays, too. With 2778 locations in total, there are 7 714 506 distinct-location
tuples, for which we enriched distances in the preprocessing step, and subsequently saved
them in the KG.

We take inspiration from the common 80/20 split and choose January through April as
training data, with May remaining for testing. As the data is not perfectly uniform over
the whole period, the actual split of the reports is closer to 75/25. An important statistic
for the pollution prediction task is the number of past data points for each pickup stop
that we need to schedule. As shown in Figure 7.2, many pickup stops have little to no
previous collection history, which constitutes a key challenge in the pollution prediction
task. This is also relevant because it helps to establish context for the interpretation of
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Figure 7.1: Statistics on the number of pickup stops by day of the week

the results. Notably, there are also some pickup stops that have a very high number of
past collection events. This is unexpected, but we attribute it to artifacts of the data
collection method. In particular, images were recorded even when the truck was not
actively collecting waste. That means if the truck passes the same location many times
on the way to other pickup stops, then reports pile up for that location.

Another possible challenge becomes obvious when observing the contribution of each
pollution type to the total pollution per day (Figure 7.3). Apart from the clear importance
of plastic foil, we observe high fluctuations in the total amount of pollution, even when
accounting for weekly seasonal patterns. Furthermore, the respective significance of
pollution types is less consistent than anticipated. For example, plastic bags contributed
approximately a third of the pollution in January and the first two weeks of February,
but only negligible amounts after that. Moreover, from 32 pollution types that we
distinguish, 27 are observed only occasionally and do not significantly contribute to the
total pollution.

7.2 Setup
The computational study was conducted in Docker 1 containers on a system equipped
with the following specifications:

• CPUs: Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz

• GPUs: Nvidia RTX A5000
1https://www.docker.com/
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Figure 7.2: Distribution of the number of past collection events of all pickup stops being
scheduled in May

Figure 7.3: Absolute contribution of pollution types to total daily pollution. The
total pollution for day d is ∑︁

p∈P β(p, d), and the individual contribution is computed
analogously with β accounting for only that pollution type.
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• Memory: 1008 GiB

• Docker Version: 24.0.4

• Docker Image: node:16-alpine

7.3 Prototype
The prototype components have vastly different requirements, motivating a programming
language-agnostic approach and used multiple programming languages. Memgraph 2 and
its implementation of the query language Cypher was used to construct the knowledge
graph based on the developed ontology. The KG was then populated with entities,
relationships, and attributes from the given data made available in a MongoDB 3

database. The stochastic models were implemented in a Python application and for
the Bayesian models, the probabilistic programming language Pyro 4 was used. For the
KGEs‚ we used the package PyKEEN 5. Finally, the routing algorithms were developed
as a Node.js 6 application, written in TypeScript. Despite some performance trade-offs,
this choice offered high-level development, good integration with supporting projects,
and many libraries. We provide the code for the prototype in a Github repository 7.

7.4 Aims of the Evaluation
We evaluate the proposed system in three stages: Pollution Prediction, Tour Optimization,
and their integration into the Pre-Collection Sorting Problem. First, the evaluation
examines the ability of the pollution prediction models to accurately capture the patterns
in pollution data to derive predictions. Next, it evaluates the effectiveness of the tour
optimization algorithms by assuming that the predictions are correct. The objective of
route optimization is to compute routes that balance emissions from transportation with
those of waste landfilling or incineration. Finally, the evaluation looks at how well the
framework integrates both pollution prediction and route optimization by observing the
actual pollution caused by the scheduled routes.

7.4.1 Emission Coefficients
In the objective function (see Equation (3.10)) there are coefficients ϵcollect and ϵdispose.
These can be understood as non-normalized weights whose ratio determine the importance
of recycling in relation to the distance traveled. We could normalize the coefficients,
since the absolute values are irrelevant for decision-making. However, we retain them

2https://memgraph.com
3https://www.mongodb.com
4https://pyro.ai/
5https://pykeen.readthedocs.io/en
6https://nodejs.org/en
7https://github.com/kglab-tuwien/waste-project
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for interpretability, as they transform an abstract weighted sum into a GHG emission
estimate measured in grams of CO2e.

While our goal is to evaluate multiple ratios to demonstrate a broad spectrum of
applications, we also want to highlight results based on realistic, real-world-inspired
emission coefficients. To achieve this, we make the following assumptions:

Waste per pickup stop. We assume 240 liters of waste per pickup stop, which is the
most common size for households in Austria. Arguably, this is too small for industrial
clients. However, the assumption is reasonable in the context of this evaluation, because
it is the most often used size and we assume homogeneous bins. The density of organic
solid waste is around 0.1-0.4 kg/l depending on the composition and bin size. Larger
waste volumes result in greater compression, as the weight of the accumulated waste
compacts the material below. For example, Volkshochschulen [2023] estimates about
0.2 kg/l for 240 l OSW bins. In Lower Austria, Hannauer [2014] observed 0.15 kg/l on
average in smaller cities and rural areas. Since this setting is close to the actual data,
this is the density we assume. For 240 l bins, the expected waste is then 240 l ∗ 0.15 kg/l
= 36 kg OSW per bin.

Disposal emissions. Lastly, we have to put a number on the emissions caused by
polluted waste, whether that is generated by landfilling, burning the waste, or the
emissions of separating the pollutant, if possible. Since there are many factors in this
calculation, we have to make some assumptions. First, we assume that the waste is
deposited in a landfill. It is quite difficult to put a number on the cost of separation
because it depends strongly on the type and amount of pollutant, and published estimates
on emissions caused by waste separation are hard to come by. A recent study about
the GHG emissions of different means of processing by Nordahl et al. [2020] found that
disposing via landfill is a very emission-intensive option with 400 gCO2e/kg, and that is
with a functioning gas capture system in place. Furthermore, they report that composting,
i.e., recycling the organic waste led to negative emissions of -41 gCO2e/kg, calculated
based on credits for replacing conventional products that emit GHG such as inorganic
fertilizers. This gives us a total estimate of 441 gCO2e/kg that are emitted when the
OSW is put in a landfill instead of recycled.

Transport emissions. To compare and evaluate tour distance and unrecycled waste
we convert both to the expected GHG emissions measured in CO2e. For the distance to
emission calculation, we refer to a publication of the Austrian Umweltbundesamt [Austria,
2022], which puts the total emissions of a diesel truck under 18 tons at 608.7 gCO2e/km.
However, this includes any indirect emissions. For example, it includes replacing trucks
after their expected lifetime, repair work, and maintenance. Since those are largely fixed
costs independent of the distance driven, we use the direct emissions estimated to be
469.9 gCO2e/km instead.
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Putting it all together, our estimates for the emissions per bin are ϵdispose = 441*36 =
15 876 gCO2e/kg, the emissions emitted by transport for the collection are ϵcollect =
0.4699 gCO2e/m and a realistic ratio of both is then ϵdispose

ϵcollect
= 33 786 m/bin. This also

helps us with the interpretation, because for every additional bin that we expect to be
able to recycle, we allow for an additional 33.8 km travel distance.

7.5 Procedure
In order to establish a baseline for the evaluation, we construct a status quo solution
by extracting routes from the raw data. Since there is a timestamp and location for
every tour stop, a route can be built by iteratively adding pickup stops to the route in
chronological order. A necessary assumption due to the data collection method is that
only the first occurrence of any pickup stop is relevant for the route construction. In the
real data, there are multiple occurrences that we attribute to either inefficient routing or
the need to drive past a previous pickup stop, without intent of collecting waste from
that stop.

7.6 Pollution Prediction
In this section, we discuss the evaluation procedure and results of the pollution prediction
task for both, the statistical and latent knowledge-based classification and stochastic
modeling of pollution.

7.6.1 Statistical and Latent Knowledge-Based Classification
Following are the results from the first strategy for the pollution prediction task, in which
we aim to classify future pickup collection events as either polluted or clean, as outlined
in Section 5.1.

Hyper Parameter Optimization

The hyper-parameter optimization for the KGE models TransE, PairRE, and TuckER
was done using PyKEEN’s pipeline with early stopping enabled. We continued the
optimization until the hyper-parameters converged and no improvement was observable
for at least 100 iterations. About 1000 iterations turned out to be sufficient for all models,
with TransE and PairRE converging rather quickly and TuckER showing improvement
up to about 800 iterations. The resulting hyper-parameters can be found in Table 7.1.

Results

Even though the strategy is primarily about pollution classification, the prediction first
computes the pollution estimate and then compares it to the threshold to derive a
classification. This motivates a mean absolute error (MAE) and mean squared error
(MSE) evaluation based on pollution predictions because it is more fine-grained than
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Table 7.1: Hyper-parameters for PyKEEN models

Hyper-parameter TransE PairRE TuckER
Model Embedding Dimension 80 256 224

Relation Dimension N/A N/A 16
Dropout N/A N/A 0.2, 0.0, 0.1
Scoring Function Norm 1 N/A N/A
Vector Norm N/A 1 N/A

Loss Margin 2.815 9 N/A
Adversarial Temperature N/A 0.970 N/A

Optimizer Learning Rate 0.00805 0.06566 0.0013
Negative Sampler Ratio N/P 86 29 12
Training Epochs 100 400 500

Batch Size 4096 2048 219

Figure 7.4: Prediction error (MAE, MSE) of statistical measures and KGE models

comparing true and false classification. Since KGEs are nondeterministic, we collect
results over 10 runs and visualize the distribution of the respective results in a boxplot.
Results from the KGE models and basic statistical measures are compared in Figure 7.4.

There are two unexpected outcomes: First, the results from the KGE models under-
perform, and have a higher error than the naive statistical measures in almost all runs.
Second, the runs have much more variance than expected. Both outcomes could be
explained by the KGE shortcomings detailed in Section 5.1.2. Another possible reason is
that the structure of the ontology is not optimal for solving this specific task with KGEs,
because edge and node properties are not embedded in the ontology structure. There is
also a high amount of noise in the data, to the degree that even the best measure has a
mean absolute error close to half of the pollution threshold itself.

The MSE and MAE show a similar picture, meaning the variance in error is comparable
in all models. When comparing the average over past reports β̂avg with the average over
the daily mean β̂avgday, we observe that the latter has a lower error. Among the KGE
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models, TuckER and PairRE have a slightly smaller median MSE compared to TransE,
but due to the broad variance in runs, no model consistently outperforms the others.
Overall, β̂avgday has the lowest MAE and MSE, is deterministic, is efficiently computable,
and is therefore our prediction model of choice for the remaining evaluation.

7.6.2 Stochastic Modeling of Pollution
This section presents the results of the second strategy for the pollution prediction
task. This approach models the pollution of future pickup collection events as stochastic
processes specific to each pickup stop, as detailed in Section 5.2.

An intuitive evaluation metric for a distribution and a set of observations is the likelihood.
It computes the joint probability of the observations given the parameterized distribution.
For continuous distributions, the PDF is evaluated, thus returning probability density in
the interval [0, ∞).

In this setting, we have a distribution per pickup stop, each with a separate set of
observations, i.e., observed pollution in the test data. We evaluate two metrics, that
combine the individual likelihoods differently: (1) the Average Likelihood computes the
average over all observations, and (2) the Normalized Likelihood, which gives equal weight
to each distribution, regardless of the number of observations. The formulas for these
metrics are in Equations (7.1) and (7.2).

Average Likelihood = 1
N

∑︂
p∈P ′

np∑︂
i=1

fp(β(p, di) | Θp) (7.1)

Normalized Likelihood = 1
|P ′|

P ′∑︂
j=1

1
np

np∑︂
i=1

fp(β(p, di) | Θp) (7.2)

where:

• P ′ are the pickup stops scheduled in the future

• np is the number of data points for the pickup stop p

• fp(β(p, d) | Θp) is the probability density function (PDF) of the distribution
associated with a pickup stop p, evaluated on the observed pollution β(p, d)

• Θp are the parameters of the distribution

• N = ∑︁
p∈P ′ np is the total number of observations across all distributions

The results can be seen in Table 7.2. In both metrics, the Student’s t-distribution
and Bayesian mixture model outperform the normal distributions in Bayesian and
classical statistics variants. Specifically, the Student’s t-distribution achieves the highest

58



7.7. Tour Optimization Results

Table 7.2: Stochastic pollution models: Average and Normalized Likelihood, higher is
better

Normal Student’s t Bayesian Normal Bayesian Mixture
Average Likelihood 0.983 3.013 2.054 2.795
Normalized Likelihood 1.051 1.791 1.627 1.727

average likelihood, indicating its superior ability to fit the data when considering the
overall likelihood across all observations. Similarly, the Bayesian mixture model shows
competitive performance, particularly in the normalized likelihood metric. The classical
normal distribution performs by far the worst, suggesting that our other models effectively
mitigate the overconfidence that we predicted for the normal distribution. However,
there is a clear cost to both the Student’s t-distribution and the Bayesian mixture model,
namely that no analytic solution exists for convolutions. As described in Section 5.2,
there are methods for computing convolutions even if there is no analytic solution, but
that necessarily increases the runtime.

7.7 Tour Optimization Results
In Table 7.3, we evaluate the tour optimization task with different values for the emission
coefficient ratio between 0 and 1.00e6 to investigate a broad range of emission scenarios,
with 3.38e4 corresponding to the realistic scenario laid out in Section 7.4.1. For each
ratio, we consider four solutions: The first is the status quo solution extracted from
the real-world data, serving as a baseline. Next, we compare results from the GREEDY
algorithm that optimizes the objective function with a classification strategy based on
the pollution approximation β̂avgday. The third and fourth solutions are derived using
the LS algorithm that iteratively improves the GREEDY solution. The third and fourth
solutions differ in the objective function, with the former using the same classification
approach, while the latter applying the stochastic strategy based on the Bayesian normal
distribution model. The results are ambiguous for that same reason. The stochastic local
search solutions consistently produce the shortest routes. The predicted disposed bins
are also far lower than for both solutions based on the classification strategy, but that
can be attributed to the different pollution prediction technique. Overall, the status quo
is by far the worst in all scenarios, in both the number of disposed bins and the driven
distance. Generally speaking, the higher the ratio of emission coefficients, the more focus
is on recycling over the total route length, which is also reflected in the results.

7.8 PCSP Results
Finally, we assess the PCSP end-to-end by computing the actual pollution of the routes,
with which we get ι(Rd

v) and evaluate the objective function f(S) of solutions introduced
in the last section. This effectively measures how well the prediction strategy and tour
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Table 7.3: VRP results: Summary of recycling efficiency and sustainability metrics based
on predicted pollution

Algorithm Strategy ϵdispose
ϵcollect

Predicted Emissions [CO2e] Distance Disposal Runtime
f̂ Collection Disposal [m] [stops] [min]

A STATUS QUO 0 6.90e+9 6.90e+9 0.00e+0 1.47e+7 15855 -
GREEDY Class., β̂avgday 0 1.46e+9 1.46e+9 0.00e+0 3.10e+6 3971 15.79
LS Class., β̂avgday 0 1.24e+9 1.24e+9 0.00e+0 2.64e+6 3971 63.15
LS Stoch., B. Normal Dist. 0 1.47e+9 1.47e+9 0.00e+0 3.14e+6 795 151.92
A STATUS QUO 250 8.76e+9 6.90e+9 1.86e+9 1.47e+7 15855 -
GREEDY Class., β̂avgday 250 2.56e+9 2.36e+9 1.94e+8 5.03e+6 1652 15.94
LS Class., β̂avgday 250 2.31e+9 2.11e+9 1.95e+8 4.50e+6 1663 46.80
LS Stoch., B. Normal Dist. 250 1.45e+9 1.37e+9 7.45e+7 2.92e+6 634 218.82
A STATUS QUO 500 1.06e+10 6.90e+9 3.73e+9 1.47e+7 15855 -
GREEDY Class., β̂avgday 500 2.74e+9 2.39e+9 3.54e+8 5.08e+6 1507 15.93
LS Class., β̂avgday 500 2.49e+9 2.13e+9 3.55e+8 4.54e+6 1513 50.60
LS Stoch., B. Normal Dist. 500 1.53e+9 1.40e+9 1.30e+8 2.98e+6 552 224.64
A STATUS QUO 750 1.25e+10 6.90e+9 5.59e+9 1.47e+7 15855 -
GREEDY Class., β̂avgday 750 2.92e+9 2.40e+9 5.17e+8 5.10e+6 1468 16.00
LS Class., β̂avgday 750 2.69e+9 2.18e+9 5.18e+8 4.63e+6 1470 51.88
LS Stoch., B. Normal Dist. 750 1.56e+9 1.39e+9 1.64e+8 2.97e+6 465 299.99
A STATUS QUO 1000 1.44e+10 6.90e+9 7.45e+9 1.47e+7 15855 -
GREEDY Class., β̂avgday 1000 3.09e+9 2.41e+9 6.83e+8 5.12e+6 1453 16.04
LS Class., β̂avgday 1000 3.00e+9 2.31e+9 6.83e+8 4.92e+6 1453 52.54
LS Stoch., B. Normal Dist. 1000 1.63e+9 1.39e+9 2.36e+8 2.96e+6 502 117.19
A STATUS QUO 1500 1.81e+10 6.90e+9 1.12e+10 1.47e+7 15855 -
GREEDY Class., β̂avgday 1500 3.43e+9 2.42e+9 1.01e+9 5.14e+6 1438 15.80
LS Class., β̂avgday 1500 3.36e+9 2.34e+9 1.01e+9 4.99e+6 1438 50.34
LS Stoch., B. Normal Dist. 1500 1.73e+9 1.39e+9 3.41e+8 2.96e+6 484 231.40
A STATUS QUO 2179 2.31e+10 6.90e+9 1.62e+10 1.47e+7 15855 -
GREEDY Class., β̂avgday 2179 3.89e+9 2.42e+9 1.46e+9 5.16e+6 1427 15.87
LS Class., β̂avgday 2179 3.76e+9 2.30e+9 1.46e+9 4.88e+6 1427 47.10
LS Stoch., B. Normal Dist. 2179 1.91e+9 1.43e+9 4.85e+8 3.04e+6 474 141.61
A STATUS QUO 4358 3.94e+10 6.90e+9 3.25e+10 1.47e+7 15855 -
GREEDY Class., β̂avgday 4358 5.34e+9 2.45e+9 2.90e+9 5.21e+6 1414 15.91
LS Class., β̂avgday 4358 5.21e+9 2.31e+9 2.90e+9 4.92e+6 1414 51.07
LS Stoch., B. Normal Dist. 4358 2.29e+9 1.45e+9 8.40e+8 3.09e+6 410 314.67
A STATUS QUO 6538 5.56e+10 6.90e+9 4.87e+10 1.47e+7 15855 -
GREEDY Class., β̂avgday 6538 6.79e+9 2.45e+9 4.34e+9 5.21e+6 1413 15.83
LS Class., β̂avgday 6538 6.78e+9 2.43e+9 4.34e+9 5.18e+6 1413 51.20
LS Stoch., B. Normal Dist. 6538 2.71e+9 1.48e+9 1.23e+9 3.14e+6 401 340.74
A STATUS QUO 33786 2.59e+11 6.90e+9 2.52e+11 1.47e+7 15855 -
GREEDY Class., β̂avgday 33786 2.49e+10 2.46e+9 2.24e+10 5.23e+6 1411 15.73
LS Class., β̂avgday 33786 2.48e+10 2.41e+9 2.24e+10 5.13e+6 1411 49.57
LS Stoch., B. Normal Dist. 33786 7.74e+9 1.66e+9 6.08e+9 3.54e+6 383 127.63
A STATUS QUO 1.00e+6 7.46e+12 6.90e+9 7.45e+12 1.47e+7 15855 -
GREEDY Class., β̂avgday 1.00e+6 6.65e+11 2.46e+9 6.63e+11 5.23e+6 1411 15.88
LS Class., β̂avgday 1.00e+6 6.65e+11 2.41e+9 6.63e+11 5.13e+6 1411 51.25
LS Stoch., B. Normal Dist. 1.00e+6 2.57e+11 1.74e+9 2.55e+11 3.71e+6 543 89.99

optimization work in conjunction and allows for a realistic emission comparison of all
solutions. The results are shown in Table 7.4.

An interesting aspect of the results is that the higher emission ratios do not always result
in fewer disposed bins. This highlights that the employed methods are still heuristics and
approximations. Interestingly, this limitation occurs in both the classical and stochastic
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7.8. PCSP Results

strategies, which implies that the data itself may also have less predictive qualities, i.e.,
observable patterns, than we initially expected.

Even so, all proposed methods dramatically outperform the status quo solution, especially
when it comes to the number of disposed bins. This highlights the effectiveness of the
solutions overall. Moreover, the stochastic local search consistently stands out, delivering
the best results in both travel distance and the number of disposed bins.

61



7. Evaluation

Table 7.4: PCSP results: Summary of recycling efficiency and sustainability metrics
based on actual pollution

Algorithm Strategy ϵdispose
ϵcollect

Emissions [CO2e] Distance Disposal Runtime
f Collection Disposal [m] [stops] [min]

A STATUS QUO 0 6.90e+9 6.90e+9 0.00e+0 1.47e+7 5870 -
GREEDY Class., β̂avgday 0 1.46e+9 1.46e+9 0.00e+0 3.10e+6 1848 15.79
LS Class., β̂avgday 0 1.24e+9 1.24e+9 0.00e+0 2.64e+6 1848 63.15
LS Stoch., B. Normal Dist. 0 1.47e+9 1.47e+9 0.00e+0 3.14e+6 1848 151.92
A STATUS QUO 250 7.59e+9 6.90e+9 6.90e+8 1.47e+7 5870 -
GREEDY Class., β̂avgday 250 2.54e+9 2.36e+9 1.80e+8 5.03e+6 1534 15.94
LS Class., β̂avgday 250 2.29e+9 2.11e+9 1.80e+8 4.50e+6 1534 46.80
LS Stoch., B. Normal Dist. 250 1.54e+9 1.37e+9 1.65e+8 2.92e+6 1405 218.82
A STATUS QUO 500 8.28e+9 6.90e+9 1.38e+9 1.47e+7 5870 -
GREEDY Class., β̂avgday 500 2.79e+9 2.39e+9 4.07e+8 5.08e+6 1731 15.93
LS Class., β̂avgday 500 2.54e+9 2.13e+9 4.07e+8 4.54e+6 1731 50.60
LS Stoch., B. Normal Dist. 500 1.73e+9 1.40e+9 3.28e+8 2.98e+6 1396 224.64
A STATUS QUO 750 8.97e+9 6.90e+9 2.07e+9 1.47e+7 5870 -
GREEDY Class., β̂avgday 750 3.01e+9 2.40e+9 6.10e+8 5.10e+6 1730 16.00
LS Class., β̂avgday 750 2.78e+9 2.18e+9 6.10e+8 4.63e+6 1730 51.88
LS Stoch., B. Normal Dist. 750 1.90e+9 1.39e+9 5.04e+8 2.97e+6 1431 299.99
A STATUS QUO 1000 9.66e+9 6.90e+9 2.76e+9 1.47e+7 5870 -
GREEDY Class., β̂avgday 1000 3.22e+9 2.41e+9 8.12e+8 5.12e+6 1729 16.04
LS Class., β̂avgday 1000 3.13e+9 2.31e+9 8.12e+8 4.92e+6 1729 52.54
LS Stoch., B. Normal Dist. 1000 2.11e+9 1.39e+9 7.22e+8 2.96e+6 1536 117.19
A STATUS QUO 1500 1.10e+10 6.90e+9 4.14e+9 1.47e+7 5870 -
GREEDY Class., β̂avgday 1500 3.64e+9 2.42e+9 1.22e+9 5.14e+6 1729 15.80
LS Class., β̂avgday 1500 3.56e+9 2.34e+9 1.22e+9 4.99e+6 1729 50.34
LS Stoch., B. Normal Dist. 1500 2.48e+9 1.39e+9 1.08e+9 2.96e+6 1539 231.40
A STATUS QUO 2179 1.29e+10 6.90e+9 6.01e+9 1.47e+7 5870 -
GREEDY Class., β̂avgday 2179 4.19e+9 2.42e+9 1.77e+9 5.16e+6 1728 15.87
LS Class., β̂avgday 2179 4.06e+9 2.30e+9 1.77e+9 4.88e+6 1728 47.10
LS Stoch., B. Normal Dist. 2179 2.89e+9 1.43e+9 1.47e+9 3.04e+6 1431 141.61
A STATUS QUO 4358 1.89e+10 6.90e+9 1.20e+10 1.47e+7 5870 -
GREEDY Class., β̂avgday 4358 5.98e+9 2.45e+9 3.54e+9 5.21e+6 1727 15.91
LS Class., β̂avgday 4358 5.85e+9 2.31e+9 3.54e+9 4.92e+6 1727 51.07
LS Stoch., B. Normal Dist. 4358 4.25e+9 1.45e+9 2.80e+9 3.09e+6 1367 314.67
A STATUS QUO 6538 2.49e+10 6.90e+9 1.80e+10 1.47e+7 5870 -
GREEDY Class., β̂avgday 6538 7.75e+9 2.45e+9 5.31e+9 5.21e+6 1727 15.83
LS Class., β̂avgday 6538 7.74e+9 2.43e+9 5.31e+9 5.18e+6 1727 51.20
LS Stoch., B. Normal Dist. 6538 6.39e+9 1.48e+9 4.91e+9 3.14e+6 1599 340.74
A STATUS QUO 33786 1.00e+11 6.90e+9 9.32e+10 1.47e+7 5870 -
GREEDY Class., β̂avgday 33786 2.99e+10 2.46e+9 2.74e+10 5.23e+6 1727 15.73
LS Class., β̂avgday 33786 2.98e+10 2.41e+9 2.74e+10 5.13e+6 1727 49.57
LS Stoch., B. Normal Dist. 33786 2.66e+10 1.66e+9 2.49e+10 3.54e+6 1570 127.63
A STATUS QUO 1.00e+6 2.77e+12 6.90e+9 2.76e+12 1.47e+7 5870 -
GREEDY Class., β̂avgday 1.00e+6 8.14e+11 2.46e+9 8.12e+11 5.23e+6 1727 15.88
LS Class., β̂avgday 1.00e+6 8.14e+11 2.41e+9 8.12e+11 5.13e+6 1727 51.25
LS Stoch., B. Normal Dist. 1.00e+6 7.20e+11 1.74e+9 7.18e+11 3.71e+6 1529 89.99
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CHAPTER 8
Conclusion

In this final chapter, we briefly summarize the thesis and then recapitulate how we
answered the research questions. Finally, we give an outlook on potential future research
directions and opportunities for extending the presented work.

8.1 Contributions of This Work
Contaminated waste is a problem in organic solid waste recycling, often leading to
increased greenhouse gas emissions and disposal of resources that could otherwise have
been recycled. To mitigate these issues, we proposed sorting the collection stops in advance
based on historical pollution data, to separate polluted from clean waste. Our solution
integrates predictive pollution modeling, tour optimization algorithms, and a knowledge
graph-based framework tailored to the Pre-Collection Sorting Problem (PCSP). For the
pollution prediction task, we applied statistical methods, knowledge graph embedding
models, and stochastic models from both classical statistics and Bayesian statistics. We
further proposed a greedy heuristic and an extensive local search algorithm for PCSP
tour optimization.

Evaluated on six months of real-world data across 11 emission scenarios, our methods
demonstrated a considerable reduction in disposed waste volume and emissions, achieving
up to two-thirds improvement compared to status quo routes extracted from the data.
These results show the practical impact of our approach as a contribution to the field of
waste management and, more generally, efforts to transition to a circular economy.

Following, we recapitulate on the research questions and how they were addressed by
this thesis.

Research Question 1. What is a suitable ontology for the domain of organic
solid waste collection that supports pollution prediction and subsequent efficient tour
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optimization?

In order to store data in different stages of the process, we proposed a layered ontology,
containing a layer for raw data, one for preprocessed data, and multiple layers for
algorithm-specific results. Each layer had different objectives, but as a general statement,
we focused on a clear separation of concerns and query efficiency. For more insights into
the individual layers, we refer the reader to Chapter 4.

Research Question 2. How can optimization algorithms be applied to waste
collection tours to minimize operational costs and environmental impact while ensuring
efficient separation of clean and contaminated waste?

We explored this question in three stages, first, we formalized the problem to establish a
structure for further work in Chapter 3. There we also defined an objective function that
contained components that are unknown at the time of route optimization. These com-
ponents describe future pollution, which led us to propose two approximation strategies
with numerous techniques in Chapter 5. Then, in Chapter 6, we explored algorithms for
route optimization, backed up by SOTA vehicle routing problem literature.

Research Question 3. How can the effectiveness and efficiency of sustainable
reasoning methodologies in waste collection optimization be evaluated, and what are
appropriate metrics in this evaluation framework?

In Chapter 7, we designed and applied a framework for evaluating the proposed methods,
including knowledge graph-based techniques. In short, we assessed the solution compo-
nents separately and collectively, measuring prediction accuracy, route efficiency, and
environmental impact.

8.2 Outlook
As this particular problem has, to the best of our knowledge, not been investigated in
detail yet, there are numerous directions future work could follow. The following list
provides some relevant options:

• We tested the proposed methods on one data set only and observed a high amount
of noise. We attributed this at least partially to the required preprocessing, which
could be reduced with either a different data collection method or artificial data.

• As shown in Figure 7.2, there is a considerable amount of pickup stops with only a
few or no past reports that can be used for the predictions. A promising adaptation
could involve sampling reports from the neighboring pickup stops.

• The knowledge graph embedding models may benefit from a differently structured
ontology, that encodes relevant node and edge attributes such as the date of the
report in the graph structure.
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• Our selection of pollution prediction techniques is by no means extensive. Countless
methods for this task remain, e.g., graph neural networks and various regression
techniques.

• As vehicle routing is in general by no means static, e.g. due to traffic jams, another
research direction could explore the adaptability of existing solutions to unexpected
real-time changes.
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Overview of Generative AI Tools
Used

I used AI tools for feedback on this thesis, to improve the structure and formulations,
and find potential issues with semantics and citations.

• Prompt: “In the following you find a master thesis. Please check the thesis for
structural or semantic issues. Also regarding citations. Also, if you find really bad
English formulations, please report it. Please provide detailed suggestions for each
section.”

• I additionally provided iterations of this master thesis as PDF documents.

• ChatGPT, model version GPT-4o, OpenAI, https://chatgpt.com/
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