
Skylark: Stateful Serverless
Functions for the

Edge-Cloud-Space 3D-Continuum

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Leonard Guelmino, BSc.
Registration Number 01503940

to the Faculty of Informatics

at the TU Wien

Advisor: Asst. Prof. Dr. Stefan Nastic
Assistance: Dipl.-Ing. Cynthia Marcelino

Vienna, March 11, 2025
Leonard Guelmino Stefan Nastic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Skylark: Stateful Serverless
Functions für das

Edge-Cloud-Space 3D-Kontinuum

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Leonard Guelmino, BSc.
Matrikelnummer 01503940

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Asst. Prof. Dr. Stefan Nastic
Mitwirkung: Dipl.-Ing. Cynthia Marcelino

Wien, 11. März 2025
Leonard Guelmino Stefan Nastic

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Declaration of Authorship

Leonard Guelmino, BSc.

I hereby declare that I have written this thesis independently, that I have completely
specified the utilized sources and resources and that I have definitely marked all parts of
the work - including tables, maps and figures - which belong to other works or to the
internet, literally or extracted, by referencing the source as borrowed.
I further declare that I have used generative AI tools only as an aid, and that my own
intellectual and creative efforts predominate in this work. In the appendix “Overview of
Generative AI Tools Used” I have listed all generative AI tools that were used in the
creation of this work, and indicated where in the work they were used. If whole passages
of text were used without substantial changes, I have indicated the input (prompts) I
formulated and the IT application used with its product name and version number/date.

Vienna, March 11, 2025
Leonard Guelmino

v

Acknowledgements

First, I’d like to thank Assistant Prof. Dr. Stefan Nastic for the opportunity to develop
this thesis. Special thanks to Dipl.-Ing Cynthia Marcelino for your consistent and valuable
guidance and feedback throughout the process.

I also want to thank my partner, friends, and family for their continuous support in my
educational journey.

Thank you, Rózsika, for helping me develop the part of my character I’m most proud of.
You’ve been a better grandmother than I could ever have wished for. Although you left
us far too early, a part of you continues to live on through me. I promise to cultivate
this part and spread its seeds until the end of my days.

vii

Kurzfassung

Serverlose Funktionen ermöglichen es Entwicklern, sich auf die Anwendungslogik zu
konzentrieren, während die Plattform die Infrastrukturverwaltung wie Laufzeitverwaltung
und Skalierung abstrahiert. In rein Cloud-basierten Umgebungen stützt sich dieser Ansatz
in der Regel auf zentralisierte Cloud-Speicher von Drittanbietern, was zu hohen Latenzen
führe kann. Darüber hinaus stammen die Daten, die als Funktionsinput verwendet werden,
oft von Sensoren am Netzwerkrand (Edge). Die Daten müssen daher große Entfernungen
zum Rechenzentrum überwinden, was die Netzwerkbelastung und Latenzen weiter erhöht.
Die Verlagerung der Funktionsausführungsumgebung in die Nähe der Datenquelle kann
dem entgegenwirken. Wenn LEO-Satelliten (Low Earth Orbit) in die Datenverarbeitungs-
struktur integriert werden und so ein Edge-Cloud-Space (3D)-Kontinuum bilden, wird die
Netzwerktopologie aufgrund der Orbitalbewegung der Satellitenknoten dynamisch. Edge-
Geräte in abgelegenen Gebieten wie dem Amazonas-Regenwald können LEO-Satelliten
nutzen, um dem Netzwerk beizutreten. Ständige Satellitenbewegungen und schwankende
Verbindungsqualitäten erschweren jedoch die Entscheidungen über die Datenplatzierung
für serverlose Anwendungen, die aus mehreren, voneinander abhängigen Funktionen
bestehen. Traditionelle, Cloud-zentrierte Serverless-Modelle sind für Serverless-Workflows,
die im heterogenen und dynamischen 3D-Kontinuum eingesetzt werden, nicht geeignet.

In dieser Arbeit wird Skylark vorgestellt, ein neuartiges serverloses Framework für das
3D-Kontinuum. Skylark bietet lokalen Speicher auf jedem Cluster-Knoten und führt
den Skylark Elect Service und Skylark SDK ein, um den datentransfer von voneinan-
der abhängigen Funktionen zu optimieren. Ein Netzwerktopologie- und SLO-bewusster
Datenübertragungsmechanismus wählt Nachfolgeknoten für die Speicherung des Funkti-
onsausgangszustands auf Grundlage der Netzwerktopologie und Funktionsverfügbarkeit
aus. Darüber hinaus verbessert ein Datenbündelungsmechanismus die Effizienz der Da-
tenverwaltung, indem er die Daten verkoppelter Funktionen als eine Einheit für Lese-
und Schreibeoperationen behandelt.

Wir evaluieren Skylark anhand eines serverlosen Workflows, der einen Anwendungsfall zur
Erkennung von Waldbränden modelliert, welcher die Verarbeitung von Bilddaten erfordert.
Unsere experimentellen Ergebnisse zeigen, dass Skylark im Vergleich zu herkömmlichen
Architekturen und eine auf Zufall basierende Datenplatzierungsstrategien die Latenz des
Workflows um bis zu 33% und die Lesezeit um bis zu 66% reduziert, während der Durchsatz
um bis zu 91% erhöhrt wird. Der Datenbündelungsmechanismus verringert die Latenz bei

ix

der Funktionsausführung um bis zu 24%, indem er die Anzahl von Speicheroperationen
minimiert. Diese Ergebnisse zeigen die Fähigkeit von Skylark, die Ausfürhungszeiten
von serverlosen Anwendungen im Edge-Cloud-Space-3D-Kontinuum zu verbessern, und
ebnen den Weg für effizientere und skalierbare serverlose Anwendungen in dynamischen,
heterogenen Umgebungen.

Abstract

Serverless functions enable developers to focus on application logic while the platform
abstracts infrastructure management, such as runtime and scaling. In purely cloud-based
environments, this approach typically relies on centralized, third-party cloud storage for
function state, which introduces latency and bandwidth overhead. Additionally, data used
as function input often originates at the network edge but must traverse large distances
to a remote data center, exacerbating these overheads. Moving the function execution
environment close to the data source (i.e., Edge computing) can ease latency and network
strain. When Low Earth Orbit (LEO) satellites are added to the computing fabric,
forming an Edge-Cloud-Space (3D) Continuum, the network topology becomes dynamic
due to the orbital movement of satellite nodes. Edge devices in remote areas such as the
Amazon rainforest can leverage LEO satellites to join the network. However, constant
satellite movement and fluctuating link qualities further complicate state placement
decisions for serverless applications comprised of multiple, interdependent functions.
Traditional, cloud-centric serverless models are ill-suited for serverless workflows deployed
in the heterogeneous and dynamic 3D Continuum.

This thesis introduces Skylark, a novel serverless framework designed for stateful serverless
computing in the 3D Continuum. The proposed architecture provides local storage on
each node and introduces the Skylark Elect Service and Skylark SDK to optimize
state management of function input and output state. Two novel mechanisms leverage
the architecture: i) a network topology- and SLO-aware state propagation mechanism,
responsible for Target Storage election for function output state, and ii) a state bundling
mechanism, responsible for enhancing state management efficiency by treating co-located
function state as a single unit for data retrieval and migration operations.

We evaluate Skylark through a serverless workflow modeling a wildfire detection use case
that requires image data processing. Our experimental results demonstrate that Skylark
reduces workflow latency by up to 33% and state retrieval time by up to 66% compared to
stateless architectures and random state placement strategies while increasing throughput
by up to 91%. The state bundling mechanism decreases function execution latency by up
to 24% by minimizing redundant storage operations. These findings highlight Skylark’s
ability to improve stateful serverless execution across the 3D Continuum, paving the
way for more efficient and scalable serverless applications in dynamic, heterogeneous
environments.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Illustrative Scenario . 2
1.3 Problem Statement . 3
1.4 Contributions . 4
1.5 Research Questions . 5
1.6 Methodology . 6
1.7 Structure . 7

2 Background 9
2.1 Edge-Cloud-Space (3D) Continuum . 9
2.2 Serverless Computing . 10

3 Related Work 13
3.1 Data Passing between Serverless Functions 13
3.2 Stateful Serverless Functions . 14
3.3 Function Co-Location and –Bundling 15

4 Skylark Serverless Workflow Model and Architecture Overview 17
4.1 Skylark Serverless Workflow Model . 17
4.2 Skylark Architecture . 21

5 Skylark Mechanisms 27
5.1 State Propagation Mechanism . 27
5.2 State Bundling Mechanism . 31

6 Prototype Implementation 35
6.1 Environment and Tech Stack . 35

xiii

6.2 Tools and Libraries . 37
6.3 GitHub Repository . 38
6.4 Challenges and Solutions . 39

7 Evaluation 41
7.1 General Experimental Setup . 41
7.2 Experiment: State Propagation Workflow Performance 44
7.3 Experiment: State Propagation Policy Scalability 48
7.4 Experiment: State Propagation Workflow Scalability 49
7.5 Experiment: State Bundling Performance 51
7.6 Threats to Validity . 53

8 Conclusion 55
8.1 Research Questions . 56
8.2 Future Work . 57

A Overview of Generative AI Tools Used 59
A.1 ChatGPT . 59
A.2 DeepL . 59
A.3 Gammarly . 59

List of Figures 61

List of Tables 63

List of Algorithms 65

Acronyms 67

Glossary 69

Bibliography 71

CHAPTER 1
Introduction

1.1 Motivation
The rapid evolution of distributed computing has given rise to more flexible and de-
centralized approaches beyond traditional cloud data centers. Edge computing pushes
processing and storage closer to where data originates, significantly reducing latency and
bandwidth usage [11, 32]. In parallel, there is growing interest in leveraging Low Earth
Orbit (LEO) satellites to extend computation capabilities beyond terrestrial systems,
creating an Edge-Cloud-Space (3D) Continuum [39]. The vision is to unite terrestrial
Edge nodes, cloud data centers, and satellites into a seamless computing fabric that
can host resource-intensive, latency-sensitive, and globally distributed applications [53,
35, 36]. Figure 1.1 illustrates the 3D Continuum, allowing computing nodes such as
terrestrial drones and Earth Observation (EO) satellites–previously excluded due to their
remote location–to join the network.

Satellites in Low Earth Orbit (LEO) move at speeds exceeding 27,000 km/h and orbit
roughly 500–600 km above the Earth’s surface. These satellites form a highly dynamic
network topology with frequently changing link qualities and intermittent connectivity
to ground stations due to their constant movement. Despite these challenges, modern
LEO constellations often include high-bandwidth Inter-Satellite Links (ISLs) and robust
data routing, making them increasingly attractive for real-time or near-real-time data
processing tasks [9], enabling use cases such as wildfire detection and floating algae
monitoring through meteorological EO imaging [55], task offloading from remote terrestrial
areas such as deserts, forests, and oceans [53], but also competitive gaming and augmented
reality over large distances [10].

In parallel with these developments, serverless computing has revolutionized how appli-
cations are deployed and managed. Function as a Service (FaaS) abstracts away server
administration by running event-driven functions in ephemeral containers. This approach

1

1. Introduction

Figure 1.1: Edge, Cloud, and Satellite computing layers in the 3D Continuum

features automatic scaling, including the ability to "scale to zero" and a pay-as-you-go
pricing model that charges only for execution time rather than idle uptime [29, 25, 51].
Popular implementations, such as AWS Lambda [46] or Azure Functions [31], relieve
developers of infrastructure management overhead, allowing them to focus on application
logic. However, integrating serverless computing across terrestrial and satellite nodes
introduces new challenges concerning how and where to manage and store function input
and output state. Functions rely on third-party services to fetch and store state [30, 7]
due to their stateless nature. Co-locating trusted functions (i.e., placing them into a
single, sandboxed runtime) relying on each other’s state reduces latency [28]. Stateless
functions can be composed into serverless workflows, forming larger applications that are
still loosely coupled and event-driven [15]. Ensuring that the function state is readily
accessible to downstream functions becomes increasingly complex in environments with
fluctuating connectivity, latency, resource constraints, and dynamic function readiness.

1.2 Illustrative Scenario
This thesis focuses on an example application highlighting the advantages and challenges
of a serverless architecture operating across the 3D Continuum. Consider a global
network of edge sensors collecting environmental image and video data that must be
processed in (near) real-time [4]. These sensors are deployed in remote regions, such as
drones in the Amazon rainforest and EO satellites in Medium Earth Orbit (MEO) or

2

1.3. Problem Statement

LEO
Satellite

Local
storage

Edge

Image pre-
processing

Terrestrial
EO Drone

EO
Satellite

Cloud

Object
detection

Fire Alarm
Global

Storage

Raw data
ingest

Figure 1.2: Simplified EO image processing workflow

Geostationary Orbit (GEO), connected to LEO Edge computing satellites part of the 3D
Continuum. Figure 1.2 illustrates a wildfire detection process modeled as a serverless
workflow leveraging the combined computing fabric.

EO satellites and terrestrial drones gather forest video and image data and send it to
LEO edge nodes, where the serverless workflow is initiated. Tasks such as combining
raw image data, pre-processing, filtering, and object detection can be performed on LEO
edge satellites. Resource-intensive tasks such as machine learning inference can only be
performed in cloud environments.
Each function in the workflow chain relies on the input state from its successor function
to accomplish the task. We refer to the mechanism facilitating the state transition
between chained functions as State Propagation [15]. Providing the input state close
to the execution environment of the function, therefore, significantly impacts function
latency.

1.3 Problem Statement
Despite advances in serverless computing, existing models do not account for the chal-
lenges posed by integrating LEO satellites into the current Edge-Cloud Continuum:
EO Satellites. As of now, EO satellites such as the ESA Sentinel 2 satellites each pro-
duce around 1.5 TB data per day [3, 5] and rely on dedicated ground stations with typical
downlink speeds of around 300Mbps [1], rendering real-time data processing unfeasible.
Experiments using ISLs between GEO and LEO satellites have shown bandwidths of
up to 100 Gbps [2], drastically improving the outlook on downstream data processing
capabilities.
Dynamic node topology. To maintain orbit, LEO satellites must travel at speeds
exceeding 27,000km/h, which results in an orbital period of less than 100 minutes [9].
Relative to stationary terrestrial computing nodes, the node topology constantly changes.
Topology awareness, therefore, is critical for choosing the location of the function output
state.
Storage availability. Following the traditional serverless model [29], the function state

3

1. Introduction

is stored in a central storage in the cloud. Accessing this state from LEO satellites
introduces latency and network strain.
Function availability. A key feature of serverless functions is their availability types.
A function can be in the warm queue or the cold queue. A cold function is scaled down
to zero, while a warm function has resources allocated and is ready to accept requests.
Since invoking cold functions introduces cold-start overhead, schedulers avoid doing so in
favor of invoking it on a node where the same function is warm.
SLO compliance. Adding thousands of satellites to the computing fabric enlarges the
number of storage candidates. However, storing the image of a drone in the Amazon
rainforest on a satellite above Japan would be costly compared to a satellite directly
above the drone. A Service Level Objective (SLO) can be utilized to reduce the solution
space of storage candidates and to align state placement decisions with function execution
decisions of SLO-aware schedulers [39, 41, 40].

To our knowledge, a serverless model doesn’t exist to address these concerns. This thesis
presents a novel model addressing these challenges to enable serverless workflows in the
3D Continuum.

1.4 Contributions
In this thesis, we make the following contributions:

1. Skylark Serverless Workflow Model. A serverless Framework for executing
interdependent serverless functions on cloud, edge, and satellite nodes. This model
ensures that serverless workflows adapt to dynamic network conditions, reducing
latency by storing data closer to where it is processed.

2. Skylark Elect Service Architecture. A decision-making system that dy-
namically selects where function output data should be stored based on network
conditions and system constraints. This service improves data availability for
downstream functions while considering data locality, latency requirements, and
function readiness.

3. Skylark SDK Architecture and a novel State Bundling Mechanism.
Provides developers with tools to manage function state efficiently. By integrating
with the Skylark Elect Service, the SDK enables atomic and co-located functions
to store, retrieve, and migrate function state seamlessly, reducing the number of
storage operations by leveraging a novel State Bundling mechanism. As a result,
Skylark decreases function execution latency by up to 24%.

4. Novel State Propagation Mechanism. To proactively move the function output
state to a location near the successor function that will use it as input. Instead of
relying on centralized cloud storage, this approach leverages distributed storage
across cloud, edge, and satellite nodes, significantly reducing retrieval delays and

4

1.5. Research Questions

network overhead. Skylark decreases workflow latency by up to 33% and improves
throughput by 91%.

1.5 Research Questions
In this thesis, we aim to answer the following research questions:

• RQ1: How can a serverless computing model be designed to support
stateful function execution inside serverless workflows across the Edge-
Cloud-Space (3D) Continuum?
Distributed computing environments that span terrestrial edge nodes, cloud data
centers, and LEO satellites introduce new challenges for serverless computing.
Traditional FaaS platforms rely on centralized, third-party storage services [29],
which leads to high data transfer latency when nodes are highly distributed [52], as
in the 3D Continuum. State-of-the-art approaches introduce techniques to mitigate
function overhead, such as function co-location in shared runtimes [48, 8] and
shared state via a container runtime shim [28]. However, these solutions generally
don’t consider function workflow metadata, such as function availability and the
current network topology. Consequently, answering RQ1 involves understanding
how to incorporate dynamic topology information and SLOs into a serverless frame-
work that can handle function state efficiently across a distributed, heterogeneous
computing environment. It also requires mechanisms dealing with function output
state placement and representation.

• RQ2: To what extent can reducing the overhead of state operations
improve the efficiency of co-located serverless functions?
Due to their stateless nature, serverless functions commonly treat all state as
external, leading to network delays and storage costs even when multiple functions
share the same runtime environment. Prior work demonstrates overhead reduction
through in-memory data sharing of co-located functions [28]. However, this doesn’t
address state management of function output in serverless workflows. This research
question investigates how reducing redundant state input/output operations of
functions running on the same host can enhance throughput and decrease overall
execution time. It further examines how state-of-the-art techniques—such as shared
memory abstractions and lightweight local storage—could optimize state operation
overheads.

• RQ3: To what extent can increasing local state availability and reducing
state retrieval latency improve the performance of serverless workflows?
Chained serverless functions in a workflow suffer from high state read/write times
when function state is stored in a central global storage. Prior research indicates
that localized data placement can significantly lower latency [52]. However, it
remains unclear how best to manage dynamic State Propagation in heterogeneous
environments with LEO edge satellite nodes as part of the computing fabric.

5

1. Introduction

Through this research question, we aim to assess the impact of locality-aware
function output State Propagation on end-to-end workflow performance, scalability,
and resource consumption. By comparing different state-of-the-art state-placement
strategies in serverless computing, the analysis aims to clarify the role of data
locality and decision parameters such as function availability and SLOs used by
adjacent tools [39, 40, 41].

1.6 Methodology
This work follows a Design Science Research (DSR) process [12], a structured approach
for creating and evaluating novel solutions in information systems research. DSR guided
each phase of the Skylark project, from defining the problem to demonstrating practical
benefits.

1.6.1 Process
We adopted the six-step model proposed by Peffers et al. [34] and applied it as follows:

1. Problem identification and motivation: We began by examining how traditional
serverless computing struggles with state management in the 3D Continuum,
especially when LEO satellites are involved. Through this analysis, we formulated
our research questions (Section 1.5).

2. Define the objectives for a solution: Drawing on existing literature (Chapter 3) and
preliminary experimentation with serverless functions, we established goals to guide
Skylark’s design. These objectives included i) enabling dynamic, topology-aware,
and SLO-aware State Propagation and ii) supporting co-located function state
management without incurring high storage operation overheads.

3. Design and development: Based on these objectives, we designed the Skylark
framework, including its two core components: The Skylark Elect Service, which
identifies suitable storage locations close to Target Functions while respecting
network topology, SLOs and function availability. The Skylark SDK, which provides
developers with State Bundling and State Propagation tools, integrating seamlessly
with serverless environments. We refined Skylark’s architecture, data structures,
and state management mechanisms during this stage. We also created a prototype
implementation (see Chapter 6) to validate Skylark’s feasibility.

4. Demonstration: We showcase Skylark using a wildfire detection use case, simulating
an environment where image data travels through LEO satellites, edge nodes, and
cloud nodes. This demonstration highlights how Skylark’s State Propagation and
bundling reduce the latency associated with traditional remote storage approaches.

5. Evaluation: We systematically measured performance and scalability by comparing
Skylark’s workflows against baseline models in a series of experiments described in

6

1.7. Structure

Chapter 7. Key metrics included workflow latency and state retrieval time under
varying network topologies and workloads.

6. Communication: Finally, we compiled all findings into this thesis, including a de-
tailed account of design decisions, experimental outcomes, an open source prototype,
and potential avenues for future work. The results and supporting documentation
are intended to provide researchers and practitioners with a clear view of Skylark’s
benefits and limitations.

Figure 1.3: DSR methodology model [34]

1.7 Structure
The remainder of this thesis is organized as follows: Chapter 2 provides background infor-
mation on serverless computing, the 3D Continuum, and related tools and technologies.
Chapter 3 reviews existing work on data passing between serverless functions, stateful
serverless functions, and function co-location, positioning Skylark within the research
landscape. Chapter 4 presents the Skylark model, detailing its stateful serverless workflow
model and the architecture of its key components: the Skylark Elect Service and Skylark
SDK. Chapter 5 introduces the State Propagation and State Bundling mechanisms,
explaining how they leverage Skylark and its components to improve state management
in serverless workflows. Chapter 6 describes the implementation of the Skylark framework,
including the technologies used and development challenges encountered. Chapter 7

7

1. Introduction

evaluates Skylark through experiments that measure the performance and scalability of
the proposed mechanisms. Finally, Chapter 8 concludes the thesis with a summary of
findings and discusses potential directions for future research.

8

CHAPTER 2
Background

This Chapter introduces essential background concepts and technologies relevant to
the thesis. Section 2.1 describes the 3D Continuum, highlighting how computing and
storage resources can be extended into the LEO environment to form a cohesive global
computing fabric. Section 2.2 reviews the fundamentals of serverless computing and
its event-driven and stateless properties. It also describes three critical technologies for
distributed serverless deployments: WebAssembly(2.2.1), which provides a lightweight,
secure runtime for portable code execution; Kubernetes(2.2.2), an orchestration system for
automating the deployment and scaling of containerized applications; and Knative(2.2.3),
a serverless framework that builds on Kubernetes to streamline function management
and event-driven serverless workflows.

2.1 Edge-Cloud-Space (3D) Continuum
The vision of the 3D Continuum is to combine Cloud and Edge nodes on Earth and in
space such that computing workloads can be executed on each of these layers [39].

Cloud computing is a paradigm that provides on-demand access to computing resources,
enabling users to utilize hardware and software services over the Internet with low upfront
investments. This model offers elasticity, allowing users to scale resources dynamically
based on workload demands, and follows a pay-as-you-go pricing structure, reducing
costs associated with over- and underprovisioning [6].
Edge and Fog computing extend traditional Cloud computing by bringing computation,
storage, and networking resources closer to data sources, enabling low-latency and context-
aware processing. Edge computing refers to processing data at or near its source, often
at the level of IoT devices or gateways, to minimize latency and reduce bandwidth
usage. Fog computing, on the other hand, creates an intermediate layer between Edge
devices and centralized Cloud data centers, offering distributed computing and storage
capabilities across a wide geographical area [11].

9

2. Background

Figure 2.1: Starlink’s inner LEO satellite shell at 550km [22]

Driven by advancements in global internet coverage via satellites from companies such
as SpaceX [49], LEO satellites enable real-time connectivity for remote regions, mobile
platforms like aircraft and ships, and urban areas with limited infrastructure. Figure 2.1
shows Starlink’s inner shell of LEO satellites, traveling up to 27,500km/h 550km above
Earth’s surface. Edge computing is now expanding to include satellite nodes to improve
the quality of service for use cases such as augmented reality and earth observation.
However, Orbital Edge Computing (OEC) introduces unique challenges such as dynamic
satellite movement, limited compute capacity, and lack of physical access for maintenance,
necessitating specialized design considerations [36].

2.2 Serverless Computing
Serverless computing is a Cloud-based paradigm that abstracts infrastructure manage-
ment, allowing developers to focus on application logic. Applications are decomposed into
fine-grained, stateless, event-driven functions, often called Function-as-a-Service (FaaS).
These serverless functions are executed in isolated environments and scale elastically to
accommodate demand, with providers charging on a pay-per-execution basis, aligning
costs with actual resource usage [29]. Stateful data is typically managed externally using
Backend-as-a-Service (BaaS) platforms like Cloud object stores [30] or databases. This
model is characterized by its inherent scalability and cost-efficiency, making it ideal for
dynamic workloads [29]. Leading implementations, such as AWS Lambda [46], Azure
Functions [31], and Google Cloud Functions [20], exemplify its widespread adoption in
the Cloud environment.

The need to store function inputs and outputs in an external data store can elevate

10

2.2. Serverless Computing

latency and bandwidth requirements. Such overheads become particularly problematic
in the 3D Continuum, where connectivity, network topology, and resource availability
vary significantly across terrestrial edge nodes, central cloud data centers, and mobile
satellite infrastructures. Consequently, the overall performance of serverless functions
depends on the location of the function and its associated state.

Edge Functions

The advantages of Edge computing make FaaS at the Edge particularly suitable for latency-
sensitive applications, such as IoT, augmented reality, and industrial automation [43].
However, stateless FaaS typically relies on external storage to persist function state,
which can lead to increased latency and inefficiencies. Solutions to improve data locality,
such as state-aware placement policies and distributed storage, have been proposed. For
example, decentralized FaaS platforms like ServerlEdge [43] enable state co-location
with functions and dynamic state migration, ensuring data proximity to computation.
Additionally, SLO–aware offloading strategies help balance function placement between
Edge and Cloud nodes to optimize latency while adhering to performance guarantees [33].

2.2.1 WebAssembly

WebAssembly (Wasm) is a low-level, platform-agnostic bytecode format designed to
execute code at near-native speeds in secure, sandboxed environments. Initially introduced
for web browsers, WebAssembly has evolved into a general-purpose runtime capable of
running on various infrastructures beyond the browser. By acting as a compilation target
for programming languages such as C, C++, and Rust, Wasm simplifies cross-platform
software development, as developers can write code once and execute it across multiple
operating systems without modification.

WebAssembly has a lightweight, isolated execution model. Unlike traditional virtual-
ization technologies—such as full virtual machines or heavy container engines—Wasm
has minimal runtime overhead and offers rapid startup times. These properties reduce
cold-start latencies of serverless functions and improve scalability in dynamic environ-
ments such as the 3D Continuum. Furthermore, WebAssembly’s sandboxing features
help ensure security by confining code execution to a restricted environment, mitigating
the risks associated with multi-tenant architectures [50].

2.2.2 Kubernetes

Kubernetes is an open-source container orchestration platform that automates container-
ized applications’ deployment, scaling, and management across clustered computing
environments [24]. By abstracting away low-level operational details such as load balanc-
ing, resource allocation, and fault tolerance, Kubernetes enables developers to focus on
application logic while benefiting from robust container scheduling and dynamic scaling.
Central to its design is the concept of declarative configuration, wherein operators specify

11

2. Background

a desired application state (for example, the number of replicas or version constraints),
and Kubernetes continually monitors and enforces this target state.

Beyond its widespread adoption in traditional cloud data centers, Kubernetes also
supports specialized, lightweight distributions—such as MicroK8s [14]—tailored for
resource-constrained edge environments. This flexibility allows Kubernetes to span a
range of deployments, from powerful cluster nodes in large data centers to smaller edge
nodes closer to data generation sources. Consequently, Kubernetes is well-suited for
workloads in the 3D Continuum, where application components may be geographically
dispersed and subject to heterogeneous network conditions.

2.2.3 Knative
Knative is an open-source extension to Kubernetes designed to support serverless work-
loads through automated scaling, routing, and event-driven execution [23]. It builds upon
Kubernetes container orchestration capabilities by introducing higher-level abstractions
for deploying and managing functions and microservices. Specifically, Knative Serving
manages how workloads are scaled in response to traffic, including the ability to scale
to zero during idle periods, thus reducing resource usage and operational costs. Kna-
tive Eventing provides a standardized event handling and routing mechanism, enabling
developers to integrate external services and data streams easily.

Through these features, Knative offers a simplified workflow for building serverless
applications on top of Kubernetes. Developers can package their code as containers, define
minimal configurations, and let Knative handle instance provisioning and autoscaling.
This architecture is especially beneficial in heterogeneous environments like the 3D
Continuum, where computing resources must adapt to dynamic workloads and fluctuating
network conditions.

12

CHAPTER 3
Related Work

This chapter provides an overview of existing research on stateful serverless computing,
focusing on both architectural and performance aspects relevant to the 3D Continuum.
Section 3.1 describes prior work on how serverless functions exchange and store data,
including techniques that reduce overhead by enabling local, in-memory data sharing.
Section 3.2 outlines existing methods to incorporate and manage state in serverless
applications, emphasizing approaches that balance flexibility with low-latency data access.
Finally, Section 3.3 discusses function co-location and bundling strategies, highlighting
solutions that reduce cold-start penalties and redundant storage operations.

3.1 Data Passing between Serverless Functions
Shillaker and Pietzuch explore enhancements in serverless architectures to handle
stateful applications efficiently. Traditional serverless frameworks manage state exter-
nally, leading to significant overheads from data duplication and movement. The study
introduces Faaslets, an abstraction layer that uses software-fault isolation (SFI) to allow
memory sharing directly between functions, thus minimizing data movement and duplica-
tion. This model utilizes WebAssembly for memory isolation and supports efficient state
sharing across serverless functions. Their experimental results demonstrate a significant
reduction in initialization times and resource consumption, alongside improvements in
runtime performance for data-intensive tasks, such as machine learning training and
inference [48]. However, their approach is limited to functions co-located on the same
machine. In contrast, Skylark also extends State Propagation to include remote target
storage, optimizing function state management across cloud, edge, and space nodes.

Cicconetti et al. explore possible solution models for function state transitions in edge
networks: (i) a pure FaaS implementation, which adheres to the conventional stateless
serverless model where each function invocation is independent, and state management
is entirely the client’s responsibility, without any optimizations for state handling. (ii)

13

3. Related Work

StateProp, a model involving the propagation of the application state through the chain
of function invocations, allowing each function to access and potentially modify the state
before passing it along to the downstream function. (iii) StateLocal, where the state is kept
local to the serverless platform executing the function, reducing data transfer overhead
by fetching the state only when necessary from the local environment rather than remote
locations [15]. Skylark builds on these concepts but extends State Propagation strategies
to the highly dynamic 3D Continuum, accounting for satellite movement, SLOs, and
function availability.

3.2 Stateful Serverless Functions
Cloud

Azure Durable Functions uses event sourcing to manage state, with the function’s
execution history stored in storage queues or tables. This allows the orchestration to
replay events to reach the current state, supporting complex, long-running workflows.
However, this approach can introduce latency due to the need to read and write the
state to external storage [13]. Similar solutions by big vendors include Amazon’s Step
functions [47]. These solutions assume resource-rich cloud environments with centralized
storage. Skylark provides local storage instances on all layers of the 3D Continuum and
provides a network topology-aware State Propagation mechanism.

Barcelona-Pons et al. introduce Crucial, a system designed to address challenges
posed by inter-function communication. This approach incorporates a Distributed Shared
Object (DSO) layer, which operates on top of a low-latency in-memory data store,
providing strong consistency and enabling fine-grained updates and coordination between
serverless functions [8]. Skylark differs by focusing on optimizing state placement and
access locality rather than maintaining shared consistency across multiple functions.

Edge

Puliafito et al. propose a dynamic model where serverless functions can switch between
remote-state and local-state modes depending on the situational requirements at the
edge. This flexibility allows functions to manage state more efficiently—locally when low
latency and minimal network traffic are needed or remotely when broader accessibility
and cost efficiency are prioritized [38]. Our work differs by integrating State Propagation
with node topology and SLO awareness, ensuring that the function state remains close
to the execution environment while adapting to changing network conditions.

Pfandzelter et al. introduce Enoki, a framework enabling stateful serverless operations
over distributed edge and cloud environments by directly integrating a replicated key-
value store in the FaaS nodes. This reduces latency while ensuring consistency across
distributed nodes. While Enoki optimizes intra-node state access, Skylark focuses on
inter-node State Propagation, ensuring efficient state transitions across a distributed,
multi-layered computing environment.

14

3.3. Function Co-Location and –Bundling

Nardelli and Russo studied SLO-aware offloading of functions and introduced a state-
aware data migration algorithm. The algorithm decides whether a single key part of
a key-value store should be migrated to another node based on (i) data access time,
(ii) migration time, (iii) SLOs, and (iv) cost minimization. Our work is different since
we have to consider the change of geo-location of satellites over time [33]. Our work
extends this concept by considering the changing geographic positions of satellite nodes
and adapting State Propagation dynamically to maintain low-latency state availability.

3.3 Function Co-Location and –Bundling
Marcelino and Nastic highlight the inefficiencies in inter-function communication
when serverless functions are co-located yet rely on remote services, which often leads to
increased latency and network overhead. To combat these inefficiencies, they introduce
CWASI, a runtime shim that implements a novel three-mode communication model, opti-
mizing inter-function communication based on function locality. This model significantly
reduces reliance on external services, decreasing virtualization overhead [28]. Skylark
builds upon this approach by dynamically deciding the optimal State Propagation strat-
egy within a single node and across distributed nodes in a dynamic topology. Co-located
functions using the CWASI runtime shim can also leverage Skylark’s State Bundling
mechanism to decrease the number of remote storage operations.

Czentye et al. introduce function fusion, a novel method for combining interdependent
functions into composite units managed as single serverless artifacts. This technique
mitigates cold starts, reduces communication latency, and improves resource utilization by
leveraging internal state propagation and implicit instance parallelization. The authors
provide theoretical foundations for the cost and latency models underlying function fusion
and propose efficient algorithms, such as bicriteria approximation and greedy heuristics,
to achieve cost-optimal partitioning of serverless workflows [16]. Our work differs by
applying state-aware function embedding and State Bundling to reduce redundant storage
operations in multi-node, dynamic topologies.

Schirmer et al. expand on function fusion with their framework, FUSIONIZE++, which
dynamically optimizes serverless applications through task inlining and infrastructure
adjustments. Recognizing inefficiencies such as remote invocation overheads, cascading
cold starts, and double billing during synchronous function calls, they propose an iterative
optimization approach. The framework monitors application execution, identifies call
patterns, and employs heuristics to reconfigure fusion groups—task clusters executed
within the same function—to minimize latency and cost. Additionally, FUSIONIZE++
adjusts resource allocations like memory and CPU shares to enhance execution efficiency.
This feedback-driven mechanism allows real-time adaptation to workload changes without
requiring developer intervention [45]. Skylark, in contrast, focuses on optimizing state
transitions independently of function placement, ensuring efficient function execution
even in environments with rapidly changing node topologies.

15

CHAPTER 4
Skylark Serverless Workflow

Model and Architecture Overview

Skylark is a topology- and SLO-aware serverless state management framework. It reduces
serverless workflow latency by placing the function input state close to the local execution
environment and by enabling State Bundling for Embedded Functions. Skylark achieves
this by providing local storage instances on nodes throughout the 3D Continuum and
by introducing a distributed service we call Skylark Elect Service for Target Storage
selection. In addition, we introduce Skylark SDK, which enables developers to fetch
function input state and propagate output state in collaboration with the Skylark Elect
Service. Skylark SDK further helps reduce the number of necessary state operations by
offering State Bundling functionality for Embedded Functions.
This Chapter has two Sections. Section 4.1 describes the Skylark Serverless Workflow
Model, and Section 4.2 describes the architecture of the main components of Skylark.

4.1 Skylark Serverless Workflow Model
This section describes the Skylark Serverless Workflow Model, defining how serverless
functions are composed, executed, and coordinated throughout the 3D Continuum. By
specifying the function sequences’ structure and how data is propagated, this model
provides a framework for managing state and ensuring low-latency, SLO-compliant
operation across a distributed environment characterized by a dynamic network topology.

Network Topology

A serverless cluster in the 3D Continuum consists of 3 types of nodes: Cloud nodes
NC ⊆ N , terrestrial edge nodes NE ⊆ N , and space satellite nodes NS ⊆ N . Figure 4.1
depicts all node types deployed within the 3D Serverless Platform. A LEO space node

17

4. Skylark Serverless Workflow Model and Architecture Overview

Sat Node

Function 2

FaaS Sandbox - Embedded

3D Serverless Platform

Function 3

Skylark SDK

Storage

Cloud Node

Function 4

FaaS Sandbox - Atomic

Skylark Elect

Skylark SDK

Storage

(13)
propagate

output

(16) get
input

Serverless Workflow Client

EO
Satellite

(3) Create Workflow Instance

(9) invoke f₂(f₃)
with k₁

(14) return
key k₂

(15) invoke f₄
with k₂

(17) return

Node Topology

S S S

C

S S

E

Edge Node

Function 1

FaaS Sandbox - Atomic

Skylark Elect

Topology Handler

Target Storage Elector

Orchestrator API

Skylark SDK

(6) elect
succesor

(1) update
topology

Storage

(7)
propagate

output

(4) invoke f₁ (8) return k₁

(5) get
image data

Orchestrator API Orchestrator API

Skylark Elect

(12) elect
succesor

(1)

(2)

(11) get
EO data

(1)

{[f₁,f₂(f₃),f₄], CloudNode}

(10) get
input

Terrestrial
Drone

(2) Save image

S CE

Figure 4.1: Skylark Serverless Workflow Model

must travel around 27,000km/h to maintain an orbit 550km above Earth’s surface [9].
Therefore, the cluster Node Topology changes over time t, as illustrated in Figure 4.2.
At t = 0, the Cloud Node can only see Sat Node 5. At t = 1, Sat Node 6 is visible.
Similarly, at t = 0, the Edge Node can only see Sat Node 2. At t = 1, Sat Node 3 is
visible. From the perspective of a Sat Node, neighboring satellite nodes in the same orbit
and trajectory don’t change over time. Additionally, compared to the edge and cloud
nodes, satellite nodes have a constrained power supply, fixed computing capabilities, and
experience temperature fluctuations as they move in and out of Earth’s shadow [27].
In contrast to edge and satellite nodes, cloud nodes can perform resource-intensive
tasks such as machine learning model inference. A node n ∈ N provides the execution
environment for functions. We denote the connection of nodes ni, nj ∈ N via edges
ei,j ∈ E. The network delay or Round-Trip-Time (RTT) and bandwidth characterize ei,j .
Therefore, the Node Topology is the composition of nodes and their connections at a time.

18

4.1. Skylark Serverless Workflow Model

Symbol Description
N Set of cloud, edge, and satellite nodes
ei,j Network latency and bandwidth between i, j ∈ N
F Set of functions
fi Atomic Function, running alone in a sandbox

fi(fj) Embedded Function, sharing a sandbox
|f | The number of functions in a sandbox (Depth)
Df

A Atomic output state of f ∈ F

Df
E Embedded output state of f ∈ F

|D| State size
kf SkylarkKey for the output state of a function f ∈ F, kf ∈ Df

W Serverless workflow

Table 4.1: Main notation adopted in the thesis

Sat
Node 1

10ms

80Mbit

60ms 35Mbit

t=0

t=1

Cloud
Node

Sat
Node 2

Sat
Node 3

10ms

80Mbit

Sat
Node 4

Sat
Node 5

10ms

80Mbit

Sat
Node 6

Sat
Node 7

10ms

80Mbit

10ms

80Mbit

10ms

80Mbit

Sat
Node 1

10ms

80Mbit

60ms 35Mbit

Cloud
Node

Sat
Node 2

Sat
Node 3

10ms

80Mbit

Sat
Node 4

Sat
Node 5

10ms

80Mbit

Sat
Node 6

Sat
Node 7

10ms

80Mbit

10ms

80Mbit

10ms

80Mbit

60ms 35Mbit

Edge
Node

60ms 35Mbit

Edge
Node

Figure 4.2: The changing Node Topology of LEO satellite nodes relative to terrestrial
nodes over time

Serverless Workflow

A serverless workflow consists of a sequence of functions expecting an input state and
producing an output state. We define functions and state as follows: Let F be the Set of
all deployed serverless functions on a cluster. A serverless function f ∈ F represents a

19

4. Skylark Serverless Workflow Model and Architecture Overview

single computational step inside a serverless application. The lifecycle of f is i) invocation,
ii) execution, and iii) termination [29]. f is stateless insofar as it doesn’t retain state
after termination and, therefore, relies on external storage services for state management.
However, f expects the input state upon invocation and returns the output state upon
termination. A Set of functions fi, fj , fk ∈ F can either run alone in their sandbox
environment {fi, fj , fk} (Atomic Function) or together {fi(fj , fk)}, sharing a single
sandbox (Embedded Function). We call the number of functions placed inside a sandbox
its depth and denote it as |f |. An Atomic Function fi has a depth of 1 (|fi| = 1).
Conversely, an Embedded Function with one parent and two children fi(fj , fk) has a
depth of 3 (|fi| = 3).

Let the function output state be a key-value pair D := {k, v} and f1, f2 ∈ FS a sequence
of two Atomic Functions. f1 is the predecessor of f2 and f2 is the successor of f1. f1
produces function output state Df1

A , which f2 expects as function input state upon
invocation. We refer to a storage instance chosen for storing the function output state
henceforth as Target Storage.
We denote the bundled state of an Embedded Function as Dfi

E (Embedded State),
therefore representing the states of multiple functions as a single entity, where fi is the
parent function. We denote the state size as |D|.

Let a Serverless Workflow be a tuple W := {FS , nT ∈ NC} consisting of a sequence of
functions f1, ..., fn ∈ FS ⊆ F and a Tail Node nx ∈ NC . Given a sequence of two Atomic
Functions {fi, fj} ∈ FS , the workflow first invokes fi and only after its termination
invokes its successor function fj . Hence, fi is the predecessor function of fj . The output
state produced by fi is the input state of fj . The last function of the sequence fn ∈ FS

is assumed to be a resource-intensive task, which has to be executed on one of the cloud
nodes NC . The Tail Node nx ∈ NC represents a node on which the last node of the
sequence fn is in the warm queue. Henceforth, we refer to the successor function as the
Target Function.

4.1.1 Constraints

Service Level Objective (SLO)

SLOs define upper bounds on performance metrics such as network latency for data
retrieval and propagation. In Skylark, these objectives constrain the Set of feasible
storage nodes for each state transition. By specifying, for example, a maximum allowable
round-trip time, Skylark ensures that function output data is only placed where the SLO
can be upheld. This targeted placement keeps data within a suitable distance to the
function’s execution environment, thereby limiting retrieval delays and preventing the
overhead of storing state on nodes that cannot meet the required latency guarantees.

20

4.2. Skylark Architecture

Data Locality

Cloud
Node

Sat Node

f

(a) Local State (b) Cloud State

Cloud
Node

Sat Node

f

Figure 4.3: Local State vs. Global State

Data locality in Skylark ensures that functions retrieve and store state near their execution
environments, lowering latency and reducing network overhead. Instead of relying
on centralized cloud storage for state management (Figure 4.3b), Skylark proactively
places function output in local or nearby storage nodes (Figure 4.3a). This approach
helps maintain efficient data access in dynamic edge, cloud, and satellite deployments,
where physical distances and resource constraints can otherwise introduce significant
performance penalties. By aligning function input state placement with its actual
execution environment, Skylark increases data locality.

Function Availability

Function availability in Skylark refers to whether a function instance is actively running
(warm) or scaled to zero (cold). Cold functions conserve resources but require additional
time to start, which can introduce significant latency. To address this, Skylark prioritizes
storing output data where a successor function remains warm, thereby reducing the
need to spin up new instances. In doing so, State Propagation and placement decisions
align with function availability, ensuring minimal startup delays and efficient resource
utilization across the 3D Continuum.

4.2 Skylark Architecture

This Section describes the architecture of Skylark’s main components, Skylark Elect
Service and Skylark SDK, in the context of a serverless platform in the 3D Continuum.
Edge, space, and cloud nodes run local storage instances by default. However, due to
resource restrictions, an edge node may be unable to host a storage instance. Therefore,
individual nodes that do not host storage instances are allowed.

21

4. Skylark Serverless Workflow Model and Architecture Overview

Node 1

Function 1

FaaS Sandbox

3D Serverless Platform

Function 2

Skylark Elect

Target Storage Elector

Orchestrator API

APITopology Handler

calls

Node 2

Node n

Skylark Elect

Storage

calls

Node Graph

Vertex: Node
Edge: Latency

SLO

Max Latency

Skylark SDK

calls reads
updates

reads

FaaS Sandbox

Skylark SDK

Skylark Elect

Storage

FaaS Sandbox

Skylark SDK

propagates output

Storage

fetches input

Figure 4.4: Architecture of the Skylark Elect Service

4.2.1 Skylark Elect Service

Figure 4.4 provides an overview of the Skylark Elect Service architecture. The Skylark
Elect Service is platform-agnostic and modular, enabling seamless and distributed in-
tegration into the 3D Continuum as a stand-alone service running in an isolated and
lightweight Wasm sandbox. It enables serverless functions, part of a serverless workflow
sequence, to manage function output state, thus increasing input state data locality for
Target Functions. Skylark Elect Service is composed of three main modules: Topology
Handler, Target Storage Elector, and API.

Topology Handler

The Topology Handler maintains an accurate and up-to-date representation of the
dynamic cluster Node Topology by periodically querying the orchestrator API. We call
this internal representation NodeGraph. It contains information about nodes such as
name, IP, and type (Cloud, Edge and Satellite). Moreover, NodeGraph represents
real-time network properties such as RTT and bandwidth between nodes (Edge). The
Topology Handler enables the Target Storage Elector to access accurate and up-to-date
Node Topology information.

22

4.2. Skylark Architecture

Target Storage Elector

Called by a serverless workflow function via the API, the Target Storage Elector chooses
the storage location of the function output state based on the NodeGraph and SLOs.
The NodeGraph is maintained by the Topology Handler, and the user provides the SLOs.
Specifically, the Target Storage is elected based on:

• NodeGraph: An up-to-date representation of all cluster nodes. A cluster in the
3D Continuum contains thousands of nodes. Most of them would violate the SLO
requirements. We, therefore, reduce the solution space to the nodes part of the
shortest path between the current node and the Tail Node of the serverless workflow.
We call these nodes candidate nodes.

• SLO: The maximum network RTT between the local node and the node hosting a
potential Target Storage.

• Target Function: The successor of the caller function. By contacting the orchestra-
tor, the Target Storage Elector considers whether the Target Function is warm or
cold on the candidate node.

The Elector chooses the Target Storage by finding the closest candidate node to the
Tail Node, satisfying the maximum network RTT and having the Target Function in the
warm queue. The host information of the Target Storage is returned to the API.

API

Passes calls from functions to the Target Storage Elector and returns the result to the
caller. When a serverless workflow function finishes its execution tasks, it wants to know
where to store the function output state. The caller also provides workflow metadata
such as the Tail Node and SLOs.

4.2.2 Skylark SDK
Skylark SDK enables State Bundling for Embedded Functions by leveraging function
embedding properties such as locality, trust, and shared state. Trusted functions are
grouped into one sandbox, allowing them to share resources such as shared memory, heap
memory, and registers. Developers can utilize the Skylark SDK to fetch the function
input state, propagate the function output state, or delete the input/output state.
Additionally, Skylark SDK plays a role in function output State Propagation within
serverless workflows, as described in Section 4.1. When a function finishes its task, the
output state is passed to Skylark SDK to initiate State Propagation. Skylark SDK
contacts the local Skylark Elect Service to elect a Target Storage close to the execution
environment of the Target Function. Skylark SDK then creates a SkylarkKey (key) and
stores the output state (value) as a key-value pair in the Target Storage. The function

23

4. Skylark Serverless Workflow Model and Architecture Overview

returns the generated SkylarkKey upon termination to the workflow client. The workflow
client supplies the SkylarkKey as input to the Target Function to access its input state.

Node 1

Function 1

FaaS Sandbox - Embedded

3D Serverless Platform
Orchestrator API

Skylark SDK

Node 2

Node n
Storage

Skylark Elect

Skylark Elect

FaaS Sandbox

Skylark SDK

Storage

Skylark Elect

Storage Client

Function State

Input Output
SkylarkKey Value SkylarkKey

Elect Client

API

FaaS Sandbox - Atomic

SkylarkKey

ChainID : StorageID : FunctionID

Value

calls

calls

Storage

Embedded
State

Value 1

Value 2

Field 1

Field 2

Key 1

Atomic State

Key 3
Value 3

Function 2

SkylarkKey

SkylarkKey

FunctionID

FunctionID

Function 3

Skylark SDK

calls

Figure 4.5: Architecture of Skylark SDK

Figure 4.5 shows the Skylark SDK architecture integrated into the 3D Continuum. It is
composed of four main modules: Function State, API, Elect Client, and Storage Client.

Function State

This module holds the input state from the predecessor and the output state produced by
the function. Both are passed through the API module. The output state is propagated
to some Target Storage elected by the Skylark Elect Service. It then serves as the
input state for the Target Function. Each state object is identified by a SkylarkKey
k := {kC , kS , kF } ∈ D. It consists of three parts:

1. ChainID (kC): Identifies the Workflow instance. Given two workflows W1 =
{F1, n ∈ N}, W2 = {F2, n ∈ N}, kC is identical for all f ∈ F1. However, keys of
f ∈ F2 have a different ChainID.

2. StorageID (kS): Each local storage hosted on a node in the 3D Continuum can
be addressed with a unique identifier. We encode this identifier as kS into the
SkylarkKey to enable Target Functions to access their input state even if it is
unavailable on the local storage. This is important since the Skylark Model doesn’t
guarantee local state availability; rather, it increases local state availability through
the State Propagation mechanism explained in the next Chapter.

24

4.2. Skylark Architecture

3. FunctionID (kF): Identifies a single function. Given two workflow instances with
identical function sequences W1 = {F1, n ∈ N}, W2 = {F2, n ∈ N}, F1 = F2, two
functions on the same position in the sequence fj = fi, fi ∈ F1, fj ∈ F2 have the
same FunctionID k

fj

F = kfi
F .

Function input and output states can be Atomic or Embedded. Given a Atomic Function
and a Embedded Function f1(f2), f3 ∈ F as illustrated in the storage of Node 1 in
Figure 4.5:

• Embedded State: A state object holding multiple functions’ input or output
state in a Set-like data structure. In this data structure, a SkylarkKey identifies
the Set, which contains pairs of FunctionIDs and state String values. f1 is the
parent, and therefore, its SkylarkKey kf1 is used to identify the Set. f1 and f2
store their state into this set, using their corresponding FunctionID kf1

F , kf2
F for

value identification.

• Atomic State: A single key-value pair. f3 creates a SkylarkKey to store its
Atomic State into the storage. A SkylarkKey is used as a key kf3 , and the value is
a String like in Embedded State.

The Function State module interacts with all other modules of the Skylark SDK. It uses
the Elect Client module to interact with the Skylark Elect Service for State Propagation. It
passes function input and output state to the Storage Client to execute storage operations
such as get, set, and delete. The Function State module exposes its functionality via the
API module.

API

This module exposes the core functionality of the Skylark SDK to the developer. It
accepts calls to the following state operations:

• fetch input: Expects the SkylarkKey k of the predecessor function as input.
Fetches the output state of the predecessor function from the storage encoded in
the SkylarkKey kS ∈ k. Returns the input state to the caller.

• propagate output: Expects a state value (Atomic) or a list of state FunctionID-
value pairs (Embedded) as input. Passes the state to the Function State module,
which elects a Target Storage using the Skylark Elect Service. After successfully
propagating the function output state to the Target Storage using the Storage
Client, the SkylarkKey is returned to the caller.

• delete: Expects a SkylarkKey and state type as input. Deletes the state from
the location encoded in the key.

The API exposes this functionality for Embedded State and Atomic State and passes the
requests to the Function State module.

25

4. Skylark Serverless Workflow Model and Architecture Overview

Storage Client

This module is responsible for executing storage operations such as get, set, and delete
for Embedded State and Atomic State. The Function State module calls the Storage
Client to execute storage operations on local (i.e., on the same node as the function) and
remote (i.e., on another node in the cluster) key-value stores such as Redis [42].

Elect Client

This module enables the Skylark SDK to interact with the Skylark Elect Service via
a standard interface. The Function State module calls the Elect Client and expects
workflow metadata such as Target Function, SLOs, and Tail Node, which are then passed
to the Skylark Elect Service. The elected Target Storage is finally returned to the
Function State module.

4.2.3 Assumptions
SLO-aware Scheduler

The Skylark Framework assumes the presence of an SLO-aware scheduler, such as
HyperDrive [39], Vela [41], or Polaris [40]. These schedulers are designed to dynamically
allocate and manage serverless functions across distributed nodes based on SLOs, network
conditions, and resource availability. HyperDrive offers topology-aware scheduling by
continuously evaluating node status and network metrics to optimize function placement.
Vela implements a multi-phase scheduling mechanism that ensures low-latency execution
by leveraging real-time data from edge and cloud nodes. Polaris enhances microservices
scheduling by incorporating SLO constraints and dynamic topology changes.

Although Skylark doesn’t include a scheduler, its mechanisms depend on such a scheduler
to ensure that serverless functions are placed efficiently. The assumed SLO-aware
scheduler complements Skylark’s State Propagation and State Bundling mechanisms.
Without an SLO-aware scheduler, Skylark’s ability to efficiently propagate and bundle
state would be significantly hindered, as the framework chooses Target Storages based
on accurate, up-to-date information about function availability and network SLOs.

Function embedding

Skylark also assumes a function embedding mechanism, such as the CWASI runtime
shim [28], which enables multiple functions to share a single sandbox environment. This
assumption is crucial for Skylark’s State Bundling mechanism, which optimizes state
management by treating co-located function states as a single entity. Without such
embedding mechanisms, the State Bundling feature of Skylark would not be feasible, as its
efficiency hinges on the co-location of functions within a shared execution environment.

26

CHAPTER 5
Skylark Mechanisms

The mechanisms introduced in this chapter build upon the Skylark model presented
in Chapter 4 to enhance stateful serverless workflows in the 3D Continuum. Skylark
employs two core mechanisms: the Skylark State Propagation mechanism and the Skylark
State Bundling mechanism. The State Propagation mechanism, described in Section 5.1,
ensures that the function state is placed close to its execution environment by leveraging
the Skylark Elect Service and local storage instances, thereby reducing latency and
improving data locality. The state bundling mechanism, described in Section 5.2, enables
co-located functions within a shared sandbox by leveraging the Skylark SDK to minimize
storage operations. Both mechanisms operate within the dynamic node topology of the 3D
Continuum, where function placement, state management, and inter-node communication
must adapt to changing connectivity and performance constraints. By integrating these
mechanisms, Skylark addresses key challenges of stateful serverless execution, reducing
data transfer overhead and enhancing workflow responsiveness across the 3D Continuum.

5.1 State Propagation Mechanism
To achieve high local state availability of the function input state, Skylark leverages
local storage, the Skylark SDK, and the Skylark Elect Service to propagate the function
output state close to the Target Function ’s execution environment.

Function output State Propagation has 4 phases, as illustrated in Figure 5.1: In ①, a
function leverages the Skylark SDK API to call the Skylark Elect Service to INITIALIZE
the State Propagation process. The Skylark Elect Service reads the current node topology
and reduces the solution space only to include candidate nodes in the path between the
Head Node (i.e., the current node) and the Tail Node. In the next phase in ②, two filters
are applied to IDENTIFY all viable Target Storages. The first filter removes all nodes
violating SLOs provided by the user. The second filter removes all nodes on which the
Target Function is cold. In ③, the Skylark Elect Service ELECTs the Target Storage by

27

5. Skylark Mechanisms

f Skylark
Elect Service

init state propagation

return target storage

save output state

①

②

③

Target Storage

reduce solution space

apply SLO filter

apply warm function filter

pick target storage

④

INITIALIZE

IDENTIFY

COMPUTE

PROPAGATE

Figure 5.1: Skylark State Propagation

picking the storage closest to the Tail Node and returns its host information to the caller
function. In ④, the PROPAGATE phase, the Skylark SDK stores the function output
state to the elected Target Storage, thereby finishing the State Propagation process.
Next, we illustrate the State Propagation mechanism with an example workflow.

40ms

n₈

n₁ n₂ n₃ n₄ n₅ n₆

20ms

n₇ f₁

f₂ f₂

f₃

f₂
5ms 5ms 5ms 5ms 5ms

f₂

Figure 5.2: Example node topology containing edge, space, and cloud nodes with warm
functions and local storage

Figure 5.2 shows part of an example node topology within the 3D Continuum using the
Skylark Framework. The network delay between the nodes is also depicted. n1, ..., n6
are satellite nodes, n7 is an edge node and n8 is a cloud node. All nodes have local
storage instances, and warm functions are marked. Consider a serverless workflow with
a sequence of 3 functions W = {[f1, f2, f3], n8}, where the last function of the sequence

28

5.1. State Propagation Mechanism

f3 is a resource-intensive task requiring a cloud environment. f3 is warm on n8 when
the workflow instance is created, therefore n8 is the Tail Node of the serverless workflow.
Additionally, consider a network RTT SLO of T RT T

max = 60ms. This example demonstrates
the Skylark State Propagation mechanism by examining the state transition of f1 → f2.
f1 is executed on the edge node n7 (Head Node in the first state transition). After
finishing its main execution task, f1 uses the propagate output interface of the
Skylark SDK to initiate the State Propagation process (phase ①), calling the Skylark
Elect Service. There, the Target Storage Elector first reads the whole node topology of
the cluster as depicted in Figure 5.2. All of the nodes are capable of storing the output
state of f1. Since f2 relies on this state as input, the mechanism aims to store it close
to the local execution environment of f2 by considering SLOs and warm functions. In
this phase, the nodes n1, n2, n4 seem viable as Target Storage picks since f2 is warm and
all candidates fulfill the SLO requirements (n6 has f2 in warm-queue but violates the
SLO). However, since we know that f3 will likely be executed on n8, we also want to
minimize the state transition distance from f2 to f3. Therefore, placing the output state
of f1 on n1 is less costly than on n4, but the subsequent state transition n1 → n8 is far
more expensive than the state transition n4 → n8.

60ms

n₈

n₂ n₃ n₄ n₅

20ms

n₇ f₁

f₂

f₃

f₂
5ms 5ms 5ms

Figure 5.3: Candidate nodes after calculating the shortest path from Head Node to Tail
Node in phase ① INITIALIZE

By reducing the solution space to only include nodes between Head Node and Tail Node
as depicted in Figure 5.3, we optimize state transitions not in a narrow view reduced
to two subsequent functions, but in a holistic view considering the complete workflow.
Calculating the shortest path between Head Node and Tail Node concludes phase ①.

Figure 5.4 depicts the filtering of candidate nodes based on SLOs and warm function
availability in phase ②. Figure 5.4a shows the resulting SLO-compliant nodes. n5 would
violate the SLO since the RTT from n5 is 70ms and is, therefore, not included in this
set. From the four remaining nodes (n2, n3, n4, n7), two have the Target Function f2
available in the warm queue, reducing the pool of candidate nodes to n2 and n4 as
shown in Figure 5.4b, concluding phase ②. In phase ③, the Target Storage is elected.
Both are viable in the narrow view regarding SLOs and function availability. Arguably,
n2 is the best pick regarding the migration time. However, the holistic view favors

29

5. Skylark Mechanisms

n₂ n₃ n₄

20ms

n₇ f₁

f₂f₂
5ms 5ms

(a) Nodes fulfilling SLOs

n₂ n₄

20ms

f₁

f₂f₂

40ms
RTT 60ms

RTT

5ms 5ms

(b) Nodes with warm Target Function

Figure 5.4: Candidate nodes after SLO and warm function filtering in phase ② IDENTIFY

propagating the state further towards the Tail Node since, at the end of the workflow,
the resource-intensive functions need the state in this vicinity. Therefore, the storage
instance hosted on n4 is elected as Target Storage by the Target Storage Elector and
returned to f1, concluding phase ③. Next, in phase ④, f1 generates a SkylarkKey based
on the workflow, function, and storage and saves the output state to the Target Storage
on n4. The SkylarkKey is returned to the workflow client, concluding phase ④ and,
therefore, this example.

Note that we made two simplifications for this example: First, Figure 5.2 simplifies the
actual node topology since the network size in a 3D Continuum cluster may include
thousands of nodes in a real-life scenario. Figure 5.2 hints at this fact with the dotted lines
next to the space nodes. The vast number of nodes in the network underlines the need to
reduce the number of Target Storage candidates. Additionally, depending on how tight
the SLOs are set, most nodes would exceed T RT T

max . Second, we only consider one state
transition and omit the dynamic nature of satellite nodes floating above the stationary
terrestrial edge and cloud nodes. When f2 finishes its computation and performs State
Propagation, the node topology might have changed compared to when the Skylark Elect
Service picked the Target Storage for the output state of f1. The Skylark Model treats
the second state transition as a new calculation, performing all phases described above,
utilizing the Skylark Elect Service deployed on the new Head Node n4.

Algorithm 5.1 depicts the steps the Target Storage Elector applies for a single state
transition. It relies on several inputs: The nodeGraph holds the information about
the current node topology and its network characteristics. The targetFunction is the
successor function and recipient of the state transition. The maximum network RTT
SLO T RT T

max limits the distance to the Target Storages and helps align with SLO-aware
scheduler decisions. The Head Node nH hosts the function initiating the state transition.
The Tail Node nT is the likely execution environment of the last function of the workflow
function sequence.
In line 4, the shortest path calculation of phase ① is performed by employing Dijstra’s
algorithm [17] between nH and nT with the RTT between nodes used as edge weights.
In lines 6-13, the resulting candidate nodes are filtered for SLO compliance and function

30

5.2. State Bundling Mechanism

Algorithm 5.1: Target Storage Election Algorithm
Input: nodeGraph // Vertex:Node, Edge:RTT
Input: targetFunction
Input: T RT T

max // SLO
Input: nH // Head Node
Input: nT // Tail Node
Output: sE // Elected Target Storage

1 filteredSLO = new Stack()
2 sE = null
3 // Reduce solution space
4 storageCandidates = dijkstra(nodeGraph, nH , nT)
5 // Apply SLO filter and warm function filter
6 for each candidateNode, tRT T in storageCandidates do
7 if tRT T ≤ T RT T

max then
8 filteredSLO.push(candidateNode.storage)
9 if targetFunction in candidateNode.warmFunctions then

10 sE = candidateNode.storage
11 end
12 end
13 end
14 // Pick Target Storage
15 if sE == null then
16 sE = filteredNodesSLO.pop()
17 end
18 return sE

availability as per phase ②. Each node fulfilling the SLO is pushed on a stack. If it also
hosts the Target Function in the warm queue, the nodes’ storage instance is temporarily
assigned as the elected Target Storage sE . If a node later in the path satisfies both
conditions, sE is overwritten, ensuring that viable Target Storage is selected while moving
the state toward the workflow goal vicinity. Lines 15-18 depict phase ③, where the Target
Storage is elected. If sE has already been set inside the last block, it is returned as is.
The other case indicates that no node complying with SLO requirements has the Target
Function in the warm queue. Therefore, the storage hosted by the SLO-compliant node
furthest toward nT is elected and returned.

5.2 State Bundling Mechanism
The bundling mechanism leverages the Skylark SDK to enable Embedded Functions.
These functions optimize state management by reducing the number of state operations
performed on external storage. We achieve this by providing the developer with interfaces
where state operations such as get, set, and delete can be performed atomically for

31

5. Skylark Mechanisms

set<k₄,v₄>

get<k₁>
v₁

exec

GET Atomic

invoke<k₂>

get<k₂>
v₂

GET Atomic

SET Atomic

SET Atomic
set<k₃,v₃>

v₄

FaaS Sandbox

f₁ Storagef₂

(a) Embedded Functions performing get and
set operations one-by-one

FaaS Sandbox

v₄

set<k₃₄, [(f₃,v₃),(f₄,v₄)]>

get<k₁₂>

[(f₁,v₁), (f₂,v₂)]

invoke<v₂>

SET Embedded

exec

GET Embedded

f₂ Storage f₁ SDK

get Bundle
<k₁₂>

k₃₄

set Bundle
(f₃,v₃), (f₄,v₄)

generate
SkylarkKey

(b) Embedded Functions performing get and set
operations using the state bundling mechanism

Figure 5.5: Comparing the number of state operations needed to get and set the state of
two Embedded Functions with and without the state bundling mechanism

multiple functions.

Figure 5.5 compares two scenarios where Embedded Functions perform storage operations
with and without the Skylark State Bundling mechanism. Both scenarios include two
serverless functions embedded into a single sandboxed environment f1(f2) ∈ F . Both
functions rely on the input state to perform their task and produce the output state
when their computation finishes. Since serverless functions are stateless, the state is
stored externally. A part of f1’s execution depends on the function output state of f2.

Figure 5.5a depicts the baseline scenario where both functions perform get and set storage
operations independently. First, f1 fetches its state Df1

A from the external storage using
key k1 and then invokes f2 since it needs the output for its computation. f2 also performs
a storage get operation using its key k2 to retrieve the input state value v2. After f2
finishes its tasks, the output state Df2

A = {k4, v4} is saved using a set operation to the
external storage. The state value v4 is returned to f1, which can now finish its task. In
the same fashion as f2, f1 saves it output state Df1

A = {k3, v3} using a set operation and
terminates. In total, 4 state operations have been performed.

By contrast, when using the Skylark State Bundling mechanism (Figure 5.5b), the two
functions can perform the same work with only 2 storage operations. f1 as the parent
function leverages the Skylark SDK to treat the function state of both functions as a

32

5.2. State Bundling Mechanism

single entity. Using the key for the Embedded State k1, the SDK fetches the input
state for f1 and f2 with a single storage get operation. Next, f1 invokes f2 and directly
supplies its input state as part of the request, therefore allowing f2 to start task execution
immediately. After f2 finishes its task, the output state value v4 is returned to f1,
which can now finish its task. Finally, f1 again uses the SDK to create an Embedded
State object for both functions’ output state Df1

E = {k2, [(f1, v3), (f2, v4)]}. The SDK
accepts the function output states as tuples of FunctionID and state value (kF , v) and
aggregates them into a state bundle. A SkylarkKey is created to identify the bundle, and
finally, the Embedded State is stored in the external storage with a single state operation.
In total, 2 state operations have been performed.
Using the baseline method, the number of storage operations grows with a factor of
n, where n is the number of functions embedded in a sandbox |f |. Employing the
Skylark State Bundling mechanism results in constant storage operations regardless of
|f |, therefore minimizing storage operation overhead.

Algorithm 5.2: State Bundling Algorithm
Input: D // State Tuples [(kF, v)]
Input: targetStorage // StorageID kS

Input: fnId // FunctionID kF of parent
Input: chainId // Optional ChainID kC

Output: k // SkylarkKey
1 DE= new EmbeddedState()
2 if chainId == null then
3 chainId = generateNewId()
4 end
5 k = new SkylarkKey(chainId, fnId, targetStorage)
6 DE .setKey(k)
7 // Map Key-Value pairs to State object
8 for each kf , v in D do
9 DE .setField(kf , v)

10 end
11 // migrate state to Target Storage
12 storageClient.setEmbedded(DE , k.StorageID)
13 return k

Algorithm 5.2 depicts the state bundling mechanism for the case in which Embedded
Functions want to store multiple state values to a Target Storage with a single state
operation from the perspective of the Skylark SDK. It expects multiple inputs: D is an
Array of state tuples holding the actual state of the functions and their corresponding
identifiers. The targetStorage indicates the storage instance on which the state will be
stored. This can be local storage or remote storage on another node in the cluster. The
fnId identifies the parent function using the SDK. The optional chainId identifies the
workflow instance.

33

5. Skylark Mechanisms

In lines 2-4, a new chainId is generated if none was provided. In line 5, a SkylarkKey
is created, composed of kC , kF , kS , and assigned as key for the Embedded State in line
6. In lines 8-10, the state tuples provided by the parent functions are mapped to the
Embedded State object DE . In line 12, the Embedded State is saved to the Target
Storage, and the new SkylarkKey k is returned to the parent function in line 13.

34

CHAPTER 6
Prototype Implementation

This Chapter describes the implementation process and technologies used for the Skylark
Framework. We realized Skylark Elect Service as a stand-alone Rust [44] service. Skylark
SDK is realized as a Rust Library. Local storage instances are provided using Redis
key-value stores. We also provide an overview of the GitHub repository [21] structure
and conclude with a description of the challenges we faced during development and how
we addressed them.

6.1 Environment and Tech Stack
Programming Language: Rust [44]. Reducing serverless workflow overhead is one
of the primary objectives of our mechanisms. By choosing a low-level programming
language, we avoid introducing language-related performance overhead. Rust offers native
memory safety and powerful async capabilities compared to languages like C or C++. It
has out-of-the-box support for compiling to Wasm targets. Table 6.1 shows the key Rust
libraries we used. See Section 6.2 for a detailed description.

WebAssenbly Runtime: WasmEdge [54]. Wasm applications integrate well into
heterogeneous edge environments since they are portable across different platform ar-

Name Used by Description
reqwest Elect, SDK HTTP communication as client
tokio Elect, SDK Asynchronous operations and concurrency
hyper Elect HTTP communication and exposing an API
serde Elect, SDK Serializing and de-serializing data to/from internal models
redis SDK Storage operations as client

Table 6.1: Key Rust Libraries used for the Skylark Prototype

35

6. Prototype Implementation

chitectures. Its sandboxed execution environment offers additional safety bounds on
a multi-tenant, serverless platform. Wasm binaries have smaller footprints and faster
start-up times than traditional containers. WasmEdge supports Rust out of the box and
integrates well with Kubernetes through the Kwasm add-on.
Containerization: Docker [18]. We used Dockerfiles to build and containerize the
Wasm binary in two steps:

1. Build: The rust image for the wasi/wasm platform is used as build environment.
Additionally, clang is installed. The cargo target wasm32-wasmp1 is added, and
the RUSTFLAGS wasmedge and tokio_unstable are set.

2. Containerize: The second step creates a minimal scratch image, places the
compiled binary in the root folder, and marks it as ENTRYPOINT.

We published images to DockerHub [19] via docker push.
Orchestrator: Microk8s [14] There are several Kubernetes forks suitable for resource-
constrained environments, such as the LEO edge (OpenFaaS [26], k3s [37]). We chose
Microk8s for its high compatibility with the chosen OS (Ubuntu Server 24.04.1 LTS)
running on our hardware (Raspberry Pis). However, our prototype is platform-agnostic.
Serverless Framework: Knative [23]. State-of-the-art framework and high compati-
bility with the remaining tech stack. It was added using the Microk8s Knative plugin.
Storage: Redis [42]. For data storage, we chose a fast and lightweight key-value store.
Redis allows for simple String key-value pairs and more sophisticated storage types like
HashMaps. This is important since we use HashMaps to model Embedded State for
Embedded Functions. We deploy one Redis instance via DaemonSet to enable local
storage on each node.

Next, we describe the implementation workflow of the prototype from development to
deployment:

1. Develop: Create software artifact using the Rust programming language.

2. Build: Calling docker buildx build compiles the code and creates a Docker
image.

3. Push: We publish the Docker Image to the DockerHub container registry via
docker push.

4. Deploy: The Image is deployed via kubectl apply using a YAML script.
Skylark Elect Service is deployed as DaemonSet across all cluster nodes. Skylark
SDK is deployed as part of a serverless function as a Knative Service.

The prototype requires setting the environment variables shown in Table 6.2.

36

6.2. Tools and Libraries

Variable Used by Description
LOCAL_NODE_HOST Elect, SDK IP of the local node

NODE_INFO_PORT Elect Port of the local NodeInfo
service for topology data

NODE_REFRESH_INTERVAL Elect Refresh interval of the
Topology Handler

SKYLARK_ELECT_PORT SDK Port of the local
Skylark Elect Service

Table 6.2: Environment variables accessed by the prototype

6.2 Tools and Libraries

Here, we describe the tools and libraries used by the prototype.

Threads

Skylark Elect Service initializes on start-up and spawns two threads: Node Topology
Handler and HTTP Client Handler. We use the tokio crate and utilize its thread
tooling.

Topolog handler Policy logic

NodeGraph

NodeMap

Mutex

Mutex

write

write read

read

Figure 6.1: Skylark Elect Service threads and shared data

We use Mutex guards provided by the Rust std::sync library to restrict concurrent
access to the shared objects.

37

6. Prototype Implementation

SkylarkKey generation

We use the uuid library to generate ChainID and FunctionID.

d4aa0228- ff89-43ad-8934- ef732eac57079eed920b-1680-461e- ae21- adf74cf81cd4 10.0.0.34: :

ChainID StorageID FunctionID

Figure 6.2: Anatomy of a SkylarkKey

Figure 6.2 provides an example of a serialized SkylarkKey, where colons separate the
three parts.

(De-)Serialization

Using HTTP and Redis clients requires serializing and de-serializing data, which is
moved across system layers. We used the JSON standard for string conversion. The
Rust libraries serde and serde_json were leveraged to enable this functionality via
#[derive()]. The SkylarkKey is also converted to and from a String by leveraging
serde. This allows developers to use the String type when interacting with the Skylark
SDK.

HTTP Client and Server

We used the reqwest library to perform HTTP requests and the hyper library to serve
the HTTP GET endpoint /storage-node in the Skylark Elect Service.

Redis Client

The Redis Client interfaces with the Skylark SDK State module and the cluster’s Redis
instances. It exposes functionality for reading, writing, and deleting Embedded State
and Atomic State. Redis Hashes store the former, and regular Key-Value pairs store the
latter.

6.3 GitHub Repository
This section describes the repository structure and links the relevant packages. Each
package has a README.md file in its root folder with a short description and instructions
for building and deployment. Link to the repository: https://github.com/polaris-slo-
cloud/skylark

• skylark_elect: Skylark Elect Service implementation

• skylark_sdk: Skylark SDK implementation

38

6.4. Challenges and Solutions

• experiments: Includes scripts for setup and execution and introductions for the
topology simulation.

• examples: This directory includes example functions implementing the Skylark
SDK and the NodeInfo service.

6.4 Challenges and Solutions
This Section describes two challenges we faced during development and how we solved
them.

6.4.1 Serverless and Networking
Challenge. As our work aims to embrace the serverless paradigm, the first version of the
Skylark Elect Service was deployed as a Knative service. This introduced two problems:
First, calling the service while in the cold queue caused significant overhead. Second,
service discoverability from outside the Knative environment was a challenge.
Solution. Deploying Skylark Elect Service as a Daemonset across nodes. This prevents
scale-to-zero without paying a high price in computing resources since the memory
footprint of the Wasm image is tiny compared to images using standard target platforms
(Linux, Windows). Networking becomes trivial since using hostNetwork: true in
the deployment spec enables client services to reach the Skylark Elect Service via the
node IP and a static port.

6.4.2 Separation of concerns
Challenge. The second version of the Skylark Elect Service took the whole state as input
and took care of node election and State Propagation. In this version, the SkylarkKey
didn’t encode the Target Storage. This led to high coupling with the client and made
Skylark Elect Service a bottleneck for parallel executions. Also, a non-ephemeral state
must be stored to track state locations. Solution. Separate the concerns of node election
and state operations. Skylark SDK executes state operations and calls the Skylark Elect
Service only with necessary information. This further allows for flexibility in Skylark
Elect Service’s deployment. The service can be deployed on multiple nodes, but it could
also be deployed as a centralized service.

39

CHAPTER 7
Evaluation

This Chapter evaluates the Skylark model and its mechanisms for State Propagation
and State Bundling within the 3D Continuum. Our experimental cluster consists of
8 nodes, simulating dynamic network conditions using latency and bandwidth control
tools. We conducted experiments to assess i) workflow State Propagation performance
(Section 7.2), ii) target election algorithm scalability (Section 7.3), and iii) workflow
scalability (Section 7.4). For State Bundling, we iv) conducted a performance experiment
(Section 7.5). We conclude the Chapter by discussing the findings in Section 7.6. Results
indicate that Skylark’s State Propagation mechanism reduces workflow latency by up
to 33% and state retrieval time by up to 66% compared to baseline approaches while
increasing workflow throughput by up to 91%. The State Bundling mechanism decreases
function latency by up to 24% by minimizing storage operations. These findings demon-
strate the effectiveness of Skylark in optimizing stateful serverless execution across the
3D Continuum.

7.1 General Experimental Setup

7.1.1 Infrastructure
All experiments were conducted on a cluster of 8 nodes, divided into 1 cloud node and 7
satellite nodes.
Hardware. The cloud node and 3 satellite nodes are Raspberry Pi (RPI) 5 Model B
Rev 1.0 (8GB RAM, 4x2.4GHz CPU), 3 satellite nodes are RPI 4 Model B Rev 1.4 (8GB
RAM, 4x1.8GHz CPU), and 1 satellite node is a RPI 4 Model B Rev 1.1 (2GB RAM,
4x1.5GHz CPU). All devices have a WiFi chip connected to a consumer-grade Router
(Zyxel DX-3101-BO) supporting 5GHz/10Gbit. Figure7.1 shows the Raspberry setup
during the experiment. To help the RPIs with passive heat syncs with heat dissipation,
2 12V ventilators were installed on a cartage contraption to produce air circulation. The

41

7. Evaluation

fans drew power directly from 2 RPI’s General Purpose Input/Output pins. Though
these only supply 5V, the resulting air current was sufficient to keep core temperatures
below 60°C throughout the experiments.

Figure 7.1: Testbed setup with 8 Raspberry Pis

Software. The experimental functions are written in Rust v1.83.0 with Cargo edition
2021 (using Skylark SDK as a dependency) and compiled with WasmEdge, using the
wasm32-wasip1 target. Docker-Desktop, enabled with the containerd image store, was
used to store/push Wasm images on/to DockerHub. We chose Knative Serving v1.8.1
as a serverless platform to pull, serve, and scale our serverless functions. The Node-
Info-Service, simulating an orchestrator API providing up-to-date node topology data,
was written in Python (Docker image target: python:3.9-slim linux/arm64). All
nodes run the Ubuntu Server 24.04.1 LTS operating system (OS). We chose Microk8s
v1.31.3 as the orchestrator, a lightweight Kubernetes fork that integrates well with
Ubuntu.

Networking. We used the tc tool to control latency (netem delay) and bandwidth
(htb rate) between nodes. We set the simulation parameters based on similar work
on Edge-Cloud-Space communication [33]. Satellite-to-satellite latency was uniformly
sampled from [1,20] ms and [45,75] for satellite-to-cloud communication. Using cronjobs
to simulate a changing network topology, we change the tc configuration over time.
Cronjobs allow for testing different topology-change periods.

42

7.1. General Experimental Setup

Functions

The functions are deployed as Knative services. To enable scheduler simulation, we
deploy node-specific functions, increase the scale-down time to 10 minutes, and discount
the first run to remove bias from cold starts. Each function uses the Skylark SDK as a
dependency for storing and retrieving state data. They expose an HTTP endpoint for
function invocation and output their result as an HTTP Response. All functions are
written in Rust and compiled as Wasm binaries.
Each function takes a SkylarkKey as input, retrieves the predecessor output state, does
some computation, and stores a new output state of the same size via Skylark SDK.
They return experiment metrics and the new SkylarkKey.

7.1.2 Storage
Our experiments use Redis as the key-value store to migrate and retrieve data. Each
node in our cluster has a local Redis (community edition) instance running inside a
Microk8s pod. We developed and used a helper function to store values of different but
specific sizes. It is written in Rust and exposes an HTTP endpoint, which expects the
target node and state size as input. The function generates a random string of this size
and stores it in the specified Redis instance.

7.1.3 Scripts
We use shell scripts to prepare and execute the experiments.

State Propagation

• setup_propagate_performance.sh: generates data with sizes 1MB-50MB
and stores it in the given storage.

• setup_propagate_scalability.sh generates a given amount of key-value
pairs with fixed size and stores them in the given storage.

• run_propagate_performance.sh: Runs performance experiment.

• run_propagate_scalability.sh: Runs scalability experiment.

• run_propagate_workflow.sh: Runs a single workflow. It is called by
run_propagate_scalability.sh.

State Bundling

• setup_bundled.sh: Generates and stores data for atomic and Embedded Func-
tions of depth 2-5 in the given local and global storage.

• run_bundled.sh: Runs the performance experiment.

43

7. Evaluation

Name Node-Type Description

Preprocess All Gets the path to the raw image as input, opens it, and
performs processing operation, stores data, returns key.

Filter All Gets key from Preprocess as input, loads data,
performs filter operation, stores data, returns key.

Detect All Gets key from Filter as input, loads data,
performs detection operation, stores data, returns key.

Alarm Cloud Gets key from Detect as input, loads data, performs
resource-intensive inference tasks, returns result.

Table 7.1: Serverless functions used in the workflow based on our EO use case

Baseline Storage location Description

Stateless Cloud centralized Workflow functions store and retrieve
state from a centralized global storage

Random Local on all nodes Picks a random node from the initial path
as Target Node for each state transition

Table 7.2: Experiment Baselines

7.2 Experiment: State Propagation Workflow Performance
This experiment evaluates the performance of the Skylark State Propagation mechanism
against two baseline policies in a serverless workflow comprised of 4 chained functions.
Table 7.1 shows the example functions we implemented for the experiment, inspired by
the use case scenario outlined in Chapter 1.

7.2.1 Experiment Definition
Let W be a serverless workflow with 4 chained functions W = {[f1, f2, f3, f4], n8}. Let
n1..7 ∈ NS be satellite nodes, and n8 ∈ NC a cloud node holding f4 in the warm queue
and, therefore, chosen as Tail Node. The experiment is conducted and repeated with
increasing state sizes (5MB,10MB,...,50MB). The client invoking W is located near n1
and acts as a workflow handler. All functions utilize Skylark SDK to store the output
state and retrieve the input state. The function finally returns the SkylarkKey to the
client. The RTT SLO is set to 60ms. We evaluate Skylark against 2 baselines defined in
Table 7.2.

In each test run, we gather the following metrics:

• Workflow latency TW : The total time of a workflow execution from the time f1 is
invoked until f4 returns its output.

• State migration time T
mig(v)
f : The time it takes f to store output state value v.

44

7.2. Experiment: State Propagation Workflow Performance

• State retrieval time T
ret(v)
f : The time it takes f to retrieve input state value v.

• State retrieval distance dnv ,nf
: The distance between the node hosting the Target

Storage nv of input state value v and the actual node executing f (0 if the state is
locally available).

• Local state availability Lf : Binary value depicting whether the input state was
available locally. We calculate the arithmetic mean over all runs to find the average
local state availability in %.

Note that f4 is scheduled on n8 in all scenarios, simulating a node-type specific function
as per our use case, demanding a cloud environment for resource-intensive tasks. There-
fore, we don’t consider dnk,nf

and Lf for this function when evaluating the workflow
performance. The experiment was repeated 10 times per policy and state size to ensure
consistency and avoid bias.

7.2.2 Experiment Setup
We set up the infrastructure and networking simulation described in Section 7.1.1. In
this experiment, nodes n1..3, n8 are RPI 5, n4..6 are RPI 4 with 8GB RAM, and n7 is
a RPI 4 with 2GB RAM. All Redis instances, excluding n1, are cleared before each
workflow execution. We wrote a shell script simulating the client and scheduler, calling
the functions defined above. The shell script also performs the timing for TW . The
example functions supply dnk,nf

, T
mig(v)
f , T

ret(v)
f , Lf as part of their output. The shell

script outputs all metrics for each experimental run to a log file.

NodeInfo Setup

This Python pod is an orchestrator API wrapper that exposes factual information via
HTTP endpoints, such as node metadata and simulated node topology information.
It loads the simulated topology via a JSON file and changes the inter-node latencies
within the defined deviation ranges. The service queries the Kubernetes API for node
specifications, such as name and IPs. It is deployed on each node as a Daemonset.

7.2.3 Experiment Result
Figure 7.2 reports the workflow latency and throughput result of the performance
experiment for Skylark compared to the Stateless and Random baselines. Figure 7.2a
shows the average workflow execution time TW on the y-axis and the state size on the
x-axis. On average, Skylark decreases workflow latency by 33% compared to Stateless
and by 22% compared to Random. Figure 7.2b reports on the throughput. Skylark has
a consistently higher throughput than the other policies. Skylark improves throughput
by 50% compared to Stateless and 29% compared to Random.

We hypothesized that propagating the output state close to its Target Function’s local
execution environment reduces workflow latency. Figure 7.3 reveals the average read

45

7. Evaluation

10 20 30 40 50

10

20

30

40

Input Size (MB)

Se
co

nd
s

Skylark Stateless Random

(a) Latency

10 20 30 40 50

0.05

0.1

0.15

Input Size (MB)
R

eq
ue

st
s

pe
r

se
co

nd

(b) Throughput

Figure 7.2: Total Workflow Execution Time

(T ret(v)
f) and write (T mig(v)

f) times (y-axis) of workflow functions of varying input sizes
(x-axis). Figure 7.3a plots T

ret(v)
f and shows a significant decrease for Skylark compared

to Stateless (66%) and Random (62%). However, as shown in Figure 7.3b, Skylarks
average T

mig(v)
f is 9% lower than Stateless and 4% higher than Random. We conclude that

Skylark significantly reduces state retrieval times while performing similarly regarding
state migration time. Next, we look at local state availability Lf and state proximity
dnk,nf

. Recall that state is locally available if the function can access it through the local
storage. Conversely, the state distance is determined by the number of nodes between
the function and the state.

The left chart of Figure 7.4 illustrates that, indeed, Skylark has a lower average distance
(0.21) between the function execution environment and its state compared to Stateless
(4) and Random (2.16). Random leverages local storage on satellite nodes; therefore, the
average distance is lower than the stateless approach. On average, Skylark has a local
state availability of 79% compared to 12% with the Random policy. We conclude that
Skylark increases local state availability and reduces network strain compared to the
baselines.

An essential aspect of electing successor nodes for State Propagation is the scheduler’s
decision. One way of predicting where the scheduler invokes a function is SLO awareness.
The RTT SLO is essential to Skylark’s election decision. Figure 7.5 reports on the SLO

46

7.2. Experiment: State Propagation Workflow Performance

10 20 30 40 500

2

4

6

8

10

Input Size (MB)

Se
co

nd
s

Skylark Stateless Random

(a) Read

10 20 30 40 500

2

4

6

Input Size (MB)

Se
co

nd
s

(b) Write

Figure 7.3: Average Retrieval and Migration Times

Skylark Stateless Random
0

2

4

0.21

4

2.16

D
ist

an
ce

(H
op

s)

Skylark Stateless Random
0

20

40

60

80

100
79

0
12Av

ai
la

bi
lit

y
(%

)

Figure 7.4: Average State Read Distance in Hops and Local State Availability

violations during the experiment. Skylark never violates the SLO since the algorithm
prohibits it. The Random policy has a high variation in SLO violations, explained by
the nature of picking random nodes in the path. The Stateless setup has many SLO
violations due to the high cost of migration and retrieval from the central storage.

Figure 7.6 reports average resource usage over all nodes during experiment execution.
Throughout the experiment, both CPU usage and RAM allocation remain stable. Skylark,
on average, requires 3.5% more RAM than Stateless.

47

7. Evaluation

Skylark Random Stateless

1

10

20

30

40

50

0 30 100

0 100 100

0 40 80

0 30 100

0 10 80

0 30 40

Policies

In
pu

t
Si

ze
(M

B)

0

20

40

60

80

100

SL
O

V
io

la
tio

ns
(%

)

Figure 7.5: Data Migration Time SLO Violation Map

0 10 20 30 40 5013
14
15
16
17

Input Size (MB)

C
PU

U
sa

ge
(%

)

Skylark Stateless Random

(a) CPU

0 10 20 30 40 50
1,200

1,300

1,400

1,500

Input Size (MB)

R
A

M
al

lo
c.

(M
B)

(b) RAM

Figure 7.6: Resource Usage during State Propagation Performance Experiment

7.3 Experiment: State Propagation Policy Scalability
LEO satellite networks consist of thousands of satellites. To ensure our model is viable
for topology sizes of this scale, we benchmark the implementation of the Skylark policy.

7.3.1 Experiment Definition
Based on multiple input variables, the Skylark policy decides if and where to propagate
the state. See Algorithm 5.1 for details. We consider node topologies of size 10, 100,
1,000, and 10,000. The topology size’s average policy runtime is the only metric collected
in this experiment. The experiment was repeated 15 times for each node topology size.

7.3.2 Experiment Setup
We set up the infrastructure and networking simulation described in Section 7.1.1. We
used a RPI 5 node. We implemented a "/benchmark" endpoint in our Skylark Elect

48

7.4. Experiment: State Propagation Workflow Scalability

Service prototype to eliminate bias from function overhead or invocation latency. It loads
the graphs from JSON files and elects the worst-case nodes as Head and Tail Nodes.
Timing is done directly in the endpoint function and returned as an HTTP response.

7.3.3 Experiment Result

10 100 1000 10000
0

0.2

0.4

0.6

0.8

Nodes

Ex
ec

.
tim

e
(s

)

Skylark Random

Figure 7.7: Simulation of Skylark state propagation node election for 10-10,000 nodes

Figure 7.7 shows the result of our load test. While with 10 and 100 nodes, the policy
runtimes are negligible, the computational complexity of Dijkstra’s algorithm O(V +
ElogV), where V is the number of vertices and E the edges, is noticeable with topology
sizes 1,000 and 10,000. Comparing Skylark to the Random policy shows that SLO
awareness adds minimal overhead. Specifically, Skylark is slower than the Random policy
on average by 1 ms at V = 1.000 and by 3 ms at V = 10.000.
We see two options for future work. First, in most use cases, we expect serverless
workflows to be geographically restricted. A local and, therefore, smaller graph for policy
decisions would make the current implementation feasible. If not, using an alternative
data structure, like a Binary Heap with the algorithm, would improve the runtime
complexity. Approximation algorithms and distributed solutions could also be potential
avenues for optimization.

7.4 Experiment: State Propagation Workflow Scalability
In Section 7.2, we tested how workflow latency and throughput change when varying
the input size to determine the performance of Skylark Elect Service. However, we also
want to know how these metrics are affected by different numbers of parallel workflow
execution requests.

7.4.1 Experiment Definition
The Experiment definition is analogous to the performance experiment (see Section 7.2.1).
However, we use a fixed state size of 2MB instead of the varying input sizes. The number

49

7. Evaluation

of parallel executions (fan-out degree) ranges from 5 to 50. We measure the workflow
latency metric TW . This is when f1 is invoked until f4 returns its output. The experiment
was repeated 10 times for each parallel execution step.

7.4.2 Experiment Result

1 10 20 30 40 50

0

1,000

2,000

3,000

4,000

Parallel Executions

Se
co

nd
s

Skylark Stateless

(a) Latency

10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Parallel Executions

R
eq

es
ts

pe
r

se
co

nd

(b) Throughput

Figure 7.8: Skylark Elect Scalability with Parallel Workflow Executions

0 10 20 30 40 5010

12

14

16

18

20

Parallel Executions

C
PU

U
sa

ge
(%

)

Skylark Stateless

(a) CPU

0 10 20 30 40 50
1,200

1,300

1,400

1,500

Parallel Executions

R
A

M
al

lo
c.

(M
B)

(b) RAM

Figure 7.9: Resource Usage during State Propagation Scalability Experiment

50

7.5. Experiment: State Bundling Performance

Figure 7.8a reports on the workflow latency of the State Propagation scalability experi-
ment, where the x-axis represents the fan-out degree and the y-axis the sum of workflow
latencies in seconds. Using the Skylark policy results in slower latency growth when the
number of parallel executions increases compared to the Stateless policy. On average,
Skylark reduces workflow latency by 47% in comparison with Stateless. In Figure 7.8b,
we see throughput as requests per second on the y-axis while representing fan-out degree
on the x-axis as before. Skylark achieves higher throughput than Stateless consistently.
On average, the Skylark policy improves throughput by 91%. We attribute this to the
reduced read time caused by providing a function’s input state close to its local execution
environment.
Figure 7.9 reports on the resource usage during experiment execution. Throughout the
experiment, both CPU usage and RAM allocation remain stable. Skylark, on average,
requires 3.1% more RAM and 5% more CPU than Stateless.

7.5 Experiment: State Bundling Performance
This experiment evaluates the performance of our State Bundling mechanism proposed
in Section 5.2.

7.5.1 Experiment Definition
We evaluate the performance of the State Bundling mechanism for Embedded Functions
fE ∈ F sharing a single sandbox with different bundle sizes and storage placements. We
compare our mechanism to a baseline where the same functions are placed in separate
sandboxes (Atomic) fA ∈ F . Let nS , nC ∈ N be a satellite and a cloud node and T l

nS ,nC

the network latency between nS and nC . We consider embedded and Atomic Functions
with depths 2-5. Let T

total(v)
f be the total time f takes to retrieve and store state value v,

where |v| = 10MB in this experiment. A run with |fE | = i, i ∈ [1..5] entails fE making 1
call to retrieve and 1 call to store state with |v| = i ∗ 10MB and fA making i calls to
retrieve and i calls to store state with |v| = 10MB. We summarize the experimental
configurations in Table 7.3. We gathered the following metrics during the experiment:

• State migration time T
mig(v)
f : The time it takes f to store state value v.

• State retrieval time T
ret(v)
f : The time it takes f to retrieve state value v.

• T
avg(k)
f : The arithmetic mean of a functions’ T

mig(v)
f and T

ret(v)
f .

• Total state latency T
total(v)
f : The total function execution latency.

T O
f = T

total(v)
f − T

ret(v)
f − T

mig(v)
f (7.1)

The experiment was repeated 10 times for each state configuration and function depth.

51

7. Evaluation

Configuration Handle |f |max State Location State Size Network Delay
Atomic-Global ASG 1 nC 10MB 45ms
Atomic-Local ASL 1 nS 10MB 0ms

Embedded-Global ESG 5 nC |f | ∗ 10MB 45ms
Embedded-Local ESL 5 nS |f | ∗ 10MB 0ms

Table 7.3: Serverless functions used in the State Bundling performance experiment

7.5.2 Experiment Setup
We set up the infrastructure and networking simulation described in Section 7.1.1. In
this experiment, nodes nS and nC are RPI 5. We wrote 3 shell scripts:

• setup_storage_mechanism.sh: Takes the state size in bytes as input and
stores a generated string of that size to the Redis stores of nC and nS for both
Atomic and Embedded Functions of depth 1-5. Prints the generated keys to stout.
These are pasted into the next script.

• run_bundled.sh: Takes |f | as input and calls the functions in all configurations
a given number of times. Does timing for T

total(v)
f and also fetches T

mig(v)
f and

T
ret(v)
f as return value from the functions. Logs all metrics to stout.

Function Setup

The functions are deployed and configured as described in Section 7.2.2. Two example
functions have been implemented for this experiment:

1. Embedded. The invocation endpoint takes the Target Storage and SkylarkKey
as input. It fetches the Embedded State and stores it as a new value to the same
storage instance.

2. Atomic. Same as Embedded, but fetches and stores the state individually.

7.5.3 Experiment Result

Figure 7.10 reports on T
total(v)
f of varying bundle sizes. We can observe that the function

latency delta between Atomic and Embedded configurations grows as |f | increases in both
Local and Global state modes. On average, Embedded-Global (ESG) reduces latency by
20% compared to Atomic-Global (ASG). In the Local configuration, Embedded-Local
(ESL) improves latency by 19% compared to Atomic-Local (ASL).

Figure 7.11 presents the same results in a line chart. The latency is shown on the y-axis,
and the function depth is displayed as input size on the x-axis. State Bundling decreases
latency by up to 24% for Global State and by up to 23% for Local State.

52

7.6. Threats to Validity

AtomicEmbedded
0

10

20

30

6.85.4

12.9
10.9

19.2
15.8

25.8

21

33.5

25.4

Se
co

nd
s

|f |
1
2
3
4
5

Global State

AtomicEmbedded
0

1

2

0.450.4

0.90.8

1.3
1.1

1.8

1.4

2.3

1.8

Local State

Figure 7.10: Average total Function Latency with varying function depth Embedded vs.
Atomic

Figure 7.12 compares the networking overhead between the baseline and the State
Bundling mechanism. Recall that we defined the overhead by discounting the time used
for reading and writing the state (see Equation 7.1). What remains is the overhead
introduced by performing the storage operation itself. Due to the additional storage
operations the Atomic Function has to perform, the number of functions and overhead
increases. Using State Bundling results in a stable overhead since the number of storage
operations stays the same regardless of the number of functions.

7.6 Threats to Validity
The experiments highlight the inherent trade-offs in resource-constrained environments
such as the 3D Continuum. For instance, while resource usage (CPU and memory)
remains stable across experiments, the physical limitations of hardware like Raspberry
Pis and the network devices used in the testbed may not reflect the capabilities of more
powerful real-world edge nodes or satellites utilizing ISLs. This gap emphasizes the need
to evaluate diverse hardware platforms further to generalize the findings.

Larger state bundles may decrease scalability while reducing the number of operations.
Therefore, it is necessary to develop mechanisms to decide when to embed function states
in future work.

Another key insight is the importance of balancing local and global optimizations. While
the Skylark mechanisms prioritize local state availability and latency reduction for
serverless workflow instances, scenarios with frequent inter-node migrations may require
adaptive policies that dynamically weigh local efficiency against global coordination costs.

53

7. Evaluation

10 20 30 40 50

5

10

15

20

25

30

35

Input Size (MB)

Se
co

nd
s

Embedded Atomic

(a) Global State

10 20 30 40 50

0.5

1

1.5

2

Input Size (MB)

Se
co

nd
s

(b) Local State

Figure 7.11: Function Latency Atomic vs. Embedded

10 20 30 40 50

0.5

1

Input Size (MB)

Se
co

nd
s

Embedded Atomic

(a) Global State

10 20 30 40 50

0.2

0.4

0.6

Input Size (MB)

Se
co

nd
s

(b) Local State

Figure 7.12: Function Overhead Atomic vs. Embedded

54

CHAPTER 8
Conclusion

This thesis introduces Skylark, a serverless framework designed to optimize function state
management for serverless workflows in the 3D Continuum. The dynamic nature of this
Continuum, characterized by heterogeneous resources and changing network topology,
introduces significant challenges for stateful serverless functions. Traditional approaches
rely on centralized storage, leading to increased workflow latency and inefficient State
Propagation. Skylark addresses these challenges through a topology- and SLO-aware
model that improves local state availability and reduces the overhead of state operations.

The Skylark Model introduces a structured approach to stateful serverless workflow
execution, integrating two key components to aid in function-to-function state transitions:
the Skylark Elect Service and the Skylark SDK. These components work together to
dynamically elect optimal storage locations for function input and output state while
providing developers with an interface to manage function state efficiently. By providing
local storage on edge and space nodes, Skylark minimizes reliance on distant, high-latency,
and centralized cloud storage, ensuring that the function output state is available close
to the execution environment of the function dependent on it.

Two state management mechanisms were introduced, which leverage the Skylark Model to
decrease workflow latency. The State Propagation mechanism optimizes state placement
by dynamically electing successor storage locations based on network topology, SLOs,
and function readiness, reducing retrieval latency and improving data locality. The State
Bundling mechanism groups the state of co-located functions into a single entity, reducing
redundant storage operations and execution overhead.

We developed a prototype of Skylark and evaluated it using a wildfire detection use
case. Experimental results demonstrated that Skylark’s State Propagation mechanism
reduced workflow latency by up to 33% and state retrieval time by up to 66% compared
to traditional approaches relying on centralized cloud storage or random state placement
while increasing throughput by up to 91%. Additionally, the state bundling mechanism

55

8. Conclusion

reduced function execution latency by up to 24%, showing its effectiveness in minimizing
state management overhead. Skylark enhances the feasibility of deploying stateful
serverless workflows in highly dynamic environments by integrating node topology and
SLO-aware storage selection, proactive State Propagation, and state bundling. These
improvements make serverless computing viable beyond the static terrestrial edge and
cloud, supporting efficient function execution in the 3D Continuum.

The main contributions of this work are: (1) the Skylark Model, which provides a
structured framework for managing function state across cloud, edge, and satellite en-
vironments, (2) the Skylark Elect Service, a topology- and SLO-aware component that
dynamically selects the optimal storage location for function output state, improving
data locality and thereby retrieval delays, (3) the Skylark SDK, which enables seamless
interaction with function state, allowing developers to efficiently store, retrieve, and mi-
grate Embedded State within serverless workflows, (4) the State Propagation mechanism,
which proactively migrates function output state to nodes where it is most likely to
be accessed next by the successor function, minimizing network overhead and reducing
workflow execution time, and (5) the State Bundling mechanism, which aggregates the
state of co-located functions into a single entity, reducing redundant storage operations
and improving execution efficiency.

8.1 Research Questions
In this section, we revisit and answer the research questions based on our findings.

• RQ1: How can a serverless computing model be designed to support
stateful function execution inside serverless workflows across the 3D
Continuum? To address this question, this thesis introduced Skylark, a topology-
and SLO-aware serverless framework that provides local storage on edge and space
nodes while dynamically managing function input and output state. The Skylark
Elect Service selects optimal state storage locations based on network conditions
and function availability constraints, ensuring the state is close to where it will most
likely be accessed next. The Skylark SDK further provides an interface for functions
to store, retrieve, and migrate state seamlessly. Evaluation results demonstrated
that the model successfully reduces state retrieval latency and optimizes function
execution across a dynamic and heterogeneous computing fabric.

• RQ2: To what extent can reducing the overhead of state operations
improve the efficiency of co-located serverless functions? To answer
this question, the State Bundling mechanism was introduced, allowing multiple co-
located functions to manage their state as a single entity, which minimizes redundant
storage operations. Experimental results demonstrated that function execution
latency decreased by up to 24% when state bundling was applied, confirming that
reducing the number of independent state operations improves execution efficiency.

56

8.2. Future Work

• RQ3: To what extent can increasing local state availability and reducing
state retrieval latency improve the performance of serverless workflows?
This question was addressed through the State Propagation mechanism, which
dynamically places the function output state close to the execution environment of
the successor function, minimizing delays in state retrieval by increasing local state
availability. Experimental results showed that workflow latency was reduced by up
to 33% and state retrieval time by up to 66% compared to a stateless approach that
relies on centralized storage. Furthermore, Skylark improves workflow throughput
by up to 91%. These findings confirm that improving local state availability
improves overall workflow efficiency.

8.2 Future Work
Skylark provides a scalable and performant framework for stateful serverless execution in
the 3D Continuum. Our implementation is open-source and can be used by developers.
However, some areas remain open for further exploration and optimization, as partially
discussed in Section 7.6. Future work can build upon Skylark by refining its state
placement and bundling mechanisms, deployment strategies, and decision heuristics to
enhance performance and adaptability.

A potential avenue for future work concerns the optimization of state bundles. Our State
Bundling mechanism currently does not consider scalability. Arbitrarily growing the
bundle size would lead to a scalability bottleneck. Future work could develop heuristics
for balancing the number of state operations with the bundle size.

One promising direction is enhancing the Target Storage Elector with heuristic-based
decision-making for cold functions. As mentioned, our current approach picks a storage
based only on SLOs when no warm function is present. Future work could incorporate
heuristics such as historical execution data and orbit distance. By doing so, Skylark
could make more informed state placement decisions, improving state availability even in
scenarios where no warm function candidate exists.

Another potential enhancement to Skylark’s State Propagation mechanism is extending
its search scope beyond the shortest path between the current and tail nodes. In cases
where no warm function is detected along the shortest path, neighboring nodes of those
already in the path could be considered alternative candidates for State Propagation. This
additional search layer could increase the likelihood of finding warm functions, placing
the function state closer to the actual execution environment and reducing workflow
latency.

The deployment strategy of the Skylark Elect Service presents a trade-off between
centralization and decentralization. Deploying an instance on each node ensures minimal
lookup latency but increases resource consumption and management overhead. Conversely,
a fully centralized instance could become a bottleneck in a cluster containing thousands
of nodes. A hybrid approach, inspired by Air Traffic Control systems, where Skylark

57

8. Conclusion

Elect instances are geographically distributed across Earth and Low Earth Orbit, could
ease these concerns. This strategy would provide regional state election nodes, ensuring
efficiency and scalability in global-scale, latency-sensitive workflows.

58

APPENDIX A
Overview of Generative AI Tools

Used

I declare that I have used generative AI tools only as an aid, and that my own intellectual
and creative efforts predominate in this work. No content in this thesis was purely
generated via prompt and directly copied without significant modifications.

A.1 ChatGPT
The generative AI models ChatGPT-4o1 and ChatGPT-o12 aided in creating the in-
troductory paragraphs of Chapters 2-6. ChatGPT-o1 was further utilized to provide a
starting point for the contents of Chapter 2.

A.2 DeepL
DeepL3 aided in translating the Abstract from English to German.

A.3 Gammarly
Gammarly4 aided in correcting spelling and grammar issues. The AI tool for text
generation was not used in this thesis.

1ChatGPT-4o: https://openai.com/index/hello-gpt-4o/
2ChatGPT-o1: https://openai.com/index/introducing-openai-o1-preview/
3DeepL: https://www.deepl.com/
4Gammarly: https://app.grammarly.com/

59

https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-openai-o1-preview/
https://www.deepl.com/
https://app.grammarly.com/

List of Figures

1.1 Edge, Cloud, and Satellite computing layers in the 3D Continuum 2
1.2 Simplified EO image processing workflow 3
1.3 DSR methodology model [34] . 7

2.1 Starlink’s inner LEO satellite shell at 550km [22] 10

4.1 Skylark Serverless Workflow Model . 18
4.2 The changing Node Topology of LEO satellite nodes relative to terrestrial

nodes over time . 19
4.3 Local State vs. Global State . 21
4.4 Architecture of the Skylark Elect Service 22
4.5 Architecture of Skylark SDK . 24

5.1 Skylark State Propagation . 28
5.2 Example node topology containing edge, space, and cloud nodes with warm

functions and local storage . 28
5.3 Candidate nodes after calculating the shortest path from Head Node to Tail

Node in phase ① INITIALIZE . 29
5.4 Candidate nodes after SLO and warm function filtering in phase ② IDENTIFY 30
5.5 Comparing the number of state operations needed to get and set the state of

two Embedded Functions with and without the state bundling mechanism 32

6.1 Skylark Elect Service threads and shared data 37
6.2 Anatomy of a SkylarkKey . 38

7.1 Testbed setup with 8 Raspberry Pis . 42
7.2 Total Workflow Execution Time . 46
7.3 Average Retrieval and Migration Times 47
7.4 Average State Read Distance in Hops and Local State Availability 47
7.5 Data Migration Time SLO Violation Map 48
7.6 Resource Usage during State Propagation Performance Experiment 48
7.7 Simulation of Skylark state propagation node election for 10-10,000 nodes 49
7.8 Skylark Elect Scalability with Parallel Workflow Executions 50
7.9 Resource Usage during State Propagation Scalability Experiment 50

61

7.10 Average total Function Latency with varying function depth Embedded vs.
Atomic . 53

7.11 Function Latency Atomic vs. Embedded 54
7.12 Function Overhead Atomic vs. Embedded 54

62

List of Tables

4.1 Main notation adopted in the thesis . 19

6.1 Key Rust Libraries used for the Skylark Prototype 35
6.2 Environment variables accessed by the prototype 37

7.1 Serverless functions used in the workflow based on our EO use case 44
7.2 Experiment Baselines . 44
7.3 Serverless functions used in the State Bundling performance experiment . 52

63

List of Algorithms

5.1 Target Storage Election Algorithm . 31

5.2 State Bundling Algorithm . 33

65

Acronyms

EO Earth Observation. 1–3, 44, 61, 63

FaaS Function as a Service. 1

GEO Geostationary Orbit. 3

ISLs Inter-Satellite Links. 1, 53

LEO Low Earth Orbit. xi, 1, 3–6, 9, 10, 17, 19, 36, 48, 61

MEO Medium Earth Orbit. 2

OEC Orbital Edge Computing. 10

RTT Round-Trip-Time. 18, 22, 23, 29, 30, 44

SLO Service Level Objective. 4–6, 11, 14, 15, 17, 20, 23, 26, 27, 29–31, 44, 46, 47, 49,
55–57, 61

67

Glossary

Atomic Function A standalone function that runs in an isolated execution environment,
maintaining its own state independently, following the traditional serverless function
execution model. 19, 20, 25, 51, 53

Atomic State A state representation where each function maintains its own independent
key-value state, stored and retrieved separately. 25, 26, 38

Embedded Function A function that runs within a shared execution sandbox alongside
other functions, allowing direct memory sharing and optimized state management.
17, 19, 20, 23, 25, 31–33, 36, 43, 51, 52, 61

Embedded State A state representation where multiple co-located functions share and
manage their state as a single entity within a shared execution environment. 20,
25, 26, 33, 34, 36, 38, 52, 56

Global State A storage model where the output state of a serverless function is stored
in a centralized cloud-based repository. While providing global accessibility and
reliability, cloud state introduces higher latency and bandwidth costs compared to
localized storage options. 21, 61

Head Node Refers to the local execution environment of a function. Serves as a
reference point in the process of electing a Target Storage for State Propagation
insofar as it is the first node of the shortest path to the Tail Node. 27, 29–31, 61

Local State A storage model where a function’s output state is retained within its
execution environment or on a nearby node, reducing access latency and improving
data locality. 21, 61

Node Topology The arrangement and connectivity of cloud, edge, and space nodes
within the dynamic Edge-Cloud-Space 3D Continuum, where nodes interact based
on network latency, bandwidth, and mobility constraints. 18, 19, 22, 61

69

Skylark A topology- and SLO-aware serverless framework designed to optimize state
management in the Edge-Cloud-Space 3D Continuum. It introduces state propaga-
tion and bundling mechanisms to reduce workflow latency, improve data locality,
and enhance serverless execution efficiency across dynamic network topologies. ix–xi

Skylark Elect Service A distributed service deployed on each node in the Edge-Cloud-
Space 3D Continuum that dynamically selects target storage locations based on
node topology, SLOs, and function placement. 4, 6, 7, 17, 21–27, 29, 30, 35–39, 48,
49, 55–57, 61

Skylark SDK A software development kit that provides state management function-
ality for serverless workflows in the Edge-Cloud-Space 3D Continuum. It enables
functions to fetch input state, propagate output state, and manage bundled state
for embedded functions. 4, 6, 7, 17, 21, 23–29, 31–33, 35, 36, 38, 39, 42–44, 55, 56,
61

SkylarkKey A unique identifier generated by the Skylark SDK to manage function
state in serverless workflows. It encodes the workflow instance, target storage, and
function ID. 19, 23–25, 30, 33, 34, 38, 39, 43, 44, 52, 61

State Bundling The process of aggregating the state of multiple, co-located functions
into a single unit, called Embedded State. 4, 6, 7, 15, 17, 23, 26, 27, 32, 33, 41, 43,
51–53, 55–57, 63, 65

State Propagation The process of transferring the output state of a serverless function
to a designated storage location (Target Storage), ensuring availability for its
successor function. 3–7, 13–15, 21, 23–30, 39, 41, 43, 44, 46, 51, 55–57, 61

Tail Node The final execution node in a serverless workflow, typically hosting the last
function in a sequence. In the Edge-Cloud-Space 3D Continuum, the tail node is
often a cloud node, where resource-intensive tasks are performed, and it serves as
a reference point for state propagation and function placement decisions. 20, 23,
26–31, 44, 49, 61

Target Function A serverless function that is the designated successor in a workflow
sequence, relying on the output state of a preceding function as its input. 6, 20,
22–24, 26, 27, 29–31, 45

Target Storage A designated storage instance selected for holding the output state of
a serverless function, ensuring optimal accessibility for the Target Function. In the
Skylark model, target storage is dynamically elected based on node topology and
service level objectives (SLOs) to maximize data locality and minimize retrieval
overhead. xi, 17, 20, 22–31, 33, 34, 39, 45, 52, 65

70

Bibliography

[1] European Space Agency. European data relay satellite system (edrs) overview. Ac-
cessed: 2025-02-22. 2024. url: https://connectivity.esa.int/european-
data-relay-satellite-system-edrs-overview.

[2] European Space Agency. European Space Agency-funded Projects Reach New Per-
formance Level In Groundwork For Optical LEO To GEO Data Relays. Accessed:
2025-02-22. 2024. url: https://connectivity.esa.int/news/european-
space- agencyfunded- projects- reach- new- performance- level-
groundwork-optical-leo-geo-data-relays.

[3] European Space Agency. Sentinel-2 Operations. Accessed: 2025-02-22. 2024. url:
https://www.esa.int/Enabling_Support/Operations/Sentinel-
2_operations.

[4] European Space Agency and EUMETSAT. Sentinel High Level Operations Plan
(HLOP) (COPE-S1OP-EOPG-PL-15-0020, Issue 3 Rev. 1). Accessed: 2025-02-
27. 2021. url: https://sentiwiki.copernicus.eu/web/document-
library#DocumentLibrary-SENTINEL-2Documents.

[5] Airbus. Airbus built Sentinel-2C satellite successfully launched. Accessed: 2025-02-22.
2024. url: https://www.airbus.com/en/newsroom/press-releases/
2024-09-airbus-built-sentinel-2c-satellite-successfully-
launched.

[6] Michael Armbrust et al. „A view of cloud computing“. In: Commun. ACM 53.4
(Apr. 2010), pp. 50–58. issn: 0001-0782. doi: 10.1145/1721654.1721672.

[7] AWS. Amazon S3. Accessed: 2024-09-20. 2024. url: https://aws.amazon.
com/de/s3/.

[8] Daniel Barcelona-Pons et al. „On the FaaS Track: Building Stateful Distributed
Applications with Serverless Architectures“. In: Proceedings of the 20th Interna-
tional Middleware Conference. Middleware ’19. Davis, CA, USA: Association for
Computing Machinery, 2019, pp. 41–54. isbn: 9781450370097. doi: 10.1145/
3361525.3361535.

71

https://connectivity.esa.int/european-data-relay-satellite-system-edrs-overview
https://connectivity.esa.int/european-data-relay-satellite-system-edrs-overview
https://connectivity.esa.int/news/european-space-agencyfunded-projects-reach-new-performance-level-groundwork-optical-leo-geo-data-relays
https://connectivity.esa.int/news/european-space-agencyfunded-projects-reach-new-performance-level-groundwork-optical-leo-geo-data-relays
https://connectivity.esa.int/news/european-space-agencyfunded-projects-reach-new-performance-level-groundwork-optical-leo-geo-data-relays
https://www.esa.int/Enabling_Support/Operations/Sentinel-2_operations
https://www.esa.int/Enabling_Support/Operations/Sentinel-2_operations
https://sentiwiki.copernicus.eu/web/document-library##DocumentLibrary-SENTINEL-2Documents
https://sentiwiki.copernicus.eu/web/document-library##DocumentLibrary-SENTINEL-2Documents
https://www.airbus.com/en/newsroom/press-releases/2024-09-airbus-built-sentinel-2c-satellite-successfully-launched
https://www.airbus.com/en/newsroom/press-releases/2024-09-airbus-built-sentinel-2c-satellite-successfully-launched
https://www.airbus.com/en/newsroom/press-releases/2024-09-airbus-built-sentinel-2c-satellite-successfully-launched
https://doi.org/10.1145/1721654.1721672
https://aws.amazon.com/de/s3/
https://aws.amazon.com/de/s3/
https://doi.org/10.1145/3361525.3361535
https://doi.org/10.1145/3361525.3361535

[9] Debopam Bhattacherjee and Ankit Singla. „Network topology design at 27,000
km/hour“. In: Proceedings of the 15th International Conference on Emerging
Networking Experiments And Technologies. CoNEXT ’19. Orlando, Florida: Asso-
ciation for Computing Machinery, 2019, pp. 341–354. isbn: 9781450369985. doi:
10.1145/3359989.3365407.

[10] Debopam Bhattacherjee et al. „In-orbit Computing: An Outlandish thought Exper-
iment?“ In: Proceedings of the 19th ACM Workshop on Hot Topics in Networks.
HotNets ’20. Virtual Event, USA: Association for Computing Machinery, 2020,
pp. 197–204. isbn: 9781450381451. doi: 10.1145/3422604.3425937.

[11] Flavio Bonomi et al. „Fog computing and its role in the internet of things“. In:
Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing.
MCC ’12. Helsinki, Finland: Association for Computing Machinery, 2012, pp. 13–16.
isbn: 9781450315197. doi: 10.1145/2342509.2342513.

[12] Jan vom Brocke, Alan Hevner, and Alexander Maedche. „Introduction to Design
Science Research“. In: Sept. 2020, pp. 1–13. isbn: 978-3-030-46780-7. doi: 10.
1007/978-3-030-46781-4_1.

[13] Sebastian Burckhardt et al. „Durable functions: semantics for stateful serverless“.
In: Proc. ACM Program. Lang. 5.OOPSLA (Oct. 2021). doi: 10.1145/3485510.

[14] Canonical. The effortless Kubernetes. Accessed: 2025-01-26. 2025. url: https:
//microk8s.io/.

[15] Claudio Cicconetti, Marco Conti, and Andrea Passarella. „On Realizing Stateful
FaaS in Serverless Edge Networks: State Propagation“. In: 2021 IEEE International
Conference on Smart Computing (SMARTCOMP). 2021, pp. 89–96. doi: 10.1109/
SMARTCOMP52413.2021.00033.

[16] János Czentye and Balázs Sonkoly. „Serverless application composition leveraging
function fusion: Theory and algorithms“. In: Future Generation Computer Systems
153 (2024), pp. 403–418. issn: 0167-739X. doi: https://doi.org/10.1016/
j.future.2023.12.010. url: https://www.sciencedirect.com/
science/article/pii/S0167739X23004648.

[17] George B. Dantzig. Linear Programming and Extensions. Princeton: Princeton Uni-
versity Press, 1963. isbn: 9781400884179. doi: doi:10.1515/9781400884179.

[18] Inc. Docker. Docker - Develop faster. Run anywhere. Accessed: 2025-02-03. 2025.
url: https://www.docker.com/.

[19] Inc. Docker. Dockerhub. Accessed: 2025-02-03. 2025. url: https://hub.docker.
com/.

[20] Google. Cloud Run functions. Accessed: 2025-01-24. 2025. url: https://cloud.
google.com/functions.

[21] Leonard Guelmino. Skylark GitHub Repository. Accessed: 2025-02-15. 2025. url:
https://github.com/polaris-slo-cloud/skylark.

72

https://doi.org/10.1145/3359989.3365407
https://doi.org/10.1145/3422604.3425937
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1007/978-3-030-46781-4_1
https://doi.org/10.1145/3485510
https://microk8s.io/
https://microk8s.io/
https://doi.org/10.1109/SMARTCOMP52413.2021.00033
https://doi.org/10.1109/SMARTCOMP52413.2021.00033
https://doi.org/https://doi.org/10.1016/j.future.2023.12.010
https://doi.org/https://doi.org/10.1016/j.future.2023.12.010
https://www.sciencedirect.com/science/article/pii/S0167739X23004648
https://www.sciencedirect.com/science/article/pii/S0167739X23004648
https://doi.org/doi:10.1515/9781400884179
https://www.docker.com/
https://hub.docker.com/
https://hub.docker.com/
https://cloud.google.com/functions
https://cloud.google.com/functions
https://github.com/polaris-slo-cloud/skylark

[22] Simon Kassing et al. „Exploring the "Internet from space" with Hypatia“. In: Proceed-
ings of the ACM Internet Measurement Conference. IMC ’20. Virtual Event, USA:
Association for Computing Machinery, 2020, pp. 214–229. isbn: 9781450381383.
doi: 10.1145/3419394.3423635.

[23] Knative. Knative is an Open-Source Enterprise-level solution to build Serverless and
Event Driven Applications. Accessed: 2025-01-26. 2025. url: https://knative.
dev/docs/.

[24] Kubernetes. Production-Grade Container Orchestration. Accessed: 2025-01-26. 2025.
url: https://kubernetes.io/.

[25] Vincent Lannurien et al. „Serverless Cloud Computing: State of the Art and Chal-
lenges“. In: Serverless Computing: Principles and Paradigms. Ed. by Rajalakshmi
Krishnamurthi et al. Cham: Springer International Publishing, 2023, pp. 275–
316. isbn: 978-3-031-26633-1. doi: 10.1007/978-3-031-26633-1_11. url:
https://doi.org/10.1007/978-3-031-26633-1_11.

[26] OpenFaaS Ltd. OpenFaaS - Serverless Functions, Made Simple. Accessed: 2025-01-
13. 2024. url: https://www.openfaas.com/.

[27] Xiao Ma et al. „Visions of Edge Computing in 6G“. In: 5G Edge Computing: Tech-
nologies, Applications and Future Visions. Singapore: Springer Nature Singapore,
2024, pp. 179–202. isbn: 978-981-97-0213-8. doi: 10.1007/978-981-97-0213-
8_9. url: https://doi.org/10.1007/978-981-97-0213-8_9.

[28] C. Marcelino and S. Nastic. „CWASI: A WebAssembly Runtime Shim for Inter-
Function Communication in the Serverless Edge-Cloud Continuum“. In: 2023
IEEE/ACM Symposium on Edge Computing (SEC). Los Alamitos, CA, USA: IEEE
Computer Society, Dec. 2023, pp. 158–170. doi: 10.1145/3583740.3626611.
url: https://doi.ieeecomputersociety.org/10.1145/3583740.
3626611.

[29] Garrett McGrath and Paul R. Brenner. „Serverless Computing: Design, Imple-
mentation, and Performance“. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems Workshops (ICDCSW). 2017, pp. 405–410. doi:
10.1109/ICDCSW.2017.36.

[30] Microsoft. Azure Blob Storage. Accessed: 2024-09-20. 2024. url: https://azure.
microsoft.com/de-de/products/storage/blobs/.

[31] Microsoft. Azure Functions. Accessed: 2024-09-19. 2024. url: https://azure.
microsoft.com/en-us/products/functions/.

[32] Sergio Moreschini et al. „Cloud Continuum: The Definition“. In: IEEE Access 10
(2022), pp. 131876–131886. doi: 10.1109/ACCESS.2022.3229185.

73

https://doi.org/10.1145/3419394.3423635
https://knative.dev/docs/
https://knative.dev/docs/
https://kubernetes.io/
https://doi.org/10.1007/978-3-031-26633-1_11
https://doi.org/10.1007/978-3-031-26633-1_11
https://www.openfaas.com/
https://doi.org/10.1007/978-981-97-0213-8_9
https://doi.org/10.1007/978-981-97-0213-8_9
https://doi.org/10.1007/978-981-97-0213-8_9
https://doi.org/10.1145/3583740.3626611
https://doi.ieeecomputersociety.org/10.1145/3583740.3626611
https://doi.ieeecomputersociety.org/10.1145/3583740.3626611
https://doi.org/10.1109/ICDCSW.2017.36
https://azure.microsoft.com/de-de/products/storage/blobs/
https://azure.microsoft.com/de-de/products/storage/blobs/
https://azure.microsoft.com/en-us/products/functions/
https://azure.microsoft.com/en-us/products/functions/
https://doi.org/10.1109/ACCESS.2022.3229185

[33] Matteo Nardelli and Gabriele Russo Russo. „Function Offloading and Data Mi-
gration for Stateful Serverless Edge Computing“. In: Proceedings of the 15th
ACM/SPEC International Conference on Performance Engineering. ICPE ’24.
London, United Kingdom: Association for Computing Machinery, 2024, pp. 247–
257. doi: 10.1145/3629526.3649293.

[34] Ken Peffers et al. „A design science research methodology for information systems
research“. In: Journal of Management Information Systems 24 (Jan. 2007), pp. 45–
77.

[35] Tobias Pfandzelter. „Serverless Abstractions for Edge Computing in Large Low-
Earth Orbit Satellite Networks“. In: Proceedings of the 24th International Mid-
dleware Conference: Demos, Posters and Doctoral Symposium. Middleware ’23.
Bologna, Italy: Association for Computing Machinery, 2023, pp. 3–6. doi: 10.
1145/3626564.3629088.

[36] Tobias Pfandzelter, Jonathan Hasenburg, and David Bermbach. „Towards a Com-
puting Platform for the LEO Edge“. In: Proceedings of the 4th International
Workshop on Edge Systems, Analytics and Networking. EuroSys ’21. ACM, Apr.
2021. doi: 10.1145/3434770.3459736. url: http://dx.doi.org/10.
1145/3434770.3459736.

[37] K3s Project. K3S - Lightweight Kubernetes. Accessed: 2025-01-13. 2024. url:
https://k3s.io/.

[38] Carlo Puliafito et al. „Stateful Function as a Service at the Edge“. In: Computer
55.9 (Sept. 2022), pp. 54–64. issn: 1558-0814. doi: 10.1109/mc.2021.3138690.
url: http://dx.doi.org/10.1109/MC.2021.3138690.

[39] Thomas Pusztai, Cynthia Marcelino, and Stefan Nastic. HyperDrive: Scheduling
Serverless Functions in the Edge-Cloud-Space 3D Continuum. 2024. arXiv: 2410.
16026 [cs.DC]. url: https://arxiv.org/abs/2410.16026.

[40] Thomas Pusztai et al. „Polaris Scheduler: SLO- and Topology-aware Microservices
Scheduling at the Edge“. In: 2022 IEEE/ACM 15th International Conference on
Utility and Cloud Computing (UCC). 2022, pp. 61–70. doi: 10.1109/UCC56403.
2022.00017.

[41] Thomas Pusztai et al. „Vela: A 3-Phase Distributed Scheduler for the Edge-Cloud
Continuum“. In: 2023 IEEE International Conference on Cloud Engineering (IC2E).
2023, pp. 161–172. doi: 10.1109/IC2E59103.2023.00026.

[42] Redis. Redis IO. Accessed: 2025-02-03. 2025. url: https://redis.io/docs/
latest/get-started/.

[43] Gabriele Russo Russo et al. „Serverledge: Decentralized Function-as-a-Service
for the Edge-Cloud Continuum“. In: 2023 IEEE International Conference on
Pervasive Computing and Communications (PerCom). 2023, pp. 131–140. doi:
10.1109/PERCOM56429.2023.10099372.

74

https://doi.org/10.1145/3629526.3649293
https://doi.org/10.1145/3626564.3629088
https://doi.org/10.1145/3626564.3629088
https://doi.org/10.1145/3434770.3459736
http://dx.doi.org/10.1145/3434770.3459736
http://dx.doi.org/10.1145/3434770.3459736
https://k3s.io/
https://doi.org/10.1109/mc.2021.3138690
http://dx.doi.org/10.1109/MC.2021.3138690
https://arxiv.org/abs/2410.16026
https://arxiv.org/abs/2410.16026
https://arxiv.org/abs/2410.16026
https://doi.org/10.1109/UCC56403.2022.00017
https://doi.org/10.1109/UCC56403.2022.00017
https://doi.org/10.1109/IC2E59103.2023.00026
https://redis.io/docs/latest/get-started/
https://redis.io/docs/latest/get-started/
https://doi.org/10.1109/PERCOM56429.2023.10099372

[44] Rust. Rust - A language empowering everyone to build reliable and efficient software.
Accessed: 2025-02-03. 2025. url: https://www.rust-lang.org/.

[45] Trever Schirmer et al. „FUSIONIZE++: Improving Serverless Application Perfor-
mance Using Dynamic Task Inlining and Infrastructure Optimization“. In: IEEE
Transactions on Cloud Computing 12.4 (2024), pp. 1172–1185. doi: 10.1109/
TCC.2024.3451108.

[46] Amazon Web Services. AWS Lambda. Accessed: 2024-09-19. 2024. url: https:
//aws.amazon.com/lambda.

[47] Amazon Web Services. AWS Step Functions Features. Accessed: 2024-04-29. 2024.
url: https://aws.amazon.com/step-functions/features/?pg=ln&
sec=hs.

[48] Simon Shillaker and Peter Pietzuch. „Faasm: Lightweight Isolation for Efficient
Stateful Serverless Computing“. In: 2020 USENIX Annual Technical Conference
(USENIX ATC 20). USENIX Association, July 2020, pp. 419–433. isbn: 978-
1-939133-14-4. url: https ://www.usenix.org/conference/atc20/
presentation/shillaker.

[49] SpaceX. Starlink Technology. Accessed: 2024-09-23. 2024. url: https://www.
starlink.com/technology.

[50] Mayank Tiwary et al. „Data Aware Web-Assembly Function Placement“. In: WWW
’20. Taipei, Taiwan: Association for Computing Machinery, 2020, pp. 4–5. isbn:
9781450370240. doi: 10.1145/3366424.3382670.

[51] Achilleas Tzenetopoulos et al. „FaaS and Curious: Performance Implications of
Serverless Functions on Edge Computing Platforms“. In: High Performance Com-
puting. Ed. by Heike Jagode et al. Cham: Springer International Publishing, 2021,
pp. 428–438. isbn: 978-3-030-90539-2.

[52] Ihsan Ullah et al. „Optimizing task offloading and resource allocation in edge-
cloud networks: a DRL approach“. In: Journal of Cloud Computing 12.1 (July
2023), p. 112. issn: 2192-113X. doi: 10.1186/s13677-023-00461-3. url:
https://doi.org/10.1186/s13677-023-00461-3.

[53] Bo Wang et al. „Mobile Edge Computing for LEO Satellite: A Computation
Offloading Strategy Based Improved Ant Colony Algorithm“. In: Proceedings of
the 11th International Conference on Computer Engineering and Networks. Ed. by
Qi Liu et al. Singapore: Springer Nature Singapore, 2022, pp. 1664–1676. isbn:
978-981-16-6554-7.

[54] WasmEdge. WasmEdge - Bring the cloud-native and serverless application paradigms
to Edge Computing. Accessed: 2025-02-03. 2025. url: https://wasmedge.org/.

75

https://www.rust-lang.org/
https://doi.org/10.1109/TCC.2024.3451108
https://doi.org/10.1109/TCC.2024.3451108
https://aws.amazon.com/lambda
https://aws.amazon.com/lambda
https://aws.amazon.com/step-functions/features/?pg=ln&sec=hs
https://aws.amazon.com/step-functions/features/?pg=ln&sec=hs
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.usenix.org/conference/atc20/presentation/shillaker
https://www.starlink.com/technology
https://www.starlink.com/technology
https://doi.org/10.1145/3366424.3382670
https://doi.org/10.1186/s13677-023-00461-3
https://doi.org/10.1186/s13677-023-00461-3
https://wasmedge.org/

[55] Peng Zhang et al. „General Comparison of FY-4A/AGRI With Other GEO/LEO
Instruments and Its Potential and Challenges in Non-meteorological Applications“.
In: Frontiers in Earth Science 6 (2019). issn: 2296-6463. doi: 10.3389/feart.
2018.00224. url: https://www.frontiersin.org/journals/earth-
science/articles/10.3389/feart.2018.00224.

76

https://doi.org/10.3389/feart.2018.00224
https://doi.org/10.3389/feart.2018.00224
https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2018.00224
https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2018.00224

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Illustrative Scenario
	Problem Statement
	Contributions
	Research Questions
	Methodology
	Structure

	Background
	Edge-Cloud-Space (3D) Continuum
	Serverless Computing

	Related Work
	Data Passing between Serverless Functions
	Stateful Serverless Functions
	Function Co-Location and –Bundling

	Skylark Serverless Workflow Model and Architecture Overview
	Skylark Serverless Workflow Model
	Skylark Architecture

	Skylark Mechanisms
	State Propagation Mechanism
	State Bundling Mechanism

	Prototype Implementation
	Environment and Tech Stack
	Tools and Libraries
	GitHub Repository
	Challenges and Solutions

	Evaluation
	General Experimental Setup
	Experiment: State Propagation Workflow Performance
	Experiment: State Propagation Policy Scalability
	Experiment: State Propagation Workflow Scalability
	Experiment: State Bundling Performance
	Threats to Validity

	Conclusion
	Research Questions
	Future Work

	Overview of Generative AI Tools Used
	ChatGPT
	DeepL
	Gammarly

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Glossary
	Bibliography

		2025-03-12T13:23:00+0100
	Signature Box
	Leonard Guelmino
	Signature

