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Kurzfassung

Die schnell rekonfigurierbare Fertigung ist ein Eckpfeiler des Industrie-4.0-Programms.
Neben der flexiblen Anpassung an unsichere Marktsituationen kann es die Nachhaltigkeit
einer Produktionsanlage verbessern, indem es die Umweltbelastung, den Abfall, den
Energieverbrauch und den Verbrauch natürlicher Ressourcen minimiert. Die Verifizierung
der funktionalen Sicherheit einer rekonfigurierbaren Fabrik stellt jedoch eine wesent-
liche Herausforderung dar, da herkömmliche Sicherheitsverfahren auf umfangreichen,
manuellen Überprüfungen durch Sicherheitsingenieure basieren. Diese Dissertation wen-
det eine Design-Science-Research-Methodologie an, um einen beschleunigten Ansatz
zu entwickeln: einen Prozess zur semi-automatisierten Verifizierung, bei dem automati-
siertes Schließen die Konformität eines Modells eines industriellen Systems mit seinen
Sicherheitsanforderungen überprüft. Der Prozess beginnt mit der Erstellung eines Sys-
tems Modeling Language (SysML)-Modells des Systems und seiner Anforderungen, die
anschließend in eine Web Ontology Language (OWL)-Wissensbasis übersetzt werden,
um dem automatisierten Schließen zugänglich zu sein. Schließlich wird ein Satz von
Semantic-Web-Schlussfolgerungssprachen, verwendet, um die Sicherheitsanforderungen
zu verifizieren. Als durchgängiger Proof-of-Concept wird dieser Prozess auf eine beispiel-
hafte Produktionseinheit angewendet. Die Evaluierung des Prozesses zeigt, dass, obwohl
die manuellen Systemmodellierungsschritte eine vollständige Automatisierung behindern,
die Automatisierung nach der Investition in die Modellierung der rekonfigurierbaren
Fabrik die Sicherheitsverifizierung jeder Konfiguration erheblich unterstützt.
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Abstract

Rapidly reconfigurable manufacturing is a pillar of the Industrie 4.0 program. In addition
to flexibly adapting to uncertain market situations, it can improve a production facility’s
sustainability by minimizing the environmental impact, waste, energy consumption, and
use of natural resources. However, verifying the functional safety of a reconfigurable
factory is a major challenge, since standard safety practices rely on extensive manual
reviews by safety engineers. This thesis applies a Design Science Research methodology
to develop a faster way: a process for semi-automated verification, in which automated
reasoning verifies the compliance of a model of an industrial system with its safety
requirements. The process begins with the creation of a Systems Modeling Language
(SysML) model of the system and its requirements, which are then translated into a
Web Ontology Language (OWL) knowledge base in order to be amenable to automated
reasoning. Finally, a set of Semantic Web reasoning languages are used to verify the
safety requirements. As an end-to-end proof of concept, this process is applied to an
example production unit. Evaluation of the process shows that while the manual system-
modeling steps hold it back from full automation, once the time is invested in modeling
the reconfigurable factory, the automation greatly assists in verifying the safety of any
configuration.
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CHAPTER 1
Introduction

1.1 Motivation
Industrie 4.0 promises that networked, rapidly reconfigurable automated factories can
make manufacturing highly efficient [10]. However, established practices for manufacturing
safety have little scope for reconfiguration: creating and validating a safety scheme takes
a long time and a lot of highly specialized labor. That means that rapid reconfiguration
would require decidedly un-rapid safety changes. To realize both functional safety and
Industrie 4.0 rapid reconfiguration goals, it will be necessary to automate the creation
and validation of safety measures.

Model-Based System Engineering (MBSE) offers a set of tools which could solve this
problem: it is possible to include both safety requirements and safety systems in a
system model [47]. Theoretically, this would allow for automated verification of the
safety conditions on the system. Extending this system model to a digital twin of a
real-world system would thus allow for automated verification of safety conditions in a
shorter amount of time. A further, implicit benefit here is the possibility of including
safety alongside systems design, rather than as a second stage [60].

To begin work on this, researchers have developed conceptual frameworks for automating
the functional safety process. Some have applied these frameworks in limited example
facilities as well. However, at present, all have been forced to subjectively interpret
relevant safety regulations in the contexts of their examples in order to create requirements
that their system models can parse. In practice, this manual step is a severe bottleneck,
preventing any practical gains from automation.

Etz et al. identify a first step towards bridging this gap: in addition to the configuration
of the system model, it is necessary to have a knowledge base encoding knowledge about
both the manufacturing system and the regulatory requirements, represented in a manner
that allows for automated reasoning on the knowledge [31]. Following from this work,
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1. Introduction

Reitgruber has developed a prototype knowledge base for manufacturing systems [66].
The other half remains open: developing a formal representation of safety requirements.
With this in place, it should be possible to apply automated reasoning to a system model
and verify that it satisfies safety requirements.

1.2 Research Question
In this work, we demonstrate a process for automatically verifying the compliance of an
industrial system with its safety requirements. We will produce this demonstration as
we explore our main research question: How can we automatically verify that an
industrial system is consistent with all of its safety requirements?

We should immediately recognize: functional safety is a property of the real physical
system, while we can only perform automated verification on a model. Thus, this top-level
research question can be broken into two related sub-questions:

• How can we effectively model an industrial system for the purpose of verifying
functional safety requirements?

• How can we effectively use automated reasoning to verify a system model’s consis-
tency with its safety requirements?

We make special note here of two semantic separations: keeping these concepts distinct
is necessary if our discussion is to be precise at each point.

First, we draw a distinction between our subject industrial system (a production unit in
a factory) and the model of our system. The industrial system is “the real thing”, or
at least, “thing itself”, while the model is a structured simplifying representation of this
thing. The distinction is tricky here since we will not be working from an actual physical
factory in the real world, but from an imaginary factory which is itself already quite
simplified. However, the conceptual distinction remains: our system model represents
the subject industrial system, and any automated reasoning solution can be applied to
the model (which is made of 0s and 1s), not to the system itself (which is made of steel
and plastic, or at least of pictures and narrative descriptions).

Our second semantic separation concerns the scope of the subject system. Our industrial
system comprises physical objects (rooms, machines, and so on), as well as configurations
(in wiring or software) and also requirements (in our case, derived from safety standards).
When we write “system model”, we are referring to the highest-level concept of our
industrial system, encompassing all elements which are relevant to our inquiry. Elements
which are not relevant, such as external stakeholders, financial details, and so on are
omitted for practical reasons, though in theory they would be present at this level of
abstraction. This leads to a careful choice of language: as in the research questions
above, we will say “the system is consistent with its own safety requirements”, not, “the

2



1.3. Methodology

system meets the requirements”. This is a recognition of the fact that the requirements
are a part of the system. This philosophical choice becomes practical when we enter
the system-modeling process: physical and configuration elements of the system have
direct links to requirement elements, and changes in one realm interact with changes in
another. So we are careful to maintain this understanding: the requirements are part of
the system.

1.3 Methodology
To explore our research questions, we will follow a design science research methodology.
We adopt the six-step cycle described by vom Brocke et al. in “Introduction to Design
Science Research” [25].

1. Problem identification and motivation: We refine the above research question into
a clear problem statement about checking safety requirements using automated
reasoning.

2. Define the criteria for a solution: In addition to a set of criteria for our artifact
(this chapter), we will develop criteria for each of the major decisions we make
along the way:

a) Choice of scenario: What representative example of an industrial system will
we choose, to which we may apply our modeling and verification processes?
(Chapter 3)

b) Choice of system modeling approach: What technologies and strategies will
we use in our system-modeling process? (Chapter 4)

c) Choice of verification approach: What automated reasoning technologies and
strategies will we use in our verification process? (Chapter 5)

3. Design and development: We will create each of the components needed for our
ultimate artifact:

a) An example scenario to which we may apply our modeling and verification
processes, presented in narrative descriptions and pictures.

b) A process for creating a system model of our scenario.
c) A system model of our scenario, in formal modeling language(s).
d) A process for automatically verifying that our system model is consistent with

its safety requirements.
e) A report confirming the system’s compliance or else precisely identifying its

shortcomings.

4. Demonstration: We will demonstrate our processes on multiple configurations of
the model scenario.

3



1. Introduction

5. Evaluation: Based on the objectives we have created, we will evaluate our artifact.

6. Communication: We present our work in this thesis paper.

Figure 1.1: Design Science Reseach methodology, as adapted for use in this thesis from [25]

We can see in Figure 1.1 that “thesis paper and presentation” appears only as the tail
end of the process. As a result, the iterative loops under “design and development”
which actually comprise most of the work are hidden from the reader. However, the
reality of iterative design guides certain high-level choices in this thesis. For example,
while the SPARQL Protocol and RDF Query Language (SPARQL) queries in Apache
Jena are used to check the safety requirements, this came only after some days of effort
attempting to use other solutions involving the Semantic Query-Enhanced Web Rule
Language (SQWRL), the Shapes Constraint Language (SHACL), and Snap-SPARQL.
These unsuccessful efforts are not presented alongside the successful solution, but are
nonetheless a core part of following the methodology. We summarize the reasons that
these other technologies were unsuccessful in “Choice of Reasoning Language”.

Of particular note: we will spend significant effort producing a top-level system model
which encompasses our requirements. This system model may at first seem irrelevant in
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our final product. However, it is a critical part of our process for system modeling, as
it allows us to carefully track the effects each iterative change we make: as we find we
need to update a requirement or rethink how a system element is modeled, the system
model helps us trace the impact of these changes and maintain consistency throughout
our illustration of our process.

1.4 Artifact
Our methodology will result in the production of an artifact: a process for evaluating
an industrial system for consistency with its safety requirements. It is helpful
to view the process in two parts. The first is a process for system modeling. The second
is a process for automated verification. Linking these two processes is an intermediate
artifact: a particular system model, which our first process produces and our second
process consumes. We illustrate this in Figure 1.2.

Figure 1.2: Process for evaulating an industrial system for consistency with its safety
requirements

It is this overall process which forms the response to our research question, and so it is
by examining this that we will evaluate the success of our project.

This diagram should make clear the somewhat qualified title of this thesis: our process
is semi-automated, with a manual first part and an automated second part. The title
may also be viewed as a concession to the ultimate truth that safety verification, at
the highest level, cannot be fully automated, as it is ultimately human engineers and
executives who must take responsibility for the safety of their systems.

1.5 Criteria for a Successful Artifact
Following our division of our artifact into two subprocesses, we distill our aims for the
project into two sets of criteria.

A successful modeling process:

1. Allows the modeler to accurately reflect the target system.

2. Unites physical and configuration elements as well as requirements.

5
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3. Allows for iterative change as the target system or the modeler’s understanding of
it changes.

4. Makes use of existing technologies in order to reduce the modeler’s effort.

5. Makes use of existing modeling languages in order for different modelers’ separate
work to be mutually intelligible and functionally compatible.

All of these except for the second are essential criteria for any modeling process in
any domain. However, that second criteria has a more specific relevance to this thesis:
since we are performing verification of safety configurations, it is necessary that our
model encompass all three of these domains: physical devices, configurations, and safety
requirements,

A successful verification process:

1. Uses automated reasoning tools to ensure correct results.

2. Detects common human errors from the modeling stage.

3. Produces a clear answer, either affirming the system’s consistency or specifically
identifying each fault.

4. Provides human-readable explanations for each fault.

5. Can be conveniently applied to multiple test cases or to entirely different system
models.

While these are mostly self-evident, the last demands some clarification. Since our goal
is to verify safety in order to enable rapid reconfiguration, we need to be able to readily
apply our process to new variations on the same model.

We will return to these criteria in Chapter 8.

1.6 Contributions of This Thesis
The design artifact comprises the main original contribution of this thesis. Existing
work has explored the feasibility of various aspects of the safety verification problem.
However, no existing work presents a precise end-to-end process which starts with an
industrial system with its safety requirements and ends with a detailed verification result
in human-readable form. This thesis provides such a process, and validates it against an
example scenario.

The exact choice of which reasoning technology to use for which purpose is probably not
entirely new, but is not represented in the literature. In particular, the approach to using
the Semantic Web Rule Language (SWRL) and SHACL together to perform inference
subject to closed-world conditions is original, if somewhat inelegant.
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1.7 A Preview of the Thesis
With all of this in mind, we offer a brief overview of the thesis, to help the reader
understand what each chapter is doing.

1. Introduction: We present our research question and the methodology with which we
will explore it. We then present the criteria by which we will evaluate the artifact
resulting from our exploration.

2. State of the Art: We give an overview of the current research publications related
to our research question. Here, we look at what is being done, from a high level,
rather than the details of how the technologies work.

3. Scenario: We present a narrative description of an idealized production unit and
a simplified set of safety standards which this must meet. A detailed modeling
process for this scenario, together with an automated process for verifying its safety
compliance, will be the product of our exploration.

4. System Modeling: We introduce the main approaches to system modeling, evaluate
their suitability to our purposes, and choose the specific modeling technologies we
will use to create the detailed model of our scenario.

5. Automated Reasoning: We introduce the main approaches to automated reasoning
in the context of our system model, evaluate their suitability to our purposes, and
choose the specific reasoning technologies we will use to verify the safety compliance
of our model.

6. Design Artifact: We present the result of our design methodology: our detailed
step-by-step process for evaluating an industrial system for consistency with its
safety requirements.

7. Proof of Concept: We apply the step-by-step process from Chapter 6 to four different
configurations of the industrial system and safety requirements from Chapter 3.

8. Evaluation: We assess the performance of our modeling process and automated
reasoning tool against the criteria we presented in the first chapter.

9. Conclusion: We discuss the implications of our results and potential directions for
future work.

Let’s go!
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CHAPTER 2
State of the Art

In this chapter, we examine the current state of the technologies we will use and the
research that informs our exploration. This chapter focuses on the “what”: what are
current researchers accomplishing? Our detailed explanation of the “how” of our relevant
technologies waits for Chapters 4 and 5.

2.1 Technical Background
Functional safety is the part of overall safety focused on automatic changes in the
behavior of a machine or system to prevent injury. One example is the control circuit
that prevents an automatic door from closing on a person standing in the doorway [11].
This example is relatively passive: a more active example would be a controller on a wind
turbine that angles the blades into a neutral position if wind speed increases above a safe
limit. A number of standards guide functional safety: the most prominent is IEC 61508,
which describes whole-lifecycle safety for electrical and electronic systems. A modification
of this, IEC 62061, describes functional safety of safety-related control systems on
machinery [61]. A range of other standards may also be relevant, depending on the
industry and the jurisdiction. Alongside standards, governments also mandate industrial
safety measures, to varying extents. In the EU, the the Machinery Directive (MD) sets
the legal requirements for safety in manufacturing processes [3]. The relationship between
IEC standards and the MD is complicated. For example, compliance with IEC 61508
does not give the presumption of compliance with the MD [7], but IEC 62061 does [2].
But regardless, in practice, standards and legal requirements are closely related, both
in their development and their application. So, the IEC standards, together with the
MD, provide an important and representative example of a regulatory framework for
functional safety.

Model-Based System Engineering (MBSE) is the use of system models to support
requirements, analysis, verification, and validation throughout a design process [5]. The
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2. State of the Art

essential goal of MBSE is to cope with the exponentially growing complexity of designed
systems, in which component interactions, rather than component failures, become the
primary causes of failure. The most common modeling tool for MBSE applications is the
Systems Modeling Language (SysML): while it is not necessarily a standard, it is widely
used and required in some contexts, such as US Department of Defense contracts [8]. In
automation, AutomationML is another widely-used open standard [1]. There is increasing
recognition that MBSE offers the possibility of solving safety engineering problems with
which older safety methodologies are unable to cope. The question of how, exactly, to
realize this is at the forefront of systems engineering research today. For example, in her
keynote at the INCOSE International Workshop 2023 MBSE Workshop, Nancy Leveson
outlined the challenges of modern safety engineering and argued that advances in MBSE
offered a way past them [6].

Knowledge engineering is the use of representations of real-world knowledge in struc-
tured frameworks to enable automated reasoning [54]. In the context of functional safety
and MBSE, knowledge models are necessary in order to “ask” whether a system (model)
is safe–or, equivalently, in order to state what, exactly, it means for a system to be safe.
Knowledge models are commonly structured as ontologies: “set[s] of representational
primitives with which to model a domain of knowledge or discourse” [41]. The most
prevalent tool for describing ontologies is the World Wide Web Consortium (W3C)’s the
Web Ontology Language (OWL) [76]. However, any given ontology itself is generally
domain-specific. In this work, we will extend Reitgruber’s Reconfigurable Safety System
Ontology, which is in turn developed from several domain-specific ontologies [66]. At-
taching knowledge modeling to a MBSE workflow is the subject of current research in
systems engineering [50] [9] [58] [4].

Automated reasoning is the use of software to check the truth of a statement [65]. In
our context, we intend to form statements about the safety of our system model using
our knowledge model, and then check the validity of such statements. While automated
reasoning is, in full generality, an uncomputable problem, and is in virtually any practical
application at least NP hard, practical approaches nonetheless exist. Most of these amount
to reducing a given problem to a better-understood problem–boolean satisfiability is a
common target–and then applying a well-developed solver for that problem–for example,
Microsoft’s open-source Z3 solver, for satisfiability. These approaches are mature enough
to solve such otherwise-intractable problems as software library dependency resolution in
practical amounts of time. In particular, it is possible to use automated reasoning on
knowledge models and system models, as our goals require [53].

2.2 Related Work

Taking these four identified areas as a guide, we examine relevant current work on each
topic. We examine each topic in turn, presenting a handful of relevant papers.
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2.2. Related Work

2.2.1 Functional Safety
We approach functional safety directly from the context of Industrie 4.0, a promotional
label which has come to encompass a wide range of interconnected trends in the evolution
of factories into cyber-physical systems [52]. The term is also politically specific: it
identifies trends being actively advanced in Germany (as the spelling suggests) and, more
broadly, in the EU. As Kagermann and Wahlster, two original proponents of the term,
write in their 2022 review of the first decade of the phenomenon, “For the first time in
the high-tech world, we have once again been able to establish an innovative concept
from Germany internationally, after they had mostly come from North America or Asia
for many years. Industrie 4.0 has made Europe the most innovative factory supplier
of the world. There does not exist any ‘smart factory’ anywhere in the world where
a large number of software and hardware components does not come from European
companies.” [52] As this originates in the German and EU context, it is natural that a
strong emphasis on safety regulation has been a thread throughout the developments
described as Industrie 4.0. At the same time, the move towards broad adoption of
emerging technologies creates significant safety challenges.

Polak-Sopinska et al. give a comprehensive overview of the opportunities and challenges
which Industrie 4.0 presents for safety in their 2020 paper “Impact of Industry 4.0 on
Occupational Health and Safety” [64]. On the opportunities side, they identify a clear
safety benefit in the simple fact that automated “lights off” factories running without
humans present no injury risks during those hours. They identify a wider range of
potential benefits: the greater use of sensors and intelligent technologies creates the
possibility of more quickly and accurately detecting unsafe situations. They also see
potential for “smart” personal protective equipment to reduce injuries. And they note
that about a quarter of sick leave days in Germany result from lifting-related injuries,
and highlight the potential for robotic coworking and even exoskeletons to reduce this
source of injuries. At the same time, they identify significant challenges. At a high level,
they note that qualified labor shortages likely to result from the increasing complexity
of work coupled with an aging workforce would generally exacerbate safety risks. With
a closer look at the functional safety of machines, they note that while AI solutions
for factory management are a major aspect of Industrie 4.0, AI is essentially unable to
cope with new situations–that is, with precisely the sort of unsafe situations which a
system needs to able to mitigates. This essentially amounts to the black swan problem:
all serious safety failures are previously-unknown until they happen, and the statistical
approach of AI cannot detect them in advance. (This is very much the motivation for
our desire to instead employ formal reasoning!)

Despite the wide range of challenges which the Industrie 4.0 transformation brings, there
is so far only limited systematic research on this issue. In a 2023 review of the topic,
Hutchins et al. perform a keyword- and citation-based analysis of existing publications,
and find only the most limited treatment of the issue, recommending further research [46].
Much of the existing work on the topic focuses on high-level organizational approaches to
safety management. For example, Torrecilla-García et al. produce a four-level conceptual
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framework for classifying organizational readiness for implementing occupational safety
and health in industries pairing products with services (“servitization”) [74]. Junior
et al. examine the question from an enterprise management point of view, identifying
frameworks to support top-level development of functional safety in the automotive
sector [51]. Meany directly addresses functional safety in his 2017 paper “Functional
safety and Industrie 4.0” [59]. However, overall, all of these papers are preliminary and
high-level.

One particularly relevant paper is Dieter Etz’s dissertation “Flexible Safety Systems:
Use Cases, Requirements, System Design, and Software Architecture”: this thesis is
one of eight thesis projects carried out under Etz’s supervision, in conjunction with his
project [30]. In contrast to the high-level, management-oriented approaches of the papers
above, Etz lays out the architecture and requirements for “Flexible Safety Systems”, a
method by which factories could achieve functional safety while also achieving the key
Industrie 4.0 goal of reconfigurable manufacturing. The project addresses every level
of the functional safety process: “The design utilizes existing base technologies for safe
and reliable communication and provides services for device discovery, configuration
generation, and automatic deployment. It also provides a basis for further features
such as automatic risk assessment, automatic safety verification, safety validation, and
safety evaluation. Additionally, assistive features such as legal regulations checks and
AI-supported configuration generation could be envisioned.” While many issues of occupa-
tional safety and health lie outside the scope of functional safety, Flexible Safety Systems
present a promising path forward for taking full advantage of Industrie 4.0 developments
in the realm of functional safety.

2.2.2 Model-Based System Engineering
Research on integrating safety verification into MBSE (and, hence, into Industrie 4.0
rapidly reconfigurable systems) is still in early stages. We highlight some papers from
the last several years showing development of frameworks for reaching this goal, and
some offering limited demonstrations of MBSE approaches which point in the direction of
this goal. We then dig deeper into recent criticism of pre-automation safety approaches,
which serves to highlight the fundamental importance of automating safety validation in
MBSE, even beyond Industrie 4.0 goals.

A number of researchers have produced conceptual frameworks for the project. Etz et al.
propose a framework of five Service Groups for automated functional safety: our work fits
into the first of these, Knowledge Representation [32]. Lee et al. highlight the importance
of developing common ontologies and language for safety in systems engineering, with a
focus on safety in process industry [56]. Salado presents several approaches to capturing
requirements in model building–a necessary part of modeling safety requirements [69].

Alongside these theoretical development efforts, there are a number of implementation
examples. Mhenni et al. demonstrate the possibility of introducing safety requirements
analysis in the initial system design phase for an aircraft wheel brake subject to the
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ARP 4761 standard [60]. Häring et al. demonstrate a full process of introducing safety
requirements at the system engineering stage and checking their fulfillment with formal
verification: in this case, their example is a malfunction indicator lamp for a car [47].
Javed et al. demonstrate the design of safety requirements for an autonomous guided
vehicle using a design-by-contract approach [49]. And Bdiwi et al. develop a set of safety
requirements for an industrial robot and demonstrate the real-time checking of those
requirements using camera-based safety systems in an experimental production unit [22].

In all cases above, however, the safety requirements are derived from the standards
“manually”, by the engineers’ direct interpretation. Without knowledge modeling, in-
terpreting safety standards in context remains a critical bottleneck in the engineering
process. Leveson highlights the essential problem with formulating safety requirements
one-by-one: the complexity of designed systems is simply too high, and individual safety
rules are unlikely to prevent emergent phenomena [57]. For example, the 1993 landing
accident of a Lufthansa A320 in Warsaw was attributed in part to the design of the
safety logic: the engine reversers and ground spoilers would not deploy unless both main
landing gear detected enough load for the plane to be “on the ground” [87]. Due to other
errors, the plane touched down with only one landing gear under load for nine seconds:
in that time, commands to these braking features were blocked by the safety logic, and
the plane overran the runway. Leveson presents this as an example of the limitations of
component-focused safety design: while each component system performed according to
its safety requirements, the emergent state was unsafe–fatally so for one crew member
and one passenger. She argues for a “paradigm shift” from safety as reliability to safety
as control: positively asserting the properties of globally safe states. This accords with
Hollnagel’s much more philosophical treatment of safety nine years earlier: he argues that
safety science must focus not on the unsafe states to be avoided, but on the characteristics
of positively safe states [44].

The development frameworks mentioned above highlight the importance of knowledge
modeling and automated reasoning for integrating safety into changeable system configu-
rations. The example projects show, implicitly, the limitations on Industrie 4.0 design
without these tools. And the demonstrated need to conceptualize global safety properties
makes clear that reasoning on knowledge models will be necessary to connect the global
level to the component level in a reliable way.

2.2.3 Knowledge Engineering

Etz’s Flexible Safety System concept uses a Safety Network Controller (Figure 2.1)
informed by a knowledge-based system: this consists of all the relevant knowledge for
both the production system and external requirements, together with an inference engine.
The knowledge-based system is thus a key component. In his related master’s thesis [66],
Reitgruber develops a proof-of-concept knowledge base for this application. He selectively
combines existing ontologies for industrial systems and networking to create a suitable
ontology for this. Our own exploration focuses on the inference and automated reasoning
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side of this system. With this in mind, we review recent developments in knowledge
engineering related to functional safety.

Figure 2.1: Architecture of the Safety Network Controller, from [30]

Some other authors have also worked on developing knowledge bases in the functional
safety context. De Galizia uses a custom-built knowledge base for electrical systems to
permit probabilistic, rather than formal-methods, safety assessment [38]. More recently,
in “Mitigation Ontology for Analysis of Safety-Critical Systems”, Ali et al. provide an
ontology focused on identifying potential failures and mitigations [18]. Like most papers
presenting ontologies, it offers this Mitigation Ontology as a potential common language
to provide interoperability for safety systems. However, both the relative scarcity of
papers on this topic and the lack of a widely adopted standards in practice show that the
use of knowledge engineering in safety systems is still in its early phases of development.

It may be that the greatest knowledge engineering challenge in functional safety is in the
requirements themselves. Etz identifies this as a key direction for future work: “it would
be of great value if the system could provide a semantic model of the applicable safety
regulations or standards.” [30] In his thesis “Unambiguous requirements in Functional
Safety and ISO 26262: dream or reality?”, Sternudd explores the fundamental challenge:
ISO 26262, the international standard for functional safety in vehicles, requires that
safety requirements be unambiguous, and also that they be expressed in natural language:
the inherent contradiction here is one of the oldest paradoxes in philosophy, and not likely
to permit easy resolution [73]. Sternudd instead presents a proof of concept in which an
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ontology is used to constrain the statements of requirements and to produce controlled
natural-language versions of them. This satisfies the letter of ISO 26262 if not the
spirit: the formalized version of the requirement expressed in an ontology language is the
primary source of truth in this model. Realistically, the opposite direction will probably
be more valuable: translating written safety requirements into machine-comprehendible
representations. The extreme complexity of existing standards is both the biggest obstacle
and the biggest motivation for automated comprehension. At the same time, a certain
degree of flexibility in safety standards is necessary: faced with absolute, deterministic
standards, it would often be the case that the only fully safe strategy is to never turn
the machine on.

The interaction of two institutional factors also presents an obstacle to recasting safety
standards into machine-readable ontology languages. First, in the EU, privately published
safety standards gain the force of law under the MD when they are recognized by the
European Commission as Harmonized Standards and published in the Official Journal of
the EU [3]. This is a legal mechanism: the text of the standard has force of law. Imagining
that standards were instead machine-readable raises an immediate question: how exactly
would a judge interpret an RDF file with, itself, the force of law? These challenges show
that modernization of existing standards faces even more complex hurdles than one might
initially suspect.

2.2.4 Automated Reasoning
The complexity of cyber-physical systems is explosive. In turn, ensuring functional safety
becomes a monumental task. In order to support reconfigurable systems, some form of
automated checking would be necessary. In Etz’s Flexible Safety Systems concept, the
automated reasoner serves as a plausibility check on the system, while the ultimate safety
verification is still manual: this human-in-the-loop system is probably necessary both due
to the challenges noted above of expressing safety requirements in a machine-readable
way and due to legal and institutional norms in which some particular human engineer
certifies the compliance of the system.

Other current research examines alternate strategies for using formal reasoning to support
functional safety. Fetzer et al. introduce the idea of using a “safety auditor” equipped
with a comprehensive system model to monitor data inputs from a car in real time
and correct faults as detected [34]. Bernardini et al. present formal methods as a tool
to support probabilistic fault tree analysis [23]. Both of these papers engage with the
fundamentally probabilistic nature of functional safety standards. However, both the
plausibility check in Flexible Safety Systems and these probabilistic systems with an
auditor or fault injection still require that formal reasoning be able to check at least
simple cases.

Beyond the question of proving compliance, formal methods can still provide value,
allowing systems to use inference on an ontology to structure their own safety requirements.
Gačnik et al. have demonstrated this approach on an automobile guidance system, using
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an OWL ontology [37]. Vincentini et al. used temporal logic-based models to describe the
possible sequences of tasks in a human-robot collaboration scenario, and then exhaustively
checked the state space in order to quickly identify safety risks [77].

So, we can see that while there are serious obstacles to safety verification using formal
methods, there are still a variety of use cases in which formal methods may add real
value.
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CHAPTER 3
Scenario

In this chapter, we will choose a realistic scenario for our system model and automated
verification process. The scenario will allow us to construct a specific system model and to
then apply our automated verification approach. In order to choose a suitable scenario, we
will look at existing research, consider the factors that went into others’ choice of scenario,
develop our own criteria, and then settle on a suitable example. When we define our
example, we will need to specify multiple aspects. The system itself comprises physical
configurations, configurations, and functional safety requirements. These plurals are
quite important: in order to evaluate our product in the Industrie 4.0 context, our system
needs to be reconfigurable: we need to have multiple, related configurations of both
physical components and control flows. Our automated verification process will check
the conformity of the physical and control configurations with the safety requirements in
each of the variants. Thus, these three elements, in an identified number of variations,
comprise our scenario.

3.1 Criteria for the Choice of Scenario
In order to develop and evaluate our system model and our verification approach, we
will need to choose an appropriate test scenario. In the existing literature on functional
safety, researchers have investigated a wide variety of examples. We will look at these
examples and see what factors they considered in their choices of use case.

We see functional safety research across a wide variety of domains. Häring et al. apply
a Model-Based System Engineering (MBSE) approach to an automobile’s malfunction
indicator lamp [47]. Mhenni et al. look at aircraft braking systems [60]. Baumgart et
al. use automobile steering in their discussion of a model-based design approach for
functional safety [21]. Bdiwi et al. examine automatically configuring safe zones around
a working robot and enforcing them using cameras and image recognition [22]. Catelani
et al. consider safety configurations in process industry [26]. They provide a detailed
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methodology for assessing electromechanical compliance based on Reliability Block
Diagram methodology. Functional safety and verification are broad topics which could
be examined in a large number of contexts–although automotive design and industrial
automation seem to be the most well developed. We will focus on industrial automation.

Our scenario should relate to real-world standards. In the automotive realm, Häring et
al. connect their work on modeling the safety systems of a malfunction indicator lamp
to the ISO 26262 standard. Adhikari et al also work in relation to ISO 26262, in their
case analyzing an automobile emergency braking system [16]. In both of these cases, the
use case is tied to specific safety standards. For Mhenni et al., that is ARP 4761; for
Baumgart et al., it is again ISO 26262. That said, they are not dealing with the full
complexity of those standards. For our scenario to be reasonably relevant, we would like
to have a clear relation to real-world standards, but for it to be practical, we would like
to be able to use a simplified version of those standards.

Our scenario should present an obvious safety problem which our safety system can solve.
And, just as the scenario should have an obvious relation to safety, the safety measure
itself should be clear in its function. In Bdiwi et al.’s example with the industrial robot,
the safety requirement is fairly straightforward: the robot needs to stop if an object
enters its exclusion zone. Similarly, in Häring et al., the warning light turns on. In both
of these examples, we see that, while the operation of the system itself is very complex,
the safety intervention is simple: “turn off the robot”, or, “turn on the light”, although
in the robot example, the safe zone itself changes as the robot and human move in the
work area. In our earlier examples, actually achieving a safe state is more complicated:
enforcing safe automotive braking is much more than “apply the brakes”; angle of attack
correction is far more nuanced than “pitch down the elevators”! And indeed, in Adhikari
et al.’s braking example, they chose a very, very simplified subset of safe behavior for
their study. A contrasting approach is Catelani et al.’s process industry example, in
which the scenario and the safety mechanism are not actually described, presumably as
they are too complicated. Instead, the Reliability Block Diagram examples are simply
presented as “the safety functions that are present in a complex system designed for
process industry application”. We would really like to not fall into this situation, and as
we are inventing our own scenario out of whole cloth, there is no reason that we should.
What we can take from both the simple safety behaviors in the industrial examples and
the conscious choice to simplify in the automotive examples is: our safe behavior should
be very simple. Ideally, it should be boolean: on-or-off, yes-or-no.

At the same time, our scenario should present a significant level of complexity and
interrelation. Real-world safety systems are vulnerable to unintended consequences:
when safety systems don’t perform their functions, unsafe situations won’t be prevented;
but, the operation of a safety system to correct one unsafe condition may violate another
safety requirement. A dramatic example of unintended consequences in aerospace control
systems illustrates this latter failure mode vividly: the angle-of-attack sensor on the
Boeing 737 MAX. The US Federal Aviation Administration report on the 737 MAX
control system failures describes a series of faults in which the flight control software
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would continually adjust the elevator trim in response to a single sensor, even overriding
pilots’ control inputs [33]. The possibility of unexpected behavior causing safety violations
drives home the value of formal verification: an automated logical process can detect
problems arising as unintended consequences which human design intuition might miss.
Implicitly, the report also underlines the potential value of formal verification, as the
faulty system had already passed traditional functional safety review processes! From
this, we can see that it would be valuable for our safety rules to contain a non-obvious
requirement which an unsafe configuration might violate. Constructing a scenario with
a “toy” unintended consequence may not be entirely feasible, but would definitely be
desirable.

All of the examples we have talked about have been very concrete: one could easily
picture, or draw a picture of, the example. We should choose an example with a similar
level of physical simplicity.

Finally, we see one major contrast between these examples and our own requirements.
The core idea of Industrie 4.0 is that of rapid reconfiguration: our aim is to produce
a verification tool to support this. The existing scenario examples are all essentially
unitary. In contrast, our example scenario needs to be essentially reconfigurable: both
the physical configuration and the control configuration need to support multiple changes.
On the other hand, the safety rules will remain the same throughout.

So, our criteria for a good scenario are:

1. The system should offer the potential to use a simplified version of real-world
standards.

2. The system should have a clear relation to safety.

3. The system should be complex enough to demonstrate robustness against “unin-
tended” consequences.

4. The safety controls and the rules chosen should be amenable to “on-or-off” inter-
ventions for simplicity.

5. The physical system should be simple enough to readily visualize.

6. The physical components and control flow should be reconfigurable.

3.2 Emergency Stop Buttons
With these factors in mind, we will examine a system based on emergency stop controls.
Emergency stop functionality contains an appealing balance of simplicity and complex-
ity: the controls themselves and their intended safe behavior are simple; however, the
interaction of different e-stop controls is potentially complex.
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E-stop functionality is governed by a number of different standards [75]. ISO 13850
specifically describes the requirements of e-stop buttons themselves. Other standards
such as ISO 13849, IEC 60204-1, and IEC 62745 present broader safety standards which
make critical use of e-stop functionality. The complexity arises from a few subtle points
in the safety standards. In particular:

• An e-stop must bring ALL equipment within the operator’s view to a safe stopped
condition, not just its attached equipment. This set of equipment is referred to as
the “span of control of emergency stop device(s)” in ISO 13850 [12]. The standard
actually requires the span to consider not just visibility but the possibility of sound
or smell alerting an operator to an unsafe situation. However, even just the visibility
requirement introduces a gigantic level of complexity, especially if wireless e-stop
devices are permitted.

• An e-stop is not the same, semantically, as a normal stop button: while triggering
an e-stop brings the machine(s) into a safe state, resetting the e-stop button it must
NOT start them again. Instead, the reset button must be on the machine itself
(per ISO 13850 4.1.1.2). This “one-way-door” behavior creates room for complexity
in a seemingly simple use case.

• Both connected and disconnected e-stop buttons are significant: any e-stop present
has to actually be connected. This is a major issue for moveable control devices with
built-in e-stop buttons. One such example is the “Safety Hot Swap” system produced
by Sigmatek: these allow modules with e-stop functionality to be disconnected
during operation by first pressing a “disconnect” button [71]. They use powered
lights to color the e-stops red and yellow: without power, the buttons are instead a
neutral gray. This color system is in line with that described in ISO 13850:2015,
4.3.8: “at least one of the following measures shall be applied to avoid confusion
between active and inactive emergency stop devices: device colour changing through
illumination of the active emergency stop device” [12]. The manufacturer further
asserts that this system complies with IEC 62061 and ISO 13849-1 and -2.

3.3 Scenario Description
We will develop a scenario which allows us to consider these complexities while keeping
the overall complication low. Below, we describe our scenario setup. Then, we evaluate
it against the requirements set in the previous section.

3.3.1 Physical Components
We will consider a robot assembly area spanning three rooms. The northeast and
northwest spaces are a single control room, with a permanently installed control panel
including an integral e-stop. The southeast and southwest rooms are production rooms.
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From the control room, a door and a glass window open into each of the production
rooms.

Each production room contains:

• An operator work area

• One or more robot assembly stations, each comprising:

– A robot assembly machine
– An integrated e-stop
– A control station with a port for a removable control panel.

The two production rooms are separated by a removable opaque barrier, which may be
present or absent in different variations on the scenario. By default, it is present. We
show the entire setup in Figure 3.1.

Figure 3.1: The physical components of our scenario

Finally, the scenario includes a number of removable control panels: each control panel
can be used with any robot station, and contains an integral e-stop. Any number of
operators may access the rooms, using any number of removable control panels. Window
and wall sections introduce the challenge of visibility: recall that each e-stop button must
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span all visible machines. In our default configuration, one panel is present, and is not
connected to anything.

We also choose not to model certain equipment. We will assume other safety equipment
like light barriers is present, but as it is independent of the e-stop functionality we are
studying, we will not model it. As a matter of model simplification, we do not consider
doorways for operators. We also do not consider whether windows can be opened and/or
traversed.

The main physical reconfiguration we will examine is the movement and connection
and disconnection of removable control panels with integrated e-stops. The addition
or removal of the dividing wall between the production rooms, changing visibility, also
offers a range of configurations. We can also consider the addition or removal of robot
assembly stations.

3.3.2 Rules Definition
We will use a simplified set of rules taken from existing standards for emergency stop
buttons. In particular, we are basing our rules on ISO 13850:2015 “Safety of machinery -
Emergency stop function - Principles for design”. Our first two rules, on the presence of
e-stop buttons, are simplified from section 4.3.2. The actual standard requires e-stops
on control panels, entry-exit areas, operator intervention locations, and human-machine
interaction zones. In addition, section 4.6.1 requires e-stop buttons on portable control
panels. Our rule for visibility is based on section 4.1.2. The actual standard is broader
than merely visibility, and allows for exceptions based on risk assessment; however, we
greatly simplify for our own purposes.

Our basic rules:

• An e-stop button stops all connected machines

• An e-stop button is red and yellow

• One-way door: disengaging an e-stop does not turn on machines.

• Each machine has an integrated e-stop

• Each control panel has an integrated e-stop

• Each emergency stop button must span all machines visible from its location.

• Each machine and each e-stop is connected to the safety network

• Machines and e-stops registered on the safety network must not disconnect.

When we build our system model, we will elaborate on these rules and develop a structured
set of requirements with test cases.
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3.3.3 Scenario Variations
We will also introduce three variant test cases. Each of these represents a plausible
reconfiguration which should violate at least one of the requirements above.

1. A machine disconnects from the safety network.

2. The opaque wall is removed from the facility.

3. A new machine is added to the network.

Each of these changes would demand significant reconfiguration of the safety measures
in the facility: introducing the change without suitable safety reconfigurations should
produce an unsafe state.

3.4 Evaluation of the Choice of Scenario
Our use case satisfies the criteria we developed above:

1. The system should offer the potential to use a simplified version of real-world
standards:
In our model, we use a simplified set of rules derived from ISO 13850:2015 “Safety
of machinery - Emergency stop function - Principles for design”.

2. The system should have a clear relation to safety:
E-stops are obviously safety-related.

3. The system should be complex enough to demonstrate robustness against “unintended”
consequences:
The requirement that each e-stop span each visible machine creates significant
complexity.

4. The safety controls and the rules chosen should be amenable to “on-or-off” inter-
ventions for simplicity:
We focus on boolean variables: is the e-stop on or off? Is it connected or not? Is a
given machine visible from a given e-stop?

5. The physical system should be simple enough to readily visualize:
We provide a visualization in Figure 3.1.

6. The physical system and control flow should be reconfigurable:
Physical reconfiguration can happen by moving removable control panels, by
adding/removing robots, and by adding/removing the wall divider. Control flow
reconfiguration can happen by requiring operators to be at certain stations or not.
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3.5 Summary
We now have a good example scenario on which we can test our design artifact. We will
put it aside for the next two chapters, as we begin designing our verification process. We
will return to this scenario in Chapter 7, when we apply our process to it.
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System Modeling

Now that we have a narrative description of our example scenario, we begin moving
towards the technical part of our project. We begin by choosing appropriate tools for
system modeling and automated reasoning. In Chapter 7, we will produce suitable system
models for our scenario according to these plans.

Our technical work divides into two major parts: representing the system, and performing
reasoning on that representation. In this chapter, we focus on the representation. We will
introduce the important ideas related to system modeling and the well-known approaches
and technologies. We will evaluate them to determine the extent to which each approach
will help us explore our research question.

4.1 What is a System Model?
Our overarching aim is to be able to verify that a system model satisfies a set of safety
requirements. But even this simple sentence reveals a semantic wrinkle: the requirements
are, after all, part of the system, and hence part of the system model. So, it would be
more accurate to say that the system model, which includes its requirements, is consistent
or correct. As a check against this kind of semantic ambiguity, we will carefully define
the terms we intend to use.

When we write system, we mean the physical components, the control flows by which
they interact, the use cases by which our imagined operators interact with these, and
the requirements which must be satisfied. By “system model”, we mean a simplified
representation of the underlying system which allows for easier understanding or reasoning.

In our scenario, the system is already a simplified “toy”, so there is little practical
difference between the system and its model; however, the distinction is conceptually
important, and so we preserve it. Imagine, if you will, that the elements of our scenario
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actually exist in a factory somewhere on the outskirts of Vienna, and our system model
is confined to these pages and the associated code repository.

There is then an underlying assumption, without which nothing we are doing matters: If
the model is accurate, then a verification of consistency with safety requirements in the
model implies consistency with safety requirements in the actual system. In this thesis,
we accept this assumption to a limited extent: we consider our semi-automated process
to be an assistant system, catching obvious mistakes and allowing learned knowledge
to be saved by updating the model. But we note: for a real-world implementation, “if
the model is accurate” implies a monstrous amount of work, and the validity of the
assumption always demands close scrutiny.

4.2 Criteria for the Choice of System Modeling Approach
What do we want out of our system model?

1. The model should be able to represent all types of entity in our scenario:

a) Physical components
b) Control flows
c) Use cases
d) Requirements

This is necessary because the requirements are our primary subject matter, and
they could conceivably make reference to all other types of entity.

2. The model should make our system design precise and legible: this is a pragmatic
necessity for us as authors.

3. The model should support extension and modification of our scenario: this is
necessary in order to support the “rapid reconfiguration” goal of Industrie 4.0.

4. The model should support automated reasoning: this is necessary since we need
to implement automated verification. Inference-based reasoning may not be strictly
necessary.

4.3 Approaches to System Modeling
How, then, should we model our system? We need to represent a complex system, which
includes radically different kinds of entities. At a minimum, we have:

• Physical components: things in our factory which can do actions or have actions
done to them
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• Control flows: relationships between the actions which objects do, separated in
time.

• Use cases: tasks which users want to complete, and the sequences of subtasks and
actions which may comprise a larger task.

• Requirements: statements about various entities in the system which demand to be
true.

(We purposefully leave open one question: can requirements refer to other requirements?
On the one hand, this would allow categorization and greater understandability. On the
other hand, this could dramatically increase the logical complexity of our model, and
may kick it beyond the capabilities of realistic automated reasoning solutions. We return
to this question in the next chapter.)

We consider two approaches. One is to view the model as a representation of entities and
relationships: any kind of boxes-and-arrows diagram would be an example of this. An
alternate approach is to view the model as a knowledge base: a collection of statements.
The first approach leads directly to Model-Based System Engineering (MBSE); the second
to ontology engineering. The distinction at the high level is very subtle. However, as we
will see in the next two sections, the very delicate distinction in what each model is leads
to significant differences in how each model can be used, and it is this latter question
which really interests us.

4.3.1 Model-Based System Engineering
We first introduce MBSE. We start with a high-level overview of the concept, and then
look at languages which can be used in this methodology.

What is MBSE?

MBSE is a methodology for managing requirements and design in the development of
complex systems [70]. The term stands in contrast to document-based engineering: where
traditionally a large variety of documents have been used to record requirements, design
decisions, and everything that results over the course of an engineering project, in MBSE
a single model (in a computer program) collects all of these elements and defines their
interrelationships. As a methodology, MBSE proposes to offer several improvements over
document-based processes:

• Requirements traceability: Defined relationships between all elements allow each
element of the system to be traced back to the requirements it is involved in
satisfying. Moreover, if a requirement is changed, all other related entities can be
decisively identified.

• Single source of truth: Where different documents may conflict, in an MBSE project,
the model is the ultimate source of truth for design facts and decisions.
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• Transparency: By collecting all design-related information in one model in one
common format, different stakeholders on the project can see all information
reflected in a common language.

MBSE has also attracted criticism, most of which boils down to disputing the extent to
which these improvements materialize in practice, and noting the expense and friction
introduced by the task of building and maintaining the model [67]. These critics admit,
however, that these benefits are largely realized for clients and funding agencies, who
see their requirements tied to the whole of the design in a complete and unambiguous
way; the criticism focuses on the loss of time for engineers who may continue to maintain
document-based practices as a pragmatic necessity in parallel to performing MBSE
practices as mandated from above.

For our purposes, as we are in effect the contracting party and the engineer at the same
time, we are able to realize the main benefits: an MBSE-style system model will
allow us to set our safety requirements in unambiguous terms and tie them
to a complete description of all entities in our system.

MBSE Languages

One of the benefits listed above is transparency: MBSE provides a model written in a
“language” which is (intended to be) common to all stakeholders. So, what language?
In order to use a system model to represent our requirements and their relation to the
other entities in our system, we will need to choose a language.

A variety of MBSE modeling languages exist. The International Council on System
Engineering (INCOSE), identifies six examples on their wiki page, last updated in 2021:
Arcadia, EAST-ADL, IDEF, OPM, the Systems Modeling Language (SysML), and the
Unified Modeling Language (UML) [48]. In their overview paper, De Saqui-Sannes et al.
identify around a dozen prominent examples as of 2022, including SysML, UML, OPM,
and Arcadia, among others [28]. They distinguish the languages by their capabilities
in different aspects of MBSE, and by their support by available tools. It is evident
that they view SysML as the most prominent example, as they continually present it
first and present other languages as competitors or alternatives. SysML owes much
of its prominence to UML, the international standard modeling language for software
architecture: SysML is a direct expansion of UML, especially developing its capabilities
for requirements analysis. They also show that SysML enjoys dramatically better support
from available software tools than its competitors. Even in the niche field of biology,
SysML is the dominant modeling language: Fudge and Reeves show that since 2016, it
has been the most popular choice [36].

Should we choose SysML? Unsurprisingly, choosing an MBSE language is a complex task.
Basnet et al. illustrate this clearly when they create their decision-making framework for
MBSE language [20]. They use questionnaires with Likert scales, pilot model designs,
and multi-criterion Bayesian inference to determine the MBSE language best suited to
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a client’s project. In their case study, considering a range of criteria and their client’s
stakeholders’ questionnaire results, they find that SysML is the best fit.

We will forgo this complexity, and choose SysML for three main reasons:

• It is generally the most prominent and representative modeling language for MBSE

• Free and open source tools allow us to build and manipulate a model for free

• It is especially focused on requirements, which are the main subject matter of our
modeling.

Thus, a SysML model will allow us to clarify our requirements and tie them to all other
elements of the system.

Strengths and Weaknesses of SysML

The main strengths of SysML are its explicit structure and its focus on requirements
traceability. The explicit structure allows for a clear separation of concerns within the
design process, with requirements, user behavior, and components held conceptually
separate. Traceability means that any element of the design can be traced back to the
requirement or requirements which it satisfies. Conversely, any change to the requirements
can be followed down through the model to identify all affected components.

The weaknesses of SysML are its rigidity and limited scope, its weak amenability to
automated reasoning, and the relatively poor quality of available software. The rigid
model means that the details of the design can be written down and perhaps linked to
parameters or interfaces, but that the full set of domain-specific interrelationships cannot
be represented. SysML does not produce a full digital twin for the system so much as
a digital twin (or full replacement) for the documentation of the system. SysML also
has very limited automated reasoning options. For SysML, while there is some scope
to perform verification, manual steps are still necessary where the model is unable to
represent domain-specific information [42]. SysML 2 expands the reasoning capabilities:
for example, the AI tool Imandra Automated Reasoning is able to perform verification
tasks on a SysML 2 State Machine diagram, relative to its parameters [72]. However, a
general formal verification solution is not yet present.

Applicability of SysML to Our Project

For our project, we can use a SysML model to produce an exact specification of our
scenario. When we change the configurations, we will refer to our SysML model to
see what elements are affected. However, we will be using this essentially on a “soft”
level: it will provide an overview and a sanity check, but will not be used as a detailed
automated reasoning tool. It may tell us that a certain robot station is affected by a
requirement change, but it may not tell us how, and it cannot be relied upon for an
exhaustive accounting of all consistency conditions.
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For greater opportunities for automated reasoning, we turn to our second system modeling
approach, ontology engineering.

4.3.2 Ontology Engineering
Our first approach was to model our system as a set of entities and relations: for this we
have settled on SysML as a modeling language. Our second approach is to conceive of
our model as knowledge about the system. For this, we turn to the discipline of ontology
engineering.

What is Ontology Engineering?

The term ontology originates in philosophy, and can be very (very!) roughly summarized
as the study of the existence of things and how things that exist might be related to each
other [43]. In philosophy, these questions might be examined in any number of contexts:
from theology to causality, from mathematics to human nature, and so on. However, the
technical domains have adopted the term to describe something much more particular: a
computer science object which specifies, in a precise way, and in a certain context, what
things are [68]. Note the double meaning in English: “what things are” as existence:
“to be or not to be?”, and also “what things are” as type: “what (kind of thing) is it?”
Ontology concerns both questions. Depending on context, this might be a thesaurus, an
XML schema in a database, or a model for linked data.

We are interested in producing a model of knowledge about our industrial system.
This points us in the direction of a knowledge base: a structured collection of facts.
In the modern conception of a knowledge base, the nature of both the facts and the
structure is more precisely characterized: the facts are “sentences”: subject-predicate-
object triples, such as clifford hasColor red and clifford isInstanceOf
Dog. The structure follows an object-oriented paradigm, where class relationships are
also defined by s-p-o triples: Dog isSubclassOf Animal. A knowledge base may
sometimes be called a triplestore, as its data is presented entirely as a collection of s-p-o
triples.

In our Clifford example [24], our immediate inclination may be to draw the conclusion
clifford isInstanceOf Animal. But, it is very important to note: a knowledge
base is simply a set of sentences. The logic by which we might infer this last sentence to
be true is NOT necessarily part of that knowledge base, and there is NO guarantee that
a knowledge base containing the first example sentences also contains this one. We will
see below in Ontology languages that different technologies provide for different degrees
of reasoning.

Concepts in Ontology Engineering

Knowledge bases bring an almost daunting level of flexibility. In modeling languages
like SysML, the distinct categories and relationships are baked in as diagram types and
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specific named relationships; in contrast, the only strict structure in a knowledge base is
the triple itself. In order to understand any particular ontology language, it is useful to
develop some key concepts first.

One is the idea, taken originally from formal reasoning, of the “T-box” and the “A-box”.
The T-box contains the “terminology” that defines a given reasoning context, while the
A-box contains the “assertions”: the specific statements in the context. The exact level at
which one draws the distinction depends on one’s needs. For example, we might consider
the hierarchical relationship CanisFamiliaris isSubclassOf Carnivorato be
part of our T-box, if we are principally interested in individual animals and the more
specific properties that describe them. On the other hand, if we are interested in species
taxonomy, then the same statement might properly belong to our A-box, and more
structural relations like Species isSubTaxonRankOf Order might belong to our
T-box. Reasoning rules also belong to the T-box, about which more below. In SysML,
the rigidly defined types and relationships make the T-box/A-box relation explicit; in a
knowledge base, as everything is stored as a s-p-o triple, it is up to us to use this concept
to recognize the two parts of the ontology which have qualitatively different roles.

Somewhat related to the T-box/A-box distinction is the idea of classes and instances,
taken from object-oriented programming. If classes are “kinds of things”, then instances
are the things themselves. In ontologies, this distinction is fairly soft and not necessarily
enforced programmatically—we will see this in more detail in the following section as
we trace the development of RDF/RDFS/OWL. In the very broadest terms, we can see
classes as naturally related to the T-box and instances as naturally related to the A-box.
However, there is a third type of entity which complicates this.

In addition to classes and instances, ontologies also include properties – predicates which
relate subject and object. So, for example, isSubclassOf and isInstanceOf are
properties. However, since everything is defined within the ontology itself, these properties
may also be subjects. Consider the simplified fragment of an ontology in Listing 4.1.
hasColor isInstanceOf Property
hasColor hasDomain Object
hasColor hasRange Color
Color isSubclassOf Class
isInstanceOf isInstanceOf Property
isInstanceOf hasDomain Object
isInstanceOf hasRange Class
hasRange isInstanceOf Property
hasRange hasDomain Property
hasRange hasRange Class
hasDomain isInstanceOf Property
hasDomain hasDomain Property
hasDomain hasRange Object

Listing 4.1: Simplified ontology

In order to indicate that hasColor is a property, and to define its domain and range, we
are forced to treat it as a subject. The already-spiraling complexity of this very simple
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example illustrates two key points. First: both the power and the difficulty of ontologies
results from the gigantic complexity of saying even something as simple as clifford
hasColor red.

But the second key point is: we haven’t even managed to say what we mean by
hasColor! That is, we want clifford hasColor red to be valid because red
isInstanceOf Color. But we should not accept clifford hasColor apple
because apple isInstanceOfColor isn’t true! And we really shouldn’t accept
clifford hasColor Dog because “Dog” is a class, not an instance of anything,
let alone of Color! In fact: while we have said that hasColor hasRange Color,
we haven’t actually said that x prop y and prop hasRange Range implies y
isInstanceOf Range, which is what we really want in all of this. And, if we have
that, we want it to trickle down through subclasses and instances so that x hasColor
y and hasColor hasRange Color implies y isInstanceOf Color.

In short, we want reasoning. But reasoning is actually a lot to ask–we’re devoting the
entire next chapter to it and really barely scratching the surface. Still, at this point we
can see that we want three things:

• To verify that certain conditions are true throughout our ontology. For example,
we might wish to require that no object can be both a class and an instance of a
class.

• To query for elements of our ontology which meet certain conditions.

• To infer new sentences. For example, we would almost certainly want a transitive
property to hold if “A isSubclassOf B” and “B isSubclassOf C” are in our knowledge
base, then we would want to automatically add “A isSubclassOf C”. Or, we might
wish to do this only if “isSubclassOf C hasPropertyType transitive”.

And we may immediately note that the processes are quite different: starting with the
rather problematic sentence clifford hasColor Dog, a verification approach might
identify the error we described above, while a query approach might (less helpfully) tell us
there is no match. But, an inferential approach might instead add Dog isInstanceOf
Color to our knowledge base!

And anyway, look again at the bold-faced implies two paragraphs above: is that really
what we mean? Do we mean if, only if, or if and only if ? To what extent does it depend
on the reasoning process that we plan to run?

All of this is to say: reasoning is very difficult, but reasoning is necessary if we want our
knowledge base to be anything more than a monstrous list of sentences which may or
may not make any sense. In the next section, we will look at different ontology languages,
where we will see that the level of reasoning ability is often the key differentiating factor.
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Ontology Languages

The development of ontology languages begins in the context of the Semantic Web, a
project supported by the World Wide Web Consortium (W3C) aiming to make the
meaning of information machine-readable, in contrast to the HTML-based web, in which
meaning is purely human-readable [78]. A series of early ontology languages were based on
XML, such as Ontology Exchange Language, Ontology Markup Language, Simple HTML,
Ontology Extensions, Ontology Inference Layer, and Darpa Agent Markup Language
+ OIL [13]. At present, these have been essentially superseded by the Web Ontology
Language (OWL). In order to understand OWL, it is necessary to first understand
the Resource Description Framework (RDF) and RDF Schema (RDFS), the ontology
languages upon which it is based. OWL arises from a step-by-step expansion of the
capabilities of RDF.

RDF is a data exchange model originally developed by W3C as a serialization format for
metadata [85]. It provides the essential subject-predicate-object structure on which an
ontology may be built. Entities in an RDF knowledge base are specified with a namespace
prefix, either user-defined or built-in. So, in our examples going forward, we will be writing
ex:clifford ex:hasColor ex:red and ex:clifford rdfs:member ex:Dog,
where ex: abbreviates our example namespace, and rdfs: is one of several special
built-in namespaces, along with rdf:, owl:, and xsd: (for XML Schema data types
for literals). An additional special namespace is _:, which is used for ad-hoc graph nodes
generated by automated processes within the knowledge base. Our reification example
below uses this.

RDF has an extremely limited vocabulary of special terms [85]. rdf:type supports a
very limited ability to place individuals in classes, including a very short list of built-in
classes like rdf:Statement and rdf:Property. However, there is no support for
class-class relationships.

rdf:subject, rdf:predicate, and rdf:object allow for reification of statements:
a statement like ex:clifford ex:hasColor ex:red can be represented as in List-
ing 4.2.

_:statement42 rdf:type rdf:Statement
_:statement42 rdf:subject ex:clifford
_:statement42 rdf:predicate ex:hasColor
_:statement42 rdf:object ex:red

Listing 4.2: Reification

In this way, the statement itself is an object to which other statements can refer: “Emily
says that Clifford is red” can be encoded ex:Emily ex:says _:statement42. In
this way, the expressiveness of RDF is actually far greater than the s-p-o structure initially
suggests. The special _: unnamed namespace allows for newly-generated statements to
be well-defined even though they aren’t defined in any particular external namespace.
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We can see that while RDF is expressive, it has virtually no built-in structure, and is
under no obligation to “make sense”. RDFS begins to address these two limitations [84].
It extends RDF with three related elements:

• Classes: Subclass relationships and inheritance are now supported

• Domain and range: Predicates can now be defined to have domain and range in
certain classes.

• Inference: Class inheritance can be automatically inferred from subclass relations.
In addition, class can be inferred from the domain and range of a predicate.

For example, if ex:clifford ex:isFrom ex:Dog and ex:isFrom rdfs:Range
ex:Country, RDFS would infer the new statement ex:Dog rdfs:subclassOf
ex:Country. Note that this is aggressively open-world reasoning: there is no syntax
for “not”, and no reason that this new statement might raise any automated eyebrows.

Still, the reasoning permitted by RDFS is extremely limited. OWL dramatically expands
the reasoning capabilities. Now, we can ensure, in Listing 4.3, that Clifford is not a cat.
DisjointClasses( ex:Cat ex:Dog )
ClassAssertion( ex:Dog ex:clifford )

Listing 4.3: Ensuring that Clifford is not a cat

If we were to additionally assert ClassAssertion( ex:Cat ex:clifford ), our
knowledge base would be inconsistent, and OWL’s automated reasoning support could
detect this conflict. This reasoning example follows a verification approach. Alternately,
we might entail a new fact from this: ClassAssertion( ObjectComplement(
ex:Cat ) ex:clifford ): Clifford is not a cat.

One immediately notices that the syntax above no longer matches RDF—if anything, state-
ments like ObjectPropertyAssertion( ex:hasColor ex:clifford ex:red)
look like LISP! However, W3C defines a complete mapping between OWL and RDF,
allowing an OWL knowledge base to be fully represented in an RDF graph database [81].

The rich reasoning capability of OWL makes it a very attractive tool for both representing
and checking a system model. However, there are significant limitations to automated
reasoning over knowledge bases. In particular, the problem in its fullest generality is
undecidable. As a result, multiple versions of OWL exist, such as OWL Lite, OWL DL,
and OWL 2. These differ in the richness of their available axioms and assertions, and
their amenability to automated reasoning techniques. For example, “DisjointClasses” in
the example above is new to OWL 2 [82]. We will examine the limitations of reasoning
options for different flavors of OWL in the next chapter.

Using an OWL ontology to model our system will give us direct access to automated
reasoning. At the same time, its flexibility will ensure that we can model all aspects of
our system.
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Extensibility

One of the main advantages of an RDF-based knowledge base is its extensibility. Using
the namespace prefixes, it is possible to use two or more knowledge bases together – in
fact, it is necessary to, since the built-ins of RDF, RDFS, XML Schema Datatypes, and
OWL are all separate namespaces. But in practice, the real advantage of this is that
it is not necessary to reinvent the wheel: one can use an established domain-specific
ontology for some aspect of a model, while adding necessary concepts in a new project-
specific namespace. For example, it is common to use the Friend of a Friend (FOAF)
ontology for any application in which personal profiles or social network information are
relevant [35]. In theory, a well-developed public ontology for a specific domain would
enable a high level of interoperability, for example, between industrial components from
different manufacturers. However, this is more a current topic of research than a mature
technical reality.

OWL also supports extensibility with such properties as owl:sameAs, which allows one
to bridge across ontologies, identifying common elements between them [79].

Strengths and Weaknesses of OWL

OWL offers three major strengths: expressiveness, reasoning capability, and extensibility.
Its semantic flexibility allows it to express any kind of relationship between any kind of
entities, including second-order relationships between relationships. At the same time,
its class structure allows one to encode semantic relationships between different types of
entity. OWL also has well-developed support for reasoning. Finally, its extensibility is
attractive for any project: one can pull in any suitable ontology.

On the other hand, the flexibility of OWL is something of a drawback: the complexity
needed to capture even fairly simple relationships makes a system model using OWL
absolutely huge and, as a result, somewhat opaque.

Applicability of OWL to Our Project

We need to use automated reasoning to check that our system model is consistent with its
safety requirements. OWL will support this. At the same time, OWL is flexible enough
to describe any system at all, so long as we are willing to go to the trouble of creating a
suitable ontology.

4.3.3 Evaluation of the Choice of System Modeling Approach

To what extent do our two identified modeling languages meet the criteria from the
beginning of this chapter? We evaluate our four criteria on a qualitative scale of “very
bad”, “bad”, acceptable”, “good”, and “very good”.
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Suitability of SysML

1. Very good fit: each type of entity corresponds to explicit diagram types in SysML.

2. Good fit: In practice, SysML finds its main use in precisely this role: making
complex systems precisely specified and legible for contracting parties and other
top-level stakeholders. At the same time, the difficulty of using SysML software
places practical limits on how legible this can actually be.

3. Acceptable fit: SysML supports strong traceability, allowing us to see how changes
in one domain affect components in another domain. Extensibility is more limited:
anything new needs to be introduced manually.

4. Bad fit: While SysML 2 supports some types of automated reasoning, we cannot
implement automated reasoning with any kind of generality or flexibility.

Overall, we can see that SysML provides strengths in describing and specifying our
system. It can also help us see the effects of our configuration changes, though this does
not extend to actually checking their effects rigorously.

Suitability of OWL

1. Good fit: OWL is completely open-ended and can represent whatever we want. We
will, however, have to provide the structural architecture ourselves.

2. Acceptable fit: OWL can make things as precise as we can write them. However,
its graph databases have limited legibility, as they are crowded with many many
statements in order to fully specify even fairly simple relationships.

3. Good fit: OWL supports extensibility very, very well with its namespace function
and the existence of already-established domain-specific ontologies. It supports
modification as well as anything else, although again the architecture underlying
modifications is up to us.

4. Very good fit: OWL provides strong automated reasoning support. The limita-
tions are really in the mathematics of formal reasoning itself, rather than in any
shortcoming of OWL.

Overall, we can see that OWL is very well-suited to our automated reasoning application.
However, it is a bit clumsy for the simpler goal of specifying and understanding our
system.
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4.4 Choice of System Modeling Technology
While a number of software packages for SysML exist, our aim is principally to understand
our own requirements and our necessary system components. For this, it will suffice
to use the SysML modeling language to create our diagrams and document our design
process. To produce readable diagrams using standard symbols, we will use the online
drawing platform draw.io. draw.io supports SysML diagrams natively. Free users can
download their saved files in an XML format, allowing for practical workflows.

To build and manipulate our knowledge base, we will use the Protégé software, a free tool
for ontology management developed by the Stanford Center for Biomedical Informatics
Research. In a comparison of ontology tools, Alatrish finds that Protégé offers the highest
level of usability, interoperability, and extensibility [17]. For our purposes, its relatively
clean UI, its support for multiple reasoning tools, and its built-in visualization tools will
all be very helpful. While Alatrish finds that TopBraid Composer offers a similar range
of features, we are happy to choose Protégé as it is open source software and enjoys wide
use.

With OWL, we have a further decision to make: should we use pre-existing ontologies in
our process? In theory, the extensibility of OWL knowledge bases is one of their main
strengths. One can bring in virtually any already-existing ontology in a new namespace,
and even use owl:equivalentClass and owl:equivalentProperty to knit them
together. Reitgruber uses this approach in his “Knowledge Base for Reconfigurable Safety
Systems” [66]. He evaluates nine potentially relevant ontologies before choosing five to
partially incorporate into a bespoke Reconfigurable Safety System ontology. However,
problems arise in this kind of approach: the use of so many namespaces makes queries and
reasoning difficult. For example, something as simple as searching for all parts of a certain
machine quickly breaks down if several different ontologies all use a hasPart property
in their namespaces, and the system model draws unpredictably from these different
namespaces. A second problem with bringing in outside ontologies, as Reitgruber also
acknowledges, is bloat: each existing ontology is gigantic, and makes it hard to see the
relevant elements in the proof of concept. For these reasons, we are choosing to make our
own ontology for the proof of concept. In real-world applications, it may be advantageous
to use an existing ontology if, for example, the ontology is already widely used inside a
firm or in a certain industry. FOAF, the ontology which Facebook developed for personal
contact and relationship information, may be such an example: it is widely used and
allows for meaningful data interchange between organizations and knowledge bases [35].
However, its maturity and wide adoption are more the exception than the rule. As a
result, our process will be based on creating our own ontology.

4.5 From SysML to OWL
The main purpose of our SysML model is to understand our own requirements. Once
we have a solid set of requirements, we will follow their implications to plan the system
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elements which satisfy them. In this way, we will develop a base system model whose own
requirements are well-posed and make sense. However, one major weakness of SysML is
that, unlike UML, it has no way to model instances of classes [45]! That means that while
we can model the abstract relationships between types of elements, we can’t actually
create a complete model realization of our system. To overcome this, we then develop
an OWL knowledge model for our system, comprising both the T-box and A-box. With
named individuals instantiated in the A-box, it will be possible for us to actually change
the configuration of our system.

How do we translate from the SysML model into the OWL knowledge model? Some
research exists into automating this process. Graves provides a theoretical framework for
translating Block Definition diagrams into OWL classes: his paper is essentially a formal
confirmation of the correctness of the manual approach one would naturally take [40].
Wardhana et al. present a more detailed framework for automatically translating a
Requirements diagram into OWL [86]. However, their approach does not meet our
needs. They translate the hierarchical structure of the Requirements diagram into a
class hierarchy in OWL. However, what we need is a knowledge model which provides a
context to which our requirements can refer. So we take another approach.

First, we translate the Block Definition diagrams into OWL classes, essentially as in
Graves. We then enrich these classes with relations, starting with the subclass and
association relations in the Block Definition diagram. We translate cardinality annotations
in SysML into functionality or cardinality constraints in OWL. We then turn to the
requirements in the SysML model. We do not represent the requirements directly in
OWL, but will instead represent them externally in a query language which we apply
to the knowledge model. However, we will need to represent anything to which the
requirements refer so that our queries will have something to look for. We represent state
using data properties, and create additional facts (ideally using automated inference) to
represent anything else mentioned in a requirement. We summarize this correspondence
in Table 4.1.

SysML element OWL element
Block Definition diagram Classes
Block Definition diagram subclass and
association relations

Object Properties

Block Definition diagram relation cardi-
nalities

Cardinality and functinality constraints

Requirement (Not represented in the knowledge
model)

State Machine «refines» Requirement Data properties modeling the state of
an individual

(Anything else referred to in a require-
ment)

Inference rules

Table 4.1: Correspondence between SysML and OWL elements
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While this semi-manual process is cumbersome, it reflects the potential complexity of
requirements: we are asked to represent what a requirement means, and that interpretive
task is far too complex and open-ended to automate reliably.

4.6 Summary
We have identified two promising approaches for system modeling. The first is a structured
system model using SysML. This has the advantage of foregrounding our requirements
and allowing us to draw explicit connections between our requirements and the other
system elements which realize them. When we change our system, we will be able to see
the effects of changes in one domain on other domains. It will give us a model which is
useful for our understanding of the system. The second is a knowledge base using OWL.
This has the advantage of permitting rich automated reasoning, and flexibly describing
the details of our system. When we change our system, we will be able to automatically
check if the system model is still consistent (i.e., satisfying its safety requirements), or
else see the problems. In essence, we will use the SysML model for our own design process
and sanity checking, and OWL for our actual technical processes.

Comparing these capabilities to our criteria, we can see that these two technologies
together should allow us to achieve all of our goals.

We will see system modeling in action in Chapter 7, when we actually create our system
model and apply our chosen verification approach to its different configurations. However,
before that, we will need to learn about automated reasoning and choose the approach
or approaches which will best suit our project.
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CHAPTER 5
Automated Reasoning

In this chapter, we will first introduce high-level concepts about automated reasoning in
general. Then we will look at automated reasoning technologies directly applicable to
the Web Ontology Language (OWL). Finally, we evaluate the different technologies, and
choose the ones we will use.

5.1 About Automated Reasoning
We begin with a high-level look at automated reasoning. We first look at the broad
capabilities of automated reasoning, and then examine limitations of automated reasoning
which are relevant to our work.

5.1.1 What is Automated Reasoning?
Automated reasoning is the domain of computer science focused on building computer
systems which can prove or disprove given statements relative to some specified set of
axioms [65]. It has a wide range of application fields, including hardware and software
design, mathematics, and philosophy. For our purposes, the statement of interest is
“the industrial system satisfies its safety requirements”. Our process concludes by either
proving or disproving this claim.

5.1.2 Kinds of Reasoning Solution
It will help us in our discussion of automated reasoning to distinguish three kinds of
reasoning task:

• Query: Check (perhaps a very large number of) items to see if they fit a certain
pattern. While a simple glob expression like *.txt doesn’t seem to warrant the
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“automated reasoning” title, Structured Query Language (SQL) database queries
and regular expressions can reach gigantic levels of complexity, and the details of
the underlying reasoning engine become relevant.

• Verification: Given a system, prove that it satisfies certain properties. This is
perhaps most encountered in computer programming: produce a proof that a
certain computer program is correct – that is, that it always satisfies certain post
conditions for all allowed preconditions.

• Inference: Given a set of facts, generate new facts. This can range from basic
properties like reflexive and transitive relations to much more complicated rules-
based inference.

All three types of task are potentially useful for us. Inference greatly streamlines the
creation of an OWL knowledge base: we can use properties on relations like reflexivity
and inversion to quickly fill out appropriate domains and ranges; we can use transitivity
to automatically expand our class structure and make sure that all class relations are
represented as OWL facts. Verification is ultimately our goal: the property we wish to
verify is the system’s consistency with its safety requirements. However, we may find it
useful to think of verification as a query task: identify all instances of rule violations. As
we can expect to encounter all three types of task, it will be good to have the distinction
in mind. This will be especially relevant when we examine particular OWL reasoning
solutions, each of which has its own purpose.

With the capabilities of automated reasoning in mind, we now turn to the limitations.

5.1.3 Limitations on Automated Reasoning

There are a number of limitations on what automated reasoning tools can do, both in
theory and in practice. We examine both the general theoretical limitations and the
limitations specific to OWL.

Decidability

We would like our automated reasoning tool to always work. However, in general, this
is too much to ask. Gödel’s Second Incompleteness Theorem makes this painfully clear
in mathematics; the Halting Problem is the most famous example in informatics. Even
practical reasoning problems are undecidable in general, such as determining whether
two SQL queries are equivalent [15]. It should be obvious why we want our automated
reasoning solution to be decidable. However, we may compromise by limiting the scope
of problems that we feed to our solution, or by accepting that in certain marginal
cases, failure becomes likely, and building a system which can approach such failures of
automated reasoning by other means.
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Speed

Our tool is useless to us if every query takes a year (or a trillion trillion years) to run.
Of course we can make our knowledge base and our queries as complex as we wish,
and arbitrarily increase run time. What we really want is for our solution to be fast in
practical cases.

Expressiveness

We would like to be able to express complicated relationships and queries and have
our automated reasoning tool answer difficult questions. However, as we will see in the
next section, there is a direct tradeoff between expressiveness and decidability: a logical
language sophisticated enough to say everything we might think of definitely won’t be
decidable in general.

OWL-Specific Limitations

Open-world assumption: When we look into the details of reasoning with OWL,
we will have to take note of two special limitations. First, OWL uses an open-world
assumption: the absence of a property P(x) among the facts of the ontology does not
imply the fact not-P(x). To borrow from the Pizza Tutorial [29], we may find it difficult
to usefully define a vegetarian pizza, as the absence of a hasTopping MeatTopping
fact doesn’t imply any other fact that we can use in the definition. This is less a bug than
a feature: OWL is designed for a web environment in which the absence of yet-unknown
information does not imply falsehood, and new information may be added at any time.

Monotonic reasoning: The addition of information over time also relates to the
second major limitation we will encounter in OWL: it does not support non-monotonic
reasoning. That is, the logical values of individual elements cannot change. For
example, while we can define clifford hasColor Red, there is no way we can then
say clifford not-hasColor Red and negate the first fact. This also derives from
the incomplete information assumption of the semantic web: what if we later find out
that clifford is in fact red? We can always add new facts, but we can’t negate or change
facts as we go. This has wider implications: OWL struggles to handle uncertainty.

Lack of a unique name assumption: In many reasoning contexts, we assume that
each named individual is distinct. However, as OWL is built for knowledge integration, it
does not make this assumption. This means that we cannot assume difference. Instead,
where distinguishing individuals is important, it must be encoded with owl:sameAs
and owl:differentFrom.

5.2 Reasoning With OWL
Within the the Resource Description Framework (RDF)/RDF Schema (RDFS)/OWL
knowledge engineering stack, a wide variety of automated reasoning solutions are avail-
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able, each tailored to different applications. We will first look at the formal reasoning
underpinnings of OWL and explore their implications for the design of OWL itself. Then,
we will examine a list of available reasoning languages and tools.

5.2.1 Choice of Logic(s) for OWL
Where RDF is simply a format for a graph database, OWL is a language with support
for reasoning. In order to understand its capabilities, we need to also understand the
capabilities of two well-known types of logic: propositional logic and first-order logic.
This is because the logic(s) used by various (flavors of) OWL arises a compromise between
the tractability of the former and the expressiveness of the latter.

Propositional Logic

Probably the simplest and best-known formal reasoning language is propositional logic:
statements composed of atomic statements (a, b, c, and so on) and connecting operators
(and, or, implies, and so on). Despite its simplicity, propositional logic underlies important
mathematical results with surprising complexity. The satisfiability problem (SAT) is a
good example. Given a sentence in propositional logic using atoms a, b, c, and so on,
find an assignment of truth values for a, b, c, and so on, which make the sentence true.
SAT was the first problem to be determined to be NP-hard: it is the prototype for the
class of problems widely believed (though not proven) to admit no solution algorithm
which runs in polynomial time.
Despite its computational difficulty, the SAT problem makes clear a fundamental fact
about propositional logic: the satisfiability of its sentences is definitely, unambiguously
computable: the naive solution algorithm of testing every value for every atom runs in
O(2n) time. Of course we would like the logical underpinning of our knowledge base to
be decidable: our queries should have answers!
However nice propositional logic is, it has significant weaknesses for knowledge engineering.
In particular, it lacks existential quantifiers (“there exists” and “for all”) and is unable
to form statements like “there is a dog such that the color of the dog is red”. It also
lacks a concept of equality. Considering both of these, we might see that more deeply,
propositional logic lacks the concept of variables. To reach this level of expressivity, we
move on to first-order logic.

First-Order Logic

Extending the symbols of propositional logic with variables, quantifiers for variables, and,
potentially, equality relations, gives us First-Order Logic (FOL) (or, potentially, FOL
with equality). This is, in essence, the logical system underlying all of mathematics and
programming. This immediately highlights its strength and its weakness. The strength
is expressiveness: nearly anything we would be interested in saying can be said in FOL.
However, its most fundamental weakness is decidability: there is no general decision
procedure for FOL statements.
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It is worth noting that, as the name implies, higher-order logics are possible. For example,
while FOL sentences can use quantified variables, they cannot use quantified properties.
So, for example, contrast the following two statements:

1. “There exists x such that isBig(x) and isRed(x) both hold.”

2. “There exists a property P such that P(x) holds if and only if isBig(x) and isRed(x).”

The first sentence is expressible in FOL; the second is not, since there is no syntax
for quantifying over properties. (The second is, in fact, quantifiable in second-order
logic.) Since we may actually wish to define properties by inference in some knowledge-
engineering cases, this has the potential to be a problem.

Description Logics

The contrast between propositional logic and first-order logic sets the stage for our
question: what logics might we find which lie “in between” these two extremes and
capture both of their benefits? In particular, we want a high level of expressiveness
together with decidable and relatively tractable solution algorithms. Note that “in
between” should not be taken too literally: in light of the limitations of first-order logic,
we may actually wish to capture certain types of expressiveness which exceed even its
abilities. But as a basic motivating description, it is a good way to think about where
the different Description Logics (DL) come from.

And, indeed, there are different description logics! Many of them, generally characterized
by the specific reasoning capabilities which they provide. The most basic (and first) DL
is usually denoted ALC: it allows union and intersection of classes, as well as negations of
classes, but does not support negation of relations. It is a fragment of two-variable FOL,
which is known to be decidable. We will see many other examples in the next section, as
we introduce the different types of OWL: indeed, they are different precisely because of
their choice of DL.

A theoretical note: The various flavors of OWL actually use DL which include an addi-
tional capability that goes beyond FOL: this is transitive closure: the ability to specify
the smallest transitive relation which contains a given relation. For example, the relation
from City to City “canReachByDirectFlight” is clearly not transitive; however, the rela-
tion “canReachBySequenceOfFlights” is transitive, if nothing else by concatenation. This
second relation contains the first: any ordered pair of cities related by “canReachByDi-
rectFlight” are definitely related by “canReachBySequenceOfFlights”, if nothing else by
the sequence consisting of only one flight. In this way, “canReachBySequenceOfFlights”
is the transitive closure of “canReachByDirectFlight”. OWL flavors support this, as it is
a very useful property in knowledge engineering, even though FOL does not.
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5.2.2 Flavors of OWL
OWL is defined as a standard by the World Wide Web Consortium (W3C), and, as such,
has multiple defined versions and subsets. At the top level, a newer OWL 2 replaced the
original OWL in 2012 [82]. Most of the changes related to usability rather than logic.
For example, OWL 2 uses IRIs instead of URIs for namespace identifiers, permitting non-
English characters such as Chinese hanzi. However, there are significant logical updates.
In particular, OWL 2 supports declaring classes as disjoint: this allows a significant level
of built-in error checking, as it gives the default open-world class reasoning in OWL
something to conflict with.

At a more granular level, both OWL and OWL 2 include defined language subsets, each
of which corresponds to a certain DL with a defined level of expressiveness and a proven
level of tractability.

The original OWL specification defines three variants: OWL Full, OWL DL, and OWL
Lite. OWL Full comprises the complete set of OWL structures, with no additional
restrictions. It is thus the most expressive variant. However, reasoning problems are not
necessarily decidable: OWL Full makes no computational guarantees.

OWL DL is based on the SROIQ description logic. To achieve this set level of expressivity
and tractability, it enforces several restrictions on OWL Full [80]. The most notable of
these:

• Top-level types are disjoint. So, for example, an element cannot be both a class
and an individual. Contrast this with plain RDFS, where there are no restrictions
on what triples can be formed.

• Object properties and datatype properties are disjoint. That means built-ins like
owl:inverseOf which map object property to object property cannot be used
on datatype properties.

• All classes referred to must be explicitly declared.

• Equality and difference facts can only apply to named individuals.

OWL Lite dramatically reduces the available expressiveness, resulting in a minimum
usable language which can be processed very quickly. Among the losses are owl:oneOf,
owl:unionOf, owl:complementOf, owl:hasValue, owl:disjointWith,
owl:DataRange. Basically, OWL Lite allows for reasoning about class hierarchies,
property restrictions, and optional/required properties [80].

With OWL 2, the standard shifts focus from variants to profiles. While the variants were
defined in expectation of reasoner development, the profiles support specific use cases
and reasoning tools developed in the interval between the two standards. Each profile is
a subset of OWL 2 functionality which has already been demonstrated to be tractable in
its intended use case [83]:
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• OWL 2 EL: Ideal for complex class and property hierarchies. Scales well with
T-box complexity.

• OWL 2 QL: Ideal for query-style tasks – scales well with A-box complexity.

• OWL 2 RL: A subset of OWL 2 DL optimized for polynomial-time reasoning with
respect to the size of the ontology.

OWL Lite and OWL DL can also be considered profiles of OWL 2.

5.2.3 Reasoning Languages for OWL
A number of reasoning languages have been developed for use with OWL and other
Semantic Web technologies. We examine a selection of those which are potentially
relevant to our project.

Description Logics

As we have described above, OWL is based on certain flavors of DL. Thus, it is
automatically amenable to DL. We can use DL both to form queries and for inference.
The query use case is straightforward: for example, in the Pizza Tutorial ontology [29],
the query hasTopping some (hasSpicinessValue Hot) does exactly what one
might expect, returning all pizzas with a spicy topping. However, DL can also be used
for inference through restrictions: logical expressions defining classes. So, we could use
a DL expression to define the class MargheritaPizza as the subclass of Pizza with
some topping from CheeseTopping, some topping from TomatoTopping, and only
toppings from (CheeseTopping or TomatoTopping). Note that because of the
open world assumption, we need to specify both necessary and sufficient conditions.

The SPARQL Protocol and RDF Query Language

The SPARQL Protocol and RDF Query Language (SPARQL) is a query language for
RDF knowledge bases. Since OWL is built on top of RDF, SPARQL is naturally suited
to OWL. Like SQL, SPARQL allows for construction of arbitrarily complex queries.
It even offers the potential for non-monotonic reasoning, as it can add facts using the
INSERT statement. However, Protégé does not support INSERT, so we don’t consider
this. Another significant limitation is in Protégé, SPARQL queries do not recognize facts
asserted by the reasoner, such as domains for inverse properties. It is possible to work
around this, for example by exporting asserted facts as axioms. But it is nonetheless
important to note.

SPARQL is highly expressive: in fact its expressivity is equal to that of Relational
Algebra—that is, as expressive as one might ask a query language to be [19]. However, it
has potentially high complexity: in general, deciding whether a SPARQL query has a
result is PSPACE-hard (harder than NP) with respect to the size of the query or the
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combined size of the query and knowledge base [55]. However, the query problem is in the
far more tractable class when the query is simple: it is NL-complete (easier than P) with
respect to the size of the knowledge base only. In practice, queries are not very complex,
despite the gigantic complexity of knowledge bases. Thus, practical query problems fall
within this very tractable problem class.

The Semantic Web Rule Language

The Semantic Web Rule Language (SWRL) is a rule language: it asserts new facts accord-
ing to rules. For example, we could assert that if x hasParent y and y hasBrother
z, then x hasUncle z [63]. A reasoner using SWRL would then add this last fact to
the ontology whenever the antecedent pattern matched.

The Semantic Query-Enhanced Web Rule Language

While SWRL is not a query language, an antecedent in SWRL can be viewed as a query.
The Semantic Query-Enhanced Web Rule Language (SQWRL) takes this approach by
replacing the consequent with a SQL- or SPARQL-style command like sqwrl:select
or sqwrl:orderBy. The syntax is dramatically simpler than that in SPARQL, and
offers the possibility to quickly turn inference conditions expressed in SWRL into queries,
giving flexible transition between inference and query.

The Shapes Constraint Language

The open world assumption means that OWL lacks good mechanisms for data validation:
all facts are valid unless very, very specifically invalidated. The Shapes Constraint
Language (SHACL) provides a mechanism for validating an RDF knowledge base. In
addition native SHACL syntax, a SPARQL extension, SHACL-SPARQL is defined,
allowing the use of more complex SPARQL queries in a validation process. In terms of
our identified types of task, we can view SHACL as a tool for verification: ensuring that
a knowledge base meets certain requirements.

5.3 Automated Reasoning Approach
We now need to choose exactly how we will use automated reasoning in our project. We
first consider the choice of the reasoning tool itself, and then the suitability of different
reasoning languages to different kinds of tasks.

5.3.1 Choice of Reasoner
A bewildering variety of reasoners have been developed for OWL. In 2020, W3C listed
22 reasoners on the OWL wiki. Fortunately, we may immediately limit our pool to those
with open source licenses and, since we have already chosen to use Protégé, support
for Protégé. Abburu compares nine of the more notable reasoners, giving us a helpful
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overview of their capabilities [14]. Our first two crite1ria reduce us to five: Pellet,
FACT++, HermiT, CEL, and ELK. Examining their capabilities, we reject FACT++,
CEL, and ELK because they do not support SWRL rules. Then, between Pellet and
HermiT, we note that HermiT does not provide justifications for its results, while Pellet
does. Thus, we choose Pellet: it is open-source, supported in Protégé, supports SWRL,
and provides justifications.

5.3.2 Choice of Reasoning Languages
We want a set of tools which can test whether an instance of our system meets our safety
requirements. For this, we will need to:

1. Make our safety requirements expressible by inferring the facts and applying
constraints.

2. Formalize each safety requirement using a formal reasoning language.

3. Check each safety requirement using a reasoner, for each test case.

This translates into a number of automated reasoning tasks:

• Rule inference

• Validation

• Query for violations

• Automation

What technology should we use for them? We can see we have several general needs:

• Expressiveness sufficient to model safety requirements

• Ability to infer new facts corresponding to concepts used in the safety requirements

• Ability to validate against facts – in particular, negation and closed-world reasoning

• Ability to cleanly use existential constructs

• Readability and ease of use

• Practical tractability

• Good integration with Protégé

Because each of these needs is only applicable to some contexts, and because the decision
to use any given technology will come with qualifiers based on the context, we will
proceed with a holistic analysis of the available technologies in each context, rather than
a point-by-point evaluation.
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Rule Inference

By inference, we mean introducing new facts to our knowledge base according to rules.
We apply a qualitative pros-and-cons analysis to our available inference technologies in
Table 5.1.

Inference tech-
nology

Pros Cons Decision

Pellet (Protégé
built-in DL)

Easy class and prop-
erty inference in
Protégé.

Limited to defined
tasks related to
class relationships
and object proper-
ties.

Use to simplify data
entry (e.g. inverse
relationships for ob-
ject properties).

SPARQL Highly expressive,
like SQL.

INSERT command
not supported in
Protégé.

Do not use.

SWRL Readable syntax.
Well-suited to exis-
tential constructs.
Protégé reasoner in-
corporates inferred
facts directly.

Open-world as-
sumption: can’t
support any kind
of negation.

Use to infer new
facts.

SHACL Highly expressive.
Closed-world as-
sumption.

New facts are con-
fined to the SHACL
process itself: Pro-
tégé can’t update
using them. Diffi-
cult syntax.

Do not use.

Table 5.1: Analysis of relevant inference technologies

Beyond the very basic capabilities of Pellet (built in to Protégé), what do we use for
inference? SWRL, not SHACL. Why? SHACL can also be used to infer new facts.
However, the cost of this is that SHACL rules are considerably more complicated, as, like
SPARQL, it operates at the lower level of RDF triples. And, from the practical point of
view, the Protégé reasoner does not update the ontology with inferred facts from SHACL.
In contrast, SWRL is easily readable, and the reasoner adds its inferred facts along with
the rest.

We will also use one other Protégé feature: because not all technologies recognize inferred
facts under Protégé’s built-in inference engine, we will use the Export Inferred Axioms
feature to preprocess each OWL knowledge model, ensuring that each inferred fact
receives a literal representation.
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Validation

We wish to validate that our knowledge model is consistent and represents our real-
world system in an acceptable way. We consider both validation and query technologies,
since queries could be used to identify validation violations. We apply a qualitative
pros-and-cons analysis to our available validation technologies in Table 5.2.

Validation tech-
nology

Pros Cons Decision

Pellet (Protégé
built-in DL)

Simple and read-
able. Decidable.

Limited expressive-
ness. Open-world
assumption in
OWL. Must use
Protégé to specify
all classes disjoint,
all individuals
distinct.

Use during data en-
try to prevent mis-
takes.

SPARQL (Protégé
built-in)

Strongly expressive
and tractable in
real-world use
cases.

Unable to consider
inferred facts. High
complexity and low
readability.

Do not use.

Snap-SPARQL As above, and ac-
cesses inferred facts
from Protégé rea-
soner.

Does not support
the FILTER NOT
EXISTS construct.

Do not use.

SHACL (Protégé
built-in)

Closed-world as-
sumption. Highly
expressive.

Difficult syntax. Use for most valida-
tion tasks. Use to
apply closed-world
filter over inferred
rules.

Jena SHACL Convenient for
command-line
execution.

No editor. Use for batch pro-
cessing.

Table 5.2: Analysis of relevant validation technologies

Most of our validation tasks amount to preventing user error at the data entry stage.
We will encounter an example of this during our Proof of Concept application. However,
a more critical task for validation relates to closed-world inference. For example, if we
wish to have a “disconnected” relation, we cannot use SWRL to infer that client A and
server B are disconnected from their lack of a “connected” relation. A workaround is to
make related inferences and filter failures using SHACL:
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1. Assign “disconnected == true” to all clients pairs.

2. Use a SHACL rule to invalidate all “connected” relations where A is connected to
B and A has “disconnected == true”.

3. Manually fix the model until only valid “disconnected” values remain.

While this method is a bit ugly, it gets us around the open-world restrictions of SWRL.
In the Proof of Concept application, we will apply this approach to modeling visibility.

So, for validation, we use Protégé’s built-in DL reasoning over disjoint classes and distinct
individuals, and we use SHACL shapes for more complex tasks, especially those requiring
closed-world reasoning. We use Protégé’s SHACL tab while creating our shapes, and
Jena to execute SHACL validation at scale.

Query for Violations

Our main query task is to identify violations of our safety requirements. We apply a
qualitative pros-and-cons analysis to our available query technologies in Table 5.3.

Query technol-
ogy

Pros Cons Decision

SPARQL (Protégé
built-in)

Strongly expressive
and tractable in
real-world use
cases.

Unable to consider
inferred facts. High
complexity and low
readability.

Do not use.

Snap-SPARQL As above, and ac-
cesses inferred facts
from Protégé rea-
soner

Does not support
the FILTER NOT
EXISTS construct.

Use to interactively
build SPARQL
queries.

Jena SPARQL Convenient for
command-line
execution.

No editor. Use for batch pro-
cessing.

SQWRL Easy SWRL-style
syntax.

Strictly open-world,
like SWRL.

Do not use.

SHACL-SPARQL Closed-world as-
sumption. Highly
expressive.

Difficult syntax.
No use of MINUS
construct.

Do not use.

Table 5.3: Analysis of relevant query technologies

We are tempted to use SHACL to enforce safety requirements. However, its limitations
make it too rigid for this task. And while SHACL can actually get around this by
including SPARQL queries, in practice this proved to be too cumbersome for us to
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actually use. Further, SHACL-SPARQL does not support the MINUS construct, closing
off our last hope for closed-world reasoning.

SPARQL instead shows its strength here. We can recast each requirement as a query
for its violation, and write a SPARQL query for this. SPARQL also provides us limited
support for closed-world reasoning. We use the MINUS construct to provide for atomic
negation: to select for all Object which do not have propertyX, we select (Object) MINUS
(Object and propertyX).

We choose Snap-SPARQL for use within Protégé because it can automatically detect
inferred facts. This will be especially convenient for interactively designing our queries.
For batch processing, we will use Jena SPARQL.

Automation

We find it useful to introduce Apache Jena into our tech stack. While Protégé and its
plugins provide a good user interface for building the knowledge base, and a convenient
way to run SWRL rules generation, SHACL validation, and SPARQL queries, Protégé
does not have a command line interface and is thus challenging to automate. In particular,
Protégé can only run one SPARQL query at a time. We will need more. Jena, an open-
source knowledge engineering framework, provides command line tools sparql and shacl
which will let us perform our validation and verification tasks in simple Bash scripts.
To ensure that Jena can detect the inferred facts, we will use Protégé’s Export Inferred
Axioms option to create each of our test case knowledge base files.

This automated section is essentially functional, as we can see in Table 5.4.

Inputs Outputs
test_case.rdf STDOUT
shacl_shapes.ttl Return code
safety_requirements.rq

Table 5.4: Inputs and outputs of automated process

Of the three input files, only the RDF for the configuration actually changes from test
case to test case. The SHACL shapes and the SPARQL queries are fixed. We can
automate this in a simple bash script. This part of the process only requires Jena and
Bash.

It is important to use that whenever a violation occurs, our automated reasoning solution
provides a human-readable explanation. With SHACL, this is easy: we use sh:message
and write the appropriate message. SPARQL is much trickier: there is no in-built
capacity for this kind of metadata. We use comments as a workaround: in our Bash
script, comment lines beginning # Requirement will be printed for each test, while
comment lines beginning # Violation will be printed in the event of a violation. We
accomplish this with a simple grep call.
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Technology Choices

We summarize our choices of technology in Table 5.5.

Task Technology
Rule inference SWRL, Pellet (Protégé built-in DL), Protégé “Export

Inferred Axioms” function
Validation SHACL, Pellet (Protégé built-in DL), Protégé disjoint

classes and “Make all individuals different”
Query for violations SPARQL: Snap-SPARQL for design; Jena SPARQL

for batch processing
Automation Jena, Bash

Table 5.5: Technology choices for automated reasoning

5.4 Summary
Having developed a deeper understanding of how automated reasoning can help with our
task, and the major limitations we face, we have chosen a set of tools which will allow us
to develop our system model with requirements and then check its consistency with its
requirements. In the next short chapter, we put the pieces together, giving the detailed
step-by-step process which our design methodology has produced.
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CHAPTER 6
Design Artifact

With our design decisions made, we are ready to detail our design artifact—our process
for evaluating an industrial system for consistency with its safety requirements.
Our process takes an industrial system and a set of safety requirements as its inputs and
produces a human-readable verification result as its output.

1. Input: Identify input industrial system and safety requirements.

2. System Model (Pen & Paper): Produce a model using the Systems Modeling
Language (SysML), including its requirements:

a) Model the requirements in a Requirements diagram.
b) Introduce State Machine diagrams to clarify state-base requirements.
c) Identify interrelations between requirements using «derives» and «refines»

relations.
d) Model the components of the industrial system in a Block Definition dia-

gram.
e) Elaborate on subclass and association relations with cardinalities.
f) Identify relations between components and requirements using «satisfies»

relations.
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3. Knowledge Model (Protégé): Produce a knowledge base using OWL, with classes
based on our SysML model and named individuals based on our input industrial
system.

a) Create a new ontology.
b) Introduce classes for the components, based upon the SysML model.
c) Based on the Block Definition diagram subclass and association relations,

introduce object properties needed to relate components to each other.
d) Use OWL inverse and cardinality properties to control the object properties

and allow for model validation.
e) Based on the requirements and their State Machine diagrams and satisfying

components, introduce data properties to track the states of component
instances relevant to requirements.

f) Using SHACL, introduce SHACL shapes to ensure the validity of the
knowledge model.

4. Inferring facts (Protégé): Enhance the OWL knowledge base to infer facts relevant
to the requirements

a) Identify necessary facts, based on the requirements.
b) Using SWRL, introduce SWRL rules to infer new facts.
c) Filter the inferred facts using further SHACL shapes when closed-world

reasoning is strictly necessary.

5. Query design (Protégé):

a) Translate each requirement into a query for SPARQL.
b) Comment each query with a human-readable description and a human-readable

violation message.

6. Instantiation (Protégé):

a) Introduce named individuals to instantiate the model, based on the input
industrial system.

b) When comparing multiple configurations, produce a separate instantiated
RDF file for each test case.

c) Use Protégé’s Export Inferred Axioms feature in each RDF file to make
sure all inferred facts are reflected in the knowledge base.
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7. Collect files:

a) test_case_[n].rdf, our fully developed OWL models, including A-box
named individuals. One model per configuration being evaluated.

b) shacl_shapes.ttl, our model validation SHACL shapes.
c) safety_requirements.rq, our safety requirements expressed as SPARQL

queries.

8. Execution (Jena, Bash):

a) Use Jena SHACL to validate each test case against the SHACL shapes.
b) Use Jena SPARQL to test each test case for compliance with the safety

requirements.

9. Output: Text report confirming consistency or else detailing violations.

We also provide a visual overview of this process, in the form of a SysML Activity
diagram, in Figure 6.1.
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Figure 6.1: Activity diagram: Process for verification
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CHAPTER 7
Proof of Concept

In this section, we apply the nine-step process developed as our artifact to the industrial
system described in our scenario. We will apply the process to several test cases so that
we can evaluate it in terms of reconfigurable systems, per the Industrie 4.0 goals.

7.1 Test Cases

We will apply our reasoning application to a series of test cases. A test case changes the
instances of our system into a safe or unsafe configuration. We list them in Table 7.1.

Test case Description File name
Base configuration test_case0.rdf
Disconnected machine Machine 1 is discon-

nected from the safety
network.

test_case1.rdf

Wall removal Now each e-stop can see
each machine.

test_case2.rdf

New machine intro-
duced

Adding a new machine
without any other con-
figuration should violate
all sorts of requirements.

test_case3.rdf

Table 7.1: Test cases

These four test cases allow us to see if our system really does detect safety violations
resulting from reconfiguration steps.
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7.2 Verification Process
Having defined our test cases, we now carry out the steps of our process. We carefully
follow the outline in Chapter 6.

7.2.1 Input
We will take the industrial system described in Chapter 3 as our input, along with the
three variant test cases listed above. We take the four simplified safety “standards” listed
with our scenario as our safety requirements, which we will refine as we build our model.

7.2.2 System Model
We begin by building a model using SysML to reflect our scenario. We first model the
requirements, and the the components of the industrial system.

Requirements Modeling

In our scenario description, we outlined the definition of an e-stop, and we set requirements
for the use of e-stops in our system:

• An e-stop button stops all connected machines

• An e-stop button is red and yellow

• One-way door: disengaging an e-stop does not turn on machines.

• Each machine has an integrated e-stop

• Each control panel has an integrated e-stop

• Each emergency stop button must span all machines visible from its location.

• Each machine and each e-stop is connected to the safety network

• Machines and e-stops registered on the safety network must not disconnect.

We will start our SysML model with these requirements. We will also add a dummy
functional requirement: “assemble product”, to represent the value-generating process of
our system. We group these requirements for logic and readability. A real model would
also link to the specific standards, design decisions, documents, and so on, that lead to
these requirements, but we will omit all of this. Thus we get:

• RQ 1: Assemble product

• RQ 2: Correct e-stop functionality
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– RQ 2.1: E-stop stops all connected machines
– RQ 2.2: E-stop is red and yellow
– RQ 2.3: One-way door: disengaging e-stop does not turn on machines.

• RQ 3: Correct use of e-stops in system

– RQ 3.1: Each machine must have an integrated e-stop
– RQ 3.2: Each control panel must have an e-stop.
– RQ 3.3: Each e-stop must span all machines visible from its location

• RQ 4: Use of safety network

– RQ 4.1: Each machine and e-stop must be connected to the safety network
– RQ 4.2: Devices registered to the network must not disconnect while registered.

In Figure 7.1, we present these requirements in a SysML Requirements diagram.

Figure 7.1: Basic requirements for our example system
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From this set of requirements, we notice three things: First, this implies specific domains
which our model must cover:

• Physical devices: machines, controllers, and e-stop buttons.

• Safety network: abstracted as one object which monitors connected devices and is
capable of routing e-stop signals. It includes a safety configuration table: many-to-
many assignment of machines to e-stops. It detects connected devices and registers
devices that should be connected.

• Locations: semantic container for physical devices. Each physical device belongs to
exactly one location.

• Visibility domains – each location belongs to one or more visibility domains. Each
visibility domain contains one or more locations.

Second, we may notice that allowing for removable control panels with integrated e-stop
leads to some requirements violations. 2.1, 2.3, 3.3, and 4.1 need to be refined to allow
for color-changing e-stops; 2.2 and 3.2 need to consider connected/disconnected state.
We introduce a new top-level requirement for removable control panels, and «refine» and
«derive» our new requirements. Whereas the SysML diagram was basically optional for
the numbered outline above, we now actually need one to show the level of interrelation
between the requirements: see Figure 7.2.

Third, we see examples of state-based behavior:

• the relationship between engaging/disengaging an e-stop and the on/off state of a
machine

• the process of correctly connecting and disconnecting the control panel

We will use State Machine diagrams to illustrate these: see Figures 7.3 and 7.4.
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Figure 7.2: Requirements diagram showing «refine» and «derive» relations from new
color-changing e-stop requirement
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Figure 7.3: State Machine diagram illustrating the response of a machine to an e-stop
button

Figure 7.4: State Machine diagram illustrating the connection/disconnection behavior of
a removable control panel

A note on SysML syntax: State transitions are denoted “trigger[guard]/”, where the guard
is a condition which must be true for the transition to occur. In this way, the Emergency
Stop Button Response state machine has relatively few states, as the transitions check
the state of the e-stop signal itself.
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Finally: one thing we have not shown is the set of trace relationships to external standards
like ISO 13850: this is because we have only roughly paraphrased these in our scenario
design. However, in a real SysML application, this kind of data would be valuable, as it
would anchor the specific requirements to the more fundamental stakeholder need (here,
standards compliance). This supports maintaining the link from detailed requirements
introduced by engineers and the needs of the customer or other stakeholder – without
this, there is a major risk of requirements proliferating without actually being valid [27].

Component Modeling

We present here a detailed set of classes representing the components in the scenario.
Note that this shows only the structure, not the detailed function of the system. It will
be a helpful aid for us when we instantiate our system as a knowledge base in the next
section. We organize our classes and their relations in a SysML Block Definition diagram:
see Figure 7.5.

Figure 7.5: Block Definition diagram showing components and relations in our example
system

Notes on SysML syntax:

• Open triangle arrows indicate subclass relationships: Machine extends Device, in
Java syntax.

• Open diamonds indicate that one component is associated with another. The
numbering indicates the number of elements, with “1..*” indicating one or more.
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So, an EStopRoute object contains one Machine and one EStop object. Conversely,
a Machine object is contained in one or more EStopRoute objects.

• Filled diamonds indicate association where the subpart has no independent existence:
outside of an EStopRoutingTable object, there is no such thing as an EStopRoute.

• Boxes with folded corners are comments.

Component-Requirement Relations

Usefully, SysML provides a syntax with which we can connect requirements to the
system elements which satisfy them. In practice, this means that when we change our
requirements, we can trace the effects to our system elements. A table provides greater
readability than a very tangled diagram: we collect our «satisfies» relations in Table 7.2.

Requirement Component «satisfies» Require-
ment

RQ 1. Assemble product Machine
RQ 2.1.1. A red/yellow e-stop stops all
spanned machines

EStop, Machine, EStopRoute, Connec-
tionArray

RQ 2.2.1. E-stops are red and yellow if
and only if they are connected.

EStop, ColorChangingEStop, Connec-
tionArray

RQ 2.3.1. Releasing a red/yellow e-stop
does not turn machines on

EStop, Machine, stm “Response to emer-
gency stop button”

RQ 3.1. Each machine has an e-stop. EStop, Machine
RQ 3.2.1. Each connected control panel
has a red/yellow e-stop.

EStop, RemovableControlPanel, Con-
nectionArray

RQ 3.3.1. Each red/yellow e-stop spans
all visible machines.

EStop, Machine, EStopRoute, Connec-
tionArray, VisibiltyZone

RQ 4.1.1. Each machine and red-yellow
e-stop is connected to the network.

EStop, Machine, ConnectionArray, Safe-
tyNetwork

RQ 4.2. Registered devices do not dis-
connect.

Device, ConnectionArrray, Registration-
Array

RQ 4.3. Control panel can self-register. RemovableControlPanel, ConnectionAr-
ray, RegistrationArray, stm “Removable
control panel connection”

Table 7.2: Component «satisfies» requirement relations

7.2.3 Knowledge Model
With our SysML model complete, we move on to the next step: building a knowledge
model using OWL which will allow us to instantiate our test cases and provide the context
in which we formalize our requirements. We begin by creating a new ontology, under
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the namespace IRI http://www.semanticweb.org/donald/ontologies/2024/
9/estoppoc.

Classes

We begin by introducing our component classes. While OWL has the ability to define
classes according to DL rules and infer new class relationships, we have no need of this.
Thus, this is a straightforward process of copying our class structure into Protégé. We
can start with our Block Definition diagram in Figure 7.5.

As a precaution, we have gone ahead and specified at each level of hierarchy that sibling
classes are disjoint. We will see later that this helps the reasoner catch data entry
mistakes.

Object Properties

Our System Components view indicates a number of associations which we will need to
model. Modeling an association as a property will be considerably more complicated
than modeling a class. Just to capture the information in the System Components view,
we will need to specify domain, range, and cardinality restrictions. It is also helpful to
use Protégé’s support for inverse properties to create logical inverses. So, we will have
both estoppoc:hasComponent and estoppoc:isComponentOf, for example.

Parsing our Block Definition diagram, we find the following properties, organized by
related component class in Tables 7.3 and 7.4.

Protégé can automatically create inverse relationships, so we’ll only fully configure the
first of each pair. We will also configure the functionality of each property: a functional
property takes only one object instance; an inverse-functional property takes only one
subject instance. So, for people, hasHeightInCm is functional: two people may have
the same height, but one person cannot have two heights. A one-to-one property is
both of these things. Pellet, the reasoner we are using, does not automatically infer
functional/inverse-functional relationships, so we encode them manually.

Data Properties

Some of our requirements depend on the state of a machine (running or not, emergency-
stopped or not) or an e-stop (engaged or not; red/yellow or not). We also use a data
property to control visibility, as we describe below. We will introduce boolean-valued
data properties to model these states: they are listed in Table 7.5.
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Class Data Proper-
ties

Type Default

Machine isRunning Boolean True
isInEStopCondi-
tion

Boolean False

EStop isEngaged Boolean False
isRedYellow Boolean True

VisibilityZone isObstructedVisi-
bilityZone

Boolean Special case

Table 7.5: Data properties

Visibility is one of the more challenging concepts to model. We might initially think that
we could define an isVisibleFrom relation between Location instances. This seems
simple, and corresponds to our definition of Wall instances as adjoining two Location
instances. Then we could invalidate visibility betweeb the two adjoined locations when a
wall occurs.

Figure 7.6: Visibility example with no wall

In Figure 7.6, there is no wall: Location 1 isVisibleFrom Location 2 , Location 1
isVisibleFrom Location 3, Location 2 isVisibleFrom Location 3 (and the sym-
metric closure).

Figure 7.7: Visibility example with wall

Following this idea, in Figure 7.7, we introduce a wall between Location 1 and Location
2, and so we would invalidate Location 1 isVisibleFrom Location 2:

68



7.2. Verification Process

Location 1 isVisibleFrom Location 2 , Location 1 isVisibleFrom Location 3,
Location 2 isVisibleFrom Location 3 (and symmetric closure of these)

This is incorrect: Location 1 isVisibleFrom Location 3 is wrong. The simple rule of
removing visibility where a wall is creates a serious error. The solution is to introduce
a layer of abstraction: a VisibilityZone is a set of locations which are all mutually
visible. Then we will invalidate a zone if it contains both locations which a wall adjoins,
using the isObstructedVisibilityZone property.

Figure 7.8: Visibility zones with no wall

Figure 7.9: Visibility zones with wall

We can see looking at Figures 7.8 and 7.9 that this approach gives the correct result.
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SHACL Shapes

While OWL’s built-in DL features provide some level of model validation, we will use
SHACL to apply closed-world constraints. This will in turn allow us to form queries in
SPARQL that make sense.

First, we require that all boolean data properties be true or false, never both, never
neither. We do this by the expedient of requiring precisely one value, as in Listing 7.1.
poc:MachineStateVariablesClosure

a sh:NodeShape ;
sh:targetClass poc:Machine ;
sh:property [
sh:path poc:isRunning ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:message "Must have exactly one value for isRunning."

] ;
sh:property [
sh:path poc:isInEStopCondition ;
sh:minCount 1 ;
sh:maxCount 1 ;
sh:message "Must have exactly one value for isInEStopCondition."

] .

Listing 7.1: Boolean closure in SHACL

We could apply more elaborate requirements, but for the purposes of our proof of concept,
we stop here.

7.2.4 Inferring Facts
Examining the list of requirements above, we see that we need to discuss e-stop span
and visibility – especially for

• EStop spans Machine

• Machine spannedBy EStop

• Device isVisibleFrom Device

The first two are straightforward; the last requires a special workaround due to its
inherent incompatibility with open-world reasoning and non-monotonic reasoning.

Emergency stop span relation

For the first two of our required properties, we create the two object properties and set
their domains, ranges, and inverse relationship as usual. We then implement the SWRL
rule in Listing 7.2.
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EStopRoute(?r)
^ routesToMachine(?r, ?m)
^ routesFromEStop(?r, ?e)
-> spans(?e, ?m)

Listing 7.2: SWRL rule for e-stop span

This gives us the desired set of relationships. The inverse relation is populated automati-
cally by the DL reasoner.

Visibility Relation

The visibility relation is dramatically more difficult to implement. From a reasoning
point of view, the fundamental problem is that OWL and SWRL really do not like
non-monotonic reasoning. Why is this a problem? Because we can’t use negations in
SWRL rules. We would like to trace through two locations which are mutually-visible,
provided that there is not a wall adjoining the two locations. However, that negation is
precisely what we can’t do. So instead, we turn to SHACL. Since the purpose of SHACL
is to enforce data integrity, it is by design well-suited to closed-world reasoning. However,
it is bad at existential quantification: we need to invalidate VisibilityZones which contain
both sides of the same wall, and there isn’t a good way to do that. To limit our reliance
on SHACL, we will use a three-step process:

1. Use SWRL to assign an isObstructedVisibilityZone ‘true’ boolean pred-
icate to any blocked visibility zone, as in Listing 7.3. In a correctly configured
visibility model, SWRL will do nothing.
VisibilityZone(?z)
^ Wall(?w)
^ Location(?loc1)
^ Location(?loc2)
^ differentFrom(?loc1, ?loc2)
^ adjoinsLocation(?w, ?loc1)
^ adjoinsLocation(?w, ?loc2)
^ hasVisibleLocation(?z, ?loc1)
^ hasVisibleLocation(?z, ?loc2)
-> isObstructedVisibilityZone(?z, true)

Listing 7.3: Setting isObstructedVisibilityZone to ‘true’
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2. Use SHACL to invalidate any zone with isObstructedVisibilityZone set,
as in Listing 7.4. Again, in a correctly configured case, SHACL will find nothing.
poc:NoObstructedVisibilityZones
a sh:NodeShape ;
sh:targetClass poc:VisibilityZone ;
sh:property [
sh:path poc:isObstructedVisibilityZone ;
sh:maxCount 0 ;
sh:message "A VisibilityZone is blocked by a Wall." ;

] .

Listing 7.4: Invalidate obstructed VisibilityZone

3. Use SWRL to infer the isVisibleFrom property for devices, using only the
remaining unobstructed zones, as in Listing 7.5.
VisibilityZone(?z)
^ isInVisibilityZone(?locA, ?z)
^ isInVisibilityZone(?locB, ?z)
^ isLocatedIn(?deviceA, ?locA)
^ isLocatedIn(?deviceB, ?locB)
-> isVisibleFrom(?deviceA, ?deviceB)

Listing 7.5: Infer the isVisibleFrom property

The clear downside of this approach is the level of manual intervention required: visibility
zones must be manually configured, and must be manually deleted if SHACL detects a
wall conflict.

7.2.5 Query Design
At the highest level, the purpose of our automated reasoning application is verification of
our safety requirements. They are:

• RQ 2.1.1: A red/yellow e-stop stops all spanned machines

• RQ 2.2.1: E-stops are red and yellow if and only if they are connected

• RQ 2.3.1: Releasing a red/yellow e-stop does not turn machines on

• RQ 3.1: Each machine has an e-stop

• RQ 3.2.1: Each connected control panel has a red/yellow e-stop

• RQ 3.3.1: Each red/yellow e-stop spans all visible machines

• RQ 4.1.1: Each machine and red-yellow e-stop is connected to the network.

• RQ 4.2: Registered devices do not disconnect
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We remove the functional requirements 1. and 4.3 from consideration, as they are not
safety-related and are not detailed enough to be directly represented in our system model.
Even among those remaining, a great deal of complexity is visible. They use ideas like
“spans” and “visible” which are not directly modeled in our knowledge base; however,
they can be inferred as consequences of the knowledge that is modeled.

We begin by translating each of our requirements into a query for its violation, shown in
Table 7.6.

Requirement Violation query (natural language)
RQ 2.1.1. A red/yellow e-stop stops all
spanned machines

a red/yellow e-stop which is engaged,
and a machine which it spans which is
running

RQ 2.2.1. E-stop are red and yellow if
and only if they are connected.

a red/yellow e-stop which is not con-
nected, or a non red/yellow e-stop which
is connected

RQ 2.3.1. Releasing a red/yellow e-stop
does not turn machines on

a red/yellow e-stop which is not en-
gaged, and a spanned machine which
is in emergency-stop condition and is
running

RQ 3.1. Each machine has an e-stop. a machine which does not have an at-
tached e-stop

RQ 3.2.1. Each connected control panel
has a red/yellow e-stop.

a removable control panel which is con-
nected and has an e-stop which is not
red/yellow

RQ 3.3.1. Each red/yellow e-stop spans
all visible machines.

a red/yellow e-stop, and a visible ma-
chine which it does not span

RQ 4.1.1. Each machine and red-yellow
e-stop is connected to the network.

a device which is a machine or is a
red/yellow e-stop which is not connected
to the network

RQ 4.2. Registered devices do not dis-
connect.

a device which is registered and is not
connected

Table 7.6: Queries for requirement violations

Note that many of our queries involve closed-world style atomic negations. We can handle
these in SPARQL using the MINUS operator, as in Listing 7.6, which selects e-stops
which are red-and-yellow but not connected to the safety network, as well as e-stops
which are not red-and-yellow but are connected to the safety network. Note that logical
“and” is implicit in the SELECT command, but “and not” requires the MINUS command.
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SELECT ?estop
WHERE {

{
{
?estop a poc:EStop .
?estop poc:isRedYellow true .

}
MINUS
{
?estop a poc:EStop .
?estop poc:isConnectedTo ?safetyNetwork .

}
}
UNION
{
?estop a poc:EStop .
?estop poc:isRedYellow false .
?estop poc:isConnectedTo ?safetyNetwork .

}
}

Listing 7.6: Example SPARQL query

We formalize each requirement in this way as a SPARQL query for its violations. With
this, we have essentially completed our technical process: it remains to organize this
process so that we get to our verification result in an efficient way. While there is no
really nice way to build human-readable output into the SPARQL query itself, it is
fairly straightforward to provide a description of the requirement and of the violation as
comments. Then we can pull those comments out of the query file as needed.

7.2.6 Instantiation

With our “T-box” classes and properties defined, we are ready to instantiate our base
scenario. First we manually instantiate all of the entities in our base scenario. In
our limited scenario, this is doable. In a more realistic application, some degree
of automation and inference would be necessary. Next, we need to manually intro-
duce all of our object properties. Fortunately for us, some are immediately inferred:
in the example below, eStopRoutingTable1 is already identified to have property
isEStopRoutingTableOf safetyNet1, because we manually assigned safetyNet1
hasEStopRoutingTable eStopRoutingTable1. In Protégé, inferred relations are
always shown with a yellow background, as in Figure 7.10.
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Figure 7.10: Inferred relations are yellow in Protégé.

In this kind of tedious data entry, the reasoning-based checking powers of a knowledge base
become apparent. For example, when configuring eStopRouteMachine1ToMachine1,
we accidentally set the route from Machine1, rather than from the e-stop connected to
it. We can see in Figure 7.11 that the ontology immediately caught the error.

Figure 7.11: Protégé identifies an incorrect class relation.

It is worth pausing to explain how this error arises, because it tells us something about
how typing works under the OWL’s open world assumption. The routesFromEStop
property has domain EStopRoute and range EStop. Thus, setting this object property,
Protégé concludes that object machine1 must have type EStop. However, machine1
has explicit type Machine. At this point there is no problem. The problem arises
because we have already specified, in our class structure, that EStop and Machine
are disjoint classes: hence machine1 both is and is not a member of Machine. The
mistake is easy to fix.

In this spirit, we will also specify that all of our individuals are different from each other.
Since OWL lacks the unique name assumption, this is something which we must do
manually. Protégé has a one-click shortcut to do so. Our final step is to set the data
properties to represent our default states. For our basic model, our machines are all
running, our e-stops are all disengaged, and our disconnected color-changing e-stop is
gray.

With this approach, we produce an instantiated OWL knowledge model for our scenario.
We copy the model and make changes in order to produce a separate RDF file for each
of our test cases.
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7.2.7 Execution and output
We use a bash script to automate our Jena command line calls. The output for each test
case shows us the expected result. For unsafe test cases, a readable message explains the
failure. A sample of the output is shown in Figure 7.12.

In all our test cases, our script correctly detects the violated requirements and reports
them in a human-readable way.

The reader may access the code in a public GitHub repositoryi to try this out personally.
Our repo provides:

• rdf/test_case[0-n].rdf - test case models with exported inferred axioms.
Test case 0 is the base case.

• shacl/shacl_shapes.ttl - our SHACL shapes for model validation in all
cases.

• sparql/safety_requirement[n-n-n].rq - our SPARQL queries for our
safety requirements, for batch processing in Jena ARQ.

• check.sh - our bash script which automatically checks everything.

The reader will need a Linux system with Apache Jena and its Java runtime requirements.

7.3 Summary
With these steps complete, we now have a knowledge-based system model, a compatible
expression of our requirements, and an automated reasoning tool which we can use
to verify system correctness. We have an unambiguous specification of each test case.
Behind this, we have a richly documented design process which allows us to see that
our knowledge base really does represent the scenario which we originally described in
language and pictures. Applying our reasoner to our test cases, we are able to successfully
detect violations of safety requirements in a range of test cases.

At this point, we have produced a proof-of-concept solution to our technical problem
of automatically verifying safety requirements in a reconfigurable system. In the next
chapter, we will evaluate the quality of our solution.

ihttps://github.com/donaldacker/safety-verification
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Class Properties Inverse Functional? Inverse-
functional?’

Safety Net-
work

hasRegistra-
tionArray

isRegistra-
tionArrayOf

Yes Yes

hasConnec-
tionArray

isConnec-
tionArrayOf

Yes Yes

hasESto-
pRout-
ingTable

isEStopRout-
ingTableOf

Yes Yes

EStopRout-
ingTable

hasESto-
pRoute

isESto-
pRouteOf

No Yes

isEStopRout-
ingTableOf

hasESto-
pRout-
ingTable

Yes Yes

EStopRoute isESto-
pRouteOf

hasESto-
pRoute

Yes No

routes-
FromEStop

Yes No

routesToMa-
chine

Yes No

Registration-
Array

isRegistra-
tionArrayOf

hasRegistra-
tionArray

Yes Yes

hasRegis-
teredDevice

isRegis-
teredBy

No Yes

Connec-
tionArray

isConnec-
tionArrayOf

hasConnec-
tionArray

Yes Yes

hasCon-
nectedDevice

isConnect-
edTo

No Yes

Device isRegis-
teredBy

hasRegis-
teredDevice

Yes No

isConnect-
edTo

hasCon-
nectedDevice

Yes No

isLocatedIn containsDe-
vice

Yes No

Machine hasEStop isEStopFor-
Machine

Yes Yes

EStop isEStopFor-
Machine

hasEStop Yes Yes

Color-
Changin-
gEStop

isColor-
Changin-
gEStopForRe-
movableCon-
trolPanel

hasColor-
Changin-
gEStop

Yes Yes

Table 7.3: Properties of component relations, part 1
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Class Properties Inverse Functional? Inverse-
functional?’

Removable-
ControlPanel

hasColor-
Changin-
gEStop

isColor-
Changin-
gEStopForRe-
movableCon-
trolPanel

Yes Yes

Location containsDe-
vice

isLocatedIn No Yes

adjoinsWall adjoinsLoca-
tion

No No

isInVisibility-
Zone

hasVisibleLo-
cation

No No

Wall adjoinsLoca-
tion

adjoinsWall No No

VisibilityZone hasVisibleLo-
cation

isInVisibility-
Zone

No No

Table 7.4: Properties of component relations, part 2
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Figure 7.12: Command line output from Jena SPARQL, via our Bash script
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CHAPTER 8
Evaluation

Our response to our research question is a verification process, itself consisting of two
processes: A process for modeling an industrial system, including its safety requirements,
and a process for automatically verifying the compliance of a system (model) with its
requirements. Using the criteria for a successful design artifact which we presented in
the introduction, we will now evaluate the two parts of our process. For each criterion,
we score the artifact on a verbal rating scale of “very bad”, “bad”, “neutral”, “good”,
and “very good”.

8.1 Evaluation of Modeling Process
Our system modeling process can be summarized as:

1. Translate narrative descriptions and external standards into a SysML model, in-
cluding Block Definition diagrams, State Machine diagrams, and Requirement
diagrams.

2. Translate the Block Definition diagrams into classes in an OWL knowledge base.

3. Translate the State Machine diagrams into data properties in the OWL knowledge
base.

4. Translate the structural features of the Block Definition diagrams into SHACL
shapes.

5. Identify the concepts used in the Requirement diagram and create SWRL rules to
infer necessary facts.

6. Translate the safety requirements into SPARQL queries. Include human-readable
descriptions in the comments of the SPARQL files.
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The product of this process is an OWL knowledge base in RDF format, a SHACL shapes
file, and a series of SPARQL query files (one query per file).

We check our modeling process against the success criteria from Chapter 1.

1. Allows the modeler to accurately reflect the target system.
Very good: Because we chose to create our own ontology, we have a very strong
ability to reflect whatever we see in the target system.

2. Unites physical and configuration elements as well as requirements.
Good: Our SysML model handles requirements explicitly; our knowledge model
does not include requirements but allows them to be modeled separately as SPARQL
queries.

3. Allows for iterative change as the target system or the modeler’s understanding of
it changes.
Good: The SysML model makes tracking iterative changes easier. However, the
modeling process still depends on manually updating values, which is labor-intensive.

4. Makes use of existing technologies in order to reduce the modeler’s effort.
Good: We use existing modeling languages. OWL provides really useful tools such
as DL reasoning on classes and SWRL rule generation, meaning the modeler does
not have to manually input every single element of the model. However, because
we are creating our own ontology, we are not benefiting from much reuse.

5. Makes use of existing modeling languages in order for different modelers’ separate
work to be mutually intelligible and functionally compatible.
Neutral: While we gain mutual intelligibility from the common languages of SysML
and OWL, we do not have the benefit of a widely-established reference ontology to
work from.

Criterion (Modeling) Evaluation
Allows the modeler to accurately reflect the target system. Very good
Unites physical and configuration elements as well as re-
quirements.

Good

Allows for iterative change as the target system or the
modeler’s understanding of it changes.

Good

Makes use of existing technologies in order to reduce the
modeler’s effort.

Good

Makes use of existing modeling languages in order for dif-
ferent modelers’ separate work to be mutually intelligible
and functionally compatible.

Neutral

Overall Good

Table 8.1: Evaluation of system modeling criteria
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8.2 Evaluation of Verification Process
Our formal verification process can be summarized as:

1. Use Protégé to check the consistency of the RDF knowledge base using the Pellet
reasoner.

2. Use Protégé to export the knowledge base including inferred axioms.

3. Validate the knowledge base using the SHACL files.

4. Run each SPARQL query, capturing failures and explanatory notes.

For this process, our input is an RDF file, and our output is a report in text as shown
above. We have wrapped this in a bash script which applies this process to each RDF
file in a folder, allowing us to check all of our test cases conveniently.

We check our verification process against the success criteria from Chapter 1:

1. Uses automated reasoning tools to ensure correct results.
Very good: We are satisfied that the well-established tools we use perform correctly,
and we see they give unambiguous results.

2. Detects common human errors from the modeling stage.
Good: We were successfully able to use OWL class reasoning and, in particular,
OWL 2 disjoint classes, as well as SHACL shapes, to validate our model. However,
human errors are still possible: in particular, configuring visibility is tricky, and
while we can invalidate incorrect wall configurations, we cannot ensure that every
necessary visibility zone is configured.

3. Produces a clear answer, either affirming the system’s consistency or specifically
identifying each fault.
Very good: our reasoning toolchain performs exactly as desired.

4. Provides human-readable explanations for each fault.
Very good: while our SPARQL-comments-plus-grep workaround is a bit awkward,
its output is highly readable. For larger-scale work, it would not be at all difficult
to aggregate our output into more structured reports.

5. Can be conveniently applied to multiple test cases or to entirely different system
models.
Very good: our simple bash script makes running multiple tests very easy.
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Criterion (Reasoning) Evaluation
Uses automated reasoning tools to ensure correct results. Very good
Detects common human errors from the modeling stage. Good
Produces a clear answer, either affirming the system’s
consistency or specifically identifying each fault.

Very good

Provides human-readable explanations for each fault Very good
Can be conveniently applied to multiple test cases or to
entirely different system models.

Very good

Overall Very good

Table 8.2: Evaluation of automated reasoning criteria

8.3 Results
Based on the criteria, we can say that our modeling process is good and our verification
process is very good. We see that the shortcomings come from two major areas:

• Dependence on labor-intensive manual data entry

• Lack of an already-established ontology

The first is essentially unavoidable, though perhaps it would be possible to further
automate reasoning on the class relationships to allow for less data entry. The second
is a clear drawback, and relates to the first, as an established ontology would have the
potential to greatly reduce manual entry. However, at this time, we do not believe that a
sufficiently mature option exists.

Overall, we can consider our design process successful. Next, in our final chapter, we
reflect on these results and consider directions for further research.
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CHAPTER 9
Conclusion

9.1 Summary
We have come a long way in our exploration of our research question, “How can we
automatically verify that an industrial system is consistent with all of its safety require-
ments?” A quick review will remind us of our work and help make our conclusions make
sense.

Seeing that our research question demanded that we first model our target system and
then perform verification of the model, we recognized that our artifact would be a process
divided into two major parts: a modeling process, and a verification process. Viewing
this pair of processes as our artifact, we created two sets of success criteria: one for the
modeling process, and one for the verification process.

With that in mind, we briefly summarized the state of the art on four key topics: functional
safety, model-based system engineering, knowledge engineering, and automated reasoning.
We then examined the current research on functional safety automation in these areas.
We paid particular attention to Etz’s Flexible Safety Systems project, to which this thesis
is one of eight related thesis projects.

After the literature review, we began our own project by defining the industrial scenario
with which we would work: in our case, a pair of production rooms with robots, separated
by a removable wall. We then made a detailed examination of the technologies used for our
two main tasks: system modeling and automatic verification. In each of these chapters,
we ended by choosing the specific technologies we would use to create our process. With
everything decided, we presented our design artifact: a detailed step-by-step process.

We then began our actual technical work, creating a proof of concept in which we applied
our process to our example scenario. With positive results here, we evaluated the two
halves of our process according to the criteria we devised in Chapter 1, finding that our
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modeling process was “good” and our automated reasoning process “very good”. These
basic qualitative results now bring us here: what can we conclude?

First, we will review the identified short-comings of our solution, and hence identify open
questions remaining on the topic. We will then recast these as potential directions for
future work.

9.2 Open Questions
In our evaluations, we identified two overarching challenges: dependence on manual data
entry, and the lack of a well-developed standard ontology. In addition to these, we can look
back on our process and ask what steps introduced particular friction. We immediately
see that modeling visibility clashes with open-world-assumption reasoning in a serious
way: checking that there isn’t a wall presents a really awkward challenge, which we can
only solve with further dependence on correct data entry. State-based requirements also
required an extra layer of complexity. But, even so, while we explicitly modeled the
states, we do not have any explicit modeling of the transitions themselves: with more
complex state-based requirements, this could be a major problem. Finally, we can review
the high-level challenges and ask: is this practical? Does it scale? And, thinking back to
Sternudd, is it even possible for safety requirements to be made unambiguous? With all
of this is mind, we identify the following open questions:

1. Can we reduce or automate manual data entry?

2. What would have to happen for an ontology to reach de facto standard status?

3. How can spatial relationships and visibility be modeled in an ontology?

4. How can state machines be fully represented in an ontology?

5. Does our process scale to larger numbers of system components? To larger numbers
of requirements?

6. How, ultimately, should safety requirements be represented?

9.3 Further Work
These open questions point the way to several directions for future work. We introduce
each direction with reference to the open questions above.

9.3.1 Ontology-Based Digital Twin
Questions 1, 3, and 4 amount to: “how do we turn our industrial system into a knowledge-
based representation, without excessive manual labor?” We might imagine a digital twin
which both encompasses the full range of entities and relations in the knowledge model,
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and allows an engineer to visually explore the model to ensure correctness of entered
data. This would be almost a video game version of a factory, with a robust level editor.

9.3.2 Ontology-Based Safety Requirements
Question 6 is presented as a question, but is really quite loaded if we’re honest: the
advantages of representing safety requirements in a machine-readable way are obvious in
the context of automated reasoning and, hence, of reconfigurable systems. Developing an
ontology for safety requirements would make it possible for future safety requirements
to be precisely articulated, with a single source of truth grounded in a shared ontology.
This then essentially becomes the answer to Question 2: if safety standards are expressed
in a certain standardized ontology, this will become the backbone of a broader standard
for representing the industrial systems which must comply with them.

9.3.3 Real-Life Trial
Question 5 remains: does this approach to modeling and formal verification scale? The
obvious way to find out would be to choose a real-world working industrial system to
model and verify. This would answer the most important question of scale: does the
process scale up enough to be useful for something real?

9.4 Remarks
The implications of even these three directions of work are, upon reflection, enormous.
The history of human efforts to force the natural and human world to conform to “logic”
are fraught. Ambiguity and uncertainty are, after all, inescapable parts of the human
experience. On the other hand, technical systems can be made to operate with an
impressive degree of precision and well-defined behavior. But the border between the
technical and the human lies at the operator’s workstation, at the steering wheel, at the
edge of the conveyor belt. This is a space where the potential for rigor and the necessity
of uncertainty are unclear: a boundary of ambiguous ambiguity. In the past, scientific
efforts have focused on forcing the human to conform to the demands of the machine:
from Frederick Taylor’s time-motion studies to today’s workplace safety trainings. The
value the machine produces is recognized, while the values of the humans who use it are,
in the best circumstances, a demand to be compromised with.

Seen in this context, functional safety itself amounts to a quiet revolution: the needs of
the humans are first expressed, and then the technical system is designed. Moreover, with
an ontological approach, the technical system would have to “speak the same language”
as the human requirements. This reversal, if fully realized, would be a profound change
in relations between human and industry. I can only hope to see it happen!
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Appendix: Overview of
Generative AI Tools Used

I have used the Google Gemini 2.0 Flash large language model chatbot to help quickly
produce bibtex markup for references [39]. The generated code appears in the .bib file,
not in this paper. Typical examples of prompts:

Please provide a bibtex reference for this webpage:
https://www.w3.org/RDF/Metalog/docs/sw-easy
The Semantic Web Made Easy
W3C

and

Please provide a bibtex reference for yourself - that is, for
the Gemini 2.0 Flash tool

In each case, I have reviewed and often changed the Gemini output. The most common
changes were entering access dates for webpages and fixing random syntax errors such as
unclosed brackets.

I also used Gemini for an initial translation of my abstract into German, with the
following prompt, followed by my original English text:

Please translate the following abstract into German. Please use
a register appropriate for academic writing. And please
translate words in a way that makes sense in a systems
engineering context:

I then reviewed the output myself and had my wife and my advisor (both native speakers)
review it as well.
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List of Acronyms

MBSE Model-Based System Engineering

OWL the Web Ontology Language

SHACL the Shapes Constraint Language
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RDF the Resource Description Framework
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SWRL the Semantic Web Rule Language

SQWRL the Semantic Query-Enhanced Web Rule Language

DL Description Logics

SysML the Systems Modeling Language

SQL Structured Query Language
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MD the Machinery Directive

UML the Unified Modeling Language

W3C the World Wide Web Consortium

FOL First-Order Logic
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