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Abstract

This thesis explores two main tasks: (1) fine-tuning image captioning models for fashion
datasets and (2) evaluating different feature spaces for personalized fashion recommenda-
tions. We fine-tune state-of-the-art vision-language models—BLIP-2 and LLaVA—on two
fashion datasets, H&M and FACAD, to generate product descriptions. Our quantitative
and qualitative analyses show that fine-tuning can achieve performance levels comparable
to fully training a model (SRFC) specifically for generating “fashion captions”.

With our qualitative analysis of the captioning results, we take a deep dive into under-
standing the models’ limitations and identify what works well and what does not. We
find that working with datasets that have clearly identifiable visual cues for words, e.g.,
front pocket, can improve the fine-tuning process. The models struggled with non-visual
attributes (e.g., material composition, designer names), distinguishing fine-grained differ-
ences (e.g., satin vs. velvet), and handling partial or ambiguous product images. These
limitations highlight the need for dataset curation that emphasizes visible attributes.

For recommendations, we extract multimodal features (visual, textual, and combined)
and evaluate them using the VBPR recommendation algorithm on the H&M dataset.
Besides sophisticated models for feature embeddings such as ResNet50 (visual features)
or SentenceBERT (textual features), we use our, on the H&M dataset, fine-tuned BLIP-2
model to extract additional features, which we hypothesized to work better. Surprisingly,
textual embeddings performed better than visual and multimodal features with VBPR,
suggesting that text-based attributes provide better signals for recommendations than
image features, in this setup. However, overall performance across different feature spaces
remains similar, with ItemKNN outperforming VBPR results.

Our findings demonstrate that fine-tuning is an effective and simpler alternative to
complex reward-based training. Additionally, despite fashion being a visual domain,
textual descriptions resulted in the best recommendation performance. Future work
should focus on exploring the performance of already available models for fashion datasets
and refining datasets for better performance.
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CHAPTER 1
Introduction

1.1 Preface
The fashion industry has emerged as a compelling area of research not only because
of its economic impact but also because of the diverse range of challenges it confronts.
Within the context of online clothing purchases, a multitude of tasks are included, e.g.,
recommending matching or complementary items, image-based item retrieval, and more.

Recommendations are pivotal in improving the customer’s shopping experience by intu-
itively guiding shoppers towards items aligned with their preferences, fostering a more
engaging and personalized shopping journey. Better recommendations can also lead to
fewer returns, optimized purchases, better use of resources, and higher revenues. There is
a large variety of different algorithms and frameworks using data to enhance the shopping
experience for customers in an online setting [SMSC, DNR+, GQLD].

1.2 Motivation and Problem Setting
Navigating an online fashion shopping platform to locate a specific clothing item can
be a laborious endeavor, akin to a virtual treasure hunt. Amidst the vast array of
offerings, users often find themselves embarking on a time-intensive quest, scrolling
through numerous product listings, employing imprecise keyword searches, and toggling
filters in pursuit of that one specific item they have in mind. Recommending items based
on previous interactions that nearly match their expectations can help refine the options
until they arrive at the desired clothing item.

As fashion is a domain focused on the visual appearance of items, several papers proposed
an item recommendation based on extracted visual features [CSC+]. Still, there is
visual information that is easier expressed through words, e.g. style, cuts, and tailor
details. Additionally, well-written descriptions can assist visually impaired individuals in
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1. Introduction

navigating fashion items while shopping online. However, some websites do not provide
descriptions for all clothing items, or sometimes none at all. This gap poses a challenge,
specifically in generating textual descriptions for fashion items—a task known as fashion
captioning.

The fashion domain has not seen extensive research in image captioning, mainly because
of the scarcity of publicly accessible datasets and the constraints posed by existing
captioning models. These models are typically designed for natural images and exhibit
subpar performance when adapted to the fashion context.

However, in recent years two major datasets were released, one of them being the H&M
Personalized Fashion Recommendation dataset [LHR+]. This dataset was provided for a
kaggle challenge in February 2022. It includes information about 1,372,980 customers
on 105,542 articles with 31,788,324 transactions. Fashion items in this dataset include
attributes about their appearance, a detailed description, and an image.

The second dataset is called the fashion captioning dataset (FACAD) created by Yang
et al. [Yan] in the year 2020. The dataset originally consisted of 993K high-resolution
images (1560x2392) with descriptions having an average length of 21 words. It includes
78 categories, 990 attributes, and multiple images per item. FACAD was specifically
created to evaluate the performance of image captioning models on a fashion captioning
task [SCB+].

Using those datasets, we propose a methodology that covers the use case of generating a
description for a clothing item and then, recommending items using visual and textual
features extracted. Big fashion online platforms provide a large collection of product im-
ages and descriptions, making it interesting to utilize both visual and textual information
to enhance the accuracy and relevance of recommendations.

For the case of item descriptions, we will explore how well those can be generated
using pre-trained image captioning models and to what extent fine-tuning can improve
results (based on image captioning metrics). Using item descriptions as textual features
and corresponding clothing item images as visual features, we want to compare the
performance of using different feature spaces for recommendations: visual, textual, and
multimodal (visual and textual combined).

1.3 Research Questions
Through our literature review, we identified fashion captioning as an under-researched
area. With the rise of large language models (LLMs) with multimodal capabilities, this
presents an opportunity to explore the performance of pre-trained image captioning
models such as BLIP-2 [LLSH] on domain-specific datasets like FACAD and the H&M
dataset. Our goal is to compare the performance of these off-the-shelf models with models
specifically trained for fashion captioning, such as the one introduced by Yang et al.
[YZJ+]. This comparison is conducted in both, a zero-shot setting and after fine-tuning.
Based on this motivation, we define our first research question:
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1.4. Methodological Approach

RQ1: To what extent can fine-tuning improve the performance of off-the-shelf image
captioning models on domain-specific fashion datasets?

To answer this question, we use two recent fashion datasets: the H&M dataset published in
2022 and the FACAD dataset from 2020 (details in Chapter 3). We focus on open-source
models with multimodal capabilities (further details in Section 4.1). The phrase “to what
extent” in our research question refers to evaluating the performance of fine-tuned models
compared to a task-specific fashion captioning model like the one presented by Yang et
al. [YZJ+]. The evaluation is conducted using standard image captioning performance
metrics (presented in Section 2.1.3) as well as two additional metrics introduced by Yang
et al. (see Section 4.3). Furthermore, we conduct a qualitative analysis of the results
(see Section 5.1.3) to provide a deeper understanding of the models’ limitations that go
beyond quantitative results.

In addition, since each clothing item in the datasets includes both an image and a textual
description—and the H&M dataset was originally published for a recommendation
challenge—exploring multimodal fashion recommendation is a natural next step. After
fine-tuning the models for image captioning, we can leverage their feature embeddings
and employ feature extraction models to assess the performance of recommendation
systems using visual, textual, and multimodal (visual and textual) embeddings. This
leads to our second research question:

RQ2: Which feature embeddings (textual, visual, or multimodal) provide the best
recommendations?

For this research question, we use the H&M dataset, as FACAD does not include user-
item interactions. As a baseline, we define unpersonalized recommendation approaches,
including random recommendations and recommending the most popular items. We
use Visual Bayesian Personalized Ranking (VBPR), which allows us to experiment with
different feature spaces to answer RQ2. The results are then evaluated using the metrics
described in Section 2.2.1 to define the best working setting.

To give a richer context of the results, we additionally run state-of-the-art collaborative
filtering algorithms (see Section 4.4.2).

1.4 Methodological Approach
This thesis employs the Design Science Research Framework (DSRF) [HRM+] to develop
and evaluate artifacts in models and methods. The previous sections explained the
problem of specifically generating descriptive captions for fashion items and recommending
items based on different feature spaces. The relevance of the research lies in 1) generating
suitable item descriptions for fashion items and 2) improving recommendations using
better feature representations.

Following the DSRF approach, the artifacts developed in this thesis are models. We
demonstrate research quality by using open-source models and evaluating them with
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1. Introduction

sophisticated task-specific metrics. The evaluation process involves quantitative and
qualitative analysis of the image-captioning models, providing a thorough understanding
of their suitability for domain-specific applications.

The methodological approach of this thesis is divided into the following stages:

1. Literature Review and Tool Exploration
The first step involved a thorough review of the existing literature in two areas:
fashion image captioning and fashion recommendation systems. The objective
was to identify prior work related to domain-specific image captioning, fashion
recommendation methods using visual and textual features, and the usage of
multimodal data in fashion recommender systems. This stage also included an
exploration of existing frameworks, tools, and models. We reviewed various pre-
trained image captioning models and evaluated their usefulness for this project. We
also explored datasets like the H&M Personalized Fashion Recommendation dataset
[LHR+] and FACAD [Yan] to identify appropriate data sources for experiments.

2. Data Acquisition and Preprocessing
After identifying suitable datasets, the next step was to acquire and preprocess the
data. The H&M and FACAD datasets were used, including detailed descriptions
and images of clothing items. The FACAD dataset was provided in a preprocessed
format, including descriptions, processed images, and split datasets. The H&M
dataset was provided as an unprocessed dataset; the individual preprocessing steps
performed are explained in Section 3.2.

3. Pre-trained Model Evaluation for Captioning
Using the preprocessed data, we first evaluated the performance of existing image
captioning models, such as BLIP-2, in a domain-specific context. This step aimed to
determine how well general-purpose captioning models perform on fashion-related
data and whether these models can effectively generate relevant and descriptive
captions for fashion items.
The evaluation was conducted using standard image captioning metrics such as
BLEU, ROUGE, CIDEr, and METEOR (see Section 2.1.3) and additional metrics
described in Section 4.3. These metrics provided insight into the accuracy, fluency,
and coverage of the generated captions.

4. Model Fine-tuning for Improved Captioning
Based on the initial evaluations, we moved on to fine-tune the pre-trained models for
improved performance in the fashion domain. We also compared the performance
of the fine-tuned models on the FACAD dataset against the model specifically
trained for fashion captioning, presented by Yang et al. [YZJ+].
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5. Feature Extraction and Recommendations
For our recommendation task, we extracted feature representations from the fine-
tuned models trained on the H&M dataset. These features were then used to
generate recommendations, which we evaluated using NDCG and MAP (further
detailed in Section 2.2.1).
As baselines, we included random recommendations and a popularity-based ap-
proach that recommends the most frequently purchased item. Additionally, we
compared results to state-of-the-art collaborative filtering techniques based on item
and user similarity. We employed Visual Bayesian Personalized Ranking (VBPR),
a statistically-driven recommendation algorithm that leverages different feature
vectors to improve item recommendations.
The objective of this analysis was two-fold: first, to assess how different feature
representations influence the performance of the recommendation algorithm, and
second, to contextualize its effectiveness by comparing it to other recommendation
approaches. This allowed us to determine which feature space yielded the best
recommendation results.

1.5 Structure of the Work
Following the steps previously presented, we provide an overview of the structure of
this thesis and its chapters. We begin by presenting the state-of-the-art methods in
Chapter 2, covering both image captioning (2.1) and fashion recommendation systems
(2.2), including the metrics used for evaluation. In Chapter 3, we introduce the two
datasets used and show their differences. This is followed by Chapter 4, where we describe
the development of our solution in detail, including the selection of models for image
captioning, the fine-tuning process, additional evaluation metrics, and the methods used
for recommendation and feature extraction. The main contribution of this thesis is
presented in Chapter 5, where we report the results in relation to the research questions
introduced in this chapter. This section also includes multiple illustrative examples to
help understanding. Finally, in Chapter 6, we conclude with a summary of the work,
highlight our contributions, and discuss limitations and directions for future research.
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CHAPTER 2
State of the Art

This chapter provides an overview of state-of-the-art methods used for image captioning
(2.1.3). We present the general architecture of combining a visual encoder and a language
model to generate captions. Both parts can be individually combined and provide a
variety of options (see Figure 2.1). Then we present different image captioning datasets
(2.1.2) and their attributes. Finally, we explain the details of the metrics used for
evaluating the captions (2.1.3).

Finally, we give a comprehensive overview of fashion recommendation algorithms (2.2)
that include multimodal aspects as well as the metrics (2.2.1) used in this work for
evaluating the recommendations.

2.1 Image Captioning

2.1.1 Methodology

Image captioning is an interdisciplinary field that combines computer vision and natural
language processing. It focuses on teaching machines to understand images and generate
coherent textual descriptions. As the field is large and fast developing, several review
papers were published [GPM, YSR+, SCB+, HSSL, BA, BCE+].

In 2014, Sutskever et al. [SVL] introduced an encoder-decoder model framework, which
takes an original input sequence (such as an image, text, or video) and converts it into a
fixed-sized vector. Then, the decoder part of the model translates this vector into the
desired output sequence. This type of architecture is also known as Sequence-to-Sequence
architecture (or short Seq2Seq). Since then the common approach for image captioning
has involved using a combination of a visual encoder and a language model for generating
textual content (see summary of taxonomy in Figure 2.1).
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2. State of the Art

Figure 2.1: Overview of the image captioning task methodology and taxonomy of the
most relevant approaches. Source:[SCB+], page 2

Visual Encoding

Vinyals et al. [VTBE] enhanced the model from Sutskever et al. for image description
generation by using a convolutional neural network (CNN) for encoding the images (see
Figure 2.2a) and the decoder using a long short-term memory network (LSTM) for text
generation.

Because CNNs tend to lead to information loss due to excessive compression and lack of
granularity, the image descriptions would be general and capture the overall essence of
the image but not the details. To improve the granularity level of visual encoding, Xu et
al. [XBK+] tried to imitate the focusing mechanism of the human eye by incorporating
an additional spatial attention mechanism across the spatial grid produced by the
convolutional layer (see Figure 2.2b). Each word then reflects relevant regions of the
image. Similar is the approach presented by Dai et al. [DYL] using a 2D activation
map instead of 1D global feature vectors to connect spatial information directly to the
language model. The principle of additive attention is to use weights to emphasize
important parts of a sequence. Initially designed to model relationships between two
sequences, this concept was adapted to connect visual representations with hidden states
of a language model.

From a top-down perspective, additive attention enables the language model to generate
the next word by focusing on a predefined grid of features, which remains unaffected
by the actual content of the image. Region-based attention proposed by Anderson et
al. [AHB+] improves this by preselecting regions based on, e.g., proposed regions by an
image detector model. Those are then used to create feature vectors for the attention
mechanism (see Figure 2.2c).

A different approach is to use graphs to encode image regions and their relationships (see

8



2.1. Image Captioning

Figure 2.2: Different methods of visual encoding: (a) CNN to extract global fea-
tures, (b) grid-based attention mechanism, and (c) region-based attention mechanism.
Source:[SCB+], page 3

Figure 2.3a). Yao et al. [YPLM] first presented the use of a graph convolutional network
(GCN) to combine semantic and spatial relationships between objects. Compared to
neural networks, graph neural networks can handle non-euclidean data, e.g., graph-
based relationships between objects. Using a classifier that was previously trained on
Visual Genome [KZG+] the interactions between object pairs are predicted. The spatial
relationship is extracted from geometry measures, e.g., i.e. intersection over union,
relative distance, and angle between bounding boxes of object pairs.

What is seen as the breakthrough in this area, is the 2017 proposed transformer archi-
tecture by Vaswani et al. [VSP+] that further developed the concept of the attentive
mechanism using self-attention. Self-attention establishes connections between all ele-
ments within a set. Residual connections can be used in this mechanism to repeatedly
improve the representation of the same elements, as shown in Figure 2.3b. The trans-
former architecture provided a foundational element for other breakthroughs in Natural
Language Processing (NLP) but has also found significant applications in Computer
Vision tasks.

One of the early applications of self-attention was introduced by Yang et al.[YZC], who
employed a self-attentive module to capture relationships between features extracted
by an object detector. Building upon this idea, Li et al.[LZLY] proposed a model that
integrates both region-based features and semantic features obtained from an external
tagger. In both approaches, self-attention and feed-forward layers are used to encode the
representations.

Newer papers [TCD+, DBK+] propose skipping convolutional layers completely and using
image patches directly as input for transformer-like architectures.

Language Models

Given the sequential structure of language, RNNs are a natural choice for sentence
generation, with LSTM [HS] being the most widely adopted variant for language modeling.
LSTM, compared to the traditional RNNs for sequential data, can better preserve
information of long-term sequences tackling the vanishing/exploding gradient problem
[Hoc]. In image captioning, the core idea is to replace textual input with a visual encoding
of an image, allowing the model to generate descriptive sentences. Given a sequence of
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2. State of the Art

Figure 2.3: Different methods of visual encoding: (a) graph-based, and (b) self-attention-
based. Source:[SCB+], page 4

Figure 2.4: Different models based on LSTM architecture: (a) Using extracted visual
features as a hidden state for one single LSTM model (b) LSTM-based model enhanced
by adding attention, proposed by Xu et al. [XBK+] (c) adding visual sentinel as learnable
vector as proposed by Lu et al. [LXPS] (d) stacked two-layer LSTM with attention
presented by Anderson et al. [AHB+]. In all figures, X represents previously extracted
image features by e.g. a CNN or object detector. Source:[SCB+], page 6

n words and a visual representation X of the image, the model assigns a probability
P (y1, y2, . . . yn | X) to the sequence as:

P (y1, y2, . . . yn | X) =
n�

i=1
P (yi | y1, y2, . . . , yi−1, X)

Vinyals et al. [VTBE] introduced one of the simplest LSTM-based decoder architectures,
which consists of a single-layer LSTM. Figure 2.4a shows the main idea of using visual
features extracted by, e.g., a CNN and providing them as the initial hidden state to the
LSTM.

Building on efforts to enhance the visual encoding of images, Xu et al. [XBK+] improved
the LSTM-based model by incorporating an attention mechanism. As shown in Fig-
ure 2.4b, this mechanism uses the previous hidden state to attend over the visual features
X , resulting in a context vector. This context vector is then passed to a Multilayer
Perceptron (MLP), which is used to predict the next word. The MLP, a fully connected
layer followed by a softmax function, outputs a vector with the same dimensionality as
the vocabulary, assigning a probability to each possible word.

10



2.1. Image Captioning

Figure 2.5: Simplified transformer architecture. Source:[SCB+], page 7

Lu et al. [LXPS] enhanced spatial image features by incorporating a supplementary
learnable vector, called visual sentinel. This vector can be attended to by the decoder
instead of visual features when generating “non-visual” words (such as “the”, “of”, and
“on”), where visual features are unnecessary (see Figure 2.4c). The visual sentinel vector
is derived from the previous hidden state and the previously generated word. Combined
with the image features, it is used to compute the context vector.

LSTM layers can be stacked to improve the model’s ability to capture higher-order
relations. Donahue et al. [DHR+] introduced the first two-layer LSTM architecture, in
which the hidden states of the first layer serve as input to the second layer. Similar to the
single-layer LSTM, this model was later improved by adding visual attention [AHB+].

In Figure 2.4d, the first LSTM layer functions as a top-down visual attention module. It
considers the previously generated word, the prior hidden state, and the mean-pooled
image features. Using an additive attention mechanism, it computes a probability
distribution over the image regions. The resulting attended image feature vector is then
passed to the second LSTM layer, where it is combined with the hidden state from the
first layer to generate a probability distribution over the vocabulary.

Aneja et al. [ADS] proposed an unconventional approach by feeding a combination
of global image feature vectors and word embeddings into a CNN. To prevent the
model from accessing information from future word tokens, right-masked convolutions
are employed—ensuring that only past and present context is used during prediction.
Although this method allows for parallel training, CNN-based language models have not
gained widespread adoption, primarily due to their subpar performance and the growing
dominance of transformer-based architectures.

As mentioned previously, the transformer-based architecture presented by Vaswani et al.

11



2. State of the Art

[VSP+] and its various adaptations (cited 97,372 times since 20171) have revolutionized
the field of Natural Language Processing (NLP) being the building block for important
developments in NLP, like BERT [DCLT] and GPT [RN]. Transformers are based on
an encoder and decoder structure (see Figure 2.5). Each decoder layer applies masked
self-attention to the input words and uses cross-attention to capture the relationships
between the image features and the words.

Vaswani et al. [VSP+] defined the terms query, key and value analogous to retrieval
systems. The query (the sentence) will be mapped against a set of keys (image features)
and associated with values (also image features). The similarity between query and key
returns weights that are used to weight the corresponding value vectors. This gives the
formal definition of attention to the scaled dot-product of a set of nq query vectors Q, a
set of key vectors K, and a set of value vectors V , both containing nk elements coming
together as the following formula

Attention (Q, K, V ) = softmax
�

QKT

√
dk


V

In this case, dk is a scaling factor that depends on the dimension of the key vectors. As
this is computed individually for each word and the order of words is added via positional
encoding this allows transformers to be parallelized.

Other works, leveraging self-attention for encoding visual features, have demonstrated
impressive performance, using vision-and-language pre-training [LBPL, TB] and early-
fusion strategies [LYL+, ZPZ+]. Vision-and-language pre-training used by, e.g., CLIP
[RKH+] are based on learning a text encoder and an image encoder jointly. The goal
is to minimize the distance between the embeddings of matching image-text pairs and
maximize it for non-matching image-text pairs. On the other hand, early fusion combines
both image and text embedding into a multimodal representation. Using self-attention,
semantic alignments can be learned, and inter-model correlations can be leveraged.

Large Language Models with Multimodal Capabilities

Based on the concept of Transformers (Figure 2.5 and Section 2.1.1), the term Large
Language Models (LLMs) evolved, describing powerful artificial intelligence models, like
GPT-3 [BMR+], that utilize attention mechanisms and vast amounts of pre-existing text
data to understand and generate human-like language across a wide range of tasks.

Inspired by natural intelligence that is not limited to a single modality, additional modal-
ities were incorporated into LLMs2. In the last years, major research labs introduced
various LLMs with multimodal capabilities, e.g. DeepMind’s Flamingo [ADL+], Sales-
force’s BLIP [LLXH], Microsoft’s KOSMOS-1 [HDW+], Google’s PaLM-E [DXS+], and

1Google Scholar article, last accessed 20.11.2023, 13:49
2https://huyenchip.com/2023/10/10/multimodal.html, last accessed 29.03.2025, 11:39
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2.1. Image Captioning

Tencent’s Macaw-LLM [TC]. Chatbots such as ChatGPT [BMR+, Ope] and Gemini [SP]
are also able to understand and use different types of input, such as text and images.

Multimodal can describe multiple scenarios:

• Input and output are of different modalities (e.g. text-to-image, image-to-text)

• Inputs are multimodal (e.g. a system that can process both text and images)

• Outputs are multimodal (e.g. a system that can generate both text and images)

In the case of image captioning as covered in Section 2.1 the initial framework has images
encoded and then decoded into text. Another method can also be giving images, as well
as a prompt (an explicit instruction or question), to the model to specify a task, e.g.,
identifying the style of the dress depicted in this image.

On a high level, a multimodal system comprises the following key elements:

1. An encoder dedicated to each data modality is responsible for producing embeddings
specific to the data of that modality.

2. Mechanisms for aligning embeddings from diverse modalities into a unified multi-
modal embedding space.

3. In the case of generative models, the inclusion of a language model to create text
responses (or a vision model to create images). Given that inputs can encompass
both textual and visual elements, new techniques are essential to enable the language
model to base its responses not only on text but also on visual inputs.

Ideally, many of these components should be pre-trained and reusable to improve efficiency.

Fashion Captioning

Image captioning is a computer vision task that involves generating descriptive textual
explanations for the content of an image using machine learning. The task of fashion
captioning was first mentioned by Yang et al. [YZJ+]. Although both tasks cover
generating image descriptions, fashion captioning is done specifically for fashion items
and differs from the “conventional” image captioning problem in the following ways
[YZJ+]:

• Fashion captioning focuses on describing fine-grained attributes of a single item,
while traditional image captioning typically highlights the entities within an image
and their relationships—for example, a person wearing a dress.

13
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Table 2.1: Results of current state-of-the-art models on the FACAD test split. Source:
[MBM+], page 10

B-1 B-4 M R C mAP
Show, Attend and Tell [XBK+] - 4.3 9.5 19.1 35.2 0.056
Up-Down [AHB+] - 4.4 9.7 19.6 36.9 0.058
LBPF [QDZL] - 4.5 9.5 19.1 36.4 0.055
ORT [HKBS] - 4.2 10.2 19.9 36.7 0.061
SRFC [YZJ+] - 4.4 9.8 20.2 35.6 0.058
SCST [RMM+] - 5.6 11.8 22.0 39.7 0.080
SRFC (RL-fine-tuned) [YZJ+] - 6.8 13.2 24.2 42.1 0.095
Knowledge Retrieval based [MBM+] 27.3 10.6 11.5 22.3 84.5 0.248
Transformer 24.5 6.8 10.1 19.7 53.0 0.238
M2 Transformer [CSBC] 24.7 6.8 10.4 19.9 53.3 0.237
CaMEL [BSC+] 25.0 7.0 10.7 20.4 55.0 0.241

• For fashion items the descriptions tend to be long due to “fancy” expressions and
detailed descriptions. The average caption length in the Fashion Captioning Dataset
provided by Yang et al. is 21 compared to the average caption length in MS COCO
[LMB+] which is 10.4 words (see Table 2.2).

• Descriptions for fashion items tend to be “more enchanting” to sound more at-
tractive to the customer. Sentences like “so-simply yet so-chic” are preferred over
straightforward words like “plain” or “undecorated” used in MS COCO.

For the task of fashion captioning, Yang et al. [YZJ+] proposed two reward functions,
one related to the generation of single attributes and one that covers the semantics of
the entire sentence, to train an LSTM model for captioning fashion items. Additionally,
they created the biggest existing fashion-specific dataset for image captioning tasks, the
fashion captioning dataset (FACAD). A more recent paper by Moratelli and Barraco et
al. [MBM+] improved those results with a transformer-based captioning model with the
integration of external textual memory that can be accessed through k-nearest neighbor
(kNN) searches.

Using the performance metrics described in Section 2.1.3 the authors of [YZJ+] and
[MBM+] compared their models to the current state-of-the-art models using the test
dataset from FACAD. The results can be seen in Table 2.1, where models are grouped by
(i) models trained with cross-entropy loss, (ii) models trained with reinforcement learning,
(iii) transformer-based models.

2.1.2 Datasets
Generally, the trend and focus of most papers is to improve the general architecture
of image captioning models and to tweak training and data preprocessing methods to
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improve performance. This is done using popular generic datasets such as MS COCO
[LMB+, CFL+] or Flickr [YLHH, HYH]. This is also because otherwise, it is difficult to
compare performance between models, and the MS COCO dataset provides one of the
largest collections of image and caption pairs (330K images with 5 captions per image,
see Table 2.2).

The initial MS COCO dataset contained more than 120,00 images of complex scenes with
people, animals, and common everyday objects. For easier comparability, an official split
into training (82,783 images), validation (40,504), and test set (40,775) was provided.
Nevertheless, most of the literature used a split definition provided by Karpathy et al.
[KFF] which proposes using 5,000 of the original validation set for validation and 5,000
for test and the rest for training. Currently3 the MS COCO dataset contains 330K
images and different splits were provided over the years 4.

The Flickr datasets (31K and 8K, respectively called Flickr30K and Flickr8K) were used
by the early image captioning architectures [KFF, DHR+] and consist of images collected
from the Flickr website.

Only a limited number of works focus on domain-specific image captioning tasks, such
as CUB-200 (birds) [WBM+], Oxford-102 (flowers) [NZ], or FACAD (fashion) [YZJ+].
These datasets address both visual challenges—such as variations in image types and
styles—and semantic challenges. As discussed in Section 2.1.1, such challenges include
the use of domain-specific vocabulary and stylistic expressions. This distinction is clearly
visible when examining the 50 most frequently used words in the datasets (see Figure 2.6).
While the fashion captioning dataset emphasizes clothing items and descriptive adjectives,
MS COCO is centered around general-purpose image descriptions.

Another example of semantic challenges is the BreakingNews [RYMNM] and GoodNews
[BGRK] datasets. Those promote the utilization of a more extensive vocabulary which is
attributed to the fact that their images, sourced from news articles, are accompanied
by detailed captions authored by expert journalists. This can be seen, for example, by
the average caption length of BreakingNews (see Table 2.2) being the longest with 28.1
words. Other fashion datasets are mentioned in [YZJ+] but are targeted towards different
tasks, e.g., item retrieval, segmentation, or fashion classification. FACAD was specifically
created for the fashion captioning task containing 993K high-resolution images with 6 to
7 images per clothing item which also resembles the online shopping environment.

2.1.3 Evaluation Metrics

The following section describes state-of-the-art evaluation metrics for generated text.
They are chronologically ordered from the oldest metric, BLEU (2002), to the newest
one, SPICE (2016).

3https://cocodataset.org/#home, last accessed 20.11.2023, 13:49
4https://cocodataset.org/#download, last accessed 13.03.2025, 14:57
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Figure 2.6: Two word clouds representing the 50 most used visual words in the image
captions from MS COCO (red) and FACAD (blue). Source:[SCB+], page 10

Table 2.2: Examples of different popular image captioning datasets and domain-specific
datasets.

Domain Nb. Images Nb. Caps
(per Image) Vocab Size Nb. Words

(per Cap.)
COCO[LMB+] Generic 330K 5 27K 10.5
Flickr30K[YLHH] Generic 31K 5 18K 12.4
Flickr8K[HYH] Generic 8K 5 8K 10.9
CUB-200[WBM+] Birds 12K 10 6K 15.2
Oxford-102[NZ] Flowers 8K 10 5K 14.1
FACAD[YZJ+] Fashion 130K 1 17K 21.0
BreakingNews[RYMNM] News 115K 1 85K 28.1
GoodNews[BGRK] News 466K 1 192K 18.2

BLEU

Bilingual Evaluation Understudy (BLEU)5 [PRWZ] is a metric to evaluate machine
translation systems. It is based on modified n-gram precision and best match length.
N-gram describes n consecutive words in a sentence. Precision is a metric used to measure
the number of words that overlap in the candidate and the reference sentence.

To avoid inflating scores due to repeated words, BLEU uses modified n-gram precision,
which matches each n-gram only once in the candidate sentence. The n-gram precision
scores are then combined using their geometric mean. This approach accounts for the fact
that precision decreases exponentially as n increases. Logarithmic averaging is applied to

5https://www1.cs.columbia.edu/nlp/sgd/bleu.pdf, last accessed 29.03.2025, 11:51
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represent the scores more fairly:

Precision = exp
�

N�
n=1

wn log pn


, where wn = 1/n

Here, pn denotes the modified precision for n-grams up to length N , and wn are positive
weights summing to one. This mechanism inherently penalizes sentences longer than their
reference by considering each n-gram only once. Additionally, weights can be adjusted to
prioritize specific n-gram overlaps if desired.

To prevent candidates from being excessively short, BLEU introduces a brevity penalty.
This penalty is set to 1.0 when the candidate text matches the reference length, referred
to as the “best match length”. In the original paper, the reference length r is calculated
for a corpus by summing the best match lengths for each candidate sentence. The brevity
penalty is then computed as a decaying exponential of r/c, where c is the total length of
the candidate translations in the corpus.

Brevity Penalty =
�

1 if c > r

e(1−r/c) if c ≤ r

Then both values are combined into one score BLEU = BP · Precision, which ranges
from 0 to 1. Only sentences that are identical to the reference sentence achieve a score of
1. Generally, we can interpret the BLEU score as how similar the reference sentences
and the generated sentences are based on the respective n-grams.

The BLEU score is a widely used metric because it is quick to calculate and easy to
understand. Still, it has been criticized for its weaknesses. It does not consider the similar
meaning of words or synonyms. When computing the score those words are marked as
incorrect. It also does not consider variations of the same word, e.g. “run” and “running”.
Irrelevant filler words, e.g., “an”, “the”, etc., are penalized equally to important words
that contain meaning. Lastly, the change of order in words that would change the content
of the sentence completely could still result in a high score, e.g., “The cat eats the pizza”
vs. “The pizza eats the cat”.

ROUGE

Recall Oriented Understudy for Gisting Evaluation (ROUGE) [Lina] is based on the
Recall, Precision, and the F1-Score of unigrams and n-grams. There are different nuances
to the ROUGE metric, e.g., ROUGE-1 (unigrams), ROUGE-2 (bigrams), ROUGE-N
(overlap of n-grams), and more. We will use the ROUGE-L metric which focuses on the
longest common subsequence (LCS) of words in both sentences.

Incorporating LCS within the context of evaluating captions involves perceiving a
generated sentence as a sequential arrangement of words. The underlying concept
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revolves around the notion that an increased length of the LCS shared by two distinct
sentences corresponds to a heightened level of similarity between the two sentences. In
this regard, we introduce the application of an LCS-centered F-measure to measure the
degree of similarity between two sentences, denoted as X, Y , r, and c. X, representative
of a reference sentence with a length of r, and Y , the candidate sentence having a length
of c. LCS(X, Y ) represents the length of the longest common subsequence between X
and Y . The ROUGE-L is calculated as follows:

Rlcs = LCS(X, Y )
r

Plcs = LCS(X, Y )
c

Flcs =
�
1 + β2


RlcsPlcs

Rlcs + β2Plcs

The beta factor controls the relative weight assigned to recall and precision:

• When β > 1, recall (RLCS) is given greater importance than precision (PLCS).

• When β < 1, precision is prioritized over recall.

• When β = 1, recall and precision are weighted equally, resulting in the balanced
F-measure.

The implementation we use sets β to 1.2.

ROUGE-L captures sentence-level structure effectively but is limited by its reliance on
sequential word order, which can overlook alternative word arrangements in longer or
more flexible sentences — naturally, the values for ROUGE-L range between 0 and 1.

METEOR

The Metric for Evaluation for Translation with Explicit Ordering (METEOR) [DL]
employs a weighted F-score that considers the matching of individual words along with a
penalty mechanism to address inaccuracies in word order.

Initially, the objective is to match each word in the candidate sentence to a word in the
reference sentence. This is achieved by first examining exact matches, then exploring
matches after applying Porter stemming [Por], then utilizing synonymy from WordNet6

and lastly, match phrases if they are listed as paraphrases in a language appropriate
paraphrase table (see [DL], 3.2). These approaches create so-called “alignments” (for
example, see Figure 2.7).

6https://wordnet.princeton.edu/, last accessed 13.03.2025, 15:09
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(a) Alignment A (b) Alignment B

Figure 2.7: Example of possible alignments for the reference sentence “the cat sat on the
mat” and the candidate sentence “on the mat sat the cat”. Source: [Wik]

Once all possible alignments are established, the final alignment is determined as the
largest subset of all matches that satisfies the following criteria, listed in order of
importance:

1. Ensure that each word in both sentences is aligned to at most one word.

2. Maximize the total number of words covered across both sentences.

3. Minimize the number of chunks, where a chunk is defined as a sequence of matches
that are contiguous and identically ordered in both sentences.

4. Minimize the sum of absolute differences between the starting indices of matched
words in the two sentences. Looking back at our example in Figure 2.7, this means
that alignment A is preferred over alignment B because the sum of the absolute
difference between the starting indices in the sentences is minimized. In the case of
ties, prioritize aligning phrases that occur in similar positions within both sentences.

Once this alignment is established, the number of mapped unigrams between the two
texts is denoted as m. Subsequently, precision and recall are computed as ratios of m over
the lengths of the candidate c and reference r sentence, respectively. Fmean is calculated
as

Recall = m

r

Precision = m

c

Fmean = P · R

α · P + (1 − α) · R

To account for the word order in the candidate, we introduce a penalty function as
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Pen = γ


ch

m

β

, where 0 ≤ γ ≤ 1

In this context, ch represents the number of matching chunks, and m is the number of
overall matches. Consequently, when a majority of matches are consecutive, the count of
chunks decreases, resulting in a reduction in the penalty. The parameters α, β, and γ are
tuned to maximize correlation with human judgment in a certain language. Ultimately,
the METEOR score is determined as

Score = (1 − Pen) · Fmean , where 0 ≤ Score ≤ 1

Our captions are in English; we, therefore, use the setting from the original paper [DL]
for the English language, setting α to 0.85, β to 0.2, and γ to 0.6. As METEOR is based
on Recall and Precision in ranges between 0 and 1.

METEOR offers a more comprehensive evaluation of translation quality compared to
metrics like BLEU or ROUGE, as it considers factors such as recall, stemming, synonym
matching, and word order, enabling it to better capture fluency and semantic similarity.

Additionally, its strong correlation with human judgment highlights its effectiveness
in evaluating machine translation tasks (and might directly relate to comparing image
captions). However, METEOR’s algorithm is computationally intensive and complex,
which can make it slower and more resource-demanding than simpler metrics. The
weights assigned to various measures may not always align with the desired evaluation
criteria, potentially affecting its representativeness for specific tasks.

CIDEr

The Consensus-based Image Description Evaluation (CIDEr) [VZP] is based on term
frequency-inverse document frequency (TF–IDF) computation. Written as a formula, we
define Ω as the vocabulary of all n-grams, and I is the set of all images in the dataset.
The goal is to evaluate how well a candidate sentence ci matches a set of image captions
Si = {si1, ..., sim}. The number of times a n-gram ωk occurs in a reference sentence sij is
denoted by hk(sik) or hk(ci) for the candidate sentence ci. The TF-IDF weighting gk(sij)
for each n-gram ωk is computed using:

gk (sij) = hk (sij)�
ωl∈Ω hl (sij) log

 |I|�
Ip∈I min

�
1,

�
q hk (spq)




The first term in this equation measures the term frequency (TF) and the second
term measures the rarity based on the inverse document frequency (IDF). TF tends
to assign greater importance to n-grams that are frequently present in the reference
sentence describing an image. In contrast, IDF diminishes the significance of n-grams
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that commonly appear across all images in the dataset. Essentially, IDF offers a metric
for assessing word saliency by reducing the weight of popular words that are likely to
convey less visual information. The computation of IDF involves taking the logarithm of
the ratio of the total number of images in the dataset |I| to the number of images where
the specific n-gram ωk occurs in any of their reference sentences.

The computation of CIDErn score for n-grams of length n involves determining the
average cosine similarity between the candidate sentence and the reference sentences.
This calculation takes into consideration both precision and recall:

CIDErn (ci, Si) = 1
m

�
j

gn (ci) · gn (sij)
∥gn (ci)∥ ∥gn (sij)∥

where gn(ci) is a vector formed by gk(ci) corresponding to all n-grams of length n, and
∥gn(ci)∥ is the magnitude of the vector gn(ci). Similarly, for gn(sij).

To combine short n-grams with n-grams of higher order which capture richer semantics
as well as grammatical properties, the scores are combined by a weighted sum which
results in the final score:

CIDEr (ci, Si) =
N�

n=1
wn CIDErn (ci, Si)

In some cases, the basic CIDEr metric produces higher scores when words of higher
confidence are repeated over long sentences. The authors introduce a Gaussian penalty
based on the difference between candidate and reference sentence lengths to reduce this
effect. The authors use σ = 6.

Penalty = e−(Lengthhyp−Lengthref)2

2σ2

The sentence length penalty can be manipulated by repeatedly using confident words
or phrases to reach the target sentence length. To address this, the authors introduce
clipping to the n-gram counts in the CIDEr numerator. Specifically, for each n-gram, the
number of occurrences in the candidate is limited to match the number in the reference.
This discourages excessive repetition of n-grams beyond their occurrence in the reference
sentence.

The CIDEr Score has by nature, a range of 0 to 1, as it is based on the cosine similarity
of positive vectors. The authors multiply the score by 10. Shifting the values to a range
of 0 to 10. The authors of Yang et al. [YZJ+] and Moratelli et al. [MBM+] proceed to
additionally multiply final values with 100, leading to a final range of 0 to 1000. We also
implemented this approach to maintain comparability across experiments.
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Because CIDEr is based on the consensus using multiple reference captions, it is used
with datasets with more than 1 image caption per image, e.g., PASCAL-50S [VZP] and
ABSTRACT-50S [VZP], which both have 50 captions per image.

SPICE

Semantic Propositional Image Caption Evaluation (SPICE) [AFJG] is the newest metric
compared to the previously presented. The original paper explained that the previous
metrics primarily focus on n-gram overlap, which can lead to sentences with a high
score but two very different meanings. They propose an approach where a graph-based
semantic representation is created for an image called a scene graph. The scene graph
directly represents the objects, attributes, and relationships present in image captions.
This representation removes many of the complexities and unique language patterns
found in natural language, simplifying the visual information analysis.

To create the scene graph a dependency parser [KM] that has been pre-trained on a
vast dataset is employed to establish the syntactic relationships among words within the
caption. Then they use a rule-based system [SKC+] to map from the dependency trees
to scene graphs. The metric is calculated using candidate and reference scene graphs,
as well as an F-score based on the intersection of logical tuples representing semantic
statements within the scene graphs.

2.2 Fashion Item Recommendation
In the context of fashion, recommendation systems play a crucial role in helping users
navigate large item collections and discover relevant products. Unlike traditional recom-
mendation tasks, fashion recommendation is inherently multimodal, relying on visual
content, textual descriptions, and structured metadata [DNR+]. The combination of
these modalities and their methods allows for a richer understanding of items and user
preferences, addressing challenges such as subjective style perception [HG, BHV] and
dynamic fashion trends [MMH+, MBS]. The primary goal of recommendation systems is
to present users with relevant items by predicting their preferences and ranking these
items in order of relevance.

He et al. [HMb] proposed Visual Bayesian Personalized Ranking (VBPR). Bayesian
Personalized Ranking is a recommendation algorithm that utilizes Bayesian inference to
estimate the ranking preferences of users for items, enabling personalized recommendations
based on the user’s historical interactions. VPBR extends it by incorporating a content-
based preference factor which is based on the visual signal of an item. A pre-trained
CNN is used to extract the latent feature. Kang et al. [KFWM] extend this idea to using
a full end-to-end trained model instead of a pre-trained CNN. He and McAuley [HMa]
combined the VBPR with seasonality and temporal changes.

While VBPR has proven to be useful, it often learns an item’s visual qualities based on
its category rather than its specific style (such as informal, aesthetic, or formal). To
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connect clothing items to a certain style, labeled data is needed. Liu et al. [LWW]
presented a way to learn the style of items by using user-item matrices to model the
style as the difference between item and category. User-item matrices are commonly
used in recommendation systems and collaborative filtering techniques to represent the
interactions or preferences of users for various items.

Previously mentioned approaches [HMb, HMa, KFWM, LWW] combine two main com-
ponents for recommendation: visual features of fashion items and user-item preference
signals derived from implicit or explicit feedback. These methods extend traditional
collaborative filtering by incorporating visual information.

In contrast, traditional item-item [LSY] collaborative filtering determines item similarity
based on historical user interactions. The core idea is that if two items are frequently
co-interacted with by the same users, they are likely to be similar or associated in some
way. The similarity is then quantified using measures such as cosine similarity or Pearson
correlation coefficient.

Several papers presented algorithms that are able to detect visual information (sleeve
length, color, pattern) from clothing photographs [YR, YLL, YKB]. Still, fashion items
do not only benefit from visual features but also from textual information provided
in the description, e.g., material used, cut, and more. Laenen et al. [LM] propose an
attention-based fusion method for outfit recommendation which fuses the information in
the product image and description focusing on outfit recommendation.

2.2.1 Evaluation Metrics
To assess the performance of recommendation systems, one measures the relevance and
ranking quality of recommended items. Two commonly used metrics are Normalized
Discounted Cumulative Gain (NDCG) and Mean Average Precision (MAP). Both NDCG
and MAP offer valuable insights into recommendation performance, with NDCG focusing
on the ranking order and MAP emphasizing precision at relevant positions.

Normalized Discounted Cumulative Gain (NDCG)

Normalized Discounted Cumulative Gain (NDCG) [JK] is a ranking-based evaluation
metric that takes into account the position of relevant items in the ranked list. The
Discounted Cumulative Gain (DCG) at rank k is computed as:

DCG@k =
k�

i=1

2reli − 1
log2(i + 1)

Here, reli denotes the relevance score of the item at position i. NDCG can handle both
binary relevance (relevant vs. non-relevant) and graded relevance (e.g., highly relevant,
moderately relevant, irrelevant). In the case of binary relevance, the relevance score is
typically set to 1 for relevant items and 0 for non-relevant items, which simplifies the
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Discounted Cumulative Gain (DCG) calculation. The DCG value is then normalized by
the Ideal DCG (IDCG), which represents the maximum possible DCG for the given list:

NDCG@k = DCG@k
IDCG@k

NDCG ranges from 0 to 1, where a value closer to 1 indicates a more accurate ranking
with relevant items appearing at the top of the list.

Mean Average Precision (MAP)

Mean Average Precision (MAP) [BV] is a precision-based evaluation metric that measures
the overall precision of a recommendation system across multiple queries or users. It
is well-suited for tasks with binary relevance labels (i.e., relevant or not relevant). The
Average Precision (AP) for a single user is calculated as the mean of the precision scores
at each rank where a relevant item appears:

AP = 1
m

n�
k=1

P (k) · rel(k)

where P (k) is the precision at position k, rel(k) is an indicator function that equals 1 if
the item at position k is relevant, and m is the total number of relevant items. MAP is
obtained by averaging the AP over all users:

MAP = 1
|U |

�
u∈U

APu

MAP also ranges between 0 and 1, with higher values indicating better overall precision
and recommendation performance. It provides an aggregated measure of ranking qual-
ity by rewarding systems that consistently rank relevant items higher across multiple
queries.
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CHAPTER 3
Data

In this chapter, we present the two datasets used in this thesis: the H&M dataset, released
as part of a Kaggle challenge in February 2022, and the Fashion Captioning Dataset
(FACAD)1, created by Yang et al. [YZJ+].

For FACAD (3.1), we describe the procedure used by the authors to extract attributes and
categories. In contrast, the H&M dataset provides predefined categories, while attributes
were manually extracted following the procedure from Yang et al. (see Section 3.2 for
details). Finally, we explore the transactional data of the H&M dataset and outline the
procedure used to split it into training and test sets.

In Section 3.3 we highlight the differences between the two datasets for the fashion
captioning task.

3.1 FACAD
We already presented the dataset in Section 2.1.2 but we will cover details here.

The dataset contains 993K images and 130K captions that were split into 794K (∼80%)
image-description pairs for training, 99K (∼10%) for validation, and the remaining 100K
(∼10%) for testing.

However, the dataset that is currently provided by the authors has a different distribution,
with 888,293 pairs designated for training, 19,915 for validation, and 101,225 for testing
(a total of 1,009,463 samples). As per the authors, this was done so that validation does
not take as long2. Therefore the charts in Figure 3.1 do not represent the dataset used
in this thesis anymore, but they still give an idea about the general distribution of the

1https://github.com/xuewyang/Fashion_Captioning, last accessed 13.03.2025, 15:40
2https://github.com/xuewyang/Fashion_Captioning/issues/5, last accessed 13.03.2025,

15:40
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3. Data

(a) Number of items in the top-20 categories of the FACAD dataset.

(b) Number of items in the top-30 attributes of the FACAD dataset.

Figure 3.1: Distributions of the categories and attributes of the FACAD dataset. Source:
[Yan], page 5

dataset. It should be mentioned, that the authors do not explicitly say if the plots show
train data or the whole dataset.

On average, each clothing item has 6∼7 images, and the authors reported sizes of
1560x2392, which, to our best knowledge, cannot be recreated anymore as the images
provided by the authors are rescaled to 256x256, and the image URLs provided lead to
thumbnails of the images of sizes 60x90.

The dataset includes 78 categories, most of which are upper garments, e.g., tee, top, and
jacket (see Figure 3.1a). The authors extracted the categories by taking the last word of
the item title and manually selecting, filtering, and merging similar categories. Then,
only categories were kept that contained over 200 items.

The authors extracted the attributes from the item’s title, description, and metadata.
Specifically, nouns and adjectives were extracted from the title using the Stanford Parser
[SBMN], and a word was selected as an attribute if it also appeared in both the caption
and metadata.

To ensure that captions were clean, the descriptions were tokenized using the NLTK
tokenizer, and non-alphanumeric characters were removed. Additionally, all caption
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words were converted to lowercase. Although not specifically mentioned in the paper,
the attributes were lemmatized, and words that were connected by hyphens were split,
e.g., t-shirt turns into t and shirt and words like sleeves are lemmatized to sleeve.

This approach initially identified over 3,000 attributes, but only those associated with
more than 10 items were retained, resulting in a refined list of 990 attributes. On average,
each item is linked to approximately 7.3 attributes. The distribution of items associated
with the top 30 attributes is presented in Figure 3.1b. The attributes were provided by
the authors.

3.2 H&M
3.2.1 Image Captioning
The H&M Personalized Fashion Recommendation dataset3 [Linb] was provided for a
recommendation kaggle challenge in February 2022.

It includes information about 1,372,980 customers on 105,542 articles with 31,788,324
transactions. Fashion items in this dataset include attributes about their appearance, a
detailed description, and an image.

Preprocessing. The data preprocessing involved multiple steps to clean and prepare
the dataset for further use in the fashion captioning task. The primary focus was on
preparing the article dataset and associated images for creating an image captioning
dataset.

The first step was to clean the dataset by removing any articles that did not have a
detailed description (detail_desc) or a corresponding image file. This reduced the
initial dataset size from 105,542 to 104,696 articles.

The articles dataset included a hierarchical product category information, specifically
product group, product type, and product name. The product type level
was chosen for filtering due to its appropriate level of granularity. The initial analysis
showed:

• 19 unique values in the product group column.

• 131 unique values in the product type column.

• 45,567 unique values in the product name column.

We decided to filter based on the number of articles per product type and kept only those
categories with at least 7 items (because 25% of the product categories have less than
7 items, keeping 75% of the initial items). This was done to keep articles that provide

3https://www.kaggle.com/competitions/h-and-m-personalized-fashion-recommendations,
last accessed 26.03.2025, 16:36
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enough captions to be trained by the model. This step reduced the number of product
types from 131 to 100. Non-fashion-related categories, such as Dog Wear and Sleeping
Sack, were removed manually to retain only fashion and accessory items. This further
refined the dataset to 89 relevant product types.

The cleaned dataset was split into training, validation, and test set, maintaining a
distribution of 80% training, 10% validation, and 10% test data. The final count of
articles after preprocessing was 104,232, distributed as follows:

• Training set: 83,385 articles

• Validation set: 10,423 articles

• Test set: 10,424 articles

The preprocessing steps led to the following reductions in dataset size:

• Initial number of items: 105,542

• After removing items without descriptions: 105,126

• After removing items without corresponding images: 104,696

• After filtering categories with fewer than 7 items: 104,232

To compare the two datasets we plotted the top 20 categories and 30 top attributes as
seen in Figure 3.2. Besides the differences mentioned previously in Section 3.1, we see
that the attributes are also very similar and differ by frequency.

Attributes. To compute meaningful statistics such as the average precision (see
Section 4.3.1), attributes within the product descriptions need to be extracted. The
detail_desc column was used to extract nouns, adjectives, and proper nouns based on
Universal POS tagging definitions4, namely the stages ADJ, NOUN, PROPN. The extraction
process used the Stanza NLP library [QZZ+] to identify and filter these attributes. Before
tagging, the descriptions are lowercase, and hyphen-connected words, e.g., t-shirt, are
split. Then, we extract the lemmatized attributes and filter, keeping only attributes
appearing at least 10 times. This is done to ensure the significance and relevance of
attributes kept.

Using the train set items, we then collect all extracted attributes (1014 in total). These
are then used as a pool to select attributes from a generated caption and to generate the
ground truth for the test set. However, due to the threshold of 10, this leads to one item
(0512988022.jpg, a lint roller) in the test set not having a ground truth, which we
exclude in our computations for the average precision described in Section 4.3.1.

4https://universaldependencies.org/u/pos/, last accessed 13.03.2025, 15:47
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Figure 3.2: Distributions of the categories and attributes of the H&M dataset train set.
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3.2.2 Recommendations
The dataset includes information on customers’ purchase history across time (about
2 years, from 2018 to 2020), along with supporting metadata. The goal of the kaggle
challenge was to predict what articles each customer would purchase in the 7 days
immediately after the training data ends.

A submission sample was provided with all customer ids. This was the test set for this
challenge with 1,371,980 customers in total. For the challenge, participants submitted a
file including customer ids and up to 12 article ids representing the items the customer
would buy in the next 7 days. The submissions are evaluated according to the Mean
Average Precision with a cutoff of 12 items (MAP@12) calculated as:

MAP@12 = 1
U

U�
u=1

1
min(m, 12)

min(n,12)�
k=1

P (k) × rel(k)

where U is the number of customers, P (k) is the precision at cutoff k, n is the number
of predictions per customer, m is the number of ground truth values per customer and
rel(k) is an indicator function equaling 1 if the item at rank k is a relevant (correct)
label, zero otherwise.

For evaluation, participants submitted predictions for customers who were not included
in the train set (9699 in total). Since there is no penalty for predicting up to 12 items,
even for customers who ordered fewer, it was beneficial to always provide 12 predictions
per customer. Customers who made no purchases during the test period were excluded
from scoring.

The best scores reported on the leaderboard are between 0.038 and 0.035 MAP@12 with
a total of 2954 submissions.

For a better understanding of the data, we visualized the number of transactions per
month (see Figure 3.3). The plot shows a seasonal shopping behavior which we assume
is caused by different sales. The largest number of purchases happen during summer,
probably due to the Summer Sale starting mid-June. Summer clothing items are usually
cheaper than winter clothing items because there is less material. This leads to extremely
low prices, pushing customers to buy beyond their needs, and increasing transaction
numbers for this month beyond average. We note that September 2018 and 2020 are
only partially available in the data, therefore, not fully representable.

Also, with the average number of purchases per customer being 23.3 and the median
being 9 purchases this indicates a right-skewed data, meaning that there is a small
number of customers that purchase a large number of items. One can say, that the
median represents an “average customer”. To give an idea about how much the top
customers buy, we visualized the transaction counts of the top 100 users as a box plot
(see Figure 3.4). The customer with the biggest number of transactions has a total count
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Figure 3.3: Bar plot showing the total number of transactions (purchases) per month.
Note: September 2018 and 2020 are only partially available in the dataset.
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Figure 3.4: Boxplot depicting the 100 customers with the most transactions. There the
Median lies with 826 transactions over a span of 2 years.

of 1,895 over a time span of 2 years. This means buying about 18 clothing items each
week. However, the data only reports transactions but not returning items.

Data Split. Given the large size of the dataset—over 31 million transactions from
more than 1 million customers—we opted to omit cross-validation. Instead, we applied
an 80/20 temporal split to divide the transactions into training and test sets. In this
temporal split, earlier transactions for each user are assigned to the training set, while
later ones are included in the test set. Users with only a single transaction are kept
entirely in the test set. Prior to splitting, we removed articles missing either an image or
a description, consistent with the preprocessing for image captioning. The final dataset
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Table 3.1: Comparison of both datasets. CAT: category, AT: attribute, CAP: caption,
*The H&M dataset includes original images of different sizes, but a majority are around
1166x1750 pixels large. **The original images for FACAD are not provided by the
authors; they are only preprocessed versions downsized to 256x256.

Dataset #img img size #img (per cap.) vocab size #CAP avg len #CAT #AT

H&M 104K *∼1166x1750 1 7.6K 23.9 89 1014

FACAD 993K **256x256 7 ∼ 8 15.8K 21.0 78 990

consists of 31,400,864 transactions, with 24,516,873 in the training set and 6,883,991 in
the test set. Due to the removal of the transactions based on the items missing images
or descriptions, we removed 2,103 users, leaving a total of 1,360,178 users and 103,251
unique items. This leaves 981 that are not officially bought in the dataset. Due to the
splitting of single-transaction users, we have more unique users in the test set.

3.3 Comparison of Datasets
We use this section to emphasize the differences between both datasets to also provide a
better understanding of the results presented in Chapter 5. Both datasets are domain-
specific fashion datasets but differ in many aspects (see Table 3.1). One of the biggest
differences is the size, the FACAD dataset has almost 10 times the size of the H&M
dataset in terms of images. Providing more variety of item perspectives, including
different angle shots, with and without a model and a material shot (see Figure 3.5a).
Compared, the H&M dataset only offers single-item images without a model, sometimes
only showing part of the item.

Furthermore, the H&M dataset shows a 1-to-1 relationship between captions and images,
whereas the FACAD dataset sometimes includes multiple items with the same description
but differing in color or single items with many images.

Comparing the captions, the H&M dataset has more concise captions describing the item’s
“tailor” details, e.g., “frill-trimmed shoulder straps” or “tapered legs with ribbed hems”,
whereas FACAD captions tend to be more “enchanting” as the authors comment in their
paper. It includes expressions made for selling, e.g., “this neutral hued cotton sweater
you’ll wear everywhere” or “holiday red get some seasonal sparkle in a dazzling dress
that is ready to make you and everyone at the party very merry indeed”. Interestingly,
the H&M captions do not include colors explicitly.

Comparing categories, the H&M dataset has more trouser items (see Figure 3.2a). This
could be due to the H&M dataset only having one category for trousers and not specifying
between jeans and pants, leading to all pants-like garments being merged into this category.
Otherwise, both datasets show similar category distributions.
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this shawl collar jersey blazer bloom with black and white
floral patterning inspired by the work of rising spanish
photographer coco capit n

(a) Item sample from FACAD test dataset. Source: created by the author

Short, sleeveless dress in an airy cotton weave that is 
open at the back with a tie. Adjustable frill-trimmed 
shoulder straps, a concealed zip in the side, seam at the 
waist with elastication at the back and a flared skirt. 
Unlined.

(b) Item sample from H&M test dataset. Source: created by the author

Figure 3.5: Item samples from both datasets showing the image(s) and corresponding
captions. Bold words are defined attributes. Source: created by the author

33





CHAPTER 4
Development of the Solution

In this section, we present the steps that were followed to develop the solution, as well
as the decisions taken. We first explain our choice of models used for image captioning,
BLIP-2, and LLaVA (see Section 4.1) and their architecture. As one of the goals is to
compare results from the fine-tuned models with the model from Yang et al. [YZJ+], we
present their model in Section 4.1.3.

We then continue to explain the methods and setup for fine-tuning in Section 4.2 including
the experiment done to determine the hyperparameters (4.2.2). Section 4.3 describes the
additional metrics we used to evaluate the captions (based on Yang et al.).

Finally, Section 4.4 explains the recommendations experiment setup including the different
methods used for feature extraction and the algorithms used for comparison.

4.1 Models for Image Captioning
For the task of image captioning, we required encoder-decoder-based or multimodal-
capable models, as covered in Section 2.1. The main challenge we encountered when
working with machine learning models (and specifically trending LLMs) was that they
were not provided in an open-source manner. As a result, we were unable to investigate
their performance on different datasets or reproduce results. To answer RQ1 in Section 1.3,
we focused on open-source models to promote transparency and reproducibility of the
results achieved in this master thesis. Therefore, we did not use powerful models such as
ChatGPT-4 [Ope] or Gemini [SP].

We used the open-source platform HuggingFace1, which offers access to more than 900,000
models. Beyond being open-source, Hugging Face provides various interfaces that simplify
the use of these models, a key factor in our decision-making process. Given the scope

1https://huggingface.co/, last accessed 13.03.2025, 16:08
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limitations of a master’s thesis, a comprehensive comparison of models across different
platforms was not feasible. Therefore, we focused on models supported by Hugging Face’s
Transformers library due to their ease of integration for fine-tuning and inference.

BLIP (Bootstrapping Language-Image Pre-training) [LLXH] is the most popular model for
the “image-to-text” task available on Hugging Face. However, Li et al. recently introduced
BLIP-2 [LLSH], a successor model. We chose to use BLIP-2, specifically designed
for image-to-text generation and demonstrating notable performance improvements,
outperforming Flamingo80B by 8.7% on zero-shot VQAv2 while requiring 54 times fewer
trainable parameters. More broadly, BLIP-2 achieves state-of-the-art performance while
being more compute-efficient compared to existing methods, including its predecessor
BLIP, across a range of vision-language tasks such as visual question answering, image-
text retrieval, and image captioning. Additionally, BLIP-2’s open-source nature and the
possibility of fine-tuning using custom datasets made it particularly suitable for our use
case.

For comparative analysis, we experimented with different variants of BLIP-2, specifically
those that leverage different language models for text generation, including OPT (Open
Pre-trained Transformer) [ZRG+] in its 2.7B and 6.7B parameter versions, as well as
FLAN-T5 [CHL+] in its XL and XXL versions. More details of the architecture can be
found in Section 4.1.1.

Besides other different encoder-decoder models, LLaVA-1.5 (an improved version of
LLaVA [LLWL]) is among the most popular models for image captioning on Hugging
Face. LLaVA, short for Large Language and Vision Assistant, is a multimodal model that
integrates a vision encoder with a large language model, trained on machine-generated
language-image instruction-following data from GPT-4. In contrast to BLIP-2, LLaVA
aims to function as a conversational assistant that can interactively respond to visual
inputs, demonstrating chat-like capabilities. It is optimized for generating detailed,
instruction-following responses, similar to an AI like GPT-4 but in a multimodal context.
LLaVA requires a specific prompt to generate meaningful multimodal responses, whereas
BLIP-2 does not rely on prompts, instead focusing on automatically understanding and
aligning image-text pairs. A detailed description of the architecture can be found in
Section 4.1.2.

As a baseline for the results using the FACAD dataset, we use the results presented by
Yang et al. [YZJ+], which we also used as a reference for the experiment setup. A more
detailed description of their model can be read in Section 4.1.3.

4.1.1 BLIP-2

The BLIP-2 architecture can be seen in Figure 4.1. The proposed method uses frozen
vision and language models, effectively bridging the modality gap between the unimodal
models. Frozen, in the context of machine learning models, describes a model that was
stopped at one point during training, and the parameters were no longer adjusted. It is
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Figure 4.1: In the framework of BLIP-2, a lightweight Querying Transformer is pre-trained
using a two-stage strategy to address the modality gap. In the initial stage, vision-language
representation learning is initiated with a frozen image encoder. Subsequently, the second
stage involves vision-to-language generative learning with a frozen LLM. Source:[LLSH],
page 1

computationally efficient, as it requires training fewer parameters compared to previous
end-to-end training approaches.

The authors employed a lightweight Querying Transformer (Q-Former) as a bottleneck
between the frozen image and text encoders. Initially, the image undergoes processing
by the image encoder to extract visual features, and the resulting outputs are then fed
to the language model for comprehension. However, a challenge arises, as the frozen
language model lacks training in image data and struggles to interpret the extracted
visual representations effectively. To address this issue, the Q-Former employs a set of
learnable querying vectors and undergoes pre-training in two stages: (1) vision-language
representation learning with a frozen image encoder and (2) vision-to-language generative
learning with a frozen text encoder.

Training. The Q-Former comprises two sub-modules (see Figure 4.2, left): (1) an image
transformer, which engages with visual features derived from the frozen image encoder,
and (2) a text transformer responsible for encoding and decoding texts. Employing a set
of learnable querying vectors, the Q-Former extracts relevant visual features that contain
the most informative aspects of the text associated with the image. In the first phase, the
vision-language representative learning, these are jointly optimized for three pre-training
objectives where each objective uses a different attention mask between queries and text
(see Figure 4.2, right).

Image-Text Contrastive Learning (ITC) tries to adjust the model to make correct
pairs more similar while making incorrect pairs less similar using the similarity between
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Figure 4.2: (Left) The model architecture of the Q-Former and the first-stage vision-
language representation learning objectives of BLIP-2. Three objectives are jointly
optimized to ensure that the queries (a set of learnable embeddings) effectively extract
the visual features most relevant to the text. (Right) The self-attention masking
strategies are used for each objective to regulate the interaction between the queries and
the text. Source:[LLSH], page 3

the queries and the text representation. To prevent information leakage, a unimodal
self-attention mask is applied, ensuring that queries and text cannot directly interact
(see right of Figure 4.2).

Image-grounded Text Generation (ITG) trains the Q-Former to generate text
conditioned on input images. Since the Q-Former architecture does not allow direct
interaction between the image encoder and text tokens, the queries extract visual features,
passing this information to the text tokens via self-attention layers. To achieve this,
a multimodal causal self-attention mask (see right of Figure 4.2) ensures that queries
interact only with each other, while text tokens attend to queries and earlier text tokens,
facilitating effective image-to-text generation.

Image-Text Matching (ITM) aims to learn fine-grained alignment between image
and text representations through a binary classification task, predicting whether an
image-text pair is matched or unmatched. A bi-directional self-attention mask (see
right of Figure 4.2) allows all queries and text tokens to interact, enabling the query
embeddings to capture multimodal information. Each query embedding is processed
through a two-class linear classifier to produce logits, which are averaged across queries to
determine the matching score. Hard negative mining is employed to generate challenging
negative pairs for training.

After the representative learning, the model is trained to generate text based on the
generated queries. The authors explored two types of large language models (LLMs):
decoder-based and encoder-decoder-based. For decoder-based LLMs, language modeling
loss is employed, requiring the LLM to generate text conditioned on the visual repre-
sentation provided by the Q-Former. For encoder-decoder-based LLMs, prefix language
modeling loss is utilized, where the text is split into a prefix (combined with the visual
representation as input to the encoder) and a suffix (used as the target for the decoder).
The models used in the paper are the unsupervised-trained OPT model family [ZRG+]
for decoder-based LLMs (in their 2.7B and 6.7B variation), and the instruction-trained
FLAN-T5 model family [CHL+] for encoder-decoder-based LLMs (in their XL and XXL
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variation).

The model is trained with the same train data as BLIP [LLXH] with 129M images in
total.

4.1.2 LLaVA-1.5
LLaVA (Large Language and Vision Assistant) [LLWL] is a multimodal model designed for
general-purpose visual and language understanding. It integrates a vision encoder (CLIP
ViT-L/14, [RKH+]) with a large language model (Vicuna, [CLL+]) through end-to-end
training.

The architecture is depicted in Figure 4.3. For an input image Xv, they use the pre-trained
visual encoder g to extract visual features Zv = g(Xv). To integrate these visual features
into the language model, a simple linear transformation is applied. This transformation
uses a projection matrix W to convert Zv into Hv, which matches the dimensions of word
embeddings in the language model:

Hv = W · Zv, where Zv = g(Xv)

Figure 4.3: LLaVA network architecture. It includes a trainable linear projection layer
W to convert visual features to language embeddings. Source: [LLWL], page 4

Training. For each image Xv, multi-turn conversation data is generated in the form
of sequences (X1

q , X1
a , . . . , XT

q , XT
a ), where T is the total number of turns, Xq and Xa

the questions and answers. Each answer is treated as the assistant’s response, and the
instruction for the t-th turn, Xt

instruct, is defined as follows:

Xt
instruct =

�
Randomly select [X1

q , Xv] or [Xv, X1
q ], if t = 1

Xt
q, if t > 1

The language model is instruction-tuned on the prediction tokens using its original
auto-regressive training objective.

For a sequence of length L, the probability of the target answers Xa is computed as:

39



4. Development of the Solution

Figure 4.4: SRFC-architecture and proposed loss functions: attribute-level semantic
(ALS) and sentence-level semantic (SLS). Source: [YZJ+], page 7

p(Xa|Xv, Xinstruct) =
L�

i=1
pθ(xi|Xv, Xinstruct,<i, Xa,<i),

where θ is the trainable parameters and Xinstruct,<i and Xa,<i are the instruction and
response tokens on all turns before the current prediction token xi, respectively.

LLaVA is also trained in a two-stage approach where (1) the model is pre-trained for
feature alignment by only training the projection layer and (2) fine-tuning it end-to-end
where the projection layer and language model are trained. The vision encoder remains
frozen throughout the training process.

LLaVA-1.5 [LLLL] added a two-layer MLP vision-language connector instead of a single
linear projection matrix and added academic-task-oriented VQA data.

4.1.3 Semantic Rewards guided Fashion Captioning (SRFC)
This is the model presented by Yang et al. [YZJ+] which focuses on Fashion Captioning.
The proposed model follows an encoder-decoder architecture, where a pre-trained ResNet-
101 [HZRS] is used as the encoder to extract image features. This encoder is fine-tuned on
the FAshion CAptioning Dataset (FACAD). The extracted image features are dynamically
re-weighted using an attention mechanism, allowing the model to focus on specific regions
of the image during caption generation. These features are then passed on to an LSTM
decoder that generates captions word by word.

To ensure the captions accurately describe the fine-grained attributes of fashion items,
the model incorporates a visual attribute predictor. This predictor extracts attributes
from the images and embeds them into the input of the LSTM decoder, effectively
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seeding the caption generation process with attribute-level information. The model also
introduces two types of semantic rewards: the Attribute-Level Semantic (ALS) reward
and the Sentence-Level Semantic (SLS) reward. The ALS reward encourages the model
to generate captions containing correct attributes by matching n-grams in the generated
sentences with ground-truth attributes. Meanwhile, the SLS reward ensures the global
semantic consistency of the captions by matching the predicted category of the generated
description with the ground-truth category. This is achieved through a pre-trained text
classifier.

The training process consists of two stages. In the first stage, the encoder-decoder model is
trained using the maximum likelihood estimate (MLE) to initialize the parameters. In the
second stage, the model is fine-tuned with Reinforcement Learning (RL), incorporating the
ALS and SLS semantic rewards. The RL training employs the REINFORCE algorithm
to optimize the non-differentiable rewards, with a baseline reward used to stabilize
the training process. The general loss function combines MLE, semantic rewards, and
attribute prediction to jointly optimize the model.

The captions were carefully preprocessed resulting in a vocabulary of 15,807 words. The
model was trained using the Adam optimizer, starting with a learning rate of 1e-4, which
was gradually annealed. Training took approximately four days on two NVIDIA 1080 Ti
GPUs.

The results demonstrate improvements in captioning performance compared to baseline
image captioning models. The introduction of semantic rewards led to enhanced attribute
precision and category accuracy, while the use of FACAD enabled the generation of
detailed and expressive captions tailored to the fashion domain.

4.2 Fine-tuning
4.2.1 LoRA
LoRA (Low-rank adaptation) [HSW+] significantly reduces the number of trainable
parameters by decomposing the weight update matrix ΔW into the product of two
low-rank matrices B and A. During fine-tuning, the original pre-trained model weights
W are updated as: W + ΔW = W + BA, where W ∈ Rd×k, B ∈ Rd×r, and A ∈ Rr×k,
with r ≪ min(d, k). This decomposition helps maintain computational efficiency, avoiding
extra latency during inference.

For our experiment, we needed to specify four parameters, namely, rank r, alpha α,
dropout rate, and the layers to be tuned. The rank determines the number of columns
in A and the number of rows in B. Basically, it decides how much information is
captured by these smaller matrices. The rank controls the complexity and expressiveness
of the adaptation. A higher rank means that the low-rank matrices can capture more
information (up to the level of full fine-tuning), leading to a more flexible adaptation.
However, this also means more parameters, which can increase computation and the risk
of overfitting. The original paper [HSW+] and a follow-up paper conducted experiments
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on InstructBLIP (BLIP architecture focused on visual reasoning tasks) with a maximum
rank of 8. Due to our available computing resources (A100 GPUs with 80G), we decided
to set the rank to 32.

We used the rank-stabilized LoRA (rsLoRA) method [Kal] to enhance the perfor-
mance of our model adaptation. In the standard LoRA architecture, each adapter is
scaled during every forward pass by a fixed scalar that is set during initialization and is
dependent on the rank r. Typically, this scalar is defined as: lora_alpha

r in the original
implementation. However, rsLoRA modifies it by using: lora_alpha√

r
. This adjustment

helps stabilize the adapters, especially when using higher ranks and allows for more
effective adaptation. By adopting the rsLoRA approach, we can get the benefits of higher
rank values without encountering instability, resulting in improved performance and more
reliable fine-tuning outcomes.

Alpha α is a scaling factor. By controlling the magnitude of α, you can scale the impact
of the learned low-rank changes. A higher α means the adaptation has a stronger effect,
while a lower α means it has a weaker effect. Based on the model used in Sungkyung et
al. [KLP+], we decided to base our experiment setup on their work and use an alpha
value of α = 2 × rank and a dropout rate of 0.05 which is lower than the dropout value
in the original LoRA paper.

Lastly, we decided to treat the layers as a hyperparameter to be tuned and included
different settings: 1) we add weights to all linear layers (based on the idea of QLoRA
[DPHZ], 2) the default LoRA settings which are to add trainable weights to the query
and value layers of each attention block.

Using a rank of 32 for LoRA we see the resulting number of trainable parameters in Ta-
ble 4.1 (retrieved by calling the print_trainable_parameters() of the PeftModel
class for each model).

Table 4.1: Number of model parameters and trainable percentage and number after
application of LoRA.

Model All Params Trainable Params Trainable %

BLIP-2-2.7B 3,755,165,696 10,485,760 0.2792

BLIP-2-6.7B 7,769,515,520 16,777,216 0.2159

BLIP-2-XL 3,961,320,960 18,874,368 0.4765

BLIP-2-XXL 12,267,345,408 37,748,736 0.3077

LLaVA-7B 7,083,350,016 19,922,944 0.2813

LLaVA-13B 13,380,854,784 29,360,128 0.2194
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4.2.2 Hyperparameter Tuning

Fine-tuning LLMs can be a resource-intensive procedure that (depending on many factors
such as where the servers are located and which GPUs are used) can result in different
CO2 emissions. We run our experiments on an A100 SXM4 80GB on the GPU cluster
provided by TU Wien. The maximum time the fine-tuning can run on this cluster is 168
hours. With an average Carbon Efficiency (kg/kWh) of 0.432 based on the OECD’s 2014
yearly average, a full run emits 29.03 kg of CO2 (based on [LLSD] and their website2).

We conducted a grid search to tune the hyperparameters, focusing on the learning rate,
batch size, and LoRA layers. The learning rate was tested with values of {1e-5, 5e-5,
1e-4, 5e-4}, while the effective batch size was varied across {16, 32}. If the entire batch
could not fit into GPU memory, we used gradient accumulation to adjust accordingly.
For the LoRA layers, two configurations were explored: all-linear, where LoRA was
applied to all linear layers, and QV, where only the query and value layers were adopted.
This setup resulted in a total of 16 possible combinations (see Table 4.2).

Table 4.2: Hyperparameter tuning results with early stopping using the smallest BLIP-2
model with 2.7 billion parameters and the H&M dataset.

Best Loss Runtime Batch Size Learning Rate LoRA Layers Early Stopping

0.028 39h 15m 10s 16 5e-5 all linear No

0.031 36h 12m 50s 32 5e-5 all linear Yes

0.034 39h 22m 57s 16 1e-5 all linear No

0.036 39h 6m 43s 32 1e-5 all linear No

0.038 27h 45m 35s 32 1e-4 all linear Yes

0.045 25h 1m 58s 16 1e-4 QV layers No

0.045 30h 51m 23s 32 1e-4 QV layers No

0.046 24h 45m 38s 16 5e-5 QV layers No

0.048 30h 38m 18s 32 5e-5 QV layers No

0.057 24h 38m 44s 16 1e-5 QV layers No

0.062 12h 41m 28s 32 5e-4 QV layers Yes

0.062 24h 42m 5s 32 1e-5 QV layers No

0.065 15h 58m 19s 16 1e-4 all linear Yes

0.356 15h 25m 21s 16 5e-4 QV layers Yes

0.366 23h 20m 53s 32 5e-4 all linear Yes

0.816 16h 9m 19s 16 5e-4 all linear No

2https://mlco2.github.io/impact/, last accessed 14.03.2025, 10:26
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Fine-tuning 6 models across 16 different parameter settings and two datasets would have
led to an estimated CO2 emission of 5568 kg (assuming all 192 variations would run the
full 168 hours). This is approximately equivalent to the annual electricity consumption
of an average U.S. household (about 10,700 kWh, assuming 0.52 kg of CO2 per kWh).
Due to this environmental impact, we decided to run the parameter sweep using only the
smallest model (BLIP-2 with 2.7 billion parameters) and the smaller H&M dataset. We
then use the best hyperparameter setting with the lowest validation loss for all fine-tuning
settings.

The fixed settings for the framework include the following hyperparameters. The learning
rate is set to 5e-4, controlling the step size during optimization. A CosineAnnealingLR
scheduler is used to adjust the learning rate over time, gradually decreasing it in a cosine
pattern, with a minimum learning rate of 1e-6 and a T_max of 500 iterations, specifying
the period during which the rate decreases. We deemed this scheduler the most suitable
because it focuses on larger updates at the start and smaller, more precise updates
as training progresses. It is particularly beneficial for tasks where gradual fine-tuning
towards the end improves convergence and helps avoid overshooting. A weight decay of
1e-6 is also applied to regularize the model, preventing overfitting by penalizing large
weights. As we are working with large datasets, we deem a relatively small value for
weight decay suitable because the model can generalize better without needing as much
regularization. However, this is a parameter that could also be optimized.

We encountered numerical instabilities during training resulting in NaN values for the
loss computation. This issue was resolved using bfloat16 as a floating-point format
because it provides a greater range. We used the bfloat16 for all models.

Analyzing the line charts of the train and validation loss progress of the 16 settings
presented in Figure 4.5, we see certain settings that lead to instable training with either
too high learning rates or batch sizes. We assume this is the case when using the learning
rate 5e-4 for both tried batch sizes because they start with a relatively high loss but lead
to NaN values later on (see Table 4.3). Those runs are marked by dots in the line plot.
If the runs do not end with NaN values they do not converge e.g. the dotted orange line
in the plots and end due to early stopping.

An interesting observation is that the learning rate 1e-4 leads to unstable training using
all linear layers, whereas when fine-tuned using only query and value layers, the training
converges and leads to smaller losses. This can be due to a high sensitivity to parameter
changes when fine-tuning all layers, making the model prone to instability with higher
learning rates. In contrast, focusing on only the query and value (QV) layers reduces
trainable parameters, promoting stable adjustments even with relatively high learning
rates. The best results in terms of validation loss (for BLIP-2 the loss represents the
language modeling loss) are achieved using all linear layers and a smaller learning rater
(1-e5 or 5-e5). However, the best model using only QV runs almost in half the time (39h
vs. 25h) with the best validation loss being 60.7% worse but still reasonably low (0.028
vs. 0.045).
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(a) Train loss for the 16 settings.

(b) Validation loss for the 16 settings.

Figure 4.5: Line plots of the train and validation loss (plotted using the weights and
biases framework [Bie] supervising the runs). The Y axis shows the loss and the X axis
shows the step. The model names include the hyperparameter used for the setting.

Summarizing the observations for the hyperparameter sweep:

• The learning rate of 5-e4 was too high and led to unstable training (independently
from the batch size).

• The learning rate of 1-e4 is too high for using all linear layers to fine-tune.

• Tuning all linear layers led to better results than just tuning the QV layers because
it resembles full fine-tuning more (see Figure 4.6).

• The batch size did not have as much impact as expected.
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Figure 4.6: Parallel coordinates plotting the hyperparameters that were tuned, namely
the batch size, LoRA layers, and learning rate. For the parameter LoRA layers value
“None” is equivalent to choosing query and value layers.

Table 4.3: Fine-tuning results with the worst validation losses, train and valid loss
showing the last loss recorded. All runs can be seen in Table 4.2.

Best Loss Runtime Batch Size Learning Rate LoRA Layers Train Loss Valid Loss
0.816 16h 10m 0s 16 5e-4 all-linear NaN NaN
0.366 23h 22m 2s 32 5e-4 all-linear NaN NaN
0.356 15h 25m 58s 16 5e-4 QV-layers 0.093 0.403
0.065 15h 59m 0s 16 1e-4 all-linear 0.022 0.079
0.062 24h 42m 38s 32 1e-5 QV-layers 0.008 0.062

In conclusion, we see that as long as the learning rate is small enough, the training
converges, and higher learning rates can be used if the trainable parameters are reduced,
e.g., using only QV layers. Considering that the validation loss is relatively similar using
a validation set of 10423 items, we decided to prioritize the run time (also considering
the previously mentioned CO2 emissions) over the performance. Therefore, we select the
best QV layer setting with learning rate 1e-4 and batch size 16 as the setting used to
fine-tune the other models (see Table 4.2).

4.3 Evaluation

Additionally, for the metrics described in Section 2.1.3, we include the mean average
precision and category accuracy as described by Yang et al. [YZJ+].
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4.3.1 MAP
The authors describe the mean average precision as the following “we compare the
attributes in the generated captions with those in the test set as ground truth to find the
average precision rate for each attribute using mean average precision (MAP)” (Source:
[YZJ+], page 11), which technically does not describe the mean average precisions usual
definition. Based on the code from the Github repo, the authors compute the average
precision, taking the precision for each caption and then dividing it by the number of
captions. We keep the name for comparison.
As described previously in Chapter 3, the attributes for FACAD are provided and the
attributes for H&M are generated based on the approach of Yang et al. [YZJ+]. For
the generated captions, we follow the same procedure to identify positives: lower-case,
split words connected by hyphens, extract nouns, adjectives, and proper nouns, then
select attributes that appear in the pool of attributes of the train set. This then gives
the attributes to be compared to the ground truth and computes the precision and recall,
respectively.
At this point, we also mention that the authors Yang et al. do not provide the original
attributes for the test set. In order to recreate the attributes, we use a file that was
provided with all metadata (including attributes), check for overlapping captions, and
then use the attributes for the corresponding item.

4.3.2 Accuracy
The authors originally pre-train a 3-layer text CNN [Kim], but the model is not provided
nor can it be found through the sources linked by the authors. As a result, we used a
pre-trained BERT model for text classification and fine-tuned it for the H&M and FACAD
datasets, where captions are the input and the product category is the class. Both models
use the same architecture (bert-base-uncased), but due to the difference in the
dataset size, the training times vary.
For the FACAD dataset, the authors report a classification accuracy of 90% on the test
set. Our model is trained for 5 epochs with a learning rate of 1-e5 and a batch size of
128, achieving a final accuracy of 90.3% on the test set, which consists of 78 classes.
Therefore providing an equivalently good model for category classification.
For the H&M dataset, the model is trained for 15 epochs with a learning rate of 1-e5 and
a batch size of 128, achieving a final accuracy of 94.7% on the test set, which contains 89
classes.
To evaluate our fine-tuned models, we use the classifier models in combination with the
generated captions as inputs and report the accuracy for category classification.
It should be mentioned that the majority of captions for both datasets include the product
category, e.g., “a crepe blouse” and the models then predict blouse as the category. This
metric can then be interpreted as how well models are able to identify the correct product
category.
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4.4 Recommendations
In Section 3.2, we describe the processing and splitting of the data that we use for the
recommendation experiment of this thesis. We also presented the metrics that we will
use for evaluation in Section 2.2.1. Finally in this section, we will shortly review the
pipelines used for feature extraction as well as the algorithms used for recommendation.
To conduct the recommendation experiment, we use the Ducho-meets-Elliot framework
presented by Attimonelli et al. [ADF+]. It provides feature extraction as well as a
recommendation pipeline.

4.4.1 Feature Extraction
The framework provides an integration of Ducho [ADM+] for feature extraction. For our
experiments, we will explore 6 different setups:

• Visual features extracted from ResNet50

• Textual features extracted from SentenceBert

• Multimodal trained visual and textual features extracted from CLIP

• Multimodal features concatenating ResNet50 and SentenceBert features

• Features based on the output of the Q-Former from the fine-tuned BLIP-2 model

• Visual features extracted from the fine-tuned BLIP-2 model

ResNet50

ResNet, short for Residual Network, is a specialized type of convolutional neural network
(CNN) designed to address the vanishing gradient problem by using residual connections.
ResNet-50 is a deep architecture consisting of 50 layers, including 48 convolutional
layers, one max pooling layer, and one average pooling layer. These networks are built
by stacking residual blocks, which help maintain stable gradients during training. We
extract visual features using a pre-trained ResNet 503, with the average pooling layer as
the extraction layer, followed by z-score normalization, which standardizes the feature
values by subtracting the mean and dividing by the standard deviation.

SentenceBert

The model we use for text embedding of the descriptions is a fine-tuned version of
microsoft/mpnet-base4, trained using a contrastive learning objective on a dataset

3https://pytorch.org/vision/main/models/generated/torchvision.models.
resnet50.html, last accessed 13.02.2025, 13:45

4https://HuggingFace.co/sentence-transformers/all-mpnet-base-v2, last accessed
13.02.2025, 13:45
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containing 1 billion sentence pairs. The objective requires the model, given one sentence
from a pair, to identify its correct counterpart among a set of randomly sampled sentences.
It was developed during the Hugging Face Community Week on JAX/Flax for NLP & CV
as part of the project Train the Best Sentence Embedding Model Ever with 1B Training
Pairs, leveraging TPU v3-8 hardware and benefiting from guidance provided by Google’s
Flax, JAX, and Cloud teams. The model is designed as a sentence-transformers
model, mapping sentences and short paragraphs to a 768-dimensional dense vector space.
These embeddings capture semantic meaning and can be used for tasks such as information
retrieval, clustering, and semantic search. Input sequences exceeding 384 word pieces are
truncated. Fine-tuning involved computing cosine similarities between sentence pairs in
a batch and applying a cross-entropy loss. The training process consisted of 100k steps
with a batch size of 1024 (128 per TPU core), utilizing the AdamW optimizer with a
learning rate of 2e-5 and a warm-up phase of 500 steps. The sequence length was limited
to 128 tokens. The training data consisted of a mixture of multiple datasets, sampled
based on weighted probabilities.

CLIP

We used CLIP (Contrastive Language-Image Pre-training)5, a multimodal neural network
developed by OpenAI that learns to understand images and text together. It is trained
using a contrastive learning approach, where a large dataset of image-text pairs is used to
align visual and textual representations in a shared embedding space. The model consists
of two separate encoders: one for images (typically a ResNet or Vision Transformer, in
our case ViT-B/16 Transformer) and one for text (a Transformer-based language model).
During training, CLIP learns by maximizing the similarity between correct image-text
pairs while minimizing the similarity between incorrect ones. This results in a unified
embedding space where semantically related images and texts are mapped close to each
other.

BLIP-2

A detailed explanation of BLIP-2 was provided in Section 4.1.1. For feature extraction,
we decided to “fully” fine-tune the smallest BLIP-2 models (BLIP-2-2.7B) using all
linear layers and a learning rate 5e-5 (based on our hyperparameter tuning experiment,
Section 4.2.2). The model used was the one that achieved the best result on our H&M
test image captioning set and was trained 8 epochs with a batch size of 8. We then use
the last hidden layers from the Q-Former as Queries features (32x768 values) and the
last hidden layers from the fine-tuned image encoder as visual features (257x1408).

Using the flattened visual features (381,856 values) for over 100K items required over
700GB of GPU memory, making it impractical to process with our biggest GPU having

5https://HuggingFace.co/openai/clip-vit-base-patch16, last accessed 13.02.2025,
13:50
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80GB. To address this issue, two different dimensionality reduction techniques were
explored: (1) Principal Component Analysis (PCA) and (2) Global Average Pooling.

PCA provides an effective way to retain the most informative structures of the data while
significantly reducing its dimensionality. Given the large size of the dataset, Incremental
Principal Component Analysis (Incremental PCA) was used, as it allows processing data
in smaller batches without exceeding memory constraints. To determine the optimal
number of components, an initial analysis was performed on a subset of the data, selecting
the smallest number of components that retained 95% of the total variance.

Once the appropriate dimensionality was established, the full dataset was processed
iteratively using Incremental PCA. The model was trained in batches, gradually learning
the lower-dimensional representation of the feature vectors. Finally, the trained PCA
model was used to transform the original high-dimensional feature vectors into their
compressed representations, making them significantly more manageable while preserving
their essential structure.

Due to the size of the dataset and the high dimensionality of the feature vectors, we em-
ployed Incremental Principal Component Analysis (Incremental PCA) for dimensionality
reduction. Unlike standard PCA, which requires loading the entire dataset into memory,
Incremental PCA processes data in mini-batches, making it well-suited for large-scale
datasets.

To determine the optimal number of components, we analyzed a representative subset
of 5,000 vectors, selecting the number of components that retained 95% of the variance.
This resulted in 201 principal components, significantly reducing the original vector size
from 361,856 dimensions to 201. For average pooling, we reduced the dimensionality to
1,408 by averaging across the 257 values.

When comparing the results (see Table 4.4), PCA features performed better, though the
differences are small.

Table 4.4: Recommendation results for H&M dataset, using PCA and average pooled
visual features, on the test set explained in Section 2.2.1.

Setting
NDCG MAP

@5 @12 @5 @12

VBPR (PCA) 0.02187 0.02656 0.01110 0.00853

VBPR (avgpool) 0.02167 0.02631 0.01092 0.00840

4.4.2 Recommendation Algorithms
We are limited by the algorithms supported by the elliot pipeline [ABF+]. We choose
to use Visual Bayesian Personalized Ranking (more details presented in Section 2.2) as
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it supports using different features for recommendation and implicit feedback. For all
algorithms, we use the default settings from elliot if not stated otherwise.

Unpersonalized Algorithms

As a baseline, we use unpersonalized recommendation algorithms that suggest items
without considering individual user preferences. Most Popular (MostPop) recommenda-
tions show the items that are most purchased by all users, such as bestsellers or trending
products. This approach is simple and works well when user tastes are similar. Random
recommendations, on the other hand, select items by chance, offering more variety but
often showing irrelevant suggestions. These algorithms help us compare and evaluate the
performance of our recommendations using the extracted features.

Neighborhood-based Algorithms

We use Amazon’s item-to-item collaborative filtering (ItemKNN) [LSY] as a recommen-
dation approach that suggests products by analyzing the relationships between items
based on user interactions. This method finds items similar to those a user has previ-
ously interacted with, using factors like co-purchasing behavior and browsing patterns.
Compared to user-based collaborative filtering, it relies on item similarities rather than
user similarities, making it a better choice for large-scale platforms such as Amazon.

Table 4.5: Recommendation results for H&M dataset, using different neighborhoods for
ItemKNN, on the test set explained in Section 2.2.1.

Setting
NDCG MAP

@5 @12 @5 @12

ItemKNN (k=20) 0.05760 0.06421 0.03557 0.02534

ItemKNN (k=40) 0.05743 0.06409 0.03558 0.02533

As UserKNN, we refer to the algorithm used by GroupLens [RIS+], an open architecture
for collaborative filtering of netnews. The GroupLens system uses collaborative filtering
to recommend news articles to users based on the preferences of similar users. By
analyzing patterns in users’ interactions with content, GroupLens was one of the first
systems to demonstrate the power of collaborative filtering in a real-world setting. If
using implicit feedback (e.g., clicks, purchases), the algorithm recommends items most
frequently interacted with by the k-nearest neighbors.

For both algorithms, we use cosine similarity and the aiolli implementation setting
for implicit feedback.
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Table 4.6: Recommendation results for H&M dataset, using different neighborhoods for
UserKNN, on the test set explained in Section 2.2.1.

Setting
NDCG MAP

@5 @12 @5 @12

UserKNN (k=5) 0.00767 0.00880 0.00359 0.00246

UserKNN (k=10) 0.01198 0.01355 0.00558 0.02533

Visual Bayesian Personalized Ranking from Implicit Feedback

Visual Bayesian Personalized Ranking (VBPR) [HMb] extends traditional Matrix Factor-
ization (MF) models by integrating visual features to improve recommendation accuracy.
Unlike conventional approaches that are solely based on user-item interactions, VBPR
introduces an additional layer of visual embeddings extracted from product images, allow-
ing the model to better capture the impact of an item’s appearance on user preferences.
The model is trained using Bayesian Personalized Ranking (BPR), a pairwise ranking
optimization framework that employs stochastic gradient ascent to learn personalized
rankings from implicit feedback data such as purchases or clicks.

The core mathematical formulation of VBPR is given by:

x̂u,i = α + βu + βi + γT
u γi + θT

u (Efi) + β′T fi

where:

• α is the global bias term.

• βu, βi are the user and item biases.

• γu, γi are the latent factors representing the user u and item i.

• θu, θi are the visual preference vectors for the user and item.

• fi represents the deep CNN-extracted visual features of item i.

• E is the embedding matrix that transforms fi into a lower-dimensional space.

• β′ is a visual bias vector that captures the general influence of item appearance.

While the study primarily relies on CNN-based feature extraction, the VBPR framework is
highly flexible and can accommodate alternative feature vectors beyond deep visual models.
Instead of using visual embeddings alone, it is possible to incorporate textual embeddings
derived from product descriptions and reviews, handcrafted features such as color and
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material, or multimodal representations that combine various sources of information.
This adaptability enables VBPR to be extended to a variety of recommendation scenarios
beyond strictly visual domains, making it perfectly suited for our experiment.
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CHAPTER 5
Results & Discussion

5.1 Fashion Captioning

5.1.1 Setting
We followed the procedure with the setting described in Section 4.2.2. We then proceed
to save the model with the lowest validation loss and use early stopping with patience
of 3, meaning that if there is no improvement on the validation set after 3 epochs, we
stop training. This setup with the different model and dataset sizes and a limitation of
168 hours (a week) on the cluster leads to the checkpoints displayed in Table 5.1. The
FACAD dataset includes a train set size of 888,293 and a validation set size of 19,915.
The H&M dataset includes 83,385 samples for training and 10,423 samples for validation.
The epochs presented in Table 5.1 show the checkpoints later used for inference.

5.1.2 Quantitative Analysis
The quantitative analysis of the captions includes the metrics presented in Section 2.1.3
and Section 4.3. We present the results of the pre-trained models and the fine-tuned
models side-by-side for the H&M dataset in Table 5.4 and for the FACAD dataset in
Table 5.5.

H&M. One notices that performance improved for all models except for the BLIP-2
models that are based on the FLAN-T5 language models. These models could only
complete 3 or 6 epochs, and it appears that the fine-tuning process introduced more
noise than targeted specialization. However, all other models that trained at least 8
epochs show improvements across multiple evaluation metrics. Among them, BLIP-2-6.7B
achieves the best performance making it the strongest candidate for fashion captioning
on the H&M dataset. One interesting fact that we observed and that we also investigated
during our qualitative analysis (see Section 5.1.3) is the trade-off between the precision
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Table 5.1: Training and validation times for the different model checkpoints on H&M
and FACAD datasets. The epochs stating the epoch the model was saved that was later
used for inference. Time per epochs shows the approximate time for a training/validation
epoch using a A100 with 80GB.

Model
H&M FACAD

Epochs Time Per Epoch Epochs Time Per Epoch

BLIP-2-2.7B 8 2.25h train / 10min val 5 16h train / 10min val

BLIP-2-6.7B 8 3.25h train / 15min val 3 27h train / 16min val

BLIP-2-XL 6 3.5h train / 15min val 2 29h train / 17min val

BLIP-2-XXL 3 7.75h train / 26min val 1 77h train / 41min val

LLaVA-1.5-7B 8 4.16h train / 17min val 1 35.5h train / 20min val

LLaVA-1.5-13B 8 7.5h train / 25min val 1 70h train / 33min val

Table 5.2: Fashion captioning results for dataset H&M in pre-trained (PT) and fine-tuned
(FT) scenarios. The best results are highlighted in bold. *CIDEr shows results beyond
100 due to multiple scaling (see Section 2.1.3).

H&M

Model
BLEU-4 METEOR ROUGE-L CIDEr SPICE MAP/MAR Acc

PT FT PT FT PT FT PT FT PT FT PT FT PT FT

BLIP-2-2.7B 0.3 40.8 5.3 33.5 14.8 63.4 7.0 275.2* 8.0 44.7 37.2 / 11.4 70.8 / 65.4 53.0 83.5

BLIP-2-6.7B 0.3 41.4 5.5 33.9 15.3 63.8 7.3 281.3* 8.3 45.4 38.3 / 11.6 70.8 / 66.0 53.8 83.8

BLIP-2-XL 0.3 0.2 5.1 4.4 15.0 10.6 6.3 6.6 8.0 7.3 38.9 / 10.8 37.0 / 10.3 56.5 51.7

BLIP-2-XXL 0.3 0.4 5.3 5.6 15.5 16.6 7.0 7.2 8.4 8.7 38.0 / 11.2 38.2 / 11.9 58.0 56.0

LLaVA-1.5-7B 0.5 23.4 7.4 32.8 14.5 46.0 0.8 24.2 5.3 34.6 15.2 / 13.0 53.1 / 71.3 32.0 82.9

LLaVA-1.5-13B 0.4 22.9 7.4 32.3 14.2 45.5 1.2 22.0 5.8 34.9 17.8 / 13.8 54.0 / 70.8 31.0 83.5

and recall of the attributes for the different models. Due to the longer captions produced
by the LLaVA models, they achieve higher recall scores but then lack precision. The
opposite for the BLIP-2 models. They achieve better overall performance by having a
balance between precision and recall.

FACAD. Comparing the accuracy reported by Yang et al. for the category classification,
we noticed that our models (fine-tuned BERT classifier) worked better than the reported
CNN classifier. One should note that the accuracy metric generally describes how
well the models recognize the correct category from the image because as long as the
generated caption includes a category, e.g., t-shirt or top, the accuracy models will
predict the category based on the caption input (with an accuracy of >90%, based on
the performance on the testset). Given these considerations, we cannot fully explain why
the zero-shot setup (using BLIP-2 results) achieves nearly 40% better accuracy than the
results reported by Yang et al. We hypothesize that this improvement may be due to
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the BERT model outperforming the originally used CNN-based model or because SRFC
struggles to accurately classify clothing items.

Also here, similar to the H&M results previously mentioned, the larger BLIP-2 models
(BLIP-2-XL and BLIP-2-XXL) could not complete 1 or 2 epochs due to the size of the
models, the size of the dataset, and the limitation of time on the cluster. Besides those,
we see an improvement for BLIP-2-2.7B, showing similar performance to the model by
Yang et al. and improved MAP results. For the LLaVA models, we see the same behavior
as previously described for H&M with producing longer captions leading to higher recalls
and lower precision.

Table 5.3: Fashion captioning results for the FACAD dataset in pre-trained (PT) and
fine-tuned (FT) scenarios. The last two models show the worst (CNN-C) and best (SRFC)
models reported by Yang et al., the best model being the one presented by the authors.
The best values for each metric are highlighted in bold.

FACAD

Model
BLEU-4 METEOR ROUGE-L CIDEr SPICE MAP/MAR Acc

PT FT PT FT PT FT PT FT PT FT PT FT PT FT

BLIP-2-2.7B 0.3 3.7 4.6 10.1 12.6 19.7 4.3 36.4 6.4 10.3 17.4 / 7.9 24.6 / 22.5 52.0 69.9

BLIP-2-6.7B 0.3 3.5 4.6 9.8 12.9 19.1 4.1 34.4 6.4 9.8 17.7 / 7.8 23.3 / 21.2 51.4 69.0

BLIP-2-XL 0.2 0.1 4.2 3.3 12.9 8.2 3.2 2.3 6.4 5.8 17.6 / 7.2 18.5 / 6.3 52.2 45.7

BLIP-2-XXL 0.2 0.1 4.2 3.3 12.8 9.2 3.1 2.3 6.4 5.4 18.4 / 7.4 17.7 / 5.5 53.1 41.6

LLaVA-1.5-7B 0.2 1.5 6.8 11.2 12.0 15.4 0.1 1.2 4.1 7.4 9.8 / 8.7 14.7 / 27.9 45.1 65.5

LLaVA-1.5-13B 0.2 0.7 6.5 8.3 12.4 12.6 0.8 0.1 4.5 3.7 9.9 / 8.5 8.4 / 16.3 44.2 27.4

CNN-C [ADS] 2.1 7.2 16.3 20.8 6.5 4.9 / - 10.8

SRFC [YZJ+] 6.8 13.2 24.2 42.1 13.4 9.5 / - 18.2

5.1.3 Qualitative Analysis
For the qualitative analysis, we created an interface that displays each product image
given as input to the models, the captions produced, and their scores as well as the
categories classified (see Figure 5.1). We then take a closer look into the captions,
the zero-shot, and fine-tuned ones, to identify edge cases, patterns, impact on certain
performance metrics, and more. This is done for the first 20 samples in the H&M dataset
and the first 3 distinct items in the FACAD dataset (because the dataset includes the
same caption for multiple images entailing the same item).

We exclude the CIDEr score in the qualitative analysis because comparing two captions
is always zero. This is because for each n-gram in the generated caption (test caption),
the TF-IDF weight is computed using the formula:

TF-IDF = TF × (log(Number of References) − log(DF))

where TF is the term frequency (frequency of the n-gram in the test caption), DF is
the document frequency (number of reference sentences containing the n-gram), and
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5. Results & Discussion

Figure 5.1: Example (using H&M item) of the information displayed for qualitative
analysis. It includes captions, scores (except for CIDEr), attributes, and the respective
recall and precision. For H&M, we additionally display the information that was provided
dataset. We created this interface using the Streamlit library for Python.

Number of References is the total number of reference sentences. Since there is only one
reference sentence in this case, log(Number of References)−log(DF) = log(1)−log(1) = 0,
which makes the IDF term equal to 0. As a result, the TF-IDF weight for every n-gram
in the test caption becomes TF-IDF = TF × 0 = 0, because the dot product of a zero
vector with any other vector is 0.

H&M. For the particular sample seen in Table 5.4, we see that the fine-tuned LLaVA
models manage to include most information of the original caption. After reaching the
end of the original caption length, the model starts to “hallucinate” polyester material
and funding. This might be due to the high presence of polyester in the train captions
(2269 samples), but there is no “European Regional Development Fund” in the train
data. Looking at the different metrics we noticed the highest BLEU score does not
always indicate that the other metrics are also the highest compared between all models.
We saw in Section 2.1.3 that BLEU includes a brevity penalty, METEOR includes a
fragmentation penalty, ROUGE-L focuses on the longest, most common sequence, and
SPICE focuses on the semantic overlap. The example shows well how fine-tuning adjusted
the model’s expression, wording, and sentence structure (punctuation and capitalizing).
It also shows that the models were untrained to include the color and pattern due to
H&M captions not including either. The BLIP-2 FLAN-T5 models (due to the short
fine-tuning process) only improved slightly.
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Figure 5.2: Comparison of length of captions before and after fine-tuning, the horizontal
line showing the average number of words in the captions of the H&M test set.
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Figure 5.3: Comparison of length of captions before and after fine-tuning, the horizontal
line showing the average number of words in the captions of the FACAD test set.
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For the other samples, we noticed that due to the fact that the LLaVA models are set
with max_new_tokens to 256 (required parameter in the HuggingFace interface) for
text generation, they overgenerate and fill up the missing space between the ground
truth length and generation length. The models stubbornly generate the given length
without considering the end of a sentence (see Table 5.4, fine-tuned LLaVA models).
This, however, does not happen with the BLIP-2 models. We can see in Figure 5.2 that
when comparing the average length of the generated captions before and after fine-tuning
the bar plot shows that the longer fine-tuned BLIP-2 models learn the length of the
captions.

The longer captions of the LLaVA models lead to a higher recall for the extracted
attributes but lower precision and the opposite for the BLIP-2 models. Except when
there is a small number of attributes (due to shorter descriptions usually), then BLIP-2
also achieves good results for recall.

Between BLIP-2 with 2.7B and 6.7B parameters, we notice that BLIP-6.7B (coherent
with the results in Table 5.2) shows better performance by including more detail about
the items. We assume this is due to the larger number of parameters.

We see that the limitations of the models are captioning the material, e.g., satin vs.
velvet vs. corduroy, or textile, e.g., viscose and polyester, and the size of the products,
e.g., 32x32cm. Also, products for which the product images are not identifying enough,
e.g., showing a plain fabric cloth which is a handkerchief but could also be a scarf or a
snippet of a bigger item.

FACAD. For the sample shown in Figure 3.5a, we noticed that the part of the caption
including “inspired by the work of rising spanish photographer coco capit n” has no
visual connection to the image. Samples like this can introduce noise to a model trying
to learn the connection between words and visual features. Comparing the fine-tuned
LLaVA models between both datasets, we see that they took over a “selling” type of
expression, e.g., “a timeless appeal that never goes out of style”.

With regard to caption comparison between the two models, we see a similar behavior as
to the H&M dataset in regards to caption length (see Figure 5.3). We notice that LLaVA
achieves good results for creating “sales” like phrases. However, the models overdo it for
simple item descriptions (see example in Table 5.5).

For LLaVA, some captions cycled back to producing the prompt template that was used
to generate the caption, providing answers (example below). The models’ responses begin
with ASSISTANT: and then regenerate a response.
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5.1. Fashion Captioning

USER:
Describe the appearance of the clothing item.

ASSISTANT:
A classic tailored jacket is updated in a fresh floral print

and cut from a lightweight woven fabric that's a fresh,
breezy option for warm weather day and night ahead of the
season.

�→
�→
�→

ASSISTANT:
A fresh floral print blossoms on a lightweight blazer that's a

polished standout.�→

When analyzing the category prediction for this sample, we noticed that the models could
not identify the category blazer and miscategorize it as a jacket. And for the material
image and back image it miscategorizes it as tee/top.

We noticed that some of the attributes extracted and included by the authors [YZJ+] do
not seem reasonable as they do not represent visual attributes of the items e.g. “chrissy”,
“teigen” from “designed in partnership with chrissy teigen” or “work” from the sample
presented in Figure 3.5a. One would assume attributes to be related the visual appearance
of a clothing item.

Generally, we noticed a problem with partially visible clothing items. If the image does
not show the item fully, e.g. see Figure 3.5a material shot or detail shot (middle image),
the models have a problem identifying the correct category. Same for not visible details,
e.g., open at the back with a tie or double back vent.

It is difficult for the captioning models to identify nuances of material, e.g., satin vs.
velvet, color dark blue vs. black, or clothing type jacket vs. blazer. We think that this
can be due to the resizing of the image for the image encoder, where details get lost, and
the depiction of the items in the dataset.

5.1.4 Summary

To evaluate the impact of fine-tuning, we analyze how well it improved our pre-trained
models, addressing RQ1 (Section 1.3). The results, presented in Table 5.6, show the
average percentage change in performance—whether an increase or decrease—per model
and dataset based on the tables presented in Section 5.1.2.

We observe that fine-tuning was more effective for the H&M dataset, which we attribute
to the presence of a one-to-one relationship between images and captions. To further
investigate this hypothesis, one could subsample the FACAD dataset to include only
one-to-one samples, though we leave this for future work.
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5. Results & Discussion

Additionally, we note that insufficient fine-tuning led to a performance decrease for
BLIP-2-XL and BLIP-2-XXL. Finally, our results indicate that fine-tuning was generally
more beneficial for BLIP-2 models compared to LLaVA models.

Comparing the results between SRFC, the model that was specifically trained for Fashion
Captioning by Yang et al., and the results for our fine-tuned models, we notice that
even though the image captioning metrics are “worse”, the fine-tuned models manage
to generate more accurate captions in terms of attributes and categories. We would,
therefore, argue that our method provides the advantage of simplicity due to the avoidance
of additional rewards while still keeping good results, focusing on attributes and semantics,
and having the same amount of training time.

We, additionally, were able to present the limitations of fine-tuned models through a
qualitative analysis presented in Section 5.1.3 where we showed that the models struggle
to connect caption parts that have no visual representation because they are either not
visible in the image e.g. backside or are abstract information e.g. recycled material
or designed by a celebrity. For future work that relates to this task, we, therefore,
recommend captions that describe visible parts of the clothing item and avoid multiple
images with the same caption.

5.2 Recommendations
As explained in the Section 3.2.2, we use a temporal split and no cross-validation. The
results reported for VBPR are the results for the best model based on the validation set.
The VBPR model was trained for 200 epochs with a learning rate of 1e-5. We combined
multiple feature vectors, e.g., visual and textual, by concatenation. The number of latent
factors was set to 64.

With the results presented in Table 5.7 we are able to answer RQ2 (Section 1.3). Based
on the H&M dataset the answer is textual embeddings. However, comparing the results,
we see that all different feature spaces perform similarly. and not as good as the best
overall result using the ItemKNN algorithm. This might also indicate that VBPR might
not be the right algorithm for this dataset in general.
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Table 5.4: Descriptions generated by different models for the image seen in Figure 3.5b.
The ground truth caption is “Short, sleeveless dress in an airy cotton weave that is open
at the back with a tie. Adjustable frill-trimmed shoulder straps, a concealed zip in the
side, seam at the waist with elastication at the back and a flared skirt. Unlined.”.

Model Description

BLIP-2-2.7B a yellow and white checkered dress

BLIP-2-2.7B_finetuned Short, sleeveless dress in a patterned viscose weave
with a square neckline front and back, narrow shoulder
straps and a concealed zip at the back. Seam at the
waist and a gently flared skirt. Unlined.

BLIP-2-6.7B the yellow gingham dress is made from cotton and has
straps

BLIP-2-6.7B_finetuned Short, sleeveless dress in woven fabric with narrow
shoulder straps, a sweetheart neckline and a concealed
zip at the back. Seam at the waist and a gently flared
skirt. Unlined.

BLIP-2-XL a yellow gingham dress with straps

BLIP-2-XL_finetuned The yellow gingham dress is made of cotton and has a
button closure.

BLIP-2-XXL a yellow gingham dress with straps

BLIP-2-XXL_finetuned a yellow gingham dress with a strapless neckline

LLaVA-1.5-7B The clothing item is a yellow dress with a checkered
pattern. It is a short dress, likely designed for warm
weather or casual occasions. The dress features a yellow
color and a checkered pattern, which adds a unique
and eye-catching touch to the outfit.

LLaVA-1.5-7B_finetuned Short, sleeveless dress in woven fabric with narrow
shoulder straps and a seam at the waist. Unlined. The
polyester content of the dress is partly recycled. The
lining is made from recycled polyester. The production
of this dress is partly funded by the European Regional
Development Fund. The polyester content of the dress
is rec

LLaVA-1.5-13B The clothing item is a yellow dress with a checkered
pattern. It is a short dress, suitable for warm weather
or casual occasions. The dress is hanging against a
white background, which highlights its vibrant color
and pattern.

LLaVA-1.5-13B_finetuned Short, sleeveless dress in woven fabric with smocking
at the back, a concealed zip in one side, seam at the
waist, and flared skirt. Unlined. The polyester content
of the dress is partly recycled. The polyester content
of the lining is recycled. The polyester content of the
lining is rec
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Table 5.5: Descriptions generated by different models for the first product image (left
top corner) seen in Figure 3.5a). The ground truth caption is “this shawl collar jersey
blazer bloom with black and white floral patterning inspired by the work of rising spanish
photographer coco capit n”.

Model Description

BLIP-2-2.7B the black and white floral print jacket is a great option
for women

BLIP-2-2.7B_finetuned a drapey shawl collar and a waist defining tie add
polished finishing touch to this versatile open front
cardigan

BLIP-2-6.7B the women’s jacket is made from a floral print.

BLIP-2-6.7B_finetuned a lightweight jacket with a clean modern look is cut
from a stretch knit with a subtle pattern and a relaxed
fit

BLIP-2-XL a woman wearing a black and white floral print jacket

BLIP-2-XL_finetuned the floral printed jacket jacket

BLIP-2-XXL a woman wearing a black and white floral jacket

BLIP-2-XXL_finetuned the blazer is made of cotton and silk

LLaVA-1.5-7B The clothing item in the image is a black and white
jacket, which is worn by a woman. The jacket features
a floral pattern, adding a touch of elegance and style to
the outfit. The woman is standing in front of a white
background, which helps to emphasize the contrast
between the black and white jacket and the rest of the
scene.

LLaVA-1.5-7B_finetuned a classic blazer is updated in a boxy cropped cut of
lightly textured crepe with a pretty floral print to add
a touch of romance to your ootd game plan a well a
a softening effect on your silhouette a flattering tie
belt cinch the look a well a your new favorite work to
weekend go to this season is

LLaVA-1.5-13B The clothing item is a black and white jacket, which
appears to be a cardigan or a blazer. The woman is
wearing it over a black shirt, and she is standing in
front of a white background. The jacket has a floral
pattern, adding a touch of elegance and style to the
outfit.

LLaVA-1.5-13B_finetuned a classic cable knit cardigan is made extra cozy with
a generous shawl collar and soft faux shearling lining
the hood and hem to keep out the cold chill of winter
day and night alike a perfect top to top into your cold
weather look this cardigan ha a timeless appeal that
never go out of style so it s one you
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Table 5.6: Percentage of relative improvement (or decrease) of average improvement (or
decrease) overall metrics per model and dataset.

Model H&M % Improvement FACAD % Improvement

BLIP-2-2.7B 2685.50 313.21

BLIP-2-6.7B 2696.34 297.97

BLIP-2-XL -13.39 -21.81

BLIP-2-XXL 7.09 -23.78

LLaVA-1.5-7B 1289.53 288.39

LLaVA-1.5-13B 1255.67 17.27

Table 5.7: Recommendation results for H&M dataset on the test set explained in
Section 3.2.2. The best results are highlighted in bold. We highlight the best results
overall (using ItemKNN) and for the different feature spaces (using textual features).

Setting
NDCG MAP

@5 @12 @5 @12

Random 0.00005 0.00007 0.00005 0.00004

MostPop 0.00538 0.00640 0.00439 0.00373

UserKNN (k=10) 0.01198 0.01355 0.00558 0.00379

ItemKNN (k=20) 0.05760 0.06421 0.03557 0.02534

Visual (ResNet50) 0.02414 0.02882 0.01213 0.00917

Visual (BLIP-2) 0.02187 0.02656 0.01110 0.00853

Textual
(SentenceBERT) 0.02509 0.02986 0.01270 0.00955

Multimodal
(ResNet50+BERT) 0.02427 0.02892 0.01220 0.00922

Multimodal (CLIP) 0.02455 0.02917 0.01241 0.00934

Queries (BLIP-2) 0.02451 0.02912 0.01247 0.00939
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CHAPTER 6
Conclusion

This chapter provides a summary of the work done in this master’s thesis and its
contributions. We also discuss different aspects of the experiment highlighting limitations
and other interesting insights. Finally, we present opportunities for future work based on
the experiment results.

6.1 Summary
This thesis consists of mainly two parts: 1) experiments fine-tuning pre-trained image
captioning models on domain-specific fashion datasets and 2) evaluating different feature
spaces used for fashion recommendation and determining which is the best one using
the H&M dataset. The work was done to answer the research questions presented in
Section 1.3.

To answer RQ1, we first had to determine suitable models for our experiment setup.
After reviewing different options, we decided to use BLIP-2 (Section 4.1.1) and LLaVA
(Section 4.1.2). The main reasons were that they are easy to use with Hugging Face,
they are up-to-date, and they work well for tasks that combine images and text. Also,
because they are available on Hugging Face, we can easily change and fine-tune them.
We were able to use 4 different variants of BLIP-2 and 2 different variants of LLaVA for
our experiments.

We then continued to preprocess the H&M data based on the data processing of Yang et
al. [YZJ+] to create a fashion captioning dataset. The detailed process is explained in
Section 3.2.

In its first iteration, we explore the performance of the models off-the-shelf without
fine-tuning to give a baseline of the performance. The results can be seen in Table 5.5
for FACAD and Table 5.4 for H&M and can be described as underwhelming. We then
proceeded to fine-tune the models using LoRA, but in order to determine the right
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setup, we conducted a small hyperparameter tuning based on the smallest BLIP-2 model
(Section 4.2.2) and the smaller H&M dataset for a faster iteration. Based on those results,
we then fine-tuned all 6 models on both datasets, resulting in 12 fine-tuned models.
Additionally, we fine-tuned 2 BERT-based text classification models to classify captions
to their right product type category.

After fine-tuning, we conducted a qualitative analysis (Section 5.1.3) of the results to get
deeper insights into the understanding of the model. We observed that BLIP-2 adapted
almost perfectly to the captions of the H&M dataset. For example, it unlearned to
include the color of the item, since this detail is not included in the ground truth—unlike
in standard image captioning tasks, where including color would be desirable. We noticed
that the LLaVA models tend to overgenerate captioning or lack the capability of adjusting
the length of their output to the ground truth. This leads to higher recall but lower
precision. For the FACAD dataset, we show (Table 5.3) that our fine-tuned models
achieve similar performance as to the model presented by Yang et al. without having to
express specific rewards for semantic and using reinforcement learning. These insights
and more provided answers to the RQ1 (Section 5.1).

We then proceed to use the entire H&M dataset, including transaction information, for
recommendations. We extract features from our fine-tuned models because, based on our
hypothesis, these embeddings should be targeted to prioritize the connection between
image and text specifically for fashion items, e.g., pockets, buttons, sleeves, etc. For
comparison, we also use other models for feature extraction (more details are presented
in Section 4.4.1).

We use VBPR [HMb] which was initially designed to use CNN-extracted visual features
but can be extended to use other feature vectors. With the help of the elliot framework
[ABF+], we were able to easily run different setups and document the results in Table 5.7.
We chose a simple unpersonalized baseline, namely random recommendations and most
popular items, to give more context to the performance results. Additionally, we ran two
state-of-the-art methods based on collaborative filtering.

To our surprise and against the intuition that fashion is a visually based domain the
textual embeddings provided the best results, answering RQ2 (Section 1.3). However,
all VBPR-based results show only a small difference, which leads us to believe that the
different feature spaces do not have a substantial influence on the performance or the
algorithm is not the best one for this use case. The fact that ItemKNN provides, by far,
the best results supports this hypothesis.

In conclusion, we showed that fine-tuning is a powerful approach that can be a simpler
solution than engineering a whole frame around a task and that depending on the dataset,
textual features can provide good recommendations even in a visually dominant domain
such as fashion.
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6.2 Contribution
The main contributions of this thesis are the answers provided to the research questions
and the artifacts created during the process. Specifically, this work presents a detailed
investigation into the capabilities of fine-tuned models for generating fashion item de-
scriptions, which was done on real-life datasets extracted from online fashion stores. As
well as a comprehensive evaluation of different feature spaces for the recommendation
task using a recent dataset.

We outline the research questions that were answered in this thesis.

RQ1: To what extent can fine-tuning improve the performance of off-the-shelf image
captioning models on domain-specific fashion datasets?

We show that fine-tuning can achieve competitive performance in models that were
specifically trained for the semantics of fashion captions. This has the advantage of a
simpler pipeline without the need for additional semantic rewards or multiple training
stages. We can show that fine-tuning has its limitations that depend on the models as
well as the dataset used for fine-tuning. In regards to the dataset, we see that models
learn based on the ground truth to connect these to the images even if the descriptions
include information that cannot be seen, e.g., back pockets and material used. Or to
unlearn information, it would usually mention, e.g., color. However, if multiple images
use the same description, the models seem to not be able to connect the caption as a
whole to the item, especially if the images include different formats, e.g., images with
humans, material images, and multiple versions of the same item. For the models we see
that BLIP-2 works better than LLaVA because BLIP-2 is able to adjust the length of
the generated text, and LLaVA models produce according to the set parameter, filling
empty space or abruptly finishing sentences.

During this part we created the following artifacts:

• 12 fine-tuned models (6 models on 2 datasets)

• 2 fine-tuned models for sentence classification to extract categories from captions

• a fashion image captioning dataset extracted from the H&M dataset that includes
attributes and categories

RQ2: Which feature embeddings (textual, visual, or multimodal) provide the best
recommendations?

Using the H&M dataset this question is answered by saying the textual embeddings
provided the best recommendations. We do acknowledge the limitations of our context,
that we are using a temporal split instead of cross-validation relying on a single dataset.
This result is still interesting as it shows that in a visually dominant domain such as
fashion, textual descriptions can be as relevant for recommendations as multimodal or
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visual information. However, traditional methods such as ItemKNN outperform the
VBPR algorithm.

Other contributions beside the provided answers to the research questions are:

• 14 fine-tuned models

• application for qualitative analysis of image captions

• in-depth analysis of captions generated

• novelty by repurposing the H&M dataset for image captioning and using recent
multimodal models

• reproducibility research by investigating the setup of Yang et al. [YZJ+] and
discovering issues

6.3 Limitations and Future Work
Despite the contributions of this thesis, several limitations must be acknowledged. One
key limitation is that even though we use fashion datasets, both show relevant differences
as pointed out in Chapter 3. For better comparison, experiments could be repeated with
a version of FACAD where images are sampled to have a 1-to-1 relationship to captions.
Also, we admit that our fashion datasets are Western-focused and do not include Eastern
clothing items, e.g., hijabs or saris.

The next limitation is the models. Nowadays, there is a large collection of models with
multimodal capabilities that are provided in an open-source manner and are not included
in this thesis, e.g., Qwen-VL [BBY+] and OpenFlamingo [ADL+], due to time limitations.
Also, we did not include closed-source models as mentioned in Section 4.1. However,
these gaps can be filled in the future.

Another limitation in regards to the models is the parameters that were set for LoRA
as well as the training parameters. We cannot be sure that we achieved the best result
possible for each setup, especially for the models that were also not able to run fully due
to their size. This also affects the results of the recommendation, which are not evaluated
with cross-validation and were not optimized with hyperparameter tuning.

For future work, several directions could be pursued to enhance and extend the findings
of this thesis. McKinzie et al.[MGF+] demonstrate that the image encoder, along with
image resolution and the number of image tokens, has a significant impact, whereas the
design of the vision-language connector is relatively insignificant. One possible direction
is experimenting with different encoders to assess whether they improve the model’s
ability to distinguish fine details. Another promising application lies in text-based image
retrieval systems. Given that companies often manage vast collections of product images,
leveraging vision-language models to automatically generate captions and metadata could
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significantly improve search efficiency, helping customers find the exact products they
are looking for.

In conclusion, we see the findings of this thesis as an invitation for further exploration in
this field, encouraging more experiments to refine and expand upon these insights.
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