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Kurzfassung

Die Auswahl von zu testenden Softwaretests ist von entscheidender Bedeutung für die
Verbesserung der Effizienz durch die Verringerung der mit dem Testen verbundenen Zeit,
Rechenressourcen und Kosten. Indem wir auf der Grundlage von Code-Änderungen oder
anderen Kriterien selektiv nur die relevantesten Tests durchführen, können wir die Testzeit
erheblich verkürzen und unnötige Berechnungen vermeiden. Dies beschleunigt nicht nur
den Lebenszyklus der Softwareentwicklung, sondern führt auch zu Kosteneinsparungen,
da weniger Ressourcen für die Ausführung von Tests benötigt werden. Eine effiziente
Testauswahl stellt sicher, dass das Testen sowohl effektiv als auch ressourcenschonend
ist, was es zu einer wesentlichen Praxis für die Optimierung von Softwarequalität und
-leistung macht.

In dieser Arbeit versuchen wir, die „Predictive Test Selection“-Studie von Facebook in
einem Open-Source-Kontext zu replizieren. Um dies zu erreichen, sammeln wir Daten
aus mehreren Open-Source-Projekten und trainieren Modelle für maschinelles Lernen,
um relevante Tests auf der Grundlage von Codeänderungen vorherzusagen. Unser Ziel ist
es, herauszufinden, ob die Ergebnisse von Facebook auch außerhalb ihrer proprietären
Umgebung zutreffen, und die Wirksamkeit der prädiktiven Testauswahl in einem breiteren,
öffentlich zugänglichen Software-Ökosystem zu bewerten.

Die größte Herausforderung in dieser Arbeit war das Sammeln der notwendigen Daten und
das Training der Modelle, da die ursprüngliche Arbeit nur eine grobe Beschreibung der
Merkmale und der Trainingspipeline enthielt. Daher mussten wir bei der Implementierung
mehrere Annahmen und Designentscheidungen treffen. Trotz dieser Hindernisse gelang
es uns, den Ansatz zu rekonstruieren und die wichtigsten Ergebnisse zu wiederholen,
wodurch die Ergebnisse der ursprünglichen Studie in einem Open-Source-Umfeld validiert
wurden.
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Abstract

Software test selection is crucial for improving efficiency by reducing the time, compu-
tational resources, and costs associated with testing. By selectively running only the
most relevant tests, based on code changes or other criteria, we can significantly cut
down on testing time and avoid unnecessary computation. This not only speeds up
the software development lifecycle but also leads to cost savings, as fewer resources are
required for executing tests. Efficient test selection ensures that testing is both effective
and resource-conscious, making it an essential practice for optimizing software quality
and performance.

In this thesis, we aim to replicate the "Predictive Test Selection" study by Facebook
within an open-source context. To achieve this, we collect data from multiple open-source
projects and train machine learning models to predict relevant tests based on code
changes. Our goal is to evaluate whether Facebook’s findings hold true outside of their
proprietary environment and to assess the effectiveness of predictive test selection in a
broader, publicly available software ecosystem.

The key challenge in this thesis was collecting the necessary data and training the models,
as the original paper provided only a high-level description of the features and training
pipeline. This required us to make several assumptions and design decisions during
implementation. Despite these obstacles, we successfully reconstructed the approach and
were ultimately able to replicate the key findings, thereby validating the results of the
original study in an open-source setting.
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CHAPTER 1
Introduction

No matter how big or small, how well conceived and tested. A large software project will
eventually have to be modified, to fix bugs or respond to changes. After such changes to
the software usually Regression Testing is conducted to confirm that the software is not
affected adversely. Old tests need to pass, and new tests need to be written, while old
tests are rarely discarded. Hence as a program evolves and grows the regression test set
grows larger [WHLA97, RH97, GHK+01, RH96].

Although regression testing is the primary means by which most developers carry out
software quality assurance, repeating all test cases of the test set after every software
revision is often impossible due to time and/or budget constraints [WHLA97, ZLG+22].
A more feasible approach is employing a selective regression testing technique, which
chooses a subset of a test suite and then uses this subset to test the modified software.
The cost of regression testing is reduced, if the cost of running the selection algorithm
combined with the cost of running the subset of the test suite is less than running the
whole test suite [HRRW01].

To put the cost into numbers, regression testing can take up to 80% of the testing budget
and up to 50% of the software maintenance cost, testing cost is challenging to keep up with
even for a company with an abundance of computing resources [GEM15b, MGN+17].
Hence regression test selection is an extensively researched field. In the literature,
there are two main approaches to be found. One focuses on the information collected
from program specifications, and the other focuses on information about the code, the
program, and the modified Version [RH96, GEM15b]. In newer research, the latter is
enhanced by using machine learning models to further minimize the subset of tests to
run [MSPC19, CH20, PBGB22]. Some of these techniques are already used in industrial
applications1 [MSPC19].

12023: https://hacks.mozilla.org/2020/07/testing-firefox-more-efficiently-w
ith-machine-learning/
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1. Introduction

Although the results are intriguing, there are inherent problems in concluding single
studies. Every stage of an experiment from literature research to result interpretation
is prone to errors. Conclusions may not be justified by the analysis or may simply
be incorrect. Because of that, there is a need for experimental results to be externally
reproducible [GK18, BE12, BI15, BDM+96]. A survey points out that out of 400 machine
learning papers only 6% share their algorithms and only a third share their data, half of
them share pseudo code [GK18, Hut18].

Machine Learning models are not only sensitive to the exact code used but also to the
training data and even the used hyperparameters2. In some cases, even the original
researchers cannot reproduce their results [GK18, BE12, BI15, Hut18]. The lack of
details in machine learning papers does not only affect the reproducibility of studies, in
some cases, researchers find it hard to use acknowledged benchmarks for their models
because the results are published in not enough detail. This problem is getting to a point
where IBM proposed a machine learning model that is designed to recreate other neural
networks from papers [Hut18].

The overall aim of this work, however, is to recreate Facebooks [MSPC19] test selection
approach as closely as possible on various open-source projects. Since they are not sharing
their data collection algorithm, data, or model code. Data will be collected from open
source projects, to train one or more models that fit the described model in their paper.
If the recreation succeeds, this model can be used to save considerable amounts of time by
only running tests that have a high probability of failing. The central research question
of this thesis is:

To what extent can Facebook’s findings be replicated in the open source context,
i.e. will a model, as described in the paper, trained on a dataset created from
the features described in the paper, still detect tests that will likely fail when
inducing a code change?

To strengthen our results we want to perform additional training on different models and
answer the following questions:

Are there models, other than the ones described in Facebook’s paper, which
can replicate its findings on the dataset?

Answering these questions can strengthen and extend the findings to the open-source
context. This is interesting since the open source context greatly differs from a monolithic
repository used in an industrial setting, where project structure, git usage, contributors,
etc. do not differ as much from project to project. If therefore the precision of Facebook’s

2Hyperparameters are parameters not learned by the model but set before learning, one can see them
as a model’s "configuration". E.g. batch size, learning rate, activation functions, etc. While not learned
they are often subject to tuning, to find a configuration in which the model performs best.
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models cannot be reached, at least this thesis establishes a baseline for predictive test
selection on open-source projects. Additionally creating a dataset containing test meta
data of the test suites executions. The success of machine learning algorithms is greatly
dependent on the dataset quality, hence creating and curating a high-quality dataset
is another important aim of this thesis. Furthermore, it aids research by publishing
datasets, tools, and models which, in this form, do not exist at the time this thesis is
written.

This thesis is structured as follows: Chapter 2 explains the background knowledge
essential for this thesis. We give a brief overview of state-of-the-art test case selection
techniques in Chapter 3. In Chapter 5 we describe our experiment setup. When doing
machine learning research data quality is essential, Chapter 4 focuses on how our data is
generated. Lastly, we report our findings in Chapter 6 and answer the above questions in
Chapter 7.

3





CHAPTER 2
Background

2.1 Regression Testing
Regression testing refers to the process of retesting a modified or updated software
system to ensure that the changes made to it have not introduced a regression. When
talking about regression, we generally refer to a situation where a previously working
piece of software or a feature of a bigger software stack stops functioning correctly after
introducing a change. Regression testing involves running a set of pre-existing tests
covering most, ideally all, software functionality. This practice aims to ensure the stability
and reliability of software, thus providing confidence in its overall quality [GHK+01].

2.2 Regression Test Selection
Regression test case selection is the process of determining a subset of test cases from a
test suite that should be executed when a code base is modified [RH96]. Defined formally:

Let P be an application program and P ′ be a modified version of P . Let T
be the test suite developed initially for testing P . A regression test selection
technique aims to select a subset of test cases T ′ ⊆ T to be executed on P ′,
such that every error detected when P ′ is executed with T is also detected
when P ′ is executed with T ′ [RH94].

The main goals of regression test case selection algorithms generally are to be safe, precise
and cost-effective. A safe regression test selection technique selects every test case that
can expose faults in the modified program [HJL+01]. In this thesis, the focus lies on
test case selection based on code changes. Such a selection technique will further reduce
a safe subset of test cases by only selecting test cases affected by a code change.
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2. Background

A precise regression test selection technique only selects affected tests. To be cost-effective,
the cost of running a regression test case selection algorithm, combined with the cost of
running the selected subset of tests, must be less than the cost of running the whole test
set1 [ZLG+22]. To scale to big code bases approaches may trade precision and safety for
cost-effectiveness [ERS10, YH12, Wah99, BMSS11, MSPC19, MGN+17].

2.3 Test Flakiness
Flaky tests are tests with a non-deterministic outcome for the same code version. Test
flakiness can be caused by various factors [LHEM14]:

1. Async Wait: Making an asynchronous call and not waiting properly for the result
of the call before it becomes available.

2. Concurrency: When different threads interact in a non-deterministic manner;
e.g., data races, atomicity violations, or deadlocks.

3. Test Order Dependency: The outcome of tests depends on the order in which
they are executed

4. Other Root Causes: Can be resource leaks, network issues, timing issues, I/O
issues, using randomness in tests, floating point operations, unordered collections,
etc.

When a flaky test fails the developer is not aware at first that the test is flaky, a developer
will typically start debugging their changes within their and the previous revision. Test
flakiness is one of the biggest problems in software development in many organizations.
Because of its non-deterministic nature, test flakiness is hard to detect automatically
[LWW+20].

2.4 Machine Learning for Test Selection
In a supervised machine learning setting, to be precise when given a binary classi-
fication task, we try to learn from a labeled dataset, consisting of a feature matrix
X = [x1, ..., xn]T ∈ Rn×d and a target vector y ∈ 0, 1n [BN06], to predict a label for a fu-
ture unseen feature vector. Our dataset is an observation or sub-set of the universe, where
the universe refers to the set of all possible input instances. In our case yi = 1 refers to a
failed test and yi = 0 refers to a successful test. Where the test t ∈ DependendTests(d)
of a change d [MSPC19]. A vector ∈ Rd of our feature matrix, i.e., a row in our dataset,
consisting out of test metadata.

1In literature running the whole test set is usually used as an additional baseline for selection
techniques, called RetestAll

6



2.5. Mentioned Machine Learning Models

The goal of machine learning, when used for regression testing, is to create a prediction
function y(d, t) ∈ {0, 1}. That can determine whether a test target denoted as t and a
change denoted as d, will detect a regression, after a code change. A perfect model would
predict all and only tests impacted by a particular code change introducing a regression.
Such a model is not feasible since it would require access to information unavailable at
test selection time. While we cannot exactly compute the set of impacted tests, machine
learning is used to approximate such a set by learning to identify which tests would have
reported a failure based on historical data. The main use of such a model is to filter
tests, that have a low probability to fail, leaving only tests with a high probability of
detecting a regression for the CI Pipeline to run. Optimizing developer experience at the
cost of machine resources and developer time. Hence the model doesn’t need to find all
such tests since the whole test suite can be run at a later time, e.g., before a feature is
merged into the main branch [MSPC19, CH20].

2.5 Mentioned Machine Learning Models
The underlying study [MSPC19] only explains features of its dataset on a high level,
also there is no further information given about how the variables. However, by using
a gradient-boosted decision tree [CG16], as a classifier, they mention the need to deal
with unbalanced labels. Hence in addition to XGBoost, we will also focus on models that
can handle such label distribution. Furthermore, a short explanation of other models
mentioned in this work is given.

2.5.1 Decision Tree
Decision trees are a way of combining models. Instead of averaging the prediction of a set
of models, a model is selected for making predictions in different regions of input space.
The model selection progress is best described as the sequential traversing of a binary
tree, where a decision is made in every node. A decision does split the feature space
depending on the feature represented by the node. Decision trees can also be used as
tree-based models, representing a prediction function. The input space is still partitioned
as described above. Instead of representing a model the leaves represent the output of
such a tree-based model. When classifying data the leaves of the tree represent a label,
in regression a leaf represents a constant [BN06].

2.5.2 Random Forest
A random forest is an ensemble of decision trees, such that the final prediction is an
aggregation of each tree’s independent prediction. Each tree is trained on an independently
sampled random subset of the training set with the same distribution for all trees. This
process, called bagging, tries to mitigate the high variance common for decision trees.
Furthermore bagging can be used to give an ongoing estimate of the generalization error
of the random forest [Bre01].

7



2. Background

2.5.3 XGBoost
Similar to random forests, the XGBoost model is built upon decision trees. However,
it distinguishes itself as a gradient tree-boosting model. Unlike random forests, where
decision trees are generated independently, XGBoost sequentially incorporates models
to rectify errors made by previous models using gradient descent techniques. This
iterative process allows for continuous improvement and refinement, enhancing the overall
predictive power of the model [CG16].

2.5.4 Logistic Regression
Logistic regression is a classifier used for binary classification, based on a dataset of
independent variables. It assumes a linear relationship between features. Hence it may
not perform well when faced with highly non-linear relationships. The prediction function
of a logistic regression classifier outputs a label’s probability bounded between {0, ..., 1},
based on the feature vector used as input [Bre01].

2.5.5 Multi-Layer Perceptron
A multi-layer perceptron is a neural network with at least three layers, an input layer,
one or more hidden layers, and an output layer. Each layer operates on the outputs of
the preceding layer. When computing an output, a feature vector is fed through the
network, for each neuron2 the input is computed as a weighted sum of all inputs plus a
bias. The result is then used as input for the activation function3 of the neuron. The
output of the activation function, in combination with the output of all other neurons of
the same layer is then fed into the next layer. During training, the network predicts its
output on input data, compares this prediction with the desired output, and computes
the error between its output and the desired output. This error is then propagated back
through the network while backpropagating the weights and biases in the network are
[Bre01].

2.5.6 Semi-supervised Clustering
Semi-supervised clustering combines semi-supervised learning with cluster analysis. Clus-
tering is an efficient technique to mine useful information by organizing datasets into
clusters with similar features. Conventional cluster analysis uses unlabeled data, hence
without prior knowledge of the domain, clustering methods often encounter inconsistencies
between clustering results and the actual partition of the data. Semi-supervised clustering
uses a limited number of labeled data to predicate the cluster tag of unlabeled data.
Apart from that, in comparison to traditional cluster analysis, a trained semi-supervised
clustering model can predict test data [CHY+23].

2A neuron is a node in the network, usually connected to all previous nodes in the network
3An activation function is usually a relatively simple function that depends on how we want a network

layer to behave. In more complex neurons
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2.6. Interpretability

2.5.7 Large Language Models and Natural Language Processing

Natural language processing is an approach to teaching machines the meaning of text-
based content, recent media attention was gained by models such as ChatGPT. In the
beginning natural language processing was largely rule-based [CC20]. With machine
learning gaining traction, research shifted toward language models. Language models do
not necessarily need to be used on spoken languages, they can be used on, for example,
programming languages. In general, such a model aims to represent the generative
likelihood of word sequences, to predict future or missing tokens4. Preceding large
language models were statistical language models, neural language models, and, pre-
trained language models, all with their limitations. Researchers find that scaling up
model or data size often leads to improved model capacity, hence large language models
were the logical consequence of pre-trained language models. At their core, large language
models are still deep neural networks5, with billions of trained parameters [ZZL+23].

2.5.8 Support Vector Machine

Similar to the logistic regression model, the support vector machine (SVM) classifier is
also linear in its parameters. A SVM aims to find a hyperplane in an N-dimensional
space, where N is the number of features, that distinctly classifies the data points. The
hyperplane’s goal is to separate data points belonging to the same label. When training
an SVM we search for a hyperplane that has a maximum margin between data points
of the same label. The data points that lie on this margin are referred to as support
vectors, as they play a crucial role in defining the decision boundary and influencing the
classification outcome [Bre01].

Additionally, the SVM allows us to specify a kernel to be used to identify similar data
points, alongside a regularization parameter C. This is the equivalent to transforming to
another feature space using the dot product. To make an SVM work in a high dimensional
feature space the Nystroem approximation technique [WS00] is used.

2.6 Interpretability

Having a model that can select tests that have a high failure chance when a change is
introduced is good. But it is also important to know why the model thinks a particular
code change introduces a regression. Although the features of the underlying study
[MSPC19] are not particular helpful for a developer to figure out why their edit had a
regression, we want to enhance the feature selection that the underlying study is doing
with an interpretability section.

4A token refers to units of text used during the training of a language model. A token can be as short
as a single character or as long as a word or even as long as a substring

5Deep neural networks are multi-layer perceptrons with additional layers, additional connections, or
specialized neurons

9



2. Background

Several studies have explored the use of the SHAP (Shapley Additive Explanations)
method as a game-theoretic approach to interpreting machine learning model outputs.
This technique assigns a Shapley value to each feature of a given data point, quantifying its
contribution to the model’s prediction relative to the dataset’s average prediction [LL17,
Mol20].

When summed up Shapley values represent the predicted value for a data point minus the
average predicted value. This means the prediction at a given data point is distributed
additively amongst all features. To then explain a given models decision, we can plot
features alongside their shapley values for all data points.

10



CHAPTER 3
Related Work

Regression testing is essential for modern software development. During the development
and maintenance of software systems, developers periodically test regression, to find
errors caused by their modifications. Even with abundant resources regression testing
can be a bottleneck [MGN+17, CH20, EFK+16, MSPC19, ASD14]. To address cost,
regression test selection techniques are an extensively researched field [ERS10, SKPS20].
Closely related research topics, but not the focus of this thesis, are Test suite reduction,
and Test case prioritization.

Test case prioritization, in contrast to test case selection, is a technique that aims to
optimize test execution order of test cases. The main goal is to run most important or
critical tests first to identify issues more quickly and efficiently [DS18, YH12]. Test suite
reduction seeks to eliminate redundant, obsolete or ineffective tests from a test suite,
while maintaining the test coverage and preserving fault detection capabilities, with the
goal to reduce execution time [YH12],

In the literature mainly two ways of regression test selection are found, selection based on
code changes, and selection based on specification changes [ERS10], this thesis focuses on
the former. Various surveys [ERS10, YH12, Wah99, BMSS11] reviewing a wide spectrum
of regression test selection techniques, can be found. In this section, we will give a brief
overview of the evolution of such techniques focusing mainly on techniques that directly
relate to our work. Starting with traditional analysis-based approaches, followed by more
novel machine learning approaches and also a combination of the two.

11



3. Related Work

3.1 Evolution of regression test selection techniques
Initially, regression test selection techniques were based on control flow graphs1 [HS89],
data flow [LW90, KGH+95], and slicing [GHS92, RH93, RH94]. Early data flow ap-
proaches introduced the concept of a firewall proposed for integration testing [LW90]
as well as regression testing [KGH+95]. In contrast to the two main strategies at the
time, retesting everything and retesting only affected modules, a firewall is a boundary
enclosing all modified modules needed and related modules that need to be re-integrated
and regression tested. The construction of a firewall is another graph-based approach to
regression testing, by analyzing data flow inside a call graph2. Later a data flow-centered
approach using slicing3 was introduced. Which has the advantage of not needing to
recompute the data flow completely after a change [GHS92].

In 1997 Pythia was introduced, a tool to analyze software systems, based the first of
its kind using textual difference, to determine differences between source files of an old
and a new version of a program. Using the diff command is safe and fast in selecting
tests. While being safe, this technique is not semantic aware, meaning it cannot decide
whether, or not a change affects a program, a change that only adds a comment, would
still lead to test executions [VF97].

In 2012 a change-centric approach was proposed, called ChEOPSJ [SD12]. This tool
captures code changes and transforms them into change objects while running in the
background of Eclipse. Changes are silently logged, and modeled with the help of the
FAMIX4 model. With the help of this model, dependencies between changes and test
cases are found. Although it is one of the first test selection approaches evaluated on
large code bases, it is an unsafe approach [SDZ13].

Later the concept of smart checksums[VPMG17]5,6. These techniques either work on the
file level or the method level. Smart checksums are used to detect changes by comparing
a file’s old version to the new version. If a change is detected only impacted tests are run.
These are tests whose transitive dependencies include file (method) affected by a change
[Zha18, VPMG17, GEM15b]. This approach yielded two wildly known test selection
tools, a static7 one called STRATS [LSM17], a dynamic8 one called Ekstazi [GEM15a],
which are still considered state-of-the-art by many, including the following paper.

1In a control flow graph nodes represent a program’s basic blocks, and edges represent the flow of the
program

2A call graph visualizes how function within a program relate, or call each other.
3A Program Slice consists of program statements, that might be affected by the value of a variable

(forward slice), or program statements that might affect the value of a variable (backward slice), at a
program point.

42025: ttps://scg.unibe.ch/archive/famoos/FAMIX/Famix20/famix20.pdf
5Smart Checksums are checksums that ignore debug information, (i.e. do not change if e.g. a comment

is edited) often computed on bytecode files.
62024: https://crc32c.machinezoo.com/ an example implementation of smart checksums used

in the cited paper
7Static meaning that information available at compile time is used
8Dynamic meaning that information available on runtime is used
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3.2. Regression Test Selection using Machine Learning

In 2018 SPIRITuS was proposed, it selects tests by using method code coverage and a
vector space model9 on a method level. The vector space model is used to, in essence,
compute lexical differences between a new and an old version of a file. After that, with
the help of the code coverage model, this tool decides what test cases to run [RSAM18].

Also, ReTEST was introduced in 2018. It uses program changes, test suite source files,
and fault history information to select test cases. It improves on previous approaches by
reducing code coverage overhead, building a graph on test cases, and collecting metadata
from them. This graph is then saved in a graph database which is later queried. Queries
are built from program changes, after a graph traversal ReTest will output a list of
selected test cases [AD18].

HyRTS [Zha18] is another state-of-the-art test selection tool that aims to combine
traditional test selection techniques at different granularity. To achieve this a file and
method level analysis takes place. Both of these steps aim to filter tests by their respective
dependency on other files or methods. It is build on Ekstazi [GEM15a] to analyze file
level changed and Faulttracer [ZKK12] to analyze method level changes.

Recently a more novel approach, FineRTS, to analysis-based test selection was published
by Yu Lui et. al.. Where tests are selected based on semantics of introduced changes,
and implemented as an extension to STRATS [LSM17], and Ekstazi [GEM15a]. By
manually inspecting code changes, 29 kinds of changes where identified into 13 findings of
which 11 are semantic modifications and do not need a test rerun. They show that their
tool outperforms novel research that focuses on enhancing test selection techniques with
machine learning concepts [LZN+23]. Newer research additionally focuses on enhancing
test case selection with machine learning techniques, which will be described in the next
section.

3.2 Regression Test Selection using Machine Learning
Chen et.al. use semi-supervised clustering for regression test selection. A function
call profile is represented as a binary vector, each bit representing whether a function
represented by the bit is called. This binary vector in combination with a distance
measure between two function call vectors is used to cluster tests together by training a
semi-supervised k-means clustering model. Each cluster contains tests of similar behavior.
A few tests are sampled randomly from each cluster, if a test in a cluster fails all tests in
this cluster will be selected [CCZ+11].

Mayo et.al. are using a genetic algorithm for dynamic metric selection in combination
with machine learning algorithms to select test cases. In the first step dynamic execution
metrics are collected for the correct execution of a program. After that, a genetic
algorithm is used to modify the program. The program is run again, and the metrics
from the modified program are combined with those from the unmodified program and

9A Vector Space Model represents a set of documents as vectors in a common vector space [Man09].
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3. Related Work

used for training various machine learning algorithms, with the random forests classifier
being the best-performing one [MS13].

Facebook’s approach is based on collecting test meta-data on tests affected by a change.
This meta-data is being collected from commits of a repository, by running the test suite
on them. This meta-data is labeled by the outcome of a test, and used for training an
XGBoost classifier [MSPC19]. While mining historical test data for test selection isn’t a
new approach [ASD14], using it in combination with machine learning is. EALRTS is
an approach based on Facebook’s paper, which uses the same meta-data and models in
combination with STRATS to collect data. The dataset is mined by injecting mutants
into the code base [Lun19]. Since Facebook’s paper represents the underlying study of
our work, a lot more detail will be given throughout this thesis.

Spieker et.al. uses reinforcement learning for test case selection. Features used for
learning are the duration of a test, the previous execution, and failure history. Their
features allow them to purely learn from historical test data, meaning no source code or
program access is required [SGMM17].

Zhang et.al. are combining traditional regression test selection techniques based on code
changes with machine learning models for their test selection approach. Given a change
and a test suite, one model assigns a score to each test representing the relevance of each
test, by extracting semantic features from the change and the test. The assigned score
represents the likelihood that this test needs to be selected. The second model predicts
whether a test would fail due to a change. This model reimplements EALRTS [Lun19] by
injecting mutants into the database, but using a different approach to feature collection,
and training a random forest classifier on the resulting dataset. The models are used on
the output of the traditional test selection, which makes sure that at most the output of
the traditional selection can be selected [ZLG+22].

Zhang et.al aim to combine traditional analysis-bases regression test selection approaches
with learning bases approaches. To achieve this a data set is, again, constructed via
mutation analysis on which novel machine learning classifiers are trained. After that
STARTS [LSM17], and Ekstazi [GEM15a] is used to filter the tests, on the output of
these analysis based approaches the trained models are run [ZLG+22].

An approach by Sutar et.al. leverages natural language processing to select test cases.
They exploit text similarity between historical defect data and test cases [SKPS20].

3.3 Replication Studies in Software Engineering Research
The absolute number of replication studies is still small in software engineering, although
it has been growing in the last few years [DSSF+14]. While there is growing concern that
most published research findings are false, the probability of a research claim being true
increases by replications [MKJ07]. Even though growth in replication studies is evident
it does not keep up with newly published research [DSSF+14].
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3.3. Replication Studies in Software Engineering Research

The terms replication and reproducibility are frequently used interchangeably, but they
have distinct meanings. Replication refers to the process of independent researchers
repeating an experiment in a different environment, with modifications to the original
study to achieve consistent results. In contrast, reproduction is to recompile the same
materials from a study, including data, analysis, and procedures, to validate the findings
and obtain the same results [LP15, MK17, BMG20, BID+14].

In the highly related field of machine learning in software defect prediction, it is found
that bias introduced by researchers amounts to the most variance in defect prediction
model performance. So the identity of the person conducting the work is often more
significant than the work itself. Additionally, the concept of a research group consists
of a variety of factors, including prior knowledge, statistical and data processing skills,
interests, opportunities, and relationships with practitioners, among others [SBH14].

Replicating machine learning studies poses unique challenges. Machine learning models
make use of both learned parameters and parameters set manually, so-called hyperpa-
rameters. Furthermore, models make use of randomness, changing variables like seed
values for random parameters, which can inflate a model’s performance up to twofold.
Hyperparameters of models also are not standardized between libraries, by using different
libraries, vastly different conclusions can be reached [HIB+18, BN06]. When aiming for
replicability three main points should be documented, method used, data used, and
experiment setup [GK18].

Even though empirical software engineering studies based on data retrieved from devel-
opment repositories are especially suitable for reproduction. They are based on data that
can be easily accessible and shared, and on tools that can be used, shared or described in
great detail. However, their reproducibility varies from easy to almost impossible. Hence,
reproducibility of experiments not only strengthens the original findings but is one of the
basic rules in the scientific method [GBR12, Rob10].
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CHAPTER 4
Data Collection and Labeling

In this chapter, we will describe how our data was collected, starting with a Methodology
section outlining, on a theoretical level, how a data set replication should be done.
Furthermore, points we need to tackle for our specific data set. After that, a practical
description of the collection process is given. Then we will describe the features used in
the underlying study followed by a short analysis of our data.

4.1 Methodology

4.1.1 Feature Engineering

For replication, the same features must be used. This ensures that the replicated study
closely mimics the original. By using the same features results of the replication can
directly be compared with the underlying study allowing a comprehensive assessment. By
keeping the features constant we can validate the robustness and reliability of the initial
findings [BID+14, RGS+18]. Furthermore, when replicating a dataset, besides aiming
for feature parity, one should also aim for a matching distribution of variables. When
replicating a data set there is a chance to introduce statistical bias. When replicating a
data set distribution shifts in parameters that impact task performance must be controlled
[EIS+20].

We not only need to aim for feature parity but also for the same distribution of variables.
Below we will describe all Features the underlying study is using. Facebook is not
providing an analysis of how features in the data set are distributed. However, in some
cases, we can make educated guesses. For example, tests tend to succeed more often than
they fail, hence a high failure rate for almost all tests in every commit is highly unlikely.
To aid reproducibility we will analyze how our test cases are distributed, furthermore,
we will provide all data that is used in this study.
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4. Data Collection and Labeling

4.1.2 Tackling Test Flakiness

Test Flakiness describes a situation where a test produces inconsistent and unpredictable
results across multiple test runs, even though the underlying System did not change, see
2.3 for greater details on test flakiness. The underlying study only employs retry bases
deflaking, which may not detect all forms of flakiness. However, to ensure reproducibility
we are employing the same methodology. Unsuccessful tests are retried a certain amount.
If during these retries the test is successful at least once, it gets recorded as such. This
to some degree shall help our models to predict only true test failures. Without flakiness
detection, we risk injection noise into our dataset and training the model to detect flaky
tests, rather than those that failed because of a change. [MSPC19].

4.1.3 Time Series Data

We will collect our data from commits of open-source repositories. Such repositories
represent a sequence of data points indexed in time order. Time series data can be seen
as a collection of random variables indexed according to the order they are obtained
in time [SSS00], we will describe how we will use this data for our experiment setup
in chapter 5. Hence, in addition to the features of the underlying study, we will add a
timestamp for every data point (commit) to our data set. This will ensure that we can
reconstruct the order of commits independent of how we handle the data later.

4.2 Data Collection
Our data collection is split into the following sections, first we will describe how our
training data is collected, after that we will describe how we collect additional data to
later compare our models result to analysis bases test selection. After describing how we
collect our data we will describe all the features that are present in our data set in detail.

4.2.1 Data Collection

The underlying study [MSPC19] collects features from different projects in different
programming languages. Since programming a data collection tool that works with
different project dependency management tools, programming languages and build
automation tools we will only collect data from Java projects that are using maven for
their build and dependency management1.

The data collection will be as close to the underlying study as possible. However, the
underlying study describes its data collection process as highly abstract, hence during
our reproduction, we needed to make assumptions, based on the described features, and
on how they are collected. First, let us depict a simple arbitrary git tree of some project.

1Although a rudimentary Gradle implementation is present in our tool, it is untested and may not
work for a wide scope of proejcts
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4.2. Data Collection

Figure 4.1: A simple arbitrary git graph, with colored nodes, to illustrate an initial
situation of the data collection algorithm, commits on the same branch are given the
same color.

On a high level, we walk a flattened git graph, sequentially by date, and collect data for
each commit yielding a flattened graph like depicted in figure 4.2. In the first step, we
fetch all commits and sort them by commit time. Building each commit, and collecting
features described in section 4.2.3.

Figure 4.2: Git graph of figure 4.1 flattened and commits sorted by commit time.

To collect all features bookkeeping between commits is necessary, and for each commit,
after a successful build, we need to compute a sequence of steps. The Java compiler will
yield one or more .class files per .java file, every such class file represents a node in a
dependency graph depicted in 4.3. In the following, we will call .class files in the graph
class nodes, and .class files containing Test annotations test nodes.

For every commit we reset all dependencies between nodes and add new nodes to a
registry if we detect new files, then all nodes are connected, forming a dependency
graph. A node is connected if they are directly dependent on each other, we interpret a
dependency as an import inside a Java file. For each node, we compute which node has
changed according to diff information for the current commit provided by git. A node is
the target of a change if the .java file of the corresponding .class file is changed.

For each changed node we recursively walk the dependency graph computing the shortest
path to each affected test node. After computing the set of affected tests of a commit we
run all affected tests. The test result as well as the collected change information is used
to compute the various change vectors and features, as described in detail in the next
section 4.2.3. Each affected test can have multiple class nodes that depend on it. Hence,
a test may yield several data points with different paths and change vectors for each
changed file. After every commit all data points are added to the dataset, this allows us
to recover from a crash.
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4. Data Collection and Labeling

...

void test()
class Test
import A

class A
import B

...
class B
import ...

@Test

Figure 4.3: A Dependency graph, let square nodes depict .class files and diamond nodes
.class files containing at least one test. An arrow connects two entities if they are directly
dependent on each other. We interpret a dependency as an import inside a Java class.
Assume the blue commit changes a .java file, modifying the blue .class nodes of the
graph. This impacts all transitively dependent nodes. A trivial test selection strategy
would then only run tests (diamond nodes) that we fully colored in the graph, ignoring
the uncolored test nodes [MSPC19].

4.2.2 Analysis Based Test Selection

Furthermore, to later compare our trained models we connect which test a traditional
test selection algorithm would have selected. For this, we implemented a variation
of STARTS [LSM17] selection algorithm into our data collection tool. Similar to the
approach discussed until now STARTS works by first building the project and computing
a dependency graph of the compiled .class files.

When test selecting with STARTS2 [LSM17] after computing the dependency graph
for every .class file affected by a change the class files are then hashed using EK-
TAZIs3 [GEM15a] hashing algorithm. This algorithm filters out changes that do not
impact program behavior4, by cleaning up the read in byte array of a .class file before
hashing.

As depicted in figure 4.4 the newly computed hashes are then compared to the last saved
hash of the corresponding file. If the newly computed hash is not equal to the last saved
hash all dependent test nodes in the dependency graph are selected for test execution. If
the hashes are equal the corresponding test nodes are ignored.

22025: STARTS https://github.com/TestingResearchIllinois/starts
32025: EKTAZI https://github.com/gliga/ekstazi
4Mainly whitespace, comments, java doc, method ordering, import statement ordering. This can be

found in STARTS CheckSumUtil that uses EKTAZIs Hasher to compute its hashes.
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4.2. Data Collection

hash hash

hash hash

hash hash

hashhashhash hash
≠ ≠ ≠ =

Figure 4.4: The commits are depicted as colored circles, furthermore, two dependency
graphs, equal to figure 4.3, are depicted as affected by the blue and green commit. The
file changes of a corresponding commit, are depicted as files colored in the color of the
change. With hashes that are saved per .class file. The hashes on the bottom depict the
saved hashes for each file. The hashes on the top depict the newly computed hashes.
Each hash is colored in the color of the last change that updated its value.

To speed up execution time STARTS does save a class to test mapping between exe-
cutions, this allows them to not compute the dependency graph for every execution.
STARTS then computes all tests not impacted by a change from these mappings, then
computes the impacted tests as the difference between the set of not affected tests and
the set of all tests. Our implementation does not do that since, for every execution,
we compute a new dependency graph for data collection. For further details on the
implementation of STARTS and the resulting differences to our variation view Legusons
et. al.’s paper [LSM17].

Since this approach is really similar to our training data collection tool, aside from
additional book-keeping we added the described hashing capabilities to our tool. This
allows us to additionally collect a list of tests that would be selected by an analysis
based test selection approach. We decided against using STARTS directly since it is
implemented5 as Maven plugin. This would restrict us in future extensibility of our tool
to other build tools. Furthermore, it is not trivial to inject a Maven plugin into the build
of arbitrary projects. In the next section, we will describe the features we are collecting
in greater detail.

52025: STARTS https://github.com/TestingResearchIllinois/starts
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4. Data Collection and Labeling

4.2.3 Collected Features
The model inputs, consisting of a change and a test target, offer a natural framework
for categorizing features into distinct types: those dependent on the change and target
individually, as well as those representing cross-interactions between the two [MSPC19].
The following features are collected by the underlying study:

Change level features:

• Change History of Files a vector of the number of changes made to modified files
within 3, 14, and 56 days.

• File Cardinality Number of files touched by a change. Large changes are harder to
review, and we assume they are more error-prone.

• Test Cardinality The number of test classes triggered by a change.

• Extension of Files We do not collect this feature explicitly, because we are only
analyzing Java projects in this thesis. Therefore, this feature is given implicitly.

• Number of Distinct Authors collected per class file, might indicate unstable or
commonly used code..

Test level features:

• Historical Failure Rate of a test class, as baseline probability of failures, as a vector
of failure rates in the last 7, 14, 28 and 56 days.

• Project Name to identify an area the test class covers and categorize breakage
patterns based on a project.

• Number of Tests in a test class can be used as a proxy of the code area covered by
the test class.

Cross-dependent features:

• Minimal Distance between a java class changed by a commit and the test class to
predict the outcome of. To approximate the significance of a change’s impact on a
given test class.

• Number of Common Tokens Shared in the path of a test class and a java class as
lexical distance, to approximate human perceived relevance6.

6The underlying study does not state how they calculate lexical distance. We calculate the lexical
distance using Jaccard similarity [NSNW13].
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4.2. Data Collection

Facebook’s study does not make use of all the features described above, however, we want
to aim for feature parity [EIS+20]. We are collecting additional data for each commit
we analyze. This data will not be used for model training. But helps us debug our data
collection, can be used in further research and will be used to evaluate our trained models
against an analysis based test selection approach.

Change level features:

• Full Target Class Name will be used to compute Number of Common Tokens Shared

• Starts would select if the target had been selected by STARTS.

• Time of Change the time of the commit.

Test level features:

• Full Test Class Name will be used to compute Number of Common Tokens Shared

• Number of All Test Classes the number of all test classes in a project at the time
of the change.

• Changed Files a list of all files affected by a change.

• STARTS selected Test Classes a list of full class names of all test classes that
STARTS would select.

• STARTS selected Changes a list of full class names of all .class files that STARTS
would select after byte code filtering.

• STARTS path to tTarget a list of full class names of all .class files building the
shortest path to the STARTS selected test target.

• Change impacted Test Classes a list of full class names of all test classes that are
impacted by a change.

• Selected Changes a list of full class names of all .class files impacted by a change.

• Path to Target a list of full class names of all .class building the shortest path to
the test target.

Cross-dependent features:

• Build Errors of commits with their error message and stack trace.

Furthermore, these additional features make sure that we destroy as little information as
possible, and ensures computations like lexicographical distance or shortest path can be
debugged easily or even changed in the future, since the underlying data still exists in
the data-set. In the following section, we will list the differences and limitations of our
data collection algorithm, in contrast to the underlying study.
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4. Data Collection and Labeling

4.3 Postprocessing
In the process of data collection, our tool can exclude test cases that are encountering
timeouts or exceptions stemming from attempts to retrieve resources that do not exist
anymore. This minimizes the amount of post-processing we need to deploy. We are
focusing on the following anomalies:

• Points in time after which all following commits and tests fail.

• Build failures7.

Run them again and make sure that they fail because of the changes made and not
because of our setup8.

4.4 Label distribution
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Figure 4.5: Showing the amount of failed and succeeded test cases retrieved from all
analyzed projects. With blue being successes, and purple being failed tests.

7During our runs we had to introduce build, environment, JVM arguments, to make sure we can at
least build (almost) all commits, to skip, for example, maven phases that always fail the builds.

8E.g., because of a dependency which is not available in the default maven repository anymore,
changed JDK versions, or resources that are not downloadable anymore.
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4.4. Label distribution

In the figure above we see that the distribution of succeeded and failed tests as well as
naming all projects we are gathering data from. Overall we gathered about 1.2 million
tests of which approximately 30000 are failing. Although most of the projects have at
least some test failures, they are unevenly distributed between them. Furthermore, like
discussed before, our classification data is imbalanced.

4.4.1 Limitations of Our Collection Tool
• We do not have the same level of control over the observed Projects, hence, in

contrast to the underlying study [MSPC19], we do not run tests that are affected by
a dependency change. We also cannot fix builds or react to missing dependencies.

• Commits that cannot be built will be ignored, hence in some cases, the collected
change vectors may differ from reality.

• Since git allows rewriting its history there is no best practice how to emulate the real
development flow. Like depicted in figure 4.2 we do walk commits like a flattened
git graph, since tests are more likely to fail on development branches. Walking the
graph like this does not allow us to compute changes out of checksums since commits
that follow each other do not necessarily be from the same branch. Therefore, we
compute files impacted by a change from gits change information, even before the
STARTS hashing takes place, which is not part of STARTS algorithm.

• We encountered several antipatterns9 in tests, which will make post-processing
necessary. We describe it in more detail in section 4.3.

• To avoid possible side effects in tests10 we run each test separately. This entails
spinning up a separate process, JVM and Maven run for each test, which costs a
lot of time.

• We do use OpenJDK versions to build the projects. We do not automatically switch
the JDK version if it changes in the project during data collection. However, it is
possible to recover manually if this is the case. Although we implemented some
rudimentary Gradle support, the tool works best on maven based projects.

• We ignore integration tests if they are easily identifiable by pattern matching.

In the next chapter we will discuss the Methodology used to replicate the results of the
underlying study [MSPC19].

9Tests that will fail if a web resource they depend on is not available anymore, insufficient mocking of
dependent resources, unit tests that are integration tests and many more.

10We set a generous timeout for each test run, however, we encountered tests that do not clean up
properly and trigger these timeouts regularly. Tests that block a resource that is then needed by another
test or even tests that crash the JVM.
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CHAPTER 5
Methodology

5.1 Data Preparation
To ensure comparability between our work and other papers [Lun19, ZLG+22], we will
use the same performance measurement as the underlying study [MSPC19], to compare
and evaluate the different machine learning methods. This chapter will first explain
how we handle our collected data, then how our models are trained, and finally lists the
evaluation metrics used for our final comparison.

5.1.1 Tackling Imbalanced Data
Software engineers rarely introduce code changes that fail tests in a repository, at least
the unit tests directly related to a change will be run locally until they pass. This results
in a great imbalance in our data set between passed and failed tests. The classifier used
in the underlying study, XGBoost, works out of the box on such data without further
changes to the data set [MSPC19]. However, since we want to compare other classifiers
we will test methods to tackle imbalanced data, also used in defect prediction [TTDM15].
The following methods are tested:

• Original data Use the data set as is.

• Over-sampling Either randomly duplicate or synthetically create data points from
the minority class to match the size of the majority class.

• Under-sampling Randomly sample a subset of the majority class to match the size
of the minority class.

• SMOTE Synthetic over sampling based on k-nearest neighbors [CBHK02].

• ADASYN Synthetic over sampling similar to SMOTE but focuses on difficult to
learn examples [HBGL08].
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5. Methodology

5.1.2 Handling Time Series Data

Historically regression test selection performance is measured by letting an algorithm
select tests on a code base injected with random mutants and comparing the algorithm
selection with the tests that fail due to the injected mutants. As described below, the
data we are using is highly time-sensitive and depends on the development of a repository.
By collecting a dataset using mutant injection to simulate commits, the data set will lose
information that is hidden in an organically evolved repository. In spite of that, this
approach is employed by papers that are using machine learning for test case selection
[Lun19, ZLG+22].

Although we did an extensive literature review, we did not find related work that dives
into the caveats of time-sensitive evaluation for regression test selection by machine
learning models. Like in the underlying study [MSPC19], in the highly related field of
software defect prediction, it is common to collect data from the commits of a repository.
We will use knowledge from this field for our experiment setup.

Because software repositories are evolving over time, shuffling data, like in a standard
cross-validation approach[BB12], would induce bias by allowing the model to make
predictions on past events with information from the future. As described in chapter4
we are using different vectors representing the history of a file’s defects, the model could
infer that this file is susceptible to problems even before the regression occurred. Hence,
we split our data by date [TTDM15].

Tests

Project 1 Project 2 Project 3 Project n

Time

Train Test

Figure 5.1: Worst case scenario when combining projects test data.

When combining the collected data from different projects, we must keep the different
development cycles in mind. In a worst-case scenario, when sorting tests by time each
project could have stopped committing one after the other. Resulting in a test timeline
where the tests of each project do not intersect with each other, as depicted in figure 5.1.

This would leave the time series intact but lead to at least an overrepresentation of one
or more projects in the test set, while other projects may not be present at all. To get
around this we will split each project data set into chunks consisting of 5% of its data.
The data in these chunks and the chunks overall are ordered by time. After that, we
reassemble these chunks as depicted in 5.3.
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Tests

Time

split in chungs

reassamble

Project 1 Project 2 Project 3 Project n

Figure 5.2: Combining project data into a dataset used for training.

This will interrupt the overall time series but leave the time series of each project intact.
Hence, the model will still be unable to predict past events with information from the
future on a by-project basis. When splitting the data into a training and test set our
reassembled data makes sure that we have unseen data from each project in the test set.
Furthermore, it ensures that we can extract the same amount of data from each project
as from the newly compiled dataset to test the model per project without the risk of
using training data for evaluation.

Run 1

Tests

Run 2

Time

Test

Validation

Validation

Train

Train

Train

Figure 5.3: Visualization of data split for training and hyperparameter optimization.

After compiling our dataset, we keep the first 90% of the tests for training and use the
most recent 10% for testing for every project. Moreover, the training set undergoes
multiple divisions into two separate sets, into training and evaluation sets. This setup is
often used for time series evaluation [BB12]. We split the data 5 times in total. One set
is used for model fitting, while the smaller one serves to test the model’s performance on
future tests.
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This second set is referred to as the validation set and is designed to match the size of
the test set. The evaluation runs will be used to identify the optimal hyperparameters
for each model. After all evaluation runs, the final evaluation of a model’s performance
is done on the test set, from which no information was used for training. This approach
is similar to cross-validation with the difference that the validation sets are subsets of
each other, and the predictions are only made in the future [BB12]. See Figure 5.3 for a
visual description of the pipeline.

5.2 Parameter Tuning and Model Selection
5.2.1 Performance Measure
In order to assess and compare the performance of the different machine learning
techniques, we utilize five standard classification metrics: precision, recall, F1-score,
average precision, and area under the ROC curve [HS15]. These metrics are computed
based on the following values:

• True Positive (TP) a test that will fail when executed correctly predicted.

• True Negative (TN) a test that will be successful when executed correctly predicted.

• False Positive (FP) a test that will be successful when executed predicted as failure.

• False Negative (FN) a test that will fail when executed predicted as successful.

Precision quantifies the proportion of true positive predictions out of all the instances
predicted as positive. This is desirable, predicting fewer false positives, means it is more
likely that tests are selected that are failing when executed. Our main goal is to run as
few tests as possible while, ideally, predicting all tests that will fail when being executed.
Precision is given by:

Precision = TP

TP + FP
(5.1)

Recall, also known as sensitivity or true positive rate, is a metric used to assess a machine
learning model’s ability to correctly identify all relevant instances within the positive
class. A high Recall indicated that the model correctly identifies most test cases that fail
when executed. It is more important to find all failing test cases than to execute a few
that may succeed. Recall is given by:

Recall = TP

TP + FN
= TP

P
(5.2)

Precision or recall on itself may not provide a complete measure of model performance.
Since it is possible to artificially achieve a perfect recall by predicting only the positive
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class or perfect precision by predicting the positive class for just a single data point
with high certainty. In practice, the goal is to optimize both metrics simultaneously. To
evaluate the model’s overall predictive ability. To achieve this, the F1-score is commonly
used, which balances precision and recall, by using the harmonic mean between them.
F1 Score is given by:

F1 = 2 · Percision · Recall

Percision + Recall
(5.3)

Many machine learning models allow predictions at varying confidence levels, often
referred to as thresholds. For instance, when predictions are made only with high
certainty, precision increases, but recall typically decreases as many true positives are
missed. Conversely, lowering the confidence threshold leads to higher recall but reduced
precision. At an extreme, a perfect recall can be achieved with a confidence threshold
of zero. This trade-off between precision and recall affects the F1-score, which varies
depending on the chosen threshold. To evaluate model performance and identify the
best-performing models, average precision (AP) is commonly used as a comparative
measure. Average precision is given by a sum over all thresholds t, summing up precision
at a threshold Pt, weighted by the gain at the gain in recall Rt − Rt−1 at said threshold:

Average Percision =
∑

t∈thresholds

(Rt − Rt−1) · Pt (5.4)

Additionally, we report the Receiver Operating Characteristic (AUC) curve, which is
a widely used graphical representation of a classification model’s performance across
different decision thresholds. It plots the true positive rate (recall) against the false
positive rate, which is defined as:

ROC Curve = {(FPRt, TPRt) : t ∈ thresholds} (5.5)

Where the true positive rate TPRt = TPt/P and false positive rate FPRt = FPt/P
at a given threshold t, respectively. Where TPt and FPt represent the true positives
and false positives at threshold t, and P is the total number of actual positive instances.
The area under the ROC curve (AUC) is then computed, where an AUC value of 0.5
indicates random guessing, and a value of 1.0 reflects perfect classification performance at
every threshold. Since our data is imbalanced1, a model predicting that all tests fail and
therefore need to be run would score a high accuracy (TP + TN)/(P + N), but would be
completely useless in practice. Hence, we will not use accuracy scoring in our evaluation.

1See sections 5.1.1 4.4 for further details
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5.2.2 Feature Selection

We already discussed in section 4.1.1 that our dataset aims for feature parity, by collecting
all features of the underlying study [MSPC19]. In a first step we will use all features to
train our models, using the best hyperparameters we find according to section 5.2.3. The
trained models will be scored according to the performance measures in the previous
section. The best model will be used to further analyze performance.

To achieve this we will use SHAP (Shapley Additive Explanations) [LL17] like discussed
in section 2.6. This will not only allow us to select the best performing features, but
additional do an interpretability analysis of our best performing model. We will then
train the models again on the reduced feature space. The best performing model trained
on the reduced feature space will then be used for our final performance analysis, and
further interpretability discussions. To perform the SHAP analysis the best performing
model will be trained with default hyperparameters.

According to the underlying study [MSPC19] the best performing features are file
extensions, change history, failure rates, project name, number of tests and minimal
distance. Since we have collected real world data like discussed in chapter 4, and did our
best to aim for a similar feature distribution, we are expecting to match at least some if
not all the best performing features.

5.2.3 Hyper-Parameter Optimization

Hyperparameter optimization can significantly improve model performance [MC24]. We
evaluate of different sampling techniques introduced in section 5.1.1. The implemen-
tations for logistic regression, support vector machine, random forest, and multi-layer
perceptron are sourced from the open-source library scikit-learn [PVG+11]. Additionally,
the XGBoost Python package is utilized, as it is compatible with the scikit-learn interface.
XGBoost is the classifier we are most interested in since it is the classifier the underlying
study is using [MSPC19].

To incorporate the sampling methods into the machine learning pipeline, the scikit-learn
extension imbalanced-learn is employed [LNA17]. The interoperability of these libraries
with scikit-learn facilitates hyperparameter optimization and the selection of the most
suitable sampling method within a unified framework. The different sampling methods
that are contained in the search space for every model are listed in the table 5.1 below.

A sequential model-based Bayesian optimization algorithm is utilized from the scikit-learn
extension2. This approach enables efficient sampling of the parameter search space by
leveraging a Bayesian model, reducing the need for exhaustive grid search or less efficient
randomized search. The complete configuration of the parameter search space is presented
in table 5.1. For all models, 100 samples are drawn from the search space and evaluated.
For evaluation average precision scoring is used.

22025: https://scikit-optimize.github.io/stable/
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5.3. Selection Performance Measures

Parameter Search Space

Sampling None, Under-Sampling, Over-Sampling,
SMOTE, ADASYN

Logistic Regression
Regularization parameter C LogUniform([10−4,104])
Penalty L1, L2
Support Vector Machine
Regularization parameter C LogUniform([10−4,104])
Kernel Linear, Radial Basis Functions, Polynomial
Penalty 3, 5
Random Forest
Maximum Depth Unbound, 3, 5, 10 15 20
Minimum Samples to split Leaf 2, 5
Number of Estimators UniformInteger([5, 150])
Multi Layer Perceptron
Regularization Parameter α LogUniform([10−4,104])
Initial Learning Rate LogUniform([10−4,10−1])
Hidden Layer Size 10, 20, 50, 100, 200, 500
Activation Function ReLU, Sigmoid, tanh
XGBoost
Maximum Depth UniformInteger([2, 20])
Minimum Child Weight 1, 2, 5
Maximum Delta Step 0, 1
Number of Estimators UniformInteger([5, 150])
Regularization Parameter γ Uniform([0, 1])

Table 5.1: Search spaces for hyperparameter optimization.

5.3 Selection Performance Measures
We use the best hyperparameters determined by our search to train the models. Afterward,
we use Average Precision, Receiver Operating Characteristic (AUC) curve3, and feature
selection4 to select and further optimize the best performing model. Finally, we will use
the performance metrics of the underlying study to compare the best performing XGBoost
model against our implementation of STARTS [LSM17]. STARTS is an analysis based
state-of-the-art test selection approach we explained in section 4.2.2. For comparison, we
will use the metrics provided in the underlying study [MSPC19].

3As described in section 5.2.1
4As described in section 5.2.2
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5. Methodology

As described in section 2.4 a trained classifier on our dataset returns a Score(d, t) ∈ [0, 1]
for a change d and a test t, which can be interpreted as likelihood of t ∈ FailedTests(d).
Futhermore, we denote FailedTests(d) as the set of all failed test of a change d, and
DependendTests(d) as all tests that are dependent on a change d. For our test selec-
tion strategy s we introduce a ScoreCutoff(s) ∈ [0, 1] which resembles the threshold
we previously explained for our performance measures. Furthermore, we introduce a
CountCutoff(s) ∈ N≥0 which resembles the number of top performing targets for a
change.

For the following performance metrics we will analyze tests that are LikelyFailing(s, d)
which contains all tests t ∈ DependendTests(d) for which Score(d, t) ≥ ScoreCutoff(s).
HighlyRanked(s, d) which contains up to CountCutoff(s) of t ∈ DependendTests(d)
with highest ScoreCutoff(s). In the underlying study SelectedTests(s, d) consists
out of LikelyFailing(s, d) ∪ HighlyRanked(s, d). We will however analyze both sets
independently to better compare them to the set of tests that STARTS would select.
Hence, in our Results SelectedTests(s, d) will not depict the union of both sets but one
of each independently. We will use the following metrics for comparison:

TestRecall(s, D) =
∑

d∈D |SelectedTests(s, d) ∩ Fd|∑
d∈D |Fd| (5.6)

Where d is a change in the set of all changes D and Fd = FailedTests(d), ∃d∈DFd ̸= ∅,
and s is a test selection strategy. Test recall mirrors the recall metric we already explained
in section 5.2.1. Test recall can be understood as the empirical probability of a given test
selection strategy identifying an individual failure.

ChangeRecall(s, D) = |{d ∈ D}|SelectedTests(s, d) ∩ Fd ̸= ∅|
|{d ∈ D}|Fd ̸= ∅| (5.7)

Where d is a change in the set of all changes D and Fd = FailedTests(d), ∃d∈DFd ̸= ∅,
and s is a test selection strategy. Intuitively, change recall represents the empirical
probability that a specific test selection strategy will detect at least one failure in a faulty
code change. Or in other words the relation of all faulty changes containing at least one
true positive predicted test to all faulty changes containing at least one failed test from
the test set.

SelectionRate(s, D) =
∑

d∈D SelectedTests(s, d)∑
d∈D DependendTests(d) (5.8)

Where d is a change in the set of all changes D, s is a test selection strategy. The selection
rate reflects the proportion of test targets chosen by a specific strategy in comparison
to those selected by the build-dependency-based approach. After computing all the
evaluation metrics—such as change recall, test recall, and selection rate—we will compare
the results against those obtained using the STARTS approach.
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This comparison will help assess the effectiveness and efficiency of our test selection
strategy relative to an established baseline.
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CHAPTER 6
Results

This chapter presents the results of our replication study, which aims to validate the
model selection of the underlying study. We first evaluate the models’ classification scores
and compare them to other models. To assess feature importance, we use SHAP (SHapley
Additive Explanations) values, comparing them with the original study’s reported feature
rankings. Finally, we will compare our trained model to analysis based model selection,
using the performance metrics of the underlying study.

6.1 Model Comparison
To evaluate the predictive performance of the XGBoost model in comparison with
alternative classifiers, we report the average precision (AP) and area under the receiver
operating characteristic curve (ROC AUC) scores in table 6.1. We report these metrics
on the training set and test set, where the models are trained on the training data set
containing all features. Additionally, we report the average scores of the 5 validation
splits used to select the best hyperparameters for each model. For reference, we report
the scores of a dummy classifier which by definition has perfect recall, and a 0.5 AUC
Score.

The results indicate that all models perform similarly in terms of both average precision
(AP) and ROC AUC scores, with only marginal differences across classifiers. Among
them, Random Forest achieves the highest performance, closely followed by XGBoost.
The similar performance of Random Forest and XGBoost is expected, as both models are
tree-based ensemble methods that effectively capture complex feature interactions and
handle non-linear relationships. We can assume that the primary motivation of choosing
XGBoost was not performance, but its handling of imbalanced data, and its efficient
computation through gradient boosting. Trading a small performance decrease for faster
(re)training and inference [CG16].
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6. Results

train validation test
AP AUC AP AUC AP AUC

dummy classifier 0.025597 0.500000 0.021984 0.500000 0.025168 0.500000
logistic regression 0.861135 0.978375 0.864471 0.976552 0.950223 0.981493
multi layer perceptron 0.879846 0.987935 0.819965 0.975897 0.948529 0.979035
random forest 0.9392 0.9929 0.8886 0.973220 0.9590 0.9875
support vector machine 0.881557 0.979648 0.852743 0.953754 0.914072 0.984090
XGBoost 0.895560 0.991600 0.880514 0.9790 0.947403 0.985290

Table 6.1: Results of fitted models after hyperparameter tuning.

In addition to the reported aggregated metrics we report the ROC-curve and precision-
recall curve in figure 6.1, to show the full classification performance at different confidence
thresholds. We see that we reach an almost perfect ROC-curve with an almost perfect
precision-recall curve for all classifiers, besides the support vector machine.
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Figure 6.1: ROC and precision-recall curves for all features.

Because the performance metrics obtained appear unexpectedly high, we have concerns
about potential overfitting or data limitations. The consistently strong scores on the
training, validation and test sets suggest that the model may be overly specialized. This
could stem from the relatively small dataset of approximately 1.3 million data points,
which may not provide sufficient variability. However, since our dataset is comprised
out of several thousand commits and multiple projects we do think that our results are
meaningful.

Despite XGBoost not achieving the highest performance in our evaluation, we will
continue our analysis using this model. The decision is justified by the overall simi-
larity in performance across all classifiers, with only marginal differences in average
precision (AP) and ROC AUC scores. Given that Random Forest slightly outperforms
XGBoost, the choice to proceed with XGBoost is primarily motivated by its use in the
underlying study [MSPC19], ensuring methodological consistency and facilitating direct
comparability of results.
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6.1. Model Comparison

To further investigate overfitting in our XGBoost classifier, we will plot a confusion
matrix. This will provide a detailed breakdown of the model’s predictions, highlighting
instances of misclassification. By examining the confusion matrix, we can assess whether
the model is overfitting by identifying patterns such as high accuracy on the training set
but poor generalization to the test set.
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Figure 6.2: Confusion Matrix of the XGBoost Classifier trained on all features. Left
predicting on the trainings data set, right predicting on the test data set.

A perfect confusion matrix occurs when a classifier makes no errors, meaning all predictions
are correct. In this case, the matrix will have nonzero values only along the diagonal,
where each row corresponds to the actual class and each column to the predicted class.
Off-diagonal elements, representing misclassifications, will be zero. This indicates 100%
accuracy, precision, recall, and F1-score, which is ideal but often unrealistic in real-world
scenarios due to noise, class overlap, and data variability [AM22].

In case of overfitting, we would see a near-perfect, or suitable confusion matrix built from
the predictions on the training data and a bad or worse confusion matrix on the test data.
As depicted in figure 6.2, we can see that we reach almost identical matrices on both
sets. With the test set matrix being slightly better. However, we should stay cautious
about overfitting, since as described in the next section, our best feature is project name.
This may hint that we are prone to overfitting since the project name is a categorical
value1. This would become especially apparent after a new project is introduced.

In the next section, we will analyze the importance of each feature and how much it
contributes to our XGBoost model prediction. With this information we can compare
our most important features with the ones from the underlying study [MSPC19].

1A categorical value refers to a type of data that represents distinct groups or categories rather than
numerical values. These values can be nominal (e.g., colors) or ordinal (e.g., education level). The models
used to measure performance are trained on a dataset where the project name is one-hot encoded, while
for the SHAP plot, it is label encoded. Tree-based classifiers are especially prone to overfitting on such
values. The algorithm needs to determine the optimal branching decision by analyzing the proportion of
each categorical attribute’s values in relation to the target attribute [KK11].

39



6. Results

6.2 Feature Importance and Interpretability
Feature selection is a critical when using machine learning for regression test selection and
related tasks, as it directly impacts model performance, computational efficiency, and cost-
effectiveness [KAK+25, SWAK12]. By identifying and retaining only the most relevant
features, the dimensionality of the input space is reduced, leading to lower computational
complexity and faster model training and inference. This, in turn, decreases resource
consumption and enhances scalability, this is especially important in regression test
selection, since the model is inferred for every test, and the goal of test selection is to
reduce the overall runtime and cost.

In this section, we aim to replicate the feature selection process of the underlying
study [MSPC19] using SHAP (Shapley Additive Explanations) to identify the most influ-
ential features for regression test selection. In addition to replicating the original feature
selection, using SHAP provides the added benefit of enabling further interpretability
analysis. By examining the distribution and interaction of SHAP values across different
test cases, we can gain deeper insights into how individual features contribute to model
predictions [LL17].
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Figure 6.3: Bee swarm plot of features and their impact on model performance of the
XGBoost classifier.

Like depicted in figure 6.3 we can see that the best performing features are project
name, change history, failure rates, lexical distance and number of tests. The best-
performing features align closely with those identified in the underlying study, with one
notable exception. While the original study states minimal distance as a key feature,
our replication prefers lexical distance. Despite this variation the overall consistency of
the selected features further strengthens the results of the underlying study. We cannot
report how important file extensions are, we only analyze .java files, hence we do not
collect this feature since it is given implicitly.
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After dropping file cardinality, number of distinct authors and minimal distance, we did
another hyperparameter optimization ensuring that the models remain well calibrated.
Following optimization, we retrained the models, using the same pipeline as already
described, on the reduced feature set. After training, we collected the same scores as we
used in the previous section in table 6.2 and figure 6.4.

train validation test
AP AUC AP AUC AP AUC

dummy classifier 0.025597 0.500000 0.021984 0.500000 0.025168 0.500000
logistic regression 0.859082 0.976204 0.862128 0.972651 0.954523 0.980096
multi layer perceptron 0.857812 0.982870 0.851078 0.9821 0.944660 0.975882
random forest 0.9338 0.9915 0.8936 0.976913 0.9584 0.9844
support vector machine 0.864453 0.968066 0.866973 0.956475 0.900685 0.983901
XGBoost 0.894446 0.990110 0.879708 0.980222 0.954581 0.982089

Table 6.2: Results of fitted models after hyperparameter tuning

We can again see that all models still perform similar, with XGBoost and random forest
still being the best models. We can also report that dropping these features impacts
model performance only insignificantly. As depicted in figure 6.4 we still maintain a
perfect ROC curve for all classifiers. After training on the reduced feature set, the
precision-recall performance slightly declined, especially for lower thresholds, for both
the support vector machine and multi layer perceptron model, indicating a minor loss in
their ability to correctly identify positive instances.
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Figure 6.4: ROC and precision-recall curves after feature selection.

In section 8.3 we report additional performance metrics for our models, for before and
after our feature selection. In the next section we will report our final findings. We
will use the performance metrics of the underlying study [MSPC19] on our XGBoost
classifier as well as on our START implementation, this will allow us to compare our
trained classifier with an analysis based test selection approach.
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6. Results

6.3 Evaluation
In this evaluation section, we compare the performance metrics of our replication study
with those reported in the original research [MSPC19]. The focus of our analysis is on
test recall, change recall, and selection rate as described in 5.3. By examining these
metrics, we aim to assess how closely our replicated models align with the original results.
Since we already showed in previous sections that our performance metrics are nearly
perfect, we will focus mainly on the comparison between our trained XGBoost model
and STARTS [LSM17] an analysis-based test selection approach.
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Figure 6.5: Left, TestRecall(s) score as a function of ScoreCutoff(s) of our trained
XGBoost model with CountCutoff(d) = 0. Right, TestRecall(s) score as a function
of CountCutoff(s) of our trained XGBoost model with ScoreCutoff(d) = 0. With
STARTS values in orange.

As shown in Figure 6.5, our approach consistently outperforms STARTS in the test
TestRecall metric across all values of ScoreCutoff(s) ∈ [0, 1]. Additionally, we observe
better performance after applying a CountCutoff > 500. Since the final selected test
set SelectedTests(s, d) is defined as the union of tests selected by both cutoff strategies,
these results indicate that our method outperforms STARTS regardless of the chosen
cutoff value.

STARTS performs well on ChangeRecall(s) as depicted in figure 6.6. Since we only
need to find one true positive change per test to reach a perfect change recall, this
is not surprising. It is however counterintuitive that if STARTS selects all tests
dependent on all changes that do not impact code behavior, that we do not reach
perfect ChangeRecall(s). After looking over our data we found an example commit
18f2b6e6625fae157cb427e603878930013899f9 2 of biojava, that may explain the slight
deprecation in ChangeRecall(s).

22025:https://github.com/biojava/biojava/commit/18f2b6e6625fae157cb427e603
878930013899f9
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6.3. Evaluation

This commit just deletes an empty else block, which, after the byte file is cleaned up, will
be ignored by STARTS. Since the hash of the .class file does not change by a change that
does not impact code behavior. However, since this change does not impact behavior we
still report test failures from previous changes.3
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Figure 6.6: Left, ChangeRecall(s) score as a function of ScoreCutoff(s) of our trained
XGBoost model with CountCutoff(d) = 0. Right, ChangeRecall(s) score as a function
of CountCutoff(s) of our trained XGBoost model with ScoreCutoff(d) = 0. With
STARTS values in orange.

Although STARTS performs reasonably well in terms of ChangeRecall(s), our approach is
still able to outperform it for appropriate cutoff values, as illustrated in figure 6.5. We are
performing slightly worse in terms of ChangeRecall(s) as a function of CountCutoff(s)
since the underlying study can detect 70% of faulty changes by choosing a cutoff of the
two highest-ranking tests. If we relax our definition of ChangeRecall(s) such that we can
also use a false positive test to identify a faulty change, as long as the change we select is
faulty. This will result not only in a similar curve to the underlying study but also allow
us to detect 70% faulty changes by choosing a cutoff of the two highest-ranking tests.

Finally, when comparing SelectionRate(s) of tests selected by our XGBoost classifier we
see that we can again choose appropriate cutoff values to outperform STARTS, as depicted
in figure 6.7. We did not calculate the SelectionRate(s) as a function of CountCutoff(s)
for CountCutoff(s) > 250 since it is directly proportional to the number of changes
times the number of tests in a change. We see that STARTS selects approximately half
of DependendTests(d).

Although we applied the de-flaking process as part of our data preparation, we did not
encounter any flaky tests during data collection. As a result, while the de-flaking step
was included for consistency with the original methodology, we could not collect data
with flaky tests to analyze or compare in our replication.

3Note that this change is taken from the training data set, which is not part of the test dataset.
However, the explanation for the test data stays the same.
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Figure 6.7: Left, SelectionRate(s) score as a function of ScoreCutoff(s) of our trained
XGBoost model with CountCutoff(d) = 0. Right, SelectionRate(s) score as a function
of CountCutoff(s) of our trained XGBoost model with ScoreCutoff(d) = 0. With
STARTS values in orange.
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CHAPTER 7
Conclusion

7.1 Summary
We summarize the key findings of this thesis by revisiting the research questions posed
in the introduction, see Chapter 1.

To what extent can Facebook’s findings be replicated in the open source context,
i.e. will a model, as described in the paper, trained on a dataset created from
the features described in the paper, still detect tests that will likely fail when
inducing a code change?

Facebook’s findings show strong potential for replication in the open source context. By
constructing a dataset using the features described in the paper several machine learning
models, including Multilayer Perceptron, Support Vector Machine, Logistic Regression,
and Random Forest, were evaluated. These models demonstrated the ability to predict
test failures with reasonable accuracy. Among them, XGBoost, as also used in the original
study, was among the best models evaluated. These results support the generalizability
and effectiveness of Facebook’s approach beyond its proprietary environment.

Are there models, other than the ones described in Facebook’s paper, which
can replicate its findings on the dataset?

As already described we trained Multilayer Perceptron, Support Vector Machine, Logistic
Regression, and Random Forest as additional models which all perform similar to the
used XGBoost model.
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7. Conclusion

7.2 Contributions
The main contribution of this thesis to the research of software test selection are as
follows1:

• An open source implementation of a java project that can create a dataset out of
arbitrary java projects using maven as build management tool.

• An open source implementation of the complete machine learning pipeline used in
this thesis.

• A high quality dataset containing more than 1.2 million test cases, with many
additional features besides the ones described in the underlying study. Constructed
from real world data. This sets our thesis apart from many theses in the field which
are using mutant injection to create synthetic datasets.

• An in-depth validation of different machine learning models trained on the con-
structed dataset.

• We show that the findings of the underlying study can be validated within the open
source context on real world data.

7.3 Limitations and Future Work
One limitation of our replication study is that it focuses exclusively on Java projects,
whereas the original Facebook study applies predictive test selection across multiple
programming languages. This constraint may affect the generalizability of our findings,
as language-specific characteristics—such as testing frameworks, code structure, and
development practices—can influence model performance. As a result, while our results
are promising within the Java ecosystem, further evaluation across diverse language
environments is necessary to fully validate the cross-language applicability of the approach.

Another limitation of our replication study is the absence of flaky tests in our dataset.
Flaky tests—those that exhibit non-deterministic outcomes—are a significant concern in
large-scale software development and were addressed in the original study. Consequently,
our replication does not validate this aspect of the original findings, and further work with
datasets that include flaky tests is needed to assess model robustness in such scenarios.

Finally, due to the high-level description provided in the original study regarding its
machine learning pipeline and feature engineering, we cannot be certain that our assump-
tions about data collection and model training fully align with those of the original work.
The lack of detailed implementation specifics may introduce subtle differences in how
features are extracted or models are tuned, which could impact the comparability of
results. This limitation highlights the importance of transparency and reproducibility in
empirical machine learning research.

1Code, pipelines, and dataset can be downloaded at: https://zenodo.org/records/15088426
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7.4. Threats to Validity

7.4 Threats to Validity
External Validity is the extent to which our findings can be generalized. In this
thesis we only consider java based project, that are well established in the open source
context. However, the underlying study also analyzes different programming language and
build tools. We already contributed a great step towards external validity by validating
the underlying studies results within the open source context instead of Facebook’s
proprietary monorepo [MSPC19].

Internal Validity is the extent to which the findings of this work are indeed explained
by the presented data and not by other factors. The biggest uncertainty is if the
features where collected in the same way as the underlying study. Since only a high
level explanation is given by it. While we took particular care to not include future
information about the development lifecycle in the data, we cannot guarantee that this is
the case. Since the data was collected from previous commits that may or may not been
altered by some git commands. We would have needed more control over the underlying
projects to inject our data collection into, for example, a CI pipeline to only capture
current commits and their changes.

47





CHAPTER 8
Appendix

Here we will provide a breakdown of all projects used for this thesis. Futhermore, it will
bundle the best hyperparameters used for training, and additional performance metrics.

8.1 Projects
Following are all chosen projects for dataset generation. Note that although we will
provide arguments for all problems that will allow a successful build. Because of memory
and time constraints of, only the projects market with (x) in table 8.2 are used in the
thesis.

Project Runtime Source
biojava 45h https://github.com/biojava/biojava
ews java api 4h https://github.com/OfficeDev/ews-java-api
geometry api 5h https://github.com/Esri/geometry-api-java
graphhopper 262h https://github.com/graphhopper/graphhopper
jackrabbit-oak 706h https://github.com/apache/jackrabbit-oak
jmeter-plugins 9h https://github.com/undera/jmeter-plugins
jmxtrans 8h https://github.com/jmxtrans/jmxtrans
jsoup 24h https://github.com/jhy/jsoup
logback 25h https://github.com/qos-ch/logback
mustache.java 14h https://github.com/spullara/mustache.java
openpnp 19h https://github.com/openpnp/openpnp
opentsdb 38h https://github.com/OpenTSDB/opentsdb
PDF Box 76h https://github.com/apache/pdfbox
Twilio 68h https://github.com/twilio/twilio-java
XChange 115h https://github.com/knowm/XChange

Table 8.1: Table of analyzed projects and their source origin.
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Project Run Parameters
(x) biojava −−proj=biojava −−commits=900 −−ignoreDirs=biojava-integrationtest −−javaHome="<PATH TO>jdk-

11.0.26+4" −−mvnArgs=-Dmaven.jxr.skip,-Dcheckstyle.skip,-Dfindbugs.skip,-Dmpir.skip
(x) ews java api −−proj="ews-java-api" −−commits=600 −−javaHome="<PATH TO>jdk8u402-b06"
(x) geometry api −−proj="geometry-api-java" −−commits=300 −−javaHome="<PATH TO>jdk8u402-b06"
(x) graphhopper −−proj=graphhopper −−commits=1000 −−javaHome="<PATH TO>jdk-21.0.2" −−mvnArgs=-

Dskip.installnodenpm,-Dskip.npm,-Dmaven.antrun.skip
jackrabbit-oak −−proj="jackrabbit-oak" −−commits=1000 −−javaHome="<PATH TO>jdk-11.0.22+7"

−−mvnArgs=-Ddependency-check.skip,-Drat.skip,-Dmaven.jsdoc.skip,-Dcheckstyle.skip,-Dspotbugs.skip,-
Dmaven.site.skip,-Dmpir.skip −−skip=be58b8c85d753b9ce2717b375801c22c60831a63

(x) jmeter-plugins −−proj="jmeter-plugins" −−commits=800 −−javaHome="<PATH TO>jdk8u402-b06" −−mvnArgs=-
Dcobertura.skip,-Ddependency-check.skip,-Dspotbugs.skip,-Dgpg.skip,-DskipNexusStagingDeployMojo,-
Dcheckstyle.skip,-Dsonar.skip

(x) jmxtrans −−proj="jmxtrans" −−commits=300 −−javaHome="<PATH TO>jdk8u402-b06" −−mvnArgs=-
Dcobertura.skip,-Dfindbugs.skip,-Danimal.sniffer.skip,-Ddockerfile.skip

(x) jsoup −−proj="jsoup" −−commits=1000 −−javaHome="<PATH TO>jdk8u402-b06" −−mvnArgs=-
Danimal.sniffer.skip,-Dmaven.source.skip,-Djapicmp.skip

(x) logback −−proj="logback" −−commits=600 −−javaHome="<PATH TO>jdk-21.0.2" −−mvnArgs=-
Dfindbugs.skip,-Dmaven.jxr.skip,-Dpgpverify.skip,-Dmaven.source.skip,-Dmaven.site.skip

(x) mustache.java −−proj="mustache.java" −−commits=200 –mvn="<PATH TO>apache-maven-3.3.3"
−−javaHome="<PATH TO>jdk8u402-b06"

(x) openpnp −−proj="openpnp" −−commits=1000 −−javaHome="<PATH TO>jdk8u402-b06" −−mvnArgs=-
Dbuildnumber.plugin.phase=none,-Dcheckstyle.skip

(x) opentsdb −−proj="opentsdb" −−commits=700 −−javaHome="<PATH TO>jdk8u402-b06" −−mvnArgs=-
Dmaven.antrun.skip,-Dgpg.skip,-Dsonar.skip

PDF Box −−proj="pdfbox"−−–commits=1500 −−javaHome="<PATH TO>jdk-11.0.22+7" −−mvnArgs=-
Dcobertura.skip,-Ddependency-check.skip,-Dspotbugs.skip,-Dgpg.skip,-DskipNexusStagingDeployMojo,-
Dcheckstyle.skip,-Dsonar.skip,-Dmaven.source.skip,-Drat.skip

(x) Twilio −−proj="twilio-java" −−commits=700 −−javaHome="<PATH TO>jdk8u402-b06" −−mvnArgs=-
Dcobertura.skip,-Ddependency-check.skip,-Dspotbugs.skip,-Dgpg.skip,-DskipNexusStagingDeployMojo,-
Dcheckstyle.skip,-Dsonar.skip

XChange −−-proj="XChange" −−commits=3000 −−javaHome="<PATH TO>jdk-11.0.22+7"
−−ignoreTests=.*IntegrationTest$,.*Integration$

Table 8.2: Table of run parameters which the data set generator was run.
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8.1. Projects

In the table 8.1 the respective runtime is measured for the final run of our data collection
tool. The tool ran multiple times, until a stable run with most commits reporting a
successful build, was reached. During these runs our collection tool was subjects to
multiple performance improvements. The runtime is rounded up to the next full hour.
If possible we analyze more than the latest 1000 commits. On the next page we will
provide a table with all parameters that were used to generate the dataset.

For all projects in the table 8.2, −−path="<PATH TO PROJECTS>" needs to be
set to the base directory where the projects are located that the generator uses. All
generations can be run with java -jar -Xmx8000m ./datasetparser.jar <PARAMETERS>.
The javaHome and mvnHome parameters can be set to use alternative java and maven
versions, for building the project and running the tests. If not set, depending on the path
variables the installed Java and Maven versions are used. For our setup this defaults to
Java 21.0.2 and Maven 3.9.6 is used. More details will be found in the Readme of our
generation tool.

Most of the skipped maven phases are chosen to speed up the build process, however
some of them will lead to build failures in older commits. Especially when resources they
need are not available anymore.

Additionally, for building the project, the following arguments are appended internally:
-U -Denforcer.skip -Dcheckstyle.skip -Dlicense.skip -Dmaven.javadoc.skip -DskipTests. As
well as the following JVM arguments: -XX:-TieredCompilation -XX:TieredStopAtLevel=1
-Xverify:none.

For testing the following arguments are appended internally: -Denforcer.skip=true
-Dlicense.skip=true -Dsurefire.forkCount=0 -Dsurefire.useSystemClassLoader=false -
Dsurefire.failIfNoSpecifiedTests=false -DfailIfNoTests=false, as well as the following JVM
arguments -Xmx4048m -Xms1024m.
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8.2 Best Hyperparameter

gamma max_delta_step max_depth min_child_weight n_estimators sampler
0.000000 1 2 2 71 Random Over-Sampling

Table 8.3: Best hyperparameters for the XGBoost model, all features

gamma max_delta_step max_depth min_child_weight n_estimators sampler
1.000000 0 2 1 64 Random Over-Sampling

Table 8.4: Best hyperparameters for the XGBoost model, after feature selection

activation alpha hidden_layer_sizes learning_rate_init sampler
relu 0.064604 20 0.000100 SMOTE

Table 8.5: Best hyperparameters for the multi layer perceptron model, all features

activation alpha hidden_layer_sizes learning_rate_init sampler
tanh 0.066091 10 0.000964 SMOTE

Table 8.6: Best hyperparameters for the multi layer perceptron model, after feature selection
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8.2. Best Hyperparameter

max_depth min_samples_split n_estimators sampler
10 2 78 No sampling

Table 8.7: Best hyperparameters for the random forest model, all features

max_depth min_samples_split n_estimators sampler
10 5 141 No sampling

Table 8.8: Best hyperparameters for the random forest model, after feature selection

kernel__degree kernel__kernel C sampler
5 rbf 4.196023 No sampling

Table 8.9: Best hyperparameters for the support vector machine model

kernel__degree kernel__kernel C sampler
5 rbf 0.351107 No sampling

Table 8.10: Best hyperparameters for the support vector machine model, after feature
selection

C penalty sampler
0.019327 l1 No sampling

Table 8.11: Best hyperparameters for the logistic regression model

C penalty sampler
0.007344 l1 No sampling

Table 8.12: Best hyperparameters for the logistic regression model, after feature selection
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8.3 Performance Measures

train test test fitted
recall precision F1 recall precision F1 recall precision F1

logistic regression 0.769861 0.910853 0.834443 0.917813 0.9725 0.9444 0.918750 0.972544 0.944882
multi layer perceptron 0.826431 0.929751 0.875052 0.921875 0.949163 0.935320 0.9200 0.953986 0.936685
random forest 0.860776 0.976718 0.915089 0.9234 0.955074 0.938990 0.917188 0.9787 0.946927
support vector machine 0.799051 0.925318 0.857562 0.920937 0.947588 0.934073 0.919375 0.976435 0.9470
XGBoost 0.9829 0.9901 0.9864 0.917500 0.961992 0.939219 0.910000 0.973913 0.940872

Table 8.13: Results of fitted models after hyperparameter tuning on all features

train test test fitted
recall precision F1 recall precision F1 recall precision F1

logistic regression 0.768666 0.915691 0.835762 0.917813 0.9725 0.9444 0.918750 0.972544 0.944882
multi layer perceptron 0.808610 0.904249 0.853760 0.916250 0.961942 0.938540 0.914375 0.972093 0.942351
random forest 0.8590 0.9775 0.9144 0.9222 0.959051 0.940258 0.917188 0.9787 0.946927
support vector machine 0.799051 0.925318 0.857562 0.920937 0.947588 0.934073 0.9194 0.976435 0.9470
XGBoost 0.815131 0.890264 0.851043 0.915937 0.963511 0.939122 0.915937 0.969567 0.941989

Table 8.14: Results of fitted models after hyperparameter tuning on selected features
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